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Abstract Train rescheduling after a perturbation is a chal-
lenging task and is an important concern of the railway
industry as delayed trains can lead to large fines, disgrun-
tled customers and loss of revenue. Sometimes not just
one delay but several unrelated delays can occur in a short
space of time which makes the problem even more chal-
lenging. In addition, the problem is a dynamic one that
changes over time for, as trains are waiting to be resched-
uled at the junction, more timetabled trains will be arriving,
which will change the nature of the problem. The aim of this
research is to investigate the application of several different
ant colony optimization (ACO) algorithms to the problem
of a dynamic train delay scenario with multiple delays. The
algorithms not only resequence the trains at the junction but
also resequence the trains at the stations, which is consid-
ered to be a first step towards expanding the problem to
consider a larger area of the railway network. The results
show that, in this dynamic rescheduling problem, ACO algo-
rithms with a memory cope with dynamic changes better
than an ACO algorithm that uses only pheromone evapora-
tion to remove redundant pheromone trails. In addition, it

Communicated by D. Neagu.

This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) of UK under Grant EP/K001310/1.

B Jayne Eaton
jayne.eaton@email.dmu.ac.uk

Shengxiang Yang
syang@dmu.ac.uk

Michalis Mavrovouniotis
mmavrovouniotis@dmu.ac.uk

1 Centre for Computational Intelligence (CCI), School of
Computer Science and Informatics, De Montfort University,
The Gateway, Leicester LE1 9BH, UK

has been shown that if the ant solutions in memory become
irreparably infeasible it is possible to replace them with elite
immigrants, based on the best-so-far ant, and still obtain a
good performance.
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1 Introduction

The problem of rescheduling trains after a delay is an impor-
tant concern of the railway industry. Although timetables are
designed to ensure that trains run on time andwithout conflict
a delayed train may miss its scheduled time slot at a junction
or a station and may cause knock-on delays to other trains in
the railway network.

The problem is further complicated by the fact that, while
a train controller is trying to minimise the delay at a par-
ticular point in time, more trains will be arriving at the
affected area. These trains may have different priorities to
those already waiting to be rescheduled, which makes the
problem a dynamic one that changes over time. In addition, in
an extremely disrupted situation, more trains may be delayed
during the time period of the disruption, so thatwhile the train
controller is trying to resolve one delay, a different train may
be delayed for a totally unconnected and unrelated reason.

The rescheduling of trains after a perturbation is usu-
ally dealt with by human controllers (Fan et al. 2012), who
often use simple rules such as first come first served (FCFS)
(D’Ariano et al. 2007). Although FCFS may resolve the
immediate problem, it may not be the optimal solution in
terms of minimizing the effect of a train delay in a dynami-
cally changing environment.
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The aimof thiswork is to extend the dynamic junction sim-
ulator for the dynamic railway junction rescheduling problem
(DRJRP), introduced in Eaton and Yang (2014), to include
multiple delays taking place over the period of the simulation.
As ant colony optimization (ACO) gave promising results in
the original single delay simulator, it is proposed to investi-
gate its application in the new multiple delay simulator. In
addition, the algorithms will be adapted to be able to rese-
quence the trains at the stations as well as at the junctions.
This is seen as the first step in extending the algorithms to
address a wider section of the railway network.

Allowing the ants to sequence trains at the stations as well
as at the junction means that the ants must have the power to
change the arrival order of the trains at the junction. This has
implications for the memory repair operation that is needed
to reinitialise population-based ACO (P-ACO) algorithms
after a dynamic change has taken place (see Sect. 4.3). In
effect it makes the repair extremely difficult. For this reason,
it is proposed to investigate replacing the ants in memory
after a dynamic change with random, elite or hybrid immi-
grants. Random immigrants are randomly created solutions;
elite immigrants are based on the best-so-far solution and
hybrid immigrants are a mixture of random and elite immi-
grants. The ACO algorithms with immigrant schemes will be
evaluated against an algorithm that has no built in ability to
cope with dynamic problems, i.e., the Max–Min ant system
(Stützle and Hoos 1997) and a P-ACO algorithm that does
not have the ability to resequence the trains in the stations.

The rest of this paper is organised as follows. Section
2 describes previous work in the area of train scheduling
and rescheduling using evolutionary computation (EC) tech-
niques. Section 3 explains the original DRJRP, the extension
introduced for this research, and the extended simulator
created to model the junction and the station. Section 4
considers ACO algorithms and their previous application to
dynamic scheduling problems while Sect. 5 gives details of
the algorithms used in this research. An experimental study
carried out to investigate the ability of different ACO algo-
rithms to solve the extended DRJRP is described in Sect. 6.
Finally, Sect. 7 concludes this paper with ideas for future
work.

2 Related work

EC techniques are a group of techniques inspired by nature,
which imitate evolution and natural self-organised systems.
They include, amongothers, genetic algorithms (GAs),ACO,
evolutionary strategies and particle swarm optimization.

There has been previous promising work on both train
scheduling and train rescheduling using EC techniques (Fang
et al. 2015). Gorman (1998) combined a tabu search algo-
rithm with a GA to produce an optimised schedule for a

major US freight railroad with the objective of minimizing
operating costs. The schedule produced had a potential cost
saving of 4 % and a reduction in service delay of 6 %. Tor-
mos et al. (2008) addressed the difficult problem of adding
new trains to a train schedule without affecting the exist-
ing trains. Their objective was to minimise the overall delay.
Using a GA, they produced a timetable solution in around
300 s and their system outperformed comparison algorithms
based on random sampling and regret biased based random
sampling (RBRS). The GA created has been embedded into
a computer-aided tool that is being successfully used by the
Spanish manager of railway infrastructure. Qin et al. (2010)
used a differential evolution algorithm to schedule a 185 km
double-track section of the Shenyang–Siping railway corri-
dor, while Abbas-Turki et al. (2011) used a GA to tackle the
problem of scheduling high speed trains on the Thameslink
route in London.

In contrast to train scheduling, which involves creating a
fixed timetable of train times without conflict, rescheduling
is concerned with recovering the railway timetable after a
disruption. There have been some interesting approaches to
solving the problem using EC techniques. Khan et al. (2006)
used a GA to reschedule trains after a delay produced by
randomly varying the departure and arrival times for trains on
a simulated single track railway section. The GA produced a
solution that reduced the train delay at the destination station
from 35 to 12 min.

A number of researchers have looked at the problem of
resequencing trains at a junction after a delay. Ho and Yeung
(2000) encoded a GA to tackle the problem of creating a fea-
sible sequence of train to pass through a junction to minimise
conflict after a train delay. They found that their algorithm
could produce a solution within less than 5 % of the optimal
and with a reduced computation time compared to a solu-
tion produced using dynamic programming. Fan et al. (2012)
also considered the problem of sequencing trains through a
junction after a delay. They applied both a GA and an ACO
algorithm and compared the results to FCFS and a brute
force algorithm. Brute force will always find a solution as it
involves enumerating all possible solutions. They found both
the GA and ACO performed well on the static junction prob-
lem although ACO performed slightly better with a smaller
computation time. Chen et al. (2010) used a modified dif-
ferential evolution GA to tackle the problem of rescheduling
trains after a delay at the St Pancras Midland Road Junction,
which has three routes and two conflict points. The aim was
to reschedule 24 trains in a 1-hour time window. They found
that their algorithm performed significantly better, in terms
of minimising passenger delays, than FCFS on both short
and long delay test scenarios.

The above research shows the potential of EC techniques
for the scheduling and rescheduling of trains. However, in
every case, the problem considered is a static one. In the real
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world, the rescheduling of trains after a perturbation does
not exist in an isolated bubble; while trains are waiting to be
re-scheduled at the junction, more trains could be arriving,
and their arrival will change the nature of the problem over
time.

3 The dynamic railway junction rescheduling
problem

3.1 Description of the problem

The DRJRP under consideration is based on a static bench-
mark scenario created by Fan et al. (2012). It is concerned
with a section of track on the Derby to Birmingham line,
which takes in the North Stafford and Stenson Junctions.
Both the junctions are ‘flat junctions’ in that the merging
railroad tracks require that other trains cross over in front
of opposing trains on the same level. Two trains can pass
through the junction at the same time as long as this does not
cause conflict with any other trains.

Figure 1 shows the junction and delay scenario under
investigation. There are three trains waiting on each of the
four routes into the junction. Train 1 has been delayed by 5
min which means that train 7 has arrived before it on track
A. This scenario is based on the second of Fan et al.’s (2012)
delay scenarios. Figure 2 shows the junction after a dynamic
change. Trains 7 and 8 have passed through the junction, but
more timetabled trains have arrived while the remainder of
the trains are waiting to be rescheduled. Train 13 has arrived
on route Awhile train 14 has arrived on route C. The problem
has changed as there is now a different combination of trains
to sequence through the junction.

Each train has a delay penalty associated with it, which is
the cost in pounds sterling per minute that a train company
has to pay if the train is delayed. This is the same objective
used by Fan et al. (2012). The aim is to find the best order of
trains to pass through the junction that minimises the overall
cost of the delay.

3.2 The extended DRJRP

The original DRJRP has been extended to introduce more
delays to the simulator over time. In the extended version,
trains added at the station during a dynamic change may also
be delayed. This means that instead of dealing with just one
delay at the beginning of the simulation, the algorithm also
has to deal with additional delays that occur over time.

Introducing these delays relies on there being enough
trains arriving at the station to ensure that a train arriving
after its scheduled time slot at a station has an impact on the
problem. For this reason, only the high magnitude dynamic
problem, where eight trains are introduced at each dynamic

Fig. 1 The junction before a dynamic change (taken from Eaton and
Yang 2014)

Fig. 2 The junction after a dynamic change (taken from Eaton and
Yang 2014)

change, is considered in this extended DRJRP problem. It is
only when several trains are arriving at a station within the
same time frame that a station delay can be engineered. In
fact, an investigation into the pattern of arrival of the trains at
each change showed that it is only at station D that sufficient
trains are present at the station within the same time-frame
to allow the introduction of station delays.

Table 1 shows the pattern of trains that arrive at station
D when eight new trains are arriving every 10 min. After 10
min have passed (dynamic change 1), three trains arrive at
station D: trains 14 and 18 arrive at platform 1 and train 16
arrives at platform2.Thefirst delay at this station is simulated
by switching the arrival order of the two trains on the same
platform; trains 18 and 14. A further delay can be introduced
by also switching the arrival order of the two trains arriving
after 40 min has passed (dynamic change 4). This involves
switching trains 42 and 38. Delays after the fourth change
are not introduced because they would not be visible in the
low frequency dynamic scenarios where only four dynamic
changes take place over the period of dynamic change.
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Table 1 Train arrivals at station D

Time passed (min) Platform 1 Platform 2

10 Train 14 Train 16

Train 18

20 Train 26 Train 28

30 Train 30

40 Train 38 Train 40

Train 42

50 Train 50 Train 52

60 Train 54

3.3 The Stenson Junction train simulator

To investigate the effectiveness of the algorithms under con-
sideration, a train simulator was developed to allow the trains
in each ant’s solution to be evaluated. More details about the
simulator can be found in Eaton and Yang (2014).

Table 2 shows the trains used, their routes through the
junction, the penalty for delay and their scheduled arrival
times. The delay penalties are different for each type of train
and are taken from Fan et al. (2012). The timetable was cre-
ated by running all trains, in their numerical order, through
the simulator and recording their arrival times. This gave
a baseline measurement to be able to calculate the delay
of the trains after a perturbation. Each train is one of three
types: Class 150with amaximum running speed of 120 km/h,
Class 200 with a maximum running speed of 200 km/h, or
F2-mixed freight train with a maximum running speed of
110 km/h (Fan et al. 2012). Each type of train is of a dif-
ferent length, the Class 150 train is 80.24 m long, the Class
220 train is 187.4 m long and the F2-freight train is 355 m
long. The length of a train as well as its speed affects how

long the train takes to clear its previous track section. This
in turn determines how quickly the following train can move
into the train’s vacated track.

Dynamism was introduced to the simulator by adding a
specified number of trains (m) at a specified time interval
( f ). The number of trains added represents the magnitude
of change, and the time interval relates to the frequency of
change. The new trains are added by repeating the timetable
shown in Table 2 in blocks of m trains. For example, when
m = 8, at the first dynamic change, trains 1–8 are added to
the simulation; at the second change, trains 9–12 and 1–4 are
added and at the third change trains 5–12 are added to the
simulator. Repeating the pattern in this way means that the
trains are distributed across all the station platforms.

The extra trains can be thought of as an extended timetable
for the train junction and each combination of the magnitude
and frequencyof change is run through the simulator to obtain
the conflict-free timetable. All new trains are placed at the
stations and are not allowed onto the track until the track
section leaving the station is clear. At the point of change,
any trains that are about tomove into, or havemoved into, the
junction are removed by the simulator from the set of trains
that need to be passed to the algorithm.

Table 2 also lists the station platform of each train in the
simulation. Assigning trains to platforms is necessary to be
able to model the trains at the stations as well as at the junc-
tion. This extension to the simulator is explained in more
detail in the next section.

3.4 The extended Stenson Junction train simulator

For this investigation, the simulator was extended to model
the stations that feed into the junction as well as the junction
itself. Each station corresponds to a real-world station on the

Table 2 The scheduled
timetable for each train with
delay penalties (based on Fan
et al. 2012)

Train
number

Train type Route Delay
penalty
(£/min)

Scheduled
arrival

Station
platform

1 Class 150 A–D 20 12:10 1

2 Class 220 D–A 40 12:12 1

3 Freight B–C 10 12:19 1

4 Class 220 D–B 40 12:15 2

5 Freight B–D 10 12:20 2

6 Class 150 D–B 20 12:19 1

7 Freight A–C 10 12:28 2

8 Class 150 C–A 20 12:22 1

9 Class 220 C–A 40 12:27 2

10 Class 220 B–C 40 12:32 3

11 Freight C–B 10 12:39 1

12 Class 150 A–D 20 12:36 3
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Fig. 3 The Stenson Junction modelled with stations

UK Railway Network. Station A is Crewe station; station B
is Birmingham station; station C is Derby station; and station
D is Nottingham station. Crewe and Birmingham are much
larger stations than Derby and Nottingham. Both Crewe and
Birmingham have 12 platforms, Derby has six platforms and
Nottingham has seven platforms (National Rail Enquiries
2015). For this reason, stations A and B have been modelled
with three exit platforms that feed into the junction while
stations C and D have been modelled with only two. Figure
3 shows the stations with their platforms.

Modelling the section of the network in this way allows
the algorithms to reschedule the trains at the stations as well
as at the junction. More details about the approach taken to
allow them to do this can be found in Sect. 5.1.

The following sections describe the algorithms used in
this research and the related background concerning their
previous use in similar dynamic rescheduling problems.

4 ACO for dynamic optimization problems (DOPs)

4.1 Basic ACO algorithm

An ACO algorithm is an optimization algorithm inspired by
the ability of ants to follow pheromone trails laid down by
other ants to discover food (Dorigo and Stützle 2004). As
ants move backwards and forwards from the nest to a food
source, they lay down pheromones on the ground, which
can be sensed by other ants. Ants choosing the shortest
path to the food source will return quicker, which ensures
that the shortest path accumulates more pheromone. Ants
tend to probabilistically choose paths with the strongest
pheromone concentration, which means that a path with
high pheromone levels will attract more ants and accumu-
late even more pheromone. In this way, the shortest path to
a food source is marked by the strongest pheromone trail.
However, if this trail were to persist after the food source

was depleted, it would seriously hamper the ants’ ability to
find food. Therefore, pheromone trails evaporate over time
to allow old decisions to be forgotten.

To apply this principle to an optimization problem, it has
to first be decomposed into a fully connected weighted graph
G = (V, E), where V is a set of vertices or nodes and E is
a set of edges or connections between the nodes. The ants
move along the edges of the graph from node to node record-
ing the nodes visited. This list of visited nodes, sometimes
called the ant’s tour, is one possible solution to the optimiza-
tion problem. Pheromones are deposited on the edges of the
graph by the ants according to how good an ant’s solution
is in terms of the optimization objective. On the next itera-
tion, the updated pheromone levels help to guide the ants to
choose better nodes. Pheromones can be decreased as well as
increased to model the process of evaporation, which allows
previous bad decisions to be forgotten. In addition to the
pheromone, the edges may also be associated with a heuris-
tic value, which is based on problem-specific knowledge and
provides additional guidance to the ants.

4.2 Max–Min ant system (MMAS)

One of themost popular ACO algorithms is theMax–Min ant
system (MMAS) (Stützle and Hoos 1997). In this algorithm,
all of the pheromone trails are initialised to amaximumvalue.
After each iteration, all pheromone trails are evaporated as
in Eq. (1).

τi j ← (1 − ρ)τi j , ∀(i, j) ∈ L , (1)

where L = E is the set of all pheromones and 0 < ρ ≤ 1 is
the pheromone evaporation rate (Dorigo and Stützle 2004),
which is a constant parameter of the algorithm.

After each iteration, the pheromone trails are updated to
correspond to the tour T best of either the best-so-far ant or
the best iteration ant as in Eq. (2).

τi j ← τi j + �τ besti j , ∀(i, j) ∈ T best. (2)

The update value �τ besti j is 1
C , where C is the fitness of the

best ant. In a minimization problem, as the fitness of the
ant improves, the size of the pheromone update increases
correspondingly.

An ant, say ant k, when at node i , chooses the next node
j in its neighbourhood Nk

i , probabilistically as follows:

pki j = [τi j ]α[ηi j ]β
∑

l∈Nk
i
[τil ]α[ηil ]β , if j ∈ Nk

i , (3)

where τi j is the pheromone information and ηi j is the heuris-
tic information, α and β are constants which determine the
relative influence of the pheromone and the heuristic values,
respectively.
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The pheromone trails in MMAS are bounded between a
minimum τmin and amaximum τmax value.The reason for this
is to counteract the increased possibility of stagnation that
may occur as a result of allowing only the best ant to deposit
pheromone. In addition, stagnation is addressed by reinitial-
ising all trails to τmax when the algorithm shows stagnation
behaviour or there has been no change in the best fitness
for a set number of iterations. MMAS is unusual in that all
pheromone trails are initialised to the maximum value, this
together with a small evaporation rate increases the explo-
ration of the search space at the start of the search (Stützle
and Hoos 1997).

The pheromone bounds are given as follows: τmax = 1
C

and τmin = τmax
a , where a is a constant parameter of the

algorithm. Each time a new best ant is found, the values for
τmin and τmax are updated. In a minimization problem, this
means that as the fitness of the best ant, i.e, C , improves the
values for both τmin and τmax increase.

In the version of MMAS used in this investigation, the ant
used to update the pheromones is chosen in a ratio of 10:1 of
the best-so-far ant to the best iteration ant. For ten iterations,
the best-so-far ant is chosen followed by one iteration when
the best-iteration ant is chosen. This was found to give the
best performance in preliminary investigations.

4.3 Population-based ACO (P-ACO)

The above algorithm, however, does not provide any extra
mechanism to allow the ants to adapt to a change in the
environment apart from the evaporation of pheromone trails
which can be slow (Stützle and Hoos 1997). Once the ants
have converged on a solution, the resulting loss in diversity
will make it difficult for them to adapt to a change in the
problem and, in addition, the pheromone trails laid down for
the previous environment may not be relevant to the new
environment.

One option is to restart the algorithm after a change but
such an action is not only computationally wasteful but also
results in the loss of information that has the potential to
be useful in the new environment. To address this problem,
Guntsch and Middendorf (2002) introduced a population-
based ACO (P-ACO) algorithm. In this algorithm, the best
ant found at each iteration is stored in a memory, called the
population-list, and only the ants in this list are used to update
the pheromone levels. When the population-list reaches its
designated limit, an ant is removed and the pheromone trail
for that ant is negatively updated. This provides a mecha-
nism for allowing previous bad decisions to be forgotten.
To prevent the pheromone levels from building up to a level
which means that all ants follow the same path, the amount
of pheromone on each edge is bounded between a minimum
and a maximum value.

This memory of best iteration ants means that solutions
made before the change can be retained to provide valuable
information for the new environment. However, to make the
ants suitable for the new environment, they may have to
undergo a repair operation. Once repaired, the pheromone
information for the new environment can be computed from
the tours of the fittest ants created before the change, thus
ensuring that information from the previous environment
can be passed over into the new environment. Guntsch and
Middendorf (2002) found P-ACO to perform better than
restarting the algorithm when the environment change was
small and frequent and comparable with restart when the
change was large and slow.

P-ACO also differs from MMAS in two other aspects.
First, the ants do not always choose the next node proba-
bilistically using Eq. (3). Instead, they choose the next node
probabilistically with a probability of 1 − q0; otherwise,
they choose the next best node in terms of the pheromone
and heuristic values. Second, in MMAS, the amount of
pheromone laid down by the best ant is proportional to that
ant’s fitness, whereas in P-ACO it is a constant value.

In P-ACO, there are several strategies for removing ants
from thememorywhen it becomes full. In the algorithm used
in this paper, the worst ant is removed from the memory to
make space for a new ant. This approach was found to work
better than removing the oldest ant in a previous application
of P-ACO to this problem (Eaton and Yang 2014).

4.4 ACO for dynamic rescheduling

There has been little work on using ACO for dynamic train
rescheduling problems. As previously mentioned, Fan et al.
(2012) used ACO for the Stenson Junction benchmark prob-
lemwith promising results. However, it was a static problem.

There is a similarity between this DRJRP and a dynamic
travelling salesman problem (DTSP). A static travelling
salesman problem involves finding the shortest route for a
salesman to visit a set of cities; it can be made dynamic
by changing the number of cities (Guntsch and Middendorf
2001; Mavrovouniotis and Yang 2010, 2011a), or by chang-
ing the distances between cities (Mavrovouniotis and Yang
2013) over time. In both the DRJRP under investigation and
the DTSP, the objective is to find the best sequence of nodes
(trains or cities) that minimises an objective.

Several researchers have appliedACO toDTSPs (Guntsch
and Middendorf 2001; Mavrovouniotis and Yang 2010,
2011a, 2013). Here, one issue is that once the ants have con-
vergedon a solution theywill still follow the samepheromone
trails after a dynamic change unless the trails are updated in
some way to take into account the new environment.

Guntsch and Middendorf (2001) tackled this problem by
modifying the pheromone trails after a change, either glob-
ally or locally to the city being removed or added. However,
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the study involved only the insertion or deletion of one city at
a time and they acknowledge that the results may have been
different with multiple insertions or deletions. In addition,
their solution requires knowledge of where the change has
taken place to identify the pheromone trails in the local area.

Mavrovouniotis and Yang (2011a) also applied ACO to
the DTSP, where the dynamic environment was generated by
removing half of the cities from the problem and replacing
existing cities with the removed cities. Again, the number of
cities in the problem does not change overall as the number of
cities removed is the same as the number of cities replaced.
They found that an ACO algorithm, modified with a local
search scheme, performed well on this problem. This previ-
ous work on the DTSP suggests that ACOmay be applicable
to the DRJRP.

4.5 Using immigrants for DOPs

The aimof anECapproach is to converge to an optimumsolu-
tion. However, this is an issue if the problem is a dynamic
one as there may not be enough diversity in the population to
allow the algorithm to adequately explore the search space
after a change in the problem.Tohelp solve this issue,Grefen-
stette (1992) introduced the idea of adding random solutions,
named immigrants, to the population to maintain diversity
and to give the algorithm the flexibility to adapt to a chang-
ing environment.

Grefenstette found that adding random solutions to a
population improved the performance of a GA on DOPs
(Grefenstette 1992). In later work, Yang (2005) found that
basing the immigrants on existing individuals that have been
found to perform well in the new environment efficiently
improved the performance of GAs for DOPs. While basing
the immigrants on the best solution of the current generation
worked well particularly when the changes in the environ-
ment were slow and slight (Yang 2007, 2008).

This idea has been extended to ACO algorithms on the
DTSP where the problem was made dynamic by removing
and adding cities (Mavrovouniotis and Yang 2010). In this
case, at every iteration, a proportion of the worst ants was
replaced with either random or elite immigrants or a hybrid
mix of the two. This removed the need, in thisDTSPproblem,
for the expensive and domain-specific repair of the solutions
in memory that is needed by the P-ACO algorithm after a
change in the environment. The addition of immigrants was
found to significantly improve the performance of the P-ACO
algorithm with the elite immigrants performing significantly
better than random immigrants on slow changing environ-
ments and the random immigrants performing slightly better
than elite immigrants on most fast changing environments.
The hybrid immigrants were found to significantly outper-
form both the random and elite immigrants.

Mavrovouniotis and Yang (2013) also investigated the
addition of immigrants schemes to the DTSP with traffic
factors, where the distances between cities change over time
in either a random or cyclic pattern. Again, the immigrants
were found to provide significant improvement over the algo-
rithms without immigrants schemes.

The above findings suggest that incorporating immigrants
into the ACO algorithms for DOPs is not only possible but
also effective.

5 Proposed P-ACO algorithm for the extended
DRJRP

5.1 Framework of the proposed algorithms

In the original investigation (Eaton and Yang 2014), the
problem was decomposed into a fully connected, partly
one-directional, weighted graph (see Fig. 4) based on that
designed by Van Der Zwaan andMarques (1999) for the job-
shop scheduling problem. Each node in the graph is a train
waiting to be rescheduled at the junction. Each horizontal
line represents one of the routes into the junction; the first
line from the top represents route A; the second route B; the
third route C and the fourth route D. The one-way arrows
along each horizontal axis ensure that the ants cannot sched-
ule trains before other trains that are in front of them on the
same track. The ants move around this graph selecting trains
to make up a tour which gives the order that the trains are to
be scheduled through the junction.

Node 0 represents the start node. At the beginning of each
iteration, all ants are placed on this node. They then make a
choice about which train node to choose next. After selecting
a node, the next train on that train’s track becomes visible to
the ant and is included in its next decision. After all nodes

Fig. 4 The problem before a change modelled by a fully connected,
partly one-directional, weighted graph (Eaton and Yang 2014)
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Fig. 5 The problem after a change modelled by a fully connected,
partly one-directional, weighted graph (Eaton and Yang 2014)

have been selected, the ant’s tour is complete and the ant’s
solution is evaluated by running it through the simulator. In
the case of the P-ACO algorithm, the best ant of the iteration
is stored in memory and the pheromone is positively updated
for that ant’s tour, while in the case of the MMAS algo-
rithm, the best ant is used directly to update the pheromone
matrix.

In this implementation, the ants rely only on the phe-
romone values to guide them while making their choices
and the value of β is set to zero. A computationally effi-
cient and effective problem-specific heuristic is not available.
The natural choice for a heuristic would be the delay caused
by sequencing each train. However, the delay of each train
is dependent on the sequence of trains that went before it
through the junction and is extremely difficult to establish as
it changes for each ant’s tour. An advantage of using only
the pheromone values to guide the ants is that it reduces the
amount of problem-specific knowledge needed to run the
algorithm.

After a change, the graph may shrink or grow depend-
ing on the number of trains added and the number of trains
removed from the problem because they have passed through
the junction and are no longer relevant. Figure 5 shows the
graph after a dynamic change. Train 8 has been removed from
the graph because it has passed through the junction and is
no longer available for resequencing. Trains 14 and 15 have
arrived on route C and have been added to the graph on the
line that corresponds to route C.

However, this graph only allows the ants to resequence
the trains through the junction. It is proposed to also allow
the ants to resequence the trains at the stations in the hope
that this will allow them to resolve the delays introduced at
the stations. This is also seen as a first step in extending the
algorithms to be able to deal with a much larger area of the
railway network.

Fig. 6 Thedirected edge graphs for the junction and associated stations

The stations that feed into the junction have beenmodelled
within the simulator and each train has been allocated to a
platform at the station. The original directed edge graph has
to be updated to reflect this change. Figure 6 shows that the
problem has now been modelled as several linked graphs:
one graph for the junction and one for each station.

Each horizontal line in the station graphs represents a plat-
form at the station. As previously mentioned, stations A and
B, being much larger stations, have been modelled as hav-
ing three platforms while stations C and D have only two
platforms. Once the ant gets to the end of a horizontal line
on the junction section graph, it has access to the graph that
represents the trains at the station. An ant can only choose
trains in the order that they arrive at the platform as denoted
by the one-way arrow. This constraint ensures ants can only
make feasible schedules and removes the possibility of trains
having to pass over other trains waiting before them on the
same platform. As before, the shape of the graphs changes
over time as new trains are added and trains that have passed
through the junction are removed.

In the version of the algorithm that does not sequence the
trains at the stations, denoted non-station sequencing P-ACO
(NSS-PACO), trains arriving at the stations are simply added
onto the back of the graph as shown in Fig. 5.

5.2 Adapting the memory in P-ACO after a change

Once a change has taken place and extra trains have been
added to the simulation, the solutions held in memory are no
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longer applicable to the problem because they contain trains
that have already passed through the junction and they do
not include the extra trains just added. One technique for
resolving this problem is to perform a repair on the solu-
tions in memory to make them applicable to the environment
after a dynamic change. In NSS-PACO, where trains are not
resequenced at the station, this is carried out using the Keep-
Elitist strategyofGuntsch andMiddendorf (2001). It involves
removing nodes that are no longer of relevance to the ants and
adding new nodes where they cause the minimum increase
in the objective function.

In the algorithms where station resequencing is per-
formed, it is extremely difficult to execute this repair opera-
tion because the algorithm can change the arrival order of the
trains at the junction. This means the solutions held in mem-
ory after a change may contain trains with different arrival
orders to the solution used to make the snapshot of the junc-
tion at the point of the dynamic change (see Sect. 5.7). In
effect, the memory now contains infeasible solutions. This
makes it extremely difficult to repair the ants in memory by
just removing the trains that have passed through the junction
and adding in the new trains. The arrival order of the trains in
the solutions also needs to be amended, which would involve
reshuffling the order of all the trains in the solutions. Perform-
ing this reshuffle would require extreme domain knowledge
and would result in solutions so different from the origi-
nal solution that the information they contained would be
lost.

To get around this problem, it is proposed, in the algo-
rithms that are able to schedule the trains at the stations, to
discard all the ants in memory after a change and replace
them with new solutions or immigrants. The immigrants can
be either elite immigrants, based on the best ever ant, random
immigrants, or amixture of elite and random immigrants. The
algorithms that use these schemes are labelled EI-PACO, RI-
PACO and HI-PACO, respectively.

Once the new solutions have been made, the fact that the
graph representing the problem may shrink or grow after
each change means that they still have to be repaired. This is
achieved by implementing the KeepElitist strategy.

Each type of immigrant is described in more detail
below.

5.3 Random immigrants

Random immigrants are made by constructing solutions
where the ants randomly choose the next feasible train node
with no regard for the pheromone trails. This results in an ant
with a feasible solution that does not represent the existing
pheromone trails in anyway. Random immigrants have the
advantage of being able to inject diversity into the popula-
tion but may result in the loss of information.

5.4 Elite immigrants

The elite immigrants are based on the best ant so far. This
makes sense in terms of the operation of the algorithm as at
each change the best solution for that change period is chosen
to run the simulator to provide the snapshot of the state of the
junction to pass to the algorithm. Care must be taken when
the immigrants are constructed. It is not enough to simply
swap around trains in the best ant’s solutions as this would
very quickly result in infeasible solutions where trains would
be scheduled in front of trains that precede them on the track.

Previously, research has created elite immigrants using
the adaptive inver-over operator (Mavrovouniotis and Yang
2010, 2011b). However, this algorithm does not preserve the
order of the trains in the solution and would have a high
probability of creating infeasible solutions.

What is required is a way to generate new solutions from
the best ant while preserving the order of trains on each of
the routes into the junction. In this paper, this was achieved
using a path-preserving local search heuristic to create fea-
sible solutions from the current best solution. The heuristic
used is based on the lpp-3-exchange search procedure used by
Gambardella and Dorigo (2000). The local search algorithm
as applied to this problem is described below.

5.5 Path-preserving local search

To explore all possible feasible combinations that can be
made from a solution, the path-preserving local search
heuristic makes two passes through the solution vector; a
forward pass and a backwards pass.

5.5.1 Forward pass

This part of the search starts at the beginning of the train
sequence and looks for feasible swaps between the first train
and the subsequent trains. To explain, let us consider a fea-
sible train order 〈3, 8, 9, 5, 11, 2, 4, 7, 6, 1, 10, 12〉.

First, we would consider a swap between train 〈3〉 and,
the next train in the sequence, i.e., train 〈8〉. Swapping these
two trains would have no effect on the feasibility of the solu-
tion because they are on different routes into the junction
(see Fig. 1). It would result in the feasible train sequence
〈8, 3, 9, 5, 11, 2, 4, 7, 6, 1, 10, 12〉. No train in this sequence
arrives before any other train on the same route and therefore
this solution would make a feasible elite immigrant.

We then consider a swap between train 〈3〉 and trains
〈8, 9〉 in the original train sequence. This would involve
swapping train 〈3〉 with trains 〈8, 9〉 to give the solution
〈8, 9, 3, 5, 11, 2, 4, 7, 6, 1, 10, 12〉. Again, this is a feasible
sequence as even though 8 and 9 are both on route C into
the junction, their order is preserved and so the solution is
feasible. In addition, trains 8 and 9 are on route C, whereas
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train 3 is on route B, which means that placing trains 8 and
9 before train 3 does not produce a situation where one train
would have to pass through another on the same route to get
to the junction.

The next step is to consider a swap between train
〈3〉 and trains 〈8, 9, 5〉. However, this causes a problem
as a swap between these trains results in the solution
〈8, 9, 5, 3, 11, 2, 4, 7, 6, 1, 10, 12〉. In this case, train 5 is
nowbefore train 3 in the sequence and therefore train 5would
be required topass through train 3 to reach the junction,which
is a physical impossibility. Once an infeasible solution is
reached there is no point continuing with any more compar-
isons using train 3, as every other combination would mean
that train 5 would have to pass through the junction before
train 3.

At this point, the search for feasible swaps would move
onto evaluating swaps between the first two trains in the
sequence and the rest of the trains in the sequence, that is,
trains 〈3, 8〉 with train 〈9〉, then train 〈3, 8〉 with trains 〈9, 5〉
etc. Again, once an infeasible swap is detected, the search
using 〈3, 8〉 is halted and the search moves onto evaluat-
ing swaps between trains 〈3, 8, 9〉 and the rest of the train
sequence.

The process continues until the evaluation of thefinal swap
between trains 〈3, 8, 9, 5, 11, 2, 4, 7, 6, 1, 10〉 and train 〈12〉.
After this swap evaluation, a backward pass, using a simi-
lar search procedure, is performed on the same sequence of
trains.

5.5.2 Backward pass

The backward pass is similar to the forward pass but starts
at the end of the sequence of trains. It first considers a swap
between train 〈12〉 and train 〈10〉 to make the feasible solu-
tion 〈3, 8, 9, 5, 11, 2, 4, 7, 6, 1, 12, 10〉. It then evaluates the
feasibility of swapping train 〈12〉 with trains 〈1, 10〉 to give
the sequence 〈3, 8, 9, 5, 11, 2, 4, 7, 6, 12, 1, 10〉. This is an
infeasible sequence as train 12 cannot pass through the junc-
tion before train 1. The search for feasible solutions with
train 〈12〉 is halted and the search for feasible swaps moves
onto the next two trains in the sequence, trains 〈10, 12〉.
Again, this process continues until the final swap of trains
〈8, 9, 5, 11, 2, 4, 7, 6, 1, 10, 12〉 with train 〈3〉.

Carrying out the search for feasible solutions in this way
has the advantage of cutting down on the number of evalua-
tions needed as the procedure is halted as soon as an infeasible
solution is found. In addition, in this particular train sequenc-
ing problem, the process of determining if a swap is feasible
is a relatively quick one as it only needs to be performed on
trains that are on the same route.

The elite immigrants are made using the above technique,
to find all the feasible local search solutions, and randomly
choosing one of those solutions to become the immigrant.

This means that the elite solutions are very similar to the
best solution used tomake the snapshot of the junction after a
dynamic change and allowpertinent information to be carried
over to the new environment.

5.6 Hybrid immigrants

There is a danger with elite immigrants in that their exploita-
tion of a good solution could limit the algorithm’s exploration
of the search space. For this reason, a third immigrant scheme
is also investigated where the immigrants introduced consist
of a half and half mix of elite and random immigrants. The
hope is that the addition of random immigrants will encour-
age the ants to explore the search space whereas the elite
immigrantswill allow the ants to exploit the previously found
good solution.

In EI-PACO, RI-PACO and HI-PACO algorithms, the
pheromone matrix is reinitialised after a dynamic change
and updated with the solutions of the new ants in memory.
If only elite immigrants are used, this will give a pheromone
trail that is based on the solution used to create the snap-
shot of the simulation before a change. This will encourage
exploitation of this solution butmay have the disadvantage of
reducing diversity. However, if random immigrants are used,
then this is in effect a restart of the algorithm and will result
in the loss of any information from before the change. How-
ever, they will have the advantage of introducing diversity
into the algorithm, which will encourage the exploration of
the search space. Hybrid immigrants may be able to combine
the advantages of both these approaches by making use of
information before the change but also introducing diversity
to encourage further exploration of the search space.

This research takes a slightly different approach to
Mavrovouniotis and Yang (2010, 2013) as instead of adding
immigrants at every iteration they are only added after a
change to equip the algorithm for the new environment.

5.7 Dynamics implementation

Even though the trains and junctions are simulated, this is
a real-world problem and requires consideration of how it
could be implemented in a real-world delayed-train scenario.
The supposition is that after a perturbation, the algorithm is
run very quickly in parallel on several computers to find a
solution as near optimal as possible in the time available. Ant
algorithms are very suitable for running in parallel (Dorigo
and Stützle 2004) and doing so would allow a solution to be
found in a realistic time.

The sequence of trains in the best solution is then run
through the junction until the dynamic change occurs. This
change is triggeredby the arrival ofmore timetabled trains.At
the point of change, a ‘snapshot’ is taken of the junctions by
the simulator. This records the status of the trains, track and
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Table 3 Summary of the
algorithms investigated

Abbreviation Algorithm description Station sequencing

EI-PACO P-ACO where the memory is replaced with repaired
elite immigrants after a change

Yes

RI-PACO P-ACO where the memory is replaced with repaired
random immigrants after a change

Yes

HI-PACO P-ACO where the memory is replaced with repaired
elite and random immigrants after a change

Yes

NSS-PACO P-ACO where the ants in memory are retained and
repaired with KeepElitist repair operation

No

MMAS The Max–Min AS algorithm Yes

junction at that moment in time. The snapshot, plus the new
trains, is passed to the P-ACO algorithm, and the algorithm
is run again to find the best solution for the new environment.
In this way, the algorithm and the simulator are very loosely
coupled. The algorithm only acts on the information given to
it and does not influence the simulator in any way. This has
the advantage that both the simulator and the algorithm can
be modified independently of each other.

When the algorithm receives the updated train informa-
tion, it reconstructs the directed edge graph to reflect the
trains in the simulator snapshot. Any trains that have been
removed from the snapshot are also removed from the graph
and node 0 is reconnected to the next four trains sitting at the
junction.

5.8 Handling constraints

One of the constraints of the extended DRJRP is that a train
is not allowed to enter the junction before the train in front
of it on the same track, and is not allowed to leave the station
before the train in front of it on the same platform. This con-
straint is handled by creating the directed edge graph in such
a way that ants can only make a decision as to which train
to sequence next from the set of trains that are waiting at the
start of the junction or arewaiting at the exit of the station (see
Sect. 5.1). This graph structure prevents infeasible solutions
from being created by the ants and is more computationally
efficient than allowing the ants tomake unrestricted solutions
and then having to identify and discard all the infeasible solu-
tions.

Further constraints of the problem are that trains are not
allowed to enter a block section occupied by another train
and that trains are not allowed to cross the path of other
trains entering or leaving the junction. Both these constraints
are dealt with in the simulator (Eaton and Yang 2014). In the
first case, a train can only enter the next track section if it is
clear of all other trains, and in the second case a simulated
interlocking system incorporated in the simulator prevents
trains from crossing the path of other trains.

6 Experimental study

An experimental studywas carried out to investigate the abil-
ity of five ACO algorithms to optimise the extended DRJRP
with multiple delays over time. The investigated algorithms
areEI-PACO,RI-PACO,HI-PACO,NSS-PACOandMMAS.
A breakdown of the characteristics of each of these algo-
rithms can be found in Table 3. The performance of a sixth
algorithm based on the FCFS heuristic was also investigated.
This heuristic is commonly used by railway controllers to
reschedule trains after a perturbation (D’Ariano et al. 2007)
and has previously been used by Fan et al. (2012) and Chen
et al. (2010) to evaluate train rescheduling algorithms.

6.1 Experimental setting

For all the P-ACOalgorithms, the followingpheromonepara-
meters were implemented, as recommended by Guntsch and
Middendorf (2002). The maximum pheromone value (τmax)
was set to 1, the minimum pheromone value (τinit) was set
to 1/n, where n is the number of nodes, and the pheromone
update value to (τmax − τinit)/k, where k is the size of the
memory. All pheromone levels were initialised to τinit . The
other parameterswere establishedbypreliminary experimen-
tation. The best combination was found to be 12 ants with
a memory size of 6 and a q0 value of 0.1. After 150 itera-
tions, very little improvement was found to occur in the ants’
solutions. Therefore, the algorithmwas run for 150 iterations
before each dynamic change.

ForMMAS, experimental investigation found that the best
parameters were a = 20, p = 0.5, 14 ants and pheromone
reinitialisationwhen there is no change in the best solution for
30 iterations. Again, the algorithm was run for 150 iterations
before a dynamic change.

In the case of EI-PACO and RI-PACO, six immigrants
were used to replace the memory after a dynamic change,
whereas in HI-PACO three elite immigrants and three hybrid
immigrants were used.
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6.2 Experiment results

As previously mentioned in Sect. 3.2, extra delays over the
course of the dynamic problem can only be introduced if the
number of trains added to the simulation is of a sufficiently
high number to make it feasible to swap the arrival times
of the trains at the stations. Therefore, in all the following
experiments, the magnitude of dynamic change (m) is eight.
The addition of eight trains creates a situation at station D
where the arrival order of two trains at the station can be
swapped (see Table 1) and a delay introduced. Either one or
two additional delays were added at the stations for each of
the three different change frequencies (5, 10, 15 min). This
made a total of six dynamic scenarios.

Thirty runs were completed for each dynamic environ-
ment. The graphs in Fig. 7 show the results for each of the
change frequencies when one additional delay was intro-
duced to the scenario at change 1, i.e., after 5, 10 or 15
min of running the simulation. The graphs in Fig. 8 show
the results of adding two additional delays, one at change 1
and the second at change 4. The x-axis is the time passed
in minutes between each dynamic change, the y-axis is the
average fitness of the algorithm in terms of the delay penalty.

The scale of the different graphs varies to accommodate the
maximum delay penalty.

The corresponding statistical results of two-tailed t-tests
with 58 degrees of freedom at a 0.05 level of significance,
adjusted using theBonferroni correction tominimise the pos-
sibility of Type-I errors, are given in Table 4. This table shows
the results of comparing Algorithm1 ⇔ Algorithm2, where
the symbol ‘s+’ indicates that Algorithm1 is significantly
better thanAlgorithm2, while ‘s−’ indicates that Algorithm1
is significantly worse than Algorithm2, and the symbols ‘+’
and ‘−’ indicate that Algorithm1 is insignificantly better or
insignificantly worse than Algorithm2, respectively.

The results show that EI-PACO, HI-PACO and NSS-
PACO all significantly outperform FCFS on the high and
medium frequency delay scenarios and perform better, but
usually not significantly better, than FCSS on the low
frequency delay scenarios. However, RI-PACOperforms sig-
nificantly worse than FCFS on the high magnitude high
frequency changes (m = 8, f = 5) for both the single station
delay and double station delay. It performs better or signif-
icantly better than FCFS on the high magnitude medium
frequency changes (m = 8, f = 10) and high magnitude
low frequency changes (m = 8, f = 15).
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Fig. 7 Experimental results for each of the algorithms for different frequencies of dynamic change and one additional delay at station D
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Fig. 8 Experimental results for each of the algorithms for different frequencies of dynamic change and two additional delays at station D
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Table 4 The t-test results of comparing the algorithms on different
delay scenarios

Algorithms 1 station delay 2 station delays

f ⇒ 5 10 15 f ⇒ 5 10 15

RI-PACO ⇔ FCFS s− s+ + s− + +
EI-PACO ⇔ FCFS s+ s+ s+ s+ s+ +
HI-PACO ⇔ FCFS s+ s+ + s+ s+ +
NSS-PACO ⇔ FCFS s+ s+ + s+ s+ +
MMAS ⇔ FCFS − s+ + − s+ +
RI-PACO ⇔ EI-PACO s− s− − s− s− −
RI-PACO ⇔ HI-PACO s− s− − s− s− −
RI-PACO ⇔ NSS-PACO s− s− − s− s− −
RI-PACO ⇔ MMAS s− − − s− − −
EI-PACO ⇔ HI-PACO + + + + + −
EI-PACO ⇔ NSS-PACO − − + s− − +
EI-PACO ⇔ MMAS s+ s+ + s+ s+ +
HI-PACO ⇔ NSS-PACO − − + s− s− +
HI-PACO ⇔ MMAS s+ s+ + s+ s+ +
NSS-PACO ⇔ MMAS s+ s+ + s+ s+ −

This is most likely because using random immigrants to
initialise the pheromone trails after a change is effectively
restarting the algorithm from scratch. All the information
from the environment before the change is lost. In a situa-
tion when trains are arriving at high frequency, this lack of
information from the previous environment seriously ham-
pers the ability of the algorithm to find an effective solution.
In such a scenario, trains are added more quickly than trains
are lost from the problem, which means that the size of the
problem, and the size of the search space, increases after
each dynamic change. Restarting the algorithm with such a
large search space has the consequence that the ants may not
be able to explore it sufficiently in the time available and
may be unable to find a good solution. When the frequency
of changes is smaller, the time between the addition of new
trains to the problem is larger, which means that more trains
will have had time to pass through the junction and that the
number of trains the ants have to deal with is smaller, with a
consequently smaller search space. In this case, even when
restarting the algorithm from scratch, the ants are able to
explore the whole search space to find an optimal solution.
This indicates that in the extended DRJRP, when the search
space is large, knowledge carried over from previous envi-
ronments is especially valuable.

MMAS performs worse than FCFS when the change is of
high magnitude and high frequency (m = 8, f = 5), signifi-
cantly better than FCFS for the medium frequency changes,
and better than FCFS for the low frequency changes, for both
the single station delay and double station delay scenarios.
This is because MMAS uses only the pheromone evapora-

tion to remove trails that are no longer relevant to the new
environment and in addition does not have the advantage
of repaired solutions from the previous environment to ini-
tialise the amended pheromone matrix and to guide it after
a dynamic change. Higher frequency train additions mean
a larger search space and the algorithm may struggle to
explore it effectively without any guidance. Low frequency
train additions mean that the search space is smaller and the
algorithm is able to explore it effectively and to find an opti-
mal solution.

RI-PACO performed significantly worse than EI-PACO
on the high and medium frequency changes and worse, but
not significantlyworse, on the low frequency changes. This is
because basing the immigrants on the solution used to make
the snapshot of the simulation for the next change period
means that the solutions are better suited to the new environ-
ment than randomly created ants. This may be a peculiarity
of this real-world scenario. Due to the need to keep the trains
running during the period of disruption, a decision has to be
made as to the best solution to choose to run the trains for the
next dynamic change period. Thus, the new environment is
influenced by the solution used to run the trains for the next
change period and immigrants based on that solution have
an advantage in the new environment.

RI-PACO also performs significantly worse than HI-
PACO on almost all the delay scenarios. This is most likely
because the addition of the elite immigrants to the HI-PACO
algorithm means that there are some ants well suited to the
new environment which helps the search. In fact, RI-PACO
appears to be one of the worst performing algorithms; it is
also outperformed by MMAS and NSS-PACO on all scenar-
ios. In this dynamic problem, adding random immigrants to
the memory after a dynamic change does not appear to be an
effective solution.

EI-PACO performs better but not significantly better than
HI-PACO in almost all scenarios, which indicates that in this
dynamic problem the addition of the random immigrants to
the elite immigrants does not significantly improve the per-
formance of the algorithm andmay impair it to a small extent.
This ismost likely again because of the nature of the problem.
The fact that the best solution is used to make the snapshot
for the next change period means that the environment after
the change is similar to the environment before the change
and therefore what is required is the exploitative power of
the elite immigrants rather than the disruption introduced by
the random immigrants.

MMAS performed worse or significantly worse than EI-
PACO and HI-PACO on all delay scenarios. Again, this is
most likely because MMAS does not have any mechanism
to cope with dynamic change apart from the evaporation of
redundant pheromone trails and this is not as effective as
P-ACO’s method of coping with dynamic change by com-
pletely removing redundant trails.
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The addition of extra delays over the period of investi-
gation appears to have the most marked effect when the
frequency of dynamic change is high. When the dynamic
change is low or moderate, most algorithms appear to be able
to resequence the trains to mitigate the effect of the multi-
ple delays. This suggests that, in a very busy section of the
railway track, delays have a more pronounced effect than in
a less busy section. Nevertheless, EI-PACO, HI-PACO and
NSS-PACO managed to efficiently remove or mitigate the
delay in both the one-delay and two-delay scenarios.

Finally, although it was believed that adding the capability
to sequence trains at the stations would improve the algo-
rithms’ ability to find a solution to the extended DRJRP, this
has not been found to be the case. NSS-PACO outperformed
all algorithms on almost all the delay scenarios. However,
EI-PACO and HI-PACO performed slightly better than NSS-
PACO on the low frequency changes for both the single
and double station delay scenarios. Low frequency changes
mean a smaller search space which suggests that the fail-
ure of the station sequencing algorithms to perform as well
as the non-station sequencing algorithms may be because
station sequencing results in an extended search space with
more choices for the ants. When the search space is small,
sequencing at the stations may offer a slight improvement.
This suggests that the number of ants usedmay not have been
enough to cope with the increase in the size of the search
space and additional mechanisms may be necessary to deal
with this larger search area.

6.3 Algorithm computation time

The algorithms were executed on a single-core Xeon Wood-
crest Linux processor running at 2.83 GHz. The computation
times varied according to the number of trains in the prob-
lem at a given change. The reason for this is that over 99 %
of the computation time was taken up by the time taken to
evaluate the ants’ solutions in the simulator. The more trains
in the problem, the longer the evaluation process. All the
investigated ACO algorithms performed similarly in terms
of execution time. Therefore, to illustrate the computation
time, we will consider the execution time of just one of the
algorithms, EI-PACO. Table 5 shows the computation times
for this algorithm when eight trains are added every 15 min,
while Table 6 shows the computation times when eight trains
are added every 5min. In the tables, the first, second and third
lines are the average time, the minimum time and the maxi-
mum time over all 30 runs. The last line of the tables shows
the percentage of computation time that was taken up by
evaluating the ants’ solutions in the simulator.

Adding eight trains every 15 min means that many trains
have passed out of the problem before the new trains arrive at
each change. Therefore, the average execution time does not
increase greatly over the course of the changes. For example,

Table 5 Algorithm execution times in min for EI-PACO with m = 8
and f = 15

Change 1 2 3 4

Average 1.43 1.47 1.84 2.10

Minimum 1.36 1.37 1.63 1.85

Maximum 1.49 1.66 2.08 2.52

Evaluation (%) 99.90 99.90 99.92 99.92

Table 6 Algorithm execution times in min for EI-PACO with m = 8
and f = 5

Change 1 2 3 4 12

Average 1.97 2.89 3.96 5.07 18.87

Minimum 1.93 2.77 3.77 4.81 17.16

Maximum 2.02 3.03 4.25 5.47 34.82

Evaluation (%) 99.91 99.92 99.93 99.93 99.95

for change 1 the average execution time for 150 iterations is
1 min 26 s (0.57 s per iteration) while at change 4 the average
execution time is 2min 6 s (0.84 s per iteration) (see Table 5).

However, when eight trains are added every 5 min, the
average execution time at change 1 is 1 min 58 s (0.79 s per
iteration), at change 4 it is 5 min and 4 s (2.03 s per iteration)
while at change 12, because of the large number of trains in
the system, it has risen to an average of 18 min and 52 s (7.55
s per iteration) (see Table 6).

This execution time is, of course, unacceptable in a real
world situation.However,ACO is very amenable to being run
in parallel (Dorigo and Stützle 2004), which would cut down
the computation time considerably and would make it feasi-
ble for real-time operation. In addition, the algorithm could
be run for less iterations by choosing a different termination
criterion, for example, running the algorithm until there has
been no improvement in the solution for a predefined number
of iterations.

7 Conclusions and future work

Train rescheduling after a perturbation is a challenging task.
This paper investigates an even more challenging delay situ-
ationwhere there is not just one but multiple unrelated delays
occurring over the time period of the investigation. The extra
disruptions are caused by trains being delayed at the stations
that feed into the railway junction. To cope with the extra dis-
ruption the influence of the ACO algorithms was extended to
allow them to reschedule the trains at the stations as well as
at the junction.

An experimental study was carried out to investigate the
performance of fiveACO algorithms on the extendedDRJRP
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with multiple delays. Three of the algorithms were based on
the P-ACOalgorithmbutwith the introduction of immigrants
to replace the memory after a change. The fourth algorithm
was based on MMAS, which has no in-built mechanism for
adapting to change apart from the evaporation of pheromones
trails. The fifth algorithm was a P-ACO algorithm that does
not have the ability to reschedule the trains at the stations
but simply deals with them in the order that they arrive at the
junction. In addition, a FCFSheuristicwas used to investigate
how the trains might be sequenced in a real-world situation.

It is apparent from the results that replacing the memory
with elite immigrants in the extended DJRJP is an effective
solution when the ants in memory cannot be modified to
make them feasible in the new environment. In addition, in
this dynamic problem, random immigrants were found to be
unsuitable to replace the ants in memory when changes were
of a high magnitude and a high frequency. The larger search
space appears to demand the knowledge carried over from
previous environments.

Surprisingly, adding the ability to sequence trains at the
stations was not beneficial to this set of dynamic problems.
This may be because the extra decisions that the ants have
to make increases the size of the search space and the ants
struggle to explore it adequately. This suggestion is supported
by the fact that when the search space is relatively small in the
low change frequency scenarios, algorithms that sequence
the trains at the stations (EI-PACO and HI-PACO) perform
slightly better than algorithms without station sequencing
(NSS-PACO).

This work raises some exciting possibilities for future
work. The first is to investigate whether MMAS can be
adapted to improve its performance in fast changing dynamic
environments, for example, by the addition of elite immi-
grants that help to guide its search after a dynamic change.

Second, it would be interesting to explore the effect of
adding more ants or random immigrants to the algorithms
that resequence the trains at the stations to see if this could
improve their exploration and consequently their perfor-
mance on high frequency changes, where the search space
is very large between changes. To maximise the use of
resources, it would be worthwhile to investigate adding the
number of additional ants in proportion to the increase in
the size of the problem. Although it did not perform excep-
tionally well in this set of experiments, station sequencing in
addition to junction sequencing is worth pursuing because it
is one of the first steps in expanding the algorithms to take
in a larger area of the railway network.

Finally, the next stage in the investigation of railway
rescheduling problems is to change the DRJRP into a
dynamic multi-objective problem by the addition of a second
objective, e.g., minimizing the fuel cost. As many real-world
scheduling problems are multi-objective as well as dynamic,
this will be an important step in the application of evo-

lutionary computation to real-world train scheduling and
rescheduling problems.
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