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ABSTRACT 

The general use of textiles began twenty-seven thousand years ago. However, today, 

textiles are used, not only in the production of clothing but are also found in numerous 

applications in medicine, the military, transport, construction sectors and in many 

industrial applications. Normally textiles are passive, however active textiles have been 

developed that exhibit the capability of adapting their functionality according to changes 

in their surroundings, i.e. environment.  Such textiles are known as Smart and Interactive 

Textiles (SMIT) and are capable of sensing and being active. The integration of 

semiconductor devices into textiles has enormous potential in the creation of SMIT. Such 

SMIT structures will pave the way for the creation of truly-wearable electronic systems 

in the near future.   

The aim of this research is the development of a core technology for embedding 

functional semiconductor devices within the fibres of a yarn, in order to create 

electronically-active yarns (e-yarn). Such electronically-active yarns will be the building 

blocks of the next generation of wearable electronics. Moreover, this will facilitate the 

creation of innovative solutions able to overcome current problems and difficulties which 

the manufacturers of wearable textiles are experiencing and open the doors for designers 

to develop the next generation of truly-wearable computers which are comfortable to wear, 

flexible and washable. The e-yarns could be used in medical applications such as 

monitoring of ECG, respiratory patterns, blood pressure and skin temperature. They could 

be adopted by industries such as automotive, retail, manufacturing, military, the internet 

of soft things, consumer products, sports, fashion and entertainment.  

 

The development of the core technology required raw materials analysis in terms of 

physical, mechanical and electrical properties; creation of interconnections of electronic 

semi-conductor chips with copper filaments; encapsulation of the interconnections to 

improve washability and provide extra mechanical strength to the core filaments prior to 

making the final yarn. The final step was the process of manufacturing yarns using the 

knit braiding technique. A number of prototypes of e-textiles were produced including 

illuminated yarns, thermistor yarns, RFID yarns, magnetic yarns, vibration sensor yarns, 

illuminated garment, illuminated car seat, RFID-intergraded garments, a temperature-

monitoring fabric mat and temperature-monitoring socks in order to investigate the 

manufacturing viability, identify practical issues, and to promote the technology to attract 

further funds and potential commercial partners.     
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                                                             CHAPTER ONE 

1.0 Introduction  

1.1 Background Information   

Currently, textiles can be designed to carry out a set of predetermined functions 

within certain boundary conditions, and would fail outside the defined conditions.  

However, the next generation of textiles will have the capability to adapt its functionality 

according to changes in the surroundings, i.e. the environment.  Such textiles are known 

as Smart and Interactive Textiles (SMIT), and will be capable of sensing and be active. 

The electronics industry has made quantum leaps within the last eighty years in the design 

and construction of semi-conductor sensors, actuators and powerful micro-controllers 

with a very high degree of precision and performance. The electronic industry has also 

focused its efforts on miniaturising these semi-conductor devices. These micro-devices 

would provide an excellent platform for integration into yarns, in order to create a new 

generation of SMIT. Such SMIT structures will pave that way for the creation of truly-

wearable, electronic systems in the near future.   

 

The market for SMIT structures is expected to grow strongly. For example, in 2014 the 

US-based Market Research Company Markets & Markets, predicted that the global 

market volume of wearable electronics and technology market is expected to reach $ 

11.61 Billion by the end of 2020, growing at a compound annual growth rate (CAGR) of 

24.56% from 2014 to 2020 [1]. According to statista.com, the related global smart, 

intelligent, digital & interactive fabrics market revenue was $708 million in 2012 and is 

expected to reach to $2.03 billion by 2018, growing at an estimated CAGR of 17.7 % [2]. 

 

1.1.1 Application of Electronic Textiles  

Some examples of applications of electronically-active yarns could be garments which 

are capable of continuous monitoring one’s vital signs such as ECG, respiratory patterns, 

blood pressure and skin temperature. Other uses are flexible active display 

boards/screens, fashion garments (light-emitting garments), colour-changeable wall 

papers/curtains etc.  

 

1.1.2 Issues for Current Applications of Electronic Textiles  

Electronic textiles are currently used in areas that include medicine, automotive, 

aerospace, sports, military and fashion. However, despite these advances there are many 

disadvantages in such products available today, such as poor washabilty, excessive 
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weight and bulk, and poor flexibility, breathability and comfort. For example, various 

commercially available SMIT products are used in the medical sector to monitor the vital 

signs of the human body. Most of them include numerous wires which may lead to 

discomfort and inconvenience to patients. Usually, clothing is considered a second skin 

as it makes intimate contact with the body all the time and facilitates a comfortable and 

safe environment. Therefore, it is advantageous to integrate electronic component with 

the clothing rather than connecting components directly to the human body. Current 

applications of SMIT devices are, in general, quite limited and act solely as 

demonstrations of the potential of integration that can be possible in the future.  

Integrating functionality into flexible fibre form is thus the next progression in wearable 

electronics.  The approach for realising this fibre technology, however, requires a 

paradigm shift in conventional thinking for it to occur.  Thus the aim of the work 

described here is to address this gap in the knowledge base.  

 

1.1.3 State of the Art of Electronic Textiles  

In order to overcome the above disadvantages, a novel concept of electronically-active 

yarn has been developed in this research work.  A smart yarn was produced by soldering 

semiconductor package dies with fine copper wires and creating a polymer micro-pod by 

encapsulation, and then forming the final yarn. The encasing of the package die has to be 

achieved in such a manner as to protect it from all forms of mechanical and thermal 

stresses.  Such a smart yarn could then be used to manufacture electronically-active 

fabrics and garments. The concept was to create smart yarns that contained different 

microchips. Such smart yarns will be the building blocks of the next generation of 

wearable electronics. Moreover, this will facilitate solutions to overcome current 

problems and difficulties which the manufacturers of wearable textiles are experiencing 

and open the doors for designers to develop the next generation of truly-wearable 

computers which are comfortable, flexible and washable.   
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1.2 The Aims and Objectives of the Study  

There are three main goals in this PhD research work: 

1. To create the scientific knowhow for embedding semiconductor micro devices 

within the fibres of yarns, so as to create novel electronically-active yarn 

(EAY and also called e-yarn); 

2. To investigate the mechanical and electrical properties of EAY’s based on 

engineering and scientific knowledge;   

3. To study methods of incorporating of EAYs into textile designs. 

 

1.3 Research Methodology  

The approach to the research can be largely described as quantitative.  Once the 

experiments had been carried out on the samples, the data were collected and analysed. 

The knowledge gained was used to optimise the technology for creating EFY’s. The 

research path utilised for the development of the technology is shown in Figure 1.1.  
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1.3.1 Conductive Yarn and Electronic Devices 

The interconnections of the micro devices have to be formed through use of very fine 

conductive micro-threads, usually in the order of 50 – 100 µm in diameter, with very low 

electrical DC resistance, and therefore multi-strand copper wire was identified to use in 

the research. The fine copper wire was also demonstrated good mechanical properties, 

excellent solderability and be covered by a thin non-conductive polymer film to prevent 

short-circuiting of the terminals of the microchips.    

In the 19th century, the development of the vacuum tube was a great turning point in the 

electronics industry. The advances in semiconductor manufacture in the last few decades, 

resulted in the development of integrated circuits which are powerful, cost effective, 

reliable and small. Currently these semiconductor devices are available in a wide range 

of formats. The packaging format used in surface mount devices (SMD) is the most 

suitable for creating EAY’s due to the absence of pins and leads.  The miniature size of 

SMD that were used enabled the creation of fine EAYs.  For the present research, surface 

mount devices of the formats SMD 0201 (0.60x0.30x0.23 mm) and SMD 0402 

(1.0x0.5x0.5) were used in EAYs; the details are given in Annex 1. 

 

1.3.2 Soldering  

It is necessary to transfer thermal energy from a heat source to the soldering point to melt 

and reflow solder between terminals of the microchip (known as solder pads) and 

conductive thread(s) in order to create good bonds.  There are three heat transfer 

mechanisms namely conduction, convection, and radiation. A focus IR reflow 

workstation from PDR was employed to carry out the soldering process.  It uses a with a 

radiation heat transfer mechanism, and employs infrared (IR) electromagnetic rays to 

transfer heat energy required for the re-flow soldering process.  The PDR system was a 

useful tool for creating good-quality soldered bonds between microchips (width: 500µm) 

and fine copper wires (diameter: 55µm) without damaging the microchip circuitry, thanks 

to contactless heat transfer mechanism.  The experiments carried out with the PDR system 

are described in Chapter 4.  

 

1.3.3 Encapsulation and Yarn Formation 

After joining the solder pads of microchips to copper wires, it was necessary to protect 

the solder joints and strengthen the copper wires.  Therefore, a composite yarn was crafted 

by mounting the copper wires and the soldered microchips onto two polyester yarns and 

the microchips and solder joints were encapsulated with a polymeric micro-pod made 
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from a UV-curable acrylated urethane-based conformable resin.  This was used as the 

core yarn, which was encapsulated within a sheath of fibres to produce the final 

electronically active yarn (EAY, also called e-yarn). An ultra-small diameter warp 

knitting machine, (RIUS Model: MC), was employed to produce the fibre sheath. 

 

1.4 Structure of Theses  

This chapter gives the introduction. Chapter 2 covers the literature review of textiles and 

electronic textiles (e-textiles) in different applications with a timeline and the raw 

materials that were used in this project such as copper wires (strands), electronic devices, 

solders, and bonding techniques. The third chapter covers the mechanical and electrical 

properties of the raw materials that were used in this research. The fourth chapter covers 

the main part of this research work, which was the creation of interconnections using 

soldering techniques and reflow soldering, plus the optimisation of the mechanical and 

electrical properties of solder joints. The fifth chapter covers the encapsulation process 

including ultraviolet theory and the optimisation of the properties of the micro-pod. The 

sixth chapter describes the electronic yarn formation, including fibre and yarn 

classification, twisting and braiding techniques and optimisation of yarn appearance. 

Chapter seven covers the prototypes produced, including illuminated yarns, an 

illuminated garment, an illuminated car seat cover, a thermistor yarn, a thermistor mat, 

an RFID yarn, an RFID garment and a composite laminate. Chapter eight covers future 

work and conclusions. The structure of thesis is illustrated in the Figure 1.2. 
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                                                         CHAPTER TWO 

2.0 Literature Review  

As a part of the research work, it was important to study the results of other researchers 

and organisations who have been working in the electronic-textiles field, to understand 

the existing knowledge base, knowledge gap, advantages and disadvantages of 

commercially available wearable electronics products etc. Even though the main focus of 

this research work was on electronic textiles, it was necessary to discuss general textiles 

and electronics components before discussing electronic textiles. Therefore, the basic 

knowledge of textile technology and electronic components are described below. Then 

the history of electronic textiles and its timeline with some examples of developments in 

electronic textiles are summarised.  

 

2.1 Textiles  

The human body is in contact with textiles at least 70% of the time [3]. As such it is 

necessary to consider basic textile characteristics when electronic textiles are developed. 

Currently, most electronic textiles are manufactured by integrating electronic components 

into fabrics [4]. Therefore, the basic properties of textiles are often compromised. 

Most of researchers who are in the e-textiles field, have not taken into account all of the 

basic textile characteristics. Therefore, most e-textiles are not comfortable in wear or 

washable in comparison to normal textiles [4]. Thus, if one wants to produce user-

friendly, wearable electronics, it is wise to study the original core properties of textiles. 

A simple definition of a textile is a fabric that is made from fibres, which are converted 

into yarn as a first step and then made into fabrics by binding yarns using different 

techniques such as interlacing (weaving) and interlooping (knitting) (see Figure 2.3). 

There is also a category of textiles called non-woven that are made directly from fibre 

webs.   

 

2.1.1 Textile Fibre Classification  

According to the definition of textile fibres, ‘The length of a fibre has to be about one 

thousand times greater than its thicknesses’. The fibre is the basic unit of yarn. Textile 

fibres have properties such as fineness, pliability, a suitable length and strength. Natural 

fibres have a limited length while synthetic and man-made fibres are extruded in longer 

lengths and called filaments. Fibre classification is shown by Figure 2.1. Textile fibres 

can be divided into natural fibres and man-made fibres. Different types of fibres can be 
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used for production of e-yarns, depend on the application. Manufacturing techniques for 

producing e-yarns are described in Chapter 6. 

 

        

 

 

 

 

 

 

 

 

 

 

                                            FIGURE 2. 1: FIBRE CLASSIFICATION [5] 
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2.1.3 The Methodologies Available to Convert Fibres into Fabrics 

The basic manufacturing process from fibre to fabric can be described briefly as below 

Figure 2.3. 
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As described in Figure 2.3, fabrics are mostly made as woven and knitted fabrics, which 

can be used for producing garments. In the case of under-garments, they are considered 

to be a second skin on the human body and they are required to have special properties 

such as flexibility, softness, breathability, wicking properties and wetting ability. 

Therefore, textiles are more comfortable to wear as long as they retain these basic 

characteristics. Moreover, textiles are durable and washable due to their good mechanical 

properties; which can give protection from environmental changes to a certain degree, 

such as temperature, chemicals, wind, dust, viruses, bacteria and hazards. Another 

important property of textiles is that they can conform to almost any complex shape due 

to their shearing property [7]. For example, paper cannot undergo shear. Therefore, paper 

cannot be deformed without undergoing pleating or wrinkling. However, a fabric can 

shear as yarns/fibres can freely move whilst retaining their strong structure, which is as 

shown by Figure 2.4.        

 

          

a. Before shearing of woven fabric          b. After shearing of woven fabric 

        FIGURE 2. 4: ILLUSTRATION OF WOVEN FABRIC SHEARING PROPERTY 
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2.2 Electronic Components 

Generally, electronic components can be classified broadly, as shown in Figure 2.5. It 

was necessary to become familiar with commercially-available electronic components in 

order to identify potential electronic devices which can be integrated into yarns whist 

retaining the required textile characteristics.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   FIGURE 2. 5: CLASSIFICATION OF ELECTRONIC COMPONENTS [8]  

 

In the 19th century, the development of the vacuum tube was a great turning point in the 

electronics industry. A typical vacuum tube circuit is shown as Figure 2.6. These were 

quite heavy, generated a lot of heat, had a short life-time, required warm-up and DC 

voltages of 300V or higher [9]. The advances in semiconductor manufacture in the last 

century resulted in the development of integrated circuits that are more efficient, cost 

effective, reliable and small. Currently these semiconductor devices are available in 

different formats as shown in Figure 2.7.  

 

              

 

 

Electronic 

Components 

Active 

Components 

Passive 

Components 

Semiconductor Devices 

Vacuum Tube Devices 

Gas Tube Devices 

Resistors 

Capacitors 

Inductors 

FIGURE 2.6: A TYPICAL VACUUM 

TUBE CIRCUIT [9]  

FIGURE 2.7: SOME EXAMPLE OF 

ELECTRONIC DEVICES [155]  
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2.2.1 Semiconductor  

A semiconductor is a solid, crystalline material which has electrical conductivity greater 

than that of insulators but less than of conductors. Usually they are used as a base material 

for the manufacture of semiconductor electronic circuits. The most common 

semiconductors are silicon and germanium. The conductivity of the semiconductors can 

be controlled by adding different types and amounts of impurities (which process is called 

doping). Moreover, the conductivity of a doped semiconductor can be controlled by the 

introduction of an electric field, by exposure to light, and even by pressure and heat; thus 

excellent sensors can be designed with doped semiconductors. Semiconductors doped 

with donor impurities (ex: phosphorus) are known as an n-type semiconductor, while 

those are doped with acceptor impurities (ex: boron) are known as p-type. By joining 

together these n and p types (called junctions), other components such as diodes (p-n 

junction) and transistors (n-p-n or p-n-p junctions) can be made [10]. Figures 2.8 and 2.9, 

show a boron atom acting as an acceptor and a phosphorus atom acting as a donor. 

 

                                

            

 

 

 

 

2.3 Electronic Textiles 

An intensive review of the literature on electronic textiles (e-textiles) was carried out in 

order to identify the gaps in the existing knowledge base of e-textiles. Although Smart 

Textiles are still in their infancy, it is evident from publications that this area is growing 

rapidly, as shown in Figure 2.10. The forecast for e-textiles is included at the end of this 

chapter.  

 

FIGURE 2. 7: PHOSPHORUS ATOM 

ACTING AS A DONOR IN THE SIMPLIFIED 

2D SILICON LATTICE [156]  

FIGURE 2. 6: BORON ATOM ACTING 

AS AN ACCEPTOR IN THE 

SIMPLIFIED 2D SILICON LATTICE 

[156]      
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FIGURE 2. 8: NUMBER OF ARTICLES AND BOOKS PUBLISHED ON SMART TEXTILES 

LAST 

18 years [Source science direct data base] 

 

Most smart textiles are produced by using e-textiles. According to the level of 

intelligence, smart textiles can be divided into three groups, namely passive smart textiles 

(only able to sense the environment); active smart textiles (reactive sensing to stimuli 

from the environment); very smart textiles (able to sense, react and adapt according to 

environmental changes) [11]. 

E-textiles have gained an ever-increasing profile and have found applications in areas as 

diverse as medicine, sport, leisure, defence, automobile, fashion and entertainment, 

manufacturing and retail industry.  However, most e-textiles available today are made by 

attaching either permanent or removable electronic functionality.  In the first generation 

of these systems, electronic devices were simply attached to garments or included in 

pockets [12, 13] for examples; LifeShirt of Vivometrics and Fibertronics. In the second 

generation, electrical connectivity and functionality were introduced by the inclusion of 

conducting yarns within the fabric structure [14, 15] for example: Textronics, EFS control 

glove and SmartShirt. Van Langenhove [16] concludes that there are three categories of 

electronic textiles: embedded electronics, textronics and fibretronics. Embedded 

electronics include electronic devices such as MP3 players, mobile phones and head 

phones. These are inserted into garments by creating pockets for them. This is known as 
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the first generation of electronic textiles. The development of electronic textile is 

discussed in the following sections, starting with early examples.   

 

2.3.1 Early Examples  

In 1911, a heated glove was developed for drivers of motor boats, aeroplanes and 

automobiles which used manual steering-mechanisms. These ensured that drivers and 

pilots could grip the steering controls comfortably in freezing weather conditions [17]. In 

1936, a patent application was filed for embedding electrical conductors into textiles such 

as blankets, pads, quilts, fabrics, clothing etc., [18]. In 1945, a heated glove was 

developed and patented by Summers, A. V., [19].  

 

2.3.2 Attachment of Electronic Components into Pockets  

First-generation electronic textiles involved attachment of electronic components into 

pockets of the garments. Some examples include the ICD+ suit, developed by Philips and 

Levi’s and the Lifeshirt from Vivometrics. This ICD+ (Industrial Clothing Division) 

jacket (Figure 2.11) was developed in 2000. It was the first wearable electronic but it is 

no longer available on the market. Mobile phones and MP3 player were inserted into the 

pocket of the ICD+ jacket and wires were sewn into seams of the jacket [20].  

 

 

FIGURE 2. 9: ICD+ JACKET [21] 

 

The smart textiles that were produced between 2000 and 2010 were not commercially 

successful [22]. In 2010, a group of researchers worked on an EU-funded project called 

ProeTex to develop a garment (Figure 2.12) for fire fighters. Electronic components were 

integrated to detect CO2 levels, environment and body temperatures and location [23]. 

 

 

                           FIGURE 2. 10: PROTOTYPE OF PROETEX GARMENT [23] 
 

Bluetooth-enabled jackets with joystick controls were developed by Zegna Company. An 

example of jacket is shown in Figure 2.13. It incorporates integrated Bluetooth so it is 

possible to answer a mobile phone and to play music without removing the devices from 

the jacket [24].  
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FIGURE 2. 11: ZEGNA SPORT JACKET [24]  

 

2.3.3 Attachment of Electronic Components into Garments/Textiles   

In 1996, quantum tunnelling composite (QTC) materials were developed by Peratech 

Ltd., based on original ideas by David and Chris Lussey. QTC material is electrically 

conductive when pressed, whilst behave as an insulator when not under pressure. This 

material could be used in the automobile industry, for example in the switches shown 

below in Figure 2.14 [25]   

 

 

FIGURE 2. 12: QTC™ MATERIAL USED FOR EMBEDDED FABRIC CONTROLS 

WITHIN A CAR DOOR PANEL TO OPERATE MIRRORS AND WINDOWS [25]. 

 

Textronics have been integrating electronics into textiles fabrics since 2004 [15]. This is 

one example of a second-generation electronic textile. Electronic textiles have gained 

great attention for use in military applications for more than fifteen years. As explained 

below in this page and the next, the US and UK governments have funded significant 

amounts of research in smart textiles. Smart textiles can sense, react and adapt according 

to environmental changes, providing extra support to soldiers in the battlefield. Some of 

the research work in this area is included below.  

A report was published by a team of the US Army Soldier and Biological Chemical 

Command Soldier Systems Centre in 1998. The purpose of that report was to review 

interactive textile technologies that provide extra support for soldiers of the US Army, to 

increase their abilities and assess risks. The report described investigation of technologies 

and new materials such as new textile-manufacturing technologies, advanced fibre optics, 

conductive shape-memory materials, dendritic polymers, sensors and processors, gels and 

other coatings, composite materials, nano structures, biomimetics, micro-robotics and 

piezoelectric materials [26]. Van L., has mentioned that vital signs of soldiers can be 

monitored, such as socks which are integrated with pressure sensors to monitor blood 

pressure [16]. In 2001, the US Defence Advanced Research Projects Agency proposed a 

project to create a new class of wearable system made of fabric [27]. Georgia Tech 

wearable motherboard (GTWM) was developed by Jayaraman at Geogia Tech, Atalanta, 

USA. This smart shirt was developed for US Army soldiers to detect bullet wounds and 

monitor vital signs during combat conditions. The smart shirt consists of plastic optical 

fibres and other sensors [28, 29, 30]. “However, the smart shirt at this stage of 
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development only detects and alerts medical professionals of irregularities in patients’ 

vital statistics or emergency situations, it does not respond to dangerous health 

conditions” [29]. The prototype GTWM is shown in Figure 2.15. 

        

 

                      FIGURE 2. 13: GEORGIA TECH WEARABLE MOTHERBOARD [29] 

 

In 2002, Engineers from the University of Southern California and Virginia Tech 

developed a large electronic fabric under the STRETCH programme. That prototype 

fabric was produced with interwoven micro-electronic components to use as a sensitive 

battlefield sensor to detect sounds such as gunfire and moving vehicles. This cloth was 

an example of a second generation e-textile [31].  Dr. Eugene Wilusz, who was working 

as a senior nuclear, biological, chemical scientist in the Warfighter Directorate, U.S. 

Army Natick Soldier Research, Development and Engineering Centre (NSRDEC) 

reported that the key factor for future advancements was the development of electronic 

circuits that are made entirely from fabric [32].  In 2002, Intelligent Textiles Ltd, which 

was founded by Asha Peta Thompson and Stan Swallow, developed conductive woven 

fabric to replace conventional wires that supply power to soldiers’ systems and other 

devices [33].         

 

Coosemans et al [34] investigated wireless ECG monitoring in textiles. The electronic 

circuits were emebeded onto the surface of fabrics, as shown in Figure 2.16. This garment 

does not appear to be comfortable or washable.  

 

 

FIGURE 2. 14: LEFT: DEMO SET-UP WITH BELT PROTOTYPE, WORN BY A 12 WEEK 

OLD BABY. RIGHT: BABY SUIT PROTOTYPE, WORN BY A 21 WEEK OLD BABY [34].  

 

The Institute for Reliability and Microintegration in Germany, and Samsung Electronics 

Co. Ltd, reported their attempts at combining electronic circuit boards with textiles, in 

order to develop clothes with wearable electronics (Figure 2.17).  An electronic circuit 

was formed on a thin electronic substrate and was placed on the fabric using embroidery 

techniques. The disadvantages of this concept are the poor appearance, the washing 

difficulties and limited flexibility [35].  
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FIGURE 2. 15: FLEXIBLE SUBSTRATE WITH METALIZED CONTACT PADS 

INTERCONNECTED WITH EMBROIDERY [35]. 

 

In 2006, the NuMetrex heart sensing sport bra was released onto the market by Textronics 

Inc. [15]. Conductive yarns were used to knit localised electrodes into knitted fabrics as 

shown in Figure 2.18 [36]. This sensing fabric was able to pick up heart rates and transfer 

the signals to a watch, a smart phone or a cardio machine wirelessly using a small 

transmitter, which was inserted in a pocket in the bra. Later, seamless garments such as 

the Cardio shirt and miCoach (as shown Figure 2.18) for men were introduced, as well as 

a heart-sensing garment called “Racer Tank” for women, to monitor heart rate. In 2008 

Adidas AG acquired Textronics to strengthen the technology [36]. These garments are 

fashionable and comfortable when compared with first generation e-textiles. However, 

there are still practical issues such as the feel of electronic components and washing 

problems with electronic components inserted into pockets of the garments.   

 

                                             

FIGURE 2. 16: NUMETREX HEART SENSING SPORT BRA (LEFT) ADIDAS MICOACH 

MEN'S TRAINING SHIRT (RIGHT) [36] 

 

E-textiles are also used in the fashion industry. Fashion can be described as a popular 

style or practice in clothing [37]. It can change from time to time and to suit people of 

different age groups, country, religion, professional status etc. Fashion can be influenced 

by famous personalities such as singers, actors etc. [38]. As an example, teenagers used 

to like dresses like Elvis Presley [39]. Phoebe Alexander [40] has reported how celebrities 

can influence the general public into wearing new styles of clothing. For example, Kanye 

West who is a world famous rapper, writer and producer has his own style of clothing 

that draws great attention from sections of the public. CuteCircuit is a fashion design 

company that is based in London. They produce interactive fashion garments and 

wearable electronics. Some examples of these garments are as shown in Figures 2.19 & 

2.20 [41]. They use LED strips to produce illuminated garments. Over twenty thousand 

LEDs are used to produce a garment called a galaxy dress [42]. This company also 

produce other types of wearable electronics such as hug T-shirt that creates a sensation 

of touch. A person who is at a distance can send a signal from his/her mobile to another 

wearing a hug T-shirt to activate the hug effect [42]. In addition, M-dress enables 

answering of a mobile phone by lifting of the wrist without touching the phone [43]. 



Chapter 02                                                                                                                           Literature Review  

20 
 

Currently, CuteCircuit produce fashion garments using the latest technology, for example 

in their twitter Dress. Tweeted messages and animation are displayed in real time on the 

LED’s in the garment. However, all these garments still remain part of the second 

generation of electronic textiles as they involve attachment of electronic components to 

the fabric surface. Therefore, the fabric’s original performance has been compromised 

and it may not be possible to wear the garments for long periods comfortably.   

 

     

 

 

 

 

In 2013, two companies, Visijax and Eleksen, merged to strengthen their range of 

products. Visijax manufactured second generation Visijax highlight jackets [45] which 

could be used by cyclists who wanted to be visible for safety reason. High intensity LEDs 

were attached into this jacket’s front and back (Figure 2.21).  

 

 

FIGURE 2.19: VISIJAX HIGH VISIBILITY JACKETS [45] 

 

2.3.4 Integration of Electrically Conducting Fibres  

Engineered Fibre Structures Ltd. (EFS) reported the development of a control glove 

which could be used to control computers, games consoles, machines, electronic devices 

and equipment [46].  The EFS control glove consisted of electro-conducive areas (ECA) 

incorporated into the fingertips of a knitted glove (Figure 2.22).  The wearer could 

activate certain functions by touching these ECAs together.  

 

 

 

 

 

 

 

 

   

 FIGURE 2.20: EFS CONTROL GLOVE [46] 

FIGURE 2. 17: CUTECIUTE 

GALAXY DRESS [44] 

FIGURE 2. 18: CUTECIUTE M-DRESS [43]  
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Fibertronic Ltd. has commercialised wearable devices such as textile switches, flexible 

keypads, iPod & iPhone controllers, mobile phone interfaces, garment heating systems, 

fabric sensors and wearable lighting systems (Figure 2.23).  The textile switch technology 

was originally developed by the New Zealand Company Canesis Ltd who trademarked it 

as ‘Softswitch’.  However, in all these products electronic components were attached to 

fabrics resulting in degradation of the textile characteristics [47].  

 

 

FIGURE 2.21: EXAMPLES OF WEARABLE ELECTRONIC DEVICES FROM 

FIBROTRONICS [12]. 

 

A garment that was integrated sensors for knee joint monitoring has been developed by 

Gioberto in 2014 [48].  Three types of stitched stretch sensors were used in this garment 

such as a bottom thread cover stitched sensor, top thread cover stitched sensor and 

overlock stitched sensor.  A textile based strain sensor, using elastic conductive webbing, 

was designed to monitor the flexion angle of elbow and knee movements. The webbing 

was produced by using conductive yarns and elastic yarns as shown in Figure 2.25. The 

strain sensor was placed on the arm and leg as shown in Figure 2.24 [48].  

 

 

FIGURE 2.22: THE STRAIN SENSOR DEVICES FOR MONITORING THE FLEXION 

ANGLE DURING (A) ELBOW AND (B) KNEE MOVEMENTS [48] 

 

 

FIGURE 2.23: THE ELASTIC CONDUCTIVE WEBBING WITH A PLAIN STRUCTURE 

[48] 

 

2.3.5 Semi-Conductors Embedded Within Yarn. 

In order to overcome the above disadvantages of first and second generation e-textiles, a 

novel concept for developing electronically active fibres and yarns was proposed by Dias 

in 2005 [10, 14, 15].  He suggested the development of a smart yarn by encasing 

semiconductor chips within the fibres of a yarn, which is a mixture of conventional textile 

fibres and conductive fibres as shown in Figure 2.26.  The encasing of the chip has to be 

achieved in such a manner as to protect it from all forms of mechanical and thermal 

stresses.  Such a smart yarn could then be used to manufacture electronically-active 

fabrics and garments.  The concept will enable the creation of smart yarns containing 

different microchips and such smart yarns will be the building blocks of the next 
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generation of wearable electronics.  Moreover, this will facilitate solutions to overcome 

current problems and difficulties which the manufacturers of wearable textiles are 

experiencing and open the doors for designers to develop the next generation of truly-

wearable computers which are comfortable, flexible and washable [49, 50].  The 

technology to realise Dias’ concept has been developed and is demonstrated within the 

programme of research that is documented in the following chapters of this thesis 

 

 

 
 

 

 
 

 

 

 

 

 
 

 

 

 

FIGURE 2.24: A SCHEMATIC ILLUSTRATING DIAS’ CONCEPT OF AN 

ELECTRONICALLY-ACTIVE YARN [51]  

 

In 2012 a French company Primo1D developed an electronic yarn called E-Thread in 

which RFID and LEDs chips were embedding into yarn [52]. However those electronics 

were visible on the outside because they were not integrated within the yarn structure [4]. 

Therefore, the interconnections and electronic components may not be strong enough to 

withstand mechanical stress which occur during the textile manufacturing process and 

end uses.    

 

2.3.6 Highlighted Funded Projects on E-Textiles 

There have been a number of projects on e-textiles, funded by the European Commission, 

and some of these projects are summarised below. 

WEALTHY (Sept 2002 to Feb 2005): The focus of the project was to develop clothing 

for monitoring vital signs of patients.  A Lycra-based knitted garment was developed with 

electrodes, which were knitted from a conductive yarn in order to determine ECG. The 

fabric of the garment was coated with carbon-black and silicone rubber to monitor the 

breathing patterns of the patient. The aim was to develop a garment to monitor a patient’s 

health condition during rehabilitation without the need to remain in hospital unnecessarily 

[11, 53, 54, 55].  

 

Conductive fibres 

Main fibres 

Strain sensitive 

semiconductor chip 

Resin matrix to 

protect the chip 
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MY HEART (Dec 2003 to Oct 2007): This was a collaborative project with WEALTHY 

resulting in the development of a garment which made from woven fabric with insulated 

copper wire, a pressure sensing matrix and electrodes for recording of the heart rate was 

developed. The research consortium consisted of thirty partners from ten European 

countries. [11, 53, 54, 56].  

BIOTEX (Oct 2005 to Feb 2008): The aim of this project was to develop a garment with 

biochemical-sensing techniques. The focus was on monitoring sweat and blood of the 

human body. A textile structure with sensing patches and textile sensors was developed 

for monitoring physiological measurements. Eight partners from four European countries 

were involved in the project [11, 53, 54, 57]. 

PROETEX (Feb 2006 to Jan 2010) was a project to develop a smart garment for first 

responders. The garment could monitor one’s health, activity, position and the 

environmental conditions of the user (Figure 2.12) [11, 53, 54]. 

STELLA (Feb to Jan 2010) was a project aimed at developing stretchable electronics for 

large area applications. The main objective of the project was to develop new stretchable 

substrates with conductors to connect stretchable electronics such as energy supplies, 

sensors, actuators, display and switches. The target application areas were health care, 

wellness and functional clothes [11, 53, 54, 58].  

OFSETH (Mar 2003 to Jan 2009): the aim of the project was to embed optical fibre 

sensors into textiles for healthcare applications. The project’s focus was on use of silica 

and polymer optical fibres for monitoring vital signs of the human body, such as 

respiration, cardiac activities pulse oximetry and body temperature. Optical fibres with 

gratings and near infrared spectroscopy techniques were used [53, 54, 59, 60]   

There have been a number of other EU founded projects such as CONTEXT (2006 to Jun 

2008) that focused on the creation of smart textiles that have integrated contactless 

sensors for monitoring muscle activities and heart rate signals. The project MICROFLEX 

(May 2008 to May 2012) was co-ordinated by the University of Southampton with 13 

partners. The project was focused on developing MEMS processing capability for the 

production of flexible smart fabrics using screen and inkjet printing and the development 

of new, functional inks to be compatible with fabrics [61, 62]. DEPHOTEX (Nov 2008 

to Oct 2011) was a European collaborative research project focused on developing 

photovoltaic textiles based on novel fibres that can convert solar radiation to electric 

energy. The applications were textiles for sports, leisure, car interiors, solar tents, 

umbrellas, tennis rackets and everyday clothing [63, 64]. PLACE-it (Feb 2010 to Jun 

2013) was called a ‘platform for large area conformable electronics’ by integration. This 
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project was led by Philips to develop electronic textiles by integrating foil-based 

electronics and LEDs into stretchable fabrics. As a result, Philips launched the product 

‘blue touch pain relief patch’ in 2012 [65, 66].  

Recently, a new research project commenced to develop manufacturing processes for 

integrating sensors, micro-controllers and other electronic components by embedding into 

textile yarn, which will be produced with printed electronic techniques.  The project 

started in March 2015 with grant funding from the Engineering Physical Sciences 

Research Council in the UK. This is a collaborative research project between 

Southampton University and Nottingham Trent University with ten industrial partners.  

The project will enable the development of yarns with powerful electronic circuits [67, 

68].  

2.3.7 Current Situation of Global Wearable Electronics and Electronic Textiles  

As mentioned in the beginning, electronic textiles are used, to produce smart textiles. 

There is another category called wearable computers or wearable electronics. Even 

though electronic components are used in e-textiles, all wearable electronics are not e-

textiles. Therefore, wearable electronic products can be categorised as hand worn 

products (including smart watch, wrist wear and finger wear); head worn products 

(including smart glasses, head mounted display (HMD) and head up display (HUD); body 

worn products (including smart textiles, wearable patches, foot wear and arm wear) [69]. 

At the moment, according to Figure 2.27 and 2.28, the most popular wearable electronic 

products in 2013 and 2014 were hand-worn products (smart watches, for example): BBC 

News reported that Apple sold between 2.5 and 3 million smart watches in 2013 – 2014 

[70]. However, ‘Your Business Intelligence & Strategy Partner’ (BIS) Research predicted 

that head-worn products would be more popular from 2016 (see Figure 2.27 and 2.28). 

Moreover, the total global wearable electronics market value is predicted to increase from 

USD 421.2 million to USD 17.47 billion by 2024 [71].      
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FIGURE 2.25: A SNAPSHOT OF THE GLOBAL WEARABLE ELECTRONICS 

COMPONENT MARKET VALUE [71]  

 

 

FIGURE 2.26: A SNAPSHOT OF THE GLOBAL WEARABLE ELECTRONICS FORECAST 

[71]  

 

IDtechEx (Identification Technology Exchange), has demonstrated that over 3 billion 

units of wearable sensors will be sold (worth USD 5.5 billion) by 2025 (Figure 2.29). 

Furthermore, IDtechEx explain that, even though the first wave of wearable sensors has 

come to market with other products such as mobile phones, and textile-based sensors will 

come to the market as a second wave [72] (Figure 2.30).     

 

      

                     FIGURE 2.27: THE WEARABLE SENSORS MARKET FORECAST [72] 

    

         

FIGURE 2.28: THE TRENDS OF SENSORS WHICH ARE IN WEARABLE ELECTRONICS 

[72]  

 

All of smart textiles do not have an electronic functionality. The global smart textiles 

market was worth USD 289.5 million in 2012. Those smart textiles were used in medical 

applications; fashion and entertainment; protection and military; sports and fitness; 

transportation; architecture, and their market revenue share by application in 2012 is 

shown in Figure 2.31 [73].  The global smart textiles market is expected to grow to USD 

2 billion by 2018 [74].                   

      

FIGURE 2.29: SMART TEXTILES MARKET REVENUE SHARE BY APPLICATION IN 

2012 [73]  

 

Currently, the highest demand for smart textiles is from Europe and North America, for 

a wide range of application such as transportation, military and healthcare. However, the 

fastest growth rate for smart textiles, rising at a compound annual growth rate (CAGR) 

of 20.2% from 2014 to 2020, was in Asia Pacific due to the fast growing industries in 

Asian countries such as China [73, 75]. At the moment, the major players in performance 

clothing are Adidas, Nike, and Reebok. Other high-end smart textiles manufactures are 
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Philips, Firetronic, Textronics, Peratech Ltd, Clothing+, ohmatex [73].  Other main E-

textiles manufactures are Cute Circuit, Hovding, Moon Berlin, Myontex, No-Contact, 

Stealth Wear, Utope and Warmx [54].  

According to IDTechEx there are active research programmes on electronic textiles in 

many universities worldwide; the universities involved in electronic textiles are listed in 

Appendix 1. [76, 77].   

 

2.4 Conclusion  

Today the demand for wearable devices is growing.  To continue to meet this demand 

engineers, designers and commercial pioneers are conceptualising new applications.  

Textiles have a major role to play in this strategically-important area and offer many 

advantages over traditional materials such as support for technologically-advanced 

products, flexibility, softness, and high-strength-to-weight ratios.  The highly developed 

mass production techniques that characterise the textile sector facilitate a path for the 

development of new products and their cost effective manufacture for many applications.  

These concepts are of particular benefit to certain groups who have specific requirements 

for wearable systems including the emergency services, military, elite athletes, patients 

and fashion innovators.  Realising these concepts will expand an exciting new 

manufacturing sector, bringing together advanced textiles and electronics manufacturing. 

Most wearable technologies were developed in laboratories or as clothing that was 

specially made and bore little resemblance to garments that users would regard as normal.  

In the first generation of wearable technologies, electronic devices were simply attached 

to garments or included in pockets.  In the second generation, electronic functionality was 

achieved by incorporating conducting yarns into the textile structure.   

However, research has demonstrated their major drawbacks caused by inherent hysteresis 

of textile structures, which limits their application to relative measurements only [78, 79, 

80].  Therefore, Dias has taken a major step forward by proposing the third generation of 

electronic textiles where integrated circuits are fully incorporated into yarns prior to fabric 

or garment production.  The intensive literature survey, which was carried out by the 

author has confirmed the novelty of the concept as currently all activities in electronic 

textiles are limited to first and second generation products.  

The aim of the research was to develop a new platform technology - ‘Fibre Electronics’ 

whereby semiconductor micro devices are directly embedded within the fibres of a yarn.  

Once produced, these electronically functional yarns will be incorporated into fabrics 

using conventional textile machinery or used as sewing thread in garment manufacture.  



Chapter 02                                                                                                                           Literature Review  

27 
 

The resultant smart yarn technology will have a profound effect on the production and 

use of electronic textiles in wearable applications by providing robust functionality that 

is resistant to wear, washing and drying, and can be produced at lower costs than the 

electronic textiles available today where functionality is often added to the fabric and/or 

garment at the manufacturing stage.   
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           CHAPTER THREE 

3.0 Raw Materials Analysis  

It was very important to understand the fundamental properties of selected raw materials 

before carrying out development tests for the creation of interconnects between micro-

devices, in order to identify the compatibility of each materials and the performance of 

individual materials. Therefore, the physical, mechanical and electrical properties of the 

conductive filaments/threads/yarns and the solder pads of electronic semiconductor 

packaged dies were analysed. Tests included the determination of physical parameters 

(diameter, width, length, thickness, yarn count, tensile strength) and electrical properties. 

The results are included in this chapter.  

 

3.1 Conductive Yarns/Threads/Strands    

The interconnections of the micro devices were formed by using very fine conductive 

micro-strands (50 – 100 µm diameter) with very low electrical resistances. Ideally, the 

conductive strands should demonstrate good mechanical properties, excellent soldering 

ability and be covered by a thin non-conductive polymer film to prevent short-circuiting 

of the terminals of the microchips. Commercially available conductive threads can be 

classified as fine metal strands (single and multi-strands), synthetic polymer fibres with 

their surface covered with a micro millimetre thin conductive sheath of either silver, 

copper, nickel or gold, carbon fibres and silicone fibres impregnated with carbon nano 

particles [81]. Moreover, conductive polymers are also available such as Polypyrrole [82], 

which is a type of organic polymer produced by polymerisation of pyrrole [83].  However, 

most polymer-based conductive fibres are not suitable for creating interconnections due 

to their low melting points which would interfere with the soldering processes. The high 

melting point polymer based conductive fibres are very expensive. As such, it was 

decided to utilise fine metal strands to form interconnections between the terminals of the 

semiconductor micro devices. Silver is the most conductive metal by volume (Figure 3.1). 

However, it is only 5% more conductive by volume than copper and there are several 

benefits with copper compared to silver. For example, copper is cheaper, more malleable 

and more ductile. Consequently, copper is easier to form into different shapes and can be 

put under stress without damage. Moreover, it is possible to build up cracks when silver 

wire twists or kinks whist copper is less likely to build up cracks. Gold is also used as an 

electrical conductor as gold is corrosion resistant and reliable but it is very expensive [84, 

85, 86]. Therefore, single and multi-strands copper wires were used in this research work.  
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FIGURE 3.1: ELECTRICAL CONDUCTIVITY OF MATERIALS [84] 

 

Different configurations of Copper wires (Figure 3.2) from Luxion Technologies 

Incorporated Ltd in Wellingborough were examined for their suitability for the 

programme of research.    

 

                                                    

 

                                                   

 

 

 

 

       FIGURE 3.2: COPPER WIRES FROM LUXION INDUSTRIES INC. LTD. 

3.1.1 Physical Properties Analysis of Copper Wires 

3.1.1.1 Microscopic Analysis and Diameter Measuring Test  

Microscopic analysis was carried out to determine the diameter of the copper wires.  A 

digital microscope (Olympus model BX41) was utilised for these experiments. The 

diameters of the copper wires were measured in five different positions along the length 

of the copper wires within an image by using image-processing software (Cell^B). This 

test was repeated five times for each sample of copper wires. Examples of the images of 

the copper wires are shown in Figures 3.3 to 3.5.  The results of the measurements of 

diameter are summarised in Table 3.1.  

 

b. Coated single strand copper wire A a. Single stand copper wire   

c. Coated single strand copper wire B  d. Uncoated 4 strands copper wire  

e. Uncoated 7 Strands copper wire  
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FIGURE 3. 3: SINGLE STRAND COPPER WIRE (LEFT: UNCOATED, RIGHT: COATED 

B)  

 

                    
FIGURE 3. 4: UNCOATED 4 STRAND (LEFT), 7 STRAND (RIGHT) COPPER WIRES 
 

 

                                 FIGURE 3. 5: UNCOATED 8 STRANDS COPPER WIRE 
 

Type of Copper Wires  
Average Diameter 

(µm) 

Standard 

Deviation (µm) 

Single strand copper wire  55.20 4.87 

Polymer coated strand copper wire A 76.60 1.36 

Polymer coated single strand copper wire B 149.80 3.06 

4 Strands twisted strand copper wire 65.80 1.72 

7 Strands twisted strand copper wire 99.80 1.47 

8 Strands twisted strand copper wire 127.80 1.72 

                 TABLE 3. 1: THE RESULTS OF DIAMETERS OF THE COPPER WIRES 
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The diameters of polyester-coated single strand copper wire B and eight-strand copper 

wire were more than 100 µm. The diameters of the other copper wires were between 50 

µm and 100 µm. The surfaces of copper wires were smooth without faults and the low 

standard deviations indicate that the diameters were uniform along the length. It was 

noticed that the twist of 4 strand copper wire was higher than that of 7 and 8 strands 

copper wires. Twist factor is a characteristic of a textile yarn that is expressed below, in 

formula 3.1 [87]. A higher twist factor leads to a smaller diameter of the yarn (either 

twisted spun yarn or filaments yarn) [88]. The breaking tensile force of a spun yarn is 

increased when the twist factor is increased up to certain point, but starts to decrease when 

the twist factor is increased further, as shown as in the Figure 3.6.    

 

Twist Factor (kt) = Twist (turns per metre) x √Tex ………………3.1 

 

 

FIGURE 3. 6: RELATIONSHIP BETWEEN YARN BREAKING FORCE, BREAKING 

ELONGATION AND TWIST OF A SPUN YARN [88] 

    

3.1.1.2 Measurement of Linear Density of Copper Wires 

In textile science and technology, the term linear density is used to indicate the thickness 

of a yarn.  This is also known as the ‘yarn count’.  This is determined by measuring the 

weight of a defined length of yarn.  The most widely used yarn count system is the Tex 

System, where the linear density is defined by the weight of a 1000m length of yarn in 

grams. As the end product (electronic yarn) is a yarn, it was decided to measure the Tex 

count of copper wires used in the research. Due to the limited availability of copper wires, 

the weight of 1 m was measured by using a precision digital scale (model: PW214, Adam 

equipment) and the corresponding Tex counts were determined. In order to achieve a high 

degree of accuracy the length measurement of the copper wires was carried out with a 

crimp tester and 10 samples were used for each type of copper wire. The results are as 

summarised in Table 3.2:  
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Type of Copper wire  
Average 

Count (Tex) 

Standard Deviation 

(Tex) 

Single strand copper wire A 25.1 0.34 

Coated single strand copper wire 28.4 0.35 

Coated single strand copper wire B 112.7 2.32 

4 strand copper wire 26.8 1.02 

7 strand copper wire 58.1 0.54 

8 strand copper wire 70.5 0.08 

                            TABLE 3. 2: THE LINEAR DENSITY OF COPPER WIRES 
 

Table 3.1 shows that the single strand copper wire had the smallest yarn count, and 

polymer-coated single strand copper wire B had the highest yarn count.   

 

3.1.2 Mechanical Properties of Copper Wires 

The stress-strain behaviour of the copper wires was evaluated by using a Zwick-Roell, 

Z2.5 tensile testing machine according to the DIN EN ISO 2062:2009 standard. The tests 

were repeated 10 times for each sample and the results are given in Table 3.3. (Appendix 

3 to 8). 

Lv: Gage Length 

FH: Maximum Tensile Force  

RH: Fineness related breaking force    

       eH: Elongation at maximum tensile force 

          Type of Copper 

Wires 

Lv 

mm 

Average 

FH 

cN 

Standard 

Deviation  

Average 

eH 

% 

RH 

cN/tex 
FH (cN)  eH (%)  

Single strand copper wire 

A 250  71 1.2 1.5 

20 2.82 

Coated single strand 

copper wire 250  86 3.2 2.8 

19 3.04 

Coated single strand 

copper wire B 250  272 27.0 12 

19 2.42 

4 Strand copper wire 250  116 12.6 3.6 23 4.32 

7 Strand copper wire 250  300 11.9 1.2 16 5.15 

8 Strand copper wire 250  357 8.0 1.8 17 5.06 
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                               TABLE 3. 3: TENSILE TEST RESULTS FOR COPPER WIRES 

 

The results in Table 3.3 demonstrate that the multi-stand twisted copper wires performed 

better than single strand copper wires in term of RH values. Overall, the seven-strand 

copper wire exhibited the best performance in terms of tensile strength per yarn count. 

The tensile and elongation behaviour of copper wires are shown in Figures 3.7 to 3.12. 

 

             

 

 

          

 
 

     

 

 

                          

FIGURE 3. 7: GRAPH OF COATED 

SINGLE STRAND WIRE  

FIGURE 3. 8: GRAPH OF SINGLE 

STRAND WIRE      

FIGURE 3. 9: GRAPH OF SINGLE 

STRAND WIRE B         
FIGURE 3. 10: GRAPH OF 4 STRAND 

WIRE 
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The observed elongation of the single wire copper B was highly variable (Figure 3.7), as 

confirmed from the high standard deviation for elongation of the single wire copper B 

shown in Table 3.3. The four-stand copper wires exhibited higher elongation as due to 

their higher twist level, as shown in Figure 3.6 [88].     

 

3.1.3 Mechanical Properties of Polyester Yarn 

During fabric manufacture textile yarns are subjected to high tensile stresses, and due to 

the low breaking strength of copper wires used in the research the interconnects and the 

semiconductor chips were strengthened with polyester yarn (150dTex/48 textured yarn).  

The polyester yarns were also tested and the results are given below.  The yarns were 

tested using the procedures described in section 3.1.2 and results are given Table 3.4 

(Appendix 9). 

 

Polyester Yarn (150/48) 
Lv 

mm 

Average 

FH 

cN 

Standard 

Deviation  

Average 

eH 

% 

RH 

cN/tex 
FH (cN)  eH (%)  

Single yarn   250 674 33.5 2.3 

 

21 

 

4.5 

Two polyester yarns  250 1352 50 1.7 

 

21 

 

4.5 

                      TABLE 3. 4: TENSILE TEST RESULTS FOR POLYESTER YARN 

 
 

FIGURE 3. 12: GRAPH OF 7 STRAND 

WIRE 
FIGURE 3. 11: GRAPH OF 8 STRAND 

WIRE 
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3.1.4 Mechanical Properties of Polyester Yarn and Copper Wires Combination 

As stated earlier, copper wires were not used on their own in the making of electronic 

functional yarn. They were integrated with polyester fibres to improve the strength, 

durability, flexibility, comfort and washability. As such it was necessary to analyse the 

physical properties when they were combined together. Therefore, further tensile tests 

were carried out with combinations of copper and polyester yarn (textured, 150/48) and 

the tensile test results are shown in Table 3.5 and Figure 3.15 to 3.18 (Appendix 10 to 

13). 

 

 

 Combination of Copper wires 

and polyester yarns 

Lv 

mm 

Average 

FH 

cN 

Standard 

Deviation   

Average 

eH 

% 

RH 

cN/tex 
FH (cN)  ƐH (%)  

A Polyester yarn & single copper 

wire 
250 631 104 4 18 3.60 

Two Polyester yarns & single 

copper wire 
250 1392 45 2.1 20 4.28 

A Polyester yarn & a 7 strand 

copper wire 
250 734 35 1.2 15 3.53 

2 Polyester yarns & a 7 strand 

copper wire 
250 1370 118 2.1 17 3.84 

TABLE 3. 5: TENSILE TEST RESULTS FOR COMBINATIONS OF POLYESTER YARN 

AND COPPER WIRE 

 

FIGURE 3. 13: GRAPH OF ONE POLYESTER 

YARN 

FIGURE 3. 14: GRAPH OF TWO 

POLYESTER YARN 
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The tensile breaking strength of the single strand copper wire was 71 cN, and seven-strand 

copper wires was 300 cN (Table 3.3). For example, at 10% elongation point, they both 

were not broken but the tensile force was very low at 10% elongation (Figure 3.7 & 3.11). 

However, when the copper wire was combined with polyester yarn, the tensile forces 

were higher at 10% elongation point (Figure 3.15 & 3.16). The single strand copper wires 

were not broken at 10% of elongation even though the forces are much higher than 71 cN 

(Figure 3.15). A similar result was noticed in seven strands copper wire too. Moreover, 

the breaking forces were similar for single strand copper wire and seven-strand copper 

wires when they combine with polyester yarn (table 3.5) whist single strand copper wire 

was very much weaker than seven strands copper wire without polyester yarn (table 3.3), 

as the polyester yarn was taking the tensile load when copper wire combine with polyester 

yarn. Therefore, the tensile tests result exhibited that it was important to use additional, 

strong textile yarns combined with copper wires to achieve the required strength.  

 

   

  

       

 

 

3.1.5 Electrical Properties of Copper Wires 

Batteries are often used for providing the required electrical power for circuits in 

electronic textiles, particularly in wearable devices. Batteries invariably add weight to the 

e-textiles. Therefore, it is important to reduce the required battery power of the system in 

order to avoid using higher-weight batteries. Because of that, the resistivity of conductive 

yarns is a very important factor. A digit multi-meter (Type Agilent 6 ½) was used to 

FIGURE 3. 16: GRAPH OF ONE POLYESTER 

YARN AND SINGLE STRAND COPPER WIRE  
FIGURE 3. 15: GRAPH OF TWO POLYESTER 

YARNS AND SINGLE COPPER WIRE 

FIGURE 3. 17: GRAPH OF TWO POLYESTER 

YARNS AND 7 STRAND COPPER WIRE  

FIGURE 3. 18: GRAPH OF ONE POLYESTER 

YARNS AND 7 STRAND COPPER WIRE 
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measure the resistances of copper wires. The meter is shown in Figure 3.19. Resistances 

were measured per meter of copper wires for ten samples of each and every copper wire. 

The result is shown in Table 3.6.      

 

 

                                FIGURE 3. 19: AGILENT 6 ½ DIGIT MULTI-METER 

 

 

Selected Copper Wires 

Diameter of 

Copper 

Wires 

Average 

of 

Resistance 

(Ω/m) 

Standard 

Deviation of 

Resistance 

(Ω/m) 

Single strand copper wire  55.20 6.81 0.12 

Coated single strand copper wire A 76.60 6.29 0.24 

4 Strand copper wire 65.80 56.16 0.72 

7 Strand copper wire 99.80 17.78 0.29 

8 Strand copper wire 127.80 14.32 0.26 

                                TABLE 3. 6: THE RESISTANCE OF COPPER WIRES 

 

3.2 Materials Used for Electrical Connection  

Electrically-conductive materials are used by the electronics industry to create 

connections between electronic components such as semiconductor packaged dies, 

batteries, and input and output devices, via a printed circuit or wires. There is a number 

of materials commercially available for electrical connection including solder for hand 

soldering, solder paste conductive glue and conductive ink in the printed-electronics 

industry to create the required interconnects. Solder and a soldering iron from Xytronic 

(model: Auto-Temp 136 ESD) were used in the beginning of the research work reported 

here. During hand soldering, the soldering tip of the soldering iron has to be in contact 
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with the objects to be soldered. i.e. the solder pads of the semiconductor packaged dies 

and the copper wire used in the research. Micro-scale semiconductor packaged dies were 

used, therefore it was decided to use a non-contact soldering technique to prevent 

damaging semiconductor dies. Hence solder paste was used as it can be reflow the solder 

paste with non-contact technique. Moreover, solder paste can be dispensed precisely at a 

micro-gram scale using dispenser devices. Generally, a soldered bond is stronger than 

one formed with conductive adhesive. Solder paste forms a metallic bond whilst 

conductive adhesive forms a mechanical and chemical bond. Solder is more thermally-

conductive than an adhesive (Solder: 60-65 W/mK, Adhesive: 3-25 W/mK). The 

resistivity of solder is lower than adhesive (Solder: 0.000015 Ω.cm and Adhesive: 0.0006 

Ω.cm) [89]. The shearing force of an adhesive joint is less than soldered joint [90]. It was 

necessary to produce mechanically-strong, reliable conductive joints between 

semiconductors, packaged dies and copper wires in order to improve the robustness of 

electronic yarns. For these reasons, conductive adhesive was not used for these 

experiments.       

3.2.1 Solder Paste  

Solder paste consists metal powder (consist of millions of micro-metal balls dispersed) 

and flux, as shown in Figure 3.20. The formulation of Solder paste is at gel level, it is 

used in the electronics industry to create solder joints as it is efficient and accurate in use. 

Historically, solder paste contained lead but today most solders are lead free.   

 

 

                     FIGURE 3. 20: A MICROSCOPE IMAGE OF SOLDER PASTE (91) 
 

Solder paste dispenser systems are used to dispense solder paste precisely and efficiently. 

There are different types of solder paste classified according to the size of the metal balls 

contained within them. For an example, particle size of EFD type ii is 45 to 75 microns 

and EFD type vi is 5 to 15 microns (technical data sheet: Annex 8) [92].  Solder pastes 

are contained in slingers, there are different sizes and types of slinger tips use to dispense 

the solder paste. It is necessary to select a suitable slinger tip size according to the metal 

ball size. An example of a dispenser, slinger and slinger tips are shown in the Figure 3.21. 
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                   FIGURE 3. 21: SOLDER PASTE DISPENSER, SLINGER AND TIPS [93] 

 

The use of lead in electrical products was banned due to health and safety reasons in 2006. 

The legislation was called Restriction of Hazardous substances (RoHS) and was set up 

by the European Union [94].  EFD Ltd market both lead and lead free version of solder 

paste. Both versions were tested, but the lead free version was used in this research work. 

The formulation, Sn96.5Ag3.0Cu0.5 type VI was used for soldering. It consists of Tin 

(96.5%), Silver (3%) and copper (0.5%). According to the technical data sheet (Annex 

10), the alloy particle size is 5 to 15 microns in type VI. Microscopic analysis was 

undertaken as shown as Figure 3.22.  

 

       

FIGURE 3. 22: MICROSCOPE IMAGES OF SN96.5AG3.0CU0.5 TYPE VI SOLDER 

PASTE 

 

The middle of the solder paste drop could not be focused on due to the limited depth of 

field of the optical microscope. However, from microscope images of solder paste (Figure 

3.20), small metal balls (diameters in between 5 and 15 micron) were observed.  

 

3.3 SMD Type Electronics Packaged Dies  

The packaging format used in surface mount devices (SMD) is the most suitable for 

creating electronic yarns (e-yarns) due to the absence of pins and leads.  The miniature 

size of the SMDs will enable the creation of fine electronic yarns. Examples are SMD 

0201 (600 x 300 x 230 µm) and SMD 0402 (1000 x 500 x 500 µm) shown in Figure 3.23, 

which were used in this project to produce e-yarns. A range of SMD-type packaged dies 

were used to create electronic yarns with specific functions. These included LEDs, 

resistors, thermistors and RFID (Radio Frequency Identification) packaged dies. 

Microscopic analysis was carried out for those packaged dies and the results are given 

bellow.  
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 FIGURE 3. 23: EXAMPLE OF SMD 0402 LEDS (YELLOW) AND 0201 RESISTORS 

(BLACK) 

 

3.3.1 Microscopic Analysis of Semiconductor Packaged dies 

Microscopic analysis was carried out by using a digital microscope (Olympus model 

BX41) to identify the physical appearance of the semiconductor packaged dies, the 

dimensions (length, width and thickness) and the dimensions of the solder pads (length 

and width). 

 

3.3.1.1 LED Silicon Wafer Bare Die 

A few samples of LED Silicon bare dies were supplied by Plessey Semiconductors Ltd 

for tests. The standard SMD type LED packaged dies (package dies) are produced by 

using silicon wafer dies (bare dies). The LED bare dies supplied by Plessey, had gold 

wire interconnects, which are normally attached to the solder pads of packaged dies. 

Microscopic images of the silicon wafer are shown in Figure 3.24. It consists of silicon 

wafer bare die and two gold wires which were connected to the bare die.  

 

           

FIGURE 3. 24: MICROSCOPIC IMAGES OF LED SILICON WAFER BARE DIE (RIGHT: 

CLOSE IMAGE) 
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3.3.1.2 SMD Packaged Dies (0402 Type) 

These are examples of package die that are made from a silicon wafer by adding a cover 

to protect the silicon wafer. Microscope images of the 0402 type LED packaged die 

(dimensions: 1.0 x 0.5 x 0.5 mm) and resistor are shown in Figures 3.25 and 3.26. These 

incorporate two solder pads (yellow-coloured anode and cathode) to facilitate electrical 

connections. A microscopic image of SMD resistor (0402 type) is also shown in Figure 

3.26. 

 

                     

FIGURE 3. 25: MICROSCOPIC IMAGES OF 0402 TYPE LED PACKAGED DIE (LEFT: 

FRONT, RIGHT: BACK)  

 

 

FIGURE 3. 26: MICROSCOPIC IMAGES OF RESISTOR PACKAGED DIE (0402 TYPE) 

3.3.1.3 Radio Frequency Identification (RFID) Packaged Dies  

Microscopic images of the RFID silicon wafer bare die and package die are shown in 

Figures 3.27, 3.28 and 3.29. Four solder pads in the wafer die and six solder pads in the 

package die were observed. 
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FIGURE 3. 27: MICROSCOPIC IMAGES OF RFID SILICON WAFER DIE (LEFT: BACK 

SIDE OF PACKAGED DIE, AND RIGHT: FRONT SIDE OF PACKAGED DIE) 

 

        

FIGURE 3. 28: MICROSCOPIC IMAGES OF RFID PACKAGE DIE (LEFT: BACK SIDE 

OF CHIP, AND RIGHT: FRONT SIDE OF CHIP) 

 

 

              FIGURE 3. 29: MICROSCOPIC IMAGE OF 8-TERMINAL RFID PACKAGED DIE 

 

3.3.2 Dimensions of Semiconductor Packaged Dies  

All the dimensions of packaged dies were obtained using microscopic image analysis 

software (Cell^B). The results are shown in the Table 3.7.  

 

Packaged die 

Type 

Packaged die Dimensions (µm) Solder pad Dimensions 

(µm) 
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Length Width Thickness Length Width 

LED Silicon wafer  230 220 100 N/A N/A 

LED 0402 1000 500 500 500 400 

Resistor 0201 600 300 230 300 150 

Resistor 0402 1000 480 350 480 180 & 130 

RFID Silicon 

wafer 

450 450 150 60 60 

RFID 6 terminals 

packaged die 

1450 1000 500 300 200 

RFID 8 terminals 

packaged die 

2000 2000 500 280 260 

                    TABLE 3. 7: DIMENSIONS OF SEMICONDUCTOR PACKAGED DIES 

 

3.4 Encapsulation Resin 

Most electronics textiles available in the market today are not washable. For those that 

are washable, still it is necessary to remove the electronic components prior to washing. 

As a solution to address the washability, an encapsulation process was introduced, in 

order to develop washable electronic yarns. An encapsulating resin micro-pod protects 

the semiconductor packaged dies and solder joints. The encapsulation process is 

described in Chapter 5. There are many varieties of resin available in the market today, 

such as epoxy-based, silicone-based, polyurethane etc. and different curing techniques 

[95]. UV-curable resin was selected to use for encapsulation of E-yarns due to its many 

benefits such as the solvent-free liquid form, environmentally friendly due to low energy 

required for curing [96]. The UV, spot-curing technique is suitable for heat-sensitive 

electronics due to low heat generation and low curing times [97]. After an intensive 

market research, UV-curable Dymax 9001-E-V modified urethane conformable resins 

were used. This Dymax UV-curable resin is available in a number of different viscosity 

levels, such as 9001-E-V-3.1 (viscosity: 4500 cP), 9001-E-V-3.5 (viscosity: 17000 cP) 

and 9001-E-V-3.7 (viscosity: 45000 cP). It was necessary to do the initial curing tests for 

resins to determine curing time and the distance between UV source and resin which is 

to be cured, to optimise the efficiency of encapsulation process and performance. The 

tests were performed as shown below.   

3.4.1 Testing for Distance between UV Light Source and Resin to be Cured  

The aim of the investigation was to determine the optimum distance between the UV light 

guide tip and the two microscope slides that held the resin that was to be cured. The 

equipment was set up as shown in Figure 3.30. The equipment and raw materials used are 
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listed in Table 3.8. This test was recommended by the Dymax Company which provided 

the UV spot-curing system for the research; see Annex 14 for further details. The curing 

time of the Dymax blue wave 50 was set up for 5 seconds. Two microscope slides were 

placed on the work guide.  Figure 3.31 shows a configuration with the ends of the 

microscope slides overlapping. A configuration with the two microscope slides placed 

end to end was found to be more practical and was used to produce the results shown in 

tables 3.9 to 3.10. The distance between UV light guide tip and microscope slide was set 

at 5 cm. Two milligrams of 9001-E-V 3.5 resin was deposited over the junction between 

the two microscope slides, as shown as Figure 3.32. UV light was applied for 5 seconds. 

The level of cure of the resin drop was tested by pulling the two microscope slides away 

from each other to find if the resin remained solid or if it was still liquid. The glass was 

then cleaned with anti-bacterial surface wipes before repeating the test. The distance 

between the UV light guide tip and the resin was varied to find the optimal distance. The 

results are shown in table 3.9. The results in table 3.9 show that a maximum distance of 

1 cm between the light guide tip and the microscope slides was required in order to 

achieve full curing. 

 

Equipment Raw Materials 

 A EFD dispenser unit  

 A compressor 

 Dymax blue wave 50 (UV source)  

 A few pieces of glasses 

 Dymax 9001-E-V 3.5 

 Dymax 9001-E-V 3.7 

TABLE 3. 8: THE EQUIPMENT AND RAW MATERIALS USED FOR THE CURING TEST 

 

 

                                            FIGURE 3. 30: EQUIPMENT SET UP FOR RESIN CURING TEST 

 

Dispenser Unit  

Dymax Blue Wave 50  

UV Light guide  

Two microscope slides 

Resin syringe    
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Distance between UV light 

guide tip & resin drop (cm) 

Observation 

7 Soft gel (not fully cured) 

6 Soft gel (not fully cured) 

5 Gel (not fully cured) 

4 Hard gel (not fully cured) 

3 Hard gel (not fully cured) 

2 Appeared to be cured  

1 Fully cured 

0.5 Fully cured 

0.3 Fully cured  

TABLE 3.9: CURING TEST RESULT 9001-E-V 3.5 RESIN AT FIX UV EXPOSURE TIME 

(5 SECONDS) 

3.4.2 Testing for Curing Time of UV Curable Resin  

This aim of the experiment was to determine the optimum curing time of the UV-cure 

resins. The equipment was set up as shown in Figures 3.29 and 3.30. The distance between 

the UV light guide tip and the glass was set at 1 cm (as this had been found to be the 

optimal distance in the previous tests for which results are shown in table 3.8) and the test 

was repeated by altering the curing time of the 9001-E-V 3.5 and 9001-E-V 3.7 resins. 

The results are shown in tables 3.10 and 3.11. 

 

 

 

 

 

Microscope slides     

Resin drop      

UV Light guide      

Distance between  

light guide & resin 

drop    

UV Lights      

FIGURE 3. 31: EQUIPMENT SET UP FOR 

CURING 

FIGURE 3. 32: : SCHEMATIC 

DIAGRAM OF EQUIPMENT SET UP 
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Curing Time (seconds) Observation 

1 Soft gel (like liquid) 

2 Gel (not fully cured) 

3 Hard gel (not fully cured) 

4 Appeared to be cured  

5 Fully cured 

10 Fully cured 

20 Fully cured  

30 Fully cured 

40 Fully cured 

50 Fully cured 

90 Fully cured 

TABLE 3.10: CURING TEST RESULT 9001-E-V 3.5 RESIN AT FIX DISTANCE OF 1 CM 

BETWEEN THE UV LIGHT GUIDE TIP AND THE GLASS 

 

 

Curing Time (seconds) Observation 

1 Soft gel (like liquid) 

2 Gel (not fully cured) 

3 Hard gel (not fully cured) 

4 Cured (but soft) 

5 Fully cured 

10 Fully cured 

20 Fully cured  

30 Fully cured 

40 Fully cured 

50 Fully cured 

90 Fully cured 

TABLE 3.11: CURING TEST RESULT 9001-E-V 3.7 RESIN AT FIX DISTANCE OF 1 CM 

BETWEEN THE UV LIGHT GUIDE TIP AND THE GLASS 

 

Each test was done 5 times and the all of observations were as above tables (3.9, 3.10 and 

3.11). The results shown in tables 3.8 to 3.10 show that the optimum curing time was 5 

seconds and the optimum distance from UV light guide tip to resin was 1 cm for Dymax 

9001-E-V 3.5 and 9001-E-V 3.7 resins.  However, increasing the curing time is unlikely 
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to have any negative effect on the components, so a curing time of 10 seconds is 

recommended to ensure that the resin has been fully cured. 

3.5 Conclusion  

In this chapter, the physical, mechanical and electrical properties of copper wires and 

electronic packaged dies were analysed. In general, the conductivity of silver is 5% better 

(by volume) than copper but there are several benefits to copper compared to silver. 

Copper is more cost effective, more malleable and ductile than silver. Therefore, copper 

is easier to mould to different shapes and can be put under stress with less likelihood of 

damage. 

The diameters of polyester-coated single strand copper wire (dark colour) and eight-

strand copper wire were more than 100 µm, therefore these were too big for 

interconnection with semiconductor microchips. The diameters of the other copper wires 

were between 50 µm and 100 µm. Uncoated single strand copper wire had the lowest 

yarn count, whilst the highest yarn count was for polyester coated dark colour single 

strand copper wire, which was too big for this research work.  

 

According to the tensile test results, seven-strand copper wire exhibited better 

performance, whilst single strand copper wire’s tensile strength was lower. However, 

when copper wires were combined with polyester yarn, tensile strengths were similar for 

all of the copper wires, as polyester yarn had taken the tensile load. Therefore, it was 

important to use additional strong textile yarn to combine with copper wires to achieve 

the required strength.   

Curing tests were carried for Dymax 9001-E-V 3.5 and 9001-E-V 3.7 resins to determine 

the optimum curing time and optimum distance between the UV light guide tip and the 

two microscope slides that held the resin that was to be cured. The results showed that 

the optimum curing time was 5 seconds and the optimum distance from UV light guide 

tip to resin was 1 cm.  
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CHAPTER FOUR 

4.0 Creation of Interconnections of Micro-Devices 

The creation of robust interconnects presented a number of challenges. Several techniques 

are demonstrated in this chapter (4.1). These are currently used in the electronics industry 

for creating interconnections between electronic devices. The most common technique is 

soldering which dates back 5000 years [98]. Generally, the electronics industry use 

soldering for electrical wiring and connecting electronic components on printed circuit 

boards (PCBs) [99]. Soldering techniques were selected to produce interconnections 

between copper wires and electronic components in this research work. Soldering micro 

scale semiconductor packaged dies (type SMD) to flexible fine wires (<100 micron) was 

a novel concept and was challenging when compared to soldering of package dies onto 

stiff surface of PCBs.  And also electronic yarn (e-yarn) integrated with packaged dies 

and fine copper wires, should be able to flex and behave as a normal textile yarn, however, 

the solder joints should be mechanically strong. Hand soldering and reflow soldering 

techniques were studied in order to create good interconnections in terms of mechanical 

strength and electrical conductivity, and the findings including the optimisation of the 

process parameters are described in this chapter.  

 

4.1 Available Techniques of Solder Bonding  

Several metal bonding techniques for connecting copper conductors with the solder bonds 

of semi-conductor packaged dies (which will be referred to as chips in the following text) 

are commercially available, however, they all have their advantages and disadvantages. 

The most common heating sources used for reflow solder are described below briefly.  

 

4.1.1 Hot Bar/Thermode Reflow Soldering 

This involves contact heating to join parts together to create an electro-mechanical bond. 

The two parts which need to be bonded, have to be fluxed and coated with solder prior to 

applying heat by pressing a heated bar on to the top of the part and holding for a few 

seconds to reflow solder. This technique is suitable for joining together a few metal parts, 

which are away from semiconductor chips. Woznicki and others report that SMD-type 

chips would be damaged by the hot bar if this technique is used for soldering SMD-type 

chips [100, 101].   
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4.1.2 Hot plate  

A hot plate is used for soldering in electronics industry. This is suitable for low-melting-

point solder, which melts at 150 0C. Most lead free solders have melting points that are 

higher than 220 0C, so they are not suitable for use with the hot plate technique. Solder 

paste is deposited onto the soldering point (example: PCB), electronic components are 

then picked and placed onto the soldering point and the PCB is placed on a pre-heated 

hot plate (temperature around 160 0C). It will take approximately 30 seconds for the solder 

to reflow. Finally, the PCB is removed from the hot plate after 60 seconds [102]. This 

technique cannot be used due to the need to use lead-free solder in this research. 

 

4.1.3 Resistance Soldering 

This is a contact-soldering method in which the electrical current flowing through the 

contact surfaces of the parts to be soldered produces the heat required for the soldering 

process. This technique can generate high levels of heat rapidly and economically. As 

heat is generated only when necessary there is less risk of burning compared to techniques 

such as hand soldering where heat is generated continuously. It is suitable for soldering 

large items, and may not be suitable for soldering sensitive electronic devices such as 

microelectronic chips as they can be damaged due to the current flowing between the 

solder pads and interconnects during the heating process [103].       

 

4.1.4 Flame Soldering 

A flame is used as a heat source. Acetylene or propane gases can be used to burn with 

oxygen to create flame. Flame soldering can be used where higher degree of temperature 

required and not for semiconductor soldering in this project even though there is no 

physical contact with the parts [104].  

 

4.1.5 Convection Oven  

Convection ovens are used in industry to solder a number of items simultaneously. The 

heat is applied over a large area. This is a non-contact heating technique and uniform heat 

distribution across the area of application can easily be achieved [105].  However, this 

technique is not suitable for soldering interconnects to individual microelectronic chips, 

which was the focus of the research. 
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4.1.6 Focused Hot Air Soldering 

In this technique, a stream of hot air is blown onto the soldering area.  This is also a non-

contact soldering technique. Heat is, generally, applied only to the soldering point. This 

is suitable for thermally-sensitive microelectronic components such as semiconductor 

chips, ceramic capacitors, glass diodes and SMD resistors [106].     

 

4.1.7 Induction Soldering 

An alternating electromagnetic field is generated by applying high-frequency current to 

an inductor (coil). If there is a metal surrounding the electromagnetic field, then it will be 

heated up due to the current induced in the metal. The inductor works like the primary 

winding and the work-piece functions like the secondary winding of a transformer. This 

technique is also not suitable for soldering small or sensitive electronic components [107].   

 

4.1.8 Laser Soldering 

In this technique a laser beam is used to transfer energy to solder alloy deposited between 

two parts. The solder alloy would absorb the energy and heat up to its melting point, thus 

forming an electro-mechanical joint between the two parts. This is a contactless technique 

and is suitable for soldering many varieties of electronic components using either solder 

paste or solder wire. There are mainly three types of lasers used today for soldering, such 

as carbon dioxide lasers (gas lasers), Nd YAG lasers (solid lasers) and diode lasers [108]. 

Due to health and safety considerations and the cost of equipment, this technique was not 

explored in this research. 

 

4.1.9 Hand Soldering 

The hand soldering techniques are used, to join two or more metals together by using flux 

and solder which has a lower melting point than the metals to be joined. It is believed that 

the technique was developed 5000 years ago and used for making jewelry, tools, stained 

glass and cooking items [109]. The electrical and mechanical properties of solder joints 

depend on the temperature of soldering iron, type of soldering tip, type of flux, amount 

of solder and the shape of the solder joint [110]. The flux is used to clean the surface of 

the metal from dirt, oil and oxides. There are three type of flux, namely water-soluble 

fluxes, no-clean fluxes and traditional rosin fluxes. Due to health and environmental 

issues, lead-free solders are promoted for use in Europe and Japan [111]. An example of 

hand soldering is shown in Figure 4.1.  
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                          FIGURE 4. 1: AN EXAMPLE OF HAND SOLDERING [112] 

 

In hand soldering the heat necessary to melt the solder is provided with a pre-heated solder 

tip that has to be in contact with the two parts to be soldered. Proper selection and use of 

flux prevents oxidation during soldering, and the solder tip must be clean and pre-tinned 

with solder to ensure rapid heat transfer. 

 

4.1.10 Infra-Red (IR) Reflow Soldering 

It is necessary to transfer thermal energy from a heat source to the soldering point to melt 

and reflow solder between the terminals of the microchip and the conductive wire(s) in 

order to create good electro-mechanical bonds.  There are four heat transferring 

mechanisms such as conduction, convection, radiation and phase changes [113]. The IR 

reflow soldering process provides a non-contact heat source for the soldering process, 

whilst in hand soldering technique described earlier the heat source (the soldering iron 

tip) is necessary to be physically in contact with the microelectronic chip and copper 

interconnects. IR reflow soldering is more efficient and leads to reducing the risk of 

damaging electronic components. There are different sizes of IR reflow soldering systems 

available in the market today. Small scale reflow soldering system are used in laboratories 

whist large scale systems are used in the industry. A small scale reflow soldering system 

from the company PDR Ltd was employed for this research work. That system is called 

‘PDR IR rework system’ (Figure 4.2) (Annex 18)       

    

 

FIGURE 4. 2: AN EXAMPLE OF PDR IR REWORK SYSTEM USED IN THIS RESEARCH 
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The PDR IR rework system is controlled by a computer. The user-interface of the control 

software is shown in Figure 4.3. The software allows the operator to create or edit the 

heating profile required to create an efficient solder bond.    

 

 FIGURE 4. 3: THE USER INTERFACE OF THE CONTROL SOFTWARE OF THE PDR IR   

 REWORK SYSTEM 

 

Mainly, there are three steps in the reflow process. These are the deposition of solder 

paste accurately on the object; pick and place operation of the electrical components; and 

the application of heat to melt the solder. In the heating stage several steps are involved, 

to obtain a good solder bond. These are preheating, soaking (activation), reflow and 

cooling [113]. Each of these steps are important in optimising the electro-mechanical 

properties of solder joint. A typical reflow heating profile is shown in Figure 4.4.  

Preheating: It is important to preheat the soldering area.  This is important in PCB 

manufacture to avoid unnecessary thermal stress and spattering. In this stage, solvents 

and moisture are evaporated slowly and flux is transferred from the gel state to the fluid 

state. 

Activation (Soaking): Flux reacts with the soldering surfaces and works as a cleaning 

agent by removing oil, oxides and other dirt. If the activation period is too long, it may 

affect the solder joints due to non-wetting or de-wetting of solder.  

Reflow: In this phase the highest temperature of the heating profile is reached resulting 

in melting of the metal micro-spheres of the solder paste whilst flux helps to reduce 

surface tension and create a solder bond.  
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Cool Down: Finally, the soldering area (PCB) must be cooled down prior to safe 

handing. It is important, not to cool down rapidly to avoid thermal expansion or 

cracking the components [25]. 

.  

FIGURE 4. 4: A TYPICAL REFLOW HEATING PROFILE FROM EFD SOLDER PASTE 

SUPPLIER 

 

4.2 Creation of Interconnections using Hand Soldering Technique    

Preliminary laboratory work was carried out in order to identify the gaps in the current 

knowledge base for creating electronically-active fibres and yarns. The aim was to 

connect copper wires to the terminals of semiconductor devices (solder pads) prior to 

encapsulation with other fibres of the yarn. As this was one of the crucial steps, 

experiments were carried out to establish procedures that could be used to solder a single 

strand copper wire of 55 µm diameter to the anode and cathode of a 0402 SMD-type LED.  

The dimensions of the 0402 SMD type LED were length: 1000 µm, width: 500 µm and 

thickness: 500 µm. The dimensions of the solder pads were length: 500 µm and width: 

400 µm. SMD type semiconductor packaged dies could be soldered onto PCBs using 

hand soldering [114, 115]. Soldering packaged dies onto the rigid surface of a PCB is not 

difficult, if one has a steady hand, good vision and a soldering iron with a small tip [116]. 

However, no literature, such as books, published papers and online resources, could be 

found on how to do  hand soldering for such a micro-scale SMD-type electronic 

components onto flexible substrate such as textile yarn and fine copper wire. Firstly, it 

was very difficult to hold the chip whilst it was being soldered. After several failed 

attempts, it was decided to position the SMD 0402 type LED packaged die on double-

sided tape prior to soldering as shown in Figure 4.5.  A steel wire of diameter 150µm 

(manufacturer: SPRINT METAL) shown in Figure 4.1 was placed on the middle of the  

Temp: 20ºC to 130ºC  
Ramp Rate: 0.5-3ºC / sec.  
Recommended: 1 ºC / sec.  
Time: 40-240 sec.  
Nominal: 110 sec. 

 
Temp: 130ºC to 217ºC  
Rate: 0.5-3.0ºC / sec.  
Time: 30 to 175 sec.  
Nominal: 85 sec. 

Temp: 217 to 234-259ºC  
Rate: <3ºC / sec.  
Time: 30 to 90 sec.  
Nominal: 55 sec. Te

m
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chip to hold it down the chip.  The wire also prevented molten solder from flowing 

between the two solder pads, which were 200µm apart, thus avoiding possible short-

circuiting, which was an added advantage.  

 

 

 

 

 

 

 

 

 

 

     FIGURE 4. 5: SMD CHIP AND COPPER WIRE SET UP FOR HAND SOLDERING 

 

After soldering both solder pads, it was necessary to cut the copper wire which was in 

between the solder pads; this was done by pulling away both ends of the steel wire 

together to break the copper wire between two solder pads.  

An example of a hand soldered LED is shown in Figures 4.6 and 4.7. This activity was 

useful in identifying one of the key areas of the future research: the development of a 

technique for secure holding of the microchip and the creation of a secure solder bond 

between the solder pads and the copper wire.  

 

          

       

SMD Chip 

Work holder 

Adhesive Tape 

Double-

sided tape 

Steel wire to 

hold the chip  Solder pads of the chip 

 

Solder joints Copper wire 

FIGURE 4. 7: MICROSCOPIC IMAGE OF 

SOLDERED MICRO LED CHIP (5 X 

MAGNIFICATION) 

FIGURE 4. 6: A SOLDERED LED WHEN 

ENERGISED  
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The following areas of research were identified as important to progress the research 

from the preliminary experiments described above: Equipment was required that could 

form a strong and reliable solder joint between the terminals of microchips and 

conductive wires.  This also included the identification of suitable conductive wires 

(fine single/multi-strand copper wires) and soldering materials (conductive solder 

pastes). This led to the use of a focused IR reflow soldering workstation, manufactured 

by PDR Ltd (referred to as the PDR IR Rework System in this thesis. (See Annex 18 

for further details) and a precision dispenser system from EFD Ltd (EFD, model: 

Ultimus i). Many tests were carried out to analyse the strength and the reliability of the 

bonding between the solder pads and copper wires by using optical microscopy, tensile 

testing and washing trials. Moreover, the tests results were used to optimise the physical 

and electrical properties of the solder joints.    

 

4.3 Creation of Interconnections using Reflow Soldering   

The optimisation of reflow soldering techniques was a core part of this project. As 

explained earlier (section 4.1.10), the Rework System incorporates a radiation heat 

transfer mechanism, and employs IR electromagnetic rays to transfer focused heat energy 

required for the reflow soldering process. The PDR IR Rework System was a useful tool 

for creating good, soldered bonds between the solder pads of microchips and fine copper 

wires, without damaging the microchip circuitry, due to its contactless heat-transfer 

mechanism. As the PDR IR Rework System was developed for repairing PCBs, it was 

necessary to develop a new technique for soldering copper wires and packaged dies to 

create the necessary interconnects. A series of experiments was carried out to determine 

the efficient use of the PDR IR Rework System, as summarised below.  

 

4.3.1: Determining the Solderability of Coated and Uncoated Copper Wires using 

the PDR IR Rework System 

The aim of this experiment was to identify how to solder polyester coated copper wires 

to solder pads by using the reflow work station. The challenge was to remove the 

polyester coating prior to soldering. Uncoated copper wires were also soldered for 

comparison.  
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Equipment Materials   

 A PDR IR Reflow work system 

 A EFD dispenser (model: 

Ultimus i). 

 An air compressor  

 A multi-meter 

 Lead-free solder paste (supplied by Koki 

Europe A/S, ref: 201265) Annex 10 

 Uncoated, single-strand copper wire 

(supplied by Luxion, diameter 55µm)    

  Coated, single-strand copper wire 

(supplied by Luxion, diameter 70µm)    

 

Procedure: A polyester-coated copper wire was laid on the work holder of the reflow 

work station, secured with adhesive tape and marked in ten places with one centimetre 

gaps between each point. The IR beam of the PDR IR Rework System was applied for 

sixty seconds at 3000C for each marked place using a heating profile as shown in Figure 

4.8. Pieces of uncoated copper wire were laid across each of the ten marked points and 

solder paste was applied to each. Heat was applied to produce solder joints between the 

coated copper wire and uncoated copper wires as shown in Figure 4.9 and 4.10. The test 

was then repeated using uncoated copper wire instead of coated wire. Finally, the 

electrical connectivity was checked for each soldered copper wire using a multi-meter.  

 

 

                                           FIGURE 4. 8: HEATING PROFILE 

 

 

 

 

 

 

         FIGURE 4. 9: SOLDERING ORIENTATION OF POLYESTER COATED COPPER   

Coated copper wire Uncoated copper wires  Solder joints 
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         WIRE 

 

 

                                          FIGURE 4. 10: THE SOLDERING PROCESS 

 

Results and Discussion: All the solder joints of the uncoated copper wires were 

electrically connected, therefore it was shown that there were no issues with the solder 

paste and soldering process. However, none of solder joints of the coated copper wires 

were electrically connected as the polyester coating had not been removed successfully 

even though the temperature of 300 0C was higher than the melting point of polyester. 

The possible reason could have been that a fraction of the IR beam of the rework station 

has been reflected away by the copper wire without being absorbed by the coating layer. 

Therefore, it was determined that the polyester coating needed to be removed prior to 

soldering.  

  

4.3.2: Polyester-Coated Copper Wire Soldering after Removal of the Coating  

The polyester coatings of the copper wire were removed with a soldering iron and the 

procedure described in section 4.3.1 was repeated. A multi-meter was used to confirm 

the electrically connectivity of the wires.  

 

Results and Discussion: The diameter of the polyester-coated, copper wires is 77 µm. 

Therefore, it was possible to damage the wires easily. It was noted that a few copper 

wires were damaged during removal of the coating by the hot soldering iron. It was still 

possible to remove coating in 10 places on a wire and to carry out the soldering process. 

It was observed that all ten joints were connected electrically (Figure 4.11).   
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FIGURE 4. 11: THE COATED COPPER WIRE WHICH WAS SOLDERED SUCCESSFULLY 

 

4.3.3: Method for Burning-off the Polyester Coating of the Copper Wire using 

Flux (Contactless Method) 

The previous test proved that polyester coating could be removed from copper wires 

with a hot soldering iron. However, damage to the coated copper wire was observed. 

Therefore, a new experiment was carried out with the aim of determining whether the 

polyester coating of a copper wire could be removed by applying flux under the infrared 

beam of the PDR IR rework system.  

 

Equipment Materials 

 A PDR IR Reflow 

system 

 A Multi-meter   

 Coated, single-strand copper wire (supplied by 

Luxion, diameter 70 µm)  

 Flux (supplied by RS components  

 Adhesive glass tape (width: 25 mm and 

thickness: 0.15 mm) 

 Adhesive foil tape (width: 20 mm and 

thickness: 0.12 mm) 

 

Procedure: Two layers of glass tape were adhered onto the aluminium plate (width: 

1cm, length: 20 cm and thickness: 0.5 cm). The glass tapes are capable of withstanding 

heat and provide a gap between the aluminium plate and foil to create a micro-mould. 

A foil tape was then adhered onto the glass tape to create five micro-moulds (1.0 x 1.0 

x 0.5 mm) by pressing a square piece of metal (cross section: 1.0 mm x 1.0 mm) onto 

the surface of foil tape. The micro-moulds were filled with flux, and a polyester-coated 

Coated copper wire Solder joints 
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copper wire was laid over the moulds as shown in Figure 4.12. The IR beam of the PDR 

IR Rework System was applied at each point for 40 seconds at 3000C. (The heating 

profile was as shown in Figure 4.8.) The electrical connectivity was checked using a 

multi-meter at each place on the copper wire to determine whether the polyester coating 

had been removed.  

 

 

 

 

 

 

 

FIGURE 4. 12: THE ARRANGEMENT OF COATED, COPPER WIRE ON THE MICRO-

MOULD ARRAY 

 

Results and Discussion: Generally, flux is used for cleaning impurities of metal 

surfaces such as oil, dirt and oxide-films prior to soldering. Flux contains chemicals 

such as acids and chlorides and it is used to create a good solder bond during soldering 

of electronic components. Several methods exist to remove polyester coatings from 

wires, such as scraping using knives or blades, sanding using abrasive papers, melting 

using soldering irons or flames. However, fine wire may get damaged by these physical 

contact methods [117]. Therefore, novel techniques were found for removal of polyester 

coating without physical contact. It was observed that the polyester coating was 

successfully burned-off at all the required points on the copper wire, and no damage to 

the copper wire was detected. The chemicals in the flux may have contributed to the 

removal of the polyester layer of the copper wire. In addition, the flux provided a dark 

environment for the copper wire which was in the micro-mould, thus preventing any 

reflection of the IR beam by the surface of copper wire, resulting in the total energy of 

the IR beam being absorbed by the flux and copper wire.     

 

4.3.4: Analysis of the Heating Profile Recommended by the Solder Paste 

Manufacturer for use with the PDR IR Rework System 

The aim of this investigation was to study the suitability of the heating profile recommended 

by the solder-paste supplier.  

 

Micro-moulds 

Flux 

 

Coated, copper wire 
Aluminium plate 

 

Foil tape 
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Equipment Materials 

 PDR IR Rework System 

 EFD precision dispenser 

system (model: Ultimus i)   

 A Compressor   

 Uncoated, 7-strand twisted copper wire 

(diameter: 100µm) 

 Solder paste (Ref: S62D500A6Z0, Lead 

version, Type VI, supplier: EFD) 

 Red LED, 0402 (ref: 4663633, supplier: RS) 

 Precision Tip: 25GA GP 0.01x0.5 Red 

(supplier: EFD) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4. 13: SMD CHIP AND COPPER WIRE SET UP FOR REFLOW SOLDERING 

(NOT ACCORDING TO DIMENSIONS) 

 

Procedure: Black adhesive tape of 2cm width was adhered to the metal work-holder plate 

using double sided tape (Note: According to the PDR IR rework system manufacturer’s 

SMD Chip 

Part of IR Head 

of PDR system 

IR Beam 

Black adhesive 

tape 

Copper wire 

(7strands) 

 

Solder paste 

Metal work holder 

(100x100x5 mm) 
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instructions, the surface has to be black in order to obtain maximum energy absorption from 

the IR beam). A SMD 0402 type red LED (1.0x0.5x0.5mm) was then picked and placed 

onto the black tape. The LED was then secured with a steel wire of diameter 150µm. A 

seven-strand twisted copper wire was laid on the LED chip. Solder paste was deposited 

onto both solder pads of the LED chip using the EFD dispenser at a pressure of 228 kPa for 

0.05 seconds. This resulted in 90 micrograms of solder paste being delivered by the 

dispenser system. The lead version was used in the beginning and changed to lead free 

version. The heating profile shown in Figure 4.14, which was recommended by solder paste 

manufacturer, was applied using the PDR IR rework system (with IR-spot diameter 5mm).  

The set-up of the test procedure is shown in Figure 4.13.    

   

               FIGURE 4. 14: THE PDR IR REWORK SYSTEM HEATING PROFILE AS    

               RECOMMENDED IN THE TECHNICAL DATA SHEETS OF THE SOLDER PASTE    

               MANUFACTURER 

 

 

 

 

 

 

 

 

 

                 FIGURE 4. 15: LED CHIP AND COPPER WIRE AFTER APPLYING HEAT 
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Results and Discussion: The copper wire and LED chip were not joined together, as 

shown as Figure 4.15. The heating profile did not seem to be suitable for soldering SMD 

chips to copper wire. Ten tests were carried out by changing the above heating profile but 

none of them was successful.    

 

 

4.3.5: Analysis of the Heating Profile Recommended by LED Manufacturer with 

PDR IR Rework System 

The aim of this investigation was to identify whether the heating profile, which was 

recommended by the LED Company, was suitable for this project. 

Equipment Materials 

 PDR IR rework system 

 EFD Dispenser system, 

(model: Ultimus i)  

 A Compressor   

 Uncoated 7-strand, twisted copper wire 

(diameter: 100µm) 

 Solder paste (Ref: S62D500A6Z0, Lead 

version, Type VI, supplier: EFD) 

 Red LED, 0402 (ref: 4663633, supplier: RS) 

 Precision Tip: 25GA GP 0.01x0.5 Red 

(supplier: EFD) 

 

Procedure: The same work holder plate as described above was used, and an SMD 0402 

type red LED was placed onto the black tape. The LED was secured with the steel wire. A 

seven-strand, twisted copper wire wad laid on the LED chip. The same amount of solder 

paste 90 µg was deposited onto both solder pads of the LED chip and copper wire using the 

EFD dispenser. The heating profile, recommended by the manufacturer of the LED, was 

applied as shown in Figure 4.16. Finally, the portion of the copper wire that was between 

the two solder pads of the LED chip, was removed by using a sharp knife.  
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     FIGURE 4. 16: PDR IR REWORK SYSTEM HEATING PROFILE WHICH IS   

     RECOMMENDED IN THE MANUFACTURER ‘S TECHNICAL DATA SHEET FOR THE  

     0402 SMD LED CHIP  

 

Results and Discussion: The colour of the LED chip changed from clear to dark. The 

author believes this was due to overheating of the LED during soldering. Therefore, this 

temperature profile did not seem to be suitable for soldering LEDs to fine copper wires, 

even though the LED did light up when connected to a power supply. This heating profile 

was recommended for soldering SMD’s onto printed circuit boards (PCB), which is the 

normal practice in the manufacture of electronic devices. In PCB manufacture the 

semiconductor chips are placed on top of conductive tracks on a board with the solder pads 

of the chip touching the conductive tracks (interconnects).  Solder pads are not directly 

exposed to IR radiation in PCB manufacture, where the heat applied to the solder pads is 

provided through copper tracks and by preheating the PCB’s. 

 

4.3.6: Optimisation of the Heating Profile for Soldering Multi-Strand Copper 

Wires to Solder Pads 

The experiments described in the above sections 4.3.4 and 4.3.5, demonstrated that the 

heating profiles recommended by the solder-paste and semiconductor chip manufacturer 

are not suitable for soldering copper wires to the solder pads of semiconductor packaged 

dies, because they had been recommended for soldering electronic components onto printed 

circuit boards (PCBs). It was observed that the heating times of those profiles were not 

suitable for soldering copper wires.  Therefore, a detailed study was carried out to formulate 

a heating profile for creating the interconnections of micro devices for electronic yarn.    
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Equipment Materials 

 PDR IR rework system 

 EFD Dispenser system, 

(model: Ultimus i)  

 A Compressor   

 A laboratory power supply, 

TTi EX354T 

 Uncoated 7-strand, twisted copper wire 

(diameter: 100µm) 

 Solder paste (Ref: S62D500A6Z0, Lead 

version, Type VI, supplier: EFD) 

 Red LED, 0402 (ref: 4663633, supplier: RS) 

 Precision Tip: 25GA GP 0.01x0.5 Red 

(supplier: EFD) 

 

Procedure: Experiments were carried out in the same manner as outlined in sections 4.3.4 

and 4.3.5, but using different heating profiles.  The heating profiles are shown in Figure 

4.17a to 4.17f. Finally, a 1.8 V voltage was applied using a laboratory power supply to 

check whether the LED’s and copper wire had been soldered together.  

 

          
             FIGURE 4.17 A: HEATING PROFILE          FIGURE 4.17 B: HEATING PROFILE 
 

    
                 FIGURE 4.17 C: HEATING PROFILE     FIGURE 4.17 D: HEATING PROFILE 
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     FIGURE 4.17 E: HEATING PROFILE                 FIGURE 4.17 F: HEATING PROFILE 

 

FIGURE 4. 17: HEATING PROFILES WHICH WERE USED IN THIS EXPERIMENT 

 

Results and Discussion: The heating profiles shown 4.17a to 4.17f were used.  The rapid 

heating method was the most suitable (as shown Figure 4.17f). The system was setup to 

reach the optimum temperature in 10 seconds. The copper wire and LED solder pads were 

joined together successfully, as demonstrated by the LED functionality (Figure 4.18). The 

physical appearance of the LED chips was clear after soldering, and the solder joints were 

better than those created using the previous methods. The investigations of the electro-

mechanical properties of the solder joints is reported in Chapter 6.  

 

 

   FIGURE 4. 18: AN EXAMPLE OF AN ILLUMINATED LED JUST AFTER SOLDERING 

 

Power supply 

Illuminated LED 

Total time 10s to reach 

250oC 
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4.3.7: Development of Soldering Techniques for the 0201 Type Chips with Seven-

Strand Copper   

The aim of this experiment was to identify soldering parameters for SMD 0201 chips (600 

x 300 x 230 µm). All experiments reported in the previous sections were carried out with 

SMD 0402 type chips (1000 x 500 x 500 µm). In this experiment, the parameters 

described in section 4.3.6 (pages 88 to 89) and the rapid heating profile were used.    

 

Equipment Materials 

 A PDR IR rework 

system 

 A EFD Dispenser 

(Ultimus i)  

 A Compressor   

 Uncoated 7-strand, twisted copper yarn 

(Diameter: 100µm)  

 Solder paste (ref: S62D500A6Z0, Lead 

version, Type VI and, supplier: EFD) 

 Resistor (0201, ref: 7550167 width: 300µm)  

 Precision Tip: 25GA GP 0.01x0.5 Red 

(supplier: EFD) 

 

Procedure: This experiment was also carried out as in section 4.3.6, using the rapid 

heating profile. The amount of solder paste used was 70 µg.  

Results and Discussion: It was necessary to cut and remove the 7-stands, twisted copper 

wire which remained between the two terminals of the resistor after soldering, to avoid 

sort circuiting. When this copper wire was cut, the solder joint was damaged due to weak 

solder joints (Figure 4.19). Ten experiments were repeated by using 7-strand, twisted 

copper wire, however none of them were successful. The area of the solder pad was 100 

x 230 µm. The diameter of the 7-strand copper wire was 100 µm, and the surface area of 

the solder pads of the 0201 resistor chip was not enough to create a strong solder bond 

with the 7-strand copper wire.     

 

FIGURE 4. 19: SOLDER JOINT FAILURE AFTER SOLDERING OF 0201 RESISTOR WITH 

7 STRAND COPPER WIRE 

Copper wires 

0201 resistor chip 
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4.3.8: Development of Soldering Techniques for the 0201 Type Chips with Single-

Strand Copper Wire  

As a good solder joint could not be created with the seven-strand, copper wire, as 

demonstrated in the previous section (4.3.7), the same experimental procedure was 

repeated with a single-strand copper wire of 55 µm diameter. The soldering joints were 

connected properly. Therefore, the results indicated that the finer copper wire (diameter: 

55µm) was suitable for 0201 type SMD chips.  

 

In view of the above success the experimental procedure was carried out with four-strand, 

copper wire (total diameter: 66 µm).  

Results and Discussion: Ten resistor chips were soldered. Three solder joints were 

successfully created with good solder bonds whilst seven were created with very weak 

solder joints and they were broken when the copper wire was cut out from the gap in 

between the solder pads. The analysis showed that the diameter of the copper wire had to 

be selected according to the dimensions of the solder pads of the chip.  

4.3.9: Development of Soldering Techniques for 0402 type Resistor Chips with 

Seven-Strand Copper 

This experiment was carried out to identify whether 7-strand copper wire (Diameter: 100 

µm) was suitable for soldering to SMD 0402 resistor chips. The experimental procedure 

described in section 4.3.8 was used.   

 

Equipment Materials 

 A PDR IR rework system 

 A EFD Dispenser (Ultimus i)  

 A Compressor   

 A digital microscope 

(Olympus model BX41) 

 Uncoated, 7-strand copper wire 

(Diameter: 100µm)  

 Solder paste (ref: S965D500A6Z0, Lead 

Free version, Type VI, supplier: EFD) 

 Resistor, 0402 (ref: 6678814, supplier: 

RS) 

 Precision Tip: 27GA TT 0.008” NAT  

 

Results and Discussion: Ten trials were carried out with 7-strand copper wire, but all of 

them failed. The dimensions of the solder pads of the chips were examined using a 

microscope. As shown in Figure 4.20, one side of the solder pad is smaller than the other 

side. The dimension of the solder pad of the 0402 resistor in the technical data sheet (TDS) 

was 0.5 +/- 0.05 X 0.25 +/- 0.1 mm. However, the actual dimension of the smaller side 
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of the solder pad was 0.471 X 0.114 mm. The dimension of the other side of the pad was 

in accordance with the TDS. As one of the solder pads was smaller it was difficult to 

solder with 7-strand copper wire. 

 

 

FIGURE 4. 20:  A MICROSCOPIC IMAGE OF THE SOLDER PADS OF A 0402 RESISTOR 

CHIP  

4.4 Analysis of Electrical Properties of Solder Joints  

The electro-mechanical performance of solder joints is a very important factor in the 

electronics industry as it influences the performance and the reliability of the final 

product. This aim of the research was to develop the core technology to integrate 

microelectronics into yarns to produce electronic textiles. Textiles have to be flexible, 

washable, reliable, durable and able to withstand mechanical stress. Therefore, the 

electrical properties of solder joints are a crucial factor.  

 

4.4.1 Development of a Method to Analyse the Electrical Properties of Solder 

Joints 

The electrical resistance of the solder joint influences the performance of semiconductor 

devices.  Therefore, a method to evaluate the electrical performance of the solder joints 

based on DC resistance was developed, which is described below.  

There are few parts that contribute to the total resistance of final e-yarn such as 

interconnects (copper strands, solder joints and semiconductor chips (such as resistors 

and thermistors). For an example, the resistance at different points of the resistor with the 

interconnects can be divided into different name as shown in Figure 4.21.  

 

Width of solder 

pad: 0.114 mm 
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       A                                                               B 

FIGURE 4. 21: SCHEMATIC OF RESISTANCES MEASURED IN SMD RESISTOR CHIP 

AND SOLDERED INTERCONNECTS 

 

The resistance between A and B is; 

RAB = RLC + RLS + RR + RRS + RRC ……………………..7.1 

Where; 

Resistance of left copper wire: RLC 

Resistance of left solder joint: RLS 

Resistance of resistor chip: RR 

Resistance of right solder joint: RRS 

Resistance of right copper wire: RRC 

It is difficult to determine the resistances of solder joints, RLS and RRS individually. 

Because of this, the total resistance of the solder joints can be calculated as below formula 

7.1a. This formula was used for experiments in section 4.4.2 and 4.4.3.  

 

Total resistance of the solder joints (RLS + RRS) = RAB – RLC – RRC – RR……7.1a  

 

4.4.2. Analysis of Solder Joints Created by Hand Soldering  

A single strand of copper wire of length 100 cm was soldered onto the solder pads of 

SMD resistor chips type 0201 and the resistances of the different sections of the electrical 

circuit were measured with an Agilent 6 ½ Digit Multi-meter (model: 34410A) as 

described in previous section. The resistances of each resistor chip RR were measured 

prior to soldering.  The procedure used for soldering is given below. 

 

Test Procedure:  

 The resistance of 0201 type SMD resistor (ref number: 7550167) was measured 

by using Agilent multi-meter before soldering the resistor 

 Double-sided tape was adhered to the work holder 

 The resistor was laid on the adhesive tape 

RLC 

 

RLS RRS 
RR 

RRC 
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 A single copper wire (Diameter: 55µm) was placed in the middle of the resistor 

so that it was touching both terminals (solder pads) of the resistor chip 

 Some flux and heat were applied to clean the solder pads of the resistors 

 The soldering-iron tip was cleaned and tinned with solder 

 The soldering iron was touched onto the two solder pads of the chip 

 The solder joints were checked to see whether the soldering had been effective.  

 The copper wire which remained, in between the 2 soldered joints, was removed 

to avoid creation of a short-circuit.  

 The total resistance of resistors A to B, RLC, RLS, RR, RRS, RRC (as described in 

section 4.4.1) were measured using the Agilent multi-meter 

 The test was repeated for 10 resistors. 

 

Results  

The results are shown in Table 4.1. The results demonstrated that the total resistance of 

the two solder joints varied between 0.44 and 9.08 Ohms, and that there was a large 

standard deviation of 2.88. 

No Total R  

(A to B) 

Ω 

RR Ω RLC Ω RRC Ω Resistances of 

solder joints 

(RLS + RRS) Ω 

1 111.12 104.28 2.82 2.75 1.27 

2 111.90 104.58 3.06 3.76 0.50 

3 114.80 105.10 2.88 3.15 3.67 

4 118.80 104.78 2.44 2.50 9.08 

5 111.56 104.31 2.93 3.01 1.31 

6 113.54 104.89 2.82 3.25 2.58 

7 117.62 105.24 3.12 2.96 6.30 

8 111.23 104.12 3.52 3.15 0.44 

9 112.65 104.52 2.96 3.85 1.32 

10 111.85 104.87 3.24 3.11 0.63 

Avg 113.51 104.67 2.98 3.15 0.63 

St Dev 2.74 0.37 0.29 0.41 2.88 

             TABLE 4.1: DC RESISTANCES OF HAND SOLDERED SOLDER JOINTS  
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4.4.3 Analysis of the Electrical Properties of Solder Joints Formed with the PDR 

IR Rework System  

A single-strand copper wires were soldered onto the solder pads of SMD resistor chips 

using the PDR IR Rework System.  The heating profile shown in section 4.3.6 (pages 88 

to 89) was used with solder paste (ref: S965D500A6Z0, Lead Free version, Type VI, 

supplier: EFD) for the soldering process.  Ten samples were made for evaluation.  The 

results of the resistance measurements are given in Table 4.2 below.  

 

Results  

According to results shown table 4.2, the standard deviation was 0.62 which is lower than 

the results in table 4.1. It is evident from the results that better solder joints with less 

variability in resistance can be formed with a PDR IR rework system compared to those 

produced by hand soldering.  The PDR IR rework system was therefore used to solder 

copper wires onto the solder pads of SMD microchips. 

 

No Total R  

(A to B) 

Ω 

RR Ω RLC Ω RRC Ω Resistances of 

solder joints 

(RLS + RRS) Ω 

1 112.55 105.14 3.0 3.73 0.68 

2 111.83 104.68 2.75 3.30 1.10 

3 113.10 104.69 2.94 2.86 2.61 

4 111.50 104.80 3.30 2.94 0.46 

5 111.46 105.08 2.85 3.01 0.52 

6 110.90 104.58 2.96 2.78 0.58 

7 112.29 104.63 3.15 3.65 0.86 

8 112.21 104.95 2.83 3.28 1.15 

9 110.91 104.15 2.91 2.97 0.88 

10 111.99 105.32 2.78 2.87 1.02 

Avg 111.87 104.80 2.95 3.14 0.99 

Stdev 0.70 0.34 0.17 0.34 0.62 

TABLE 4.2: THE RESULTS OF RESISTANCE MEASUREMENTS OF SOLDER JOINTS 

MADE WITH THE PDR IR REWORK SYSTEM  
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4.5 Analysis of Mechanical Performance of Solder Joints  

Electronic yarn should be able to withstand mechanical stresses during the manufacturing 

processes and afterwards, during day to day use. The reliability of electronic textiles will 

depend largely on the mechanical strength of the solder joints. Therefore, it was necessary 

to analyse and improve the mechanical strength of the solder joints of the electronic yarn. 

Tensile tests were carried out on soldered, semiconductor chips, encapsulated chips 

(carrier yarns), and on the final, assembled electronic yarns encased within circular, warp-

knitted sleeves. 

 

4.5.1 Tensile Testing of Soldered 0201 Resistors with 4 Strands Copper Wires 

In order to determine the strength of the solder joints, four strand-copper wires were 

soldered onto five SMD resistor chips type 0201 and tested for breaking strength. The 

solder joints were formed with the PDR IR rework system using the heating profile 

described in section 4.3.8 and EFD solder paste (ref: S965D500A6Z0, Lead Free version, 

Type VI, supplier: EFD). The tensile tests were carried out using a Zwick / Roell Z 2.5 

(ref no: A707329). Tensile Testing Machine (Figure 4.22). An Agilent 6 ½ Digit Multi-

meter (model: 34410A) was used to measure the resistance during the tensile tests.  

Tensile Test Parameters: 

 Tensile test standard: DIN EN ISO 2062:1995 

 Pre-load: 0.5 cN/tex 

 Test speed: 250 mm/min 

 Grip to grip separation at the start position: 250 mm 

 The Agilent multi meter was connected to both ends of the copper wire 

 Resistance variation was monitored and recorded  

 



Chapter 04                                                                            Creation of Interconnections of Micro-Devices 

 

73 
 

 

               FIGURE 4. 22: TENSILE TEST AND RESISTANCE MEASUREMENT EQUIPMENT 

 

Results and Discussion  

An example of tensile test result is shown in Figure 4.23. It was observed that the solder 

joints were strong and had not been broken at solder joints. However, when the solder 

joints were examined under a digital optical microscope, Olympus (model: BX41), it was 

observed that the solder pads were detached from the chips as shown in Figure 4.24. This 

was observed for all five samples tested. The resistance measurements of the copper wire 

with solder-resistant chips demonstrated, as shown in Figure 4.23, that the resistance 

increased during the stretching of the test samples in the tensile tester.  An infinite 

resistance was recorded by the multi-meter at the end of the tensile tests, due to the 

detachment of the solder pad from the chip. According to table 3.3 of chapter 3 (page 55), 

the average tensile breaking strength of the four-strand copper wire was 116 cN with a 

standard deviation of 12.6.  However, in the results given in table 4.3, the average 

breaking strength of the four-strand copper wire with resister chip occurred at 98 cN due 

to the solder pads being detached from the packaged die. One could conclude that solder 

joints with good mechanical strength were formed with PDR IR rework system using the 

optimised heating profile and EFD solder paste.  On the other hand, one cannot improve 

the bonding strength of the solder pads to the packaged die for off-the-shelf devices. 

Therefore, a study was undertaken to understand how one could improve the overall 

strength of the copper wire soldered to the chips. This is described in the following 

sections.   
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Specimen Lv FH RH Yarn Count 

No. mm cN cN/tex Tex 

1 250 99.5 3.71 26.8 

2 250 98.0 3.66 26.8 

3 250 101.1 3.78 26.8 

4 250 95.5 3.57 26.8 

5 250 96.5 3.60 26.8 

Avg 250 98.12 3.66 26.8 

Stdev 0 2.25 0.08 0 

TABLE 4.3: RESULTS OF THE TENSILE TESTS OF FOUR-STRAND COPPER WIRES 

SOLDERED TO SMD RESISTOR CHIPS 
 

 

 
FIGURE 4. 23: THE LOAD – ELONGATION CURVE OF FOUR-STRAND COPPER WIRE 

SOLDERED TO AN SMD RESISTOR CHIP (SPECIMEN 1) 
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FIGURE 4. 24: MICROSCOPIC PICTURE OF SOLDERED 0201 CHIP AFTER TENSILE 

TEST 
 

4.5.2 Tensile Testing of Copper Wire Soldered with LEDs  

Two different types of SMD semiconductor chips were used in the research and, therefore 

it was necessary to evaluate the mechanical strength of seven-strand copper wires 

soldered to SMD chips type 0402.  In the previous section, the mechanical strength of 

four-strand copper wire soldered to SMD resistor chips of type 0201 was analysed.  Due 

to the dimensions of the solder pads only four-strand copper wire could be used in the 

analysis, and it was important to evaluate the mechanical strength of the solder joints 

when these were formed with copper wire with a higher number of strands.  Therefore, 

the test procedure described in the previous section was repeated with seven-strand 

copper wire soldered to SMD blue and red LEDs type 0402. An example of seven-strand 

copper wire soldered with a blue LED is shown in Figure 4.25.  

 

4-strand copper yarn 

Solder pad of 0201 chip 

Solder joints 
Broken side 

of 0201 chip 

0201 resistor chip 
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       FIGURE 4. 25: AN EXAMPLE OF ILLUMINATED BLUE 0402 LED JUST AFTER   

       SOLDERED  

 

A copper wire with an LED was clamped between the jaws of the tensile tester, which 

were electrically insulated, and the LED was powered from a laboratory power supply 

(model: TTi EX354T) in order to determine when the solder joint had been broken during 

testing (see Figure 4.26). The results are shown in table 4.4 (Appendix 14), Figure 4.27 

and Figure 4.28. 

 

Tensile Test Parameters: 

 Tensile test standard: DIN EN ISO 2062:1995 

 Pre-load: 0.5 cN/tex 

 Test speed: 250 mm/min 

 Grip to grip separation at the start position: 250 mm 

 TTi EX354T Triple Power Supply was connected to both ends of copper wire   

 Five specimens were tested 

 While tensile test was taking place, the illumination of LED was monitored 

 

0402 Blue LED Copper wire 
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                   FIGURE 4. 26: TENSILE TEST AND POWER SUPPLY ARRANGEMENT    

 

Results and Discussion  

Observations undertaken with a microscope showed that the solder pads of the 0402 chips 

became detached from the 7-strand copper wire at the tensile breaking point (Figure 4.27). 

The copper yarn of the last specimen was broken without damaging soldered area. The 

strength of the attachment between the solder pads and the package die is a function of 

the die manufacturing process. However, one copper wire broke while the solder pads 

remained in place. It can be concluded that the solder joints between copper strands and 

solder pads of dies were strong.  

 

 

Specimen  Lv FH RH Yarn count Which part was broken 

No. mm cN cN/tex Tex at the breaking point   

1 250 213.99 3.68 58.1 Solder pad 

2 250 168.39 2.89 58.1 Solder pad 

3 250 277.98 4.78 58.1 Solder pad 

4 250 250.05 4.30 58.1 Solder pad 

5 250 246.80 4.25 58.1 Copper wire 

Avg 250 231.44 3.98 58.1  

StDev 0 41.92 0.72 0  

TABLE 4.4: TENSILE TEST RESULTS FOR SOLDERED BLUE LEDS WITH 7-STRAND 

COPPER WIRE  
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                            FIGURE 4. 27: GRAPH OF TENSILE TEST OF TABLE 4.4  

 

 

 

 

 

 

 

 

    

 

 
 

     FIGURE 4. 28: MICROSCOPIC PICTURES OF SOLDERED 0402 CHIP AFTER    

     TENSILE TEST 
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4.5.3 Tensile Test for Soldered 0402 Red LEDs with 7 Strands Copper Wires   

The aim of this experiment was to analyse the strength of solder joints between 0402-

type, red SMD LEDs and 7-strand copper wires. The test described in section 4.5.2 was 

repeated using red LED’s instead of blue LED’s.  

 

Results and Discussion  

The results show that in four of the samples tested the seven-strand copper wire broke, 

and in only one sample, one of the solder pads was detached from the chip.  In all the four 

samples (i.e. 1 to 4 in table 4.5 (Appendix 15)) the corresponding LEDs did light up when 

the unbroken copper wires were connected to the power supply as shown in Figure 30, 

The results demonstrated that strong solder bonds were formed with the PDR IR rework 

system using the heating profile described in section 4.3.8 and EFD solder paste (ref: 

S965D500A6Z0, Lead Free version, Type VI). 

 

Specimen  

No.  

Lv 

mm 

FH 

cN 

RH 

cN/tex 

Yarn count 

Tex 

Which part was broken 

at the breaking point   

1 250 308 5.29 58.1 Copper wire  

2 250 197 3.39 58.1 Copper wire  

3 250 307 5.27 58.1 Copper wire 

4 250 305 5.24 58.1 Copper wire 

5 250 246 4.23 58.1 Solder pad 

Avg 250 272.60 4.68 58.1  

Stdev 0 49.77 0.85 0  

TABLE 4.5: TENSILE TEST RESULTS FOR SOLDERED RED LEDS WITH 7-STRAND 

COPPER WIRES 
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FIGURE 4. 29: LOAD – ELONGATION CURVES OF SEVEN-STRAND COPPER WIRE 

SOLDERED TO RED LED’S TYPE 0402 

 

 

     

FIGURE 4. 30: AN LED THAT WAS STILL FUNCTIONAL AFTER BREAKING OF THE 

ATTACHED COPPER WIRE DURING TENSILE TESTING 
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4.4 Analysis of the IR Beam of PDR IR Rework System 

It was necessary to understand the functionally of the IR beam, in order to utilize the PDR 

IR Rework system to obtain optimum usage of IR beam energy. The PDR IR Rework 

System was developed for PCB manufacture and the IR heating unit consists of an 

aperture to adjust the beam size and a lens system to project infra-red radiation onto the 

work piece (Figures 4.31 and 4.32) [118]. The IR beam size can be changed by rotating 

the aperture according to the soldering component size, without damaging other 

components of the PCB.     

 

      

 

 

 

 

 

  

 

 

Aperture 

FIGURE 4. 31: A CROSS-SECTION OF 

LAMP AND IR REWORK LENS HOUSING 

OF THE PDR IR REWORK 

FIGURE 4. 32: LENSES OF PDR 

SYSTEM [21]    
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      FIGURE 4. 33: THE MAXIMUM SIZE OF THE IR BEAM OF THE PRD SYSTEM 

 

 

 

 

 

 

 

 

FIGURE 4. 34: COMPARATIVE DIMENSIONS OF THE IR SPOT AND THE 0402 LED 

CHIP, WHEN THE APERTURE IS FULLY OPEN  

 

Calculation: 

Area of Spot   = 𝐴 = 𝜋𝑟2 

    = 3.142 x 102 mm2 

    = 314.2 mm2 

Area of chip pads  = 2 x 0.2 x 0.5 mm2  

    = 0.2 mm2 

The ratio of areas (chip pads: spot) = 0.2: 314.2 

     = 1: 1571 or chip pads area 0.06% of spot area 

 

 

Discussion of the Results   

The chip pad area is negligible compared with the IR spot area when the aperture is fully 

opened (at maximum spot size). The output of infra-red energy does not vary with spot 

size as an aperture is used to change the spot size. However, when one uses the highest 

Diameter of maximum 

spot size: 20 mm 

Dimension of chip pad: 

200µmx500µm 

Copper wire 
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spot size, this will help to warm up quickly the supporting plate which use to hold the 

electronic components, and as a result, it will reach the heating temperature profile 

quickly. Otherwise the actual timing to achieve the heating profile would be longer than 

the profile setting timings. The PDR IR Rework System consists of another heating unit 

in the base which is called the back-heat unit. This is used for pre-heating and obtaining 

the maximum heating profile (i.e. 250 0C). The spot size has to be adjusted if there are 

other components around the work piece and if there is a risk of damaging those 

components from heating.  

 

4.5 Conclusion   

In the beginning of the project, hand soldering tests were undertaken to understand how 

to handle the electronic chips and copper wires using suitable raw materials and 

equipment. The heating profiles of a PDR IR Rework System which was recommended 

by the raw material suppliers, were not suitable for soldering micro-devices and copper 

wires. After several trials, a rapid heating profile was developed to optimise the 

mechanical and electrical properties of the soldered joints. A novel concept of contactless 

technique was developed to remove the polyester coating of the copper wire through use 

of flux combined with the IR beam of the PDR IR rework system.  

Seven-strand copper wire (diameter: 100µm) was found to be the most suitable for 

soldering 0402 type chips as it exhibited good mechanical and electrical properties. 

However, seven-strand copper wire was too big to solder to 0201-type chips. Single-

strand copper wire (diameter: 55µm) was suitable for 0201 type chips.  
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CHAPTER FIVE 

5.0 Encapsulation  

5.1 Introduction  

The washability of electronic textiles is one of main challenging areas in the E-textiles 

industry [119]. Most E-textiles in the market today are not washable like normal garments 

as the electronic components of E-textiles are not fully protected and can be easily 

damaged. Some of those E-textiles can be washed but the electronic devices have to be 

removed prior to washing to protect them from water. Therefore, such E-textiles in the 

market today may not be user friendly.  The current trend is to wear easy-care and more 

user-friendly garments, and washability is a basic requirement. Therefore, the 

encapsulation of the chip and solder joints to create the polymer micro-pod is very 

important. The micro-pod will also protect the electronic components and solder joints 

from tensile, bending and torsional stresses that the electronically-functional yarns will 

be subjected to during fabric manufacture and dyeing and finishing processes, while 

retaining basic textiles characteristics in the rest of the yarn. Moreover, the encapsulated 

resin micro-pod protects and improves the durability of the electronic components.  

Different types of resins are used in industry for encapsulating printed circuit boards 

(PCBs). Popular resins are epoxy, hot melt, unsaturated polyester, urethane and silicones 

[120]. The selection of the type of resin to create the micro-pod will depend on the end 

user application, for example, a clear resin should be used for embedding LED’s in yarns; 

and thermally-conductive resin should be used for designing temperature-sensing yarn by 

encapsulating thermistors in yarns. A number of techniques can be used to cure resins. A 

traditional encapsulation method is to mix two components together [121]. Those two 

components consist of two different chemical groups which react when they are mixed 

together; When the two components are mixed polymerisation takes place [122], resulting 

in generation of heat which could be harmful to semiconductor devices Therefore, 

ultraviolet (UV) curing techniques are used in the electronics industry due to their ability 

to cure certain resins without generating heat. In addition, no mixing is required, 

shrinkage is low and a smooth, non-tacky surface is created. Moreover, the two-

component method has disadvantages as it may be messy when mixing, will waste unused 

mixed resin, may exhibit a slow curing process, may require oven heating and have a 

limited shelf life [121]. The micro-scale semiconductor packaged dies used in this project 

are sensitive to heat. Therefore, it was decided to use the UV-curing technique for the 

research work. The UV-curing theory and experiments are described in this chapter.     
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5.1.1 Ultraviolet (UV) Radiation 

Ultraviolet (UV) radiation is an electromagnetic wave with wavelengths between 100 to 

380nm. The wavelengths of UV radiation are between those of X-rays and visible light 

(Figure 5.1) [123]. Depending on the wavelength, UV radiation is classified into three 

groups such as UV-A (315-400nm), UV-B (280-315nm) and UV-C (100-280nm) [123]. 

 

                                                  FIGURE 5. 1: UV SPECTRUM [123] 
 

The relationship between UV exposure and irradiation intensity is described below. When 

UV-curing techniques are used for curing resin, the required irradiation time can be 

calculated using Equation 5.1.                      

        E = (I) x (T) …………………… 5.1  

Where 

E: UV exposure (mJ/cm2); 

I: Intensity (mW/cm2); 

T: Irradiation time (s). 

 

5.1.2 UV Curing Technique    

The UV-curing technique is a method for converting a liquid resin into a hard polymer 

by using ultraviolet energy. A UV-curable resin consists of monomers, oligomers, 

photoinitiators and other components such as fillers, pigments etc. The polymerisation 

process is initiated by photoinitiators of the UV-curable resin absorbing UV light energy 

and becoming excited. These excited photoinitiators instigate bonding of monomers and 

oligomer molecules, resulting in a three-dimensional polymerisation. Generally, within a 

few seconds, the liquid resin becomes a solid material. While in conventional curing 

techniques, heat is applied to evaporate solvents to cure the resin, UV-curing techniques 

do not involve solvents and the polymerisation takes only a few seconds. The UV-curing 

polymerisation process of a chip encapsulated with a UV-curable resin is illustrated in 

Figures 5.2 to 5.4 [124]. 
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FIGURE 5. 2: THE SCHEMATIC OF AN SMD CHIP ENCAPSULATED WITH UV-

CURABLE RESIN BEFORE APPLICATION OF UV ENERGY [124]  

 

 

 

 

 

 

 

 

FIGURE 5. 3: THE SCHEMATIC OF AN SMD CHIP ENCAPSULATED WITH UV-

CURABLE RESIN DURING APPLICATION OF UV ENERGY [124]  

 

 

 

 

 

FIGURE 5. 4: THE SCHEMATIC OF AN SMD CHIP ENCAPSULATED WITH UV-

CURABLE RESIN AFTER CROSS-LINKING AND BECOMING A SOLID POLYMER MICRO-

POD [124] 

5.2 Preliminary Encapsulation Test  

A simple, experimental rig was constructed (Figure 5.5) and initial tests were carried out 

to understand the encapsulation of individual SMD packaged dice with the fibres of yarns. 

The experimental rig consisted of a rotatable yarn-holding unit for yarn packages, a metal 

plate on the top to hold the copper wire soldered with semiconductor packaged dies, guide 

rollers, a UV light source (Dymax Blue Wave 50) and a yarn-winding unit.  Each yarn 

Oligomers 

Monomers 

Photoinitiators 

UV radiation 

Photoinitiators have been 

excited by absorbed UV 

energy and are starting the 

polymerisation and cross-

linking process 

Electronic Packaged die 



Chapter 05                                                                                                                                Encapsulation 

87 
 

was fed through a tensioning device. The copper wire was twisted with a polyester yarn 

prior to creating the polymer micro-pod as shown in Figure 5.6.  

 

 

         FIGURE 5. 5: THE EXPERIMENTAL RIG BUILT TO ENCAPSULATE SMD CHIPS 

 

 

 

 

 

 

                   FIGURE 5. 6: SCHEMATIC OF AN ENCAPSULATED, PACKAGED DIE 

 

Procedure: The, yarns and equipment were set up as shown in Figures 5.5 above. UV-

curable resin, Dymax 9001-E-V-3.5, was applied around the soldered semiconductor 

packaged die using a small brush, and a UV light spot was used for 10 seconds exposure 

as shown in Figure 5.7. The test was repeated with ten, soldered SMD-type LED packaged 

dies.   
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Equipment Raw Materials 

 Dymax blue wave 50 (UV source) 

 A small brush   

 Dymax 9001-E-V 3.5 

 Polyester yarn (Textured, 150/48) 

 Soldered 0402 LEDs with 7 

strands copper wire    

TABLE 5.1: THE EQUIPMENT AND RAW MATERIALS FOR THE ENCAPSULATION 

PROCESS  

 

 

           FIGURE 5. 7: A CLOSE-UP PICTURE OF THE ENCAPSULATION PROCESS. 

 

Observation: One could form a polymer micro-pod to protect the solder joints and 

semiconductor devices by using this method. However, it was not possible to control the 

amount of resin applied during the encapsulation. Therefore, the amount of resin and size 

of micro-pod varied considerably. 
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5.3 Encapsulation Process Using EFD Dispenser Unit  

The aim of this investigation was to apply resin precisely using an EFD unit which was 

capable of dispensing resin precisely at micro-litre scales.  

 

Equipment Raw Materials 

 A EFD dispenser unit  

 A compressor 

 Dymax blue wave 50 (UV source)  

 Dymax 9001-E-V 3.5 

 Polyester yarn (Textured, 150/48) 

 Soldered 0402 LEDs with 7 

strands copper wire    

TABLE 5.2: THE EQUIPMENT AND RAW MATERIALS FOR THE ENCAPSULATION 

PROCESS  
 

Procedure: The copper wire which was soldered with electronic packaged dies was 

twisted around two 150dTex/48 filaments polyester yarns. As shown in the Figure 5.8, 

0.3 µl of UV curable Dymax 9001-E-V 3.5 resin was dispensed to cover the whole 

packaged die. The resin was then exposed to UV light for 10 seconds to cure the resin. 

Finally, the yarn, which is called the core yarn in this thesis, was wound onto a yarn 

package. This process was repeated for 10 encapsulation specimens.    

 

 

 

 

 

 

 

 

 

 

 

 

                          FIGURE 5. 8: SCHEMATIC OF THE ENCAPSULATION PROCESS 
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Results and Discussion  

Using this method, it was possible to control the amount of resin (0.3µl) to ensure that 

this was same for 10 LED chips. However, the geometrical shape of the encapsulated 

packaged die was not the same even for the same type of SMD packaged die. Therefore, 

it was decided to use a mould for the resin curing process. 

 

5.4 Encapsulation Process Using EFD Dispenser Unit and Teflon Tube Mould 

It was necessary to select a material with a very low coefficient of friction to use as a 

mould for creating the encapsulated polymer micro-pod. Polytetrafluoroethene (PTFE) 

which is commonly known as Teflon is a thermoplastic polymer with a very low 

coefficient of friction (0.05 to 0.10) [125]. Therefore, PTFE can be used for non-stick 

surfaces as it has non-adhesiveness properties [126]. A short Teflon tube (inner diameter: 

0.8 mm, outer diameter: 1.6 mm and length: 2.5 cm) was used for these experiments as it 

was easy to remove the micro-pods from the Teflon tube after curing. A seven-strand 

copper wire and a soldered packaged die with a copper wire were pulled through the 

Teflon tube with two 167dTex/47 polyester yarns. The packaged die was positioned in 

the middle of the Teflon tube as shown in Figure 5.9 and 5.10. The yarns were kept under 

tension (Figures 5.9 and 5.10). Dymax 9001-E 3.5 resin (0.4 µl) was dispensed from the 

EFD dispenser with a long needle into each open end of the Teflon tube UV light was 

then applied for 10 seconds to cure the resin. Then, the core yarn was pulled out to remove 

the polymer micro-pod from the Teflon tube. The test was repeated for 10 soldered 

packaged dies.  

 

 

 

 

 

 

 

   FIGURE 5. 9: SCHEMATIC DIAGRAM OF THE ENCAPSULATION PROCESS USING   
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                       FIGURE 5. 10: THE EXPERIMENTAL RIG BUILT TO ENCAPSULATE CHIP   

                       AND SOLDER JOINTS 
 

Results and Discussion  

As expected the geometrical shape of all the micro-pod (encapsulated packaged die) was 

the same.  Two example images are shown in Figure 5.11.  The micro-pods formed are 

of tubular shape which is comparable to the shape of fibres.  The cross-sectional 

dimensions of the micro-pod can be controlled by the selection of Teflon tubes of 

different diameters. 

 

        

 

FIGURE 5. 11:  MICROSCOPIC IMAGES OF ENCAPSULATED 0402 TYPE LEDS USING 

TEFLON TUBE 
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5.5 Tensile Test of Soldered and Encapsulated 0402 Blue LEDs with 7-Strand 

Copper Filaments   

The focus of this investigation was to analyse whether the strength of solder joints was 

improved after they had been soldered with 7-strand copper filaments and encapsulated 

with resin in comparison with non-encapsulated solder joints. The test procedure 

described in section 4.3.6 of Chapter 4 (pages 88 to 89) was used to solder the 5 samples 

and the test procedure described in section 5.3 of Chapter 5 (page 113) was used to 

encapsulate the solder joints. The test procedure described in section 4.5.2 of Chapter 4 

(page 99) was used to carry out the tensile test for these samples. Pictures taken during 

the tests are shown in Figure 5.12. 

 

                      

                    FIGURE 5. 12: BEFORE (LEFT) AND AFTER (RIGHT) TENSILE TEST 

 

Results and Discussion  

During tensile testing, the solder joints of four core yarns were broken. In second sample 

(see table 5.3, Appendix 16), the seven-strand copper wire was broken at away from the 

solder joint. As explained earlier in section 5.3. the seven-strand copper wire with LED’s 

attached by soldering was twisted around two 167dTex/47filaments polyester yarns and, 

therefore, the tensile strength of the core yarn was increased (see table 5.3). However, the 

solder joint was still the weakest point. Therefore, further improvements made are 

discussed in chapter 6.  
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Specimen 

no. 

Lv FH RH 
ƐH 

Yarn 

count 
Location of Breaking 

Point mm cN cN/Tex % Tex 

1 250 1060 2.7 18 92 Solder joint 

2 250 1160 2.9 17 92 Copper wire 

3 250 943 2.4 16 92 Solder joint 

4 250 974 2.5 16 92 Solder joint 

5 250 973     2.5 17 92 Solder joint  

TABLE 5.3: TENSILE TEST RESULTS FOR SOLDERED & ENCAPSULATED BLUE 

LED’S WITH 7-STRAND COPPER FILAMENTS 

 

 

      FIGURE 5. 13: GRAPH OF TENSILE TEST OF CORE YARN SAMPLES IN TABLE 5.1 

 

5.5 Conclusion  

Encapsulation of the electronic components is essential for ensuring the washability and 

durability of electronic yarn. Moreover, it provides robustness to the yarn prior to feeding 

through a conventional mini circular warp knitting machine in order to produce the final, 

electronic yarn. A traditional encapsulation method is to use two-component resin. 

However, UV curing is the method employed in the electronics industry and has more 

benefits than use of two-component resins, therefore, a UV curing technique was used 

with UV-curable resin to create micro-pods around the semiconductor package die. Three 

methods were used to apply resin to the electronic packaged dies which had been soldered 
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onto seven-strand copper wires. In first method, it was not possible to control the amount 

of resin applied to each packaged die, as resin was applied with a paint brush. Therefore, 

the size of micro-pods and geometrical shapes of the encapsulated packaged dies varied. 

In the second method, resin was applied using a syringe with a long needle. The volume 

of resin could be controlled but the geometry of the micro-pods varied. In the third 

method, the packaged die was located within a Teflon tube and resin was then applied 

and cured. This encapsulation method was more successful than the others as it was able 

to create geometrically-uniform micro-pods for each electronic packaged die.   
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CHAPTER SIX   

6.0 Electronic Yarn Formation  

Integrating micro-scale semiconductor, packaged dies within the fibres of yarn is a novel 

concept. However, it was a challenging task to develop robust interconnections with the 

electronic devices to withstand mechanical stresses and chemical processes which usually 

take place during textile manufacturing and later during textile use.  The encapsulation 

process was explained in the chapter 5.  The core yarn with micro-pod that was developed, 

had insufficient mechanical strength. Mechanical strength and the basic textile 

characteristics of e-yarns are defined by the properties of the final yarn, such as fibre and 

yarn type, and yarn formation method. Therefore, this chapter focuses on textile qualities 

of the e-yarn. The yarn formation techniques for manufacture of e-yarns such as twisting, 

braiding and covering and optimisation of yarn quality are explained in this chapter.            

 

6.1 Electronic Yarn (e-Yarn) 

Normal spun yarns are produced from short or long staple fibres twisted together. For 

example, cotton yarn is a spun yarn which is made by twisting cotton fibres. It is a long 

process and involves a number of steps [127]. Therefore, it would be very complicated if 

semiconductor packaged dies integrated yarns (e-yarns) were to be produced using the 

normal route for cotton yarn manufacture. Therefore, it was necessary to select a 

technique suitable for producing the final e-yarns by using conventional textile yarns 

(either staple spun or multi-filament yarns from synthetic or natural fibres). The final e-

yarn is a hybrid yarn, assembled together with fine standard yarns, fine copper 

interconnects, semiconductor packaged dies, resin micro-pods and carrier yarn. 

Conventional hybrid yarns are formed by different techniques such as twisting, covering 

and braiding. The twisting technique and issues with this are discussed in 6.2. The circular 

warp knitting technique was used to produce e-yarns, as it has distinctive properties which 

are described in 6.3. Optimisation of the properties of the e-yarn is also discussed in 6.3. 

Tensile tests were carried out for final e-yarns as discussed in section 6.4.  

     

6.2 Study of Twisting Technique for e-Yarn Formation  

This investigation was undertaken to identify the suitability of twisting the core yarn with 

conventional textile fibres to produce e-yarns. A simple experimental rig was developed 

to produce e-yarns by twisting the core yarn, which consists of carrier yarns, seven-strand 

copper wire populated with soldered SMD chips and micro pods, and conventional textile 

fibres (see Figures 6.1 and 6.2). The yarn-package holding unit could be manually rotated. 
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The tensioning devices were fixed for each and every yarn to provide tension. This rig 

was also used for encapsulation processes to produce core yarns by using two main yarns 

(carrier yarns) and copper wire which had electronic chips soldered onto it as described 

in chapter 5.2 (page 111).  

 

 

FIGURE 6. 1: THE EXPERIMENTAL RIG WHICH WAS BUILT TO TWIST CORE YARN 

WITH TEXTILE YARNS TO PRODUCE E-YARNS 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6. 2: A SCHEMATIC DIAGRAM OF THE EXPERIMENTAL RIG WHICH WAS 

BUILT TO TWIST CORE YARN WITH TEXTILE YARNS TO PRODUCE E-YARNS 
 

6.2.1 The Issues of the Twisting Technique  

As shown Figure 6.3 and 6.4, when several yarns are twisted together, due to fibre 

migration, it is not possible to prevent one particular yarn from appearing on the outer 

surface of the final yarn, even when it is twisted with double or multiple yarns. The 
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motivation for twisting the core yarn with a number of conventional textile yarns was to 

form an e-yarn with the core yarn being held in its centre, in order to protect the 

interconnects (fine copper wires) from unwarranted mechanical stresses such as rubbing 

during use. According to Table 3.3 and Table 3.4 of chapter three (pages 55 and 57), the 

fine copper wires used are weaker than conventional textile yarns such as polyester. 

However, it was necessary to use fine copper wires to form the interconnects to the SMD 

chips utilised to produce e-yarns, and this required protection. Therefore, the twisting 

method is not suitable for production of e-yarns as copper interconnects can be damaged 

easily.     

 

 

        FIGURE 6. 3: A SCHEMATIC DIAGRAM SHOWING TWISTED YARNS [128] 
 

 

 

 

                     FIGURE 6. 4: AN EXAMPLE OF THE FINAL, TWISTED E-YARN 

 

6.3 Mini Circular Warp Knitting Technique for e-Yarn Formation  

In order to protect the micro-electronic devices, one could surround the core yarn with a 

fibre sheath, which could be in the form of an interlaced or interlooped structure. Braiding 

is a well-known technique which can be used to produce tubular structures which are 

formed by interlacing of at least three yarns diagonally to the axis of the braid. Industrial 

braiding machines consist of carriers of yarn driven by horn gears, and the length of the 

braid that can be produced is determined by the length of yarn wound onto the carriers. 

On the other hand, one could use a small-diameter warp knitting machine to produce a 

continuous fibre sheath by interloping 4 to 16 yarns.  Therefore, it was decided to 

investigate the possibility of using a small-diameter Raschel warp knitting machine from 

RIUS, Model MC. The warp knitted structure is more suitable for manufacturing e-yarns 
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due to its properties, and as four yarns can be supplied directly from yarn packages to the 

latch needles on the machine the process is efficient and economical. 

 

6.3.1 Preliminary Testing 

In order to produce finer e-yarns a RIUS MC with a needle cylinder with an internal bore 

size of 1.5mm diameter was utilised. The needle cylinder was equipped with four latch 

needles (gauge 18).  The aim of preliminary testing was to identify the suitability of the 

RIUS machine to craft the e-yarn and practical issues of e-yarn formation. The latch 

needles were threaded with multi-filament texturized polyester yarns (150dTex/48) to 

form the tubular warp knitted structure (knitted sleeve). A schematic of the concept of 

forming e-yarn is shown in Figure 6.5, and the arrangement of the four PE yarns and the 

core yarn is illustrated in Figure 6.6. The machine speed was set to 50 rpm and the 

machine was adjusted to produce a tubular warp knitted sleeve with ten courses per inch. 

The core yarn was delivered to the centre of the needle cylinder as shown in Figure 6.7. 

The SMD 0402 type semiconductor chip (length: 1.0 mm, width: 0.5 mm and thickness 

0.5 mm) was used.   

 

 

 

 

 

 

 

       FIGURE 6. 5: SCHEMATIC OF THE FORMATION OF THE FINAL E-YARN. 
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FIGURE 6. 6: A SCHEMATIC OF THE ARRANGEMENT OF YARN IN THE CIRCULAR 

WARP KNITTING MACHINE 

 

 

FIGURE 6. 7: THE NEEDLE CYLINDER OF THE WARP KNITTING MACHINE AND YARN 

ARRANGEMENT 

 

Results and Discussion  

E-yarns were successfully produced using the small-diameter warp knitting machine from 

RIUS without encountering problems with the machine. However, the evenness of the warp 

knitted e-yarn was compromised by micro pods on the core yarn as shown schematically in 

Figure 6.8 and 6.9. The diameter of the e-yarn in the semiconductor packaged die embedded 

area was larger than in other areas. The e-yarns should be able to undergo further 
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manufacturing processes such as weaving, knitting, sewing and embroidering without 

snagging. Therefore, it was necessary to improve the evenness of the e-yarn.    

  

 

 

     

 

 

                        FIGURE 6. 8: A SCHEMATIC DIAGRAM OF THE FINAL E-YARN 
 

 

                                     FIGURE 6. 9: AN EXAMPLE OF FINAL E-YARN 

 

 

6.3.2 Optimisation of the Uniformity of E-yarn  

The aim of this investigation was to improve the evenness of the e-yarn by introducing extra 

filler yarns in parallel with the carrier yarn. Therefore, four extra 150/48 textured polyester 

yarns were delivered to the warp knitting zone with carrier yarn. The important components 

of the RIUS small-diameter circular warp knitting machine are shown in Figure 6.10. 
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FIGURE 6. 10: SMALL-DIAMETER CIRCULAR WARP KNITTING MACHINE RIUS MC 

WITH YARN CREEL  

 

Results and Discussion  

The extra filler yarns were well accommodated inside the e-yarn. As shown below in Figure 

6.11, these yarns maintained a uniform yarn diameter, which was larger along the length of 

the e-yarn.  However, it was observed that the filler yarns were squeezed at the micro pod 

area. Therefore, although the evenness of the yarn was improved, part of the micro pod did 

emerge onto the surface of the e yarn sometimes as illustrated in Figure 6.12 and shown in 

Figure 6.13.   

 

 

 

 

    

FIGURE 6. 11: SCHEMATIC TO ILLUSTRATE THE PREFERRED POSITION OF MICRO 

POD WITHIN E-YARN. 
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FIGURE 6. 12: SCHEMATIC TO ILLUSTRATE THE MICRO POD BEING SQUEEZED UP 

TO THE E-YARN SURFACE BY FILLER YARNS 

 

 

FIGURE 6. 13: A PICTURE OF E-YARN WITH MICRO POD BEING PUSHED UP TO THE 

YARN SURFACE 

 

Two possible reasons were postulated for the shifting of the micro pod to the surface of the 

e yarn. One reason was that filler yarns were not guided properly into the circular yarn 

guide of the machine. All filler yarns stuck together at the circular yarn guide causing the 

micro pod of the core yarn to be pushed aside.   Therefore, a newly-designed circular disc 

was introduced to separate the packing yarn evenly around the inside of the circular guide. 

The other reason was that the core yarn and the seven-strand copper wire were not placed 

symmetrically in the micro pod, i.e. they were both positioned on one side of the packaged 

die as shown in Figures 6.14 and 6.15.  The solution was to introduce two PE yarns on 

either side of the packaged die during the encapsulation process, as shown in Figure 6.16, 

thus the carrier yarn consisted of two PE yarns, seven strand copper wire and micro pods.  
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FIGURE 6. 14: SCHEMATIC ILLUSTRATING THE CROSS SECTION OF THE MICRO 

POD WITH CORE YARN AND SEVEN-STRAND COPPER WIRE ON THE SAME SIDE OF 

THE  PACKAGED DIE 

 

 

 

  

 

 

 

 

 

 

 

As explained in the previous section, a new yarn guide disc was fabricated. This was 

made from acrylic plate which was cut to the desired shape precisely with a laser cutting 

system.  A needle cylinder with a central bore size of 2.0 mm was used when investigating 

the new concept. The new needle cylinder was equipped with six latch needles, and the 

arrangement of the yarns is as shown in Figures 6.17 and 6.18.  
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FIGURE 6. 165: SCHEMATIC OF THE SIDE 
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FIGURE 6. 156: SCHEMATIC OF THE 

SIDE VIEW OF THE MICRO POD WHEN 

THE CARRIER YARNS ARE EITHER SIDE 
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FIGURE 6. 17: SCHEMATIC OF YARN ARRANGEMENT ON RIUS KNITTING MACHINE 

WITH THE NEW FILLER-YARN GUIDE DISC 

 

 

    

                     FIGURE 6. 18: PICTURES OF THE FILLER YARN GUIDE DISC 

 

Results and Discussion  

The extra filler yarns were well arranged around the carrier yarn as shown in Figures 6.19 

and 6.20, therefore the evenness of the yarn was improved as shown Figure 6.21. 
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FIGURE 6. 19: A SCHEMATIC DIAGRAM OF FIBRE-ORIENTATION IN THE FINAL E-

YARN 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6. 20: A SCHEMATIC DIAGRAM OF SHOWING A CROSS-SECTIONAL VIEW OF 

THE FINAL E-YARN 

 

 

       FIGURE 6. 21: AN EXAMPLE OF THE FINAL E-YARN 

 

6.4 Tensile Test e-Yarns 

6.4.1 Tensile Testing of Warp-Knitted Sleeves (Without Electronics)   

The aim of this evaluation was to analyse the tensile strength of the warp knitted sleeves, 

designed to surround the core yarn of the e-yarn. The procedure described in 6.3.2 (page 

124) was used to form the knitted sleeve using a 4-needle braiding machine. The test 

method described in section 4.5.1 (page 95) was used to evaluate the tensile properties of 

the warp-knitted sleeve samples. 
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Results and discussion  

The results of the tensile tests (Tables 6.1, Appendix 17 and Figure 6.22) showed that the 

minimum breaking tensile strength of the warp-knitted sleeve samples was 6660 cN (6.6 

Kg). The tensile strength can be increased further by using stronger yarns as carrier yarns 

or as knitting yarns or by changing the needle bed with higher numbers of latch needles. 

For example, if Zylon yarn is used as a carrier yarn instead of polyester yarn, the resultant 

yarn will be stronger (tensile strength of Zylon yarn: 37 cN/dTex and polyester: 8 

cN/dTex (129)). 

Lv: Gage Length 

FH: Maximum Tensile Force  

RH: Fineness related breaking force    

        

Specimen 

no. 

Lv FH RH Yarn Count 

Mm cN cN/tex Tex 

1 250 7540 19.0 397 

2 250 6660 16.8 397 

3 250 8960 22.6 397 

4 250 8330 21.0 397 

5 250 8030 20.2 397 

 

TABLE 6.1: TENSILE TEST RESULTS FOR WARP KNITTED SLEEVES PRODUCED WITH 

SIX NEEDLES 

 

 

 

 

FIGURE 6. 22: GRAPH SHOWING TENSILE TEST RESULTS FOR THE SAMPLES LISTED 

IN TABLE 6.1 
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6.4.2 Tensile Testing of E yarn with Blue LEDs  

The aim of this investigation was to analyse the tensile strength of the e-yarns that 

consisted of 0402 Blue LEDs and interconnects, at 10% elongation. The method 

described in section 4.3.6 (pages 88 to 89) was used to solder packaged dies to seven-

strand copper wire to create the interconnects, and the method described in section 5.4 

(pages 114 to 115) was used to encapsulate the packaged dies and solder joints. Finally, 

the method described in section 6.3.3 of this Chapter was used to craft the final e-yarn. 

The test method described in section 4.5.1 (page 95) was used to carry out the tensile 

testing of the samples. An example of an e-yarn under test is shown in Figure 6.23. 

 

 

                               

                 FIGURE 6. 23: BEFORE (LEFT) AND AFTER (RIGHT) TENSILE TEST 
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Results and Discussion  

According Tables 6.2 (Appendix 18) and Figures 6.24, none of yarns was broken at 10% 

elongation. E-yarn with polyester warp-knitted sheaths were able to withstand more than 

4 kg load. However, the breaking strength of E-yarn could vary according to type of yarn 

used as core yarn and the type used to form the warp-knitted fibre sheath.  

 

Specimen 

no. 

Lv FH RH 

Yarn 

count 

Which part was 

broken  

mm cN cN/tex tex at Breaking Point 

1 250 4050 10.1 400 None 

2 250 4420 11.0 400 None 

3 250 4250 10.6 400 None 

4 250 4410 11.0 400 None 

5 250 4570   11.4 400 None 

TABLE 6.2: TENSILE TEST RESULTS FOR SOLDERED WITH BLUE LED’S AND 7-

STRAND COPPER WIRE, ENCAPSULATED AND BRAIDED  

 

 

                          FIGURE 6. 24: GRAPH OF TENSILE TEST OF TABLE 6.2 

 

Note: The covering techniques could also be recommended for future production of e-

yarns, but it was not feasible to carry this out during in this research due to lack of 

availability of equipment. 
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6.5 Conclusion  

The staple spun yarn manufacturing process is a long and complex process. It would be 

almost impossible to manufacture e-yarns by using that process. Therefore, it was necessary 

to investigate alternative yarn manufacturing techniques.  

If yarns are twisted together, all the yarns including conductive wires used to create the 

interconnects to the packaged dies would appear on the outer surface of the final yarn. 

Therefore, the copper wires could get damaged when they come into contact with other 

objects. Therefore, it was concluded that twisting of yarns to produce e-yarn was not a 

suitable option.     

The inner part of a braided yarn is covered completely with the outer, braided yarn. 

Therefore, the braiding technique was suitable for manufacturing e-yarns. Carriers 

populated with yarn are used in normal braiding machines, and this lead to production of 

braided yarn with limited lengths. This is labour intensive because of the winding, loading 

and unloading of carriers from a braiding machine. However, there are no such issues with 

small-diameter circular warp knitting machines.  Moreover, the rate of production of such 

machines is much greater than that of normal braiding machines, and the structure of 

tubular-warp knitted structures are more suitable for e-yarns due to the tight, secure 

structure of the central filler yarns. Therefore, a carrier yarn with semiconductor packaged 

dies could be held securely in place in the middle of the e-yarn.  

Uneven e-yarns could be caused due to two main reasons. One reason was that filler yarns 

were not guided before reaching the circular knitting barrel of the knit braider. To improve 

this, filler yarns were guided around the carrier yarn by introducing a new guide plate. The 

other reason was that the carrier yarn and copper filament were not at the central axis of the 

encapsulated, packaged die. This issue was solved by introducing two carrier yarns to the 

other side of the packaged die during the encapsulation process.  
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CHAPTER SEVEN  

7.0 Development of Prototype Demonstrators with e-Yarn 

7.1 Introduction 

E-yarn is a novel concept, so its potential can be established only by creating textile 

fabrics. Novel concepts are quite difficult to establish without developing prototype 

demonstrators. Prototype demonstrators generate the opportunity for learning the 

functionality of the products and highlight practical issues, manufacturing limitations and 

quality control issues. Also one can gain valuable experience by creating prototype 

demonstrators.  They could enhance one’s creative thinking and provide a platform for 

the development of new skills.  Prototype demonstrators also help to draw attention and 

interest to the technology.  

 

Therefore, several prototype demonstrators were developed within the framework of this 

program of research, and this chapter is devoted to reporting these developments.  

Different SMD packaged dice were used to produce e-yarns with distinctive, unique 

electronic functionality, and then these were incorporated into textile fabrics using 

weaving and knitting techniques.  LED’s were used to produce light-emitting yarns; 

thermistors were utilised to craft temperature sensor yarns; vibration sensors were 

embedded to produce vibration sensing yarns; micro magnets were applied to create 

magnetic yarns; and RFID chips were exploited to develop yarns with unique electronic 

signatures.  Different prototype demonstrators were fashioned with these e-yarns. Some 

demonstrators were used to undertake laboratory tests such as tensile and wash testing.     

 

7.2 Illuminated Yarns 

   7.2.1 Producing Single-Colour LED Yarns  

A number of single-colour LED yarns were produced to identify the following:  

 The feasibility of manufacturing E-yarns;  

 The identification of practical issues;  

 To demonstrate the technology for potential partners.   

Procedure: The procedure which was explained in Chapter 4 in Section 4.3.6 (pages 88 to 

89), was used for soldering copper interconnects to LED chips, and their encapsulation was 

undertaken according to the procedure described in Chapter 5.4 (pages 114 to 115). The 

final yarn formation was undertaken according to the method explained in Chapter 6. 

E-Yarns Containing Blue Colour LED’s: Five SMD 0402 type blue colour LED’s (part 

number: 860-9018 from RS components, Annex 2) were soldered to 7-strand of copper 
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wires, two 150dTex/48 texturized polyester yarns were encapsulated to produce the core 

yarn.  The final e-yarn was produced on a RIUS small-diameter, circular warp knitting 

machine using four cotton yarns to create the outer tubular warp-knitted casing. Each e-

yarn contained one blue LED with a working voltage of three volts. The LED’s were 

connected in a parallel circuit and powered with a coin-cell battery as shown in Figures 7.1 

and Figure 7.2. 

 

          FIGURE 7. 1: CIRCUIT DIAGRAM OF YARNS CONTAINING BLUE LED’S 

 

                                   

FIGURE 7. 2: E-YARNS CONTAINING BLUE LED’S BEFORE AND AFTER ACTIVATION 

 

E-yarns Containing Yellow Colour LED’s: Twenty SMD 0402 type yellow LED’s (part 

number: 4663649 from RS components Annex 6) were used to produce five e-yarns.  The 

core yarn of each e-yarn consisted of five LED’s soldered in series to seven-strand copper 

wire, two 150dTex/48 texturized polyester yarns and five micro pods which is cured resin 

around those LED’s. The e-yarn was produced with a tubular, warp-knitted casing made 

from four, textured, polyester yarns (150dTex/48). The five LED’s in each e-yarn were 

positioned at 10 mm intervals.  These yarns were connected in a parallel circuit as shown 

in Figure 7.3 and connected to a 10V power supply, and a photo of the e-yarns, when 

activated, is shown in Figure 7.4. 
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       FIGURE 7. 3: CIRCUIT DIAGRAM OF E-YARNS CONTAINING YELLOW LED’S  

 

  

          FIGURE 7. 4: ILLUMINATED E-YARNS CONTAINING YELLOW LED’S 

 

E-Yarns Containing White LED’s: Eight e-yarns were made up with twenty-four SMD 

0402 type white LED’s (part number: 6973840 from RS components Specs: Annex 4).  The 

core yarn of each e-yarn consisted of three LED’s soldered in series to seven-strand copper 

wire, two 167/47dTex texturized polyester yarns and three micro pods (which is cured resin 

around those LED’s). The e-yarn was produced with a tubular, warp-knitting machine using 

four, textured polyester yarns (167dTex/47). The four LED’s in each e-yarn were positioned 

at 50 mm intervals. These e-yarns were connected in a parallel circuit as shown in Figure 

7.5 and connected to a nine Volt battery.  The e-yarns are shown in Figure 7.6. 
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                             FIGURE 7. 5: CIRCUIT DIAGRAM OF WHITE YARNS  

 

   

FIGURE 7. 6: E-YARNS WITH WHITE LED’S BEFORE AND DURING ACTIVATION 

 

7.2.2 Production of Multi-Colour LED Yarns  

In some electronic textiles it may be necessary to create e-yarns with multiple 

interconnects. In such situations one has to use multi-strand copper wires coated with a 

thin layer of PE for insulation to solder the interconnects. The aim of this experiment 

was to study removal of the polyester coating of the copper wire and creation of multiple 

connections within a yarn without causing short circuits.     

  

Procedure: The method described in 4.3.3 (page 81) was used to remove the polyester 

coating from a single strand of copper wire at five different places. The coating was 

removed from 1.0 mm of the copper wire, at intervals of 10 mm. Five, red LED’s (part 

number: 4663633 from RS Components, spec: Annex 3) were picked and placed onto a 25 

mm wide black adhesive tape on the work-holder plate, ensuring that there was a 10 mm 

gap between each chip. The single-strand copper wire was laid on the LED’s by aligning 

the areas in which the coating had been removed from the copper wire with the tops of the 

solder pads of the LED chips. Finally, the copper wire was soldered onto the solder pads 

using the procedure described in 4.3.6 (pages 88 to 89). The above procedure was repeated 

with yellow and green LED’s, to produce three, different polyester-coated, single-strand, 
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copper wires, each soldered with five LED’s of three different colours (red, yellow and 

green), and these were then combined to form the core yarn. The core yarn was then 

processed further on the small-diameter, circular, warp-knitting machine to craft an e-yarn 

containing LED’s in three different colours (Figure 7.9). Each different coloured LED had 

to be supplied with a different voltage, which was achieved by connecting three load 

resistors in series with PE-coated copper wires as shown in Figure 7.7. The calculation of 

the load resistors is given in Appendix 2.   

 

  

  FIGURE 7. 7: THE CIRCUIT USED TO POWER E-YARN WITH THREE COLOUR LED’S  

 

Results and Discussion: All the LED’s were soldered successfully, as shown as Figure 

7.8. This experiment was undertaken to prove that the polyester coating can be removed 

only at the soldering area, thus preventing any short circuits. The final yarn containing 

three-colour LED’s is shown in Figure 7.9.  

 

       

 

 

 

 

FIGURE 7. 8: AFTER SOLDERING 2 

COLOURS OF LED 
FIGURE 7. 9: THREE- COLOUR ILLUMINATED 

 YARN 
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7.3 Development of Illuminated Car Seat Cover   

E-yarn containing LED’s (LEDY) will have multiple applications, especially in the 

cockpits of vehicles, e.g. door panels, headliners, dashboards, car seats, safety belts and 

carpets.  Therefore, a prototype demonstrator of a car-seat cover was designed and 

produced and exhibited at the Automotive Engineering Show 2013 in Birmingham. The 

prototype demonstrator is shown in Figure 7.10, and its development is described in the 

following sections.     

 

 

FIGURE 7. 10: THE PROTOTYPE DEMONSTRATOR OF AN ILLUMINATED CAR-SEAT 

COVER 
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7.3.1 Design of the Positions of LED’s in the Fabric  

A number of motifs were designed by the postgraduate research student (Dilusha 

Rajapaksha) at NTU. The two-colour arrow-shaped motif was selected as it was suitable 

for the automobile industry (Figure 7.11).  

 

 

      FIGURE 7. 11. POSITIONS OF RED AND BLUE LED’S IN THE CAR-SEAT COVER    

 

7.3.2 Formation of LED Yarns for Car Seat Cover    

Test 4.3.6 of Chapter 4 (pages 88 to 89) was used to solder LED’s using a rapid heating 

profile. Thirty-nine red LED’s (0402 type, RS components part number: 4663633, Spec: 

Annex 3), thirty-nine blue LED’s (0402 type, RS components part number: 8609018 Spec: 

Annex 2), seven-strand copper wire, solder paste (lead free version, type VI from EFD ltd) 

were used.  All the LED’s (78 LED’s) were soldered without issues. The method described 

in section 5.3 was used to encapsulate each LED using Dymax 9001-3.5 UV-curable resin 

(Spec: Annex 12). LED’s soldered to copper wire were twisted onto the two 176 dTex/45 

textured polyester yarns prior to encapsulation. The UV spot light was applied for 10 

seconds to cure the resin. The core yarns were then processed further on the small-diameter 

circular warp knitting machine to craft e-yarns. Two, black-coloured 176 dTex/45 textured 

polyester yarn and two grey coloured 167 dTex/47 textured polyester yarns were used for 

knitting. The encapsulated core yarn and four white coloured 176 dTex/45 textured 

polyester yarn were used as packing fibres. 
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7.3.3 Production of Car Seat Fabrics 

The car seat fabric was woven by Vajira Peiris (130), lecture of NTU. Details of the 

weaving specifications are shown in Figure 7.12.  

 

                                                 

                                        

 

7.3.3.1 Technical Specifications of Weaving the Car Seat Fabric. 

The width of the warp before weaving was 30 cm. The width of warp after weaving was 

26.5 cm. Two, different types of yarns were used for the weft: e-yarns with one LED and 

filling yarn which was produced on the RIUS with identical packing yarn and tubular 

warp knitted covering, however, without the core yarn which contain LED’s. This enabled 

a uniform fabric to be woven. During weft insertion, the LED’s were placed according 

the arrow shape motif diagram. The ends per inch of woven fabric was 8. The total length 

was 1.52 m.   

 

7.3.4 Electronic-Circuit Design  

According to the motif design, there were 13 LED’s in total for each arrow (6 LED’s on 

the left hand side of an arrow and 7 on the right-hand side of each arrow). As shown in 

Figure 7.10, there were three arrows in red and three arrows in blue. The LED’s were 

connected as shown in Figure 7.13.  As the number of LED’s on the two sides of an arrow 

was not equal, different voltages were required to power all 13 LED’s of an arrow. An 

Arduino pro mini board [131], which had a programmable micro controller, was used 

control the LED’s to create blinking effects. However, the Arduino board was not capable 

of driving 13 LED’s, so a power circuit was designed to drive the LED’s with the Arduino 

pro-mini board. The electronic circuit and power circuit are shown in Figures 7.13 & 7.14. 

Even though two power circuits were designed and produced, only one circuit which was 

designed for use with the red LED’s was used as it sufficient for all the connections. 

According to Figures 7.13 and 7.14, there were two groups of LED’s containing 6 and 7 

LED’s each. However, the 6 and 7 LED’s were connected together to make one group of 

13. Then 12 groups of blue and red LED’s were connected to make 6, larger groups. 

FIGURE 7. 12: WARP PLAN (LEFT) AND LIFTING PLAN (RIGHT) 
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Therefore, 6 connections from the Arduino circuit were required, instead of 12 which was 

original idea.    

 

                       FIGURE 7. 13: ARDUINO-LED INTERFACE – SCHEMATIC 

 

 

                    FIGURE 7. 14: SCHEMATIC DIAGRAM OF POWER CIRCUIT BOARDS 
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7.3.5 Circuit Programming  

Two blinking functions were designed: a blinking effect and a sequence effect for the red 

and blue LED’s. The Arduino programmes were as demonstrated below.  

   

7.3.5.1 Arduino Programming for the Blinking Effect  

// The Lilypad 328 has PWM on pins 5,6,9,10,11 

/* Pin Definitions */ 

// LED’s: white LED’s are connected to 5, 6, A2, A3, A4 

int ledPins[] = {1, 2, 3}; 

void setup() 

{ 

  for(int i=0; i<8; i++)  //Set all LED pins to outputs 

  { 

    pinMode(ledPins[i], OUTPUT);  //Set pin as output 

    if(i>4) 

    { 

      digitalWrite(ledPins[i], HIGH);  //If RGB LED then make pin high to turn OFF 

    } 

  } 

} 

 void loop() 

{ 

    // Blink LED’s for 60 seconds     

  for(int j=1; j<30; j++)  // LED’s ON for 1 second, OFF for 1 second * 30 for minute 

  { 

    for(int i=0; i<8; i++) 

    { 

     if(i>4) 

      { 

       digitalWrite(ledPins[i], LOW);  // If RGB LED pin then set pin low to light 

      } 

      else 

      { 

       digitalWrite(ledPins[i], HIGH);  // High for normal LED  

      } 

    } 

    delay(50);  // Wait for 1 second 

    for(int i=0; i<8; i++) 

    { 

     if(i>4) 

      { 

       digitalWrite(ledPins[i], HIGH);  // If RGB LED pin then set pin high for off 

      } 

      else 

      { 

       digitalWrite(ledPins[i], LOW);  // Low for normal LED  

      } 

    } 

    delay(50);  // Wait for 1 second 
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  } 

} 

 

7.3.5.2. Arduino Programming for the Sequence Effect  

// The Lilypad 328 has PWM on pins 5,6,9,10,11 

/* Pin Definitions */ 

// LED’s: white LED’s are connected to 5, 6, A2, A3, A4 

int ledPins[] = {5, 6, 7, 8, 9, 10}; 

int delTime = 300; 

void setup() 

{ 

  for(int i=0; i<6; i++)  //Set all LED pins to outputs 

  { 

    pinMode(ledPins[i], OUTPUT);  //Set pin as output 

    if(i>4) 

    { 

      digitalWrite(ledPins[i], HIGH);  //If RGB LED then make pin high to turn OFF 

    } 

  } 

} 

 void loop() 

{ 

// Sequence all LED’s  

  for(int i=0; i<6; i++)  // This for loop will run 5 times 

  {  // blink the white LED’s (first 5 LED’s in ledPins array) 

    pinMode(ledPins[i], OUTPUT);  // set pin as output 

    digitalWrite(ledPins[i], HIGH);  // turn LED on 

    delay(delTime);  // wait for a quarter second 

    digitalWrite(ledPins[i], LOW); // turn LED off 

    //delay(500); 

  } 

  } 

 

7.3.6 Pilot Run with standard LED’s 

A pilot run was undertaken using an Arduino main board Uno [132] (open source 

interface, available in the market) and standard LED’s. The main advantage of an Arduino 

main board is that it can be connected using wires without soldering.  The initial objective 

was to check the power circuit board and Arduino programme. The LED’s and 

connections from the power board and Arduino main board were placed on a breadboard. 

The Arduino main board was connected to a computer using a mini USB cable (Figure 

7.15). The Arduino programme was uploaded to the Arduino main board and checked. 

The programme was changed, uploaded and checked until a satisfactory of blinking effect 

was obtained. This procedure was repeated for the second programme.   
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                       FIGURE 7. 15: A PICTURE OF PILOT RUN ON BREADBOARD  

 

7.3.7 Pilot Run with Illuminated Fabric Piece  

The above circuit was connected to the illuminated fabric for testing (Figure 7.16).  

 

                   FIGURE 7. 16: A PICTURE OF PILOT RUN ON ILLUMINATED FABRIC 

 

7.3.8 Finishing the Car Seat Edge   

It was necessary to remove excess polyester yarns whilst copper wires of e-yarns were 

remaining for interconnection. Thirteen copper wires connected to one arrow were 

twisted together and soldered individually to a tubular, warp-knitted yarn which contained 

six, coated-copper wires inside. Both edges of the fabric were finished by hand sewing 

(Figure 7.17).  Then this piece of fabric was sewn to two pieces of fabric and finished the 

edges as shown Figure 7.18.     

LED’s  
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               FIGURE 7. 17: THE ILLUMINATED FABRIC WHILST FINISHING THE EDGES  

 

7.3.9 Pilot Run with Illuminated Car Seat and Packing the Circuit Boards  

The final pilot run was carried out with the illuminated fabric using the Arduino main 

board (Figure 7.21). After that, all the wires were disconnected from the breadboard and 

Arduino main board. The connections were soldered to Arduino pro mini boards which 

were equal to the main board but much smaller. Finally, the circuit boards were inserted 

into a box and attached to a switch and to the circuit board.  

 

 

      FIGURE 7. 18: THE FINAL PILOT RUN WITH ILLUMINATED CAR SEAT COVER   
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The illuminated car seat was exhibited (Figure 7.19) at the Advanced Engineering 

Exhibition, Birmingham between the 12 and 13 November 2013 [133]. The Advanced 

Engineering UK 2013 group of events was comprised in Aero Engineering Show 2013, 

Composites Engineering Show 2013, Automotive Engineering Show 2013, Auto 

Electronics 2013 & Printable Electronics for Industry. It was 2-day attendance of 12,000, 

representing some 5000+ companies, 600+ exhibiting supply chain companies and 200+ 

Presentations 

 

 

FIGURE 7. 19. THE AUTHOR AT THE AUTOMOTIVE ENGINEERING SHOW IN 

BIRMINGHAM  
 

7.4 Illuminated Garment 

“The high performance area of textiles contributes £1.2 billion to the UK’s economy each 

year and employs more than 20,000 people. Future Textiles looked at how this industry 

is supported: by inspiring young people at school; by university courses that focus 

students on the latest technologies” [135]. An exhibition called ‘Future Textiles 

Exhibition at the Palace of Westminster (UK Parliament) on 10th to Friday 14th 

December 2012 [134, 135]. There were eight exhibitors and Advanced Textiles Research 

Group of Nottingham Trent University was one of them. A prototype demonstrator 

garment was designed and produced to show case the e-yarn technology to stake holders, 

and the manufacturing process is described in this section.   
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                                      FIGURE 7. 20: THE ILLUMINATED GARMENT 

 

7.4.1 Design of LED’s Position in the Fabric  

It was decided to integrate fifty LED’s into the garment, and the LED positions are shown 

in Figure 7.21 which was designed by a MA Student (Anna Piper) of the School of Art 

and Design at Nottingham Trent University. There were ten LED’s in each row and the 

design consisted altogether of five rows.  

     

 

     FIGURE 7. 21. LED’S POSITIONS IN THE ILLUMINATED GARMENT FABRIC   

 

7.4.2 Fabrication of E-Yarn with LED’s 

According to the design illustrated in Figure 7.21, five e-yarns with ten green LED’s (0402 

type, RS components part number: 4663611, Annex: 5) were produced.  Ten LED’s were 

soldered on to seven-strand copper wire using solder paste (lead free version, type VI from 

EFD Ltd).  Five, different core yarn of LED’s was formed, i.e. a total of 50 LED’s were 

soldered without any issues. The LED’s in the core yarns were soldered according to the 

design in Figure 7.21, in which the LED’s were placed at uneven distances apart in order 

to break the even nature of illumination across the design. The design was printed onto an 

A4 sheet and the distances between each LED were directly copied to the core yarn during 

soldering of the LED’s, rather than measuring each and every distances between LED’s. 
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As the next step, micro pods were created to protect the LED’s using Dymax 9001-3.5 UV 

curable resin.  However, prior to encapsulation of the LED’s the interconnects (multi strand 

copper wire) were twisted on to two 176dTex/45 white, textured polyester yarns. The above 

procedure, which was explained in 5.4 (pages 114 to 115) was adopted to build the core 

yarn.  This was then covered with the tubular, warp-knitted structure using the RIUS MC 

machine to form the e-yarns as explained in section 7.3.2 and the yarns were labelled 

according to the design.  

 

The e-yarns with LED’s were checked before being woven into the fabric. Figure 7.22 

shows the five e-yarns when activated.  

 

 

                                 FIGURE 7. 22 : ILLUMINATED E – YARNS 

 

7.4.3 Weaving the Illuminated Garment 

The illuminated garment was woven on a handloom as a seamless tube construction [136].  

During the weaving process the e-yarns were introduced as the weft at positions defined 

by the design. 
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7.4.4 Electronics and Power Circuit Board and Design 

On each e–yarn there were ten LED’s connected in series.  According to the technical 

data sheet for the green LED’s [Annex 5], a DC voltage of between 2.1 and 2.5 Volts has 

to be supplied to activate one LED, so 21 – 25V was required to activate all the LED’s in 

one e-yarn. In order to create a visually attractive lighting pattern the individual electronic 

yarns were controlled from a LilyPad Arduino microcontroller (Figure 7.25). According 

to the technical specification, a LilyPad micro controller can provide an output between 

2.7 to 5.5 V [Annex 19]. However, as at least 21V is required to power the LED’s. 

Additional hardware was developed to boost the 5.5V output of the LilyPad circuit 

(Figure 7.26).  

 

 

      

 

 

 

 

 

 

             FIGURE 7. 25: IMAGE OF LILYPAD ARDUINO MICROCONTROLLER 

  

 

 

 

 

FIGURE 7. 23: THE GARMENT 

JUST AFTER REMOVAL FROM 

WEAVING LOOM 

Microcontroller  
Inputs and outputs  

FIGURE 7. 24: THE WEAVING OF THE GARMENT 

BY ANNA PIPER  
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          FIGURE 7. 26: ELECTRIC POWER MANAGEMENT CIRCUIT BOARD 

 

7.4.5 Arduino Software Programming  

A software programme was developed with three blinking patterns: a sequence pattern 

(each LED row switching on and off from bottom to top) repeated three times; a blink 

pattern (all the LED’s switching on and off) lasting60 seconds; and a fade pattern (starting 

from zero, up to the maximum intensity of the LED’s) lasting for 60 seconds. These three 

patterns were continuously repeated.  The software programme as developed is given 

below. 

 

// The Lilypad 328 has PWM on pins 5,6,9,10,11 

/* Pin Definitions */ 

// LED’s: white LED’s are connected to 5, 6, A2, A3, A4 

int ledPins[] = {5, 6, A2, A4, A3, 9, 10, 11}; 

void setup() 

{ 

    for(int i=0; i<12; i++)  //Set all LED pins to outputs 

  { 

    pinMode(ledPins[i], OUTPUT);  //Set pin as output 

    if(i>4) 

    { 

      digitalWrite(ledPins[i], HIGH);  //If RGB LED then make pin high to turn OFF 

    } 

  } 

  } 

 void loop() 

{ 

  int q=1; 

  while(q<2){ 

   

// Sequence all LED’s  

    for(int i=0; i<8; i++)  // This for loop will run 5 times 

  {  // blink the white LED’s (first 5 LED’s in ledPins array) 

    pinMode(ledPins[i], OUTPUT);  // set pin as output 

    digitalWrite(ledPins[i], HIGH);  // turn LED on 

    delay(250);  // wait for a quarter second 

Resistors   

Transistors   
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    digitalWrite(ledPins[i], LOW); // turn LED off 

  } 

  for(int i=0;i<8;i++)  // This for loop will run 3 times 

  {   // blink the RGB LED’s (last 3 LED’s in ledPins array) 

    pinMode(ledPins[i], OUTPUT);   // set the pin as an output  

    digitalWrite(ledPins[i], LOW);  // turn RGB LED on 

    delay(250);  // wait a quarter second 

    digitalWrite(ledPins[i], HIGH);  // turn the RGB LED off 

    // Note that a HIGH turns the RGB LED off, LOW is on 

    // that's backwards from the white LED’s 

  }      

// Blink LED’s for 60 seconds     

  for(int j=0; j<30; j++)  // LED’s ON for 1 second, OFF for 1 second * 30 for minute 

  { 

    for(int i=0; i<8; i++) 

    { 

     if(i>4) 

      { 

       digitalWrite(ledPins[i], LOW);  // If RGB LED pin then set pin low to light 

      } 

      else 

      { 

       digitalWrite(ledPins[i], HIGH);  // High for normal LED  

      } 

    } 

    delay(100);  // Wait for 1 second 

    for(int i=0; i<8; i++) 

    { 

     if(i>4) 

      { 

       digitalWrite(ledPins[i], HIGH);  // If RGB LED pin then set pin high for off 

      } 

      else 

      { 

       digitalWrite(ledPins[i], LOW);  // Low for normal LED  

      } 

    } 

    delay(100);  // Wait for 1 second 

  } 

// Fade LED’s for 60 seconds 

  for(int j=0; j<2; j++) 

  { 

    for(int i=0; i<251; i++)  // i = LED brightness 

    {       

      analogWrite(5, i); 

      analogWrite(6, i); 

      analogWrite(9, i); 

      analogWrite(10, i); 

      analogWrite(11, i); 

      delay(10);  // Delay for 1mS 

    } 

      for(int i=250; i=0; i--)  // i = LED brightness 
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    { 

      analogWrite(5, i); 

      analogWrite(6, i); 

      analogWrite(9, i); 

      analogWrite(10, i); 

      analogWrite(11, i); 

      delay(10);  // Delay for 1mS 

    } 

  } 

  q=1; 

  } 

} 

 

7.4.6 Pilot Run with LilyPad Development Board and Illuminated Garment  

A LilyPad development board [137] (Figure 7.27) which has a built in LiyPad controller 

and LED’s was used to develop and test the software programme. It was easy to upload 

the Arduino programme from a personal computer (PC) and software was written to 

create blinking patterns with LED’s.  Once the new software had been tested and 

optimised, it was tested with the illuminated garment (Figure 7.28) before finishing off 

the connections to the e-yarns at the edges of the garment.  

 

              

 

 

 

                              

 

7..4.7 Finishing of the Illuminated Garment and Connectivity of e-Yarns.   

All the excess yarns were removed. The ends of the multi-strand copper wires in the e-

yarns were soldered and connected to metal press-studs (female). The fabric edges at the 

arm holes were folded and hand stitched to give a neat finish. The LilyPad circuit board 

and the power board (which contained hardware designed to boost the output voltage of 

the LilyPad controller) were connected together and inserted into a box. The output 

Excess yarn 

FIGURE 7. 28: A PICTURE TAKEN DURING 

THE PILOT RUN ON THE ILLUMINATED 

GARMENT 

FIGURE 7. 27: LILYPAD DEVELOPMEN 

BOARD 
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connections from the power board were connected to metal press-studs (male) on a 

rectangular woven fabric piece of 15x10 cm, which was then folded to form a fabric 

connector as shown in Figure 7.29. In order to demonstrate the illuminated garment for 

longer periods, especially at exhibitions the hardware was designed to be powered from 

a twenty-four Volt power pack.     

 

            

 

 

 

7.5 Development of Temperature-Sensor Yarns and Fabrics 

7.5.1 E-Yarns for Temperature Sensing 

The aim of this development was produce a temperature-sensing e-yarn by using 

thermistors.  A thermistor is a temperature-sensitive resistor. There are two type of 

thermistors. Negative temperature coefficient (NTC) thermistors decrease in resistance 

when the temperature increases. In contrast, positive temperature coefficient (PTC) 

thermistors increase in resistance when the temperature increases [138]. A SMD type 

thermistor from Murata Corporation (10kΩ 100mW 0402 NTC Thermistor 1.0 x 0.5 x 

0.5mm) was used [139] in this development; the technical data is given in Annex 7. 

According to the manufacturer’s data, at 250C the thermistor had a resistance of 10kΩ. 

The manufacturing process of e-yarn with thermistors (Soldering, encapsulation and 

braiding) was undertaken using the method reported in Section 7.4. Both ends of the 

multi-strand copper wire of the thermistor e-yarn were connected to a multi-meter (Figure 

7.31) in order to demonstrate the change in resistance at different temperatures. For 

example, on touching the e-yarn where the thermistor is located, the resistance reading 

changed immediately.     

   

FIGURE 7. 29: THE FABRIC CONNECTOR, 

WHICH WAS DEVELOPED TO CONNECT 

CONTROL HARDWARE TO THE GARMENT 

FIGURE 7. 30: THE FINISHED, 

ILLUMINATED GARMENT 
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       FIGURE 7. 31: A PROTOTYPE THERMISTOR E - YARN  

 

7.5.2 Development of a Fabric to Measure Temperature 

Several thermistor e-yarns were integrated into a knitted fabric to develop a prototype 

demonstrator for sensing temperature. Five thermistor e-yarns were produced following 

the procedure explained in the previous section (7.5.1). A rib-knitted fabric of 25x20 cm 

was produced from 167dTex/47 PE yarn. The fabric was knitted with 2 mm wide channels 

so that thermistor e-yarns could be inserted into them. The knitted fabric containing 

thermistor e-yarn is shown in Figure 7.32.  Red colour threads were tagged on to the fabric 

surface in order to indicate the thermistor locations in the temperature-sensor fabric.   

 

 

                          FIGURE 7. 32:  PICTURE OF THE TEMPERATURE-SENSOR FABRIC MAT 

Thermistor e-yarn 

 

Red marker thread  

 

 

Press stud connectors 

 

 

Knitted channel of 

diameter d mm 
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7.5.2.1 Hardware Development  

One end of each thermistor e-yarn was connected together and soldered to a metal, female 

press-stud and the other 5 ends were soldered to 5 metal female press studs. Six male 

metal press studs were mounted on to a woven fabric of 15x10 cm, and these were 

soldered to the relevant terminals of the circuit shown in Figure 7.33.  A potential-divider 

circuit was used to determine the resistance of the thermistors, and the relevant voltages 

were measured with an Ardiuno pro mini micro controller unit [Annex: 20]. The fabric 

edges were folded and covered with Silicone rubber (Figure 7.35) 

 

 

       FIGURE 7. 33: ELECTRONIC CIRCUIT DIAGRAM (SCHEMATIC)  

 

Thermistors: T1, T2, T3, T4, T5    

10KΩ Resistors: R1, R2, R3, R4, R5 

Metal press studs: S1, S2, S3, S4, S5 
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 FIGURE 7. 35: PICTURE OF THE CIRCUIT BOARD WHICH IS COVERED WITH 

SILICONE RUBBER  

 

 

 

 

USB connector      

 

Resistors      

 

 

 

Arduino board      

 

 

 

Press studs with 

solder tags       

 

Piece of fabric 

 

FIGURE 7. 34: PICTURE OF THE ELECTRONIC 

CIRCUIT BOARD 
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7.5.2.2 Development of hardware to measure temperature with temperature sensor 

fabric  

LabVIEW software was developed to demonstrate the temperature sensing fabric mat. 

This is shown below in Figure 7.36 and 7.37. 

 

                                  FIGURE 7. 36: LABVIEW BLOCK DIAGRAM  

 

 

FIGURE 7. 37: LABVIEW GRAPHICAL USER INTERFACE DEVELOPED TO SHOW THE 

MEASURED TEMPERATURES 
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7.5.2.3 A Pilot Run  

The connector with the electronic circuit was connected to the temperature sensing mat, 

and was also connected to the computer using an USB cable.  The LabVIEW interface 

was set-up in run mode.  A hand was placed on the mat and the temperature readings were 

noted. The colour image of the hand on the hand screen changed from blue to red when 

the temperature exceeded 30 0C.  In Figure 7.38 the spot on the little finger in the image 

is a blue colour, as the little finger of the hand was not touching the thermistor e-yarn of 

the temperature sensing mat. When all the fingers were touching the thermistor e-yarns 

of the temperature sensor fabric mat, all fingers in the image on the computer screen 

changed to a red colour as shown as Figure 7.39.      

 

 

FIGURE 7. 38: DEMONSTRATION OF THE RESPONSE OF TEMPERATURE WHEN FOUR 

FINGERS OF THE AUTHOR’S HAND ARE IN CONTACT WITH THE TEMPERATURE-

SENSOR FABRIC MAT 

Red Colour thread  

Hand picture  
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FIGURE 7. 39: DEMONSTRATION OF THE RESPONSE  WHEN ALL FIVE FINGERS OF 

THE AUTHOR’S HAND ARE IN CONTACT WITH THE TEMPERATURE-SENSOR FABRIC 

MAT 

 

7.5.3 Development of Temperature Sensor Socks 

As shown in Figure 7.40, a pair of thermistor socks were developed to measure foot 

temperature for the management of non-freezing cold injury and diabetic foot ulcers. The 

ultimate aim of the medical community is to identify the symptoms and manage feet 

damage.  

 

 

FIGURE 7. 40: A PAIR OF THERMISTOR SOCKS 

Female metal studs connected 

with thermistor yarns 

Ends of thermistor yarns prior 

to connect with metal studs  

Marked dots where sensors are located 
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Ten thermistor yarns were produced following procedure as described in the section 7.5.2. 

The seamless garment socks were knitted on Shima Seiki flate bed knitting machine 

(model: SWG, needle Gauge: 15, needle hook gauge: 15). Seven ends of texturized 

polyester 167dTex/48 yarns (white colour) a Lycra yarn were used for knitting the pair 

of sock. The sole part of the socks was knitted with five channels (2mm wide tube) of 2 

needles and six channels (3mm wide tube) of three needles, so that thermistor e-yarns 

could be inserted into them. Knitting technical specs are shown in Figures 7.41 and 7.42. 

Five thermistor yarns were serted into sole part of each sock. The thermistor yarns were 

conneted to metal studs as explained as section 7.5.2.1.  A detail analysis of improvement, 

washing trials and clinical trials could not be carried out within the framework of this 

PhD research programme.   

 

 

                        FIGURE 7. 41: TECHNICAL SPEC OF KNITTING MACHINE  

 

 

        FIGURE 7. 42: SIMULARSION OF KNITTED FABRIC STRUCTURE OF SOCK 
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7.6 Development of e-Yarns with Electronic Signatures 

Radio frequency identification (RFID) is a technology which uses microwaves or ultra-

high frequency (UHF) electromagnetic signals within the radio spectrum to identify and 

track objects wirelessly [140]. Even though RFID technology is 50 years old, recently it 

has moved from obscurity into common use to handle or monitoring of manufacturing 

processes through to the end use of products and materials efficiently. RFID technology 

is able to identify objects at a distance for large numbers of products within a few seconds. 

In the case of bar codes, which are a widely-used and established technology for 

identifying products and objects today, it is necessary to position a bar code scanner in a 

line of sight at close distance [141]. Examples of a barcode and an RFID tag are shown 

in Figures 7.43 and 7.44.       

    

                                

 

 

 

 

7.6.1 RFID Technology  

An RFID tag contains a semiconductor chip to store memory and an antenna to receive 

and transmit radio waves (Figure 7.44). The current RFIDs can be categorised into three 

groups, as active, passive and semi-passive. Batteries are used to power the chip in order 

to transmit signals to the reader in active RFID tags, whilst passive tags do not use a 

battery. The antenna of passive tags receive the electromagnetic waves sent out by a 

reader and energise the chip, so that a predetermined interference pattern is created by the 

chip depending on the information stored in its memory.  This interference pattern is 

received by the reader to identify the chip. The battery power and wave sent out by the 

reader are both used in semi-passive tags to transmit data to the reader. Active and semi-

passive tags are comparatively expensive and are used in high-value goods, and can be 

read from longer distances than passive RFID tags [143].  

 

          FIGURE 7. 45: SCHEMATIC DEMONSTRATING RFID TECHNOLOGY (144) 

 

7.6.2 Creation of antenna for the RFID device 

Commercial RFID tags are made by printing an antenna onto a substrate, which could 

either be thin paper or plastic films, mounting the semiconductor chip onto the substrate 

and then connecting the antenna to the chip.  An example is given in Figure 7.46.  

FIGURE 7. 44: AN EXAMPLE OF A 

BAR CODE [142]                                                                                     
FIGURE 7. 43: AN EXAMPLE OF AN 

RFID TAG [141]  
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However, such a design cannot be used to create e-yarn.  In order to create e-yarn, seven-

strand copper wire (total diameter: 100µm) was soldered to the solder pads of an SMD 

type RFID chip SL3S1013FTB0 from NXP. The RFID chip was a six-terminal package 

die (1x1.45x0.5 mm), and by using the soldering technique which was described section 

4.3.6 (pages 88 to 89) the seven-strand copper wire was soldered onto the solder pads to 

create the antenna as shown in Figure 7.46.  A microscopic image of the soldered chip is 

shown Figure 7.47.  In the final e-yarn the soldered copper wire would rest inside the yarn 

and perform as a dipole antenna. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 7. 46: SMD CHIP AND COPPER WIRE SET UP FOR REFLOW SOLDERING 

    

 

 

RFID Chip 

 

IR Beam 

 

Black, adhesive  

tape 

 

Copper wire 

 

6-terminal (solder pads)  

 

Work holder of 

PDR system 
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FIGURE 7. 47: A MICROSCOPIC IMAGE OF AN RFID CHIP WITH SOLDERED, SEVEN-

STRAND COPPER WIRES  
 

The packaged die was encapsulated using the method described in section 5.4 of this thesis 

(pages 114 to 115) to create the core yarn for forming the final RFID e-yarn, shown in 

Figure 7.48.  

 

 

 

FIGURE 7. 48: THE CORE YARN CONTAINING RFID PACKAGED DIE, SOLDERED 

SEVEN-STRAND COPPER WIRE, TWO 167DTEX/47 PE YARNS AND MICRO PODS. 

 

The core yarn was then processed further in the RIUS small-diameter warp knitting 

machine using six needles to create the RFID e-yarns.  The formation of the warp-knitted 

sleeve using six 167dTex/47 PE yarns was as explained in section 5.4 of the thesis (pages 

114 to 115).  The performance of the RFID e-yarn was tested using an RFID reader from 

Technology solutions UK Ltd, an 1128-UHF_bluetooth_reader and the iPhone app 

provided by the manufacturer, as shown in Figure 7.49. 

 

Encapsulated 

RFID Chip 

Core yarn 
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FIGURE 7. 49: TESTING OF RFID E-YARN USING AN RFID READER AND IPHONE 

APP 

7.6.3 Optimisation of Read Distance   

It was necessary to tune the length of the dipole antenna of the RFID e-yarns to the 

communication frequency of the RFID chip and the reader to achieve the maximum read 

distance. One metre of seven-strand copper wire was soldered to the RFP and RFN solder 

pads of the RFID chip and the reading distance was measured. The test was continued by 

cutting the dipole length (copper length) and again measuring reading distance. The 

results are shown in Table 7.1. The optimum shorted length of antenna was 10cm.  

 

No 

Antenna  Length on each side of 

RFID chip (cm) 

Reading Distance (Reader to 

RFID Tag) (cm) 

1 100  160  

2 75  160  

3 50  130  

4 25  400  

5 15  100  

6 10  400  

7 5  100  

                         TABLE 7. 1: EFFECT OF DIPOLE LENGTH ON READ LENGTH 

 

7.6.4 Integration of RFID e-Yarn with Garments   

Four RIFD e- yarns with 10cm-long dipole antennae were integrated into the seams of a 

shirt, two T-shirts and one army uniform (Figure 7.50) and the read distance was 
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measured: in each case the read length was 4 meters. As the RFID e-yarns were very 

small and flexible, it was very easy to insert these into the seams of the garments.       

 

 

           FIGURE 7. 50: RFID E-YARN AND RFID E-YARN-INTEGRATED GARMENTS 

7.6.5 Washing of RFID e-Yarn Integrated Garment   

A T-shirt was washed on a domestic washing machine (Bosch, Logixx 8), at 30⁰C, spin 

speed 800 rpm and washing cycle duration 47 minutes (machine original settings for sport 

wear). The read distance was determined before washing and after washing (Figure 7.51). 

The T-shirt was subjected to nine wash cycles and the results are shown in Table 7.2.      

           

 

                   FIGURE 7. 51: TEST PROCEDURE FOR MEASURING READ DISTANCE 
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Number of wash and drying 

cycles 
Reading Distance (m) 

0 4.00  

1  4.50 

2  4.55 

3  4.55 

4  4.55 

5  4.55 

6  4.55 

7   4.55 

8   4.55 

9   4.55 

TABLE 7.2: TEST RESULTS OF READ DISTANCE AFTER WASHING AND TUMBLE 

DRYING  

 

7.6.6 Results Discussion  

The total length of the RFID e-yarn was 20 cm. It was the finest, smallest flexible RFID 

tag according to a literature survey and feedback from experts [145, 146, 147, 148, 149]. 

The RFID e-yarn could easily be integrated into three different types of garments and it 

was almost impossible to detect. Performance was retained after washing and tumble 

drying, in fact the read length increased by 55 cm after the first wash.  This may be due 

to the washing away of lubricants and chemicals that are used in textile and garment 

manufacturing processes.  A detailed analysis of this behaviour (improvement) of read 

length could not be carried out within the framework of this PhD research programme.  

Recently one of the T-Shirts integrated with an RFID yarn was tested for its performance 

by a company which is one of the leading RFID-tag manufacturers, RFID e-yarn 

performed to the company’s satisfaction. Due to confidentiality agreements between the 

company and the University, the details of their investigation cannot be included in this 

thesis.     

 

7.7 Other Prototype Demonstrators with e-Textiles 

Additional prototype demonstrators which were produced using electronic yarns are as 

shown in Figures 7.52 to 7.53.   

 



Chapter 07                                                                 Development of Prototype Demonstrators with e-Yarn 

144 
 

 

       FIGURE 7. 52: A PROTOTYPE ILLUMINATED SUN VISOR FOR FUTURE CARS 

 

 

 

               FIGURE 7. 53: PROFESSOR TILAK DIAS HOLDING MAGNETIC YARN 
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                     FIGURE 7. 54: A PICTURE OF A VIBRATION-SENSING GLOVE 
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                 FIGURE 7. 55: AN ILLUMINATED YARN-INTEGRATED BLANKET 

 

 

    FIGURE 7. 56: ILLUMINATED YARN INTEGRATED INTO A COMPOSITE LAMINATE  
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7.8 Conclusion  

Integrating micro-scale semiconductor chips into yarn is a new concept which has been 

pioneered at Nottingham Trent University [67, 68]. However, without prototype 

demonstrators with e-yarns, it is difficult to demonstrate the impact that this technology 

could make on society. The research reported in this thesis has provided a platform in 

order to receive funding from the British Government and Industry to advance the 

technology to a higher Technology Readiness Level (TRL 6).  
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CHAPTER EIGHT    

8.0 Conclusion and Future Work  

8.1 Thesis Summary 

The research work described in this thesis started with a literature survey that proved that 

micro-scale semiconductor chips have not been integrated into yarns. Therefore, it was 

necessary to start this work from scratch. The first task was to choose suitable materials: 

SMD type semiconductor chips were selected as there are no pins or legs that could 

interfere with the final appearance and dimensions of e-yarn; multi-strand copper wires 

were selected as conductive yarns as these are solderable and have other benefits 

compared to other metal wires: copper is cheaper, more malleable and more ductile than 

silver and gold. Therefore, copper is easier to mould into different shapes and can be put 

under stress without damage.  However, the resistance of copper could change due to 

oxidisation. Therefore, it is necessary to use enamel-coated copper wire. Lead-free solder 

paste was selected as it can be applied precisely at micro-litre scales. On the other hand, 

due to European legislation, it is a legal requirement to use lead-free versions of solder 

paste. UV-curable resin was selected for encapsulation of solder joints and semiconductor 

chips. The results showed that the optimum spot curing time was 5 seconds and the 

optimum distance from the UV light to the resin was 1 cm.  

It was a challenging task to find a suitable method for creating interconnections. A hand 

soldering technique was used, to identify the best method of handling the microelectronic 

components and fine copper wires using suitable raw materials and equipment. Then later, 

a PDR rework system was employed as it had significant benefits compared with manual 

soldering. After several experiments (which are described in chapter 4), a rapid heating 

profile was developed to optimise the mechanical and electrical properties of the soldered 

joints. A novel concept of a contactless technique was developed to remove the polyester 

coating of copper wire by using flux combined with the IR beam of the PDR reflow 

workstation.  

A UV-curing technique was used in this research work. A number of methods were tested 

for application of resin to the electronic packaged dies which had been soldered with 

multi-strand copper wires. In the first method, a paint brush was used to apply resin, 

however it was not possible to control the amount of resin applied to each packaged die. 

In the second method, resin was applied using a syringe with a long needle. The volume 

of resin could be controlled but the geometry of the resulting micro-pods varied. In the 

third method, the packaged die was located within a Teflon tube and resin was then 
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applied and cured. This encapsulation method was more successful than the others as it 

created geometrically-uniform micro-pods for each electronic, packaged die.   

A small diameter circular warp knitting technique was used to produce the final e-yarn. It 

was shown that the technique was suitable for manufacturing e-yarns. After several 

experiments (which are described in chapter 6), an e-yarn with an even appearance was 

produced. E-yarns integrating prototypes of e-textiles (an illuminated garment, an 

illuminated car seat, RFID garments, a temperature sensor fabric mat and socks) were 

produced as part of this PhD research and exhibited at various events as demonstrated in 

the other academic activities (page xix) and chapter 7.   

 

8.2 Conclusion   

General textiles have a history covering thousands of years. However, the electronic 

textiles (e-textiles) industry is still at a young stage. The first generation of e-textiles was 

developed by adding electronic devices such as mobile phones and MP3 players into 

pockets (For example the ICD+ jacket in 2000). There were many practical issues with 

these garments which were heavy and bulky, not washable, and inflexible. Second 

generation e-textiles incorporated conductive threads into the fabric or were made by 

attaching PCB’s to fabrics or garments. There were still similar issues as in the first 

generation. Therefore, integrating functionality into flexible fibre form is thus the next 

logical evolution in wearable electronics which has been developed in this research work. 

Such electronically functional yarns (e-yarns) will be the building blocks of the next 

generation of wearable electronics. Moreover, this will facilitate solutions to overcome 

current problems and difficulties which the manufacturers of wearable textiles are 

experiencing and open the doors for designers to develop the next generation of truly-

wearable computers which are comfortable, flexible and washable. The e-yarns could be 

used in medical applications such as monitoring of ECG, respiratory patterns, blood 

pressure and skin temperature, in industries such as automotive, retail, manufacturing, 

military, the internet of soft things, consumer products, sports, fashion and entertainment.     

 

Researchers from universities and companies all over the world have been working on e-

textiles during the last decade and the field of e-textiles has a rapid growth rate. This 

research has developed a new generation e-textiles as is described in this thesis. The main 

objective of the research was to develop the platform technology to integrate 

semiconductor packaged dice within the fibres of yarns, in order to craft novel 

electronically active yarn (EAY). The core technology was developed and a patent was 
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filed (Patent no: PCT/GB2015/052553). Moreover, the work drew significant attention 

and great interest from government bodies, industries, Universities and research centres 

as a result of exhibiting e-textiles at various events. Subsequent, successful development 

of the technology led to receipt of EPSRC funds (2.8 million pounds) for further 

development of e-yarns by creation of multi-functional, complex connections, and 

scaling-up of manufacturing processes of e-yarn through development of fully-automated 

systems [150].      

 

8.3 Contribution to Knowledge  

 Critical analysis of literature review on wearable technologies.  

 Selection of suitable raw materials to create robust e-yarns by conducting 

physical and chemical scientific tests. 

 Generation of a technique for creation of interconnections between 

semiconductors and copper filaments. 

 Creation of a suitable encapsulation method for e-yarns. 

 Introduction of braiding techniques for e-yarn formation in order to produce e-

yarn that is even and strong. 

 Production of prototypes of e-yarns using LEDs, Thermistors, RFIDs and 

vibration sensors. 

 Production of prototype e-textiles; illuminated garment, illuminated car seat 

cover, temperature monitoring mat, RFID integrated garments, temperature 

monitoring socks.    
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8.4 Future Work  

The manufacturing processes of electronic yarns were demonstrated in chapters 3 to 6. 

These process were carried out manually. Therefore, it was a very time-consuming 

process. As this was a novel platform technology, no machinery to carry out the processes 

is available commercially. Therefore, it is necessary to develop fully automated e-yarn 

production systems to produce e-yarns on small to medium quantities as the first stage to 

commercialising the technology.  A fully-automated pick and place machine (SMTmax, 

model: QM-1100) was employed after carrying out market research. These machineries 

were designed for interconnection of PCBs in the electronics industry. Therefore, further 

work is necessary to modify the machine. The author proposes the modification illustrated 

in Figure 8.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      FIGURE 8. 1: SCHEMATIC OF PICK AND PLACE MACHINE MODIFICATION 

 

Almost every electronic device requires electrical power to operate its electronic and 

mechanical functions. Devices such as laptops, smart phones and wearable electronics 

use batteries. The battery life will depend on the battery capacity in milliamperes per hour 

(mAh) and device consumption in milliamperes (mA) [178]. Batteries generate extra 

weight to products and limit their practicability. Therefore, it is necessary to carry out 

detailed studies of the limitations imposed by battery life in various applications in future 

research work.        
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During the PhD research, a few prototypes to demonstrate different applications of e-

yarns were produced, as explained in chapter seven. However, it is necessary to carry out 

research for each and every application, requiring individual projects to investigate the 

reliability of e-yarns, further improvements in current practical issues and further 

improvements in performance, for example, clinical trials on medical e-textiles such as 

temperature sensor gloves, socks, moisture sensors and pressure sensor-integrated 

textiles, and further washing trials on e-textiles.     

 

Many SMD packaged dice consist of multiple terminals (solder pads). In this project, the 

focus was limited to only two-terminal interconnections. However, in future 

developments it is necessary to create multi-terminal connections using multi-terminal 

semiconductor devices with electronically-insulated copper filaments as shown in Figure 

8.2. This research work has also been started as an EPSRC-funded project (2015 to 2019).  

 

 

 

 

FIGURE 8. 2: A SCHEMATIC IMAGE OF MULTI-TERMINAL CONNECTIONS OF 

FUTURE E-YARN [151] 
 

As e-yarn is a novel product, there are no test standards for testing e-yarns as for other 

textiles. Therefore, it necessary to develop testing equipment, testing procedures and 

standard for e-yarns.   

It has been noticed that circular yarn guide of the small diameter circular warp knitting 

machine used to produce the final e-yarn is oscillated when the machine is running. 

Therefore, the warp yarns could be damaged or become entangled together. Therefore, 

further study needs to be carried out to optimise the textile characteristics of the e-yarns 

and the limitation of mass production. The author suggested to introduce new guides as 

shown Figure 8.3.    
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        FIGURE 8. 3: SCHEMATIC OF YARN ARRANGEMENT RIUS KNITTING MACHINE   
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