
Enhancement of speed and efficiency of an

Internet-based gear design optimisation

Nariman Amin and Daizhong Su

School of Engineering, The Nottingham Trent University, Burton Street,

Nottingham, NG1 4BU, UK. nariman.amin@ntu.ac.uk and

daizhong.su@ntu.ac.uk*

Tel: (+44) 115 8482304 and (+44) 115 848 2306

* Corresponding author

Abstract: An Internet-based gear design optimisation program has been developed

for geographically dispersed teams to collaborate over the Internet. The

optimisation program implements genetic algorithm. A novel methodology is

presented that improves the speed of execution of the optimisation program by

integrating artificial neural networks into the system. The paper also proposes a

method that allows an improvement to the performance of the backpropagation

learning algorithm. This is done by re-scaling the output data patterns to lie slightly

below and above the two extreme values of the full range neural activation

function. Experimental tests show the reduction of execution time by

approximately 50%, as well as an improvement in the training and generalisation

erros and the rate of learning of the network.

Keywords: Artificial Intelligent, Artificial Neural Networks, Genetic Algorithm,

Gear design, Design optimization.

Reference to this paper should be made as follows: Amin, N. and Su, D. (2002),

„Enhancement of speed and efficiency of an Internet-based gear design

optimization‟, Int. J. Automotive Technology and Management, Vol. X, No. X, pp.

X-X.

Biographical Note: Ms Nariman Amin is a researcher in the School of

Engineering, The Nottingham Trent University, UK. She studied BSc(Hons)

Computing Systems in 1996 and MSc Engineering Multimedia in 1998 at the

above university. She received PhD degree in 2002. The area of her research is

intelligent optimum design with the support of Internet technique.

Daizhong Su is Professor of Design Engineering in School of Engineering, The

Nottingham Trent University, UK. He chairs the Engineering Design and CAE

subject group and leads the Mechanical Transmission and Concurrent Engineering

research team. His research interests include artificial intelligence, evolutionary

optimisation, CAD/CAM/CAE, integrated design & manufacture and Web based

engineering with about 130 refereed publications.

mailto:nariman.amin@ntu.ac.uk
mailto:daizhong.su@ntu.ac.uk

1. Introduction

Gears are used in a wide range of engineering design to transmit power from one shaft to

another. In most cases, the design of gears is a highly complicated task involving the

satisfaction of a number of design constraints. There are various manufacturing

considerations. Neglecting any of these could result in the failure of the design, therefore

the design assessment requires many compromises [1]. Several approaches for gear design

have been proposed. Among those, the use of optimisation techniques has received much

attention, for example [1, 2, 3]. Optimisation techniques usually require the minimisation

of an objective function that is usually a combination of the various parameter [3]. If there

are many design parameters in the objective function, it is difficult for the designer to

assess the importance of each one. This scenario exists in gear design. Slight changes in

the objective function of gears would result in an entirely different design.

A gear optimisation program has been developed in the Department of Mechanical and

Manufacturing Engineering at The Nottingham Trent University [4]. The software utilizes

Genetic Algorithm(GA) to find the optimum design solution for spur and helical gears.

The results of the genetic algorithm optimisation are displayed to the user in tabular as

well as graphical format.

A methodology was developed to implement this design optimisation software package

over the Internet [5,6]. This is very beneficial for geographically dispersed teams to

collaborate over the Internet for the purpose of integration in design and manufacture. A

combination of HTML, CGI, JavaScript and Java programming is used. The required data

is obtained from the client, which are then sent to the server and the design optimisation is

invoked on the server. When the execution is completed, the results are sent back to the

client. The system also takes into consideration the problem of a multi-user environment.

Refer to the given references, for the full description of the system.

This paper consists of two sections. In the first section, a method is proposed that

improves the speed of the optimisation program. It is based on a combination of Artificial

Neural Networks (ANN) and genetic algorithm. In the second section, a method is

described which improves the performance of the backpropagation learning algorithm for

the ANN. The method shows an improvement in the training and generalisation errors as

well as the rate of learning of the network. To have a better understanding of the system, a

brief description of the structure of the gear optimisation software is first given.

2. Characteristics of the original optimisation program

The optimisation process developed by Su et al [4] is used to optimise the design of

external spur and helical gears with involute tooth profile. Up to nine gear design

parameters can be optimised, including tooth facewidth, module, pressure angle, helix

angle, rack tip radius, addendum coefficients, addendum modification (tooth profile shift)

coefficients for pinion and wheel, and number of pinion teeth. The basic configuration of

gear design is provided by the user, which includes geometry, performance and material

information. The user also needs to submit the settings for genetic algorithm, such as

population size, number of tests, fitness parameters, etc. Once the user has entered all the

required parameters, the optimisation process can then proceed.

The software utilizes genetic algorithm to perform the search for the design

configuration that will give the maximum performance for spur and helical gears. The

genetic algorithm conducts an adaptive search of various configurations of gear design,

derived from an initial rough design that must be supplied by the user. The numerical

analysis program is invoked by the genetic algorithm to calculate the tooth strength. The

results of the genetic algorithm optimisation are displayed to the user, giving both the

current performance and relative performance to the initial design.

2.1 The structure of the original optimisation program

The genetic algorithm optimisation process is applied in a cascade fashion. The procedure

comprises of two tiers, see figure 1. The cascade procedure requires an initial starting

design to base the optimisation process upon. The initial values of the design form the

starting positions and limiting conditions for the parameters that are to be optimised. The

first tier of the optimisation is invoked using the initial design or warm values, provided

by the user, to adjust the parameters in search of a global optimum. The optimisation

process continues until a limiting percentage of the genome population are identical. At

this point the information encoded within the converged genome is decoded forming the

solution to this tier and the intermediate warm values for the next tier. The resolution of

the decoding process during pre-process in increased and the optimisation process

repeated. In this case, the initial gear design that formed the base for the search is replaced

by the solution obtained from the first tier. The purpose of tier 2 is to fine tune the result of

the tier 1. In this way, the final result will be more accurate.

In tier 2, the genetic algorithm optimiser is initiated again with the solution from the

previous optimiser, applying a narrower, more accurate band to the search. Again the

search is repeated until the limiting percentage of the population are identical, at which

point the converged genome is decoded to form the final solution.

2.2 The proposed solution

The problem with the existing optimisation program is the time consumed for the program

to reach the final solution. This depends on the genetic algorithm as well as the initial

design given by the user, e.g. the number of parameters need to be optimised. Genetic

Figure 1. The cascade procedure of GA optimisation

Initial Gear

Design

GA Optimiser

(initial

resolution)

 Tier

1

GA Optimiser

(increased

resolution)

Tier

2

Initial Warm

Values

Solution

Intermediate Warm

Values

Algorithm is known to be computationally expensive. One of the main factors which

affects the execution time is the population. Population needs to be of adequate size to

ensure that the search area is comprehensively covered. Even though the final output

produces the satisfactory result, the time consumed for the program to reach the final

solution could be a drawback for the user. This is particularly important in an Internet

environment where speed is an essential factor. A new approach has been developed by

the authors to address this problem to improve the speed of the execution drastically.

In the new method, an artificial neural network is built to replace the first tier of the

cascade procedure of the genetic algorithm optimisation. The function of the ANN is to

estimate the solution of genetic algorithm after the first tier. In another words, to estimate

the output of the first tier. This would then be fed into the second tier as the intermediate

warm values, see figure 2.

2.3 Implementation of artificial neural networks

A prototype software program that implements ANN, has been developed for one of the

parameters, that is tooth facewidth. The training data is collected from a gear catalogue

[7]. Hence the program tries to find the optimum value for the facewidth based on the

condition given in the catalogue. The purpose of this proposed approach is to find a value

as close as possible to the output of tier 1. It does not need to be exactly the same, since

this would act as a warm input value to tier 2 and not the final output. This means that a

number of initial parameters, that have slight effect on the final solution, could be

excluded from the ANN training set. The idea is to reduce the data collection process by

limiting the number of combinations for the ANN parameters.

The original optimisation program was thoroughly investigated and every single

parameter was scrutinised to filter out those data that were contributing significant effects

on the output. Even though many data parameters were affecting the final output, most of

these only had a slight effect. So, it is possible to omit these data from the input of the

ANN. This would be very beneficial, since the presence of a large number of input data

would increase the number of input patterns drastically. This might not be feasible in

terms of the time required to train the ANN. The result of the detail examination carried

out by Su et al [4] showed that all the input data are vital for the GA optimisation to

produce an accurate result. However, ANN is not required to estimate such accurate result,

Figure 2. Implementing Neural Networks in the cascade procedure of GA optimisation

Initial Gear

Design

Tier 1
GA Optimiser

(increased

resolution)

Tier 2

Initial Warm

Values

Solution

Intermediate Warm

Values
Neural

Network

s

since the objective is to replace the first tier only. Any inaccuracy will be cleared in the

second tier.

Consequently, after the detailed investigation for the objective of reducing tooth width,

the following parameters were found to have a significant effect on the final output: two

fitness parameters, which are Stress and Facewidth (these two are part of the GA settings),

Number of Teeth, Module, Pressure Angle, Power, Speed, gear Ratio.

As indicated earlier, the design data was collected from a gear catalogue [7]. Four

pressure angles (17.5, 20, 22.5, 24) and 12 modules (ranging from 0.5 to 6.0) are defined.

To reduce the number of input data for ANN and to improve the performance, it was

decided to create an ANN for each of these conditions. This means training 48 different

sets of ANNs.

Further study proved that in most cases, Power, Speed and Ratio had less effect on the

output. So, the input data were narrowed down to three. It was detected that the ratio of the

fitness parameters, i.e. Stress and Facewidth could be used instead of using them

individually. As a result, the final decision was to use two inputs, i.e. Number of Teeth

and the ratio of Stress and Facewidth and one output, i.e. tooth Facewidth.

To further improve the performance, instead of using the actual output value, the

difference between the output of tier 1 and the initial value would be used as the output of

ANN. This proved to have a better result. Using the difference value would limit the range

of data in the training set which leads to a better normalisation. This is because the

difference between maximum and minimum values in the training set would be much

lower compared to the case when using the actual output data.

For each training pattern, two sets of data were produced, one for training and one for

testing the generalisation of the ANN. These were done for all the 48 different networks.

The number of patterns used for each of these networks differ. Each network was tested

intensively and additional training patterns were added if the result were not satisfactory.

Due to the limited space, it is not possible to list the number of training and test patterns

for all the networks. On average, approximately 160 training patterns and 100 test patterns

were used.

Before feeding the patterns into the ANN, both the input data and the target need to be

normalised. Data normalisation is required by the backpropagation algorithm to perform

properly. The normalised data for the ANN, when sigmoid activation ()1/(1 xey ) is

used, lies between 0.0 and 1.0; while for the tanh activation (y = tanh (x) =

)(xxxx eeee  ) function data values between -1.0 and 1.0 are used. One way to

create a data that would lie within the limiting values is to use the minimum and maximum

values in the dataset, that is:

Xi = (Xi – min)/(max-min)

where Xi is the normalised value of the ith data in a dataset and min & max are the

minimum and maximum values found in the dataset. The above equation normalises the

dataset between 0.0 and 1.0 which is used when sigmoid function is employed. For the

tanh function we have,

 Xi = (Xi – cent)/(max-cent)

Where cent is the centre distance between min and max, that is:

 cent = ((max – min)/2)+ min

It was found that sigmoid function suited this problem better and resulted in a more

accurate output. This could be due to the fact that at certain situations, within the training

patterns, there are sharp transitions of output from a high value to a low value, giving a

high difference. When normalised between 0 and 1, the sudden transition would be of a

lower difference (i.e. from 0 to 1) which makes ANN to behave more efficiently.

0

0.2

0.4

0.6

0.8

1

1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

y

sigmoid

derivative

-1.5

-1

-0.5

0

0.5

1

1.5

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

y

tann

derivative

(a) (b)

Figure 3. a) sigmoid function and b) tanh function

2.4 Result

The result of testing shows that ANN has managed to achieve the purpose of the proposed

method. In most cases, it can estimate the output of tier 1 and the estimated value is very

close to tier 1 output of the original GA program. This means that it can be used to replace

the GA program in tier 1. During the training, the ANN was tested extensively with

different values of learning rate, hidden nodes, momentum term, initial weight and the

number of iteration, ensuring the best combination that would give the optimum result.

As an example, one of the ANNs is evaluated here. This is the condition when module

is 0.7 and pressure angle is 17.5. Table 1 shows the test carried out on the number of

iterations. A network with 2-3-1 structure was used, having two inputs (i.e. ratio of the

fitness parameters, Stress and Facewidth, and number of teeth), three hidden nodes and

one output (i.e. Facewidth). The learning rate, momentum term and initial weight were set

to be 0.05, 0.05 and 0.1 respectively. The network was then tested with different number

of iterations, ranging form 5000 to 60000, refer to table 1.

As shown in the table, there is only a slight change in the output errors. Increasing the

number of iteration, causes a reduction in training error,  tand an increase in testing

error,  g This means that the generalisation would be less accurate. So, the iteration

number of 40000 was chosen, which shows an acceptable learning and generalisation

capability.

y y

x x
y = tanh (x))1/(1 xey 

ANN Learning

Rate

Momentum

Term

Init

Weight

No. of

Iteration
 t  g

2-3-1 0.05 0.05 0.1 5000 0.055 0.076

“ “ “ “ 10000 0.045 0.076

“ “ “ “ 20000 0.047 0.076

“ “ “ “ 30000 0.045 0.076

“ “ “ “ 40000 0.044 0.076

“ “ “ “ 50000 0.044 0.077

“ “ “ “ 60000 0.044 0.077

Table 1. Testing for the number of iterations

Similar test was carried out for the learning rate, momentum term, hidden nodes and

initial weight, as well as the combination of these parameters. Their optimum values were

found to be 0.045, 0.05 and 0.05 respectively. The number of iterations and the hidden

nodes were found to have a strong influence in the result of the ANN. On the other hand,

learning rate, momentum term and initial weights had a less effect on the output. These

tests were carried out for all the 48 networks to find their best structure.

In order to analyse the efficiency of the proposed method, the output of tier 1 was tested

for both the original program that uses GA only and the new one that implements ANN. A

number of designs were fed into the programs and the output of the first tiers were

monitored. Many tests were applied to investigate the result and the representative of all is

provided in figure 4. As shown in the figure, the result has been satisfactory. In most

cases, ANN has estimated a value very close to the output of GA. Only in two cases, i.e.

tests number 4 and 6, the output estimated by ANN is slightly different. This does not

cause any problem, since the estimated value is not totally off the target and it is still close

to the GA output. Moreover, this is not the final value. This value would then be fed into

Tier 2, where GA would start performing the search to find the final solution.

0

10

20

30

40

50

60

70

1 2 3 4 5 6

fa
c
e
w

id
th

To further analyse this methodology, a number of tests were carried out on the speed and

the iteration number, as shown in table 2.

Figure 4. Comparison of the output of Tier 1 for GA and ANN

GA

ANN

 τ1 + τ2 Total τNN + τ2 Total %Improvement

Test 1 Execution Time (s) 25.15 + 25.49 50.64 0.01 + 25.82 25.83 48.99 %

No. of Iteration 82 + 76 158 1 + 80 81 48.73 %

Test 2 Execution Time (s) 23.84 + 21.84 45.68 0.01 + 25.49 25.50 44.18 %

No. of Iteration 62 + 85 144 1 + 70 71 50.69 %

Test 3 Execution Time (s) 44.87 + 26.64 66.747 0.01 + 25.18 25.19 62.26 %

No. of Iteration 85 + 102 187 1 + 72 73 60.96 %

Table 2 shows the execution time and the number of iteration for the original

optimisation program that uses GA for both tier 1 and 2, and also for the new program

which implements ANN for tier 1. Here τ1 and τ2 indicate the time taken for the GA tier 1

and tier 2 respectively, while τNN indicates the execution time for the artificial neural

network computation. For a better understanding, the execution time and the iteration

number have been recorded for both tiers.

In the first test, both the execution time and the iteration number of the two tiers of the

new program, i.e. τNN + τ2 have been reduced almost by a half, i.e. execution time has been

dropped from 50.64s to 25.83s and the iteration number from 158 to 81. Similar trend

appears in the next two tests shown in the table, with the third test having percentage

improvement of even higher than 60. The tests shown in table 2 are only representative of

many tests carried out. The improvements were between 44% and 62.26%.

3. Improving the performance of backpropagation learning algorithm

This section describes a method that allows an improvement in the performance of the

Backpropagation learning algorithm. This is done by normalising the output values

between 0.1 and 0.9 instead of 0 and 1 for the sigmoid function and between –0.9 and 0.9

instead of –1 and 1 for the tanh function. This is related to the effect of the output

derivative near the saturation levels. At these levels the derivatives tend to zero and hence

the weight changes would be near zero. By re-scaling the output data, the minimum value

of the derivative will be slightly above zero which allows a slight weight change at the

saturation level. This leads to a faster and more efficient learning process for the artificial

neural network

The proposed method is tested on two applications: 1) Function approximation and 2)

Gear optimisation. Both produce satisfactory results and show an improvement in the

training and generalisation errors.

3.1 Backpropagation algorithm

In this algorithm, the goal is to train a multi-layer perceptron network to approximate an

unknown function, based on some training data consisting of pairs (x,d). The vectors x and

d represent a pattern of input to the network and desired output (target) respectively. The

Table 2. Comparing the speed of the execution of the original optimisation

program and the new one that implements ANN

backpropagation calculation can be divided into three segments, feed-forward, weight-

adaptation, and feed-back (or error-backpropagation)[8].

Feed-Forward:

In feed-forward operation all inputs to each neuron are multiplied by their associated

weights, which are then summed up and sent to a limiting function to find the output

values,

 



n

i

ijij wxy
1

* (1a)

)(jj netfy  (1b)

where ijw is the weight value between input i and output j and f(.) is a nonlinear activation

function which is commonly represented by Sigmoidal approximation function [9] with

the advantage of having a simple derivative, that is,

)1/(1)(xexf  (2a)

))(1(*)()(' xfxfxf  (2b)

Sigmoid function bounds values between 0 and 1. However for certain applications,

where a broader range of input and output values might be required, the tanh function is

used instead. This function limits the activation values between –1 and 1.

)tanh()(xxf  (3a)

))(*)((1)(' xfxfxf  (3b)

The derivatives are used during the learning process where it behaves somewhat like a

filter. It allows a greater change in the weight values when the neuron output is near zero

while it permits almost no changes in the weight values when a neuron has reached the

saturation (0 or 1 for the sigmoid and –1 or 1 for the tanh function).

Weight Adaptation:

The output weights are updated by an error value that is obtained by,

)(*)(' L

jj

L

j

L

j ydyf  (4)

where jd is a target value and
L

j is error value for the jth neuron in the output layer L,

and)(' L

jyf is the derivative of the activation value of the output layer neuron.

This error value is then used to update weights of the jth node,

h

i

L

j

L

ij yw  * (5a)

L

ij

L

ij

L

ij wtwtw )()1((5b)

where η is learning rate coefficient, h

iy is the output value of neuron i in hidden layer h,

ijw is weight value between hidden neuron i and output neuron j, and t is a time step (i.e.

iteration).

Feed-back:

Since there is no explicit target for the internal representation of the network (or hidden

nodes), the back-propagated error signal from the output layer is used to obtain the error

values for the hidden neurons. This is a reverse calculation to the feed-forward going from

output to hidden layer. Here for each hidden node, the error values of all output neurons

are multiplied by their associated weight values and the summation of all multiplication

will represent the error value,

 



n

j

ij

L

j

h

i

h

i wyf
1

**)('  (6)

A similar weight adaptation is performed for the output weight.

3.2 Effect of the output derivative

In most applications, the values of the outputs used for training data are not in the ranges

of the artificial neural networks activation function (i.e. sigmoid or tanh). This means that

the output data must be pre-processed by scaling. Scaling data before training the ANN is

done by mapping the desired range of the outputs to the full working range of the ANN

outputs.

One problem with scaling data to full ranges of activation functions is that the values

near the two ends (0 and 1 for sigmoid and –1 and 1 for tanh) reach the saturation level.

This causes the weight adaptation of such neurons to seize or change insignificantly. The

reason lies in the equation of the backpropagation weight adaptation (see Eq. 4 & 5).

In weight adaptation equation the derivative of the neurons have significant effect on

the weight values. As can be seen in figure 5a, the value of the derivative reaches a peak

value (0.25) at the centre of the sigmoid function (i.e. when y=0.5 for x=0) and progresses

towards zero very quickly at the two ends of the activation function (when y=0 or y=1).

Therefore the derivative of the output neurons whose target values are close to 1 or 0,

become almost zero. Hence any weight adaptation for such output neurons would be zero

(or significantly low), since derivative affects the weight change formula (i.e. if

derivative=0  weight change=0).

As an example if an output value is 0.999, its derivative value would be 0.000999.

Therefore the weight change, as indicated in Equations 4 & 5, will be very small for the

neurons that have reached saturation. The same scenario exists for the tanh function (see

figure 5b). The value of the derivative reaches the peak value at the centre of the activation

function, (i.e. when y=0 for x=0) and inclines towards zero at the two ends (i.e. when y = -

1 and y = 1). So for tanh activation function, those output neurons that have target values

close to 1 and –1, their derivatives becomes zero causing no change in the value of the

weights.

One solution to the problem of the insignificant weight adaptation of the neurons with

saturated target values is to allow the derivatives of such neurons to have small effect even

though they have reached their maximum or minimum values (1 or 0). This can be done

by lowering the range of the output data to lie between slightly above zero and slightly

below one for the sigmoid function (e.g. between 0.1 and 0.9). In this case the lowest

derivative of the neurons would be 0.09 (i.e. 0.1(1-0.1) or 0.9(1-0.9) refer to Eq.2b) as

compared to 0.0 (i.e. 0(1-0) or 1(1-1)) for the 0 to 1 data scaling. Therefore the weight

values will still be changing even though the neurons might have reached their saturation

levels.

So the output data are normalised between 0.1 & 0.9, and –0.9 & 0.9 for the sigmoid

and tanh function respectively.

3.3 Experimental Results

As was mentioned before, the theory was tested on two applications, i.e. function

approximation and a gear optimisation problem.

Function Approximation:

The function [10] that was used for this test is defined as:

)1.0,0()exp(*)2sin()(Noisexxxf 

where x is in the range [-1, 1] and the Noise is a random value between 0.0 and 0.1. It is

a sinus-line function with noise added to it. It is a non-linear function, which is difficult

for AI to estimate the output. The purpose for the addition of the noise is to make it even

harder for the ANN to predict the output. The network size of 1:10:1 was used for the test

and output values were scaled in the range [0, 1] for sigmoid activation function and [-1,

1] for tanh activation function.

Table 3 summarises the original ANN architecture used for both problems, i.e. function

approximation and one of the tests for gear optimisation, and lists the training error and

generalisation error for each network. For these tests, the output data were normalised

between 0 and 1.

Problem ANN  t   g

Gear Optimisation 2-3-1 0.044 0.076

Function Approximation 1-2-1 0.022 0.024

Table 3 – Test result for the original network

Table 4 summarises the new ANN architecture where the output data were normalised

between 0.1 and 0.9 and table 5 lists the percentage improvement between the new method

and the original one.

Problem ANN  t  g

Gear Optimisation 2-3-1 0.040 0.061

Function Approximation 1-2-1 0.011 0.014

Table 4 – Test result for the new network

Problem % Improvement for  t % Improvement for  g

Gear Optimisation 9.1 % 19.74 %

Function Approximation 50 % 41.67 %

Table 5 – Percentage improvement for the new method

As shown in tables 4 and 5, in both cases the new network resulted in a better training

and generalisation errors. For the gear optimisation, the training error has improved by

9.1%, i.e. from 0.044 to 0.04, but the percentage of improvement for the generalisation

error is much higher, i.e. 19.74%. The generalisation error has been reduced from 0.076 to

0.061. These figures were relatively the same for different tests carried out on gear

optimisation. For function approximation problem, the improvement is even higher, where

there is a 50% improvement in the training error and 41.67% improvement in the

generalisation error.

Figure 5 and 6 shows this effect graphically for the function approximation problem.

The average error is calculated using the equation: NTY  2)(, where Y is the

calculated value, T is the target value and N is the number of training patterns. The graphs

of the ANN training results were plotted for the two-dimensional function approximation

problem. Figure 5 displays the graph for the original network and figure 6 displays the

graph for the new network with re-scaled output data. There is an obvious improvement,

specially where the outputs become close to maximum. Scaling the output to 0.9, brings

the target closer to the output. Similar trend exists where the outputs get closer to

minimum.

Another important point which was observed during testing of the gear optimisation

problem was that the new network was learning much faster than the original one. For the

gear optimisation, it required 40000 iterations for the original network to reach the

solution, whereas for the new network, only 5000 iterations were needed. To further

analyse this, a fixed value was chosen for the final error to see how many iterations both

the network require in order to reach that fixed value. It was tested for the final value of

0.049 for the gear optimisation problem and the result was outstanding. The original

network needed 19,440 number of iterations, whereas the new network reached the final

value only in 340 iterations. Similar test was carried out for the function approximation

problem and it followed the same pattern.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2

4. Discussion and conclusion

This paper presented a method to improve the speed and performance of a gear design

optimisation program. The first section described the integration of ANN into the

optimisation program which resulted in a dramatic reduction in speed. Even though ANN

requires a lot of time to go through the learning process, once the training is completed, it

is a matter of a simple calculation to produce the result (i.e. feed-forward computation).

Therefore, it does not need to go through any iteration. Whereas in GA, the program needs

to go through a number of iterations to search for the best possible solution. As a result, by

replacing one tier that performs GA with ANN, it acts as if that tier has been eliminated,

causing in an impressive reduction in the execution time. The experimental results show

50% improvement in the execution time. Reducing the execution time improves the

efficiency of the program. The method is of a particular benefit to the Internet-based

version of the optimisation program where speed is a crucial factor.

ANN has the capability of replacing both tiers, in such a case the result would be

outstanding. Since ANN would be replacing the whole GA in the application, resulting in

an immediate output of the result. At the moment, the training and testing errors are not

low enough to replace tier 2. However, with further research in this area, this might be

accomplishable.

Output of NN

Target

Output of NN

Target

Figure 5 – ANN training result for the original network (average error = 0.022)

Figure 6 – ANN training result for the new network (average error = 0.022)

The second section dealt with the problem of weight adaptation for the situation when

the output data reaches the saturation level (0 and 1 for sigmoid and –1 and 1 for tanh).

The nature of the weight adaptation equation causes insignificant change in the value of

the weights in such conditions. This problem was addressed by lowering the range of the

output data to lie between, but not including, the full range of the activation function. The

range of 0.1 to 0.9 was tested for the sigmoid function. Function approximation and gear

optimisation were used for testing the proposed method. Experimental results illustrates

that the proposed method is efficient, resulting in an improvement in the training and

generalisation errors. It also speeded up the rate of learning of the artificial neural

network.

References

[1] Wang, H. and Wang, H.P., 1994, “Optimal engineering design of spur gear sets”,

International Journal of Mechanism and Machine Theory, Vol. 29, pp. 1071-1080.

[2] Savage, M., Coy, J.J. and Townsend, D.P., 1982, “Optimal tooth numbers for

compact standard spur gear sets”, Journal of Mechanical Design, Vol. 104, pp. 749-

757.

[3] Houser, D.R., Harianto, J., Chandrasekaran, B., Josephson, J. and Iyer, N., 2000, “A

multi-variable approach to determine the best gear design”, Proceedings of

DETC‟2000 - 2000 ASME Power Transmission and Gearing Conference, Baltimore,

Maryland, USA, on CD-ROM, no. DETC/PTG-14362.

[4] Su, D., Wakelam, M. and Jambunathan, K., 1999, “Evolutionary optimization within

an intelligent hybrid system for design integration”, Artificial Intelligence for

Engineering Design, Analysis and Manufacturing, Vol. 13, pp. 351-363.

[5] Su, D. and Amin, N., 2001, “A CGI-based approach for remotely executing a large

program for integration of design and manufacture over the Internet”, International

Journal of Integrated Manufacturing, Vol. 14, pp. 55-65.

[6] Amin, N. and Su, D., 2000, “Utilisation of Java Applets for gear optimisation”,

Proceedings of the International Conference on Gearing, Transmissions, and

Mechanical Systems, Nottingham, pp. 425-434.

[7] Davall Stock Gears Catalogue, 2000, UK.

[8] Gurney, K., 1997, “Introduction to Neural Networks”, U.C.L. Press, London.

[9] Lippmann, R.P., 1987, “Introduction to computing with neural nets”, IEEE

Acoustics, Speech and Signal Processing Magazine, vol. 4, No. 2, pp. 4-22.

[10] Engelbrecht, A.P., Fletcher, L. and Cloete, I., 1999, “Variance Analysis of

Sensitivity Information for Pruning Multilayer Feedforward Neural Networks”, IEEE

IJCNN, Washington DC, paper 379.

http://www.cs.up.ac.za/~engel/publications/IJCNN99a.ps.gz
http://www.cs.up.ac.za/~engel/publications/IJCNN99a.ps.gz

