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ABSTRACT 

 

Research suggests that both static and dynamic faces share identity information with voices. 

However, face-voice matching studies offer contradictory results. Accurate face-voice 

matching is consistently above chance when facial stimuli are dynamic, but not when facial 

stimuli are static. This thesis aims to account for previous inconsistencies, comparing 

accuracy across a variety of two-alternative forced-choice (2AFC) procedures to isolate the 

features that support accuracy. In addition, the thesis provides a clearer and more complete 

picture of face-voice matching ability than that available in the existing literature. Same-

different procedures are used to address original research questions relating to response bias 

and the delay between face and voice presentation.  

The overall findings indicate that faces and voices offer concordant source identity 

information. When faces and voices are presented close together in time, matching accuracy 

is consistently above chance level using both dynamic and static facial stimuli. Previous 

contradictory findings across studies can be accounted for by procedural differences and the 

characteristics of specific stimulus sets. Multilevel modelling analyses show that some people 

look and sound more similar than others. The results also indicate that when there is only a 

short (~1 second) interval between faces and voices, people exhibit a bias to assume that they 

belong to the same person.  

The findings presented in this thesis have theoretical and applied relevance. They highlight 

the value of considering person perception from a multimodal point of view, and are 

consistent with evidence for the existence of early perceptual integrative mechanisms 

between face and voice processing pathways. The results also offer insights into how people 

successfully navigate complex social situations featuring a number of novel speakers.   
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1. CHAPTER 1: OVERVIEW OF THE THESIS 

This thesis investigates whether people look like they sound, and sound like they 

look. It reports experiments testing whether participants can match face and voice stimuli for 

identity. An overview of the contents of each chapter is provided below. 

1.1 Chapter 2: Literature review 

Chapter 2 places the thesis within the wider context of existing literature. The chapter 

begins by reviewing evidence for integrated face and voice processing, which provides an 

important theoretical foundation for the studies presented in this thesis. The chapter then 

considers the extent to which faces and voices share redundant information, focusing on 

dynamic faces and voices in light of speech perception research, and static faces and voices in 

light of the evolutionary psychology literature. The findings provide a rationale for directly 

comparing dynamic to static face-voice matching. Despite the two strands of research 

independently informing hypotheses that both types of matching should be possible, the 

subsequent review of the relevant literature shows that whilst dynamic face-voice matching is 

consistently above chance level, static face-voice matching is more variable. There are a 

number of procedural confounds between studies that might help to explain differences in 

performance. In discussing the existing face-voice matching research in detail, a number of 

gaps in knowledge emerge. On the basis of these, the following research questions are 

formulated: 

• Research question 1: Do voices share redundant information with dynamic as well as 

static faces? 

• Research question 2: Is it possible to match voices and static faces, or is accurate face-

voice matching contingent on encoding information about visual articulatory patterns?  
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• Research question 3: Do procedural differences account for inconsistencies in the 

previous literature regarding static face-voice matching?  

• Research question 4: Are there matching performance asymmetries according to the 

order of stimulus presentation? 

• Research question 5: How do response biases operate in face-voice matching?  

1.2 Chapter 3: Face and voice stimuli: Methodological and statistical issues 

Chapter 3 explains the methodological and statistical challenges of appropriately 

dealing with inter and intra stimulus variation in faces and voices. The chapter shows that in 

order to generalise from stimuli, it is necessary to use a stimulus sample that features as many 

individuals as possible, and always more than one. More importantly, appropriate statistical 

analyses should be employed. This chapter therefore provides a rationale for the use of 

multilevel modelling. Whilst conventional statistical analyses such as ANOVA aggregate 

over stimuli or items, only approaches such as multilevel modelling simultaneously account 

for participant and stimulus variability.  

1.3 Chapter 4: Testing the back-up signal hypothesis: Do faces and voices offer 

redundant information? 

Chapter 4 reports an experiment addressing whether voices share redundant 

information with dynamic as well as static faces (Research question 1). The evolutionary 

psychology literature suggests that together, faces and voices provide multimodal signals for 

dimensions of fitness and quality. In Experiment 1 we tested whether this information is 

complementary or redundant. Participants rated faces and voices on scales for 

masculinity/femininity, age, health, height and weight. The results show that independent 

ratings of the same person’s face and voice are strongly related, regardless of whether the 

face is static or dynamic. Faces and voices therefore appear to offer redundant rather than 
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complementary information. This evidence is used to inform the hypothesis that both static 

and dynamic face-voice matching should be possible.  

1.4 Chapter 5: Matching novel face and voice identity using two-alternative forced-

choice procedures 

Chapter 5 reports three experiments investigating static face-voice matching and 

dynamic face-voice matching performance using two-alternative forced-choice (2AFC) 

procedures. In each experiment, participants had to decide which face-voice combination was 

made up of a single identity. Experiments 2a, 2b and 2c addressed whether static face-voice 

matching is possible (Research question 2). The experiments employed different versions of 

2AFC tasks in order to establish whether contradictions across previous studies might be 

accounted for by procedural differences (Research question 3). Experiments 2a and 2b also 

included a manipulation of stimulus presentation order to investigate the possibility that 

performance differs according to whether the face is seen before the voice is heard, or vice-

versa (Research question 4). Taken together, the results suggest that above chance static face-

voice matching is possible, although it is sensitive to the experimental procedure employed. 

In addition, inconsistencies in previous research might depend on the specific stimulus set 

used; multilevel modelling reveals that some people look and sound more similar than others. 

1.5 Chapter 6: Position bias in two-alternative forced-choice procedures 

In Experiments 2a and 2b, participants were more accurate when the same identity 

stimulus appeared in position 1, compared to position 2, of a sequential 2AFC task. The two 

experiments presented in Chapter 6 attempted to account for this position effect by testing for 

the existence of a response bias (Research question 5). In Experiments 3a and 3b, the same 

identity stimulus was never present at test. The overall pattern of matching responses was 

consistent with the conclusion that sequential 2AFC face-voice matching tasks are inherently 
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biased; people are more likely to select the stimulus appearing in position 1. This may reflect 

a tendency to integrate a face and voice presented close together in time as belonging to the 

same person. 

1.6 Chapter 7: Matching novel face and voice identity using same-different procedures 

As an alternative to the biased 2AFC task, Chapter 7 tests static face-voice matching 

and dynamic face-voice matching (Research question 2) using a same-different procedure. 

This procedure includes both signal and noise trials, so facilitates investigation of how both 

sensitivity and response biases operate in face-voice matching (Research question 5), and 

whether biases differ according to stimulus order, i.e. whether the face is presented before the 

voice, or the voice is presented before the face (Research question 4). In Experiments 4a and 

4b, participants saw a face and heard a voice. They had to decide whether the face and voice 

belonged to the same person. On signal trials, the correct response was same identity, 

whereas on noise trials the correct response was different identity. The results replicate the 

results presented in Chapter 4, showing that both static and dynamic face-voice matching is 

possible. In both experiments participants exhibited a bias to respond that the face and voice 

in each trial belonged to the same person. This bias was stronger when the face was presented 

before the voice. This finding is discussed in light of voices providing weaker identity cues 

than faces; voices perhaps tend to be subsumed by the identity of preceding faces. 

1.7 Chapter 8: The effect of increasing the inter-stimulus interval on face-voice 

matching performance 

The experiments presented in Chapter 8 extend the existing literature, as well as the 

new findings presented in previous chapters, by investigating how face-voice matching 

performance operates when faces and voices are separated by an inter-stimulus interval of 5 

seconds (Experiments 5a and 5c) or 10 seconds (Experiments 5b and 5d). In order to 



 

 
18 

investigate the effect on accuracy (Research question 2) and response bias (Research question 

5), these experiments used a same-different procedure, and manipulated the order of stimulus 

presentation (Research question 4). The results show that as the inter-stimulus interval 

increases, people are less likely to be able to accurately match face and voice identity. 

Accurate matching appears to depend on being able to compare high quality visual and 

auditory perceptual representations for identity information. The bias to respond same 

identity also weakens as the interval increases, suggesting that the bias observed in previous 

experiments is related to temporal contiguity. Integrating the face and voice into a single 

multimodal signal appears to be more challenging when they become temporally separated.  

1.8 Chapter 9: Summary and general discussion 

Chapter 9 summarises the main findings of the 12 experiments comprising this thesis, 

highlighting how they constitute an original contribution to the literature. The results are 

discussed in reference to the five research questions outlined above. The chapter offers some 

recommendations for future research, and comments on the applied relevance of the findings.  
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2 CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

Both faces and voices are highly salient social stimuli, thought to signal important and 

related information in order to facilitate social communication (Belin, Bestelmeyer, Latinus 

& Watson, 2011; Belin, Fecteau & Bedard, 2004; Campanella & Belin, 2007; Schweinberger, 

Kawahara, Simpson, Skuk & Zäske, 2014; Stevenage & Neil, 2014). During social 

interactions, faces and voices tend to be perceived simultaneously. However, the extent to 

which faces and voices offer concordant source identity information is relatively under-

researched (Wells, Baguley, Sergeant & Dunn, 2013; Wells, Dunn, Sergeant & Davies, 

2009). Testing whether novel faces and voices can be accurately matched provides a measure 

of the extent to which they offer redundant information. However, the literature has not 

resolved uncertainty regarding the extent to which accurate face-voice matching is contingent 

on encoding visual articulatory patterns and linking these to the sound of a voice (Kamachi, 

Hill, Lander & Vatikiotis-Bateson, 2003; Lachs & Pisoni, 2004a). Some studies show that 

there is sufficient redundant information available in static faces and voices to facilitate novel 

face-voice matching (Krauss, Freyberg & Morsella, 2002; Mavica & Barenholtz, 2013).  

This literature review discusses pertinent research investigating the concordance of 

source identity information offered by faces and voices. The chapter will review recent 

theories of face-voice processing before outlining the role of audiovisual information in 

speech perception, a research area highlighting redundancies between voices and dynamic 

articulating faces. The review will then turn to the evolutionary psychology literature, which 

has considered whether static faces and voices communicate similar information about 

dimensions of fitness and quality. In light of these two distinct strands of research, current 

literature regarding static and dynamic face-voice matching will be addressed to build 
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hypotheses for the experiments featured in future chapters. The hypotheses will also be 

informed by the relevant methodological literature. The following discussion of the literature 

therefore serves as a framework on which the research questions in this thesis have been 

formulated.  

2.2 Models of face and voice perception: Independent or integrated processes?  

It is necessary to address how face-voice matching ability is accommodated within 

existing models of person perception. The following section explains how the cognitive 

architecture supports face and voice processing, and considers whether cognitive models 

conceive of the two pathways as being either independent or integrated.  

The existence of highly selective cortical face and voice regions underlines their 

central and basic importance in supporting everyday social functioning (Yovel & Belin, 

2013). Functional magnetic resonance imaging (fMRI) studies have identified a number of 

cortical areas responding selectively to faces, such as the fusiform face area (FFA), occipital 

face area (OFA), and the right posterior superior temporal sulcus (STS) (e.g. Chao, Martin & 

Haxby, 1999; Grill-Spector, Knouf & Kanwisher, 2004; Hoffman & Haxby, 2000; Pitcher, 

Walsh, Yovel & Duchaine, 2007). Similarly, fMRI evidence indicates the existence of voice-

specific regions, or temporal voice areas (TVAs). These are located in the superior temporal 

gyrus (STG) (e.g. Ahrens, Hasan, Giordano & Belin, 2014; Belin, Zatorre & Ahad, 2002; 

Charest, Pernet, Latinus, Crabbe & Belin, 2013; Ethofer et al., 2013; von Kriegstein, Eger, 

Kleinschmidt & Giraud, 2003).  

The majority of the literature investigating paralinguistic aspects of face and voice 

perception has traditionally regarded face and voice processing as occurring relatively 

independently of each other (Belin et al., 2004, 2011). The well-known computational 

Interactive Activation and Competition (IAC) model (Burton, Bruce & Johnston, 1990) 
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predicts that following the structural encoding of face and voice representations, identity 

information about familiar people converges from different modalities at the post-perceptual 

stage of person identity nodes (PINs) (Ellis, Jones & Mosdell, 1997). However, an increasing 

body of recent behavioural evidence suggests that face and voice processing are not totally 

independent until this late stage (Joassin, Pesenti, Maurage, Verreckt, Bruyer & Campanella, 

2011; Schweinberger, Herholz & Stief, 1997; Sheffert & Olson, 2004; Zäske, Schweinberger 

& Kawahara, 2010). The literature now tends to consider person perception from a more 

multimodal perspective (Schweinberger et al., 2014). This supports Belin et al.’s (2004) 

adaptation of Bruce and Young’s (1986) model of face perception, which includes the 

addition of a voice processing pathway.  

The auditory face model (Belin et al., 2004) proposes that face and voice processing 

occur in parallel integrated pathways to facilitate the efficient exploitation of redundant 

information (Belin, Bestelmeyer, Latinus & Watson, 2011). Organisation of the functional 

architecture of voice perception is similar to Bruce and Young (1986)’s conception of face 

processing. After being processed for structural analysis, both faces and voices are processed 

for information about speech, emotion, and identity. However, according to this model, the 

three parallel visual and auditory pathways also interact with each other (Belin et al., 2004, 

2011; Campanella & Belin, 2007; Stevenage & Neil, 2014). The auditory face model is 

supported by brain imaging evidence. As well as the existence of cortical areas selective to 

faces and voices, a number of brain areas have been identified as possible loci for 

supramodal, multimodal person perception. These include the amygdala, STS and superior 

colliculus (see Belin et al., 2011). Further support for the model is offered by imaging studies 

indicating crosstalk and functional connections between selective face and voice areas 

(Blank, Anwander & von Kriegstein, 2011; von Kriegstein, Kleinschmidt, Sterzer & Giraud, 

2005).  
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Achieving accuracy in a face-voice matching task would rely on the successful 

extraction of redundant multimodal information. Accurate matching of voices to both 

dynamic articulating faces, as well as static faces, sits well with Belin et al.’s (2004) model. 

Whilst viewing dynamic articulating faces might facilitate the exploitation of redundant 

speech information, viewing static faces should be sufficient for the extraction of redundant 

identity information. The auditory face model therefore hypothetically supports a role for 

both static and dynamic information in explaining accurate novel face-voice matching. It is 

rather more difficult to reconcile the possibility of accurate static face-voice matching with 

Burton et al.’s (1990) model. There is little provision for the existence of redundant 

multimodal identity information in a model requiring familiarisation before a modality-free 

representation (i.e. PIN) can be activated.  

2.3 Audiovisual speech perception 

The majority of studies investigating audiovisual face-voice processing have focused 

on speech perception (Yovel & Belin, 2013). This research is relevant to understanding the 

nature of redundancies between voices and dynamic faces.  

The results of audiovisual speech perception research highlight the existence of links 

between auditory and visual modalities. As originally shown by Sumby and Pollack (1954), 

the visual perception of a speaker’s face improves speech intelligibility in noisy conditions 

(Benoit, Mohamadi & Kandel, 1994; MacLeod & Summerfield, 1987; Summerfield, 1987; 

see Rosenblum, 2005 for a review). McGurk and MacDonald’s seminal research 

demonstrates the existence of automatic perceptual links between voices and dynamic faces 

during speech perception (MacDonald & McGurk, 1978; McGurk & MacDonald, 1976). 

When phonetic information from a speaker’s face (e.g. [ga]) and voice (e.g. [ba]) is 

discrepant, the information is fused, and perceived as something that did not occur in either 
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modality (e.g. [da] or [tha]). This is known as the McGurk effect. Similar results have been 

observed under a variety of conditions (see Massaro, 1998). 

More recent evidence for the integration of face and voice information in speech 

perception comes from brain imaging studies. The same brain areas respond to both visual 

and auditory speech cues (e.g. Besle, Fischer, Bidet-Caudelet, Lecaignard, Bertrand & Giard, 

2008; Miller & D’Esposito, 2005; Paulesu et al., 2003; Skipper, Van Wassenhove, Nusbaum 

& Small, 2007). For example, silent lip-reading activates cortical areas, which were 

previously believed to respond selectively to the sound of a voice (Calvert et al., 1997). 

Findings such as these may help to explain why the benefit of increased familiarity with a 

speaker in one modality (auditory or visual) transfers to the other modality. Familiarity with a 

person’s voice improves people’s ability to lip-read that person’s silent speech, and vice-

versa (Rosenblum, Miller & Sanchez, 2007; Sanchez, Dias & Rosenblum, 2013). Some 

researchers therefore argue that speech perception is better understood as an amodal process, 

which is blind to the specific modality input because auditory and visual information are 

functionally inseparable (e.g. Rosenblum, 2005; Rosenblum, 2008). Other researchers argue 

for independent face and voice processing and late-integration (e.g. Bernstein, Auer & 

Takayanagi, 2004; Braida, 1991; Massaro, 1987, 1998).  

An argument against the latter position is that speech has closely related auditory and 

visual characteristics (Lachs & Pisoni, 2004a). Idiosyncratic speaking styles dictate both what 

voices sound like, and how faces move (Dohen, Loevenbruck, Cathiard & Schwartz, 2004; 

Lander, Hill, Kamachi, & Vatikiotis-Bateson, 2007; Yehia, Rubin, & Vatikiotis-Bateson, 

1998). An illustration of the voice production process provides a key to understanding how 

and why visual and auditory speech are so closely related. According to the source-filter 

model (Fant, 1960), voices are produced by vibrations in the vocal chords, which are situated 

in the larynx. These vibrations modulate airflow from the respiratory system so that acoustic 
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energy can be filtered through the vocal tract. Articulators in the vocal tract, such as the 

tongue, teeth, and soft palate, work in combination with the vocal folds to produce the 

necessarily wide and intricate array of sounds involved in human speech (Fitch, 2000; 

Jenkins, 1998; Titze, 1994a). The idiosyncratic neuromuscular movement of the internal 

vocal apparatus is redundantly reflected in both the face and the voice (Yehia, Kuratate & 

Vatikiotis-Bateson, 2000). The cheeks and lips constitute the outer surface of the vocal tract. 

The production of speech involves not only the movement of these features, but also the jaw 

(Vatikiotis-Bateson, Munhall, Hirayama, Lee & Terzopoulos, 1996). For example, Yehia et 

al. (1998) showed that tongue movement is closely related to jaw movement during speech. A 

number of visual and auditory speech correlates have also been observed. For example, the 

fundamental frequency of the vocal fold vibration is related to head position and orientation 

(Yehia, Kuratate & Vatikiotis-Bateson, 2002).  

There is strong evidence for perceptual links between voices and dynamic articulating 

faces. The evidence reviewed above suggests that, in line with predictions made by Belin et 

al.’s (2004) auditory face model, redundant information is offered by the visual and auditory 

modalities during speech production.  

2.4 Multimodal signals in faces and voices: Back-up signals or multiple messages?  

Faces and voices transmit far more identity-specific information than speech alone 

(Campanella & Belin, 2007; Yovel & Belin, 2013). Both convey information about a number 

of other dimensions, including gender, personality and emotion (e.g. Belin et al., 2004; de 

Gelder & Vroomen, 2000; Dolan, Morris & de Gelder, 2001; Massaro & Egan, 1996; Mavica 

& Barenholtz, 2013; Warner & Sugarman, 1986). This section focuses on the evolutionary 

psychology literature in order to explore the possibility that static faces and voices offer 

redundant information about a number of relatively stable dimensions, which might help to 
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indicate common source identity. The evolutionary literature, which has primarily dealt with 

ratings of static rather than dynamic faces and voices, suggests that both types of stimulus 

offer reliable and related information about mate value and fitness (Collins & Missing, 2003; 

Feinberg, 2008; Feinberg et al., 2005; Fraccaro, Feinberg, DeBruine, Little, Watkins & Jones, 

2010; Pisanski, Mishra & Rendall, 2012).  

Together, faces and voices convey multimodal signals. Such signals are common in 

animals, and occur when information about an underlying trait is communicated by more than 

one modality. As most research has focused on face and voice ratings independently of each 

other (Wells et al., 2009; Wells et al., 2013), relatively little is known about multimodal 

signals in humans. Multimodal signals are either back-up signals (Johnstone, 1997), or 

multiple messages (Møller & Pomiankowski, 1993), and are likely to have adaptive value in 

terms of mate choice. Back-up signals are redundant in meaning: they offer similar 

information, and elicit the same response, thereby helping to reduce inaccurate trait 

assessments (Møller & Pomiankowski, 1993).  

An example of a back-up signal in the animal world can be observed in male wolf 

spiders (schizocosa ocreata), which combine seismic and visual aspects in courtship displays 

(Uetz & Roberts, 2002). These signals provoke the same response from female wolf spiders 

when presented in isolation as they do when presented together (Uetz, Roberts & Taylor, 

2009). Multiple messages on the other hand offer complementary information and prompt 

different responses (see Partan & Marler, 1999). Taken together, multimodal information can 

offer a fuller assessment of mate quality (Candolin, 2003). For example, in zebra finches 

(Taeniopygia guttata) song rate and beak colour are condition-dependent sexual signals 

(Zann, 1996). However, when Birkhead, Fletcher and Pellatt (1998) manipulated diet quality 

in the laboratory, these two signals reacted at different rates to a poor seed-only diet 
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compared to a supplemented diet. They concluded that whilst song rate indicates present 

condition, beak colour is indicative of longer-term condition (Candolin, 2003).  

From an evolutionary perspective, faces and voices provide valuable clues about 

fitness. For example, in terms of attractiveness they appear to constitute reliable and 

concordant signals of genetic quality (e.g. Abend, Pflüger, Koppensteiner, Coquerelle & 

Grammer, 2015; Collins & Missing 2003; Feinberg, 2008; Feinberg et al., 2005; Fraccaro, 

Feinberg, DeBruine, Little, Watkins & Jones, 2010; Saxton, Caryl & Roberts, 2006; 

Thornhill & Gangestad, 1999; Thornhill & Grammer, 1999; Wheatley et al., 2014; Zahavi & 

Zahavi 1997; see also Puts, Jones & DeBruine, 2012 for a review). A number of studies have 

found that people who have faces that rate highly for attractiveness also tend to have voices 

that rate highly for attractiveness (e.g. Collins & Missing, 2003; Saxton et al., 2006, but see 

Oguchi & Kikuchi, 1997; Rezlescu, Penton, Walsh, Tsujimura, Scott & Banissey, 2015; 

Wells et al., 2013). Making similar judgements about a person regardless of whether you see 

their face or hear their voice might help to indicate common source identity. With the 

exception of the attractiveness literature, previous research has rarely compared judgements 

made from faces and voices, focusing instead on judgements informed by a single modality 

(e.g. Neiman & Applegate, 1990; Penton-Voak & Chen, 2004; Perrett et al., 1998; Pisanski et 

al., 2012). There are a number of reasons why we may expect concordance between face-

voice ratings in terms of masculinity and femininity, health, age, height, and weight. Some of 

these reasons are addressed below.  

2.4.1 Masculinity/femininity 

 Levels of reproductive hormones are likely to inform perceptions of both facial and 

vocal femininity and masculinity. For example, testosterone increases the size and thickness 

of vocal folds (Beckford, Rood & Schaid, 1985), resulting in lower fundamental frequency 
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(Fant, 1960), which influences perceptions of masculinity (Pisanski et al., 2012). In addition, 

high levels of testosterone are associated with characteristics of facial masculinity (Penton-

Voak & Chen, 2004; Perrett et al., 1998), such as larger jaws, chins and noses (Miller & 

Todd, 1998). In women, oestrogen slows down vocal fold development, and is associated 

with higher vocal pitch (Abitbol, Abitbol & Abitbol, 1999; O’Connor, Re & Feinberg, 2011). 

Oestrogen levels are also related to markers of facial femininity (Thornhill & Grammer, 

1999) such as larger lips, smaller lower faces, and fat deposits on the upper cheeks (Perrett et 

al., 1998).  

2.4.2 Health 

We might also expect ratings of health made from faces and voices to be similar. 

According to the handicap principle (Zahavi & Zahavi, 1997), masculine males and feminine 

females are perceived as high quality. This is because they are able to bear the 

immunocompetence handicap associated with high levels of reproductive hormones, imposed 

because metabolising hormones draws resources away from other bodily functions (Folstad 

& Karter, 1992). Previous research suggests that cues relating to higher levels of reproductive 

hormones are reliable indicators of fitness and quality (Folstad & Karter, 1992; Thornhill & 

Gangestad, 2006; Zahavi & Zahavi, 1997). Indeed, some studies suggest that measures of 

sexual dimorphism are linked to health ratings and actual health in both men and women 

(Ellison, 1999; Gray, Berlin, Law Smith et al., 2006; McKinlay & Longcope, 1991; Rhodes, 

Chan, Zebrowitz & Simmons, 2003). For example, the self-reported incidence and duration 

of respiratory disease is negatively associated with measures of sexual dimorphism (Thornhill 

& Gangestad, 2006). Medical health in males has been linked to ratings of facial masculinity 

(Rhodes, Chan, Zebrowitz & Simmons, 2003) and actual testosterone levels (Gray et al., 

1991). In women, higher levels of reproductive hormones reflect reproductive health, such as 

the increased chance of successful conception (Ellison, 1999).  
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2.4.3 Age 

Faces and voices index information about biological age, a cue that is relevant to 

reproductive fitness in both males and females (Thornhill & Gangestad, 1999). Numerous 

visual markers act as indicators of older age, such as decreased skin elasticity, wrinkles, 

discolouration and reduced clarity in skin tone (Burt & Perrett, 1995). In terms of voices, 

older people speak with a slower speech rate (Linville, 1996), and age-related hormonal 

changes affect pitch. For example, female voice pitch lowers after the menopause, whereas 

older male voices become higher-pitched with increasing age (Linville, 1996). People can 

estimate a speaker’s age from their voice relatively accurately (to within about 10 years) 

(Braun, 1996; Neiman & Applegate, 1990; Ptacek & Sander, 1966; Smith & Baguley, 2014).  

2.4.4 Height and weight 

Body size is a further indicator of quality (Collins & Missing, 2003; Thornhill & 

Gangestad, 1999). However, although people tend to agree about height and weight 

judgements made from a voice (Collins, 2000), this does not indicate that they are necessarily 

accurate (Bruckert, Liénard, Lacroix, Kreutzer & Leboucher, 2006; Collins, 2000; van 

Dommelen & Moxness, 1995). Despite the apparent inaccuracy of height judgements made 

from voices, people judge height from faces with relative accuracy (Schneider, Hecht, 

Stevanov & Carbon, 2013), using cues such as facial elongation. People with longer faces are 

judged as being taller (Re et al., 2013). Judgements from faces are also accurate for weight 

estimates (Coetzee, Chen, Perrett & Stephen, 2010). Lass and Colt (1980) compared visual 

and auditory height and weight ratings. The results indicated significant differences between 

weight ratings from female faces and voices, suggesting that for some characteristics, faces 

and voices may not offer concordant information. Recent research has not addressed the 

extent of concordance between body size information offered by faces and voices. Although 
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Krauss et al. (2002) asked participants to rate the age, height and weight of speakers from 

faces and voices, they only measured accuracy, rather than the relationship between the two 

sets of ratings.  

2.4.5 The influence of pitch variability on face-voice concordance 

Pitch is the most perceptually salient characteristic of the human voice (Banse & 

Scherer, 1996). The research reviewed above suggests that voice pitch is likely to play an 

important role in explaining the positive relationship between ratings of static faces and 

voices. It likely plays a role in informing ratings of masculinity/femininity, health, age, height 

and weight. However, although voice pitch is a physiologically determined sexually 

dimorphic characteristic (Abitbol et al., 1999; Dabbs & Mallinger 1999; Hollien, 1960), it is 

not fixed (Titze, 1994b), and is influenced by muscular settings (Abercrombie, 1967). 

Cultural differences in voice production dictate different average voice pitches across 

countries. Japanese women speak with relatively higher pitched voices than women from 

Western cultures in order to transmit cultural ideals such as modesty and politeness, 

traditionally associated with femininity (Loveday, 1981; van Bezooijen, 1995). Evidence also 

shows that both males and females modulate their pitch according to social situations (e.g. 

Gregory, 1996; Hughes, Farley & Rhodes, 2010; Falk, 2005; Farley, Hughes & LaFayette, 

2013; Leongómeza et al., 2014). When competing against a man they perceive to be 

physically ‘weaker’ than themselves, men modulate their voice pitch downwards. If they 

perceive their competitor to be more dominant, men modulate their voice pitch upwards 

(Puts, Gaulin & Verdolini, 2006). Through intra-sexual pressure, male voice pitch has 

developed as a signal for aggression, dominance and position within a social hierarchy 

(Hodges-Simeon, Gurven, Puts & Gaulin, 2014; Puts, Apicella & Cárdenas, 2012; Puts et al., 

2006; Puts, Hodges, Cárdenas & Gaulin, 2007). Women also modulate according to social 
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context, speaking with a higher-pitched voice, for example, if they find a man attractive 

(Fraccaro et al., 2011). The notable variability of voice pitch may therefore reduce the extent 

to which faces and voices offer redundant information overall, perhaps making it more 

difficult to accurately attribute common source identity.  

2.4.6 Information concordance in faces and voices: The story so far 

Faces and voices are highly complex social stimuli. Both offer a wealth of socially 

relevant information about emotion, personality and the content of speech (Yovel & Belin, 

2013), which may not all necessarily be concordant (Campanella & Belin, 2007; Rezlescu et 

al., 2015). Added to this, the relatively fluid nature of pitch means that the relationship 

between ratings of faces and voices is unlikely to be perfect. Nevertheless, taken together, the 

research outlined above suggests that static faces and voices offer at least some redundant 

information. However, apart from literature addressing the relationship between facial and 

vocal attractiveness, the extent to which faces and voices communicate similar or overlapping 

information has seldom been tested.  

2.5 Static vs. dynamic facial information 

2.5.1 Ratings 

Aside from the importance of dynamic facial images in providing information about 

articulatory movement (see section 2.3), in comparison to static faces, dynamic faces also 

offer extra information about emotion (Chiller-Glaus, Schwaninger, Hofer, Kleiner & 

Knappmeyer, 2011) and 3-D facial shape (O’Toole, Roark & Abdi, 2002). If dynamic faces 

communicate additional information compared to static faces, facial stimulus type may also 

affect the extent to which face and voice information is concordant. This could in turn 

influence the accuracy of face-voice matching. In one of the only studies to address this 
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question, Lander (2008) found that male face and voice attractiveness were only related when 

faces were dynamic. 

Recent evolutionary psychology literature investigating mate value and attractiveness 

has compared ratings of static and dynamic faces. Most studies have used static facial stimuli 

(photos) (e.g. Coetzee et al., 2010; Main, DeBruine, Little & Jones, 2010; Scott & Penton-

Voak, 2011), but in everyday social situations we encounter people in motion. There has been 

a recent move amongst face researchers to use dynamic facial stimuli (videos) in order to 

improve ecological validity (Gangestad & Scheyd, 2005; Kościński, 2013; Penton-Voak & 

Chang, 2008; Roberts et al., 2009b). Some studies have found that facial stimulus type (static 

or dynamic) influences attractiveness judgements, although the overall results are somewhat 

mixed. Rubenstein’s (2005) results indicate that attractiveness judgements of females made 

from static and dynamic images are not strongly or significantly correlated. Other studies 

have observed significant correlations between static and dynamic images of female faces but 

not male faces (Lander, 2008; Penton-Voak & Chang, 2008), whilst Roberts et al. (2009a) 

detected significant correlations using male images. In reviewing previous studies, and 

investigating methodological differences between them, Roberts et al. (2009b) found that 

correlations between ratings from static and dynamic facial stimuli were stronger when rated 

by the same participants, likely because of carryover effects.  

If judgements from faces are immediate (<100ms), automatic, and robust (Rhodes et 

al., 2011; Willis & Todorov, 2006), the extra information from time-varying dynamic cues 

should not be particularly influential. In other words, because we reach judgments so soon 

after the initial presentation of a face, the judgments based on static and dynamic faces are 

likely to be similar. However, as patterns of facial movement vary according to sex 

(Morrison, Gralewski, Campbell & Penton-Voak, 2007), viewing dynamic images might be 

more likely to lead to the revision of initial judgments; it is conceivable that 
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masculinity/femininity ratings will be more extreme when viewing dynamic faces. In a recent 

study, Kościński (2013) found strong correlations between attractiveness ratings of static and 

dynamic faces. In this experiment, ratings of femininity were also taken, but influenced 

attractiveness ratings similarly in both conditions.  

Research comparing face ratings has exclusively concentrated on attractiveness, rather 

than considering how static or dynamic faces might influence assessments of age, height or 

weight etc. Overall, the existing literature reflects diverging evidence regarding the influence 

of dynamic information. The evidence is not sufficiently conclusive to inform a strong 

prediction about the influence of facial stimulus type on face-voice information concordance.  

2.5.2 Matching novel face and voice identity 

Drawing on hypotheses from both the audiovisual speech perception literature and the 

evolutionary psychology literature, a number of recent studies have used face-voice matching 

as a measure of crossmodal redundancy. Taking the existing literature together as a whole, it 

is unclear whether accurate face-voice matching depends on encoding dynamic visual 

information about articulatory patterns, or whether sufficient redundant information is 

available in static faces.  

2.5.2.1 Dynamic visual information facilitates face-voice matching 

Audiovisual speech perception research demonstrates that participants can match 

sequentially presented dynamic images of articulating faces to the voice of the same speaker. 

In Lachs and Pisoni’s (2004a) experiment, people accurately matched the visual component 

of the word ‘cat’ to the auditory component above-chance level. These results have been 

replicated using repetitions of full sentences (Rosenblum, 2002).  
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Identity matching is not totally dependent on overlapping linguistic content. Using the 

same procedure as Lachs and Pisoni (2004a), Kamachi et al. (2003) ran experiments in which 

the face and voice in each trial said similar sentences, as well as separate sets of trials in 

which they said either identical or very different sentences. Although performance was 

marginally better when there was some linguistic overlap (Kamachi et al., 2003), voices and 

dynamic faces can still be matched at above chance level when the voice says a completely 

different sentence to the face (Kamachi et al., 2003; Lander et al., 2007). Indeed, overlap in 

terms of the manner in which a sentence is spoken appears to be more important than the 

content (Lander et al., 2007).  

Both Lachs and Pisoni (2004a) and Kamachi et al. (2003) ran separate matching 

experiments using static faces and voices to test the hypothesis that crossmodal source 

identity information is contingent on encoding dynamic visual articulatory patterns. In both 

studies static face-voice matching performance was at chance level (Kamachi et al., 2003; 

Lachs & Pisoni, 2004a). The apparent importance of time-varying articulatory information is 

underlined by the fact that participants can match faces and voices using movement 

information alone. Studies isolating articulatory movement using a point-light technique 

observe accurate matching of auditory utterances to dynamic displays (Lachs & Pisoni, 

2004b; Rosenblum, Smith, Nichols, Hale & Lee, 2006).  

2.5.2.2 Static visual information facilitates face-voice matching 

Some research challenges the conclusion that dynamic visual information is crucial to 

crossmodal matching. Krauss et al. (2002) showed that people could match a voice to a static 

image with above chance accuracy. Participants heard a recording of a voice saying a 7-

syllable sentence. After 1 second, they were presented with two simultaneously presented 

full-length static photographs (a target of the same identity and a distractor of a different 
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identity), and asked to decide which photograph featured the speaker. However, whilst the 

studies observing chance level matching performance with static faces and voices used 

stimuli of the same sex and a similar age and ethnicity in each trial (e.g., Kamachi et al., 

2003; Lachs & Pisoni, 2004a), Krauss et al.’s (2002) stimuli were from a wider age range 

(20-60 years). The stimuli were also full-length images rather than images of faces, which 

may have provided additional cues to inform accurate matching. However, Mavica and 

Barenholtz (2013) replicated Krauss et al.’s (2002) results using static headshots of age-

matched stimuli. Face-voice matching was above chance in both of the experiments they 

report. These results offer evidence, supported by the evolutionary psychology literature (see 

section 2.4), that source identity information available in static faces corresponds to 

information offered by voices. 

2.6 Procedural issues relating to novel face-voice matching performance 

Procedural differences between studies may account for some of the apparently 

contradictory results outlined above. Audiovisual speech perception studies (e.g., Kamachi et 

al., 2003; Lachs & Pisoni, 2004a, 2004b; Lander et al., 2007) have tended to use a 

crossmodal matching task (Lachs, 1999). This is a sequential 2-alternative forced-choice 

(2AFC) procedure. In the visual to auditory (V-A) condition, a face is shown then two voices 

are presented at test, one after the other. In the auditory to visual (A-V) condition, this 

procedure is reversed: participants hear a voice, and then see two sequentially presented faces 

at test. One of the alternatives is therefore always the same identity as the target, while the 

other is a different identity distractor. The participant must decide which of the two 

alternatives matches the identity of the other-modality stimulus. Studies that have used this 

procedure have generally emphasised the importance of dynamic articulatory information in 

facilitating face-voice matching; above chance face-voice matching is typically found for 

dynamic but not static faces (Kamachi et al., 2003; Lachs & Pisoni, 2004a; Lachs & Pisoni, 
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2004b; Lander et al., 2007). In contrast, the majority of experiments observing above chance 

levels of matching accuracy using static facial stimuli have not used this exact procedure, 

making it unwise to compare results directly. For instance, Krauss et al. (2002) presented a 

voice followed by two simultaneously presented full-length images. Mavica and Barenholtz’s 

(2013) stimuli (one voice and two test faces) were presented simultaneously in Experiment 1. 

However, it is important to note that Mavica and Barenholtz’s (2013) second experiment 

replicated above chance level matching with static facial stimuli using the A-V condition of 

the standard crossmodal matching task (Lachs, 1999). Although the V-A condition was not 

included, this result hints that even if procedural differences across studies hold some 

explanatory value, additional factors may also affect performance and help to explain existing 

contradictions. Nevertheless, the impact of procedural differences on face-voice matching 

accuracy deserves further attention.  

2.6.1 Relative vs. absolute judgements 

The eyewitness literature provides evidence to suggest that the simultaneous or 

sequential presentation of test options may affect matching accuracy by prompting the 

adoption of different response strategies. Witnesses in real forensic situations might be asked 

to identify the suspect from either a sequential lineup, in which they see each face one after 

the other, or a simultaneous lineup, in which all of the faces are presented at the same time. 

Deciding which procedure is diagnostically superior has been the subject of fierce debate 

(e.g. Carlson, Gronlund, & Clark, 2008; Ebbesen & Flowe, 2002; Flowe, Smith, Karoğlu, 

Onwuegbusi & Rai, 2015; Gronlund, 2005; Lindsay, Mansour, Beaudry, Leach & Bertrand, 

2009; Meissner, Tredoux, Parker, MacLin, 2005; McQuiston-Surrett, Malpass, Tredoux, 

2006; Wells, Steblay, & Dysart, 2012). A simultaneous procedure is believed to encourage 

witnesses to compare members of a lineup to each other, in order to decide which member 

best matches their memory for the perpetrator. This strategy is referred to as a relative 
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judgement (Lindsay et al., 1991; Lindsay & Wells, 1985; Wells, 1984), and likely supports 

accuracy when the perpetrator is present by making it easier to select the best option. In 

contrast, sequential lineups, in which only one face is visible at a time, are thought to 

encourage absolute judgements (Lindsay & Wells, 1985). Owing to the difficulty of making 

comparisons, each lineup member is therefore compared predominantly to the memory of the 

perpetrator (Wells, Small, Penrod, Malpass, Fulero & Brimacombe, 1998). If the witness 

correctly identifies the perpetrator, this is a hit. If they select an innocent member of the 

lineup, this is a false alarm. Many studies have observed different patterns of accuracy 

according to lineup procedure, with many showing higher hit rates for simultaneous lineups 

(Clark, Howell & Davey, 2008; Ebbesen & Flowe, 2002; Steblay et al., 2001, Steblay, Dysart 

& Wells, 2011). An even more robust finding is that sequential lineups reduce the false alarm 

rate (Ebbesen & Flowe, 2002; Kneller, Memon & Stevenage, 2001; Steblay et al., 2001), 

suggesting that sequential procedures simply make participants less likely to make a positive 

identification. This is a desirable outcome on target absent lineups, but not on target present 

lineups. However, recent studies have employed Receiver Operating Characteristic analysis 

to assess more appropriately the diagnostic accuracy of sequential and simultaneous lineups 

(Gronlund, Wixted & Mickes, 2014; Mickes, Flowe & Wixted, 2012). The results of these 

experiments generally indicate that the simultaneous procedure is in fact superior in terms of 

supporting memory sensitivity (i.e. the hit rate).  

Lineup procedures differ from forced-choice procedures in that it is always possible to 

select none of the options, thereby rejecting the whole lineup. A 2AFC task, as employed in 

the face-voice matching literature, is therefore not exactly comparable. False alarm rates 

cannot be calculated because participants are forced to make a positive identification, 

selecting either the stimulus in position 1 or 2. However, in terms of hit rates, which reflect 

sensitivity, participants might still respond differently when the test options are presented 
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sequentially compared to when they are presented simultaneously. In line with predictions 

from the eyewitness literature, relative judgements could facilitate higher rates of face-voice 

matching accuracy. This hypothesis might go some way to explaining why static face-voice 

matching seems more likely to be above chance level when a simultaneous 2AFC procedure 

is adopted (Krauss et al., 2002; Mavica & Barenholtz, 2013). 

2.6.2 Memory for static and dynamic faces 

Research has suggested that memory for dynamic facial images is better than for 

static facial images (e.g. Knappmeyer, Thornton & Bülthoff, 2003; Lander & Chuang, 2005). 

Matching procedures that impose a higher memory load may particularly undermine static 

face-voice matching accuracy, by making it harder for participants to hold the face in 

working memory for long enough to compare it with the voice for source identity 

information. This would be most relevant to procedures like the crossmodal matching task, in 

which the stimuli are presented sequentially rather than simultaneously. 

In a review, O’Toole et al. (2002) provide two explanations for the increased 

memorability of dynamic faces. According to the ‘representation enhancement hypothesis’, 

dynamic images facilitate the perception of the 3-D facial structure. Structural information 

has been shown to be particularly important in facilitating face recognition, and knowledge of 

3-D structure is thought to underlie the accuracy of familiar face recognition (Burton, Jenkins 

& Schweinberger, 2011). Unfamiliar face recognition on the other hand relies more on 2-D 

pictorial codes, which provide less information (Hancock, Bruce & Burton, 2000). According 

to the alternative explanation put forward by O’Toole et al. (2002), the ‘supplemental 

information hypothesis’, motion offers additional signature information about the given 

person. However, overall, the benefit of motion is more robust for familiar face recognition 
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than unfamiliar recognition (Christie & Bruce, 1998; O’Toole et al., 2002; Pike, Kemp, 

Towell & Phillips, 1997).  

In line with the argument that dynamic facial images are more memorable, differential 

processing of static and dynamic facial images is supported by brain imaging evidence. 

Specific areas of the brain such as the superior temporal sulcus face area (STS-FA) are 

sensitive to dynamic facial images (Allison, Puce & McCarthy, 2000; Gobbini et al., 2011), 

whilst the occipital face area (OFA) and fusiform face area (FFA) are sensitive to static facial 

images (McCarthy, Puce, Gore & Allison, 1997; Yovel & Kanwisher, 2004). There is also 

evidence of functional dissociations between brain areas responsive to static and dynamic 

images, further strengthening the argument that these two types of input are processed 

separately (Pitcher, Dilks, Saxe, Triantafyllou & Kanwisher, 2011; Polosecki, Moeller, 

Schwers, Romanski, Tsao & Freiwald, 2013).  

Based on the literature reviewed above, a possible effect of facial stimulus type on 

face-voice matching should not be disregarded without further testing, particularly when the 

stimuli are presented sequentially and therefore must be held in working memory. In an 

attempt to rule out memory explanations for the results of Experiment 1, which detected 

above-chance static face-voice matching using a simultaneous 2AFC procedure, Mavica and 

Barenholtz (2013) used sequential presentation in Experiment 2, running the A-V condition 

of the crossmodal matching procedure (Lachs, 1999). Although they did not include an V-A 

condition, the results replicated the finding that static faces could be matched to voices 

significantly above chance level. This does not entirely rule out an explanation for 

discrepancies across studies based on memory effects because in both experiments Mavica 

and Barenholtz (2013) did not include a dynamic face-voice matching condition for 

comparison.  
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2.6.3 Order of presentation in cross-modal matching tasks: Auditory-visual or 

visual-auditory 

 Other aspects of face-voice matching performance also warrant additional attention. 

As mentioned above, studies employing the standard crossmodal matching task (Lachs, 1999) 

have manipulated stimulus presentation order (Kamachi et al., 2003; Lachs & Pisoni, 2004a, 

2004b; Lander et al., 2007). Participants either see a face then decide between two voices (V-

A), or they hear a voice then decide between two faces (A-V). 

The manipulation of order is motivated by face-voice asymmetries identified in 

audiovisual speech perception research, as well as the assumption that accurate face-voice 

matching is contingent on encoding visual articulatory patterns in dynamic faces. In terms of 

speech, voices are more informative than faces; it is easier to perceive what is being said 

from hearing a voice than it is from lip-reading (see Massaro, 1987). Lachs and Pisoni 

(2004a) hypothesised that as memory for the details of auditory speech is likely to be superior 

to memory for visual speech, it would be easier to compare two auditory stimuli (as in the V-

A condition) than it would be to compare two (dynamic) visual stimuli (as in the A-V 

condition). Previous studies have not observed a difference between V-A and A-V conditions 

when the auditory stimuli consist of normal forwards speech and the visual stimuli are 

dynamic articulating faces (Kamachi et al., 2003; Lachs & Pisoni, 2004a; Lander et al., 

2007). It is not clear from the existing literature whether a performance asymmetry according 

to the order of stimulus presentation might operate in static face-voice matching, because 

studies detecting above-chance accuracy have not included both A-V and V-A conditions 

(Krauss et al., 2002; Mavica & Barenholtz, 2013). 

One rationale for manipulating order in face-voice matching, regardless of whether 

the faces are static or dynamic, relates to sensory memory. Echoic memory for sounds lasts 
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longer than iconic memory for images, as shown by robust modality effects (see Crowder & 

Morton, 1969; Penney, 1989). Therefore, if the voice stimulus is presented first, the 

representation might persist for longer, making it easier to compare to the subsequently 

presented visual stimuli for source identity information (Lachs & Pisoni, 2004a). This is 

relevant to both static and dynamic face-voice matching. 

The recognition literature provides a further rationale for investigating order effects. 

Whilst voices are more central to speech comprehension, faces offer more reliable identity 

information (see Stevenage & Neil, 2014 for a review). Studies have consistently observed 

asymmetries between faces and voices in terms of the rates of recognition accuracy, which 

have been attributed to differential link strength in the two perception pathways (e.g. 

Damjanovic & Hanley 2007; Hanley & Turner 2000; Stevenage, Hugill & Lewis, 2012), and 

more weakly encoded mental representations of voices (Stevenage, Howland & Tippelt, 

2011; Stevenage, Neil, Barlow, Dyson, Eaton-Brown & Parsons, 2013). Therefore, it might 

be expected that when matching voices and static faces, a performance advantage would be 

afforded in the V-A (compared to the A-V) condition because richer and more clearly 

encoded information is presented first, thereby facilitating a comparison with the auditory 

information.  

Based on the existing literature it would clearly be premature to disregard the order of 

stimulus presentation as a factor in face-voice matching. Although face and voice processing 

is believed to take place in parallel and integrated pathways (Belin et al., 2004), this does not 

mean that face and voice stimuli are processed identically (see Stevenage & Neil, 2014). 

Indeed, the evidence reviewed above supports the hypothesis that the order of stimulus 

presentation may potentially play a role in influencing matching accuracy.  

2.6.4 Face-voice matching: 2AFC vs. same-different procedures  
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All previous studies investigating face-voice matching have used a 2AFC procedure 

(Kamachi et al., 2003; Lachs & Pisoni, 2004a, 2004b; Lander et al., 2007; Mavica & 

Barenholtz, 2013). This is one way of experimentally measuring decisions made in conditions 

of uncertainty, but other procedures are also appropriate. According to signal detection theory 

(Green & Swets, 1966), two aspects of performance are important when analysing decisions. 

The first, sensitivity, equates to hit rates, and is concerned with the ease of detecting a signal. 

It is the ability to correctly respond positively to the signal when it is present. The second 

aspect of performance is specificity, which equates to the true negative rate, or the ability to 

correctly identify when the signal is absent. This measure is concerned with criterion 

placement, or response bias, during the decision making process. These definitions of 

sensitivity and specificity are used throughout this thesis. They should not be confused with 

the rather more common view, in which sensitivity reflects accuracy in both correctly 

identifying and correctly rejecting the presence of a signal. Similarly, measures of response 

bias traditionally use a balance between hit rate and false alarm rate (1-true negative rate). 

(For further explanation, please see section 7.2.2.) 

Forced-choice tasks only measure sensitivity. Participants are forced to make a binary 

decision between two test options. According to the standard difference model (see 

Thurstone, 1927a, 1927b), which underlies signal detection theory (Dyjas, Bausenhart & 

Ulrich, 2012; García-Pérez & Alcalá-Quintana, 2011), decisions are based entirely on the 

comparison of the two test options, allowing the participant to select the option that 

represents the best fit. The 2AFC task therefore assumes that there is no response bias, which 

means that responses should be distributed evenly across alternatives if both alternatives are 

equally viable (Green & Swets, 1966; Macmillan & Creelman, 2005; Wickens, 2001). This 

assumption may also be due in part to the statistical complexity of modelling a possible 

response bias in a 2AFC task using a signal detection theory approach (DeCarlo, 2012; Green 
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& Swets, 1966; Luce, 1963). However, evidence for the unbiased nature of the 2AFC 

procedure appears to be rather questionable, thereby refuting assumptions underlying the 

standard difference model. Although the data are typically pooled across positions for 

analysis (García-Pérez & Alcalá-Quintana, 2011), as has been the case in all previous face-

voice matching studies (Kamachi et al., 2003; Lachs & Pisoni, 2004a, 2004b; Lander et al., 

2007; Mavica & Barenholtz, 2013), levels of observed accuracy in 2AFC tasks appear to 

differ frequently according to position (Dyjas, Bausenhart & Ulrich, 2012; García-Pérez & 

Alcalá-Quintana, 2010, 2011; Rammsayer & Ulrich, 2012; Ulrich & Vorberg, 2009; 

Yeshurun, Carrasco & Maloney, 2008). Having re-analysed 17 published 2AFC experiments 

testing different kinds of visual sensitivity, Yeshurun et al. (2008) present strong evidence for 

position biases, making the compelling argument that if the standard difference model is 

refuted, attempting to use data from 2AFC tasks to represent meaningful measures of 

sensitivity is problematic. This is because the decisional processes operating during the task 

and contributing to position effects are wholly unclear. Yeshurun et al. (2008) conclude with 

a recommendation that 2AFC tasks should be used with caution, if at all.  

An alternative procedure, the same-different task, is also commonly used to measure 

decision making under conditions of uncertainty (Green & Swets, 1966). Same-different 

tasks measure both sensitivity (hit rate) and specificity (true negative rate), because 

participants can either respond positively or negatively. In these tasks, two stimuli are 

presented for participants to respond to. There are signal trials, in which the correct answer is 

to respond positively, and noise trials in which the correct answer is to respond negatively 

(Stanislaw & Todorov, 1999). A same-different task, in which participants respond same 

identity if they think the face and voice belong to the same person, and different identity if 

they do not, would be appropriate for face-voice matching.  
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Response bias may be an important aspect of face-voice matching performance. If 

people have a tendency to accept a face and voice as belonging to the same identity, this 

would not be modelled using the 2AFC paradigm. In light of the overall pattern of false 

alarms identified in the eyewitness literature (e.g. Steblay et al., 2001; Ebbesen & Flowe, 

2002; Kneller et al., 2001) (see section 2.6.1), response bias is perhaps even more likely to 

differ than detection sensitivity according to whether test options are presented 

simultaneously or sequentially. Although order of presentation effects have not been 

observed by previous face-voice matching studies using a 2AFC task (Kamachi et al., 2003; 

Lachs & Pisoni, 2004a, 2004b; Lander et al., 2007) (see section 2.6.3), it is possible that an 

order effect may operate in terms of response bias. 

As face-voice matching has only ever been tested using 2AFC procedures, it is 

important to test the validity of previous findings using alternative experimental procedures. 

In areas of research such as recognition memory and vision, levels of accuracy are frequently 

reported to differ according to whether 2AFC or same-different tasks are employed 

(Azzopardi & Cowey, 1998; Balsdon & Azzopardi, 2015; Jang, Wixted & Huber, 2009), 

most probably because participants are forced to rely on different strategies in order to 

complete these tasks. 2AFC tasks force participants to make a positive decision: the answer is 

either option 1 or option 2. In a same-different task they can respond according to their 

response criterion: different identity if they have adopted a conservative response criterion 

and same identity if their response criterion is more liberal. 

Owing to the reliance on 2AFC procedures, previous face-voice matching studies 

have never investigated how response bias operates in face-voice matching. Investigation of 

this aspect of performance using a same-different procedure may offer an important insight 

both into how the faces and voices of novel people are processed.  
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2.7 Summary 

Although faces and voices constitute distinct types of sensory stimuli, their processing 

exhibits many parallels. Extensive brain imaging and behavioural evidence supports the 

auditory face model (Belin et al., 2004), which highlights the importance of crossmodal 

redundancies in aiding social communication (Belin et al., 2011; Campanella & Belin, 2007).  

Whilst audiovisual speech perception research has shown that redundant information 

is offered by voices and dynamic faces (e.g. Dohen et al., 2004; Lander et al., 2007; Munhall 

& Vatikiotis-Bateson, 1998; Yehia et al., 1998; Yehia et al., 2000), evolutionary psychology 

research suggests that redundant information is also available in voices and static faces (e.g., 

Abend et al., 2015; Collins & Missing 2003; Thornhill & Gangestad 1999; Thornhill & 

Grammer 1999; Feinberg et al., 2005; Feinberg, 2008; Saxton et al., 2006; Wheatley et al., 

2014; Zahavi & Zahavi 1997). Both areas of research independently offer compelling 

evidence for voices and dynamic faces, as well as voices and static faces, sharing 

redundancies. It seems plausible that common source identity information is crossmodally 

available in voices and faces, regardless of whether facial stimuli are static or dynamic.  

The face-voice matching literature illustrates a rather more confusing picture of 

crossmodal redundancy. Although voices and dynamic faces are consistently matched above 

chance level, static face-voice matching is more variable (Krauss et al., 2002; Lachs & 

Pisoni, 2004a; Kamachi et al., 2003; Lander et al., 2007; Mavica & Barenholtz, 2013). It is 

therefore unclear whether encoding dynamic visual articulatory speech patterns is crucial to 

accurate face-voice matching.  

There are a number of possible explanations for the apparent contradictions across 

face-voice matching studies, none of which have been thoroughly investigated or resolved by 

previous research. For example, procedural differences might help to explain differing 
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patterns of results. An alternative explanation is based on the hypothesis that poorer memory 

for static compared to dynamic facial images (Knappmeyer et al., 2003; Lander & Chuang, 

2005; O’Toole et al., 2002; Pike et al., 1997) affects performance. 

The results of existing studies leave a number of important questions unanswered, and 

do not fully reveal how face-voice matching performance operates. By relying exclusively on 

2AFC procedures, researchers have unwittingly neglected to address possible response biases 

in face-voice matching, which may constitute a key aspect of performance. This literature 

review has highlighted some important gaps in knowledge, which the subsequent experiments 

seek to fill. 

2.8 Aims 

2.8.1 Research questions 

The specific research questions to be addressed throughout this thesis include:  

• Research question 1: Do voices share redundant information with dynamic as well as 

static faces? 

• Research question 2: Is it possible to match voices and static faces, or is accurate face-

voice matching contingent on encoding information about visual articulatory patterns?  

• Research question 3: Do procedural differences account for inconsistencies in the 

previous literature regarding static face-voice matching?  

• Research question 4: Are there matching performance asymmetries according to the 

order of stimulus presentation? 

• Research question 5: How do response biases operate in face-voice matching?  
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3. CHAPTER 3: FACE AND VOICE STIMULI: METHODOLOGICAL 

AND STATISTICAL ISSUES 

3.1 Introduction 

There is a large amount of inter- and intra-stimulus variation associated with both 

faces and voices. Not only do people look and sound different across images and utterances, 

but they also look and sound different from each other (Burton, 2013; Belin, Zatorre & Ahad, 

2002; Schweinberger et al., 2014; Stevenage & Neil, 2014; Valentine, Lewis & Hills, 2015). 

Investigating face and voice perception and modelling the resulting data poses a number of 

challenges that must be met in order for the findings to be generalisable (Clark, 1973; Judd, 

Westfall & Kenny, 2012; Wells et al., 2013; Wells & Windschitl, 1999).  

Wells and Windschitl’s (1999) widely cited paper on stimulus sampling warns against 

basing conclusions on functional sample sizes of N=1 when stimuli within a category differ 

from each other (see also Brunswick, 1947; Kenny, 1985). Their paper argues that failing to 

use an adequate sample of stimuli threatens external validity, limiting generalisability and 

construct validity by potentially confounding a single stimulus (e.g. one face) with a whole 

category (e.g. all faces) (Wells & Windschitl, 1999). However Wells and Windschitl (1999) 

acknowledge that including an appropriate sample of stimuli only addresses one aspect of the 

challenge associated with modelling variability. In order to maximise generalisability it is 

also necessary to employ statistical analyses that avoid aggregating over either stimuli or 

participants, because aggregating involves ignoring a source of variability that is relevant to 

the interpretation of the results (Clark, 1973; Judd et al. 2012; Wells et al., 2013).  

This chapter is split into three main sections. The first section (3.2) details why 

stimulus sampling is important when investigating face and voice perception. The second 
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section (3.3) outlines the advantages of using multilevel modelling over traditional ANOVA, 

and the third section (3.4) describes the stimuli used throughout this thesis. 

3.2 Stimulus variability 

3.2.1 Variability in faces 

Stimulus sampling is particularly relevant to experiments featuring facial stimuli. 

Faces vary from each other on a number of different dimensions, such as height, width, 

feature size, skin texture, age and attractiveness (Jenkins, White, Van Mountford & Burton, 

2011; Valentine et al., 2015). The face-space model (Valentine, 1991) explains how 

variability might affect face processing. According to this model, representations of faces are 

located at different spatial positions within a multidimensional space. The organising 

principle of face representations is their similarity to a central, prototypical face. Faces that 

resemble each other are arranged close together, whilst a larger distance separates those with 

less in common. Representations of distinctive faces therefore lie towards the edge of the 

face-space, while representations of typical faces are clustered around the mid-point. Owing 

to the likelihood that distinctive faces will have more empty space surrounding them than 

typical faces, the model predicts that distinctive faces will be encoded with less error 

(Valentine, 1991). If this is the case, distinctive faces should be easier to recognise. Indeed, 

this has been consistently found to be the case (Bartlett, Hurry & Thorley, 1984; Light, 

Kayra-Stuart & Hollander, 1979; Vokey & Read, 1992).  

Burton (2013) emphasises the importance of taking inter-stimulus variability into 

account when investigating face perception. He argues that the frequent failure to do so is an 

important factor in explaining the slow progression of research in face recognition. The 

common practice of aggregating over stimuli in conventional statistical analyses (see Wells et 
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al., 2013) averages over a huge amount of variability within the face space, thereby ignoring 

the way that face processing is affected by inter-stimulus variability.  

3.2.2 Variability in voices 

Voices differ from each other in terms of fundamental frequency, speech rate, 

nasality, accent and age etc. (Handkins & Cross, 1985; Mathias & von Kriegstein, 2014; 

Mullennix & Pisoni, 1990). Evidence from fMRI studies is consistent with the conclusion 

that, in a similar way to faces, representations of voices are also located within a 

multidimensional space organised with reference to a prototypical voice (Latinus, McAleer, 

Bestelmeyer & Belin, 2013). In line with this voice-space model, the literature on 

distinctiveness supports the hypothesis that stimulus variation is an important factor in voice 

perception (Schweinberger et al., 2014; Stevenage & Neil, 2014). For example, Barsics and 

Brédart (2012) observed a distinctiveness advantage for voices in terms of the retrieval of 

semantic information. Research into voice recognition also suggests that performance varies 

not only across participants, but also across stimuli (e.g. Mullennix, Ross, Kuykendall, 

Conard & Barb, 2011; Orchard & Yarmey, 1995; Van Lancker, Kreiman & Emmorey, 1985). 

As is the case for faces, averaging over voice variability is likely to minimise stimulus effects 

and reduce generalisability (Stevenage & Neil, 2014).  

3.2.3 Implications for face-voice matching 

Stimulus level variability in faces and voices may affect face-voice matching 

performance. It is likely that matching decisions are highly dependent on specific stimuli 

pairings; perhaps some people look and sound more similar than others. Previous studies 

have used varying numbers of face-voice pairs when testing crossmodal matching, which 

may help to account for the apparent contradictions outlined in the literature review (see 

section 2.6). For example, whilst Lachs and Pisoni (2004a) used 8 face-voice pairs, Kamachi 
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et al. (2003) used 40. Matching performance appears to vary according to specific stimulus 

pairings. Mavica and Barenholtz (2013) reported that matching accuracy varied between 35% 

and 70% for the 64 models whose faces and voices featured in their study. Although some 

previous face-voice matching studies include by-stimulus analyses (Kamachi et al., 2003; 

Mavica & Barenholtz, 2013), simultaneously accounting for the variance associated with 

stimuli and participants is a problem that can only be appropriately dealt with by a statistical 

model that incorporates both sources of variability, such as a multilevel model (Baguley, 

2012; Judd et al., 2012).  

3.3 Multilevel modelling  

3.3.1 Problems associated with conventional statistical analyses 

In cases when different participants encounter a number of stimuli over trials, the data 

is best understood as being organised into a hierarchy because the observations from each 

participant are not independent (see Baayen Davidson & Bates, 2008 for a discussion of 

nested and cross-classified random effects; Nezlek, 2008). The stimuli at level 1, and the 

participants at level 2, both constitute a sample, and variance is associated with each of them 

(Baayen et al., 2008). Both sources of sampling error must be taken into account in order to 

avoid the ecological fallacy. This fallacy arises when it is falsely assumed that patterns 

observed for participant means also hold for data at a lower level of analysis such as 

individual trials (level 1) repeated within participants (level 2) (e.g., see Robinson, 1950; 

Wells et al., 2013). Performing a traditional regression on individual observations for this 

kind of data would violate the assumption of independence. However, commonly used 

alternatives such as least squares dummy-codes do not appropriately account for sampling 

error (Hoffman & Rovine, 2007; Nezlek, 2001; Nezlek, 2008).  
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The solution of aggregating over one level of analysis, as is the procedure when 

performing a by-participants (most common) or by-stimulus ANOVA, is equally problematic 

(Judd et al., 2012) because it only accommodates one fixed effect at a time. It is important to 

distinguish between fixed effects, which are constant across participants, and random effects, 

which vary (Kreft, Kreft & De Leeuw, 1998). In an example in which participants encounter 

a number of different faces and voices, the participants, face stimuli, and voice stimuli should 

all be treated as random effects (Judd et al., 2012). The majority of papers investigating face 

and voice perception have tended to rely on conventional analyses (for exceptions see 

Morrison et al., 2007; Wells et al. 2013), which involve treating the stimuli as a fixed effect 

(Clark, 1973). Multilevel modelling represents a more desirable method of dealing with the 

variability associated with facial and vocal stimuli.  

3.3.2 The advantages of multilevel modelling 

Multilevel modelling is a recently developed statistical method, which addresses the 

problems of conventional analyses outlined above (Baayen, 2008; Baayen et al., 2008; Judd 

et al., 2012; Wright & London, 2009). Although some researchers may be hesitant to adopt 

this seemingly complex statistical innovation (Quené & Van den Bergh, 2004), the method is 

likely to be increasingly adopted for hierarchical data in future psychological research 

(Wright & London, 2009).  

One of the main advantages of multilevel modelling is that it can simultaneously take 

into account the variability associated with individual performance and different stimuli. In 

multilevel modelling, variability is allowed at multiple levels, thereby explaining the different 

sources of variance.  

By avoiding aggregating data (see Wells et al., 2013), and separating the sampling 

error from the treatment effect, multilevel modelling successfully reduces the risk of Type 1 
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error (Baguley, 2012; Clark, 1973; Judd et al., 2012). Unless the ignored source of variability 

is negligible, multilevel modelling is always more conservative than separate by-stimulus or 

by-participant analyses. The outcome of analyses performed using traditional ANOVA 

compared to those using multilevel modelling can vary, seriously affecting the resulting 

conclusions (Westfall, Kenny & Judd, 2014). An example using data from this thesis 

(Experiment 2a) is presented in Appendix A.  

Accounting for variability appropriately is particularly important when investigating 

face-voice matching. The crucial issue in much of the previous literature is whether static 

face-voice matching is above or below chance level, the level of accuracy that reflects 

guessing (Kamachi et al., 2003; Lachs & Pisoni, 2004a; Lander et al., 2007; Krauss et al., 

2002; Mavica & Barenholtz, 2013). In 2AFC tasks, which have been used in all previous 

face-voice matching studies, chance level is 50%. Measuring whether performance is truly 

above chance can be achieved by observing whether the 95% confidence intervals overlap 

with 50%. The confidence intervals should always be calculated in a way that incorporates 

both sources of variability to avoid Type 1 error (i.e. incorrectly concluding that performance 

is above chance level).   

As shown above, the challenges of investigating face and voice perception are 

therefore two-fold. In line with the recommendations of Wells and Windschitl (1999), an 

adequate sample of stimuli should be used. Additionally, in order to generalise beyond the 

sample of faces and voices used in experiments, the resulting data should be analysed in a 

way that simultaneously takes into account both the variability associated with the stimuli 

and the participants. Multilevel modelling provides a way of achieving this.  

3.4 Stimuli used in the thesis 
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 The following section describes the stimuli featured in each experiment of this thesis. 

Stimulus faces and voices were taken from the GRID audiovisual sentence corpus (Cooke, 

Barker, Cunningham & Shao, 2006), a multi-talker corpus featuring head and shoulder videos 

of British adult speakers saying 1,000, 6-word sentences each in an emotionally neutral 

manner. All the videos are recorded against a plain blue background. Each sentence follows 

the same 6-word structure: 1) command (set/lay/bin/place), 2) colour (red/blue/green/white), 

3) preposition (at/by/with/in), 4) letter (A-Z, although W was excluded because it has more 

than one syllable), 5) digit (1-9), 6) adverb (now/soon/please/again), for example, “Place 

blue at J 9 now”. Although there is overlap in terms of the words articulated across and 

within speakers, none of the exact sentences in the corpus are ever repeated.  

The corpus features 34 speakers. In total 18 speakers were selected: 9 male and 9 

female. Ideally all 34 would have been useable, as this would have increased the size of the 

stimulus sample. However in order to facilitate comparisons with previous face-voice 

matching studies (Kamachi et al., 2003; Krauss et al., 2002; Lachs & Pisoni, 2004; Lander et 

al., 2007) it was necessary to compromise stimulus sample size in favour of matching the 

stimuli for ethnicity (white British), accent (English) and age (18-30). Of the selected stimuli, 

2 of the males and 2 of the females wore glasses.  

Each set of experiments in this thesis features static faces, dynamic (muted) faces, and 

voices from the GRID corpus. The method of selecting and editing these files is explained 

below. Images and transcripts for each of the 18 stimulus people are presented in Appendix B.  

3.4.1 The stimulus set 

Three videos (.mpegs) were selected at random from numbered files using an online 

research randomiser (Urbaniak & Plous, 2013). All of the videos for each stimulus person 

were recorded during the same session.  
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3.4.1.1 Static faces 

One of the three videos was used to create static pictures of faces. Pictures were 

extracted using the snapshot function on Windows Movie Maker (2012), and presented 

in .png format. In keeping with Schweinberger, Robertson and Kaufmann (2007), the static 

picture for each talker was the first frame of the video. Some of the stimuli were opening 

their mouth to prepare their first word, but none were in the process of articulating. The 

image measured 368 x 288 pixels. An example static face is shown in Figure 3.1. 

 

Figure 3.1: Example static facial stimulus 

3.4.1.2 Dynamic faces 

Another of the three video files was used to construct the dynamic stimuli. The file 

was muted using Windows Movie Maker, and converted back into .mpeg format using 

Mobile Media Converter (v1.7.7). The video measured 368 x 288 pixels, and played at a rate 

of 25 progressive frames per second.  

3.4.1.3 Voice recordings 

Voices played from the last of the three video files (.mpeg), and featured audio quality 

of 256 kbits per second.  

3.5 Conclusion  
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The first challenge of modelling face and voice data is to include an adequate sample 

of stimuli. All the experiments reported in this thesis featured a sample of faces and voices 

belonging to 18 different people. In addition, face-voice matching trials were constructed so 

that stimuli from one modality (e.g. faces) did not always occur with the same distractor 

stimuli from the other modality (e.g. voices). In order to address the second challenge, which 

is to maximise the chances of being able to generalise from both stimuli and participants, 

multilevel modelling was used for all appropriate analyses.  
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4. CHAPTER 4: TESTING THE BACK-UP SIGNAL HYPOTHESIS: DO 

FACES AND VOICES OFFER REDUNDANT INFORMATION? 

4.1 Introduction 

 Faces and voices are informative about dimensions of fitness and quality (Belin et al., 

2004; Collins & Missing, 2003; Feinberg, 2008; Feinberg et al., 2005; Fraccaro et al., 2010; 

Pisanski et al., 2012; Yovel & Belin, 2013). Aside from some research investigating 

attractiveness cues (e.g. Abend et al., 2015; Collins & Missing, 2003; Oguchi & Kikuchi, 

1997; Saxton et al., 2006, 2009; Wells et al., 2013), little is known about how multimodal 

signals for other dimensions of fitness operate in humans. Motivated by findings from the 

attractiveness literature, this experiment tests whether faces and voices elicit concordant 

judgements about masculinity/femininity, age, health, height and weight.  

Combined information from faces and voices might provide overlapping information 

(a back-up signal) (Johnstone, 1997) or complementary information (a multiple message) 

(Møller & Pomiankowski, 1993). It is possible to distinguish between multiple messages and 

back-up signals by empirically testing the effect of multimodal signals on a recipient (Partan 

& Marler, 2005). If a multimodal signal present in human faces and voices is a back-up signal 

for a certain dimension, ratings on this dimension should correlate, whereas uncorrelated 

ratings would reflect the presence of multiple messages (Wells et al., 2009; Wells et al., 

2013). 

 Previous face-voice matching studies, despite ostensibly dealing with face-voice 

redundancy, have not directly addressed the extent to which faces and voices offer redundant 

information. For example, Krauss et al. (2002) asked participants to rate the age, height and 

weight of speakers. One group judged voice recordings, another judged the speakers’ full-

length photographs. Ratings were compared against the speakers’ actual age, height and 



 

 
56 

weight. Their results indicated that although the participants were slightly more accurate 

when rating photographs, they were almost as accurate when rating voices. Krauss et al. 

(2002) only focused on how accurate the face and voice ratings were, rather than how 

concordant they were. Similarly, Mavica and Barenholtz’s (2013) participants rated 

photographs of faces and recordings of voices for age, height and weight, as well as 

dimensions relating to socioeconomic status and personality. However, the focus of their 

analysis was whether the average difference score for each dimension predicted matching. 

They did not report any details about face-voice concordance on the different scales, or give 

an indication of how closely related the face and voice ratings were.   

In the present study, ratings of masculinity/femininity, age, health height and weight 

were recorded, then correlated, from independent ratings of faces and voices.1 

4.1.1 Aim 

In order to build hypotheses regarding the accuracy of both static and dynamic face-

voice matching, Experiment 1 aimed to establish whether faces and voices communicate 

similar information (back-up signals) or different but complementary information (multiple 

messages) about people. Participants judged faces and voices separately, estimating age (in 

years), and completing Likert-style rating scales for femininity/masculinity, health, height 

and weight. In light of the contradictory findings regarding the extent to which attractiveness 

judgements made from static and dynamic facial stimuli are related (see section 2.5.1), the 

study also tested whether the relationship between face and voice ratings differs according to 

facial stimulus type. As the previous literature suggests that both faces and voices honestly 

                                                
1 The data from Experiment 1 have been published (Smith, Dunn, Baguley & Stacey, 2016a) 
(see Appendix D)   



 

 
57 

signal quality, it was expected that judgements made independently from faces and voices 

should be similar.  

4.2 Method 

4.2.1 Design 

 This experiment employed a mixed design. The between subjects factor was facial 

stimulus type (static or moving), and the within subjects factor was modality (visual or 

auditory). The dependent variables were age estimates (in years) and ratings on scales for 

femininity/masculinity, health, height and weight.  

4.2.2 Participants 

The participants (N = 48) were recruited from the Nottingham Trent University 

Psychology Division’s Research Participation Scheme and by convenience sampling. There 

were 12 male and 36 female participants (age range = 18 to 28 years, M = 20.54, SD = 2.59). 

All participants reported having normal or corrected vision and hearing. Student participants 

received research credits in line with course requirements. The university’s BLSS (Business, 

Law and Social Science) College Research Ethics Committee granted ethical approval for 

this, and subsequent experiments (ref: 2013/37).	

4.2.3 Apparatus and materials 

The stimuli were presented on an Acer Aspire laptop (2.5GHz processor, screen size 

15.6 inches, resolution 1366 x 768 pixels, Dolby Advanced Audio), with brightness set to the 

maximum level. The laptop was placed approximately 8.5cm away from the edge of the desk 

at which participants sat. The experiment ran on Psychopy v1.77.01 (Peirce 2009), an open-

source software package designed for running experiments in Python. To reduce background 

noise, participants listened to the recordings binaurally through Apple EarPods, which have a 



 

 
58 

frequency range of 5Hz to 21,000Hz. This exceeds the range of human hearing (Feinberg et 

al. 2005). Voices were played at a comfortable listening volume (30% of the maximum 

volume). Two versions of the experiment were constructed: one using static faces and voices, 

and one using dynamic faces and voices. In both versions, all 18 faces and voices were 

presented. All of the stimuli were presented for 2 seconds each.  

4.2.4 Procedure 

 The participants were randomly allocated to either the static face or the dynamic face 

version of the experiment using an online research randomiser (Urbaniak & Plous, 2013). 

They read the information sheet, completed the consent form, and provided demographic 

information. Testing took place in a quiet cubicle. Participants completed two 

counterbalanced blocks of testing. As illustrated in Figure 4.1, in one block participants 

viewed faces (visual (V) condition), in the other they heard voices (auditory (A) condition). 

Participants were not told that the voices and faces featured in the experiment belonged to the 

same people. Each block consisted of a practice trial, followed by 18 randomly ordered 

experimental trials. After each face or voice, participants estimated the age of the stimulus 

person in years and completed 7-point Likert-style rating scales in the following order: 

femininity/masculinity (1 – very feminine, 7 – very masculine), health (1 – very unhealthy, 7 

– very healthy), height (1 – very short, 7 – very tall) and weight (1 – very underweight, 7 – 

very overweight). The participants responded by pressing number keys on the laptop 
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keyboard. 

 

Figure 4.1: An illustration of the procedure used in Experiment 1 

4.3 Results 

 The mean estimated age, and ratings for femininity/masculinity, health, height, and 

weight, are recorded in Appendix B for each stimulus person’s dynamic face, static face, and 

voice. Datasets and executable R code for each experiment reported in this thesis can be 

accessed via the Google Drive link provided in Appendix C. 

4.3.1 Absolute difference between face and voice ratings 

The absolute difference between face and voice ratings was measured by comparing 

each rating participants had given to a face and voice belonging to the same person. 

Following this, the mean absolute difference (MAD) for each stimulus person on each rating 

scale (age, masculinity/femininity, health, height and weight) was calculated. Descriptive 

statistics (Table 4.1) indicated that typical ratings for faces and voices fall within a similar 

range. 
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Table 4.1 

Mean absolute difference (MAD) and 95% confidence intervals for the MAD between face 

and voice ratings by stimulus type condition 

 Static facial stimuli  Dynamic facial stimuli 

 
Rating scale 

 
M 

 
SD 

95% CI   
M 

 
SD 

95% CI 

LB UB  LB UB 

Age 3.91 1.51 3.27 4.55  3.62 1.58 2.95 4.29 

Masculinity/Femininity 1.05 .35 .90 1.19  1.00 .36 .85 1.15 
Health 1.24 .34 1.10 1.39  1.12 .27 1.00 1.23 

Height 1.10 .29 .98 1.23  1.04 .36 .89 1.19 
Weight .92 .25 .81 1.02  1.00 .27 .88 1.11 

 On all scales apart from age, face and voice ratings only differ on average by about 1 

point (14%) on a 7-point rating scale, and MADs were similar across static and dynamic 

facial stimuli. The difference between face and voice ratings in terms of age appears larger 

than that of the other rating scales. However, rather than being rated on a 7-point scale, age 

estimates were given in years. This prevents a neat comparison between the rating scales. 

4.3.2 Correlation between face and voice ratings 

The results in Table 4.1 show that face and voice ratings tend to be close together in 

terms of the range they fall into. A logical next step is to quantify the extent to which voice 

and face ratings co-vary in the same individual. For this purpose, a simple correlation 

coefficient between voice and face ratings would either ignore the dependency within 

participants or rely only on aggregate data (mean ratings for each participant). Use of 

multilevel models means that both participant and stimuli variation can be accounted for 

when correlating voice ratings with face ratings for estimated age, and ratings for 

femininity/masculinity, health, height and weight (see section 3.3). These correlations are 

scaled in the same way as Pearson’s correlation. For each variable, an intercept-only model 
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was fitted with the rating as an outcome, using the lme4 package in R (Bates, Maechler, 

Bolker & Walker, 2014). A crucial aspect of each model was to estimate separate variance 

for face and voice ratings as well as the correlation between face and voice ratings across 

both stimuli and participants. The correlation between face and voice ratings within 

participants is, for present purposes, a nuisance term (merely indicating that participants who 

give high ratings to voices also tend to give high ratings to faces) and is not reported here. 

The correlations reported in Table 4.2 are those within stimuli and demonstrate that, for a 

given item, voice and face ratings are positively correlated. 

Table 4.2 

Within stimulus correlations between face and voice ratings 

 
Condition 

Correlation coefficient 

Age Masc/Fem Health Height Weight 

Static facial stimuli .60 .97 .70 .83 .40 

Dynamic facial stimuli .32 .92 .91 .86 .17 
All facial stimuli .46 .95 .77 .84 .28 

 Table 4.2 provides evidence that mean face and voice ratings for the same identity 

appear to be positively related for all rating types. Correlations between face and voice 

ratings on scales for masculinity/femininity, health, and height were particularly high, 

regardless of whether the facial stimuli were static or dynamic. Correlations between the 

mean face and voice ratings for age and weight were moderate when facial stimuli were 

static, with some suggestion that the correlations were diminished for dynamic stimuli. 

However correlations did not vary according to facial stimulus type in direction, or by more 

than .3 on any scale. The difference between the static and dynamic correlations was tested 

by fitting models with separate variance terms for each stimulus type. Comparing a model 

that includes separate variance and covariance terms for static and dynamic stimuli with one 
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that does not, did not improve the model fit for any of the ratings (p >.14). This complements 

the results shown in Table 4.2, suggesting that the extent to which faces and voices offer 

similar information is not greatly influenced by whether the facial stimuli are static or 

dynamic. 

4.4 Discussion 

Experiment 1 investigated the extent to which novel faces and voices offer concordant 

information about dimensions of fitness and quality. The results indicate that not only do face 

and voice ratings fall within a similar range, but that independent ratings of an individual’s 

face and voice are positively correlated. These results complement other studies showing that 

faces and voices offer related information about mate value (Collins & Missing, 2003; 

Feinberg, 2008; Feinberg et al., 2005; Fraccaro et al., 2010). 

The strongest correlations between face and voice ratings occurred on scales for 

masculinity/femininity, health, and height. The striking relatedness of face and voice ratings 

observed on these dimensions is underlined by the fact that results were obtained using 

multilevel modelling. This method is more conservative than traditional methods of statistical 

analysis (Baguley, 2012), and avoids the ecological fallacy (Robinson, 1950; Wells et al., 

2013) (see section 3.3.1).  

It is necessary to acknowledge that rating scales were always completed in the same 

order. The first scale was always masculinity/femininity, and the possibility that there was 

some carryover when completing subsequent scales for health, height and weight cannot be 

dismissed. However, this is unlikely to have influenced the results in a way that undermines 

the overall conclusion that faces and voices provide related information about mate value. If 

the results could exclusively be explained by carryover, much stronger and more consistent 

relationships across the scales might have been anticipated, particularly as the strongest 
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relationship was observed on the first scale. As it was, the strength of correlations varied 

across the rating scales in a way that corresponds with the previous literature. This is evident 

when considering the results relating to body size.  

Despite the previous literature indicating a tendency for unimodal voice ratings of 

body size to be less accurate than unimodal face ratings (Bruckert et al., 2006; Coetzee et al., 

2010; Collins, 2000; Re et al., 2013; van Dommelen & Moxness, 1995), Experiment 1 

showed that regardless of accuracy, body size judgements made from faces and voices fall 

within a similar range. However, correlations were strong for height, but only weak-moderate 

for weight. This corresponds with the pattern of findings reported by Lass and Colt (1980), 

who observed significant differences between weight ratings from male faces and voices, but 

not between height ratings.  

The stimuli were from a narrow demographic (see section 3.4), meaning that they are 

unlikely to have varied very much from each other. In Appendix B it is clear that the 

participants did not make use of the full range (1-7) of each rating scale, and all ratings fell 

between values of 2 and 5. Although this might help to explain why the ratings for faces and 

voices tended to fall within such a small range, it does not explain the correlation results. 

These indicate that the average face and voice ratings were ordered extremely similarly, 

particularly in terms of masculinity/femininity, health and height. So for example, regardless 

of the range of rating values used, the results appear to reflect the fact that if someone looks 

taller than another person, they also tend to sound taller than that person. Similarly, on the 

basis of these results it is difficult to argue that the results are due to people guessing and 

merely attributing a mid value. If responses were truly arbitrary it is almost unfeasible that 

the results would be echoed across face and voice ratings in the way that the correlations 

show; many of the relationships were very strong.  
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Frequently contradictory findings regarding attractiveness ratings of static and 

dynamic facial stimuli have been reported in the literature (see Roberts et al., 2009b). This is 

one of the only experiments to consider how facial stimulus type affects face-voice rating 

concordance. Whilst Lander (2008) found that judgements of male face and voice 

attractiveness were related only when faces were dynamic, here in Experiment 1, a lack of 

difference between static and dynamic face-voice correlations (on the dimensions tested) 

appears to be robust. No difference was observed on any of the five rating scales, so these 

signals appear to be stable across dynamic and static faces. It therefore seems justifiable to 

use this set of results to inform hypotheses regarding the relationship between static and 

dynamic face-voice matching.  

4.4.1 Using the ratings results to inform hypotheses about face-voice matching 

Interpretation of the present set of results is not intended to propose that if static face-

voice matching is possible it is wholly attributable to dimensions relating to fitness and 

quality. Faces and voices convey a wide spectrum of socially relevant information (Belin et 

al., 2004, 2011; Campanella & Belin, 2007). Nevertheless, the results constitute sufficient 

evidence to counter the hypothesis, based on audiovisual speech perception research, that 

dynamic face-voice matching is possible, but static face-voice matching is not (Kamachi et 

al., 2003; Lachs & Pisoni, 2004a). If face and voice ratings are so closely related, on any 

dimension, static face-voice matching should be hypothetically possible.  

The results of Experiment 1 indicate that ratings made from faces and voices of the 

same identity, presented in isolation, offer redundant signals (Johnstone, 1997) on a number 

of dimensions. Information about masculinity/femininity, height and health is particularly 

similar across faces and voices. The extent to which faces and voices offer concordant 

information is not affected by whether the face is static or dynamic. These results support the 
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suggestion that it is possible to match novel voices and static faces (Krauss et al., 2002; 

Mavica & Barenholtz, 2013) as well as voices and dynamic faces (Kamachi et al., 2003; 

Lachs & Pisoni, 2004a, 2004b; Lander et al., 2007).  
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5. CHAPTER 5: MATCHING NOVEL FACE AND VOICE IDENTITY 

USING TWO-ALTERNATIVE FORCED-CHOICE PROCEDURES 

5.1 Introduction 

Experiment 1 showed that observers perceive a number of dimensions extremely 

similarly in faces and voices. The relationship between face and voice ratings on these 

dimensions did not vary according to whether facial stimuli were static or dynamic. This 

chapter explores the prediction that crossmodal source-identity information is shared both by 

voices and static faces as well as voices and dynamic faces, testing face-voice matching 

performance across three different 2AFC procedures.  

Overall, the hypothesis that static face-voice matching is possible receives rather 

inconclusive support from the existing literature. Although voices are consistently matched to 

dynamic articulating faces significantly above chance level, static face-voice matching 

performance varies across studies (Kamachi et al., 2003; Krauss et al., 2002; Lachs & Pisoni, 

2004a, 2004b, Lander et al., 2007; Mavica & Barenholtz, 2013). In line with predictions 

informed by audiovisual speech perception research, evidence of chance level static face-

voice matching has been taken to suggest that accurate matching depends on being able to 

encode visual articulatory movement (Kamachi et al., 2003; Lachs & Pisoni, 2004a). As faces 

and voices offer such a wide range of socially relevant information (e.g. Belin et al., 2004, 

2011; Campanella & Belin, 2007; de Gelder & Vroomen, 2000; Dolan et al., 2001; Massaro 

& Egan, 1996), chance level static face-voice matching may reflect a lack of redundancy on 

dimensions aside from those tested in Experiment 1. 

 Some studies have observed above-chance static face-voice matching (Krauss et al., 

2002; Mavica & Barenholtz, 2013). One possible explanation for the apparent contradictions 

hinges on procedural differences across studies. Whilst studies observing chance level face-
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voice matching using static facial stimuli have employed a standard crossmodal matching 

task (Kamachi et al., 2003; Lachs & Pisoni, 2004a), studies reporting above-chance level 

performance have used procedures (e.g. Krauss et al., 2002; Mavica & Barenholtz, 2013, 

Experiment 1) that might have encouraged different response strategies which better support 

matching accuracy (Lindsay et al., 1991; Lindsay & Wells, 1985; Wells, 1984). Although it is 

important to acknowledge that Mavica and Barenholtz (2013, Experiment 2) did observe 

above-chance level static face-voice matching using the A-V condition of the crossmodal 

matching procedure (Lachs, 1999), they omitted the V-A condition. On the basis of these 

results it would be premature to conclude that procedural differences do not influence 

performance accuracy.  

A further explanation for the contradictory results is offered by the face recognition 

literature. Some research suggests that memory is better for dynamic compared to static faces 

(e.g. Knappmeyer et al., 2003; Lander & Chuang, 2005). If memory load is higher using 

sequential procedures such as the crossmodal matching task (Lachs, 1999), this might 

disproportionately affect static compared to dynamic face-voice matching accuracy. A 

position effect might occur in a sequential 2AFC task, whereby accuracy is higher if the same 

identity other-modality stimulus appears in position 1 rather than position 2. Previous face-

voice matching studies have not included analyses of responses by position, so the impact of 

this factor is unknown. However, position effects in 2AFC tasks are well documented in the 

psychological literature, and so require attention in this context (García-Pérez & Alcalá-

Quintana, 2010, 2011; Yeshurun et al., 2008). 

In order to thoroughly investigate static and dynamic face-voice matching, key 

manipulations must be appropriately scrutinized. Some previous studies have not attended to 

the impact of stimulus presentation order (Visual-Auditory or Auditory-Visual) on matching 

accuracy (Mavica & Barenholtz, 2013). However, asymmetries in terms of sensory memory 
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for faces and voices (Crowder & Morton, 1969; Penney, 1985) might affect responses. In 

addition, as faces provide more reliable identity information, and voices are processed more 

for speech information (see Stevenage & Neil, 2014), this could influence accuracy according 

to the order of stimulus presentation. Performance may depend on whether speech or visual 

identity information is most important in facilitating matching. 

Addressing the impact of facial stimulus type is crucial. If visual articulatory 

movement is so critical to matching accuracy, there may be a significant difference in 

accuracy according to whether the faces are static or dynamic. Although audio-visual speech 

perception researchers have tested face and voice matching using both static and dynamic 

facial stimuli, they have not statistically compared the data (Kamachi et al., 2003; Lachs & 

Pisoni 2004a). Neither of the studies identifying above chance level static face-voice 

matching have included trials using dynamic articulating faces (Kamachi et al., 2003; Krauss 

et al., 2002). Failure to include both static and dynamic face conditions prevents direct 

comparison of crossmodal matching explanations based on static facial information (e.g. 

Krauss et al., 2002; Mavica & Barenholtz, 2013) to those focusing on dynamic facial 

information (Kamachi et al., 2003; Lachs & Pisoni, 2004a, 2004b; Lander et al., 2007; 

Rosenblum et al., 2006).  

5.1.1 Aim 

In the face of contradictory results, this chapter aims to clarify whether static face-

voice matching is possible using stimuli of the same age, sex and ethnicity, comparing 

matching accuracy across three different 2AFC procedures.  

In an attempt to tease apart the relative contribution of static or dynamic face 

information in facilitating crossmodal matching, performance using static and dynamic faces 

was compared in both Experiments 2a and 2b. Performance on A-V and V-A trials was also 
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compared in these two experiments. In case better memory for dynamic facial stimuli affects 

matching accuracy, memory load was varied across studies. In Experiment 2a, all of the 

stimuli were presented sequentially, so memory load was higher, whereas in Experiment 2b, 

face-voice combinations were presented simultaneously. In a further test of whether static 

face-voice matching is sensitive to procedural differences, Experiment 2c adopts the 

procedure of Krauss et al. (2002), in which alternatives in a 2AFC task are presented 

simultaneously. In an attempt to clarify how memory load and procedure affects 

performance, all three experiments included a manipulation of position to test whether 

accuracy is higher when the same identity stimulus appears in position 1 rather than position 

2.2 

5.2 Experiment 2a: Sequential face-voice presentation in a 2AFC matching task 

Experiment 2a used a standard crossmodal matching task (Lachs, 1999) to compare 

static and dynamic face-voice matching. In most experiments in which this procedure has 

been used, the results have shown only dynamic face-voice matching to be at above chance 

level (Kamachi et al., 2003; Lachs & Pisoni, 2004a; Lander et al., 2007; cf. Mavica & 

Barenholtz, 2013, Experiment 2). The balance of evidence therefore predicted static face-

voice matching to be at chance level using this particular procedure. 

5.2.1 Methods 

5.2.1.1 Design 

Experiment 2a employed a 2 x 2 x 2 mixed factorial design. The between subjects 

factor was facial stimulus type (static or dynamic), and the within subjects factors were order 

                                                
2 The data from Experiments 2a, 2b and 2c have been published (Smith, Dunn, Baguley & 
Stacey, 2016b) (see Appendix E) 
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(visual to auditory (V-A) or auditory to visual (A-V)), and position (position 1 or position 2). 

The dependent variable was matching accuracy.  

5.2.1.2 Participants 

The participants (N = 82) were recruited from the Nottingham Trent University 

Psychology Division’s Research Participation Scheme and by convenience sampling. There 

were 26 male and 56 female participants (age range = 18 to 66 years, M = 23.70, SD = 8.56). 

All reported having normal or corrected vision and hearing. None of the participants had 

taken part in Experiment 1. In line with course requirements, student participants received 

research credits.  

5.2.1.3 Apparatus and materials 

The apparatus used in Experiment 2a was exactly the same as in Experiment 1. Four 

versions of the experiment were created so that trials could be constructed using different 

combinations of stimuli in order to maximise stimulus sampling (Wells & Windschitl, 1999). 

Each version comprised 12 trials in total, and each trial featured 3 stimuli. In the V-A 

condition, a face (stimulus 1) was followed by two sequentially presented voices (stimuli 2 

and 3): a target (a same identity, other modality stimulus) and a distractor (a different 

identity, other modality stimulus). In the A-V condition, a voice (stimulus 1) was followed by 

sequentially presented target and distractor faces (stimuli 2 and 3). Across versions, whether 

someone’s face/voice appeared as stimulus 1, 2 or 3, and whether it was used in a V-A or A-

V trial, was randomly varied. The position of the target stimulus at test (position 1 or position 

2) was also randomly and equally varied. In each experimental version, all 18 faces and 

voices appeared. All of the stimuli were presented for 2 seconds each. None of the faces or 

voices appeared more than once in any version. Each of the 4 versions was used for the 
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between subjects manipulation of facial stimulus (static or dynamic). In total there were 8 

versions of the experiment. 

5.2.1.4 Procedure 

The participants were randomly allocated to one of the 8 versions of the experiment 

using an online research randomiser (Urbaniak & Plous, 2013).	In the dynamic facial 

stimulus condition the participants were accurately informed that the face and the voice were 

saying different sentences to prevent the use of speech-reading (Kamachi et al., 2003).  

The participants completed 2 counterbalanced experimental blocks. There was a 

practice trial, followed by 6 randomly ordered experimental trials. As illustrated in Figure 

5.1, in one block of trials participants saw a face first. After a 1 second gap they heard the 

first voice. The text ‘Voice 1’ was visible in the middle of the screen while the recording was 

playing. After another 1 second gap they heard the second voice, with the text ‘Voice 2’ 

visible in the middle of the screen. In the other block of trials, participants heard a voice first, 

and then saw 2 faces, presented one after the other. Gaps of 1 second were inserted between 

all stimuli, and the text ‘Face 1’ or ‘Face 2’ appeared below each picture. At test, using 

number keys on the laptop keyboard, the participants were asked to select either 1 or 2, as the 

face/voice that was the same identity as the first stimulus.  
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Figure 5.1: An illustration of the procedure used in Experiment 2a 

5.2.2 Results 

All of the data were analysed using multilevel models in order that both the 

participants and the stimuli could be treated as random effects. The random effects were fully 

crossed; every participant encountered all 36 stimuli (18 faces, 18 voices) in each version of 

the experiment. Matching accuracy was analysed using multilevel logistic regression with the 

lme4 version 1.06 package in R (Bates et al., 2014). Four nested models were compared, all 

fitted using restricted maximum likelihood, and with accuracy (0 or 1) as the dependent 

variable. The first model included a single intercept; the second included the main effects of 

each factor (order, position and facial stimulus type). The third added the two-way 

interactions, and the final model included the three-way interaction. This method of analysis 

allowed us to test for individual effects in a similar way to traditional ANOVA. However, as 

F tests derived multilevel models tend not to be accurate, profile likelihood ratio tests 

provided by lme4 are reported instead. These are more robust, and are obtained by dropping 

each effect in turn from the appropriate model (e.g., testing the three-way interaction by 

dropping it from the model including all effects, and testing the two-way interactions by 

dropping each effect in turn from the two-way model).  
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Table 5.1 shows the profile likelihood chi-square statistic (G2) and p value associated 

with dropping each effect. Table 5.1 also reports the coefficients and standard errors (on a log 

odds scale) for each effect in the full three-way interaction model. Variability for the first 

stimulus in each trial (the voice in the A-V condition, and the face in the V-A condition) was 

modelled separately from the foil stimulus. The random effect for the first stimulus captures 

the variability of both faces and voices because corresponding faces and voices are highly 

correlated. For foils, it was more appropriate to model separate random effects for faces and 

voices because the corresponding voice or face was never present. In the three-way model, 

the estimate of SD of the first stimulus random effect was 0.535, for the voice foils it was 

0.634, and for face foils it was 0.484. The estimated SD for the participant effect was less 

than 0.0001. A similar pattern held for the null model. Thus, although individual differences 

were negligible in this instance, a conventional by-participants analysis that did not 

incorporate variance associated with the stimuli could have been extremely misleading.  

Table 5.1 

Parameter estimates (b) and profile likelihood tests for the 2x2x2 factorial analysis, 

Experiment 2a: Sequential face-voice presentation in a 2AFC matching task 

Source df b SE G2 p 

Intercept 1 0.444 0.315 . . 

Position 1 0.062 0.374 5.92 .015 
Order 1 0.333 0.371 0.68 .410 

Facial stimulus type  1 0.676 0.277 3.42 .064 
Position x Order 1  0.870 0.516 0.35 .553 

Position x Facial stimulus type 1 0.625 0.390 0.02 .884 
Order x Facial stimulus type 1 0.775 0.382 0.59 .441 

Position x Order x Facial stimulus 
type 

1 1.159 0.549 4.34 .037 
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 The main effect of position was significant (p = .015), along with the 3-way 

interaction between position, order and facial stimulus type (p = .037). Figure 5.2 aids 

interpretation of the effects and interaction, showing means and 95% confidence intervals for 

matching accuracy in each condition of the factorial design. The confidence intervals were 

obtained by simulating the posterior distributions of cell means in R (arm package, version 

1.6) (Gelman & Su, 2013).  

 

Figure 5.2: Face-voice matching accuracy on V-A (panel A) and A-V (panel B) trials for 

sequentially presented faces and voices in a 2AFC matching task. Error bars show 95% CI 

for the condition means 

Overall matching performance was significantly above chance (50%) level, M = 

59.7%, 95% CI [50.8, 68.0]. However, confidence intervals for percentage accuracy in the 

static, M = 57.6%, 95% CI [47.5, 67.1], and dynamic, M = 63.7%, 95% CI [53.8, 72.5], 

conditions show that only performance on dynamic facial stimulus trials was significantly 

above chance level. Figure 5.2 shows the main effect of position, with accuracy levels 
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consistently higher when the same identity stimulus was presented in position 1 compared to 

when it was presented in position 2. The results from the V-A condition are shown in panel 

A, while results from the A-V condition appear in panel B. Using visual analysis to guide an 

interpretation, it appears that the basis of the three-way interaction relates to performance 

when the same identity other-modality stimulus appears in position 2 in the V-A condition. In 

the V-A condition there is no position effect in the dynamic facial stimulus condition. 

However, as with any factorial design testing multiple effects it would be imprudent to over-

interpret a single non-predicted interaction that is only just statistically significant (p = .037). 

5.2.3 Discussion 

Using the standard crossmodal matching task (Lachs, 1999) employed in audiovisual 

speech perception research, Experiment 1 observed above chance dynamic face-voice 

matching, but chance level static face-voice matching. Although there was no significant 

difference between static and dynamic face-voice matching accuracy, and static face-voice 

matching was close to being above chance level, this pattern of results appears to support the 

conclusion that source identity information shared by dynamic articulating faces and voices 

explains accurate face-voice matching. The results are consistent with two previous studies 

(Kamachi et al., 2003; Lachs & Pisoni, 2004a), but in conflict with Mavica and Barenholtz 

(2013, Experiment 2), who observed above chance level static face-voice matching using this 

procedure.  

The presence of a position effect in Experiment 2a additionally suggests that memory 

load might be hindering performance, especially in the static facial stimulus condition. Face-

voice matching was more accurate when the same identity face and voice were presented in 

relatively closer temporal proximity (position 1), than when the same identity other-modality 

stimulus was further away (position 2). In line with research suggesting that memory is better 
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for dynamic than static faces (Christie & Bruce, 1998; Knappmeyer et al., 2003), the position 

effect appears not to manifest in the dynamic facial stimulus, V-A condition. Although this 

interpretation must not be overstated, based as it is on visual analysis, it is important to 

consider a possible explanation for the three-way interaction. In the V-A condition, the face 

(stimulus 1) needs to be held in memory whilst being compared to voice 1 and voice 2. If 

dynamic faces are more durable in memory than static faces, their representation might 

endure better across both voices, meaning that a position effect does not occur. As voices are 

less durable than faces (Stevenage et al., 2011, 2012, 2013), comparisons across two faces 

might be particularly difficult in the A-V condition. In keeping with this explanation, the bias 

in the A-V condition occurs regardless of whether the subsequent faces are static or dynamic. 

5.3 Experiment 2b: Simultaneous face-voice presentation in a 2AFC matching task 

In order to clarify the effect of procedural differences across previous studies, 

Experiment 2b used a modified presentation procedure from Experiment 2a. Experiment 2b 

presented 2 different face-voice combinations. This time the face and voice in each 

combination were presented simultaneously, instead of sequentially. It was hypothesised that 

relieving the memory load should make it easier to identify incongruent face-voice 

combinations (Lander et al., 2007). Therefore, matching accuracy should be higher when 

faces and voices are presented simultaneously, and above chance for static face-voice 

matching. 

5.3.1 Method. 

The methods for Experiment 2b were identical to Experiment 2a, with exceptions 

outlined below.  

5.3.1.1 Participants 
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There were 7 male and 33 female adult participants (N=40) with an age range of 18 to 

33 years (M = 21.38, SD= 3.57). None of the participants had taken part in previous 

experiments.  

5.3.1.2 Procedure 

The procedure used in Experiment 2b is illustrated in Figure 5.3. Participants in the 

V-A condition saw a face accompanied by a recording of a voice. The text ‘Voice 1’ was 

visible underneath the face. After a 1 second gap they saw the same face accompanied by a 

different voice. The text ‘Voice 2’ appeared beneath the face. In the A-V condition, 

participants heard a voice accompanied by a face, followed by a 1 second intervening gap, 

after which they heard the same voice accompanied by a different face. The text ‘Face 1’ and 

‘Face 2’ appeared below the first and second combination respectively. Participants had to 

decide which combination featured same identity stimuli by pressing 1 on the laptop 

keyboard for face/voice 1, or 2 for face/voice 2. 
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Figure 5.3: An illustration of the procedure used in Experiment 2b 

5.3.2 Results 

Matching accuracy was analysed using the same method as Experiment 2a. Table 5.2 

shows the profile likelihood chi-square statistic (G2) and p value associated with dropping 

each effect in turn from the appropriate model. Coefficients and standard errors (on a log 

odds scale) for each effect in the full three-way interaction model are also reported in Table 

5.2. A similar pattern of SDs was observed for the random effects, with more variability at 

the stimulus level than the participant level. In the three-way model, the estimate of SD of the 

first stimulus random effect was 0.778, for the voice foils it was 0.324, and for the face foils 

it was 0.103. The estimated SD for the participant effect was 0.007.  
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Table 5.2 

Parameter estimates (b) and profile likelihood tests for the 2x2x2 factorial analysis, 

Experiment 2b: Simultaneous face-voice presentation in a 2AFC matching task 

Source df b SE G2 p 

Intercept 1 0.266 0.365 . . 
Position 1 0.550 0.462 17.40 <.001 

Order 1 0.755 0.431 <0.01 .952 
Facial stimulus type  1 0.314 0.391 0.37 .545 

Position x Order 1 1.402  0.653 1.95 .162 
Position x Facial stimulus type 1 0.140 0.568 1.09 .295 

Order x Facial stimulus type 1 0.771 0.549 0.37 .544 
Position x Order x Facial stimulus 

type 
1 1.121 0.804 1.90 .169 

 Only the main effect of position was significant (p < .001). Figure 5.4 aids 

interpretation of this main effect, showing the means and 95% confidence intervals for 

accuracy in each of the 8 conditions, obtained using the arm package (version 1.6) (Gelman 

& Su, 2013).  



 

 
80 

 

Figure 5.4: Face-voice matching accuracy on V-A (panel A) and A-V (panel B) trials for 

simultaneously presented faces and voices in a 2AFC matching task. Error bars show 95% 

CI for the condition means 

As in Experiment 2a, overall matching performance was significantly above chance 

(50%) level, M = 60.9%, 95% CI [50.4, 70.5]. Overall, the dynamic facial stimulus trials 

were significantly above chance, M = 62.5%, 95% CI [50.1, 73.6], but static facial stimulus 

trials were not, M = 59.8%, 95% CI [47.2, 71.2]. As is clear from Figure 5.4, the main effect 

of position exhibits the same pattern as Experiment 2a, with accuracy levels consistently 

higher when the same identity face-voice combination is presented in position 1. There was, 

however, no three-way interaction.  

5.3.3 Discussion 

Overall the pattern of results observed in Experiment 2b is largely similar to that 

observed in Experiment 2a, when the stimuli were presented sequentially. The participants in 



 

 
81 

Experiment 2b exhibited a bias towards selecting the first face-voice combination they 

encountered. As the position effect was observed in both experiments, this may be less 

attributable to memory load, and more related to the nature of the 2AFC-task: when 

alternatives are presented sequentially, the first alternative is disproportionately favoured. 

Indeed, this explanation corresponds well with other studies, which have found widespread 

similar evidence of temporal position biases using 2AFC procedures (García-Pérez & Alcalá-

Quintana, 2010, 2011; Yeshurun et al., 2008). However, it would be premature to rule out 

explanations based on memory at this stage. In contrast to the results presented in Experiment 

2a, there was no three-way interaction; the position effect also occurred in the dynamic facial 

stimulus V-A condition. The interaction in Experiment 2a was explained in terms of the 

differential durability of dynamic faces, static faces, and voices. It was suggested that 

comparisons would be particularly difficult in conditions when less durable stimuli must be 

held in memory for a longer time. It is possible that the durability of a face-voice 

combination is only as strong as its weakest element, i.e. the voice (Stevenage et al., 2011, 

2012, 2013). If this is the case, a uniform position effect would be expected across conditions 

when sequentially presented alternatives consist of face-voice combinations. This is what the 

results of Experiment 2b show.  

5.4 Experiment 2c: Simultaneously presented alternatives in a 2AFC matching task 

The results from Experiment 2b showed that simultaneously presenting faces and 

voices did not improve static face-voice matching. This was contrary to what was expected; it 

seems that the pattern of results from Experiment 2a were not attributable to increased 

memory load impairing the comparison of the first stimulus to the same identity other-

modality stimulus in position 2. Experiment 2c was designed to test whether chance level 

static face-voice matching could be attributable to the sequential presentation of alternatives 

in a 2AFC task. Evidence from the forensic eyewitness literature suggests that simultaneously 
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presenting faces in a lineup array prompts a different pattern of results in comparison to when 

faces are presented sequentially (Clark et al., 2008; Ebbesen & Flowe, 2002; Steblay et al., 

2011). This is possibly because of differential use of relative and absolute judgements 

(Kneller et al., 2001). Relative judgements (Wells, 1984) are employed when choosing the 

best option from simultaneously presented alternatives, whereas sequential presentation of 

alternatives encourages absolute judgements because of the difficulty of making comparisons 

(Kneller et al., 2001; Wells et al., 1998).  

Some previous experiments finding above chance face-voice matching accuracy with 

static stimuli have used a procedure in which test alternatives are presented simultaneously, 

and can therefore be more easily compared (Krauss et al., 2002; Mavica & Barenholtz, 2013 

Experiment 1). Experiment 2c tested whether static face-voice matching is above chance 

level when the alternatives in a 2AFC task are presented simultaneously. Because of the 

nature of this procedure, and the difficulty of presenting voices simultaneously at test, 

Experiment 2c only included an A-V condition. The main aim of Experiment 2c was to 

account for static face-voice matching, replicating the procedure of Krauss et al. (2002) as 

closely as possible. Considering the null effect of facial stimulus type in Experiments 2a and 

2b, this experiment does not include a dynamic face condition. Taking into account the 

results of Krauss et al. (2002), in conjunction with the observation that faces and voices offer 

redundant information on a number of dimensions (Experiment 1), it seemed likely that this 

particular procedure would elicit above chance static face-voice matching. The manifestation 

of a position effect was not anticipated when the 2 face alternatives were presented 

simultaneously.  

5.4.1 Method 
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The methods for Experiment 2c were identical to Experiment 2a and 2b, with 

exceptions outlined below. 

5.4.1.1 Design 

Experiment 2c employed a within subjects design, with one factor: position (left = 

position 1 or right = position 2). The dependent variable was matching accuracy.  

5.4.1.2 Participants 

There were 8 male and 22 female adult participants (N = 30) with an age range of 18 

to 44 years (M = 20.70, SD = 5.20). None had taken part in either Experiment 2a or 

Experiment 2b. 

5.4.1.3 Apparatus and materials 

In the absence of a between subjects manipulation, only 4 versions of Experiment 2c 

were constructed, all of which featured different combinations of stimuli. Each version 

featured 1 block of 18 trials, in which a voice was followed by the presentation of 2 faces. 

The same-identity face was always present at test, with its position (left = position 1 or right 

= position 2) randomly and equally varied. Each voice was only heard once in each version. 

Each of the stimulus faces appeared twice, but only once as the same identity stimulus. This 

was in keeping with the procedure of Krauss et al. (2002), who also re-used visual stimuli as 

foils. 

5.4.1.4 Procedure 

The participants were randomly allocated to one of the four versions of the 

experiment using an online research randomiser (Urbaniak & Plous, 2013). The procedure for 

Experiment 2c is illustrated in Figure 5.5. The participants heard a voice for 2 seconds. After 
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a 1 second gap they saw 2 images of faces presented side by side. The text ‘Face 1’ was 

visible underneath the face on the left, and the text ‘Face 2’ appeared underneath the face on 

the right. This screen was visible for 2 seconds. Participants were then instructed to decide 

which face matched the voice they had heard, indicating their answer by pressing 1 on the 

laptop keyboard for ‘Face 1’, and 2 for ‘Face 2’.  

 

Figure 5.5: An illustration of the procedure used in Experiment 2c 

5.4.2 Results 

Face-voice matching accuracy was analysed using the same method as Experiment 2a 

and 2b. Since there is only one within subjects factor, only the profile likelihood chi-square 

statistic (G2) and p value associated with dropping the main effect from the null model is 

reported. The coefficients and standard error (on a log odds scale) for the effect of position in 

the main effect model are reported in Table 5.3. In the main effect model, the estimate of SD 

of the voice random effect was 0.487, and for the face foil it was 0.0002. The estimated SD 

for the participant effect was less than 0.0001.  
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Table 5.3  

Parameter estimates (b) and profile likelihood tests for the analysis, Experiment 2c: 

Simultaneously presented alternatives in a 2AFC matching task 

Source df b SE G2 p 

Intercept 1 0.446  0.147  . . 
Spatial position 1 0.199  0.203  0.98  .329 

The main effect of position was non-significant (p = .329). Overall matching accuracy 

with simultaneously presented static facial stimuli was above chance level (50%), M = 

61.0%, 95% CI [54.1, 67.6].  

5.4.3 Discussion 

The results of Experiment 2c indicate that when test alternatives are presented 

simultaneously, static face-voice matching is above chance level. In keeping with previous 

findings (Mavica & Barenholtz, 2013), this confirms that static face-voice matching is 

possible. The results also replicate the findings of Krauss et al. (2002) using headshots rather 

than full-length images. Considered alongside the results presented in Experiments 2a and 2b, 

it would appear that static face-voice matching performance is sensitive to procedure, thus 

offering one possible explanation for contradictions between previous studies.  

Experiments 2a and 2b showed that there is a temporal position bias when test options 

are presented sequentially. However, Experiment 2c suggests that there is no corresponding 

spatial position bias; when the test options are presented simultaneously, the position bias is 

negligible.  

5.5 General Discussion 
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In an attempt to resolve discrepancies across previous face-voice matching studies, 

this chapter tested whether crossmodal source identity information is exclusively dependent 

on encoding visual articulatory patterns, or whether static faces and voices offer sufficient 

concordant information to facilitate above chance performance. Taken together, the results of 

Chapter 5 are consistent with the conclusion that whilst articulatory movement might be 

important in facilitating face-voice matching (Experiments 2a and 2b), it is also possible to 

match static faces and voices when a 2AFC procedure facilitates comparisons between 

alternatives (Experiment 2c). Therefore, it seems that procedural differences between 

previous studies offer a possible explanation for discrepant results in the literature. 

Furthermore, as shown by the variance associated with stimuli in the multilevel modelling 

analysis, people vary in the extent to which they look and sound similar. This offers a 

complementary explanation for contradictions in previous studies, because previous results 

may be highly dependent on the particular stimuli used.  

5.5.1 Static vs. dynamic face-voice matching 

 Experiments 2a and 2b presented test alternatives in the 2AFC task sequentially. The 

results replicate those of audiovisual speech perception studies showing that although 

dynamic faces and voices can be matched significantly above chance level, static faces and 

voices cannot (Kamachi et al., 2003; Lachs & Pisoni, 2004a). As shown by the results of 

Experiment 2c, and in keeping with the alternative hypothesis that static faces and voices 

offer concordant source identity information (Feinberg et al., 2005; Krauss et al., 2002; 

Mavica & Barenholtz, 2013; Saxton et al., 2006), performance was significantly above 

chance when the alternatives were presented simultaneously. The overall results are therefore 

not consistent with the conclusion that dynamic articulatory movement is exclusively 

responsible for explaining cross-modal matching (e.g., Kamachi et al., 2003; Lachs & Pisoni, 

2004a), although they do not rule out the audiovisual speech perception argument that visual 
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articulatory movement shares source identity information with voices (Kamachi et al., 2003; 

Lachs & Pisoni, 2004a, 2004b; Rosenblum et al., 2006).  

The absence of any statistical difference between static and dynamic face-voice 

matching in Experiment 2a and 2b warns against overstating the importance of visual 

articulatory movement in accounting for crossmodal matching accuracy. That said, the 

absence of an effect of facial stimulus type is not necessarily at odds with the results of 

studies detecting accurate face-voice matching when movement is isolated using point-light 

displays, and static information is unavailable (Lachs & Pisoni, 2004b; Rosenblum et al., 

2006). Dynamic point-light displays could offer sufficient information to enable accurate 

face-voice matching independently of the structural information available in static images.  

5.5.2 Procedural differences  

On both static and dynamic facial stimulus trials, there was a uniform position effect 

in Experiment 2b when the memory load was reduced. Our findings are more consistent with 

the conclusion that the position effect is attributable to the nature of the 2AFC task (García-

Pérez & Alcalá-Quintana, 2010, 2011; Yeshurun et al., 2008) when the two test alternatives 

are presented sequentially. This undermines the suggestion that 2AFC procedures are 

unbiased (Green & Swets, 1966; Macmillan & Creelman, 2005; Wickens, 2002), hinting that 

alternative procedures, such as a same-different task, might be more appropriate for 

investigating face-voice matching. The observed position bias appears to be temporal rather 

than spatial. However, presenting test alternatives simultaneously in a 2AFC task is not ideal. 

Investigating order of presentation effects using this procedure is problematic because of the 

undesirability of presenting two voices at the same time for comparison. As 2AFC position 

effects have not been addressed in previous face-voice matching research, this topic would 

benefit from further investigation, and is the subject of the next chapter. 
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In comparing the results of Experiments 2a and 2b to Experiment 2c, it appears that 

static face-voice matching is sensitive to the procedure employed. The similarity of results 

across Experiments 2a (sequential face-voice presentation) and 2b (simultaneous face-voice 

presentation) suggest that contradictions between previous studies are not attributable to 

superior performance when faces and voices are presented simultaneously. This may be 

because the more critical comparison to make in facilitating matching accuracy is between 

alternatives, rather than between the face and the voice. When the two alternatives are 

presented simultaneously, as in Experiment 2c, the key comparison, a relative judgement 

(Wells, 1984), is easier to make. 

At this point it should be noted that in previous face-voice matching experiments 

using a crossmodal matching procedure, a standard inter-stimulus interval of 500ms has been 

used (e.g. Lachs & Pisoni, 2004a, 2004b; Mavica & Barenholtz, 2013), which is half as long 

as the interval featured in the experiments reported here. With 1-second intervals in 

Experiment 2a we observed chance level static face-voice matching when the stimuli were 

presented sequentially. Using 500ms intervals, Mavica and Barenholtz (2013, Experiment 2) 

observed above-chance level matching accuracy. It is necessary to consider the possible 

impact of this methodological dissimilarity. It could be argued that a longer interval might 

increase the load on auditory and visual sensory memory, making the task more difficult. The 

results we report support the argument that sensory memory pressures do not account for the 

chance level static facial stimulus results in Experiment 2a. Experiment 2b, in which faces 

and voices were presented simultaneously, was designed to alleviate memory load. The 

results were very similar to the results of Experiment 2a; static face-voice matching was still 

at chance level. 

5.5.3 Variability associated with stimuli 
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 An explanation based on procedural differences does not accommodate all the results 

in the previous literature. Mavica and Barenholtz (2013) observed above chance static face-

voice matching using sequential presentation of alternatives in the A-V condition of the 

standard crossmodal matching task (Lachs, 1999). Alongside procedural differences, this set 

of three experiments also highlights the importance of stimulus variability in providing an 

additional but complementary explanation for contradictions between previous studies. Other 

studies have used varying numbers of face-voice pairs when testing crossmodal matching. 

For example, whilst Lachs and Pisoni (2004a) used 8 pairs, Kamachi et al. (2003) used 40 

pairs. The results of the multilevel modelling analyses described in Experiments 2a, 2b and 

2c reveal that some people look and sound more similar than others; relatively high levels of 

variance associated with stimuli were observed for the 18 face-voice pairs used here, and in 

all three experiments the overall variance associated with stimuli was far greater than that 

associated with the participants. Consistent with this, Mavica and Barenholtz (2013) report 

that for their stimuli, levels of matching accuracy varied widely, between 35% and 70%, 

across 64 face-voice pairs. Overall, Mavica and Bareholtz’s (2013) stimuli pairings of voices 

and static faces may have been easier to match than the pairings featured in Experiment 2a, 

2b and 2c, or those featured in previous studies (Kamachi et al., 2003; Lachs & Pisoni, 

2004a). 

5.5.4 No effect of order in 2AFC tasks 

In line with other studies (Kamachi et al., 2003, forwards and backwards conditions; 

Lachs and Pisoni, 2004a; Lander et al., 2007), neither Experiment 2a nor 2b showed an effect 

of the order of stimulus presentation. Therefore, certainly in terms of detection sensitivity, as 

measured by accuracy in the 2AFC procedure, face-voice matching appears to be unaffected 

by differential sensory memory for faces and voices (Crowder & Morton, 1969; Penney, 
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1985), the greater contribution of identity information by faces, or the greater contribution of 

speech information by voices (see Stevenage & Neil, 2014).  

5.5.5. Conclusion 

The results presented in this chapter are consistent with the results of Experiment 1, 

suggesting that source identity is shared by dynamic articulating faces and voices, as well as 

static faces and voices. The findings help to resolve previous uncertainty about whether static 

face-voice matching is possible, presenting two complementary explanations for apparent 

contradictions. The data suggest that static face-voice matching is more likely to be above 

chance level when alternatives in a 2AFC task are presented simultaneously. In addition, the 

variance associated with stimuli indicates that some people look and sound more similar than 

others, an issue which has not been properly accounted for by analyses undertaken in 

previous research, but which helps to explain why static face-voice matching performance 

across previous studies might be inconsistent.  

The overall results of this chapter therefore support the conclusion that dynamic 

visual information about articulatory patterns facilitates matching accuracy (Kamachi et al., 

2003; Lachs & Pisoni, 2004a, 2004b; Lander et al., 2007; Rosenblum et al., 2006), but that 

this alone cannot explain the existence of shared source identity information with voices. 

Crossmodal source identity information appears to be available in both static and dynamic 

faces.  
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6. CHAPTER 6: POSITION BIAS IN TWO-ALTERNATIVE FORCED-

CHOICE PROCEDURES 

6.1 Introduction 

In Experiments 2a and 2b, a temporal position bias was observed. The participants 

were more accurate when the same identity stimulus appeared in position 1 of a 2AFC task. 

This bias was observed when the memory load was higher and all the stimuli were presented 

sequentially (Experiment 2a), as well as when the memory load was lower and face-voice 

combinations were presented simultaneously (Experiment 2b). As all previous face-voice 

matching studies have employed a 2AFC procedure, with the majority presenting test 

alternatives sequentially (Kamachi et al., 2003; Lachs & Pisoni 2004a, 2004b; Lander et al., 

2007; Mavica & Barenholtz, 2013, Experiment 2, but see Krauss et al., 2002; Mavica & 

Barenholtz, 2013, Experiment 1), identifying a temporal position effect is an important 

finding. Its presence casts doubt on this procedure offering a wholly unbiased method of 

investigating face-voice matching, and supports previous findings of 2AFC position biases in 

other areas of research (García-Pérez & Alcalá-Quintana, 2010, 2011; Yeshurun et al., 2008). 

For example, Yeshurun et al. (2008) re-analysed the data from 17 studies measuring visual 

sensitivity. The data had originally been collapsed across positions in these studies, but the 

re-analyses revealed clear position biases. In some cases the alternative in position 1 was 

differentially favoured, in other cases it was the alternative in position 2 (see section 2.6.4).  

There are a number of possible explanations for temporal position biases in 2AFC 

tasks. When participants are uncertain they may not assign guesses equally to the alternatives 

presented in position 1 and 2 (García-Pérez & Alcalá-Quintana, 2010, 2011; Jäkel & 

Wichmann, 2006). This could be due to something as simple as key ‘1’ being in a more 

comfortable position to press than key ‘2’. Alternatively, the position bias may manifest 
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because sensitivity differs across positions 1 and 2, so for example, it might be easier to be 

accurate when the correct alternative is in position 1 (Yeshurun et al., 2008). One way to 

distinguish between these two explanations is to test how responses are distributed when the 

same identity stimulus is not present at test. If the latter explanation is supported, there should 

be no position bias in 2AFC face-voice matching tasks.  

6.1.1 Aim 

To demonstrate the pattern of responses in 2AFC face-voice matching tasks, it is 

unnecessary to include the same identity stimulus. In Experiments 3a and 3b, the same 

identity target stimulus was not present at test. Removing the signal emanating from the 

target by including two (different identity) distractor stimuli allows for a clearer test of the 

position bias hypothesis. Rather than testing whether participants could discriminate between 

the target and distractor, the aim was to measure whether there was a bias to select the first or 

second sequentially presented test alternative in a 2AFC task. If the procedure is unbiased, 

alternatives in position 1 and 2 should be selected equally as often as each other. Therefore, 

in this set of two experiments, instead of the dependent variable being matching accuracy, it 

was the percentage of responses selecting the first test alternative (the stimulus in position 1) 

as being the same identity target. As the experiments presented in Chapter 5 were the first 

ever to analyse face-voice matching data for a position effect, the experiments in Chapter 6 

were also undertaken in part to test whether the effect would be replicated.  

6.2 Experiment 3a: Position bias and the 2AFC matching task: Sequential face-voice 

presentation 

 Experiment 3a used a cross-modal matching procedure (Lachs, 1999) to compare 

position biases in static and dynamic face-voice matching. In light of the results from 

Experiment 2a, we expected that a position bias would operate, with the alternative in 
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position 1 being selected as the same identity target more often than the alternative in 

position 2.  

6.2.1 Methods 

 The methods for Experiment 3a were identical to Experiment 2a, apart from the 

following exceptions: 

6.2.1.1 Design 

 Experiment 3a employed a 2 x 2 mixed factorial design. The between subjects factor 

was facial stimulus type (static or dynamic), and the within subjects factor was order (visual 

to auditory (V-A) or auditory to visual (A-V)). The dependent variable was a position 1 

response (i.e. selecting the stimulus in position 1 as the same identity target).  

6.2.1.2 Participants 

There were 12 male and 28 female participants (N=40), ranging from 18 to 35 years 

(M = 21.98, SD = 4.40). They were recruited by convenience sampling and from the 

Nottingham Trent University Psychology Division’s Research Participation Scheme. In 

accordance with this scheme, students received research credits in return for their 

participation. All of the participants reported having normal or corrected vision and hearing, 

and none had taken part in any previous experiments.  

6.2.1.3 Apparatus and materials 

 For each of the 4 versions of the experiment, the stimulus set was re-randomised 

using an online research randomiser (Urbaniak & Plous, 2013) to construct trials consisting 

of different stimuli combinations to Experiment 2a. In the V-A condition, a face (stimulus 1) 

was followed by 2 sequentially presented voices (stimuli 2 and 3): both of them were a 
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different identity to the voice. In the A-V condition, a voice (stimulus 1) was followed by 2 

sequentially presented different identity faces (stimuli 2 and 3). As in Experiment 2a, each of 

the 4 versions was used for the between subjects manipulation of facial stimulus type (static 

or dynamic), so in total there were 8 versions of the experiment: 4 featuring static facial 

stimuli and 4 featuring dynamic facial stimuli. 

6.2.1.4 Procedure  

 The participants received identical instructions to the participants in Experiment 2a. 

They were not informed that trials consisted entirely of distractor stimuli and that the same 

identity target would never be present at test.  

6.2.2 Results 

 Matching performance was analysed using the same method as Experiment 2a. 

However, because there were only two factors (facial stimulus type and order), three nested 

models were compared, all fitted using restricted maximum likelihood, and with response: 

position 1 (0 or 1) as the dependent variable. The first model included a single intercept; the 

second included the main effects of each factor (order, facial stimulus type), and the third 

added the two-way interaction.  

Table 6.1 shows the profile likelihood chi-square statistic (G2) and p value associated 

with dropping each effect in turn from the appropriate model. Coefficients and standard 

errors (on a log odds scale) for each effect in the full two-way interaction model are also 

reported in Table 6.1. In Experiment 2a, variability for the first stimulus in each trial (the 

voice in the A-V condition, and the face in the V-A condition) was modelled separately from 

the foil stimulus because same identity faces and voices were highly correlated. However, in 

Experiment 3a, each trial featured stimuli from 3 different identities, so random effects for 
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each stimulus (1, 2 and 3) were all modelled separately. In the two-way model, the estimate 

of SD of the first stimulus random effect was 0.458, for the second stimulus it was 0.357, and 

for the third stimulus it was 0.303. The estimated SD for the participant effect was less than 

0.001. A similar pattern held for the null model.  

Table 6.1 

Parameter estimates (b) and profile likelihood tests for the 2x2 factorial analysis, Experiment 

3a: Position bias and the 2AFC matching task: Sequential face-voice presentation 

Source df b SE G2 p 

Intercept 1 0.125 0.257 . . 
Order 1 0.250 0.291 0.18 .669 

Facial stimulus type  1 0.262 0.271 0.26 .609 
Order x Facial stimulus type 1 0.323 0.382 0.69 .407 

 There were no main effects and no interactions (p > .407).  

 

Figure 6.1: Position 1 responses on V-A (panel A) and A-V (panel B) trials for sequentially 

presented faces and voices in a 2AFC matching task. Error bars show 95% CI for the 

condition means 
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Figure 6.1 shows the means and 95% confidence intervals for the percentage of 

‘position 1’ responses in each condition. Overall, the stimulus in position 1 was not selected 

significantly above chance level, M = 57.38%, 95% CI [48.12, 66.23].  

6.2.3 Discussion 

Although the stimulus in position 1 was not selected significantly above chance level, 

descriptively speaking the mean response favours position 1 in each of the 4 conditions. The 

descriptive statistics correspond with the pattern of results observed in Experiment 2a, 

suggesting that regardless of whether the same identity stimulus is present at test, on balance 

the stimulus in position 1 is slightly more likely to be selected. Also in keeping with the 

results of Experiment 2a, there was no effect of facial stimulus type. 

6.3 Experiment 3b: Position bias and the 2AFC matching task: Simultaneous face-voice 

presentation 

Experiment 3b compared position biases in static and dynamic face-voice matching 

using the same procedure as Experiment 2b, in which face-voice combinations were 

presented simultaneously. This experiment tested whether a position bias operates when the 

same identity target stimulus is absent at test. Based on the results of Experiment 2b, we 

anticipated that the alternative in position 1 would be selected more often than the alternative 

in position 2. However, owing to the results of Experiment 3a, it was unclear whether the 

imbalance would reach significance.  

6.3.1 Methods 

 The methods for Experiment 3b were identical to Experiment 3a, apart from the 

following exceptions: 

6.3.1.1 Participants  
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There were 6 male and 34 female participants (N=40), with an age range of 18 to 48 

years (M = 21.98, SD = 6.94). None of the participants had taken part in previous 

experiments.  

6.3.1.2 Apparatus and materials 

 Each of the 8 versions of the experiment was identical to Experiment 2b, apart from 

the fact that the re-randomised stimuli featured in Experiment 3a were used to construct trials 

featuring stimuli from 3 different identities.  

6.3.2 Results  

 Matching performance was analysed using the same method as Experiment 3a. Table 

6.2 shows the profile likelihood chi-square statistic (G2) and p value associated with dropping 

each effect in turn from the appropriate model. Coefficients and standard errors (on a log 

odds scale) for each effect in the full two-way interaction model are also reported in Table 

6.2. In the two-way model, the estimate of SD of the first stimulus random effect was 0.001, 

for the second stimulus it was 0.303, and for the third stimulus it was 0.303. The estimated 

SD for the participant effect was less than 0.001. A similar pattern was observed in the null 

model. 
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Table 6.2 

Parameter estimates (b) and profile likelihood tests for the 2x2 factorial analysis, Experiment 

3b: Position bias and the 2AFC matching procedure: Simultaneous face-voice presentation 

Source df b SE G2 p 

Intercept 1 0.250 0.219 . . 
Order 1 0.105 0.274 0.18 .674 

Facial stimulus type  1 0.035 0.262 0.08 .779 
Order x Facial stimulus type 1 0.035 0.370 0.01 .926 

 There were no main effects and no interactions (p > .674). Figure 6.2 shows the 

means and 95% confidence intervals for the percentage of responses selecting the stimulus in 

position 1 in each condition. Overall, the stimulus in position 1 was not selected significantly 

above chance level, M = 55.56%, 95% CI [48.66, 62.28]. 

 

Figure 6.2: ‘Position 1’ responses on V-A (panel A) and A-V (panel B) trials for sequentially 

presented faces and voices in a 2AFC matching task. Error bars show 95% CI for the 

condition means 
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6.3.3 Discussion 

Experiment 3b shows the same pattern of results as Experiment 3a, with the mean 

response favouring position 1 in each of the 4 conditions. Despite the face-voice combination 

in position 1 not being selected significantly above chance level, the descriptive statistics 

correspond with the results of Experiment 2b, which pointed to the existence of a bias to 

respond position 1 across all conditions. As in Experiments 2a and 2b, the same pattern of 

responses is observed when face-voice combinations are presented sequentially (Experiment 

3a) or simultaneously (Experiment 3b). This suggests that any bias should not be attributed to 

higher memory load during sequential presentation. In Experiments 2a and 3a the participants 

had to hold the first stimulus in mind across the two alternatives, whereas when the stimuli 

are presented simultaneously they do not have to refer to a stored mental representation in 

order to consider a face-voice combination. Once again, the distribution of position 1 and 

position 2 responses is consistent across static and dynamic facial stimulus trials.  

6.4 General Discussion 

In line with hypotheses based on the findings reported in Experiments 2a and 2b, the 

distribution of position 1 and position 2 responses in every condition across Experiments 3a 

and 3b indicates that a temporal position bias operates in 2AFC face-voice matching tasks 

when the target is not present. This finding is not consistent with the position bias being 

attributable to differing sensitivity across positions (Yeshurun et al., 2008). Rather, the effect 

appears to reflect decision bias under uncertainty (García-Pérez & Alcalá-Quintana, 2010). 

As expected, this bias does not vary according to whether the facial stimuli are static or 

dynamic.  

The position bias detected in both Experiment 3a and 3b must be interpreted with 

care. The magnitude of this bias should not be overstated, as it is not statistically above 
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chance level. That said, across two experiments, the mean response in all 8 conditions was 

consistently above 50%. Although the mean response selecting the option in position 1 was 

always less than 60% (10% above chance), it is useful to refer back to the results presented in 

Figures 5.2 and 5.4. The strength of the position biases across Experiments 2a, 2b, 3a and 3b 

are comparable. Indeed, a reduction in accuracy in Experiments 2a and 2b of less than 10% 

when the target was in position 1 (with an accompanying 10% increase in accuracy when the 

target was in position 2) would, in the majority of conditions, be sufficient to flatten out the 

pattern of results and make the position bias disappear. Evidence from Experiments 2a and 2b 

therefore suggests that a bias of similar strength to that observed in Experiments 3a and 3b 

translates into a significant difference in accuracy when the target appears in position 1 

compared to position 2. Therefore, it is sensible to interpret the results presented in this 

chapter as reflecting a small, albeit non-significant, temporal position bias. This offers further 

corroborating evidence that 2AFC procedures may not be altogether appropriate for 

investigating face-voice matching.  

The position bias might favour the alternative in position 1 because faces and voices 

are most commonly encountered close together in time during social interactions. It makes 

intuitive sense that faces and voices encountered together would belong to the same person. 

This could be expressed as a bias for people to accept a face and voice presented in relative 

temporal proximity (Experiment 2a and 3a), or the first face-voice combination they 

encounter (Experiments 2b and 3b), as belonging to the same identity. However, the basis for 

this position bias is unclear (Yeshurun et al., 2008). As biases for selecting the alternative in 

position 1 have also been identified in a wide range of unrelated 2AFC tasks, the pattern of 

results reported here may merely be attributable to the nature of the 2AFC procedure, rather 

than being specific to face-voice matching (Dyjas et al., 2012).  
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In order to more appropriately test whether people exhibit a bias to accept a face and 

voice as belonging to the same person, it is necessary to employ a same-different procedure. 

Unlike 2AFC tasks, same-different procedures are designed to measure both detection 

sensitivity and response bias. This procedure is therefore more appropriate for investigating 

response bias in face-voice matching.  

6.4.1 Conclusion 

Taken together, the results of Experiments 2a, 2b, 3a and 3b support the need for 

caution when employing 2AFC procedures (Yeshurun et al., 2008), showing that this warning 

generalises to face-voice matching. The following chapter investigates face-voice matching 

using a same-different task. Use of this methodology provides an opportunity to explore 

whether there is converging evidence for static face-voice matching, and to examine possible 

response biases in more detail.  
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7. CHAPTER 7: MATCHING NOVEL FACE AND VOICE IDENTITY 

USING SAME-DIFFERENT PROCEDURES 

7.1 Introduction 

The results of Chapter 5 offer compelling evidence that a temporal interval bias 

operates in 2AFC face-voice matching procedures. At test, the alternative presented in 

position 1 is differentially favoured over the alternative presented in position 2. The 2AFC 

procedure does not represent an unbiased way of testing face-voice matching, contrary to 

assumptions based on the previous literature (Green & Swets, 1966; Macmillan & Creelman, 

2005; Thurstone 1927a, 1927b; Wickens, 2002). Chapter 6 showed that the position effect 

likely reflects decision bias under uncertainty (García-Pérez & Alcalá-Quintana, 2010). It is 

possible that people display a bias to accept a face and voice as belonging to the same person. 

In a 2AFC task in which alternatives are presented sequentially, this might manifest as an 

increased tendency to select the test alternative presented in position 1 because of its temporal 

proximity to the other-modality stimulus. One way to test the existence of a response bias is 

to use a same-different procedure, in which the participants are shown two stimuli and have 

to decide whether they are the same or different. This has not been previously undertaken; 

other face-voice matching studies (Kamachi et al., 2003; Krauss et al. 2002; Lachs & Pisoni, 

2004a, 2004b; Lander et al., 2007; Mavica & Barenholtz, 2013) have all employed versions 

of the 2AFC matching procedure. 

Although dynamic face-voice matching was consistently above chance in all three 

2AFC experiments reported in Chapter 5, static face-voice matching was only above chance 

when test alternatives were presented simultaneously (Experiment 2c). The results were 

interpreted as providing evidence that accurate static face-voice matching is possible, 

although it is sensitive to the type of experimental procedure employed. So far static face-
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voice matching has only been above chance level in one experiment. It is necessary to run 

further tests of static face-voice matching in order to strengthen the conclusion that this 

finding is statistically robust.  

7.1.1 Aim 

In Chapter 7, static and dynamic face-voice matching was explored using a sequential 

(Experiment 4a) and simultaneous (Experiment 4b) same-different procedure. The intention 

was to provide a further test of whether static faces and voices offer concordant information. 

Using a same-different matching procedure for the first time, the experiments presented in 

this chapter test how response biases operate in face-voice matching.  

7.2 Experiment 4a: Sequential face-voice presentation in a same-different matching task 

As static faces and voices provide concordant information (Experiment 1), and static 

face-voice matching has been shown to be possible when the temporal element of comparing 

alternatives is removed (Experiment 2c), overall static face-voice matching accuracy was 

expected to be above chance level when tested using a sequential same-different procedure. 

Based on evidence from 2AFC tasks (Experiments 2a, 2b, 3a and 3b), which suggests that 

people accept the first face-voice identity combination they are presented with, employing a 

same-different task was expected to reveal the presence of a response bias, reflecting an 

overall tendency to accept a face and voice as belonging to the same person.3 

7.2.1 Methods 

7.2.1.1 Design 

                                                
3 The data from Experiment 4a have been published (Smith, Dunn, Baguley & Stacey, 2016a) 
(see Appendix D) 
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Experiment 4a employed a 2 x 2 x 2 mixed factorial design. In the matching accuracy 

analysis, the between subjects factor was facial stimulus type (static or dynamic). The within 

subjects factors were identity (same or different) and order (visual to auditory (V-A) or 

auditory to visual (A-V)). The dependent variable was matching accuracy.  

The matching response analysis employed the same 2 x 2 x 2 mixed factorial design, 

but the dependent variable was a same identity response.  

7.2.1.2. Participants 

 There were 40 male and 40 female adult participants (N=80) with an age range of 18 

to 66 years (M = 25.44, SD = 8.36). Participants were recruited by convenience sampling and 

from the Nottingham Trent University Psychology Division’s Research Participation Scheme. 

In accordance with this scheme, students received research credits in exchange for 

participation. All participants reported having normal or corrected vision and hearing. None 

had taken part in previous experiments.  

7.2.1.3 Apparatus and materials 

Experiment 4a used identical apparatus to that of previous experiments. Four different 

versions of the experiment were created so that same identity and different identity face-voice 

combinations could be constructed using different stimulus people. For each of the versions, 

stimuli were randomly selected to be used either for one of the 8 same identity or 8 different 

identity trials. None of the 18 faces or voices in the stimulus set appeared more than once in 

each version of the experiment. The stimuli that remained following randomisation were used 

for the practice trials. The combination of stimuli in each of the 4 versions was repeated for 

static and dynamic conditions, making a total of 8 versions. 

7.2.1.4 Procedure 
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The participants were randomly allocated to one of the 8 versions of the experiment 

using an online research randomiser (Urbaniak & Plous, 2013). In the dynamic facial 

stimulus condition the participants were accurately informed that the face in the muted video 

and the voice in the recording were not saying the same thing. This was to prevent them using 

speech-reading to match the face and voice (Kamachi et al., 2003).  

The participants completed 2 counterbalanced experimental blocks, each consisting of 

a practice trial, followed by 8 randomly ordered experimental trials. As illustrated in Figure 

7.1, in one block the participants saw the face first (V-A), and in the other they heard the 

voice first (A-V). In each trial, there was a 1 second gap between presentation of the face and 

voice stimuli. When the face was visible the text ‘Face’ appeared below the face, and while 

the voice recording was being played the text ‘Voice’ was visible in the middle of the screen. 

At test, participants pressed 1 on the laptop keyboard if they thought the face and voice were 

from the same identity, and 0 if they thought they were from different identities. 

 

Figure 7.1: An illustration of the procedure used in Experiment 4a 



 

 
106 

7.2.2 Results  

The traditional approach to signal detection involves partitioning same-different data 

into hits, false alarms, misses and correct rejections. For each participant, an aggregate 

measure of accuracy would be calculated, and statistics performed on these values. The 

problems associated with performing analyses on aggregate data are summarised in Chapter 3, 

and are particularly salient here because of the high level of variability associated with face 

and voice stimuli (Burton, 2013; Mathias & von Kriegstein, 2014; Mullenix & Pisoni, 1990; 

Valentine et al., 2015). The multilevel modelling analyses of previous experiments 

(Experiment 2a, 2b, 2c, 3a and 3b) show that stimulus variability is an important factor in 

face-voice matching. Therefore, the traditional approach to signal detection is not appropriate 

for the current set of data (Wright, Horry & Skagerberg, 2009).  

Our analysis of the matching accuracy data is undertaken using multilevel modelling. 

It uses the hit rate as a measure of sensitivity and the true negative rate as a measure of 

specificity, rather than adopting the more common definitions of these terms (see section 

2.6.4). Observed accuracy across same identity and different identity trials is compared 

against chance level performance (50%) in order to separate the signal from the noise. To 

measure response bias, same identity responses across all trials are compared against chance 

level. 

7.2.2.1 Matching accuracy  

As in previous chapters, matching performance was analysed using multilevel logistic 

regression (lme4 v. 1.06, Bates et al., 2014). Four nested models with matching accuracy (0 

or 1) as the dependent variable were compared. All models were fitted using restricted 

maximum likelihood. The first model included a single intercept, and was later used to obtain 

confidence intervals for the overall accuracy. The second model also included the main 
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effects of each factor (identity, order and stimulus type). The third model added all two-way 

interactions and the final model added the three-way interaction. 

Table 7.1 shows the profile likelihood chi-square statistic (G2) and p value associated 

with dropping each effect from the appropriate model. Table 7.1 also reports the coefficients 

and standard errors (on a log odds scale) for each effect in the full three-way interaction 

model. In the three-way model the estimate of SD of the face random effect was 0.353 while 

for voice it was 0.207. The estimated SD for the participant effect was less than 0.0001. A 

similar pattern held for the null model.  

Table 7.1 

Parameter estimates (b) and profile likelihood tests for the 2x2x2 factorial analysis of 

accuracy in Experiment 4a: Sequential face-voice presentation in a same-different matching 

task 

Source df b SE G2 p 

Intercept 1 -0.445 0.196 . . 

Identity 1 1.382 0.254 57.84 < .001 
Order 1 0.509 0.241 2.28 .131 

Facial stimulus type  1 0.133 0.231 0.13 .717 
Identity x Order 1 0.601 0.358 4.20 .040 

Identity x Facial stimulus type 1 0.165 0.339 0.32 .572 
Order x Facial stimulus type 1 0.052 0.324 0.01 .916 

Identity x Order x Facial stimulus 
type 

1 0.058 0.474 0.01 .903 

 Only the main effect of identity (p < .001) and the two-way interaction of identity and 

order (p = .040) were statistically significant. To aid interpretation of these effects, the means 

and confidence intervals were calculated for the percentage accuracy of the 8 conditions in 

the factorial design. These confidence intervals were obtained through simulations of the 
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posterior distributions of the cell means using arm package version 1.6 in R (Gelman & Su, 

2013). The means and the associated 95% confidence intervals are shown in Figure 7.2. 

 

Figure 7.2: Face-voice matching accuracy on V-A (panel A) and A-V (panel B) trials for 

sequentially presented faces and voices using a same-different matching task. Error bars 

show 95% CI for the condition means 

From Figure 7.2 it is clear that overall matching accuracy was significantly above 

chance (50%) level, M = 59.7 %, 95% CI [51.9, 66.9]. Static face-voice matching was above 

chance, M = 59.19%, 95% CI [50.94, 66.84], as was dynamic face-voice matching, M = 

60.12%, 95% CI [51.97, 67.74]. Whilst performance on A-V trials was also above chance 

level, M = 62.78%, 95% CI [54.89, 70.03], performance on V-A trials was not, M = 56.45%, 

95% CI [48.47, 64.11]. Figure 7.2 reveals the main effect of identity, with the hit rate (same 

identity trials) consistently higher than the true negative rate (different identity trials), and the 

former but not the latter consistently above chance. It also reveals the basis of the identity by 

order interaction. The results from the V-A trials are shown in panel A. The results from the 
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A-V trials are shown in panel B. Using visual analysis to guide an interpretation, it appears 

that the hit rate did not differ across conditions, but the true negative rate was higher in the A-

V condition.  

7.2.2.2 Matching response 

Overall, faces and voices were accepted as belonging to the same person above 

chance level, M = 61.75%, 95% CI [54.99, 68.06]. This was the case in both the V-A 

condition, M = 64.53%, 95% CI [57.52, 71.08], and the A-V condition, M = 58.66,% 95% CI 

[51.38, 65.62].  

7.2.3 Discussion  

The results of the matching accuracy analysis replicate the findings of Experiment 2c, 

offering further evidence that static faces and voices offer sufficient concordant information 

that they can be matched above chance level. As in previous experiments, there was no 

significant difference between static and dynamic face-voice matching performance. Also in 

keeping with previous results (Experiments 2a and 2b), the hit rate (sensitivity) does not 

differ according to the order of stimulus presentation. 

On different identity trials, the participants performed at chance level (A-V trials), or 

below chance level (V-A trials), and were significantly less accurate than on same identity 

trials; the hit rate was higher than the true negative rate. This points to the existence of a 

response bias. Using a same-different procedure, Experiment 6a shows for the first time how 

response biases manifest in face-voice matching. Analyses detected the existence of a bias to 

accept a face and voice as belonging to the same person, with overall same identity responses 

occurring above chance level. This reflects liberal response criterion placement.  
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Although same identity responses occurred above-chance level in both order 

conditions, the interaction between identity and order reveals that the bias to accept a face 

and voice as belonging to the same person was more pronounced in the V-A condition, when 

the face was presented before the voice. Therefore, the results suggest that the response bias 

differs according to stimulus presentation order in face-voice matching tasks. As faces are 

stronger cues to identity than voices (Damjanovic & Hanley 2007; Hanley & Turner 2000; 

Stevenage et al., 2011, 2012 2013; Stevenage & Neil, 2014; Stevenage, Neil & Hamlin, 

2014b), it is possible that the voice in the V-A condition is swept up with the identity of the 

face, thereby increasing the likelihood that it will be accepted as belonging to the same 

identity as the face. Consistent with this explanation, the asymmetry observed in Experiment 

4a corresponds with audiovisual integration studies, in which tolerance for stimulus offset is 

greater when the voice occurs after the face (Munhall, Gribble, Sacco & Ward, 1996; 

Robertson & Schweinberger, 2010; Van Wassenhove, Grant & Poeppel, 2007).  

7.3 Experiment 4b: Simultaneous face-voice presentation in a same-different matching 

task 

Although accuracy rates in 2AFC tasks operate similarly regardless of whether face-

voice options are presented sequentially (Experiment 2a) or simultaneously (Experiment 2b), 

in order to test how response bias operates, Experiment 4b investigated face-voice matching 

using a simultaneous same-different procedure. Faces and voices were presented at the same 

time. Studies investigating audiovisual integration have shown that events are more likely to 

be perceived as emanating from the same source when they are presented simultaneously 

(Howard & Templeton, 1966). This effect is also observed for synchronous visual and 

auditory speech; integration occurs at lags of up to 300ms (Munhall et al., 1996; Robertson & 

Schweinberger, 2010; Van Wassenhove et al., 2007).  
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7.3.1 Methods 

Experiment 4b used the same methods as Experiment 4a. Any exceptions are outlined 

below.  

7.3.1.1 Design 

 Experiment 4b employed a 2 x 2 mixed factorial design. For the matching accuracy 

analysis, the between subjects factor was facial stimulus type (static or dynamic), and the 

within subjects factor was identity (same or different). The dependent variable was matching 

accuracy. 

The matching response analysis employed the same 2 x 2 mixed factorial design, but 

the dependent variable was a same identity response.  

7.3.1.2 Participants  

There were 12 male and 36 female participants (N = 48), with an age range of 18 – 44 

years (M = 21.94, SD = 5.54).  

7.3.1.3 Procedure 

The procedure used in Experiment 4b is illustrated in Figure 7.3. Participants saw a 

face and heard a recording of a voice presented at the same time. The face-voice combination 

was presented for 2 seconds. Participants pressed 1 on the laptop keyboard if they thought the 

face and voice belonged to the same identity, and 0 if they thought they were from different 

identities. 
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Figure 7.3: An illustration of the procedure used in Experiment 4b 

7.3.2 Results 

7.3.2.1 Matching accuracy 

Matching accuracy was analysed using the same method as Experiment 4a. As there 

were only 2 factors, 3 nested models were compared, with accuracy (0 or 1) as the dependent 

variable. The first model included a single intercept, the second model included the main 

effects of each factor (identity and facial stimulus type), while the third model added the two-

way interactions. 

The profile likelihood chi-square statistic (G2) and p value associated with dropping 

each effect from the appropriate model are shown in Table 7.2. Coefficients and standard 

errors (on a log odds scale) for each effect in the full two-way interaction model are also 

reported in this table. In the two-way model the estimate of SD of the face random effect was 

0.399 while for voice it was 0.245. The estimated SD for the participant effect was less than 

0.001. A similar pattern held for the null model.  
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Table 7.2 

Parameter estimates (b) and profile likelihood tests for the 2x2 factorial analysis, Experiment 

4b: Simultaneous face-voice presentation in a same-different matching task 

Source df b SE G2 p 

Intercept 1 0.146 0.189 . . 
Identity 1 1.220 0.234 26.62 <.001 

Facial stimuli type  1 0.195 0.207 0.27 .601 
Identity x Facial stimulus type 1 0.599 0.307 3.75 .053 

 Only the main effect of identity was significant (p < .001). Figure 7.4 shows the 

means and 95% confidence intervals for percentage accuracy in each condition of the 

factorial design. 

 

Figure 7.4: Face-voice matching accuracy for simultaneously presented faces and voices 

using a same-different matching task. Error bars show 95% CI for the condition means 

Static, M = 61.33%, 95% CI [51.96, 69.83], and dynamic, M = 59.39%, 95% CI 

[50.13, 68.04] face-voice matching were both significantly above chance level. Figure 7.4 
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reveals the main effect of identity. The hit rate (same identity trials) was consistently higher 

than the true negative rate (different identity trials).  

7.3.2.2 Matching response 

Overall, faces and voices were attributed to the same identity above chance level, M = 

61.20%, 95% CI [52.63, 69.22].  

7.3.3 Discussion  

The results of the matching accuracy analysis correspond to the results of Experiment 

4a. Voices and static faces, as well as voices and dynamic faces, were accurately matched 

above chance level. The results indicate that simultaneously presenting face and voice stimuli 

does not make incongruent matches more obvious, as the true negative rate remained at 

chance level. In Experiment 4b, the pattern of accuracy according to identity was similar to 

that observed in Experiment 4a. Even when faces and voices are presented simultaneously, 

hit rates (same identity trials) are significantly higher than the true negative rate (different 

identity trials). As in Experiment 4a, there was an overall bias to assign faces and voices to 

the same identity.  

7.4 General discussion 

Experiments 4a and 4b used a same-different procedure, replicating the results of 

Experiment 2c to show that static face-voice matching is possible, both when faces and 

voices are presented sequentially and when they are presented simultaneously. The same-

different procedure showed that people demonstrate a bias to assign faces and voices to the 

same identity in face-voice matching tasks. This bias is more pronounced when the face is 

presented before the voice (V-A condition). These are the first experiments to ever analyse 

response bias in face-voice matching.  
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7.4.1 Matching accuracy 

Overall, the results of Experiments 4a and 4b detected accuracy levels significantly 

above chance level. The findings are consistent with previous findings (Krauss et al., 2002; 

Mavica & Barenholtz, 2013), and the conclusion of Chapter 5. People can use redundant 

information to match voices and dynamic faces, as well as voices and static faces, for 

identity. As in previous experiments, there was no difference between static and dynamic 

facial stimulus trials, further weakening the conclusion of audiovisual speech perception 

studies that accurate face-voice matching is wholly dependent on encoding visual articulatory 

movement (Kamachi et al., 2003; Lachs & Pisoni, 2004a). 

Both the overall pattern of results and the observed accuracy rates were very similar 

across Experiments 4a and 4b. The results therefore replicate those of Experiments 2a and 2b, 

showing that accuracy does not differ according to whether the face-voice combination is 

presented sequentially or simultaneously. Limiting memory load by presenting faces and 

voices simultaneously does not appear to affect the hit rate on same identity face-voice 

matching trials, nor does simultaneous presentation increase the true negative rate on 

different identity trials by making incongruent identities more obvious.  

Consistent with the results of the multilevel modelling analyses presented in Chapter 

5, the pattern of variance associated with participants and stimuli in Experiments 4a and 4b 

further highlights that people vary in the extent to which they look and sound similar. These 

results offer further support to the conclusion that accurate face-voice matching is likely to be 

highly dependent on the particular stimulus set used. 

7.4.2 Matching response 
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In both Experiments 4a and 4b there was a main effect of identity. The hit rate was 

higher than the true negative rate, showing that it is easier to accurately accept a face-voice 

match than to reject a mismatch. Whilst hit rates were consistently above chance level, the 

true negative rate indicated that participants were guessing on different identity trials. Owing 

to the exclusive adoption of 2AFC procedures, previous face-voice matching studies have not 

measured whether people have a bias to accept a face and voice presented in relative 

temporal proximity as sharing a common source identity (Kamachi et al., 2003; Krauss et al., 

2002; Lachs & Pisoni, 2004a, 2004b; Lander et al., 2007; Mavica & Barenholtz, 2013). 

Experiments 4a and 4b showed for the first time that when matching novel face and voice 

identity, people do exhibit such a bias. This likely helps to explain the effect of identity 

present in both experiments; such a bias would particularly undermine accuracy on different 

identity trials when responding same is an incorrect response. In neither Experiment 4a nor 

Experiment 4b did the response bias differ according to facial stimulus type. Specificity was 

the same, regardless of whether the faces were static or dynamic. 

7.4.2.1 Sequential vs. simultaneous face-voice presentation 

In terms of overall same identity responses, the means and 95% CIs were very similar 

in both Experiment 4a and 4b. Despite previous audiovisual integration literature suggesting 

that common source attributions are more likely when stimuli are presented synchronously 

(Howard & Templeton, 1966) or with a small temporal offset (Munhall et al., 1996; 

Robertson & Schweinberger, 2010; Van Wassenhove et al., 2007), there was no evidence of a 

stronger bias to respond same identity when the face and voice were presented 

simultaneously in Experiment 4b. The lack of difference between simultaneous and 

sequential presentation in terms of response bias may be explained by the fact that the 

dynamic faces and voices in this study were not saying the same sentence. On the basis of 

results showing that voice recognition is compromised by the presentation of time-
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synchronised articulating faces of a different identity, but not static faces of a different 

identity, Schweinberger et al. (2007) argued that integration does not occur for static faces 

and voices. Taken together with the results of other audiovisual integration literature, this 

would suggest that speech synchrony, even if slightly offset, is a key component in 

explaining integration. In a situation when the face and voice say different sentences, there is 

no speech synchrony. This should not be taken as a dismissal of explanations based on 

integration, as the task adopted by Schweinberger et al. (2007) involves an indirect measure 

of whether people integrate the identity of faces and voices. Overall it seems that a general 

bias to accept a face and voice as belonging to the same person, as observed in this set of two 

experiments, regardless of whether the face is dynamic or static, may provide at the very least 

a useful foundation for audiovisual integration, thereby helping to facilitate social 

communication.  

7.4.2.2 Order of stimulus presentation 

 In keeping with the results of Chapter 5, as well as previous face-voice matching 

studies using 2AFC paradigms (Kamachi et al. 2003; Lachs & Pisoni 2004a, 2004b; Lander 

et al., 2007), Experiment 4a found no difference between V-A and A-V performance in terms 

of sensitivity. However, the interaction between identity and order observed in Experiment 4a 

showed that response bias varies according to stimulus order. Specificity was higher in the A-

V condition, showing that participants exhibited a more liberal response criterion in trials 

when the face was presented before the voice (V-A condition). A performance asymmetry 

according to stimulus order is consistent with previous literature highlighting differences in 

the way these two stimuli are processed. There is no reason to assume that performance on V-

A and A-V face-voice matching trials should be identical. Given that voices carry more 

speech information than faces (Lachs & Pisoni, 2004a), and faces carry more reliable identity 

information than voices (e.g. Damjanovic & Hanley 2007; Hanley & Turner 2000; Stevenage 
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et al., 2011, 2012 2013; Stevenage & Neil, 2014; Stevenage et al., 2014b), this may influence 

criterion placement when a decision is being made about common source identity. If the face 

is presented first, the voice may be automatically encompassed by the identity of the 

preceding face, and processed primarily for speech information, rather than being 

interrogated for identity information.  

The nature of the response bias asymmetry observed here is consistent with patterns 

of results from audiovisual integration studies. Face-voice integration occurs from an 

auditory lead of up to around 100ms, and an auditory lag of around 300ms (Munhall et al., 

1996; Robertson & Schweinberger, 2010; Van Wassenhove et al., 2007). The results 

presented in this chapter hint at the existence of parallel biases in face-voice matching and 

audiovisual face-voice integration, such that there is a greater tendency to accept a face and 

voice as belonging to the same person when there is an auditory lag (V-A condition) 

compared to when there is a visual lag as in the A-V condition. This supports the argument 

that the general bias to accept a face and voice as belonging to the same person is useful in 

supporting audiovisual integration.  

7.4.3 Conclusion 

The set of results presented in this chapter build on those presented in Chapter 5. 

Taken together, the results justify adopting the working conclusion that static face-voice 

matching is possible. By modelling response bias, the adoption of same-different procedures 

has detected the existence of a general bias to accept a face and voice as sharing common 

source identity, as well as more liberal response criterion placement on V-A trials.  
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8. CHAPTER 8: THE EFFECT OF INCREASING THE INTER-

STIMULUS INTERVAL ON FACE-VOICE MATCHING 

PERFORMANCE 

8.1 Introduction 

The procedures adopted in all the experiments reported so far in this thesis, as well as 

in the previous literature (Kamachi et al., 2003; Krauss et al., 2002; Lachs, 1999; Lachs & 

Pisoni, 2004a, 2004b; Lander et al., 2007; Mavica & Barenholtz, 2013), have presented faces 

and voices close together in time, with a maximum 1 second gap between each stimulus in 

matching tasks. In previous chapters, the results show that both dynamic faces and voices, as 

well as static faces and voices, offer concordant information (Chapter 4), that it is possible to 

accurately match (static and dynamic) faces and voices for identity (Chapters 5 and 7), and 

that participants exhibit a bias to respond that novel faces and voices belong to the same 

identity (Chapter 6 and 7). Chapter 8 addresses whether a similar pattern of results holds 

when faces and voices are temporally offset to a greater extent (> 1 second).  

Chapter 5, 6 and 7 suggest that reducing the memory load by using a simultaneous 

rather than sequential procedure does not affect the overall pattern of responses (Chapter 6), 

the hit rate (Chapter 5 and 7), or the true negative rate (Chapter 7). This could be taken to 

indicate that reducing the memory load does not influence face-voice matching performance. 

However, a maximum 1 second interval between sequentially presented faces and voices 

means that the results do not reflect how matching performance may operate in everyday 

social situations, when faces and voices might be offset by greater time intervals. 

Precise representations of both visual and auditory information degrade quickly, so it 

is possible that increasing the inter-stimulus interval beyond 1 second will affect overall face-
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voice matching accuracy. Iconic memory, the brief storage of highly detailed visual 

information, typically lasts for a few hundred milliseconds (Coltheart, 1980; Neisser, 1967; 

Sperling, 1960). It may last longer though; recent evidence has been put forward for the 

existence of an intermediate, high capacity visual store persisting for up to 4 seconds with the 

help of afterimages (Sligte, Scholte & Lamme, 2008, 2009). Visual information is then 

transferred to the limited capacity visual short-term memory (VSTM) system where it is 

stored temporarily for anything up to 30 seconds (Blake, Cepeda & Hiris, 1997; Magnussen, 

Idås & Myhre, 1998; Pasternak & Greenlee, 2005). The time-course of the degradation of 

auditory stimuli is slightly different from that of visual stimuli. Echoic memory, the auditory 

equivalent of iconic memory, persists for longer (Crowder & Morton, 1969; Penney, 1985), 

up to a period of about 5 seconds (Glanzer & Cunitz, 1966; Lu, Williamson & Kaufman, 

1992; Treisman, 1964; Wickelgren, 1969). Auditory information then follows the same 

sequence of storage as visual information, passing into the limited capacity auditory short-

term memory (ASTM) store (Baddeley, 2007).  

The short inter-stimulus intervals employed in previous studies (Kamachi et al., 2003; 

Krauss et al., 2002; Lachs & Pisoni, 2004a; Lander et al., 2007; Mavica & Barenholtz, 2013) 

is likely within the limits of both iconic and echoic memory, meaning that high quality 

representations of faces and voices can be compared to each other for source-identity 

information. The more precise mental representations of faces and voices are, the more 

accurate we might expect face-voice matching to be. A short inter-stimulus interval may 

facilitate comparisons between the stimuli, thereby supporting sensitivity.  

If the bias to respond same identity (Chapter 7) is temporally dependent, then 

increasing the inter-stimulus interval may also affect response bias. Certainly the nature of 

the bias observed in Chapters 5 and 6, which showed a temporal position effect in 2AFC 

tasks, does suggest that this might be the case. Participants exhibited a bias to accept a face 
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and voice presented in relative temporal proximity as sharing a common identity. The 

research relating to the beneficial effects of temporal contiguity in facilitating associations 

between events and stimuli support the hypothesis that attributions of common identity will 

be more likely when faces and voices are presented within a brief time-frame. For example, 

when two events are presented close together in time, attributions of causality are inferred; a 

2 second window appears to be the crucial time period (Reed, 1992; Shanks, Pearson & 

Dickinson, 1989), although the exact length of time is likely to depend on expectations 

associated with the specific stimuli (Buehner & May, 2003). The educational psychology 

literature has repeatedly demonstrated significant learning gains when temporal contiguity 

between information is increased (for a meta-analysis, see Ginns, 2006).  

Temporal contiguity is also relevant to face and voice processing (Stevenage et al., 

2014b). Audiovisual speech perception research suggests that face-voice speech integration 

occurs during a short temporal window (Munhall et al., 1996; Robertson & Schweinberger, 

2010; Van Wassenhove et al., 2007). There might be a corresponding temporal window of 

opportunity during which people exhibit a bias to attribute a novel face and voice to the same 

identity.  

 No differences between static and dynamic facial stimulus trials have been observed 

in previous experiments presented in this thesis. To date, no experiments have tested how 

short-term memory for static and dynamic faces might influence both sensitivity and 

specificity in face-voice matching. As there is evidence for better memory for dynamic 

compared to static facial stimuli (e.g. Knappmeyer et al., 2003; Lander & Chuang, 2005), it is 

possible that dynamic face-voice matching accuracy will persist better than static face-voice 

matching over longer inter-stimulus intervals.  

8.1.1 Aim  
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This chapter considers how face-voice matching performance is affected by 

increasing the inter-stimulus interval to 5 seconds (Experiment 5a and 5c) and 10 seconds 

(Experiment 5b and 5d). Previous results indicated that response biases are an important 

element of novel face-voice matching performance (Experiments 2a, 2b, 3a, 3b, 4a and 4b). 

Same-different tasks are the most appropriate procedure to employ here, because they 

measure this aspect of performance. Thus, a sequential same-different procedure is adopted in 

all experiments reported in Chapter 8. 

8.2 Experiment 5a: Face-voice matching using a sequential same-different task: 5 

second inter-stimulus interval 

 Experiment 5a tested static and dynamic face-voice matching using the same 

procedure as Experiment 4a, but with an inter-stimulus interval of 5 seconds. Previous studies 

have tested face-voice matching using short (<1 second) inter-stimulus intervals (Kamachi et 

al., 2003; Krauss et al., 2002; Lachs, 1999; Lachs & Pisoni, 2004a; Lander et al., 2007; 

Mavica & Barenholtz, 2013). An interval of 5 seconds is likely to be the absolute temporal 

limit of high-capacity sensory storage, the point at which auditory and visual information 

could reasonably be expected to have transferred to the lower capacity short-term memory 

store (Glanzer & Cunitz, 1966; Lu, et al., 1992; Sligte et al., 2008, 2009; Treisman, 1964; 

Wickelgren, 1969). If accurate face-voice matching relies on the ability to compare highly 

detailed mental representations of faces and voices, performance may be at chance level 

when there is an inter-stimulus interval of 5 seconds. If the bias to respond same identity only 

operates when faces and voices are presented within a short temporal window, it is possible 

that overall same identity responses will also be at chance level.  

8.2.1 Methods 
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 The methods were the same as those used in Experiment 4a. Any exceptions are 

outlined below.  

8.2.1.1 Participants 

  There were 48 participants (46 females and 2 males), with an age range of 18 to 35 

years (M = 19.73, SD = 3.39). They were recruited by convenience sampling and from the 

Nottingham Trent University Psychology Division’s Research Participation Scheme. 

Students received research credits in return for their participation. All of the participants 

reported having normal or corrected vision and hearing, and none of them had taken part in 

previous experiments.  

8.2.1.2 Apparatus and Materials 

In all previous experiments, the participants listened to voices binaurally through 

Apple EarPods. In Experiment 5a, and in all future experiments, voices were presented 

binaurally through Sennheiser (HD 205) headphones. The decision to change was due to 

apparatus availability, and is unlikely to affect comparisons across experiments because both 

the Apple EarPods and Sennheiser (HD205) headphones have a frequency response 

exceeding the range of human hearing. The main advantage of the Sennheiser (HD205) 

headphones relates to the superior suppression of external and ambient noise. This is 

particularly important for the present experiment, which features a silent 5-second interval 

between the face and voice. 

8.2.1.3 Procedure 

 The procedure is illustrated in Figure 8.1.  
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Figure 8.1: An illustration of the procedure used in Experiment 5a 

8.2.2 Results  

8.2.2.1 Matching accuracy 

Matching accuracy was analysed using the same methods as Experiment 4a. Table 8.1 

shows the profile likelihood chi-square statistic (G2) and p value associated with dropping 

each effect from the appropriate model. Table 8.1 also reports the coefficients and standard 

errors (on a log odds scale) for each effect in the full three-way interaction model. In the 

three-way model the estimate of SD of the face random effect was 0.453 while for voice 

stimulus it was 0.161. The estimated SD for the participant effect was less than 0.001. A 

similar pattern held for the null model.  
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Table 8.1 

Parameter estimates (b) and profile likelihood tests for the 2x2x2 factorial analysis, 

Experiment 5a: Face-voice matching using a sequential same-different task: 5 second inter-

stimulus interval 

Source df b SE G2 p 

Intercept 1 0.301 0.247 . . 
Identity 1 1.284 0.331 16.48 <.001 

Order 1 0.472 0.310 0.69 .406 
Facial stimulus type  1 0.048 0.298 3.32 .069 

Identity x Order 1 1.116  0.461 13.00 <.001 
Identity x Facial stimulus type 1 0.145 0.443 <0.01 .979 

Order x Facial stimulus type 1 0.459 0.427 1.15 .284 
Identity x Order x Facial stimulus 

type 
1 0.268 0.620 0.19 .665 

 There was a main effect of identity (p < .001). The interaction between identity and 

order was significant (p < .001). The cell means and 95% confidence intervals for matching 

accuracy are shown in Figure 8.2.  

 

Figure 8.2: Face-voice matching accuracy on V-A (panel A) and A-V (panel B) trials with a 

5-second inter-stimulus interval. Error bars show 95% CI for the condition means 
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Overall accuracy was above chance level, M = 61.42%, 95% CI [53.02, 69.25]. 

Performance was above chance level for dynamic facial stimulus trials, M = 64.70%, 95% CI 

[55.57, 72.89], but not for static facial stimulus trials, M = 58.11%, 95% CI [48.79, 66.85]. In 

terms of stimulus order, although matching accuracy was above chance level for V-A trials, 

M = 63.58%, 95% CI [54.29, 71.84], it was not for A-V trials, M = 59.15%, 95% CI [49.83, 

67.85]. The hit rate (same identity trials) was consistently above chance level, M = 69.00%, 

95% CI [61.74, 75.35], but the true negative rate (different identity trials) was not, M = 

51.79%, 95% CI [44.02, 59.52]. As illustrated in Figure 8.2, the main effect of identity 

reveals that the hit rate was reliably higher than the true negative rate. Based on visual 

inspection, it seems that the interaction between identity and order reflects the true negative 

rate being higher in the A-V condition (panel B) than in the V-A condition (panel A). 

8.2.2.2 Matching response 

Overall, same identity responses were not made significantly above chance level, M = 

59.10%, 95% CI [48.85, 68.62]. Faces and voices were attributed to the same identity above 

chance level in V-A trials, M = 62.98%, 95% CI [52.08, 72.79], but not in A-V trials, M = 

55.18%, 95% CI [44.09, 65.98].  

8.2.3 Discussion 

The results of the matching accuracy analysis show that when faces and voices are 

separated by an inter-stimulus interval of 5 seconds, overall it is still possible to match the 

two for identity. However, matching accuracy on A-V trials, as well as static facial stimulus 

trials, was at chance level. Performance in both of these conditions was above chance level in 

Experiment 4a when the inter-stimulus interval only lasted for 1 second.  
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Overall, there was not a bias to accept a face and voice as belonging to the same 

person when the stimuli were separated by 5 seconds. Same identity matching responses were 

not made above chance level. This finding supports the hypothesis that biases in face-voice 

matching are influenced by the degree of temporal contiguity (Buehner & May, 2003; Ginns, 

2006; Reed, 1992; Shanks et al., 1989), because when the inter-stimulus interval was shorter 

(1 second), participants did make same identity responses above chance level (Experiment 

4a).  

Experiment 5a showed the same pattern of results as Experiment 4a, with a main 

effect of identity and 2-way interaction between order and identity. The basis of this 

interaction is that whilst sensitivity did not differ across conditions, the true negative rate 

(specificity) was lower in the V-A condition. Both Experiments 4a and 5a therefore highlight 

the existence of a stronger bias to respond same identity when the face is presented before the 

voice. The bias observed in Experiment 4a was explained in terms of strong identity cues 

associated with faces sweeping up the subsequent voice and making participants more likely 

to respond same identity in the V-A condition. Experiment 5a shows that the bias endures 

over a 5 second inter-stimulus interval, further highlighting the potency of facial identity cues 

in comparison to those associated with voices. This interpretation is supported by the results 

of the matching response analysis. There was a significant bias to respond same identity in 

the V-A condition, but not in the A-V condition. 

8.3 Experiment 5b: Face-voice matching using a sequential same-different task: 10 

second inter-stimulus interval 

Experiment 5b investigated face-voice matching performance with a longer inter-

stimulus interval. When there is a 10 second inter-stimulus interval, the first stimulus should 

be well beyond the range of echoic and iconic memory by the time the second stimulus is 
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presented (Coltheart, 1980; Glanzer & Cunitz, 1966; Lu et al., 1992; Neisser, 1967; Sligte et 

al., 2008, 2009; Sperling, 1960; Treisman, 1964; Wickelgren, 1969). Guided by our 

interpretation of the results of Experiment 5a, we expected overall accuracy to have 

deteriorated to chance level, and for there to be no bias to accept a face and voice as 

belonging to the same person.  

8.3.1 Methods 

Apart from the following exceptions, the methods were identical to Experiment 5a.  

8.3.1.1 Participants  

There were 48 participants (43 females and 5 males), with an age range of 18 to 54 

years (M = 23.90, SD = 8.52).  

8.3.1.2 Procedure  

The inter-stimulus interval was 10 seconds. 

8.3.2 Results  

8.3.2.1 Matching accuracy 

The matching accuracy data were analysed using identical methods to Experiment 5a. 

Table 8.2 shows the profile likelihood chi-square statistic (G2) and p value associated with 

dropping each effect from the appropriate model, as well as the coefficients and standard 

errors (on a log odds scale) for each effect in the full three-way interaction model. In the 

three-way model the estimate of SD of the face random effect was 0.599 while for voice 

stimulus it was 0.526. The estimated SD for the participant effect was 0.176. A similar 

pattern held for the null model. 
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Table 8.2 

Parameter estimates (b) and profile likelihood tests for the 2x2x2 factorial analysis, 

Experiment 5b: Face-voice matching using a sequential same-different task: 10 second inter-

stimulus interval  

Source df b SE G2 p 

Intercept 1 0.485 0.287 . . 
Identity 1 1.132 0.337 7.81 .005 

Order 1 0.505 0.332 1.52 .217 
Facial stimulus type  1 0.463 0.312 6.23 .013 

Identity x Order 1 1.013 0.474 4.71 .030 
Identity x Facial stimulus type 1 0.511 0.437 0.85 .357 

Order x Facial stimulus type 1 0.208 0.436 1.95 .162 
Identity x Order x Facial stimulus 

type 
1 0.454 0.619 0.54 .464 

 There was a main effect of identity (p = .005), and facial stimulus type (p = .013). 

There was also a significant interaction between identity and order (p = .030). The cell means 

and 95% confidence intervals for matching accuracy are shown in Figure 8.3. 

 

Figure 8.3: Face-voice matching accuracy on V-A (panel A) and A-V (panel B) trials with a 

10-second inter-stimulus interval. Error bars show 95% CI for the condition means 
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Overall matching accuracy was at chance level, M = 57.58%, 95% CI [48.17, 66.42]. 

This was also the case for static facial stimulus trials, M = 52.54%, 95% CI [42.46, 62.29], 

but not dynamic, M = 62.72%, 95% CI [52.85, 71.63]. Performance was above chance level 

when voices were presented before faces (A-V), M = 60.99%, 95% CI [51.04, 70.18], but not 

when faces were presented before voices (V-A), M = 54.30%, 95% CI [44.25, 64.02]. Whilst 

the hit rate (same identity trials) was above chance level, M = 63.49%, 95% CI [53.48, 

72.53], the true negative rate (different identity trials) was not, M = 50.71%, 95% CI [40.23, 

61.16]. As illustrated in Figure 8.3, the main effect of identity reveals that the hit rate was 

higher than the true negative rate. The basis of the main effect of facial stimulus type is that 

dynamic face-voice matching performance is more accurate than static face-voice matching. 

According to visual inspection of Figure 8.3, the interaction between identity and order 

shows that the true negative rate was higher in the A-V condition (panel B) than in the V-A 

condition (panel A). 

8.3.2.2 Matching response 

Overall, faces and voices were not attributed to the same identity significantly above 

chance level, M = 56.24%, 95% CI [45.75, 66.14]. Same identity responses were not made 

above chance level on either V-A, M = 60.15%, 95% CI [49.18, 70.49], or A-V trials, M = 

52.28%, 95% CI [41.03, 63.24].  

8.3.3 Discussion 

When the inter-stimulus interval was extended to 10 seconds, overall face-voice 

matching accuracy was at chance level. Taken together with the results from Experiments 4a 

(1 second inter-stimulus interval), and Experiment 5a (5 second inter-stimulus interval), this 

supports the hypothesis that accurate matching is not possible when the inter-stimulus 

interval is extended beyond a certain duration.  
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Unexpectedly, overall matching accuracy was above chance level in the A-V 

condition. Performance in this condition was not above chance level in Experiment 5a. As 

there is no theoretical explanation for this, it seems prudent not to overt-interpret the result at 

this stage. From Figure 8.3, it is clear that only performance on same identity, dynamic, A-V 

face-voice matching is accounting for the overall above-chance result in this condition. In 

Experiment 5a, performance was only above chance on dynamic facial stimulus trials, yet 

there was no difference between static and dynamic face-voice matching. In Experiment 5b 

there was an advantage afforded by dynamic over static facial stimulus trials reflected by the 

main effect of facial stimulus type.  

As in Experiment 5a, there was a main effect of identity, and a significant interaction 

between identity and order. Figure 8.3 indicates that the basis of this interaction is a lower 

true negative rate in the V-A condition. However, as shown by the matching response 

analysis, when there is a 10 second inter-stimulus interval, this interaction does not translate 

into a significant bias to respond that a face and voice belong to the same person in the V-A 

condition. Consistent with predictions based on the results of Experiment 5a, overall, 

participants did not exhibit a bias to respond same identity. Therefore this experiment, along 

with the results of Experiment 5a, provides evidence that the bias weakens when faces and 

voices are temporally separated to a greater extent.  

8.4 Experiment 5c: Face-voice matching using a sequential same-different task: 

Reorienting attention in the 5 second inter-stimulus interval 

 In Experiments 5a and 5b there was a trend towards less accurate performance and 

weakening of the bias to respond same identity as the inter-stimulus interval was extended to 

5 and 10 seconds. This interpretation is based on the observation that overall performance 

and the bias to respond same identity in the A-V condition were above chance level when the 
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interstimulus interval was 5s, but at chance level when it was 10s. It seems reasonable to 

argue that accurate face-voice matching performance therefore depends on being able to 

match high quality perceptual representations of faces and voices which are temporarily 

stored in echoic and iconic memory. However, an alternative explanation for the results is 

that participants were simply not paying attention at the onset of the second stimulus, making 

them both less accurate, and less likely to assume that faces and voices belong to the same 

identity. In order to test whether attention lapses account for the results, we adapted the 

procedure to maximise the chances that participants were attending to the task when the 

second stimulus was presented. Experiment 5c employed a 5-second inter-stimulus interval 

(the same duration as the interval in Experiment 5a). 

8.4.1 Methods 

Apart from the following exceptions, the methods were identical to Experiment 5a.  

8.4.1.1 Participants 

There were 48 participants (36 females and 12 males), with an age range of 18 to 46 

years (M = 21.46, SD = 5.39).  

8.4.1.2 Procedure 

To increase the likelihood that participants focused their attention to the matching task 

and were not distracted at the onset of the second stimulus, a central cross-hair (‘+’) was 

visible on the screen for the duration of the inter-stimulus interval. It disappeared when the 

second stimulus was presented. One second before the onset of the second stimulus a short 

beep (250ms) played. Participants were informed that the beep signalled the impending 

presentation of the second stimulus.  

8.4.2 Results  
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8.4.2.1 Matching accuracy 

The data were analysed using identical methods to Experiment 5a. Table 8.3 shows 

the profile likelihood chi-square statistic (G2) and p value associated with dropping each 

effect from the appropriate model, as well as the coefficients and standard errors (on a log 

odds scale) for each effect in the full three-way interaction model. In the three-way model the 

estimate of SD of the face random effect was 0.564 while for voice it was 0.552. The 

estimated SD for the participant effect was 0.268. A similar pattern held for the null model.  

Table 8.3 

Parameter estimates (b) and profile likelihood tests for the 2x2x2 factorial analysis, 

Experiment 5c: Face-voice matching using a sequential same-different task: Reorienting 

attention in the 5 second inter-stimulus interval 

Source df b SE G2 p 

Intercept 1 0.515 0.307 . . 

Identity 1 1.410 0.347 17.12 <.001 
Order 1 0.862 0.341 0.24 .623 

Facial stimulus type  1 0.486 0.318 0.03 .867 
Identity x Order 1 1.085  0.491 5.09 .024 

Identity x Facial stimulus type 1 0.407 0.454 0.29 .589 
Order x Facial stimulus type 1 0.725 0.435 2.53 .112 

Identity x Order x Facial stimulus 
type 

1 0.449 0.627 0.49 .483 

The main effect of identity was significant (p < .001), along with the 2-way 

interaction between identity and order (p = .024). Figure 8.4, which shows the cell means and 

95% confidence intervals for matching accuracy, aids interpretation of the main effect and 

interaction.  
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Figure 8.4: Face-voice matching accuracy on V-A (panel A) and A-V (panel B) trials when 

attention is reoriented during the 5-second inter-stimulus interval. Error bars show 95% CI 

for the condition means 

Overall matching accuracy was at chance level, M = 59.80%, 95% CI [48.83, 69.85]. 

This was the case for both static, M = 59.44%, 95% CI [47.90, 70.28], and dynamic face-

voice matching, M = 60.18%, 95% CI [48.48, 70.85], as well as both order conditions: A-V, 

M = 57.59%, 95% CI [45.70, 68.55], and V-A, M = 61.86%, 95% CI [49.98, 72.21]. Whilst 

the hit rate was above chance level, M = 68.29%, 95% CI [58.01, 77.09], the true negative 

rate was not, M = 49.54%, 95% CI [38.41, 60.48]. According to visual inspection, the basis 

of the 2-way interaction is that the true negative rate is lower in the V-A condition (shown in 

panel A) compared to the A-V condition (shown in panel B).  

8.4.2.2 Matching response 

Overall, faces and voices in each trial were not positively matched for identity 

significantly above chance level, M = 59.18%, 95% CI [48.93, 68.61]. Faces and voices were 
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positively matched above chance level in the V-A condition, M = 62.92%, 95% CI [51.87, 

72.87], but not in the A-V condition, M = 55.25%, 95% CI [44.02, 65.96].  

8.4.3 Discussion 

 The matching accuracy results are inconsistent with the interpretation that participant 

inattention explains the results of Experiment 5a. With the inclusion of a central cross-hair, 

designed to maintain the participants’ attention, and a short beep to reorient possible lapsed 

attention, overall matching accuracy was at chance level. In fact, as overall performance was 

above chance level in Experiment 5a, it seems that the introduction of the fixation and beep 

could have had the opposite effect from that which was intended. They may have distracted 

the participants by orienting attention away from the face (V-A condition) or voice (A-V 

condition) they were attempting to hold in memory, thereby making comparison with the 

second stimulus more difficult. Performance on dynamic as well as static facial stimulus trials 

was at chance level. Overall accuracy was above chance level without these procedural 

additions in Experiment 5a, so it appears that the cross-hair and beep may in fact have 

disrupted accurate performance.  

Even with the addition of the fixation and beep, the matching response analysis 

indicated that the strength of the bias to respond same identity declines over a 5 second inter-

stimulus interval. The overall pattern of the matching responses is identical to Experiment 5a, 

adding to evidence of a stronger bias to respond same identity in the V-A condition than in 

the A-V condition. Therefore, it would seem that identity cues associated with faces 

encompass subsequent voices, even if the voice is presented after a short (5s) inter-stimulus 

interval containing distracting visual and auditory events.  

8.5 Experiment 5d: Face-voice matching using a sequential same-different task: 

Reorienting attention in the 10 second inter-stimulus interval  
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Experiment 5d provided a further test of the possibility that the fixation and beep prior 

to the presentation of the second stimulus have a disruptive influence on matching 

performance. Experiment 5d included a cross-hair and beep in the 10 second inter-stimulus 

interval. Based on the results of Experiment 5c, we did not expect overall performance to be 

above chance level.  

8.5.1 Methods 

Apart from the following exceptions, the methods were identical to those used in 

Experiment 5c.  

8.5.1.1 Participants  

There were 8 male and 38 female participants (N=46), with an age range of 18 to 29 

years, M = 19.96, SD = 2.26. 

8.5.1.2 Procedure 

The duration of the inter-stimulus interval was 10 seconds.  

8.5.2 Results  

8.5.2.1 Matching accuracy 

Table 8.4 shows the profile likelihood chi-square statistic (G2) and p value associated 

with dropping each effect from the appropriate model, as well as the coefficients and standard 

errors (on a log odds scale) for each effect in the full three-way interaction model. In the 

three-way model the estimate of SD of the face random effect was 0.538 while for voice 

stimulus it was 0.284. The estimated SD for the participant effect was less than 0.001. A 

similar pattern held for the null model.  
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Table 8.4 

Parameter estimates (b) and profile likelihood tests for the 2x2x2 factorial analysis, 

Experiment 5d: Face-voice matching using a sequential same-different task: Reorienting 

attention in the 10 second inter-stimulus interval  

Source df b SE G2 p 

Intercept 1 0.453 0.270 . . 
Identity 1 1.077 0.330 12.68 <.001 

Order 1 0.630 0.327 2.90 .089 
Facial stimulus type  1 0.238 0.307 1.01 .316 

Identity x Order 1 0.845  0.470 2.57 .109 
Identity x Facial stimulus type 1 0.334 0.435 0.05 .826 

Order x Facial stimulus type 1 0.094 0.435 0.31 .581 
Identity x Order x Facial stimulus 

type 
1 0.538 0.619 0.74 .390 

 The main effect of identity was significant (p < .001). There were no other main 

effects and no interactions (p > .089). Figure 8.5 shows the cell means and 95% confidence 

intervals for matching accuracy.  
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Figure 8.5: Face-voice matching accuracy on V-A (panel A) and A-V (panel B) trials when 

attention is reoriented during the 10-second inter-stimulus interval. Error bars show 95% CI 

for the condition means 

Overall accuracy was at chance level, M = 56.98%, 95% CI [47.37, 65.97]. Both 

static, M = 55.12%, 95% CI [45.03, 64.87] and dynamic, M = 58.86%, 95% CI [48.77, 68.14] 

matching accuracy were at chance level overall, as was performance on the V-A order 

condition, M = 52.93%, 95% CI [43.42, 62.23]. In the A-V order condition, performance was 

above chance level, M = 60.92%, 95% CI [51.29, 69.70]. The hit rate (same identity trials) 

was above chance level, M = 64.28%, 95% CI [54.87, 72.61], but the true negative rate 

(different identity trials) was not, M = 48.59%, 95% CI [38.84, 58.41].  

8.5.2.2 Matching response 

Overall, faces and voices in each trial were not positively matched for identity 

significantly above chance level, M = 56.73%, 95% CI [46.53, 66.23]. This was the case in 
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both the V-A condition, M = 60.18%, 95% CI [49.03, 70.23], and the A-V condition, M = 

53.23%, 95% CI [42.23, 64.01].  

8.5.3 Discussion 

Overall matching accuracy was at chance level. Consistent with the results of 

Experiment 5c, when a cross-hair and short beep were included in the inter-stimulus interval, 

dynamic face-voice matching performance was no more accurate than static face-voice 

matching. These results are consistent with the fixation and beep actually disrupting 

performance. In Experiment 5b, which included a 10 second inter-stimulus interval but no 

fixation or beep, dynamic face-voice matching was above chance level. In Experiment 5d, 

performance on the trials featuring static facial stimuli, as well as those featuring dynamic 

facial stimuli, was at chance level. However, overall performance on A-V trials was above 

chance level. As in Experiment 5b, same identity dynamic accuracy accounts for this result; 

the other 3 conditions were at chance level (see panel B, Figure 8.5). The apparent 

performance advantage afforded in this condition may be explained by the fact that voices 

and dynamic faces share both speech and identity information, whereas voices and static 

faces share only identity information (Lachs & Pisoni, 2004a; Lander et al., 2007). As speech 

information is necessarily time-varying, it makes sense that identifying crossmodal 

redundancy across short intervals is possible. It also makes sense that performance is only 

above chance in the A-V condition because voices provide more reliable speech information 

than faces (Stevenage & Neil, 2014). Overlapping speech information may therefore provide 

a fallback in situations when overlapping identity information is less easy to access, such as 

when the face and voice are temporally separated.  
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The overall pattern of matching responses in Experiment 5d is the same as 

Experiment 5b. With a 10-second inter-stimulus interval, there was no overall bias to respond 

same identity, and the bias in both the A-V and V-A condition was at chance level.  

8.6 General Discussion 

 The results presented in this chapter indicate how face-voice matching performance 

varies according to the time course of stimulus presentation. Taken together, all four 

experiments reveal that overall performance accuracy deteriorates when the inter-stimulus 

interval is extended beyond a few seconds. Although there is some evidence that dynamic 

face-voice matching ability fares better than static face-voice matching, the results of 

Experiment 5c and 5d show just how easily performance can be disrupted. Whilst participants 

exhibit a bias to respond same identity when faces and voices are presented close together in 

time (Experiments 4a and 4b), the results of Experiments 5a, 5b, 5c and 5d clearly show that 

the bias to respond same identity depends on the degree of temporal contiguity.  

8.6.1 Matching accuracy 

The results of all four experiments show that accurate static face-voice matching is 

not possible when faces and voices are presented beyond a short time interval (1 second). 

Performance was at chance level when the inter-stimulus interval was 5 seconds long 

(Experiments 5a and 5c), and when it was 10 seconds long (Experiments 5b and 5d). These 

results are consistent with the interpretation that above-chance matching accuracy depends on 

being able to compare high-quality perceptual representations of faces and voices temporarily 

stored in echoic and iconic memory. The literature suggests that these representations are 

likely to have significantly decayed after 5 seconds (Coltheart, 1980; Glanzer & Cunitz, 

1966; Lu et al., 1992; Neisser, 1967; Sligte et al., 2008, 2009; Sperling, 1960; Treisman, 

1964; Wickelgren, 1969).  
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The results of Experiment 5a and 5b show that dynamic face-voice matching accuracy 

is above chance level, even when the interval is 10 seconds. Figure 8.3 illustrates that 

dynamic face-voice matching is most accurate when the voice is presented before the face 

(A-V condition). In this condition, the voice must be held in working memory for longer than 

the face, so the results cannot be explained by superior memory for dynamic over static faces 

(e.g. Knappmeyer et al., 2003; Lander & Chuang, 2005). In the A-V condition, dynamic faces 

might operate as a memory cue for voices. We have shown in previous experiments 

(Experiments 4a and 4b) that dynamic faces and voices do not share more diagnostic identity 

information than static faces and voices. However, an articulating face and a voice do have a 

wider range of information in common than static faces and voices, in that both are involved 

in speech production (Lachs & Pisoni, 2004a; Lander et al., 2007). Redundant information 

relating to articulatory patterns perhaps becomes particularly useful in matching tasks when it 

is difficult to access overlapping identity information. Such a situation might occur when the 

interstimulus interval is increased beyond a certain duration. Therefore, in a face-voice 

matching task with a longer inter-stimulus interval (>1 second), it is feasible that a dynamic 

articulating face re-activates, or maintains, the perceptual representation of the preceding 

voice more effectively than a static face does because articulatory movement provides a 

memory cue for speech information conveyed by the voice, thereby facilitating matching 

accuracy. It makes sense to explain A-V performance in Experiments 5b and 5d in the 

context of this interpretation, because above chance matching accuracy is accounted for by 

performance in the same identity dynamic facial stimulus condition. This explanation is 

based purely on the observation that this is the only condition in which performance is 

significantly above chance level. There was however no 3-way interaction to indicate that 

performance in this condition differed significantly from the others.  



 

 
142 

The overall pattern of declining matching accuracy as the interval increases is not 

explained by an attention lapse prior to the onset of the second stimulus. In fact, in 

Experiment 5c and 5d the beep and central cross-hair appear to disrupt accurate matching 

performance. One explanation for this is that the cross-hair and beep introduce interference, 

which undermines the quality of the perceptual representations temporarily residing in 

limited memory stores (Baddeley, 2007). As a result, the participants’ ability to compare 

these representations, and to make accurate matching decisions, is likely to be impaired.  

Although the overall results in Experiments 5a and 5c were descriptively similar, the 

pattern of variance in the multilevel modelling analyses are informative. Whilst in 

Experiment 5a the SD of the participant random effect was minimal, in Experiment 5c it was 

larger; the participants who saw a cross-hair and heard a beep in the 5 second interval 

responded less uniformly to the stimuli in each trial. The increased variance may be 

attributable to individual differences in memory. At 5 seconds, detailed representations, less 

resistant to disruption by a cross-hair or beep, may persist in some people’s memory, but not 

in others’ (Todd & Marois, 2005; Vogel & Machizawa, 2004). Alternatively, the level of 

disruption might be mediated by the extent to which the participants were paying attention to 

the task in the first place. Those who were paying close attention might have been able to 

hold a detailed representation in mind and therefore have been less distracted than those who 

were not paying close attention. In Experiment 5d, which also included a beep and fixation, 

the participant variance was minimal. This may be because the 10 second interval had pushed 

the first stimulus well out of the range of echoic and iconic memory. Therefore, detailed 

representations had likely decayed for all participants, regardless of the amount of attention 

they were paying to the task.  

 The results of Experiment 5a and 5b suggest that overlapping speech information 

shared by dynamic faces and voices might provide a fallback when overlapping identity 



 

 
143 

information is more difficult to access. However, it seems that even dynamic information is 

relatively transient; the central cross-hair and beep introduced in Experiments 5c and 5d were 

particularly disruptive to dynamic face-voice matching accuracy. Despite above chance 

matching performance in the dynamic facial stimulus condition in Experiment 5a and 5b, 

performance was at chance level when the beep and cross-hair were included in the interval. 

In a social setting, faces and voices are not usually encountered in silent situations, so 

interference is more likely when the interval is longer. The results of Experiments 5c and 5d 

are therefore consistent with the conclusion that it is easier to accurately attribute common 

source identity to faces and voices when the two stimuli are presented in close temporal 

proximity. 

 The matching accuracy results should be considered in terms of social functioning. 

During social interactions involving a number of individuals, faces and voices belonging to 

the same people are usually encountered at the same time. It makes sense that the ability to 

attribute common identity only occurs when faces and voices are presented within a short 

time frame. Being able to accurately link faces and voices that are temporally offset to a 

greater extent would incur an unnecessary cost in terms of cognitive load.  

8.6.2 Matching response 

The bias to respond same identity appears to depend on faces and voices being 

presented close together in time. Although an overall bias was observed in Experiments 4a 

and 4b when the inter-stimulus interval was 1 second, it does not persist when 5 or 10-second 

intervals separate faces and voices (Experiments 5a, 5b, 5c and 5d). This sits well with 

predictions informed by temporal contiguity research (Buehner & May, 2003; Ginns, 2006; 

Reed, 1992; Shanks et al., 1989).  



 

 
144 

Taken together with the results of Experiment 4a, the results in this chapter add to 

evidence of a stronger response bias in the V-A condition than in the A-V condition. In 

Experiment 5a and 5c, which both featured a 5 second inter-stimulus interval, specificity was 

higher when the voice was presented before the face (A-V condition). Consistent with this, 

matching response analyses show that whilst the overall response bias to accept faces and 

voices in each trial as belonging to the same identity does not persist overall at 5 seconds 

(Experiment 5a and 5c) in the A-V condition, it does persist in the V-A condition. However, 

participants were not more likely to respond same identity in either condition when there was 

a 10 second inter-stimulus interval (Experiments 5b and 5d).  

Beyond a short time-frame, the overall lack of a bias to respond same identity is 

unsurprising. In speech perception, audiovisual integration only occurs when articulating 

faces and voices are presented close together in time (Munhall et al., 1996; Robertson & 

Schweinberger, 2010; Van Wassenhove et al., 2007). The results of these four experiments 

therefore fit with the results of Experiment 4a and 4b, offering additional support for the 

argument that the bias to attribute common identity to faces and voices provides a useful 

foundation for successful audiovisual speech integration, thereby helping to facilitate social 

communication. 

8.6.3 Conclusion 

Taken together, this set of four experiments show that performance deteriorates as the 

interval between a face and voice increases, and that accuracy is disrupted by intervening 

interference. Furthermore, when offset by between 5 and 10 seconds, people no longer 

exhibit a bias to attribute common identity to faces and voices. Face-voice matching 

performance is clearly dependent on the time-course of stimulus presentation. 
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9. CHAPTER 9: SUMMARY AND GENERAL DISCUSSION 

9.1 Introduction 

This Chapter summarises and discusses the findings of the 12 experiments presented 

in previous chapters. It suggests some future directions for face-voice matching research and 

considers the applied relevance of the findings.  

9.2 Summary and main conclusions 

This thesis investigated whether people look and sound similar, using face-voice 

matching as a measure of whether faces and voices index redundant identity information. The 

overall picture of face-voice matching ability offered by previous studies is contradictory and 

incomplete. This thesis has attempted to resolve contradictions, as well as extending the 

existing literature. The following section briefly summarises the main findings and 

conclusions.  

In support of the hypothesis that it should be possible to match voices to static faces, 

Experiment 1 showed that both static faces and voices, as well as dynamic faces and voices, 

offer strikingly concordant information about a number of dimensions. The relationship 

between face and voice ratings of masculinity, femininity, height and health were particularly 

strong.  

It was not clear from the previous literature whether accurate face-voice matching 

relies on the ability to encode visual articulatory movement present in dynamic faces. 

Experiment 2a, 2b and 2c tested face-voice matching across different 2AFC procedures in 

order to compare performance using static and dynamic facial stimuli. The results showed 

that dynamic face-voice matching was consistently above chance level. Static face-voice 

matching is also possible, but it is sensitive to the exact experimental procedure employed. 
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Performance was only above chance level when the test options were presented 

simultaneously (Experiment 2c), likely because this procedure facilitates direct comparisons 

between alternatives. In highlighting that some people look and sound more similar than 

others, the multilevel modelling analyses of Experiments 2a, 2b and 2c offered an additional 

explanation for previous contradictions. The results of face-voice matching studies are likely 

to depend on the exact stimuli used.  

In Experiments 2a and 2b, test alternatives in 2AFC tasks were presented sequentially. 

There was a temporal position bias, whereby matching accuracy was higher when the same 

identity alternative appeared first. Experiments 3a and 3b tested matching performance when 

the same identity stimulus was absent at test. Descriptively speaking, the participants were 

consistently more likely to select the first of the two alternatives. Together, the findings 

presented in these 5 experiments cast doubt on the suitability of using 2AFC procedures to 

investigate face-voice matching, and highlight the need to investigate the role of bias in more 

depth using alternative methodologies.  

Experiments 4a and 4b adopted a same-different procedure, an arguably more 

appropriate method of testing face-voice matching, which facilitates the investigation of 

response biases. The results offered corroborating evidence for accurate static face-voice 

matching, as well as showing that participants exhibit a bias to respond that faces and voices 

belong to the same person. This bias was strongest when the face was presented before the 

voice.  

The remaining experiments addressed the effect of increasing the inter-stimulus 

interval on face-voice matching performance. Experiments 5a and 5b used a same-different 

procedure, inserting a 5 second (Experiment 5a) and 10 second (Experiment 5b) interval 

between the stimuli in order to push the first stimulus out of the range, or at least to the very 
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limits, of sensory memory. Accurate face-voice matching appears to depend on being able to 

compare temporarily stored, high-quality, representations of faces and voices. The results 

were not due to attention lapses occurring during the inter-stimulus interval (Experiments 5c 

and 5d). Matching response analyses showed that beyond 5-10 seconds, there is no bias to 

attribute common identity to faces and voices (Experiments 5b and 5d).  

In considering the results as a whole, three main conclusions can be drawn. Each 

conclusion constitutes an original contribution to the literature:  

• Faces and voices offer common source identity information. Accordingly, when 

presented close together in time, novel faces and voices can be accurately matched for 

identity above chance level.  

• Above-chance matching is not contingent on encoding information about visual 

articulatory movement. There is no difference in matching accuracy when comparing 

trials using static and dynamic facial stimuli. Contradictions across previous literature 

can be explained by methodological differences.  

• People exhibit a bias to attribute common identity to faces and voices when they are 

temporally proximal.  

 9.3 Research questions 

Five research questions were outlined in the Literature Review (see section 2.8.1). 

The following section deals with each of these in turn, drawing together evidence from 

different chapters to help facilitate a detailed consideration of the overall results. It expands 

on the main conclusions referred to above in order to explain how the findings extend 

existing knowledge.  
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9.3.1 Research question 1: Do voices share redundant information with dynamic 

as well as static faces? 

Previous research investigating multimodal signals in faces and voices has 

concentrated almost exclusively on attractiveness (e.g. Abend et al., 2015; Thornhill & 

Gangestad, 1999; Thornhill & Grammer 1999; Feinberg et al., 2005; Feinberg, 2008; Oguchi 

& Kikuchi, 1997; Wells et al., 2013; Wheatley et al., 2014; Zahavi & Zahavi, 1997). Studies 

have found that a face and voice belonging to the same person tend to be rated similarly on 

scales for attractiveness (Collins & Missing, 2003; Saxton et al., 2006). A minority of studies 

have ventured beyond this research question, considering whether faces and voices offer 

accurate information about dimensions such as body size. It has previously been shown that 

there are significant differences between estimates made from faces and voices (Lass & Colt, 

1980), and that participants are slightly more accurate when rating body size from 

photographs than voice recordings (Krauss et al., 2002). More recently, Rezlescu et al. (2015) 

addressed the relationship between trait ratings, finding that the contribution of facial and 

vocal information to final judgments varies according to the trait being communicated. 

Overall though, existing knowledge of whether multimodal signals in humans constitute 

back-up signals (Johnstone, 1997) or multiple-messages (Møller & Pomiankowski, 1993) is 

limited.   

Experiment 1 tested whether faces and voices constitute back-up signals (Johnstone, 

1997) for a number of dimensions, and whether the extent of concordance varies by facial 

stimulus type. As well as extending existing knowledge regarding the nature of multimodal 

signals in humans, this experiment aimed to provide evidence on which to build hypotheses 

regarding face-voice matching accuracy using both static and dynamic facial images. 

Experiment 1 showed for the first time, that faces and voices offer concordant information 

about a number of dimensions relevant to fitness and quality, particularly in terms of 
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femininity, masculinity, height and health. Furthermore, face-voice concordance was not 

affected by whether the faces were static or dynamic. In showing that recipients respond so 

similarly to the visual and auditory aspects of these multimodal signals (Partan & Marler, 

2005), our results suggest that faces and voices constitute back-up signals (Johnstone, 1997) 

rather than multiple messages (Møller & Pomiankowski, 1993).  

At this stage, it is important to comment on the stimulus set used throughout this 

thesis. As explained in Chapter 3, faces and voices in the GRID audiovisual sentence corpus 

(Cooke et al., 2006) were emotionally neutral throughout the duration of each 2 second video. 

The faces were only ever visible from one angle, and the lighting did not change over the 

course of the video. The voices said nonsense sentences in a monotone fashion. The only 

noteworthy thing that differed between static pictures and dynamic videos was that the mouth 

was moving. This may have limited the extent to which dynamism associated with visual 

articulation offered additional information on any of the dimensions tested in Experiment 1. 

However, in terms of stimulus testing, the results of Experiment 1 are crucial to the 

subsequent experiments. As one of the main aims was to establish whether both static and 

dynamic face-voice matching is possible (see section 9.3.2) it was necessary to first establish 

whether people draw similar inferences from both sets of stimulus faces. These results were 

therefore important in helping to build hypotheses for later chapters, which used the same set 

of stimuli. Importantly, the broad characteristics of the stimuli described above are also true 

of previous face-voice matching experiments (Kamachi et al., 2003; Lachs & Pisoni, 2004a; 

Lander et al., 2007; Mavica & Barenholtz, 2013), which is helpful in facilitating comparisons 

across studies.  

The findings of Experiment 1 are consistent with the hypotheses derived from Belin et 

al.’s (2004) auditory face model, which predicts that voice and face perception occur in 

integrated and parallel pathways dedicated to processing speech, emotion, and identity 
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information. Based on this model, it seems likely that whilst redundant speech information is 

available in articulating (dynamic) faces and voices, viewing a static face should be sufficient 

to extract identity information shared with that person’s voice. The results from Experiment 1 

support the hypothesis that static face-voice matching is possible.  

9.3.2 Research question 2: Is it possible to match voices and static faces, or is 

accurate face-voice matching contingent on encoding information about visual 

articulatory patterns?  

Based on experiments observing chance level static face-voice matching performance, 

audiovisual speech perception researchers have concluded that encoding auditory and visual 

information about idiosyncratic speaking style is crucial to accurate face-voice matching 

(Kamachi et al., 2003; Lachs & Pisoni, 2004a; Lander et al., 2007). This conclusion is 

challenged by other studies showing that static face-voice matching is possible (Krauss et al., 

2002; Mavica & Barenholtz, 2013). Notably however, no previous studies have directly 

compared face-voice matching using static facial stimuli to matching using dynamic facial 

stimuli. Regardless of whether static face-voice matching is above chance level, if there is no 

significant difference between the two, this would undermine the conclusion that face-voice 

matching depends entirely on the availability of information about articulatory patterns.  

Chapters 5, 7 and 8 addressed this gap in the literature, comparing static and dynamic 

face-voice matching accuracy using different experimental procedures, including sequential 

and simultaneous 2AFC tasks (Experiments 2a, 2b and 2c), as well as same-different tasks 

(Experiments 4a, 4b, 5a, 5b, 5c and 5d). The stimulus set featured in each experiment (Cooke 

et al., 2006, see Chapter 3) is particularly appropriate to establishing whether visual 

articulatory movement is crucial to accurate face-voice matching. The emotionally neutral 
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sentences coupled with the uniform head position make it easier to isolate, as far as possible, 

whether visual articulatory movement explains accurate face-voice matching.  

There was no significant effect of facial stimulus type (static or dynamic) in any of 

the experiments employing a 1 second inter-stimulus interval (Experiment 2a, 2b, 4a, 4b). 

Purely on the basis of this null effect, it seems logical to conclude that the additional 

information provided by visual articulatory movement fails to explain face-voice matching 

ability, thereby undermining the arguments of previous audiovisual speech perception studies 

(e.g. Kamachi et al., 2003; Lachs & Pisoni, 2004a; Lander et al., 2007). This interpretation is 

supported by the complementary finding that static face-voice matching is above-chance 

level using certain experimental procedures (Experiments 2c, 4a and 4b). However, the 

results presented in Chapter 8 provide an important qualification. Whilst accurate dynamic 

face-voice matching is possible over longer inter-stimulus intervals (5-10 seconds), accurate 

static face-voice matching is not (Experiments 5a and 5b). Whilst this finding does not 

undermine the conclusion that static face-voice matching is possible, the significant effect of 

facial stimulus type when the inter-stimulus interval was 10 seconds (Experiment 5b) shows 

that access to common source identity information in static faces and voices is relatively 

transient. Static faces and voices share identity information, whereas dynamic faces and 

voices share both identity information and speech information. As speech unfolds over time 

and is commonly punctuated with pauses, it is possible that common source identity available 

in dynamic faces is relatively more tolerant to the temporal separation of faces and voices. 

This issue is addressed in further detail in section 9.3.3.  

The ability to accurately match voices and faces for identity (regardless of whether 

the face is static or dynamic) is likely to have an important function. Above chance level 

matching may help people to navigate complex social interactions, which frequently feature a 

number of novel speakers. It is common to hear a voice whilst not looking in the direction of 
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the speaker. Being able to accept or reject a face match quickly may aid social 

communication by facilitating attention shifts. As faces and voices are both important in 

speech perception (Benoit et al., 1994; MacLeod & Summerfield, 1987; Rosenblum, 2005; 

Summerfield, 1987; Sumby & Pollack, 1954), underlying awareness of redundant identity 

information might also facilitate coherence. This may go some way to explaining the 

apparent dynamic (articulating) facial stimulus advantage in some conditions.  

9.3.3 Research question 3: Do procedural differences account for inconsistencies 

in the previous literature regarding static face-voice matching? 

In Experiment 1, it was shown that static faces and voices, as well as dynamic faces 

and voices, offer strikingly concordant information about a number of dimensions. However, 

whilst some studies have observed above-chance static face-voice matching (Krauss et al., 

2002; Mavica & Barenholtz, 2013), others have only observed accurate dynamic face-voice 

matching (Kamachi et al., 2003; Lachs & Pisoni, 2004a; Lander et al., 2007). Previous face-

voice matching studies have used a variety of different procedural versions of the 2AFC task. 

It was hypothesised that these differences could help to account for the incompatible results 

across studies.  

Chapter 4 reported tests of face-voice matching using different versions of 2AFC 

tasks in order to establish which procedural elements support accurate static face-voice 

matching. In this chapter, three different procedures were compared: sequential face-voice 

presentation (Experiment 2a), simultaneous face-voice presentation (Experiment 2b), and 

simultaneously presented alternatives (Experiment 2c). Undertaking this comparison 

facilitated the isolation of specific procedural characteristics. The findings offered two 

explanations for previous inconsistencies. Static face-voice matching was only above chance 

level in Experiment 2c, highlighting that performance is sensitive to the type of experimental 
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procedure employed. Matching accuracy is more likely to be above chance level when the 

procedure enables participants to compare simultaneously presented alternatives at test.  

However, it was clear from the existing literature that an explanation based on 

procedural differences constituted only part of the story. Mavica and Barenholtz (2013, 

Experiment 2) used the same procedure as in Experiment 2a, but observed above chance level 

static face-voice matching. The multilevel modelling analyses offered an additional 

explanation for apparently inconsistent static face-voice matching performance. In all three 

experiments (2a, 2b and 2c), there was a high level of variability associated with the face and 

voice stimuli, far greater than the variability at the participant level. A similar pattern 

occurred in the experiments reported in other chapters (Experiments 3a, 3b, 4a, 4b, 5a, 5b and 

5d). As some people evidently look and sound more similar than others, the specific stimuli 

used in face-voice matching studies are likely to affect the overall results. In line with the 

literature reviewed in Chapter 3, this finding supports calls for the use of appropriate 

statistical techniques that simultaneously account for sources of variability associated with 

stimuli and participants, as well as emphasising the importance of using sufficiently large 

samples of stimuli (see section 9.6 for further discussion of these issues).  

It is necessary to consider in more detail why sequentially presenting test alternatives 

in a 2AFC task might compromise static more than dynamic face-voice matching accuracy. 

Chapter 8 presented four experiments investigating the effect of increasing the inter-stimulus 

interval on matching performance. Considering these results alongside the results of 

Experiments 2a, 2b and 2c may help to explain the apparent matching accuracy advantage 

using dynamic facial stimuli. As highlighted above, dynamic face-voice matching accuracy 

was consistently above chance level in all experiments when the inter-stimulus interval was 1 

second (Experiments 2a, 2b, 2c, 4a and 4b), regardless of whether the alternatives in the 

2AFC task were presented sequentially (Experiments 2a and 2b) or simultaneously 
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(Experiment 2c). It also remained above chance level when the inter-stimulus interval was 

extended to 5 seconds (Experiment 5a) and 10 seconds (Experiment 5b). Static face-voice 

matching was at chance level in all experiments when alternatives in the 2AFC task were 

presented sequentially (Experiments 2a and 2b) as well as those featuring longer (>1 second) 

inter-stimulus intervals (Experiments 5a, 5b, 5c and 5d).  

Experiments 2a and 2b have a notable feature in common with Experiments 5a, 5b, 5c 

and 5d. The test element of the trials featured in these experiments is longer in duration than 

the experiments in which alternatives are presented simultaneously (Experiment 2c), or the 

same-different tasks with a maximum 1second inter-stimulus interval (Experiment 4a and 

4b). Therefore, when facial stimuli are dynamic, matching accuracy appears to be more 

robust to procedural differences that temporally extend the test element of the face-voice 

matching task. A parsimonious explanation is that when the cognitive load is higher, the 

additional time-varying speech information contained in dynamic faces better supports 

matching decisions. Establishing why this might be the case is more challenging. It may be 

related to articulatory movement providing participants with additional, and perhaps more 

memorable information. This might create an extra layer of facial-vocal overlap that can be 

capitalised on when matching decisions are more difficult.  

The data do not allow a distinction to be made between the exact differences in 

information shared by static faces and voices compared to dynamic faces and voices, 

although there is evidently sufficient commonality in static faces and voices to support 

accurate matching (see section 9.3.2). It would appear from previous literature that the 

information driving matching decisions in each of the facial stimulus conditions is not 

identical. When characteristics of dynamic faces are isolated from the characteristics of static 

faces using point-light displays, accurate face-voice matching is still possible (Lachs & 

Pisoni, 2004b; Rosenblum et al., 2006). Owing to shared information about speaking style, 
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voices and dynamic faces may act as memory cues for each other when the task is more 

difficult. Alternatively, the crossmodal representation (including, but not limited to, identity 

information (Belin et al., 2004)), which is created following exposure to faces and voices, 

might be less susceptible to disruption when the face is dynamic because it also includes 

bimodal speaking style information. If, as has been suggested here, accurate face-voice 

matching provides a foundation for audiovisual speech integration, accessing common source 

identity information might be particularly necessary during conversations, when faces are 

dynamic.  

9.3.4 Research question 4: Are there matching performance asymmetries 

according to the order of stimulus presentation? 

 Face-voice matching studies concerned with audiovisual speech perception have 

compared accuracy in V-A conditions (a face followed by 2 voices) to accuracy in A-V 

conditions (a voice followed by 2 faces) using 2AFC standard crossmodal matching tasks 

(Kamachi et al., 2003; Lachs, 1999; Lachs & Pisoni, 2004a, 2004b; Lander et al., 2007). As 

speech perception primarily involves voices (Massaro & Simpson, 2014), Lachs and Pisoni 

(2004a) suggested that it might be easier to compare information from 2 voices (V-A 

condition) than from 2 faces (A-V condition) when making matching decisions. However, 

previous studies have not detected differences in terms of accuracy. As the manipulation of 

stimulus presentation order is explicitly motivated by hypotheses formulated on the basis of 

speech perception research (Lachs, 1999), it is unsurprising that this manipulation has not 

been adopted in matching studies concerned exclusively with static faces (Krauss et al., 2002; 

Mavica & Barenholtz, 2013). Nevertheless, the wider literature hints that the manipulation of 

order is important, because of differences between face and voice processing. Face-voice 

matching tasks require participants to make identity decisions, but faces are more reliable 
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indicators of identity than voices (e.g. Damjanovic & Hanley 2007; Hanley & Turner 2000; 

Stevenage et al., 2011, 2012, 2013, 2014b; Stevenage & Neil, 2014).  

Studies observing above chance level matching using static facial stimuli have used a 

variety of 2AFC procedures (Kamachi et al., 2003; Lachs & Pisoni, 2004a, 2004b; Lander et 

al., 2007; Mavica & Barenholtz, 2013). The results in Chapter 5 illustrate that face-voice 

matching is sensitive to the type of procedure employed (Experiments 2a, 2b, and 2c). This 

finding warns against assuming that the order results from crossmodal matching tasks 

(Kamachi et al., 2003; Lachs, 1999; Lachs & Pisoni, 2004a, 2004b; Lander et al., 2007) 

generalise to other types of tasks. Order effects have not been investigated using alternative 

matching procedures.  

In each matching experiment in which faces and voices, or face-voice combinations 

were presented sequentially (Experiment 2a, 2b, 3a, 3b, 4a, 5a, 5b, 5c and 5d), a manipulation 

of order was included. Accuracy on a 2AFC task did not differ across order conditions, either 

when the faces were dynamic or static (Experiments 2a, 2b). This replicated the results of 

audiovisual speech perception studies (Kamachi et al., 2003; Lachs, 1999; Lachs & Pisoni, 

2004a, 2004b; Lander et al., 2007). No previous face-voice matching studies have 

investigated order effects in same-different tasks. Employing this procedure in Chapter 7, the 

results showed no difference in terms of sensitivity between the A-V and V-A conditions 

(Experiment 4a). The clear lack of difference in terms of hit rates across all of these 

experiments indicates that despite faces offering more reliable identity information 

(Damjanovic & Hanley 2007; Hanley & Turner 2000; Stevenage et al., 2011, 2012, 2013, 

2014b; Stevenage & Neil, 2014), being presented before the voice(s) does not increase 

sensitivity to identity matches. Based on the results from Experiment 1, this may be because 

people make such similar judgements about people from their faces and voices.  
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 The results from Chapter 8 are interpreted as providing evidence that face-voice 

matching depends on making identity decisions based on comparing high quality visual and 

auditory representations. Following a 1 second interval, it is likely that both visual and 

auditory representations of faces and voices are still in a high capacity immediate memory 

store (Glanzer & Cunitz, 1966; Lu et al., 1992; Sligte et al., 2008; 2009; Treisman, 1964; 

Wickelgren, 1969). Therefore, in terms of perceptual quality, the order of stimulus 

presentation should not matter. This is what we found in Experiments 2a, 2b and 4a. 

Observed modality effects in sensory memory, whereby auditory representations 

persist longer than visual representations (Crowder & Morton, 1969; Penney, 1985), predict 

that the order manipulation might have been more likely to affect performance in experiments 

including longer (>1 second) inter-stimulus intervals (Chapter 8: Experiment 5a, 5b, 5c and 

5d). The voice in the A-V condition would perhaps have been of a higher perceptual quality 

than the face in the V-A condition, thereby boosting accuracy. However, hit rates did not 

differ across order conditions in any of the experiments in Chapter 8. The specific duration of 

the inter-stimulus intervals might explain why this was the case. By 5 seconds, it is likely that 

both visual and auditory representations have already passed, or are at least in the process of 

passing, to the short term memory stores (Glanzer & Cunitz, 1966; Lu et al., 1992; Sligte et 

al., 2008; 2009; Treisman, 1964; Wickelgren, 1969). In this case, modality effects in sensory 

memory would no longer be relevant. Future research might investigate the time-course of 

accurate face-voice matching in more detail, employing 2, 3 and 4 second inter-stimulus 

intervals to further test order effects.  

In employing same-different procedures (Experiments 4a, 5a and 5b), we were able to 

test not only sensitivity, as with 2AFC tasks (Experiments 2a and 2b), but also whether order 

affected specificity and response bias. Discussion of this set of results is more appropriately 

addressed in the following section (9.3.5).  



 

 
158 

9.3.5 Research question 5: How do response biases operate in face-voice 

matching? 

Despite all previous face-voice matching studies using variations of a 2AFC procedure 

(Kamachi et al., 2003; Krauss et al., 2002; Lachs & Pisoni, 2004a, 2004b; Lander et al., 2007; 

Mavica & Barenholtz, 2013), none have tested whether presenting the same identity stimulus 

in position 1 or 2 affects accuracy. Some literature suggests that 2AFC procedures might be 

inherently biased (Dyjas et al., 2012; Garcia Perez et al., 2010, 2011; Rammsayer & Ulrich, 

2012; Ulrich & Vorberg, 2009; Yeshurun et al., 2008). When using this procedure to 

disentangle contradictions between previous studies, the data were analysed for position 

effects (Experiments 2a, 2b and 2c), and a clear temporal position bias was observed. When 

the two alternatives in a 2AFC task were presented sequentially, matching accuracy was 

higher if the correct (same identity) alternative appeared in position 1, compared to when it 

appeared in position 2 (Experiments 2a and 2b). When the two alternatives were presented 

simultaneously, there was no main effect of position, reflecting the absence of a spatial 

position bias (Experiment 2c).  

The presence of a temporal position effect highlights the biased nature of 2AFC 

procedures for testing face-voice matching. Having identified the bias (Experiments 2a and 

2b), it was necessary to account for it in order to clarify the decision processes informing 

performance. One possible explanation for the effect is that sensitivity differs according to 

position (Yeshurun et al., 2008). In order to rule this explanation out, it was necessary to test 

whether the bias still operated when the same identity stimulus was not present (Experiments 

3a and 3b). This bias did not reach significance, but in all conditions position 1 responses 

were numerically above 50%. The distribution of position 1 and position 2 responses was 

similar in Experiment 3a and 3b (target not present) to that in Experiment 2a and 2b (target 

present). Therefore, the results were more consistent with an explanation based on 
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participants exhibiting decision bias under uncertainty than an explanation based on differing 

sensitivity across conditions (García-Pérez & Alcalá-Quintana, 2010).  

The results of Experiments 3a and 3b did not clarify why the bias manifested in this 

particular pattern, with the alternative presented in position 1 consistently being favoured. It 

was clear from considering Experiments 2a and 2b together that it was not because of 

pressures on sensory memory. The results of Experiment 2a, in which all of the stimuli were 

presented sequentially, appear to be consistent with the interpretation that quickly degrading 

representations make it easier to compare the first stimulus to the alternative in position 1 

than the alternative in position 2. However in Experiment 2b, faces-voice combinations were 

presented simultaneously. The position bias persisted even when the memory load was 

reduced. On the basis of these results, it seems more likely that the observed position bias 

operated because of a general tendency to attribute common identity to faces and voices, 

perhaps influenced by the fact that faces and voices belonging to the same person most 

commonly occur close together in time during social interactions. This question has not been 

addressed in the previous literature.  

A same-different procedure was adopted in Experiments 4a, 4b, 5a, 5b, 5c and 5d. In 

line with expectations based on the results of the 2AFC Experiments (Experiments 2a, 2b,2c, 

3a and 3b), there was evidence of an overall bias to respond that faces and voices share the 

same identity. Same identity responses were made above chance level in experiments with a 1 

second inter-stimulus interval (Experiments 4a and 4b), undermining accuracy on different 

identity (noise) trials, but supporting accuracy on same identity (signal) trials. Accordingly, 

in Experiments 4a and 4b there was a main effect of identity. Participants were significantly 

more accurate on same identity trials. There was also a main effect of identity when the inter-

stimulus interval was 5 seconds (Experiment 5a and 5c) and 10 seconds (Experiment 5b and 

5d), but this did not equate to an overall bias to assume that novel faces and voices belong to 
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the same identity. The results of Experiments 5a, 5b, 5c and 5d show that the bias operates 

according to temporal contiguity, which helps to explain the position bias pattern observed in 

Experiments 2a and 2b. The participants were more likely to accept the first combination 

presented to them in time (position 1), thereby ruling out the second alternative (position 2).  

It is useful to consider the consistent main effect of identity (Experiment 4a, 4b, 5a, 

5b, 5c and 5d) in the context of the person recognition literature. A pattern of responses 

reflecting asymmetric performance on noise and signal trials, typically with higher accuracy 

on signal than noise trials, is common in both unfamiliar face recognition (Bruce, Burton, & 

Dench, 1994; Hancock, Burton & Bruce, 1996; Lewis & Johnston, 1997; Vokey & Read, 

1992), and unfamiliar face matching (Bruce et al., 1999; Megreya & Burton, 2006, 2007). 

Similarly, voice recognition studies frequently observe a particularly high rate of false 

positives on voice lineups (Kerstholt et al., 2004; Yarmey & Matthys, 1992). This is not 

consistent with the robust mirror effect observed in recognition studies using non-human 

stimuli such as high and low frequency words (see Glanzer & Adams, 1985, 1990; Glanzer, 

Adams, Iverson & Kim, 1993). The mirror effect refers to a situation when recognition 

performance on signal trials mirrors performance on noise trials. In this case the hit rate and 

true negative rate would be very similar. The reason for the unrelated nature of these two 

aspects of performance using human stimuli is not altogether clear (Megreya & Burton, 

2007), but it is plausible that the explanation relates to social functioning. That is to say, the 

cost of an incorrect positive response to human stimuli may be greater than the cost of an 

incorrect negative response. Therefore, in the case of recognition it might be more important 

to be able to recognise someone you have previously encountered than to know that you have 

never seen them before. Perhaps in the case of face-voice matching there is some adaptive 

value in being able to identify congruence over incongruence. For example, identifying 
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congruence would be crucial in helping to quickly direct attention from an unfamiliar 

person’s voice to their face. 

Although the order of stimulus presentation does not affect sensitivity (see section 

9.3.4), it does appear to affect the bias to respond same identity. In Experiment 4a, the 

accuracy analysis showed a significant interaction between identity and order. Specificity was 

better in the A-V condition than in the V-A condition. Although the matching response 

analyses revealed a significant bias in both order conditions, the interaction reflected a 

stronger bias in the V-A condition. The same pattern of results was observed in Experiments 

5a and 5c, showing that as well as being stronger, the response bias in the V-A condition also 

withstands a longer inter-stimulus interval (5 seconds). After 5 seconds the bias in the A-V 

condition had disappeared (Experiments 5a and 5c). Section 9.3.4 explains that modality 

effects are unlikely to account for observed face-voice matching performance in the reported 

experiments. The order effect according to bias is more likely attributable to the strength of 

identity information associated with faces and voices (Damjanovic & Hanley 2007; Hanley & 

Turner 2000; Stevenage et al., 2011, 2012, 2013, 2014b; Stevenage & Neil, 2014). The bias is 

stronger when the face is presented before the voice. As faces provide more reliable cues to 

identity than voices, it is feasible that voices tend to be subsumed by the identity of preceding 

faces. During conversations it is possible to view a face continuously, but voices are only 

audible when the interlocutor is speaking. It makes sense to rely on the face to a greater 

extent as a cue to identity, automatically accepting a voice as belonging to the same person.  

9.4 Considering face-voice matching performance within an overarching framework 

Face-voice matching performance exhibits a number of characteristics that are evident 

when considering the 12 experiments in this thesis together as a whole. The following section 

attempts to account for these characteristics within a single framework. 
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Face and voice processing are integrated processes. Because of this, people can access 

crossmodal identity information present in both static faces and voices, and dynamic faces 

and voices. Although dynamic faces and voices also share information about idiosyncratic 

speaking style, this information is not more informative during matching tasks than the 

identity information shared with static faces. If it were we could expect a significant 

difference between static and dynamic conditions when faces and voices were separated by 1 

second. No such effect was observed (Experiments 2a, 2b, 4a, 4b). However, because speech 

information is time-varying, this information may be more tolerant to temporal offsets and 

pauses; the information can be accessed as a fallback when redundant identity information is 

less easy to access. This likely explains why dynamic face-voice matching is above chance 

level when the test element of matching tasks are extended beyond a few seconds, but static 

face-voice matching is not (Experiments 2a, 2b, 5a, 5b). However, the value of this 

information should not be overstated because even this additional dynamic information is 

susceptible to disruption, as shown by the fact that performance was at chance level in the 

dynamic condition of Experiments 5c and 5d, which included a fixation and beep.  

 Maintaining access to redundant information across faces and voices in complex 

social settings featuring a number of different speakers, as well as numerous other visual and 

auditory events, would likely impose a huge cognitive load without offering appreciable 

benefits. The transient nature of overlapping face-voice identity information therefore makes 

sense, and may explain why people exhibit a bias to attribute a face and voice to the same 

identity. As faces and voices of the same person often occur close together in space and time, 

this bias provides a useful cognitive shortcut. It could be viewed as an additional guarantee 

that faces and voices belonging to the same person will be correctly attributed to the same 

identity as a way of organizing the social environment in a meaningful and useful way. This 
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would explain the nature of the temporal position bias observed in Experiments 2a and 2b, as 

well as the overall bias to respond same in Experiments 4a and 4b.  

 The fact that the bias operates more strongly in the V-A condition than the A-V 

condition probably reflects matching decisions being driven by identity information rather 

than information about idiosyncratic speaking style. This explanation links to the conclusion 

that overlapping speech information is only additionally helpful when this identity 

information is unavailable. Identity signals emanating from faces are stronger and more 

reliable than those emanating from voices (Stevenage et al., 2011, 2012, 2013). It is logical 

that identity signals from faces have a further reach and are therefore more likely to 

encompass a voice than a voice would be to encompass a face. In keeping with this 

explanation, when speech information is relied upon to inform accurate matching decisions, 

as in Experiment 5b where there was a significant difference between static and dynamic 

face-voice matching, no bias was observed in either the A-V or the V-A condition.  

 Overall, the results are consistent with the conclusion that the process of face-voice 

integration begins at an early perceptual stage. It is facilitated by the presence of redundant 

information. Capitalising on these redundancies is possible even when people have not been 

exposed to a person’s face and voice co-occurring in real life. This ability is not perfect, but 

provides a useful foundation for full integration at later perceptual stages, as explained in the 

following section.  

9.5 Putting face-voice matching in the context of the wider literature 

The early face-processing literature suggested that face-voice integration occurs 

purely at the post-perceptual PIN stage (Burton et al., 1990; Ellis et al., 1997). According to 

the IAC model, the PIN contains multimodal signature information about people (e.g. their 
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facial appearance, the sound of their voice, the style of their handwriting), and is strengthened 

during the process of familiarisation (Burton et al., 1990). The findings presented here are not 

wholly consistent with the interpretation that integration only occurs at this stage of face and 

voice processing. Throughout this thesis it has been shown that unfamiliar faces and voices 

belonging to the same person offer redundant information, and that unfamiliar face-voice 

matching is possible. These results reflect that the processing of facial and vocal identity 

information is not totally independent, and is not contingent on familiarisation. The results 

are therefore more consistent with, and extend, the recent literature highlighting the existence 

of early perceptual integrative mechanisms between face and voice processing pathways (e.g. 

Belin et al., 2004). The observation of accurate face-voice matching may help to clarify, or at 

least to formulate hypotheses about, the construction of multisensory person representations. 

Even after 2 seconds exposure to novel faces and voices, people can make accurate identity 

matches (Experiments 2a, 2b, 2c, 4a, 4b). Awareness of redundant face-voice information 

following such limited exposure, and in the absence of familiarity, may facilitate the building 

of stable multisensory representations.  

As referred to in Chapters 7 and 8, it seems likely that face-voice redundancies 

provide an important foundation for the successful integration of visual and auditory speech 

information. The bias to respond same exhibits the same asymmetrical pattern as that 

observed in studies investigating audiovisual speech integration. Successful integration can 

tolerate auditory lags better than visual lags (Munhall et al., 1996; Robertson & 

Schweinberger, 2010; Van Wassenhove et al., 2007). Redundancies may additionally act as a 

foundation for the integration of identity and affect information. There is evidence that 

bimodally available emotion information plays an important role in social functioning. For 

example, categorisation of affect is faster when expressed in the face and voice, compared to 

when it is available in just one modality (e.g. Collignon et al., 2008; Kreifelts, Ethofer, 
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Grodd, Erb, & Wildgruber, 2007). In terms of identity, a number of studies have 

demonstrated the existence of crossmodality priming (Ellis et al., 1997; Schweinberger et al., 

1997; Stevenage et al., 2012; Stevenage, Hale, Morgan & Neil, 2014a). The ability to easily 

exploit redundancies may be important when building multimodal identity representations 

during the process of familiarisation, helping to support rapid identity decisions.  

Overall, this thesis highlights the value and importance of considering person 

perception from a multimodal point of view. This is consistent with recent advances in the 

field and the current state of thinking (see Schweinberger et al., 2014). Person stimuli are best 

understood as coherent, multimodal wholes. Ignoring this risks attending to artificial 

constituent parts that do not adequately reflect how people are actually perceived in day-to-

day life. 

9.6 Limitations of the stimulus set 

The corpus (Cooke et al., 2006) used in this thesis contained 34 stimulus individuals, 

but only 18 of these were matched for age (18-30) and ethnicity. Using a sample matched on 

these dimensions was critical in order to address gaps in the literature. Previous studies 

offered contradictory results, but all had tested face-voice matching using highly homogenous 

stimulus samples (Kamachi et al., 2003; Lachs & Pisoni, 2004a, 2004b; Lander et al., 2007; 

Mavica & Barenholtz, 2013). For the present purposes therefore, homogeneity was an 

advantage. However, in terms of maximising generalisabilty it would be desirable to test 

face-voice matching with a much wider range of individuals in the future.  

Guaranteeing homogeneity involved compromising on stimulus sample size, and not 

including 16 of the people featured in the corpus. This is a limitation of the thesis. Having 

only 18 stimulus people in the sample meant that there were a small number of trials in each 

experiment: 12 trials in 2AFC experiments, and 18 in same-different experiments. Although 
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it would have been possible to increase power by repeating trials, this would have introduced 

the possibility that participants could have learnt face-voice associations, and responded 

according to decisions taken in previous blocks.  

Considering the high level of variability associated with stimuli, it would certainly be 

advantageous to have access to a larger set of stimuli for testing face-voice matching 

accuracy. Future face-voice matching studies should aim to use more stimuli than was 

unfortunately practicable here. Nevertheless, stimulus variability was minimised in each 

experiment by matching the stimuli in each trial for sex, ethnicity, and age. All of the people 

in this stimulus set were from similar educational backgrounds (Cooke et al., 2006), and none 

exhibited strong regional accents. Although Simmons et al. (2011) recommend sample sizes 

in excess of 20, many studies have used far smaller samples when investigating person 

perception (see Wells & Windshitl, 1999), as have other face-voice matching studies (e.g. 

Lachs & Pisoni, 2004a). Furthermore, multilevel modelling enabled us to generalise from 

stimuli as well as participants. Even in studies using a large sample of stimuli, 

generalisability is limited by the common practice of aggregating over stimuli (Clark, 1973; 

Wells et al., 2013; Judd et al., 2012). Ultimately, the question of adequate sample size of 

stimuli or participants in experimental designs such as those reported here is a question of 

statistical power (e.g., see Westfall, Kenny & Judd, 2014). 

One further limitation of the stimulus set was the potential for content overlap across 

voice clips. Although each of the 1000 sentences spoken across and within speakers were 

unique, the sentences were made up of a relatively small pool of words. Therefore, it is 

possible that some of the sentences spoken by the dynamic face and voice could have 

featured the same words. However, as dynamic and visual articulations were extracted from 

separate videos, the words were articulated on different occasions. This means that the 

participants would not have been able to perform exact pattern matching. Although it is of 



 

 
167 

course plausible that the participants could have attempted to use articulatory matching of 

specific words in order to inform their decisions, the overall results presented both in the 

previous literature and in this thesis do not support the conclusion that this extra information 

is likely to have been particularly helpful. The previous literature has shown that overlap in 

the style/manner in which a sentence is said is far more informative than overlapping content 

in terms of supporting face-voice matching accuracy (Kamachi et al., 2003; Lander et al., 

2007). Had overlapping content been especially beneficial, significant differences between 

static and dynamic face-voice matching would have occurred consistently. As it was, there 

was only a significant difference in one single experiment (Experiment 5b). 

9.7 Implications for future research 

The results in this thesis offer a number of recommendations for future research. The 

most specific recommendation relates to the investigation of face-voice integration. People 

exhibit knowledge of face-voice identity concordance prior to familiarisation (Experiments 

2a, 2b, 2c, 4a, 4b and 5a). This must be taken into account when designing integration 

experiments. The results of some behavioural studies demonstrating priming effects (e.g. 

Ellis et al., 1997; Stevenage et al., 2012 etc.), and interference effects (e.g. Schweinberger et 

al., 2007) could in fact be attributed to cognitive processes separate from the kind of 

perceptual binding which occurs during the process of familiarisation. Familiarisation 

involves a multimodal person representation being stored in memory (Burton et al., 1990). 

However, it may in fact be the case that participants can capitalise on face-voice 

redundancies even when they have had no prior exposure to a person. Testing participants 

using novel faces and voices should be included as a control condition to help establish 

whether observed effects are exclusively attributable to face-voice integration following 

familiarisation.  
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A more serious issue is that some studies have tested integration effects using 

supposed face-voice pairs that in fact belong to different people. Joassin et al. (2011) used 

faces from the Stirling Face Database, and (Belgian) voices recorded in the laboratory to 

measure brain activity with functional magnetic resonance imaging (fMRI) during unimodal 

and bimodal recognition. Faces and voices from the same person should be used when 

addressing face-voice integration in person perception; people may respond to them 

differently compared to faces and voices that do not share an identity. The results from 

studies failing to satisfy this criterion may have limited generalisability to everyday social 

contexts.  

 A further recommendation relates to methods of statistical analysis. Based on 

hypotheses informed by the face-space model (Valentine, 1991), plus the existence of inter-

stimulus variability in terms of how faces look and voices sound (Burton, 2013; Stevenage & 

Neil, 2014; Valentine et al., 2015), the use of multilevel modelling was strongly 

recommended in Chapter 3 (see section 3.3.1). In all the experiments reported here, there was 

a high level of variability at the stimuli level, showing that people differ in the extent to 

which they look and sound similar. Notably, in the majority of experiments, inter-participant 

variability was limited. Participants tended to respond similarly to the same stimuli. This 

finding suggested one possible explanation for previous contradictions in the literature 

(Chapter 5). In this case, using traditional ANOVA would have led to a different set of results 

and conclusions, as demonstrated by the results presented in Appendix A. Therefore, it is 

important to underline previous recommendations (Clark, 1973; Judd et al., 2012; Kreft & De 

Leeuw, 1998) calling for studies using sets of variable stimuli (e.g. faces, voices, words etc.) 

to employ multilevel modelling as a matter of course.  

The last recommendation for future research is the most general. 2AFC tasks have 

traditionally been a staple of psychological investigation into a wide variety of topics. Whilst 
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it would be highly naïve to expect this procedure to never be used in the future, it is important 

to highlight some issues associated with its use. The reported results support calls for caution 

regarding 2AFC tasks (Garcia-Perez & Alcala-Quintana, 2010, 2011; Yeshurun et al., 2008). 

The procedure certainly does not appear to represent an unbiased way of testing performance, 

as has been previously suggested (Green & Swets, 1973; Macmillan & Creelman, 2005; 

Wickens, 2002). If 2AFC tasks are to be used in experiments, it is necessary to appropriately 

interrogate the results, considering whether there is a position effect, whether the position 

effect is temporal or spatial, and why the position effect manifests according to a particular 

pattern. Depending on the research question, having considered these issues, it may be 

necessary to account for the results by using alternative tasks (e.g. same-different) to 

disentangle decision processes driving performance.  

9.8 Outstanding research questions and possible future directions 

 Face-voice matching has been addressed in very few studies. However, this is an issue 

with theoretical implications in terms of multimodal person perception. The topic also has 

applied relevance (Section 9.9). Clearly additional research is necessary in order to further 

clarify how face-voice matching operates. A number of outstanding research questions arise 

from the findings presented in this thesis, some of which are considered below.  

If, as suggested in Chapter 8, accurate face-voice matching relies on comparing high-

quality perceptual representations, further strengthening these perceptual representations by 

increasing temporal exposure to faces and voices might improve performance. As emphasised 

by previous research, although face and voice information is processed in parallel, this does 

not mean that the processes are identical (Belin et al., 2004). In all of the experiments in this 

thesis, the exposure time to faces and voices was equal (2 seconds). Comparing whether 
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matching is more accurate if exposure time to the face or voice is increased would address the 

relative contribution of face and voice information to matching decisions.  

 In this thesis, primarily British participants were tested using exclusively British 

stimuli. In keeping with the own-ethnicity bias in face recognition, the ability to match faces 

and voices might have an important cultural underpinning relating to expertise and exposure 

(e.g. see Levin, 2000; Meissner & Brigham, 2001; Tanaka, 2001). For instance, British 

participants might have expertise in exploiting concordant information to make accurate face-

voice matching decisions when the stimuli are British, but not when the stimuli are, for 

example, Japanese or African. Expertise might play a role in enabling accurate matching 

because of cultural differences in voice production. For example, in Japan women speak with 

a higher pitch than Western women in order to appear modest, polite and feminine (Loveday, 

1981; van Bezooijen, 1995, 1996). This could make it difficult for British people to match 

Japanese faces and voices for identity. 

 Very recently, Stevenage, Hamlin and Ford (2015) considered what types of strategies 

people might be using to reach accurate face-voice matching decisions. They found that the 

strategies identified by participants did not predict performance. However, although 

overlapping cues might be present in faces and voices (Experiment 1) this does not mean that 

people necessarily utilise the most informative cues when making a matching decision. They 

might not even be conscious of the influences operating on their choices. Further research 

might investigate whether it is possible to prime participants to use the most informative 

cues, and therefore improve the accuracy of their matching decisions. For example, the 

results presented in Experiment 1 showed that the correlation between faces and voices on a 

scale of masculinity/femininity was .95. Participants could be instructed to try and base their 

identity decisions on whether the face and voice exhibited similar levels of perceived 
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masculinity/femininity. Accuracy might be significantly higher than if they used a less 

informative cue, such as weight.  

9.9 Applied relevance of the findings 

Following a crime, witnesses might be required to identify a perpetrator at lineup 

from their face, and in some cases from their voice. Both types of evidence can be admitted 

to court, and often constitute pivotal evidence. Unfamiliar voice identification is particularly 

unreliable (Ormerod, 2001), and is significantly less accurate than face identification 

(Stevenage et al., 2011, 2012). Performance is frequently at chance level (Yarmey, 2007), 

which suggests that voice lineup decisions are based on guessing. This poses a particular 

problem if the witness never sees the perpetrator’s face, but does hear his/her voice. The 

results of Chapter 4 suggest that certain information provided by a voice might still be useful 

in a forensic setting. People tend to agree with each other about judgements made from faces 

and voices, and also make similar judgements based on faces and voices (Experiment 1). 

Therefore, witnesses’ perception of the perpetrator based on their voice (e.g. in terms of 

masculinity femininity, health or height), providing this perception was well retained in 

memory, is likely to correspond to the way that person looks. An earwitness’ information 

might be useful in helping to narrow down a list of suspects, or perhaps images of suspects 

captured by CCTV.  

The findings have further forensic implications in terms of mapping identity 

blueprints. The SuperIdentity (SID) Project (Guest, Miguel-Hurtado, Stevenage, Neil & 

Black, 2014) adopts a multimodal and multi-dimensional approach to the investigation of 

identity. The project tests how elements of identity, expressed across different contexts (e.g. 

face, voice and behaviour) link together to create an holistic biometric ‘picture’. The 

generation of identity maps has obvious utility for security and intelligence services. The 
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experiments presented in this thesis demonstrate clear links between face and voice identity 

as identified by humans. The SID Project has considered the differences between diagnostic 

identity decisions made by machines and humans (Stevenage, Walpole, Neil & Black, 

2014c), although not in the context of face-voice matching. Covert recordings of voices 

might be used in court as evidence. It is possible to imagine a situation when a voice 

recording needs to be compared to a mugshot, or perhaps to the image of a deceased person. 

Future research might consider whether machines can isolate features of the voiceprint that 

predict visual structural features of the face, even whether they can categorise faces and 

voices according to identity. This is theoretically possible if hormonal profiles affect facial 

structure (Miller & Todd, 1998; Penton-Voak & Chen, 2004; Perrett et al., 1998; Thornhill & 

Grammer, 1999) as well as the physiology of the vocal apparatus (Abitbol et al., 1999; 

Beckford et al., 1985; Hollien, 1960; O’Connor et al., 2011). Human performance will likely 

rely on alternative strategies, and be influenced differently by bias (Dror & Charlton, 2006; 

Dror & Hampikian, 2011; Nakhaeizadeh, Dror & Morgan, 2014). Bias clearly affects face-

voice matching performance (Experiments 2a, 2b, 3a, 3b, 4a, 4b), and as suggested above, 

encouraging people to attend to the most informative redundant cues when making a 

matching decision might optimise human accuracy. Therefore, a high level of diagnosticity 

could potentially be achieved by taking into account responses generated by both humans and 

machines.  

The reported findings are also relevant to the entertainment industry. British and 

American films are commonly exported to other countries, where actors’ voices are dubbed 

in the native language. Dubbing is now far more common than subtitling in many countries 

because it imposes less of a cognitive load, and also improves impact and the feeling of 

presence (Chaume, 2013; Wissmath, Weibel & Groner, 2009). Voice actors frequently 

provide dubbing voices for more than one British/American actor. Although of course a 
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British or American actor could not feasibly provide their own voice for dubbing in a 

different language, it would be advisable for dubbing companies to carefully check whether 

the different identity face-voice pairs were perceived as being a good match. Perhaps obvious 

incongruence might be distracting, or make the characters less convincing. Future research 

could consider whether very seemingly wrong face-voice pairs compromise the ability of the 

audience to follow the story line. Disjointed identities could be disorienting, or might 

significantly affect the audience’s perceived enjoyment of the film. This could have financial 

implications for the film industry.  

9.10 Conclusion 

This thesis makes a number of original contributions to the existing literature, 

providing a clearer understanding of face-voice matching performance than it is possible to 

glean from previous studies. The results show that people look and sound similar. Faces and 

voices presented close together in time can be accurately matched for identity, although a 

bias operates to make it more likely that faces and voices will be attributed to the same 

identity. The overall findings offer some clues about how people might successfully navigate 

complex social situations. In addressing issues relating to experimental procedure, 

highlighting the shortcomings of 2AFC tasks, as well as the need to use multilevel modelling 

when analysing face and voice data, this thesis draws to attention a number of 

methodological issues of more general application to the investigation of face and voice 

processing. Considering the clear theoretical and applied relevance of face-voice matching, 

this is an important topic for the future.  
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APPENDIX A: COMPARISON OF MULTILEVEL MODELLING AND 

TRADITIONAL ANOVA ANALYSES 

Chapter 3 argued that appropriate analysis of face and voice data is crucial. Unlike 

conventional analyses, which tend to aggregate over stimuli, multilevel modelling takes into 

account the potentially huge amount of variability associated with both faces (Burton, 2013) 

and voices (Stevenage & Neil, 2014). The results of traditional analyses compared to 

multilevel modelling can have a significant impact on resulting conclusions (Quené & Van 

den Bergh, 2004). In order clearly illustrate the necessity of using multilevel modelling to 

investigate face-voice matching, Appendix A compares the analysis of data from Experiment 

2a (as reported in section 4.2.2) to an analysis of the same data using traditional ANOVA.  

In Experiment 2a, participants completed a standard 2AFC crossmodal matching task 

(Lachs, 1999) in which all stimuli were presented sequentially (see Figure 4.1).  

A.1 Experiment 2a: Analysis using multilevel models 

By way of a recap, the multilevel modelling analysis showed a main effect of 

position, as well as 3-way interaction between position, order and facial stimulus type (see 

Table 4.1). Overall matching accuracy was significantly above chance level. However, when 

data was broken down into the two facial stimulus type conditions, dynamic face-voice 

matching was above chance level, but static face-voice matching was not (see Figure 4.2).  

A.2 Experiment 2a: Analysis by traditional ANOVA  

A conventional analysis of these data would involve aggregating over stimuli, and 

running a mixed 2 x 2 x 2 ANOVA. The results of this analysis are presented in Table A.1.  
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Table A.1 

F ratios for the mixed factorial ANOVA 

Source F(1,80) p ηp
2  

Position 22.237 <.001 .218 

Order 2.362 .128 .029 
Facial stimulus type 2.079 .153 .025 

Position x Order 0.930 .338 .011 
Position x Facial stimulus type 0.047 .828 .001 

Order x Facial Stimulus type 0.648 .423 .008 
Position x Order x Facial stimulus type 3.477 .066 .042 

This analysis shows that the main effect of position was significant. There were no 

other main effects and no interactions. Figure A.1 shows mean matching performance (with 

95% CI error bars) in each condition calculated using ANOVA.  

 

Figure A.1: Re-analysis of Experiment 2a data using traditional ANOVA: Face-voice 

matching accuracy on V-A (panel A) and A-V (panel B) trials for sequentially presented faces 

and voices in a 2AFC task. Error bars show 95% CI for the condition means 
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Performance was significantly above chance (50%) level for both static, M = 56.10%, 

95% CI [51.58%, 60.62%], and dynamic, M = 61.18%, 95% CI [55.67%, 66.68%] 

conditions.  

A.3 Comparison of resulting conclusions from both analyses 

As previous studies had variously found static face-voice matching to be either at 

chance level (Lachs & Pisoni, 2004a; Kamachi et al., 2003) or above chance level (Krauss et 

al., 2002; Mavica & Barenholtz, 2013), the main aim of Experiment 2a was to make a 

preliminary attempt to resolve these contradictions, testing whether static face-voice 

matching was significantly above chance using a standard crossmodal matching procedure 

(Lachs, 1999).  

Conclusions based on the overall pattern of main effects and interactions in each 

analysis were not markedly different. Both analyses detected the main effect of position, with 

higher levels of accuracy when the same identity stimulus appeared in position 1 compared to 

position 2. The multilevel analysis detected a three-way interaction between position order 

and facial stimulus type, but the ANOVA did not. However, this non-predicted interaction 

(which was only just significant) did not affect the general conclusion.  

As noted in Chapter 5, the multilevel modelling analysis showed the variance 

associated with stimuli to be much higher than the variance associated with participants. The 

variance associated with stimuli is not accounted for in the ANOVA, resulting in the 

condition means being slightly different in the two analyses, and the 95% CIs being wider in 

the multilevel modelling analysis. The most notable difference between the two sets of results 

is clear when comparing Figures 5.2 and A.1. Whilst static face voice matching is above 

chance when data is analysed using ANOVA, it is at chance level when analysed using 
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multilevel modelling. This difference is crucial to the conclusions reached in Chapter 5, and 

to explaining the previous contradictory sets of results in the literature.  

In Chapter 5, above-chance static face-voice matching was found to be procedurally 

dependent. This was notable because previous studies have employed a number of different 

procedures. A further explanation for contradictions was that some people look and sound 

more similar than others. Traditional ANOVA analyses would not have detected evidence of 

either conclusion in the data. 
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APPENDIX B: STIMULI: IMAGES, RATINGS AND TRANSCRIPTS 

The stimulus set used throughout this thesis is described in Chapter 3 (see section 

3.4.1) In the following pages, further details are provided about each of the stimuli. For each 

stimulus person (1-18), the following information is included: 

• The static facial image 

• The transcript for the voice recording 

• The transcript of the muted sentence articulated by the dynamic face 

In Experiment 1, participants rated the stimuli on scales for masculinity/femininity, 

health height, and weight. They also estimated the age of the person in years. Facial stimulus 

type was manipulated between subjects, so participants either rated static faces and voices, or 

dynamic faces and voices. Both sets of results are illustrated for each stimulus person (1-18).  

The figures depict the mean rating on each of the scales. As indicated in the legend, 

face ratings are shown by a filled black dot, and voice ratings are shown by a white dot. The 

error bars show 95% CIs for the mean ratings. 
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Person 1 
 

 
 
 
 
Mean ratings of voice and static face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mean ratings of voice and dynamic face 
 
 
 
 

Le gend 
 
 
 
 
 
 
Legend 
 

 
 
 

Voice:     “set green at L 8 soon” 

 

Dynamic face (muted):  “set blue at K 2 again” 
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Person 2 
 

 
 
 
 
Mean ratings of voice and static face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mean ratings of voice and dynamic face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend 
 

 
 
 

Voice:     “place red by V 4 please” 

 

Dynamic face (muted):  “set green by B 9 again” 
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Person 3 
 

 
 
 
 
Mean ratings of voice and static face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mean ratings of voice and dynamic face 
 

 
 
Legend 
 

 
 
 
 

Voice:     “set red by T 2 soon” 

 

Dynamic face (muted):  “bin blue at D 8 soon” 
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Person 4 
 

 
 
 
 
Mean ratings of voice and static face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mean ratings of voice and dynamic face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend 
 

 
 
 

Voice:     “lay red by J 4 soon” 

 

Dynamic face (muted):  “set white at T 4 again” 
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Person 5 
 

 
 
 
 
Mean ratings of voice and static face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mean ratings of voice and dynamic face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend 
 

 
 
 

Voice:     “place green by P 3 please” 

 

Dynamic face (muted):  “set white in M 1 now” 
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Person 6 
 

 
 
 
 
Mean ratings of voice and static face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mean ratings of voice and dynamic face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend 
 

 
 
 

Voice:     “bin white with G 8 please” 

 

Dynamic face (muted):  “bin blue by F 1 soon” 
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Person 7 
 

 
 
 
 
Mean ratings of voice and static face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mean ratings of voice and dynamic face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend 
 

 
 
 

Voice:     “lay white by D 3 please” 

 

Dynamic face (muted):  “set white by G 4 soon” 
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Person 8 
 

 
 
 
 
Mean ratings of voice and static face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mean ratings of voice and dynamic face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend 
 

 
 
 

Voice:     “bin blue with Q 6 now” 

 

Dynamic face (muted):  “bin white at Y 4 now” 
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Person 9 
 

 
 
 
 
Mean ratings of voice and static face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mean ratings of voice and dynamic face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend 
 

 
 
 

Voice:     “place white at U 2 please” 

 

Dynamic face (muted):  “set blue by F 1 again” 
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Person 10 
 

 
 
 
 
Mean ratings of voice and static face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mean ratings of voice and dynamic face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend 
 

 
 
 

Voice:     “bin green at G 8 please” 

 

Dynamic face (muted):  “bin red at M 0 please” 



 

 
226 

Person 11 
 

 
 
 
 
Mean ratings of voice and static face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mean ratings of voice and dynamic face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend 
 

 
 
 

Voice:     “set blue at Q 3 soon” 

 

Dynamic face (muted):  “set red at D 8 please” 
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Person 12 
 

 
 
 
 
Mean ratings of voice and static face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mean ratings of voice and dynamic face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend 
 

 
 
 

Voice:     “lay blue by J 3 now” 

 

Dynamic face (muted):  “lay white with L 1 please” 
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Person 13 
 

 
 
 
 
Mean ratings of voice and static face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mean ratings of voice and dynamic face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend 
 

 
 
 

Voice:     “place blue at U 3 again” 

 

Dynamic face (muted):  “place green in C 2 now” 
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Person 14 
 

 
 
 
 
Mean ratings of voice and static face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mean ratings of voice and dynamic face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend 
 

 
 
 

Voice:     “set white at G 9 please” 

 

Dynamic face (muted):  “bin white in E 7 now” 



 

 
230 

Person 15 
 

 
 
 
 
Mean ratings of voice and static face 
 

 
 
 
 
Mean ratings of voice and dynamic face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend 
 

 
 
 

Voice:     “set green at H 1 soon” 

 

Dynamic face (muted):  “place red by I 0 please” 
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Person 16 
 

 
 
 
 
Mean ratings of voice and static face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mean ratings of voice and dynamic face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend 
 

 
 
 

Voice:     “bin red at Q 8 now” 

 

Dynamic face (muted):  “place green by P 2 now” 
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Person 17 
 

 
 
 
 
Mean ratings of voice and static face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mean ratings of voice and dynamic face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend 
 

 
 
 

Voice:     “lay green by D 2 now” 

 

Dynamic face (muted):  “place blue in F 4 now” 
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Person 18 
 

 
 
 
 
Mean ratings of voice and static face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mean ratings of voice and dynamic face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend 
 

 
 
 

Voice:     “place blue in U 8 please” 

 

Dynamic face (muted):  “place white at P 9 soon” 
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APPENDIX C: DATA SETS AND R SCRIPT 

Appendix C provides the data sets and executable R script for each experiment 

reported in this thesis. R is a free, open-source statistical package. In order to run the script, 

please first download the R package from: http://cran.r-project.org 

The data sets and script can be accessed via the following link: https://goo.gl/pnT97T 

The data sets and R code are in separate folders for each experiment. The following 

files can be accessed: 

Chapter 4_Exp 1 à Exp1.csv 

   Exp1_R script.R 

 

Chapter 5_Exp2a à  Exp 2a.csv 

   Exp2a_R script.R 

 

Chapter 5_Exp2b à Exp2b.csv 

   Exp2b_R script.R 

 

Chapter 5_Exp2c à Exp2c.csv 

   Exp2c_R script.R 

 

Chapter 6_Exp3a à  Exp3a.csv 

   Exp3a_R script.R 

 

Chapter 6_Exp3b à Exp3b.csv 

   Exp3b_R script.R 
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Chapter 7_Exp4a à Exp4a_Accuracy.csv 

   Exp4a_Accuracy_R script.R 

   Exp4a_MatchngResponse.csv 

   Exp4b_MatchingResponse_R script.R 

 

Chapter 7_Exp4b à  Exp4b_Accuracy.csv 

   Exp4b_Accuracy_R script.R 

   Exp4b_MatchngResponse.csv 

   Exp4b_MatchingResponse_R script.R 

 

Chapter 8_Exp5a à  Exp5a_Accuracy.csv 

   Exp5a_Accuracy_R script.R 

   Exp5a_MatchngResponse.csv 

   Exp5a_MatchingResponse_R script.R 

 

Chapter 8_Exp5b à  Exp5b_Accuracy.csv 

   Exp5b_Accuracy_R script.R 

   Exp5b_MatchngResponse.csv 

   Exp5b_MatchingResponse_R script.R 

 

Chapter 8_Exp5c à  Exp5c_Accuracy.csv 

   Exp5c_Accuracy_R script.R 

   Exp5c_MatchngResponse.csv 

   Exp5c_MatchingResponse_R script.R 

 

Chapter 8_Exp5d à  Exp5d_Accuracy.csv 

   Exp5d_Accuracy_R script.R 

   Exp5d_MatchngResponse.csv 

   Exp5d_MatchingResponse_R script.R 
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APPENDIX D: PUBLISHED ARTICLE: Smith, Dunn, Baguley & Stacey, 

(2016a) 

Article

Concordant Cues in Faces and Voices:
Testing the Backup Signal Hypothesis

Harriet M. J. Smith1, Andrew K. Dunn1, Thom Baguley1, and Paula C. Stacey1

Abstract
Information from faces and voices combines to provide multimodal signals about a person. Faces and voices may offer redundant,
overlapping (backup signals), or complementary information (multiple messages). This article reports two experiments which
investigated the extent to which faces and voices deliver concordant information about dimensions of fitness and quality. In
Experiment 1, participants rated faces and voices on scales for masculinity/femininity, age, health, height, and weight. The results
showed that people make similar judgments from faces and voices, with particularly strong correlations for masculinity/femininity,
health, and height. If, as these results suggest, faces and voices constitute backup signals for various dimensions, it is hypothetically
possible that people would be able to accurately match novel faces and voices for identity. However, previous investigations into
novel face–voice matching offer contradictory results. In Experiment 2, participants saw a face and heard a voice and were required
to decide whether the face and voice belonged to the same person. Matching accuracy was significantly above chance level, suggesting
that judgments made independently from faces and voices are sufficiently similar that people can match the two. Both sets of results
were analyzed using multilevel modeling and are interpreted as being consistent with the backup signal hypothesis.

Keywords
face, voice, static, dynamic, backup signal

Date received: September 18, 2015; Accepted: November 14, 2015

Together, faces and voices convey multimodal signals. Such
signals are common in animals and occur when information
about an underlying trait is communicated by more than one
modality. As most research has focused on face and voice
ratings independently of each other (Wells, Baguley, Sergeant,
& Dunn, 2013; Wells, Dunn, Sergeant, & Davies, 2009), rela-
tively little is known about multimodal signals in humans.
Multimodal signals are either backup signals (Johnstone,
1997), or multiple messages (Møller & Pomiankowski,
1993), and are likely to have adaptive value in terms of mate
choice. Backup signals are redundant in meaning: they offer
similar information and elicit the same response, thereby help-
ing to reduce inaccurate trait assessments (Møller & Pomian-
kowski, 1993). It is therefore possible to distinguish between
multiple messages and backup signals by empirically testing
the effect of multimodal signals on a recipient (Partan & Mar-
ler, 1999). If a multimodal signal present in human faces and
voices is a backup signal for a certain dimension, ratings on this
dimension should correlate, whereas uncorrelated ratings
would reflect the presence of multiple messages (Wells et al.,
2013; Wells et al., 2009).

Multimodal Signals in Faces and Voices

Faces and voices are salient social stimuli, offering a multitude
of identity and affective information (Belin, Fecteau, &
Bedard, 2004). From an evolutionary perspective, faces and
voices provide valuable clues about fitness. For example, in
terms of attractiveness they appear to constitute reliable and
concordant signals of genetic quality (e.g., Collins & Missing,
2003; Feinberg, 2008; Feinberg et al., 2005; Fraccaro et al.,
2010; Saxton, Caryl, & Roberts, 2006; Thornhill & Gangestad,
1999; Thornhill & Grammer, 1999; Wheatley et al., 2014;
Zahavi & Zahavi, 1997; see also Puts, Jones, & DeBruine,
2012 for a review), and a number of studies have found that
people who have faces that rate highly for attractiveness also
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tend to have voices that rate highly for attractiveness (e.g.,
Collins & Missing, 2003; Saxton et al., 2006, but see Oguchi
& Kikuchi, 1997; Wells et al., 2013).

With the exception of the attractiveness literature, previous
research has rarely compared judgments made from faces and
voices, focusing instead on judgments informed by a single
modality (e.g., Neiman & Applegate, 1990; Penton-Voak &
Chen, 2004; Perrett et al., 1998; Pisanski, Mishra, & Rendall,
2012). However, there are a number of reasons as to why we
may expect concordance between face and voice ratings in
terms of masculinity and femininity, health, age, height, and
weight. Some of these reasons are detailed below.

Masculinity/femininity. Levels of reproductive hormone levels are
likely to influence perceptions of both facial and vocal femi-
ninity and masculinity. For example, testosterone increases the
size and thickness of vocal folds (Beckford, Rood, & Schaid,
1985), resulting in lower fundamental frequency (Fant, 1960),
which influences perceptions of masculinity (Pisanski et al.,
2012). In addition, high levels of testosterone are associated
with characteristics of facial masculinity (Penton-Voak &
Chen, 2004; Perrett et al., 1998), such as larger jaws, chins,
and noses (Miller & Todd, 1998). In women, estrogen slows
down vocal fold development and is associated with higher
vocal pitch (Abitbol, Abitbol, & Abitbol, 1999; O’Connor,
Re, & Feinberg, 2011). Estrogen levels are also related to mar-
kers of facial femininity (Thornhill & Grammer, 1999) such as
larger lips, smaller lower faces, and fat deposits on the upper
cheeks (Perrett et al., 1998).

Health. We might also expect ratings of health made from faces
and voices to be similar. Previous research suggests that cues
relating to higher levels of reproductive hormones are reliable
indicators of fitness and quality (Folstad & Karter, 1992;
Thornhill & Gangestad, 2006; Zahavi & Zahavi, 1997), and,
indeed, some studies suggest that measures of sexual dimorph-
ism are linked to health ratings and actual health in both men
(Gray, Berlin, McKinlay, & Longcope, 1991; Rhodes, Chan,
Zebrowitz, & Simmons, 2003) and women (Ellison, 1999; Law
Smith et al., 2006).

Age. Faces and voices index information about biological age, a
cue which is relevant to reproductive fitness in both males and
females (Thornhill & Gangestad, 1999). Numerous visual mar-
kers act as indicators of older age, such as decreased elasticity
in the skin, wrinkles, discoloration, and reduced clarity in skin
tone (Burt & Perrett, 1995). In terms of voices, older people
speak with a slower speech rate (Linville, 1996), and age-
related hormonal changes affect pitch. For example, female
voice pitch lowers after the menopause, whereas older male
voices become higher pitched (Linville, 1996). People can esti-
mate a speaker’s age from their voice relatively accurately (to
within about 10 years; Braun, 1996; Neiman & Applegate,
1990; Ptacek & Sander, 1966; Smith & Baguley, 2014).

Height and weight. Body size is a further indicator of quality
(Collins & Missing, 2003; Thornhill & Gangestad, 1999).

However, although people tend to agree about height and
weight judgments made from a voice (Collins, 2000), this does
not indicate that they are necessarily accurate (Bruckert,
Liénard, Lacroix, Kreutzer, & Leboucher, 2006; Collins,
2000; van Dommelen & Moxness, 1995). Despite the apparent
inaccuracy of height judgments made from voices, people
judge height from faces with relative accuracy (Schneider,
Hecht, Stevanov, & Carbon, 2013), using cues such as facial
elongation. People with longer faces are judged as being taller
(Re et al., 2013). Judgments from faces are also accurate for
weight estimates (Coetzee, Chen, Perrett, & Stephen, 2010).
Lass and Colt (1980) compared visual and auditory height and
weight ratings. Results showed significant differences between
weight ratings from female faces and voices, suggesting that
for some characteristics, faces and voices may not offer con-
cordant information. Recent research has not addressed the
extent of concordance between body size information offered
by faces and voices. Although Krauss, Freyberg, and Morsella
(2002) asked participants to rate the age, height, and weight of
speakers from faces and voices, they only tested whether the
ratings were accurate, rather than whether there was a relation-
ship between face and voice ratings.

Static and Dynamic Faces

The extent to which faces and voices offer concordant infor-
mation might be affected by whether the face is static or
dynamic. For example, Lander (2008) found that male face and
voice attractiveness was only related when faces were
dynamic. Studies investigating facial attractiveness and human
mate preferences most frequently use static facial stimuli
(photos). However, there has been a recent move to use
dynamic facial stimuli (videos) in order to improve ecological
validity (Gangestad & Scheyd, 2005; Penton-Voak & Chang,
2008; Roberts, Saxton et al., 2009b). Some studies have found
that facial stimulus type (static or dynamic) influences attrac-
tiveness judgments, although the overall results are somewhat
mixed (e.g., Lander, 2008; Penton-Voak & Chang, 2008;
Roberts, Little, et al., 2009a; Rubenstein, 2005). In reviewing
previous studies and investigating methodological differences
between them, Roberts, Saxton et al. (2009b) reported that
correlations between ratings from static and dynamic facial
stimuli were stronger when rated by the same participants,
likely because of carryover effects. As patterns of facial move-
ment vary according to sex (Morrison, Gralewski, Campbell, &
Penton-Voak, 2007), it is conceivable that masculinity/femi-
ninity ratings will be more extreme when viewing dynamic
faces. In light of these findings, it is necessary to consider the
influence of facial stimulus type when testing the concordance
of face–voice judgments.

Face–voice matching provides a further test of the extent to
which faces and voices offer redundant information. However,
it is not clear from the literature whether accurate face–voice
matching using static facial stimuli is possible. While Kamachi,
Hill, Lander, and Vatikiotis-Bateson (2003) showed that parti-
cipants could match dynamic muted faces saying different
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sentences to voices of the same identity, participants performed
at chance level when the facial stimuli were static. Similar
results were reported by Lachs and Pisoni (2004). However,
Mavica and Barenholtz (2013) observed above chance level
accuracy on trials featuring static faces, suggesting that above
chance matching ability is not dependent on being able to
encode visual articulatory patterns but rather on concordant
information offered by faces and voices.

Aims

This article investigates the extent to which faces and voices
offer concordant information, thereby providing a test of the
backup signal hypothesis (Johnstone, 1997). Using both static
and dynamic facial stimuli, we tested cross-modal concordance
by asking participants to make judgments from faces and
voices about perceived femininity/masculinity, health, age,
height, and weight. In a further test of face–voice concordance,
we investigated whether it is possible to accurately match novel
static or dynamic faces and voices of the same identity. If faces
and voices offer similar information, and it is possible to match
the two, this would offer support for the backup signal
hypothesis.

Experiment 1

Experiment 1 tested whether faces and voices offer concordant
information about dimensions of fitness and quality, aiming to
establish whether people make similar judgments about a novel
person, regardless of whether they see their face or hear their
voice. We expect that as the previous literature suggests that
both faces and voices honestly signal quality, judgments made
independently from faces and voices should be similar. In light
of the contradictory findings regarding judgments made from
static and dynamic facial stimuli, the study also tested whether
the relationship between face and voice ratings differs accord-
ing to facial stimulus type (static vs. dynamic).

Method

Design

This experiment employed a mixed design. The between-
subject factor was facial stimulus type (static or dynamic), and
the within-subject factor was modality (face or voice)

Participants

The participants (n ¼ 48) were recruited from the Nottingham
Trent University Psychology Division’s Research Participation
Scheme. There were 12 male and 36 female participants (age
range¼ 18–28 years, M¼ 20.54, SD¼ 2.59). Participants gave
informed consent and received a research credit in line with
course requirements. The College Research Ethics Committee
for Business, Law and Social Sciences granted ethical approval
for the study (ref: 2013/37). All participants reported having
normal to corrected hearing and vision.

Apparatus and Materials

Stimulus faces and voices were taken from the Grid audiovisual
sentence corpus (Cooke, Barker, Cunningham, & Shao, 2006),
a multi-talker corpus featuring head and shoulder videos of
British adult speakers saying 1,000, six-word sentences each
in an emotionally neutral manner recorded against a plain blue
background. Each sentence follows the same six-word struc-
ture: (1) command, (2) color, (3) preposition, (4) letter, (5)
digit, and (6) adverb, for example, ‘‘Place blue at J 9 now.’’
None of the speakers in the corpus say the same sentence. A
total of 18 speakers were selected from the corpus: 9 males and
9 females. Speakers were matched for ethnicity (White Brit-
ish), accent (English), and age (18–30).

The stimuli were presented on an Acer Aspire laptop (screen
size 15.6 inches, resolution 1,366 " 768 pixels, Dolby
Advanced Audio) placed approximately 8.5 cm away from the
edge of the desk at which participants sat. The experiment was
run using Psychopy v1.77.01 (Peirce, 2009), an open-source
software package designed for running experiments in Python.
Three videos (.mpegs) were selected at random from the GRID
corpus for each speaker, using an online research randomizer
(Urbaniak & Plous, 2013). The study used static faces, dynamic
faces, and voices. One of the three videos was used to create
static pictures of faces. Pictures were extracted using the snap-
shot function on Windows Movie Maker (2012) and presented
in .png format. The static picture for each talker was the first
frame of the video. Another of the three video files was used to
construct the dynamic stimuli. The file was muted using Win-
dows Movie Maker and converted back into .mpeg format. All
facial stimuli measured 384" 288 pixels and were presented in
color for 2 s, with brightness settings at the maximum level.
Voice recordings were also played for 2 s, from the third .mpeg
file, but the face was not visible at presentation. To reduce the
background noise, participants listened to the recordings binau-
rally through Apple earphones with a frequency range of 5–
21,000 Hz. This exceeds the range of human hearing (Feinberg
et al., 2005). Voices were played at a comfortable listening
volume (30% of the maximum volume). Two versions of the
experiment were constructed: one using static faces and voices
and the other using dynamic faces and voices. In both versions,
all 18 faces and voices appeared.

Procedure. Participants were randomly allocated to either the
static face or the dynamic face version of the experiment. They
read the information sheet, completed the consent form, and
provided demographic information. Testing took place in a
quiet cubicle. Participants completed two counterbalanced
blocks of testing. In one block participants viewed faces, in the
other they heard voices. Participants were not told that the
voices and faces featured in the experiment belonged to the
same people. Each block consisted of a practice trial followed
by 18 randomly ordered experimental trials. After each face or
voice, participants estimated the age of the stimulus person in
years and completed the 7-point Likert-style rating scales in the
following order: femininity/masculinity (1 ¼ very feminine,
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7 ¼ very masculine), health (1 ¼ very unhealthy, 7 ¼ very
healthy), height (1 ¼ very short, 7 ¼ very tall), and weight
(1 ¼ very underweight, 7 ¼ very overweight).

Data Analysis and Multilevel Modeling

Data were analyzed using multilevel models, rather than per-
forming conventional analyses on data averaged over either par-
ticipants or stimuli (see Wells et al., 2013). This avoids the
ecological fallacy which arises when it is falsely assumed that
patterns observed for participant means also hold for data at a
lower level of analysis such as individual trials repeated within
participants (e.g., see Robinson, 1950; Wells et al., 2013). Multi-
level modeling allows both participants and stimuli to be simul-
taneously treated as random effects, thereby maximizing
generalizability (Clark, 1973; Judd, Westfall, & Kenny, 2012).
When the random effects are fully crossed (i.e., when all parti-
cipants experience all stimuli), conventional analyses (including
separate by-items or by-subjects analyses) can lead to massive
Type 1 error inflation (Baguley, 2012; Clark, 1973; Judd et al.,
2012). The most appropriate analysis therefore takes into
account both sources of variability. Unless the ignored source
of variability is negligible, this is always more conservative than
separate by-stimuli or by-participants analyses.

Results

We calculated the absolute difference between face and voice
ratings by comparing each rating participants had given to a face
and voice belonging to the same person. Then we calculated the
mean absolute difference (MAD) for each stimuli person on each
rating scale (age, masculinity/femininity, health, height, and
weight). Descriptive statistics (Table 1) indicate that typical rat-
ings for faces and voices fall within a similar range.

On all scales apart from age, face and voice ratings only
differ on average by about 1 point (14%) on a 7-point rating
scale, and MADs were similar across static and dynamic facial
stimuli. The difference between face and voice ratings in terms
of age appears larger than that of the other rating scales. How-
ever, rather than being rated on a 7-point scale, age estimates
were given in years. This prevents a neat comparison between
the rating scales.

The results in Table 1 show that face and voice ratings tend to
be close together in terms of the range they fall into. A logical
next step is to quantify the extent to which voice and face ratings
covary in the same individual. For this purpose, a simple corre-
lation coefficient between voice and face ratings would either
ignore the dependency within participants or rely only on aggre-
gate data (mean ratings for each participant). We therefore used
multilevel models to account for both participant and stimuli
variation when correlating voice ratings with face ratings for
estimated age and ratings for femininity/masculinity, health,
height, and weight. For each variable, we fitted an intercept-
only model with the rating as an outcome, using the lme4 pack-
age in R (Bates, Maechler, Bolker, & Walker, 2014). A crucial
part of each model was to estimate separate variance for face and

voice ratings as well as the correlation between face and voice
ratings across both stimuli and participants. The correlation
between face and voice ratings within participants is, for present
purposes, a nuisance term (merely indicating that participants
who give high ratings to voices also tend to give high ratings to
faces) and is not reported here. The correlations reported in
Table 2 are those within stimuli and demonstrate that, for a given
item, voice and face ratings are positively correlated.

Table 2 provides evidence that mean face and voice ratings
for the same target appear to be positively related for all rating
types. Correlations between face and voice ratings on scales for
masculinity/femininity, health, and height were particularly
high, regardless of whether the facial stimuli were static or
dynamic. Correlations between mean face and voice ratings for
age and weight were moderate when facial stimuli were sta-
tic—with some suggestion that the correlations were dimin-
ished for dynamic stimuli. However, correlations did not vary
according to facial stimulus type in direction or by more than .3
on any scale. The difference between the static and dynamic
correlations was tested by fitting models with separate variance
terms for each stimulus type. Comparing a model which
includes separate variance and covariance terms for static and
dynamic stimuli with one that does not did not improve the
model fit for any of the ratings (p > .14). This complements the
results shown in Table 1, suggesting that the extent to which
faces and voices offer similar information is not greatly influ-
enced by whether the facial stimuli is static or dynamic.

Discussion

Experiment 1 showed that observers glean concordant infor-
mation about different dimensions of quality from faces and

Table 1. MAD and 95% Confidence Intervals for the MAD Between
Face and Voice Ratings by Stimulus-Type Condition.

Rating scale

Static Facial Stimuli Dynamic Facial Stimuli

M SD

95% CI

M SD

95% CI

LB UB LB UB

Age 3.91 1.51 3.27 4.55 3.62 1.58 2.95 4.29
Masculinity/femininity 1.05 0.35 0.90 1.19 1.00 .36 0.85 1.15
Health 1.24 .34 1.10 1.39 1.12 0.27 1.00 1.23
Height 1.10 .29 0.98 1.23 1.04 0.36 0.89 1.19
Weight 0.92 0.25 0.81 1.02 1.00 0.27 0.88 1.11

Note. MAD ¼ mean absolute difference.

Table 2. Within-Stimulus Correlations Between Face and Voice
Ratings.

Condition

Correlation coefficient

Age Masc/fem Health Height Weight

Static facial stimuli .60 .97 .70 .83 .40
Dynamic facial stimuli .32 .92 .91 .86 .17
All facial stimuli .46 .95 .77 .84 .28
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voices, particularly in terms of masculinity and femininity,
health, and height. On each dimension, the relatedness of face
and voice ratings is not affected by facial stimulus type, show-
ing that the signals tested here are stable across static and
dynamic faces. These results support the hypothesis that on
various dimensions of quality, faces and voices constitute
backup signals.

Experiment 2

Experiment 2 tested whether faces and voices offer sufficiently
concordant information that people can match novel faces to
voices. Previous studies have addressed this question, with
conflicting results. Krauss et al. (2002) showed that people are
relatively accurate at inferring physical information from a
voice. After only hearing a voice excerpt, participants selected
the speaker’s full-length photograph from one of two possible
options with above chance accuracy. Mavica and Barenholtz
(2013) tested whether people could use information from a
voice to distinguish between two static images of different
faces. Accuracy was significantly above chance level, despite
contradictory results presented in previous studies (Kamachi et
al., 2003; Lachs & Pisoni, 2004) suggesting that successful
matching of faces and voices depends on the ability to encode
dynamic properties of speaking (muted) faces (Mavica & Bare-
nholtz, 2013).

Previous face–voice matching studies (Kamachi et al., 2003;
Krauss et.al., 2002; Mavica & Barenholtz, 2013) have used a
two-alternative forced choice paradigm (2AFC), which unlike a
same–different paradigm does not model whether people are
also able to correctly reject a match when a face and voice are
from different people. The 2AFC tasks therefore give no infor-
mation about possible response biases. Experiment 2 uses a
same–different paradigm to give a clearer picture of face–voice
matching ability.

Experiment 2 addresses three main questions. First, whether it
is possible to accurately match novel faces and voices of the same
age (20–30), sex, and ethnicity (White British). Second, whether
matching accuracy is affected by facial stimulus type (static or
dynamic). Third, in line with cross-modal matching procedures
(Kamachi et al., 2003; Lachs & Pisoni, 2004), we investigated
whether people are more accurate at face–voice matching when
visual information (a face) is presented first, compared to when
auditory information (a voice) is presented first. If faces and
voices primarily constitute backup signals, people should be able
to match novel faces and voices above chance level.

Method

The methods for Experiment 2 were the same as for Experi-
ment 1, with exceptions explained in the following subsections.

Design

This experiment employed a 2 ! 2 ! 2 mixed factorial design.
The between-subject factor was facial stimulus type (static or

dynamic). The within-subject factors were identity (same or
different) and order (face first or voice first). The dependent
variable was accuracy.

Participants

There were 40 male and 40 female adult participants (n ¼ 80)
with an age range of 18–66 years (M ¼ 25.44, SD ¼ 8.36).

Materials

Four different versions of the experiment were created so that
matching and not-matching pairs of faces and voices could be
constructed using different stimulus people. Stimuli were ran-
domly selected to be used for either one of the eight same
identity or eight different identity trials. None of the faces or
voices appeared more than once in each version. On different
identity trials, the face and voice were matched for age, gender,
and ethnicity. The stimuli that remained were used for the
practice trials. Each version was repeated for static and
dynamic conditions. In total, there were eight versions.

Procedure

Participants were randomly allocated to one of the eight ver-
sions of the experiment. In the dynamic facial stimulus condi-
tion, participants were also correctly informed that the face in
the muted video and the voice in the recording were not saying
the same thing. This was to prevent them using speech reading
to match the face and voice (Kamachi et al., 2003).

Participants completed two counterbalanced experimental
blocks, each consisting of a practice trial followed by eight
randomly ordered experimental trials. In one block, partici-
pants saw the face first, and in the other they heard the voice
first. None of the stimuli appeared more than once in each
version of the experiment. In each trial, there was a 1-s gap
between presentation of the face and voice stimuli. At test,
participants pressed ‘‘1’’ if they thought the face and voice
were ‘‘matching’’ (same identity), and ‘‘0’’ if they thought it
was ‘‘not matching’’ (different identity).

Results

Performance accuracy was analyzed using multilevel logistic
regression with the lme4 version 1.06 package in R (Bates
et al., 2014). Four nested models with accuracy (0 or 1) as the
dependent variable were compared (and all models were fitted
using restricted maximum likelihood). The first model included
a single intercept (and was later used to obtain confidence
intervals for the overall accuracy). The second model also
included the main effects of each factor (identity, order, and
stimulus type). The third model added all two-way interactions
and the final model added the three-way interaction. Setting up
the model in this way allows us to test for individual effects in a
manner similar to that of a traditional analysis of variance.
However, as F-tests-derived multilevel models are not, in gen-
eral, accurate, we report the more robust profile likelihood ratio
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tests provided by lme4. These were obtained by dropping each
effect in turn from the appropriate model (e.g., testing the
three-way interaction by dropping it from the model including
all effects, and testing the two-way interactions by dropping
each effect in turn from the two-way model).

Table 3 shows the profile likelihood chi-square statistic (G2)
and p-value associated with dropping each effect. Table 3 also
reports the coefficients and standard errors (on a log odds scale)
for each effect in the full three-way interaction model. In the
three-way model, the estimate of SD of the face random effect
was 0.353, while for voice it was 0.207. The estimated SD for
the participant effect was less than 0.0001. A similar pattern
held for the null model. Thus, although individual differences
were negligible in this instance, a conventional by-participants
analysis that did not incorporate both voice and face variation
could be extremely misleading.

Only the main effect of identity and the two-way interaction
of identity and order were statistically significant. To aid inter-
pretation of these effects, we obtained means and confidence
intervals for the percentage accuracy of the eight conditions in
the factorial design. These confidence intervals were obtained
through simulations of the posterior distributions of the cell
means using arm package version 1.6 in R (Gelman & Su,
2013). These means and the associated 95% confidence inter-
vals are shown in Figure 1.

From Figure 1 it is clear that overall matching performance
was significantly above chance (50%) level, M ¼ 59.7%, 95%
CI [51.9, 66.9]. Static face–voice matching was above chance,
M ¼ 59.19, 95% CI [50.94, 66.84], as was dynamic face–voice
matching, M ¼ 60.12, 95% CI [51.97, 67.74]. Figure 1 also
reveals the main effect of identity, with performance for same
trials consistently higher than for different trials (and the for-
mer but not the latter consistently above chance). It also reveals
the basis of the identity by order interaction. The results from
the face first trials are shown in Panel A. The results from the
voice first trials are shown in Panel B. Although same identity
trials showed better performance than different trials for both
face first and voice first trials, this advantage is greater in the
face first conditions. Given that performance on the face first
different trials is on average worse than chance (and signifi-
cantly so for the static stimuli), this pattern suggests the oper-
ation of a response bias, such that participants exhibited a bias

to accept faces and voices as belonging to the same identity
when they saw the face before hearing the voice.

Discussion

In Experiment 2, we observed that both dynamic faces and
voices, and static faces and voices, can be matched for identity
above chance level. These results are consistent with the
hypotheses informed by the results of Experiment 1, which
show that faces and voices offer a high level of concordant
information on various dimensions. Face–voice matching per-
formance does not differ according to facial stimulus type.
Therefore, accuracy does not appear to depend on encoding
visual information about speaking style but rather on redundant
signals available in voices and static faces.

General Discussion

The results of Experiment 1 are consistent with the hypothesis
that faces and voices offer redundant signals for various dimen-
sions of quality. Mean face and voice ratings for the same target
were positively related for all rating types. Correlations
between face and voice ratings on scales for masculinity/fem-
ininity, health, and height were particularly strong, regardless
of whether the facial stimuli were static or dynamic. The results
of Experiment 2 show that the information signaled by faces
and voices is so similar that people can match novel faces and
voices of the same sex, ethnicity, and age-group at a level
significantly above chance. Taken together, results suggest that
faces and voices constitute backup signals, reinforcing the
same information about quality (Johnstone, 1997) rather than

Table 3. Parameter Estimates (b) and Profile Likelihood Tests for the
2 " 2 " 2 Factorial Analysis of Accuracy in Experiment 2.

Source df b SE G2 p

Intercept 1 #0.445 0.196
Identity 1 1.382 0.254 57.84 <.001
Order 1 0.509 0.241 2.28 .131
Facial stimulus type 1 0.133 0.231 0.13 .717
Identity " Order 1 0.601 0.358 4.20 .040
Identity " Facial Stimulus Type 1 0.165 0.339 0.32 .572
Order " Facial Stimulus Type 1 0.052 0.324 0.01 .916
Identity " Order " Facial

Stimulus Type
1 0.058 0.474 0.01 .903

Figure 1. Face–voice matching accuracy on face first (Panel A) and
voice first (Panel B) trials. Error bars show 95% CI for the condition
means. CI ¼ confidence interval.
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complementary but different information (Møller & Pomian-
kowski, 1993).

Face and Voice Ratings

With the exception of the attractiveness literature, previous
research has rarely compared judgments made from faces and
voices, focusing instead on judgments informed by a single
modality (e.g., Penton-Voak & Chen 2004; Perrett et al.,
1998; Pisanski et al., 2012; Neiman & Applegate, 1990, and
so on) or comparing face and voice ratings to actual measure-
ments of physical characteristics (e.g., Krauss et al., 2002)
rather than to each other. The results of Experiment 1 show
that not only do face and voice ratings fall within a small range
but independent ratings of an individual’s face and voice are
positively correlated. These results complement other studies,
showing that faces and voices offer related information about
fitness and mate value (Collins & Missing, 2003; Feinberg,
2008; Feinberg et al., 2005; Fraccaro et al., 2010).

The strongest correlations between face and voice ratings
occurred on scales for masculinity/femininity, health, and
height. Despite the previous literature suggesting that unimodal
voice ratings of body size are less accurate than unimodal face
ratings (Bruckert et al., 2006; Coetzee et al., 2010; Collins,
2000; Re et al., 2013; van Dommelen & Moxness, 1995),
Experiment 1 showed that regardless of accuracy, the MAD
between body size judgments made from faces and voices was
small. However, correlations were strong for height but only
weak-moderate for weight. This corresponds with Lass and
Colt (1980) who found significant differences between weight
ratings for female faces and voices.

Face and Voice Matching

Overall, face–voice matching accuracy in Experiment 2 was
significantly above chance. This result is consistent with pre-
vious findings (Krauss et al., 2002; Mavica & Barenholtz,
2013) and shows that people can use redundant information
to match faces and voices of the same identity. Furthermore,
the use of multilevel modeling allows us to generalize these
findings beyond the sample of faces and voices used, thereby
overcoming a common limitation of previous studies.

Although overall matching accuracy is at 59.7%, there is
still a substantial proportion of unexplained variance which
could be due to the existence of discordant rather than concor-
dant face–voice information. Beyond the characteristics tested
in Experiment 1, faces and voices also convey a multitude of
other information, including personality characteristics and
emotion (Belin et al., 2004; Mavica & Barenholtz, 2013), some
of which might be complementary. Nevertheless, the results
from Experiment 2 suggest that on balance, faces and voices
provide concordant information because overall performance is
significantly above chance level. These results are consistent
with the results presented in Experiment 1.

On different identity trials, participants performed at chance
level (voice first trials), or below chance level (face first trials),

and were significantly less accurate than on same identity trials.
This indicates that participants were better at detecting a correct
match than rejecting an incorrect one. In line with the argument
presented above, based purely on the findings from Experiment
1, we might have expected that accurately rejecting mismatches
would be possible because the ratings were so closely related. It
seems that participants are using other information to inform
their matching decisions on different identity trials. On the other
hand, the pattern of results across same–different trials might be
partially explained by the existence of a response bias.

While previous face–voice matching studies using 2AFC pro-
cedures have found no difference between face first and voice
first performance (Kamachi et al., 2003; Lachs & Pisoni, 2004),
our results using a same–different task suggest people exhibit a
bias to respond that a face and voice belong to the same identity,
particularly when the face is presented before the voice. A per-
formance asymmetry, according to stimuli order, is consistent
with the previous literature. For instance, studies have consis-
tently found asymmetries between faces and voices in terms of
rates of recognition accuracy, which have been attributed to
differential link strength in the two perception pathways (e.g.,
Damjanovic & Hanley, 2007; Hanley & Turner, 2000; Steve-
nage, Hugill, & Lewis, 2012). Therefore, there is no reason to
assume that face first and voice first matching performance
should be identical. However, based on the finding that familiar
faces prime familiar voices better than familiar voices prime
familiar faces (Stevenage et al., 2012), we might have expected
the asymmetry to operate the other way around. Nevertheless, it
is feasible that voices give more information about faces than
faces do about voices, and aside from conveying semantic infor-
mation about the spoken message, the other important role of
voices is to allow people to infer socially relevant visual infor-
mation about the speaker, such as information about masculi-
nity/femininity, body size, health, and age. This idea is in
keeping with the finding that showing participants mismatched
celebrity face–voice pairs disrupts voice recognition to a greater
extent than it disrupts face recognition (Stevenage, Neil, & Ham-
lin, 2014). During social interactions, it is common to hear a
voice while not looking in the direction of the speaker. Being
able to accept or reject a face match quickly may aid social
communication by facilitating attention shifts.

Static and Dynamic Faces

Informed by contradictory findings relating to the effect of static
and dynamic facial stimuli on ratings of attractiveness (e.g.,
Lander, 2008; Roberts, Little, et al., 2009a; Rubenstein, 2005)
and face–voice matching ability (Kamachi et al., 2003; Lachs &
Pisoni, 2004; Mavica & Barenholtz, 2013), we tested whether
facial stimulus type affected the extent of face–voice concor-
dance. In both experiments, performance was unaffected by
whether the facial stimuli were dynamic or static. This suggests
that information on these dimensions is stable across dynamic
and static faces. Novel face–voice matching ability is not due to
encoding visual articulatory patterns (Mavica & Barenholtz,
2013) but to the availability of redundant information.
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Stimulus Sample Size

The findings of the multilevel models we report emphasize the
importance of stimulus sample size in estimating effects. These
models provide the tools to generalize over both participants
and stimuli, but obtaining large samples of stimuli is challen-
ging. The corpus (Cooke et al., 2006) we used only contained 18
stimulus individuals matched for age, gender, and ethnicity.
This reduced the set of stimuli available for study but also
reduced extraneous variability. In addition, all of the people
in this stimulus set were from similar educational backgrounds
(Cooke et al., 2006), and none of them exhibited strong regional
accents. As there is a high level of interstimulus variability in
both faces (Valentine, Lewis, & Hills, 2015) and voices (Ste-
venage & Neil, 2014), we would encourage future face–voice
matching studies to aim for larger samples of stimuli, having
demonstrated that it is variation in faces and voices that is the
limiting factor on statistical power in experiments such as these
(as face and voice variation is consistently higher than partici-
pant variation). However, many published studies have used
samples of stimuli far smaller than 18 when investigating per-
son perception (see G. L. Wells & Windshitl, 1999), as have
other face–voice matching studies (e.g., Lachs & Pisoni, 2004).
Crucially, only by accounting for variability in stimuli is it
reasonable to generalize from stimuli as well as participants.
Even in studies using large sample of stimuli, generalizability is
limited by the common practice of aggregating over stimuli
(Clark, 1973; Judd et al., 2012; Wells et al., 2013). Ultimately,
the adequate sample size of stimuli or participants in experi-
mental designs such as those reported here is a question of
statistical power (e.g., see Westfall, Kenny, & Judd, 2014).

Conclusion

Faces and voices of the same identity offer redundant signals
about a number of dimensions associated with quality and
fitness. Information about masculinity/femininity, height, and
health is particularly similar across faces and voices. We have
shown that the level of redundancy between faces and voices is
sufficient that it is possible to accurately match them for iden-
tity. In summary, the results of Experiments 1 and 2 are more
consistent with the backup signal hypothesis (Johnstone, 1997)
than the multiple messages hypothesis (Møller & Pomian-
kowski, 1993). As multimodal signals for various indicators
of quality, faces, and voices offer concordant rather than com-
plementary information.
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Abstract Research investigating whether faces and voices
share common source identity information has offered contra-
dictory results. Accurate face–voice matching is consistently
above chance when the facial stimuli are dynamic, but not
when the facial stimuli are static. We tested whether procedur-
al differences might help to account for the previous inconsis-
tencies. In Experiment 1, participants completed a sequential
two-alternative forced choice matching task. They either
heard a voice and then saw two faces or saw a face and then
heard two voices. Face–voice matching was above chance
when the facial stimuli were dynamic and articulating, but
not when they were static. In Experiment 2, we tested whether
matching was more accurate when faces and voices were pre-
sented simultaneously. The participants saw two face–voice
combinations, presented one after the other. They had to de-
cide which combination was the same identity. As in
Experiment 1, only dynamic face–voice matching was above
chance. In Experiment 3, participants heard a voice and then
saw two static faces presented simultaneously. With this pro-
cedure, static face–voice matching was above chance. The
overall results, analyzed using multilevel modeling, showed
that voices and dynamic articulating faces, as well as voices
and static faces, share concordant source identity information.
It seems, therefore, that above-chance static face–voice
matching is sensitive to the experimental procedure employed.
In addition, the inconsistencies in previous research might

depend on the specific stimulus sets used; our multilevel
modeling analyses show that some people look and sound
more similar than others.

Keywords Static . Dynamic . Face . Voice . Crossmodal
matching

Redundant information offered by faces and voices facilitates
everyday social communication (Campanella & Belin, 2007).
Testing whether novel (and therefore unfamiliar) faces and
voices can be accurately matched provides a measure of the
extent to which faces and voices offer redundant source iden-
tity information. Although some research has suggested that
crossmodal matching of novel faces and voices is only possi-
ble when dynamic visual information about articulatory pat-
terns is available (Kamachi, Hill, Lander, & Vatikiotis-
Bateson, 2003; Lachs & Pisoni, 2004a), other research has
suggested that it is possible to match static faces to voices
because they offer concordant source identity information
(Krauss, Freyberg, & Morsella, 2002; Mavica & Barenholtz,
2013; Smith, Dunn, Baguley, & Stacey, 2015). We tested
whether differences between the experimental procedures
across previous studies might account for these apparently
inconsistent results.

A crucial role for dynamic visual articulatory
patterns?

Idiosyncratic speaking styles dictate what voices sound like
and how faces move (Lander, Hill, Kamachi, & Vatikiotis-
Bateson, 2007; Yehia, Rubin, & Vatikiotis-Bateson, 1998).
Audiovisual speech perception researchers have emphasized
the existence of links between auditory and visual sensory
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modalities (e.g., Kuhl & Meltzoff, 1984; MacDonald &
McGurk, 1978; McGurk &MacDonald, 1976) and have dem-
onstrated that participants can match sequentially presented
dynamic images of articulating faces to speakers (Lachs &
Pisoni, 2004a), even when the voice and face are producing
different sentences (Kamachi et al., 2003; Lander et al., 2007).
The conclusion that crossmodal source identity information is
contingent on encoding dynamic visual articulatory patterns
has been supported by studies finding that static face–voice
matching performance is at chance level (Kamachi et al.,
2003; Lachs & Pisoni, 2004a). The importance of time-
varying articulatory information is underlined by the fact that
participants can match faces and voices using movement in-
formation alone. Studies isolating articulatory movement
using a point-light technique have produced accurate
matching of utterances to dynamic displays (Lachs & Pisoni,
2004b; Rosenblum, Smith, Nichols, Hale, & Lee, 2006).

Other research challenges the conclusion that dynamic vi-
sual information is crucial to crossmodal matching. Krauss
et al. (2002) showed that people could match a voice to one
of two full-length static images of different people with above-
chance accuracy. Whereas the studies observing chance-level
matching performance using static faces and voices used stim-
uli of a similar age, gender, and ethnicity in each trial (e.g.,
Kamachi et al., 2003), Krauss et al.’s stimuli were from a
wider age range (20–60 years). The stimuli were also full-
length images rather than images of faces, which may have
provided additional cues to inform accurate matching.
However, Mavica and Barenholtz (2013) replicated Krauss
et al.’s results using static headshots of age-matched stimuli,
and face–voice matching was above chance in both of the
experiments they reported. Similarly, Smith et al. (2015) also
observed above-chance static face–voice matching. These
three studies offer growing evidence that the source identity
information available in static faces overlaps with the infor-
mation offered by voices.

Concordant information in faces and voices

In light of research investigating the extent to which faces and
voices offer similar information about personal characteristics,
above-chance static face–voice matching makes intuitive
sense. Studies testing the concordance between ratings of at-
tractiveness from static faces and voices suggest that both
validly signal genetic quality (Collins & Missing, 2003;
Feinberg et al., 2005; Saxton, Caryl, & Roberts, 2006; T.
Wells, Baguley, Sergeant, & Dunn, 2013). Hormone levels
are reflected in both faces (Penton-Voak & Chen, 2004;
Perrett et al., 1998; Thornhill & Grammer, 1999) and voices
(Abitbol, Abitbol, & Abitbol, 1999; Beckford, Rood, &
Schaid, 1985; O’Connor, Re, & Feinberg, 2011; Pisanski,
Mishra, & Rendall, 2012). A man who sounds masculine

should therefore also tend to look masculine, and similarly,
feminine-sounding women should tend to look feminine. In a
recent study, Smith et al. (2015) asked participants to complete
a number of rating scales for faces and corresponding voices.
Faces and voices were presented in two separate blocks. The
results showed that independent judgments about femininity
and masculinity made from faces and voices were strongly
and positively correlated. Positive correlations were also
found between face and voice ratings of age, health, height,
and weight (Smith et al., 2015). Interestingly, the strength of
correlations did not vary according to whether the faces were
static or dynamic. These results suggest that static face–voice
matching is possible (Krauss et al., 2002; Mavica &
Barenholtz, 2013; Smith et al., 2015) because faces do not
need to be dynamic in order to share concordant information
with voices.

Procedural differences between studies

Procedural differences between studies may account for some
of the apparently contradictory results outlined above.
Audiovisual speech perception studies (e.g., Kamachi et al.,
2003; Lachs & Pisoni, 2004a, b; Lander et al., 2007), have
tended to use a Bcrossmodal matching task^ (Lachs, 1999).
This is a sequential two-alternative forced choice (2AFC) pro-
cedure. In the visual to auditory (V–A) condition, a face is
shown and then two voices are presented at test, one after the
other. In the auditory to visual (A–V) condition, this procedure
is reversed: Participants hear a voice and then see two sequen-
tially presented faces at test. At test, one of the alternatives is
therefore always the same-identity target, whereas the other is
a different-identity distractor. The participant must decide
which of the two alternatives matches the identity of the
other-modality stimulus. Studies that have used this procedure
have generally emphasized the importance of dynamic articu-
latory information in facilitating face–voice matching; above-
chance face–voice matching is typically found for dynamic
but not for static faces (Kamachi et al., 2003; Lachs &
Pisoni, 2004a, b; Lander et al., 2007). In contrast, the majority
of experiments observing above-chance levels of matching
accuracy using static facial stimuli have not used this exact
procedure, making it unwise to directly compare the results.
For instance, Krauss et al. (2002) presented a voice followed
by two simultaneously presented full-length images. Smith
et al. (2015) used a same–different procedure in which partic-
ipants saw a face and heard a voice, and then had to decide
whether or not the face and voice shared the same identity.
Mavica and Barenholtz’s (2013) stimuli (one voice and two
test faces) were presented simultaneously in Experiment 1.
However, it is important to note that Mavica and
Barenholtz’s second experiment replicated above-chance-
level matching with static facial stimuli using the A–V
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condition of the standard crossmodal matching task (Lachs,
1999). Although the V–A condition was not included, this
result hints that even if procedural differences across studies
hold some explanatory value, additional factors may also af-
fect performance and help to explain the existing contradic-
tions. Nevertheless, the impact of procedural differences on
face–voice matching accuracy deserves further attention.

A possible explanation for the differences in face–voice
matching between static and dynamic stimuli is associated
with memory demands. Some research has suggested that
memory for dynamic facial images is better than that for static
facial images (e.g., Christie & Bruce, 1998; Knappmeyer,
Thornton, & Bülthoff, 2003; Lander & Chuang, 2005). In a
review, O’Toole, Roark, and Abdi (2002) put forward two
explanations for this increased memorability. According to
the Brepresentation enhancement hypothesis,^ dynamic im-
ages facilitate the perception of 3-D facial structure. In the
Bsupplemental information hypothesis,^ motion is thought to
provide additional signature information about the given per-
son. Therefore, when stimuli are presented sequentially (as in
a crossmodal matching task), poorer memory for static images
could make it harder for participants to hold the face in work-
ing memory long enough to compare with the voice for source
identity information. In an attempt to rule out memory expla-
nations for the results of their first experiment, which detected
above-chance static face–voice matching, Mavica and
Barenholtz (2013) used sequential presentation in their
Experiment 2. Their results did not entirely rule out an expla-
nation for the discrepancies across studies based on memory
effects. In neither experiment did Mavica and Barenholtz in-
clude a dynamic face–voice matching condition. If memory
load affects performance, we might expect to find a position
effect in a 2AFC task, whereby accuracy is higher if the cor-
rect other-modality stimulus appears in Position 1 rather than
Position 2. Previous studies have not included analyses of
responses by position, and thus the impact of this factor is
unknown, although position effects for 2AFC tasks are well-
documented in the literature (García-Pérez & Alcalá-
Quintana, 2011; Yeshurun, Carrasco, & Maloney, 2008).

Failure to include both static and dynamic face conditions
therefore prevents a direct comparison of crossmodal
matching explanations based on static facial information
(e.g., Krauss et al., 2002; Mavica & Barenholtz, 2013) with
those focusing on dynamic facial information (e.g., Kamachi
et al., 2003; Lachs & Pisoni, 2004a, b; Lander et al., 2007;
Rosenblum et al., 2006). To date, only one study has directly
compared matching performance using static and dynamic
facial stimuli in the same experiment, and it found no differ-
ence in matching accuracy across conditions (Smith et al.,
2015). Further clarification of these results using a crossmodal
matching procedure will be necessary. However, as has been
suggested by other results (Kamachi et al., 2003; Lachs &
Pisoni, 2004a), it is feasible that participants tested using

dynamic facial stimuli may significantly outperform those in
static conditions because dynamic stimuli make both temporal
and spatial information available to inform matching
decisions.

Aims

In the face of these contradictory results, in the experiments
presented here we aimed to clarify whether static face–voice
matching is possible using stimuli of the same age, sex, and
ethnicity. In an attempt to tease apart the relative contributions
of static and dynamic face information in facilitating
crossmodal matching, performance using static and dynamic
faces was compared in both Experiments 1 and 2. In case
better memory for dynamic facial stimuli affects matching
accuracy, memory load was varied across the experiments:
In Experiment 1, all stimuli were presented sequentially, so
memory load was higher, whereas in Experiment 2, face–
voice combinations were presented simultaneously. In a fur-
ther test of whether static face–voice matching is sensitive to
procedural differences, for Experiment 3 we adopted the pro-
cedure of Krauss et al. (2002), in which the alternatives in a
2AFC task are presented simultaneously. To clarify howmem-
ory load and task type affect the results, in all three experi-
ments we also investigated whether accuracy is higher when
the correct, matching other-modality stimulus appears in
Position 1 rather than Position 2.

Experiment 1

In Experiment 1 we used a standard crossmodal matching task
(Lachs, 1999) to compare static and dynamic face–voice
matching. In most experiments in which this procedure has
been used, the results have shown only dynamic face–voice
matching to be above chance level (Kamachi et al. 2003;
Lachs & Pisoni, 2004a; Lander et al., 2007; cf. Mavica &
Barenholtz, 2013, Exp. 2). Informed by the balance of evi-
dence, we expected static face–voice matching to be at chance
level.

Method

Design Experiment 1 employed a 2 × 2 × 2 mixed factorial
design. The between-subjects factor was Facial Stimulus Type
(static or dynamic), and the within-subjects factors were Order
(visual then auditory [V–A] or auditory then visual [A–V])
and Position (1 or 2). The dependent variable was matching
accuracy.

Participants The participants (N = 82) were recruited from
the Nottingham Trent University Psychology Division’s
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Research Participation Scheme by convenience sampling. A
total of 26 male and 56 female participants took part (age
range = 18 to 66 years, M = 23.70, SD = 8.56). All partici-
pants reported having normal or corrected vision and hearing.
In line with course requirements, student participants received
three research credits. Ethical approval for this and subsequent
experiments was granted by the university’s BLSS (Business,
Law, and Social Science) College Research Ethics
Committee.

Apparatus and materials The stimuli were taken from the
GRID audiovisual sentence corpus (Cooke, Barker,
Cunningham, & Shao, 2006). The corpus features head and
shoulder videos of British adults recorded against a plain
background saying six-word sentences in an emotionally neu-
tral manner. Each sentence follows the same structure:
(1) command, (2) color, (3) preposition, (4) letter, (5) digit,
and (6) adverb—for example, Place red at F2 please. A total
of 18 speakers were selected from the corpus: nine male and
nine female. All of the speakers were between 18 and 30 years
of age and were white British with an English accent.

The stimuli were presented on an Acer Aspire laptop
(screen size = 15.6 in., resolution = 1,366 × 768 pixels,
Dolby Advanced Audio), with brightness set to the maximum
level. The experiment ran on PsychoPy version 1.77.01
(Peirce, 2009), an open-source software package for running
experiments in Python. The study used the same static faces,
dynamic faces, and voices as Smith et al. (2015). Three .mpeg-
format videos were randomly selected from the GRID corpus
for each of the 18 speakers. The videos were selected using an
online research randomizer (Urbaniak & Plous, 2013). One of
the three videos was used to create static pictures of faces (.png
format). The static picture for each talker was the first frame of
the video. Another of the three video files was used to con-
struct the dynamic stimuli by muting the sound. Facial stimuli
measured 384 × 288 pixels and were presented for 2 s, in
color. Voice recordings were also played for 2 s. To reduce
background noise, participants listened to the recordings bin-
aurally through Apple EarPods at a comfortable listening vol-
ume (30 % of the maximum). Apple EarPods have a frequen-
cy range of 5 to 21000 Hz. This is wider than the normal range
of human hearing (Feinberg et al. 2005.

Four versions of the experiment were created, so that trials
could be constructed using different combinations of stimuli.
Each version consisted of 12 trials in total, and each trial
featured three stimuli. In the V–A condition, a face
(Stimulus 1) was followed by two sequentially presented
voices (Stimuli 2 and 3): a target and a distractor. In the A–
V condition, a voice (Stimulus 1) was followed by sequential-
ly presented target and distractor faces (Stimuli 2 and 3).
Across versions, whether someone’s face/voice appeared as
Stimulus 1, 2, or 3, and whether it was used in a V–A or A–
V trial, was randomly varied. The position of the same-

identity other-modality stimulus at test (Position 1 or 2) was
also randomly and equally varied. None of the faces or voices
appeared more than once in each experimental version. Each
of the four versions was used for the between-subjects manip-
ulation of facial stimuli (static or dynamic), so in total there
were eight versions of the experiment.

Procedure The participants were randomly allocated to one of
the eight versions of the experiment using an online research
randomizer (Urbaniak & Plous, 2013). In the dynamic facial
stimulus condition, participants were accurately informed that
the face and the voice were saying different sentences, to
prevent the use of speech-reading (Kamachi et al. 2003.

The participants completed two counterbalanced experi-
mental blocks. The procedure is illustrated in Fig. 1. First,
participants received a practice trial, followed by six randomly
ordered trials. In one block of trials, participants saw a face
first. After a 1-s gap, they heard the first voice. The text
BVoice 1^ was visible in the middle of the screen while the
recording was playing. After another 1-s gap, they heard the
second voice, with the text BVoice 2^ visible in the middle of
the screen. In the other block of trials, participants heard a
voice first, and then saw two faces, presented one after the
other. Gaps of 1 s were inserted between all stimuli, and the
text BFace 1^ or BFace 2^ appeared below each picture. At
test, participants were asked to select either B1^ or B2^ as the
face/voice that had the same identity as the first stimulus.

Data analysis and multilevel modeling All data were ana-
lyzed using multilevel models so that both participants and
stimuli could be treated as random effects. The random effects
were fully crossed; every participant encountered all 36 stim-
uli (18 faces, 18 voices) in each version of the experiment.
Multilevel modeling avoids aggregating data (see Smith et al.
2015; Wells et al. 2013) and inflating the risk of Type I error
(Baguley, 2012; Clark, 1973; Judd, Westfall, & Kenny, 2012).
Accordingly, multilevel modeling was the most appropriate
analysis, because it takes into account the variability associat-
ed with individual performance and different stimuli. The var-
iance associated with stimuli may be particularly important
when investigating face–voice matching. Mavica and
Barenholtz (2013) reported that matching performance varied
between 35 % and 70 % for the 64 models whose faces and
voices they used as stimuli. Disregarding this source of vari-
ance would risk the ecological fallacy (see Robinson, 1950),
by falsely assuming that the observed patterns for participant
means also occur at the level of individual trials.

Results

Matching accuracy was analyzed using multilevel logistic re-
gression with the lme4, version 1.06, package in R (Bates,
Maechler, Bolker, & Walker, 2014). This is the same method
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of analysis used in Smith et al. (2015). Four nested models
were compared, all fitted using restricted maximum likeli-
hood, and with accuracy (0 or 1) as the dependent variable.
The first model included a single intercept; the second includ-
ed the main effects of each factor (Order, Position, and Facial
Stimulus Type). The third added the two-way interactions, and
the final model included the three-way interaction. This meth-
od of analysis allowed us to test for individual effects in a way
similar to traditional analysis of variance (ANOVA).
However, as F tests derived from multilevel models tend not
to be accurate, we report the likelihood ratio tests provided by
lme4. These are more robust and are obtained by dropping
each effect in turn from the appropriate model (e.g., testing
the three-way interaction by dropping it from the model in-
cluding all effects, and testing the two-way interactions by
dropping each effect in turn from the two-way model).

Table 1 shows the likelihood chi-square statistic (G2) and p
value associated with dropping each effect. Table 1 also re-
ports the coefficients and standard errors (on a log odds scale)
for each effect in the full three-way interaction model.
Variability for the first stimulus in each trial (the voice in the
A–V condition, and the face in the V–A condition) was
modeled separately from the foil stimulus. The random effect
for the first stimuli captures the variability of both faces and
voices, because corresponding faces and voices are highly
correlated. For foils we modeled separate random effects for
faces and voices, because the corresponding voice or face was
never present. In the three-way model, the estimated SD of the
first-stimulus random effect was .535; for the voice foils it was
.634; and for face foils it was .484. The estimated SD for the
participant effect was less than .0001. A similar pattern held
for the null model. Thus, although individual differences were
negligible in this instance, a conventional by-participants anal-
ysis that did not simultaneously incorporate the variance as-
sociated with the stimuli could be extremely misleading.

The main effect of position was significant, along with the
three-way interaction between position, order, and facial stim-
ulus type. Figure 2 aids interpretation of the effects and inter-
action, showing means and 95 % confidence intervals for the
percentage accuracies in each condition of the factorial design.
The confidence intervals were obtained by simulating the pos-
terior distributions of the cell means in R (arm package,
version 1.6; Gelman & Su, 2013).

Overall, matching performance was significantly above the
chance (50 %) level, M = 59.7 %, 95 % CI [50.8, 68.0].
However, the confidence intervals for percentage accuracy
in the static (M = 57.6 %, 95 % CI [47.5, 67.1]) and dynamic
(M= 63.7 %, 95 % CI [53.8, 72.5]) conditions show that only
performance on dynamic facial stimulus trials was significant-
ly above chance level. Figure 2 shows the main effect of
position, with accuracy levels being consistently higher when
the correct, matching other-modality stimulus was presented
in Position 1 than when it was presented in Position 2. The
results from the V–A condition are shown in panel A, whereas
results from the A–V condition appear in panel B. The basis of

Fig. 1 The procedure used in
Experiment 1

Table 1 Parameter estimates (b) and likelihood ratio tests for the 2 × 2
× 2 factorial analysis, Experiment 1: Sequential face–voice presentation

Source df b SE G2 p

Intercept 1 0.444 0.315 – –

Position 1 0.062 0.374 5.92 .015

Order 1 0.333 0.371 0.68 .410

Facial Stimulus Type 1 0.676 0.277 3.42 .064

Position× Order 1 0.870 0.516 0.35 .553

Position× Facial Stimulus Type 1 0.625 0.390 0.02 .884

Order × Facial Stimulus Type 1 0.775 0.382 0.59 .441

Position× Order × Facial Stimulus Type 1 1.159 0.549 4.34 .037

872 Atten Percept Psychophys (2016) 78:868–879

 

 

 

 



 

 
251 

the three-way interaction appears to relate to performance
when the matching other-modality stimulus appears in
Position 2 in the V–A condition. In that condition there was
no position effect in the dynamic facial stimulus condition.
However, as with any factorial design testing multiple effects,
it would be imprudent to overinterpret a single nonpredicted
interaction that is only just statistically significant (p = .037).

Discussion

Using the standard crossmodal matching task (Lachs, 1999)
employed in audiovisual speech perception research, in
Experiment 1 we observed above-chance dynamic face–voice
matching, but chance-level static face–voice matching.
Although there was no significant difference between static
and dynamic face–voice matching accuracy, and although
static face–voice matching was close to being above chance
level, this pattern of results appears to support the conclusion
that the source identity information shared by dynamic artic-
ulating faces and voices explains accurate face–voice
matching. The results are consistent with those of two previ-
ous studies (Kamachi et al. 2003; Lachs & Pisoni, 2004a), but
are in conflict with Mavica and Barenholtz (2013, Exp. 2),
who observed above-chance-level static face–voice matching
using this procedure.

The presence of a position effect in Experiment 1 addition-
ally suggests that memory load might be hindering perfor-
mance, especially in the static facial stimulus condition.
Matching was more accurate when the matching face and
voice were presented close together in time (Position 1) than
when the matching other-modality stimulus was further away,

in Position 2. In line with research suggesting that memory is
better for dynamic than for static faces (Christie & Bruce,
1998; Knappmeyer et al. 2003), the position effect did not
manifest in the dynamic facial stimulus, V–A condition.
This is the condition in which the face (Stimulus 1) would
need to be held in memory for the longest time.

Experiment 2

In order to clarify the effect of procedural differences across
previous studies, in Experiment 2 we used a modified version
of the presentation procedure from Experiment 1. Experiment
2 presented two different face–voice combinations. This time,
the face and voice in each combination were presented simul-
taneously, instead of sequentially. By reducing the memory
load, we hypothesized that matching accuracymight be higher
when faces and voices were presented simultaneously, and
above chance for static face–voice matching.

Method

The methods for Experiment 2 were identical to those of
Experiment 1, with the exceptions outlined below.

Participants Seven male and 33 female adult participants (N
= 40) took part in the experiment, with an age range of 18 to
33 years (M= 21.38, SD = 3.57). None of the participants had
taken part in Experiment 1.

Procedure The procedure used in Experiment 2 is illustrated
in Fig. 3. Participants in the V–A condition saw a face accom-
panied by a recording of a voice. The text BVoice 1^ was
visible underneath the face. After a 1-s gap, they saw the same
face accompanied by a different voice, and the text BVoice 2^
appeared beneath the face. In the A–V condition, participants
heard a voice accompanied by a face, then a 1-s intervening
gap, before hearing the same voice accompanied by a different
face. The text BFace 1^ and BFace 2^ appeared below the first
and second combinations, respectively. Participants had to
decide which combination was correct by pressing B1^ for
face–voice Combination 1, or B2^ for face–voice
Combination 2.

Results

Face–voice matching accuracy was analyzed using the same
method as in Experiment 1. Table 2 shows the likelihood chi-
square statistic (G2) and p value associated with dropping each
effect in turn from the appropriate model. The coefficients and
standard error (on a log odds scale) for each effect in the full
three-way interaction model are also reported in Table 2. We
observed a similar pattern of SDs for the random effects. In the

Fig. 2 Face–voice matching accuracy on visual–auditory (panel A) and
auditory–visual (panel B) trials for sequentially presented faces and
voices in a two-alternative forced choice task. Error bars show 95 %
confidence intervals for the condition means
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three-way model, the estimated SD of the first-stimulus ran-
dom effect was .778; for the voice foils it was .324; and for the
face foils it was .103. The estimated SD for the participant
effect was .007.

Only the main effect of position was significant. Figure 4
aids interpretation of this main effect, showing the means and
95 % confidence intervals for accuracy in each of the eight
conditions, obtained using the arm package (version 1.6;
Gelman & Su, 2013).

As in Experiment 1, the overall matching performance was
significantly above chance (50 %) level,M= 60.9 %, 95% CI
[50.4, 70.5]. Dynamic facial stimulus trials overall were sig-
nificantly above chance (M = 62.5 %, 95 % CI [50.1, 73.6]),
but static facial stimulus trials were not (M= 59.8 %, 95 % CI
[47.2, 71.2]). As is clear from Fig. 4, the main effect of posi-
tion exhibits the same pattern as in Experiment 1, with accu-
racy levels being consistently higher when the correct face–

voice combination is presented in Position 1. There is, how-
ever, no three-way interaction.

Discussion

Overall, the pattern of results observed in Experiment 2 is
largely similar to that observed in Experiment 1, when all of
the stimuli were presented sequentially. The participants in
Experiment 2 exhibited a bias toward selecting the first
face–voice combination they encountered. As the position ef-
fect was observed in both experiments, this may be attribut-
able to the nature of the 2AFC task: When alternatives are
presented sequentially, the first alternative is disproportionate-
ly favored. Indeed, as we noted in the introduction, other stud-
ies have shown widespread evidence of position biases using
2AFC procedures (García-Pérez & Alcalá-Quintana, 2011;
Yeshurun et al. 2008). No three-way interaction was detected
in Experiment 2. Thus, although the position effect may vary
in strength depending on stimulus type and order, the two

Fig. 3 Procedure used in Experiment 3

Table 2 Parameter estimates (b)
and likelihood ratio tests for the 2
× 2 × 2 factorial analysis,
Experiment 2: Simultaneous
face–voice presentation

Source df b SE G2 p

Intercept 1 0.266 0.365 – –

Position 1 0.550 0.462 17.40 <.001

Order 1 0.755 0.431 <0.01 .952

Facial Stimulus Type 1 0.314 0.391 0.37 .545

Position× Order 1 1.402 0.653 1.95 .162

Position× Facial Stimulus Type 1 0.140 0.568 1.09 .295

Order × Facial Stimulus Type 1 0.771 0.549 0.37 .544

Position× Order × Facial Stimulus Type 1 1.121 0.804 1.90 .169

Fig. 4 Face–voice matching accuracy on visual–auditory (panel A) and
auditory–visual (panel B) trials for simultaneously presented faces and
voices in a two-alternative forced choice task. Error bars show 95 %
confidence intervals for the condition means.
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experiments presented here do not provide compelling evi-
dence for this conclusion.

Experiment 3

The results from Experiment 2 showed that simultaneously
presenting faces and voices does not improve static face–voice
matching. This was contrary to what we expected; it seems
that the pattern of results from Experiment 1 was not attribut-
able to increased memory load impairing the comparison of
the first stimulus to the matching other-modality stimulus in
Position 2. In Experiment 3, we aimed to test whether chance-
level static face–voice matching could be attributable to the
sequential presentation of alternatives in a 2AFC task.
Evidence from the forensic eyewitness literature suggests that
simultaneously presenting faces in a lineup array produces a
different pattern of results than when faces are presented se-
quentially (Clark, Howell, & Davey, 2008; Ebbesen & Flowe,
2002; Steblay, Dysart, & Wells, 2011). This possibly occurs
because of the differential use of relative and absolute judg-
ments (Kneller, Memon, & Stevenage, 2001). Relative judg-
ments (G.L. Wells, 1984) are employed when choosing the
best option from simultaneously presented alternatives,
whereas the sequential presentation of alternatives encourages
absolute judgments because of the difficulty of making com-
parisons (G.L. Wells et al. 1998).

Some previous experiments finding above-chance accura-
cy with static stimuli have used a procedure in which the test
alternatives were presented simultaneously, and can therefore
be compared more easily (Krauss et al., 2002; Mavica &
Barenholtz, 2013, Exp. 1). Experiment 3 tested whether static
face–voice matching is above chance level when the alterna-
tives in a 2AFC task are presented simultaneously. Because of
the nature of this procedure, and the difficulty of presenting
voices simultaneously at test, Experiment 3 only included an
A–V condition. Although we did not expect a spatial position
effect to manifest when the two face alternatives were present-
ed simultaneously, we were unsure (in face of the contradic-
tory previous research) whether this procedure would elicit
above-chance static face–voice matching.

Methods

Design For Experiment 3, we employed a within-subjects
design, with one factor: Spatial Position (left = Position 1,
or right = Position 2). The dependent variable was matching
accuracy.

ParticipantsEight male and 22 female adult participants (N=
30) took part, with an age range of 18 to 44 years (M= 20.70,
SD= 5.20). The participants were recruited in the sameway as
in Experiments 1 and 2, although none had taken part in

previous experiments. All participants reported having normal
or corrected vision and hearing.

Apparatus and materials The software and equipment used
in Experiments 1 and 2 were also used in Experiment 3. The
voice stimuli and static facial stimuli were also the same as in
the previous experiments. In the absence of a between-
subjects manipulation, only four versions of Experiment 3
were constructed, all of which featured different combinations
of stimuli. Each version featured one block of 18 trials, in
which a voice was followed by the presentation of two faces.
The same-identity face was always present at test, with its
spatial position (left = Position 1 or right = Position 2) being
randomly and equally varied. Each voice was only heard once
in each version. Each of the stimulus faces appeared twice, but
only once as the correct, matching stimulus. This was in keep-
ing with the procedure of Krauss et al. (2002), who also reused
the visual stimuli as foils within blocks.

Procedure The participants were randomly allocated to one of
the four experimental versions using an online research ran-
domizer (Urbaniak & Plous, 2013). As is illustrated in Fig. 5,
participants heard a voice for 2 s. After a 1-s gap, they saw two
images of faces presented side by side. The text BFace 1^ was
visible underneath the face on the left, and the text BFace 2^
appeared underneath the face on the right. This screen was
visible for 2 s. Participants were then instructed to decide
which face matched the voice they had heard, indicating their
answer by pressing B1^ for BFace 1^ or B2^ for BFace 2.^

Results

Face–voice matching accuracy was analyzed using the same
method as in Experiments 1 and 2. Since there was only one
within-subjects factor, we only report the likelihood chi-
square statistic (G2) and p value associated with dropping
the main effect from the null model. The coefficients and
standard error (on a log odds scale) for the effect of spatial
position in themain effect model are reported in Table 3. In the
main effect model, the estimated SD of the voice random
effect was .487, and that for the face foil was .0002. The
estimated SD for the participant effect was less than .0001.

The main effect of spatial position was nonsignificant, and
the overall matching accuracy with simultaneously presented
static facial stimuli was above chance level (50 %), M =
61.0 %, 95 % CI [54.1, 67.6].

Discussion

The results indicate that when test alternatives are presented
simultaneously, static face–voice matching is above chance
level. In keeping with the previous results (Mavica &
Barenholtz, 2013; Smith et al., 2015), this confirms that static
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face–voice matching is possible. The results also replicate the
findings of Krauss et al. (2002), but using headshots rather
than full-length images. When we consider these alongside
the results presented in Experiments 1 and 2, it appears that
static face–voice matching performance is sensitive to proce-
dure, thus offering one possible explanation for the contradic-
tions between previous studies.

Experiments 1 and 2 showed that there is a temporal posi-
tion bias when test options are presented sequentially.
However, Experiment 3 suggests that there is no correspond-
ing spatial position bias; when the test options are presented
simultaneously, the position bias is negligible.

General discussion

In an attempt to resolve the discrepancies across previous
face–voice matching studies, the three experiments presented
here tested whether crossmodal source identity information is
exclusively dependent on encoding visual articulatory pat-
terns, or whether static faces and voices offer sufficient con-
cordant information to facilitate above-chance performance.
Taken together, the results are consistent with the conclusion
that, although articulatory movement might be important in
facilitating face–voice matching (Exps. 1 and 2), it is also
possible to match static faces and voices when a 2AFC pro-
cedure facilitates comparisons between the alternatives
(Exp. 3). Therefore, it seems that the procedural differences
between previous studies offer a possible explanation for the
discrepant results in the literature. Furthermore, as was shown
by the variance associated with the stimuli in the multilevel
modeling analysis, people vary in the extent to which they

look and sound similar. This offers a complementary explana-
tion for the contradictions in previous studies, because results
may be highly dependent on the particular stimuli used.

Static versus dynamic face–voice matching

In Experiments 1 and 2, we presented the test alternatives in
the 2AFC task sequentially. The results replicated those of
audiovisual speech perception studies, showing that although
dynamic faces and voices can be matched at a level signifi-
cantly above chance, static faces and voices cannot (Kamachi
et al., 2003; Lachs & Pisoni, 2004a). However, static face–
voice matching was very close to being above chance level,
and there was no significant difference between the facial
stimulus conditions. These results hint at the existence of a
trend toward accurate static face–voice matching across all
three experiments. As was shown by the results of
Experiment 3, and in keeping with the hypothesis that static
faces and voices also offer concordant source identity infor-
mation (Feinberg et al., 2005; Krauss et al., 2002; Mavica &
Barenholtz, 2013; Saxton, Caryl, & Roberts, 2006; Smith
et al., 2015), when the alternatives were presented simulta-
neously, performance was significantly above chance. The
overall results are therefore not consistent with the conclusion
that dynamic articulatory movement is exclusively responsi-
ble for explaining crossmodal matching (e.g., Kamachi et al.,
2003; Lachs & Pisoni, 2004a), although they do not rule out
the audiovisual speech perception argument that visual artic-
ulatory movement shares source identity information with
voices (Kamachi et al., 2003; Lachs & Pisoni, 2004a, b;
Rosenblum et al., 2006).

The lack of a statistical difference between static and dy-
namic face–voice matching in Experiments 1 and 2 corre-
sponds with the results of previous findings using a same–
different procedure (Smith et al., 2015). This warns against
overstating the importance of visual articulatory movement in
accounting for crossmodal matching accuracy. That said, the
lack of an effect of facial stimulus type is not necessarily at
odds with the results of studies that have detected accurate
face–voice matching when movement was isolated using

Fig. 5 Procedure used in
Experiment 3

Table 3 Parameter estimates (b) and likelihood ratio tests for the
analysis, Experiment 3: Simultaneously presented alternatives

Source df b SE G2 p

Intercept 1 0.446 0.147 – –

Spatial Position 1 0.199 0.203 0.98 .329
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point-light displays and static information was unavailable
(Lachs & Pisoni, 2004b; Rosenblum et al., 2006). Dynamic
point-light displays could offer sufficient information to in-
form accurate face–voice matching, independently of the
structural information available in static images.

Procedural differences

On both static and dynamic facial stimulus trials, we observed
a uniform position effect in Experiment 2 when the memory
load was reduced. This finding suggests that the discrepant
pattern of results across previous studies is not a consequence
of differential memory effects for static and dynamic faces.
Rather, our findings are more consistent with the conclusion
that the position effect is attributable to the nature of the 2AFC
task (García-Pérez & Alcalá-Quintana, 2011; Yeshurun et al.,
2008) when the two test alternatives are presented sequential-
ly. In keeping with this argument, the position effect disap-
peared when the static alternatives were presented simulta-
neously, in Experiment 3.

Alternatively, the position effect might have manifested
because faces and voices are most commonly perceived si-
multaneously during social interactions. Therefore, partici-
pants may have exhibited a bias to accept a face and voice
presented in relative temporal proximity (Exp. 1) or the com-
bination presented first (Exp. 2) as coming from the same
person. This explanation would disproportionately support
matching accuracy when the matching other-modality stimu-
lus appears in Position 1, in line with the position bias ob-
served in both Experiment 1 and 2.

In comparing the results of Experiments 1 and 2 to those of
Experiment 3, it appears that static face–voice matching is
sensitive to the procedure employed. The similarity of the
results across Experiments 1 (sequential face–voice presenta-
tion) and 2 (simultaneous face–voice presentation) suggest
that the contradictions between previous studies are not attrib-
utable to superior performance when faces and voices are
presented simultaneously. This may occur because the more
critical comparison to make in facilitating matching accuracy
is between alternatives, rather than between the face and the
voice. When the two alternatives are presented simultaneous-
ly, as in Experiment 3, the key comparison, a relative judg-
ment (Wells, 1984), is easier to make.

At this point, it should be noted that in previous face–voice
matching experiments using a crossmodal matching proce-
dure, a standard interstimulus interval of 500ms has been used
(e.g., Lachs & Pisoni, 2004a, b; Mavica & Barenholtz, 2013),
which is half as long as the interval featured in the experiments
we report. With 1-s intervals in Experiment 1, we observed
chance-level static face–voice matchingwhen the stimuli were
presented sequentially. Using 500-ms intervals, Mavica and
Barenholtz (2013, Exp. 2) observed above-chance-level
matching accuracy. It is necessary to consider the possible

impact of this methodological dissimilarity. It could be argued
that a longer interval might increase the load on auditory and
visual sensory memory, making the task more difficult. The
results that we report support the argument that sensory mem-
ory pressures do not account for the chance-level static facial
stimulus results in Experiment 1. Experiment 2, in which faces
and voices were presented simultaneously, was designed to
alleviate memory load, and the results were very similar to
those of Experiment 1: Static face–voice matching was still
at chance level.

Variability associated with the stimuli

An explanation based on procedural differences does not ac-
commodate all of the results in the previous literature. Mavica
and Barenholtz (2013) observed above-chance static face–
voice matching using sequential presentation of alternatives
in the A–V condition of the standard crossmodal matching
task (Lachs, 1999). Alongside procedural differences, our set
of three experiments also highlights the importance of stimu-
lus variability in providing an additional, but complementary,
explanation for the contradictions between previous studies.
Other studies have used varying numbers of face–voice pairs
when testing crossmodal matching. For example, Lachs and
Pisoni (2004a) used eight pairs of stimuli, but Kamachi et al.
(2003) used 40. Our multilevel modeling analysis revealed
that some people look and sound more similar than others;
relatively high levels of variance associated with the stimuli
were observed for the 18 face–voice pairs used here, and in all
three experiments, the overall variance associated with stimuli
was far greater than that associated with participants.
Consistent with this, Mavica and Barenholtz reported that
for their stimuli, levels of matching accuracy varied widely,
between 35 % and 70 %, across 64 face–voice pairs. Overall,
Mavica and Barenholtz’s stimulus pairings of voices and static
faces may have been easier to match than the pairings featured
in our study, or than those featured in previous studies
(Kamachi et al., 2003; Lachs & Pisoni, 2004a).

A key strength of the present research is our use of multi-
level modeling. AlthoughMavica and Barenholtz (2013) ran a
power analysis indicating that the discrepancies between pre-
vious studies were not due to lack of statistical power, simul-
taneously accounting for variance associated with stimuli and
participants is a problem that can only be appropriately dealt
with by running a multilevel model (Baguley, 2012; Judd
et al., 2012). This statistical approach allows generalizations
to be made across both stimuli and participants, and is gener-
ally more conservative than traditional analyses such as
ANOVA, which aggregate over one or the other variable.
However, multilevel modeling has not been previously used
when investigating face–voice matching, reducing confidence
in the generality of the findings in this field.
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No order effects in 2AFC tasks

In line with other studies (Kamachi et al., 2003, forward and
backward conditions; Lachs & Pisoni, 2004a; Lander et al.,
2007), neither Experiment 1 nor 2 showed an effect of order.
Although some asymmetries were found between V–A and
A–V conditions in Smith et al.’s (2015) same–different pro-
cedure, the results suggested that these asymmetries were ow-
ing to a response bias on A–V trials. We would not expect
such an effect to manifest in a 2AFC paradigm, which tests
sensitivity rather than response bias.

Conclusion

The results of the three experiments reported here suggest that
source identity is shared by dynamic articulating faces and
voices, as well as by static faces and voices. Our findings help
resolve previous uncertainty about whether static face–voice
matching is possible, presenting two complementary explana-
tions for the apparent contradictions. The data suggest that
static face–voice matching is more likely to be above chance
level when the alternatives in a 2AFC task are presented si-
multaneously. In addition, the variance associated with stimuli
indicates that some people look and sound more similar than
others, an issue that has not been properly accounted for by the
analyses undertaken in previous research, but that helps ex-
plain why the static face–voice matching performance across
previous studies might be inconsistent. Our results therefore
support the conclusion that dynamic visual information about
articulatory patterns facilitates accuracy (Kamachi et al., 2003;
Lachs & Pisoni, 2004a, b; Lander et al., 2007; Rosenblum
et al., 2006), but that it alone cannot explain the existence of
shared source identity information with voices. Crossmodal
source identity information is available in both static and dy-
namic faces.
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