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1.  Introduction 

Gears are used in a wide range of engineering design to transmit power from one shaft to 

another. In most cases, the design of gears is a highly complicated task involving the 

satisfaction of a number of design constraints. There are various manufacturing 

considerations. Neglecting any of these could result in the failure of the design, therefore 

the design assessment requires many compromises [1]. Several approaches for gear design 

have been proposed. Among those, the use of optimisation techniques has received much 

attention, for example [1, 2, 3]. Optimisation techniques usually require the minimisation 

of an objective function that is usually a combination of the various parameter [3]. If there 

are many design parameters in the objective function, it is difficult for the designer to 

assess the importance of each one. This scenario exists in gear design. Slight changes in 

the objective function of gears would result in an entirely different design.  

A gear optimisation program has been developed in the Department of Mechanical and 

Manufacturing Engineering at The Nottingham Trent University [4]. The software utilizes 

Genetic Algorithm(GA) to find the optimum design solution for spur and helical gears. 

The results of the genetic algorithm optimisation are displayed to the user in tabular as 

well as graphical format.  

A methodology was developed to implement this design optimisation software package 

over the Internet [5,6]. This is very beneficial for geographically dispersed teams to 

collaborate over the Internet for the purpose of integration in design and manufacture. A 

combination of HTML, CGI, JavaScript and Java programming is used. The required data 

is obtained from the client, which are then sent to the server and the design optimisation is 

invoked on the server. When the execution is completed, the results are sent back to the 

client. The system also takes into consideration the problem of a multi-user environment. 

Refer to the given references, for the full description of the system. 

This paper consists of two sections. In the first section, a method is proposed that 

improves the speed of the optimisation program. It is based on a combination of Artificial 

Neural Networks  (ANN) and genetic algorithm. In the second section, a method is 

described which improves the performance of the backpropagation learning algorithm for 

the ANN. The method shows an improvement in the training and generalisation errors as 

well as the rate of learning of the network. To have a better understanding of the system, a 

brief description of the structure of the gear optimisation software is first given.  

 

2.  Characteristics of the original optimisation program 

The optimisation process developed by Su et al [4] is used to optimise the design of 

external spur and helical gears with involute tooth profile. Up to nine gear design 

parameters can be optimised, including tooth facewidth, module, pressure angle, helix 

angle, rack tip radius, addendum coefficients, addendum modification (tooth profile shift) 

coefficients for pinion and wheel, and number of pinion teeth. The basic configuration of 

gear design is provided by the user, which includes geometry, performance and material 

information. The user also needs to submit the settings for genetic algorithm, such as 

population size, number of tests, fitness parameters, etc. Once the user has entered all the 

required parameters, the optimisation process can then proceed.  



The software utilizes genetic algorithm to perform the search for the design 

configuration that will give the maximum performance for spur and helical gears. The 

genetic algorithm conducts an adaptive search of various configurations of gear design, 

derived from an initial rough design that must be supplied by the user. The numerical 

analysis program is invoked by the genetic algorithm to calculate the tooth strength. The 

results of the genetic algorithm optimisation are displayed to the user, giving both the 

current performance and relative performance to the initial design. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1  The structure of the original optimisation program 

The genetic algorithm optimisation process is applied in a cascade fashion. The procedure 

comprises of two tiers, see figure 1. The cascade procedure requires an initial starting 

design to base the optimisation process upon. The initial values of the design form the 

starting positions and limiting conditions for the parameters that are to be optimised.  The 

first tier of the optimisation is invoked using the initial design or warm values, provided 

by the user, to adjust the parameters in search of a global optimum. The optimisation 

process continues until a limiting percentage of the genome population are identical. At 

this point the information encoded within the converged genome is decoded forming the 

solution to this tier and the intermediate warm values for the next tier. The resolution of 

the decoding process during pre-process in increased and the optimisation process 

repeated. In this case, the initial gear design that formed the base for the search is replaced 

by the solution obtained from the first tier. The purpose of tier 2 is to fine tune the result of 

the tier 1. In this way, the final result will be more accurate. 

In tier 2, the genetic algorithm optimiser is initiated again with the solution from the 

previous optimiser, applying a narrower, more accurate band to the search. Again the 

search is repeated until the limiting percentage of the population are identical, at which 

point the converged genome is decoded to form the final solution. 

 

2.2  The proposed solution 

The problem with the existing optimisation program is the time consumed for the program 

to reach the final solution. This depends on the genetic algorithm as well as the initial 

design given by the user, e.g. the number of parameters need to be optimised. Genetic 

Figure 1.  The cascade procedure of GA optimisation 
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Algorithm is known to be computationally expensive. One of the main factors which 

affects the execution time is the population. Population needs to be of adequate size to 

ensure that the search area is comprehensively covered. Even though the final output 

produces the satisfactory result, the time consumed for the program to reach the final 

solution could be a drawback for the user. This is particularly important in an Internet 

environment where speed is an essential factor. A new approach has been developed by 

the authors to address this problem to improve the speed of the execution drastically.  

In the new method, an artificial neural network is built to replace the first tier of the 

cascade procedure of the genetic algorithm optimisation. The function of the ANN is to 

estimate the solution of genetic algorithm after the first tier. In another words, to estimate 

the output of the first tier. This would then be fed into the second tier as the intermediate 

warm values, see figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3  Implementation of artificial neural networks 

A prototype software program that implements ANN, has been developed for one of the 

parameters, that is tooth facewidth. The training data is collected from a gear catalogue 

[7]. Hence the program tries to find the optimum value for the facewidth based on the 

condition given in the catalogue. The purpose of this proposed approach is to find a value 

as close as possible to the output of tier 1. It does not need to be exactly the same, since 

this would act as a warm input value to tier 2 and not the final output. This means that a 

number of initial parameters, that have slight effect on the final solution, could be 

excluded from the ANN training set. The idea is to reduce the data collection process by 

limiting the number of combinations for the ANN parameters. 

The original optimisation program was thoroughly investigated and every single 

parameter was scrutinised to filter out those data that were contributing significant effects 

on the output. Even though many data parameters were affecting the final output, most of 

these only had a slight effect. So, it is possible to omit these data from the input of the 

ANN. This would be very beneficial, since the presence of a large number of input data 

would increase the number of input patterns drastically. This might not be feasible in 

terms of the time required to train the ANN. The result of the detail examination carried 

out by Su et al [4] showed that all the input data are vital for the GA optimisation to 

produce an accurate result. However, ANN is not required to estimate such accurate result, 

Figure 2.  Implementing Neural Networks in the cascade procedure of GA optimisation 
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since the objective is to replace the first tier only. Any inaccuracy will be cleared in the 

second tier. 

Consequently, after the detailed investigation for the objective of reducing tooth width, 

the following parameters were found to have a significant effect on the final output: two 

fitness parameters, which are Stress and Facewidth (these two are part of the GA settings), 

Number of Teeth, Module, Pressure Angle, Power, Speed, gear Ratio. 

As indicated earlier, the design data was collected from a gear catalogue [7]. Four 

pressure angles (17.5, 20, 22.5, 24) and 12 modules (ranging from 0.5 to 6.0) are defined. 

To reduce the number of input data for ANN and to improve the performance, it was 

decided to create an ANN for each of these conditions. This means training 48 different 

sets of ANNs.  

Further study proved that in most cases, Power, Speed and Ratio had less effect on the 

output. So, the input data were narrowed down to three. It was detected that the ratio of the 

fitness parameters, i.e. Stress and Facewidth could be used instead of using them 

individually. As a result, the final decision was to use two inputs, i.e. Number of Teeth 

and the ratio of Stress and Facewidth and one output, i.e. tooth Facewidth. 

To further improve the performance, instead of using the actual output value, the 

difference between the output of tier 1 and the initial value would be used as the output of 

ANN. This proved to have a better result. Using the difference value would limit the range 

of data in the training set which leads to a better normalisation. This is because the 

difference between maximum and minimum values in the training set would be much 

lower compared to the case when using the actual output data.   

For each training pattern, two sets of data were produced, one for training and one for 

testing the generalisation of the ANN. These were done for all the 48 different networks. 

The number of patterns used for each of these networks differ. Each network was tested 

intensively and additional training patterns were added if the result were not satisfactory. 

Due to the limited space, it is not possible to list the number of training and test patterns 

for all the networks. On average, approximately 160 training patterns and 100 test patterns 

were used.  

Before feeding the patterns into the ANN, both the input data and the target need to be 

normalised. Data normalisation is required by the backpropagation algorithm to perform 

properly. The normalised data for the ANN, when sigmoid activation ( )1/(1 xey  ) is 

used, lies between 0.0 and 1.0; while for the tanh activation ( y = tanh (x) = 

)( xxxx eeee    ) function data values between -1.0 and 1.0 are used. One way to 

create a data that would lie within the limiting values is to use the minimum and maximum 

values in the dataset, that is: 

Xi = (Xi – min)/(max-min)   

where Xi is the normalised value of the ith data in a dataset and min & max are the 

minimum and maximum values found in the dataset. The above equation normalises the 

dataset between 0.0 and 1.0 which is used when sigmoid function is employed. For the 

tanh function we have, 

  Xi = (Xi – cent)/(max-cent) 



Where cent is the centre distance between min and max, that is: 

  cent = ((max – min)/2 )+ min   

It was found that sigmoid function suited this problem better and resulted in a more 

accurate output. This could be due to the fact that at certain situations, within the training 

patterns, there are sharp transitions of output from a high value to a low value, giving a 

high difference. When normalised between 0 and 1, the sudden transition would be of a 

lower difference (i.e. from 0 to 1) which makes ANN to behave more efficiently. 
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Figure 3. a) sigmoid function and b) tanh function  

 

2.4  Result  

The result of testing shows that ANN has managed to achieve the purpose of the proposed 

method. In most cases, it can estimate the output of tier 1 and the estimated value is very 

close to tier 1 output of the original GA program. This means that it can be used to replace 

the GA program in tier 1. During the training, the ANN was tested extensively with 

different values of learning rate, hidden nodes, momentum term, initial weight and the 

number of iteration, ensuring the best combination that would give the optimum result.  

As an example, one of the ANNs is evaluated here. This is the condition when module 

is 0.7 and pressure angle is 17.5. Table 1 shows the test carried out on the number of 

iterations. A network with 2-3-1 structure was used, having two inputs (i.e. ratio of the 

fitness parameters, Stress and Facewidth, and number of teeth), three hidden nodes and 

one output (i.e. Facewidth). The learning rate, momentum term and initial weight were set 

to be 0.05, 0.05 and 0.1 respectively. The network was then tested with different number 

of iterations, ranging form 5000 to 60000, refer to table 1.  

As shown in the table, there is only a slight change in the output errors. Increasing the 

number of iteration, causes a reduction in training error,  tand an increase in testing 

error,  g This means that the generalisation would be less accurate. So, the iteration 

number of 40000 was chosen, which shows an acceptable learning and generalisation 

capability. 
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ANN Learning 

Rate 

Momentum 

Term 

Init 

Weight 

No. of 

Iteration 
 t  g  

2-3-1 0.05 0.05 0.1 5000 0.055 0.076 

“ “ “ “ 10000 0.045 0.076 

“ “ “ “ 20000 0.047 0.076 

“ “ “ “ 30000 0.045 0.076 

“ “ “  “ 40000 0.044 0.076 

“ “ “ “ 50000 0.044 0.077 

“ “ “ “ 60000 0.044 0.077 

Table 1. Testing for the number of iterations 

 

Similar test was carried out for the learning rate, momentum term, hidden nodes and 

initial weight, as well as the combination of these parameters. Their optimum values were 

found to be 0.045, 0.05 and 0.05 respectively. The number of iterations and the hidden 

nodes were found to have a strong influence in the result of the ANN. On the other hand, 

learning rate, momentum term and initial weights had a less effect on the output. These 

tests were carried out for all the 48 networks to find their best structure. 

In order to analyse the efficiency of the proposed method, the output of tier 1 was tested 

for both the original program that uses GA only and the new one that implements ANN. A 

number of designs were fed into the programs and the output of the first tiers were 

monitored. Many tests were applied to investigate the result and the representative of all is 

provided in figure 4. As shown in the figure, the result has been satisfactory. In most 

cases, ANN has estimated a value very close to the output of GA. Only in two cases, i.e. 

tests number 4 and 6, the output estimated by ANN is slightly different. This does not 

cause any problem, since the estimated value is not totally off the target and it is still close 

to the GA output. Moreover, this is not the final value. This value would then be fed into 

Tier 2, where GA would start performing the search to find the final solution. 
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To further analyse this methodology, a number of tests were carried out on the speed and 

the iteration number, as shown in table 2. 

 

 

Figure 4. Comparison of the output of Tier 1 for GA and ANN 

GA 

ANN 



  τ1 + τ2 Total τNN + τ2 Total %Improvement 

 

Test 1 Execution Time (s) 25.15 + 25.49  50.64 0.01 + 25.82  25.83 48.99 % 

No. of Iteration 82 + 76  158 1 + 80  81 48.73 % 

       

Test 2 Execution Time (s) 23.84 + 21.84  45.68 0.01 + 25.49  25.50 44.18 % 

No. of Iteration 62 + 85  144 1 + 70  71 50.69 % 

                                                                                                                                                                    

Test 3 Execution Time (s) 44.87 + 26.64  66.747 0.01 + 25.18  25.19 62.26 % 

No. of Iteration 85 + 102  187 1 + 72  73 60.96 % 

 

 

Table 2 shows the execution time and the number of iteration for the original 

optimisation program that uses GA for both tier 1 and 2, and also for the new program 

which implements ANN for tier 1. Here τ1 and τ2 indicate the time taken for the GA tier 1 

and tier 2 respectively, while τNN indicates the execution time for the artificial neural 

network computation. For a better understanding, the execution time and the iteration 

number have been recorded for both tiers.  

In the first test, both the execution time and the iteration number of the two tiers of the 

new program, i.e. τNN + τ2 have been reduced almost by a half, i.e. execution time has been 

dropped from 50.64s to 25.83s and the iteration number from 158 to 81. Similar trend 

appears in the next two tests shown in the table, with the third test having percentage 

improvement of even higher than 60. The tests shown in table 2 are only representative of 

many tests carried out. The improvements were between 44% and 62.26%.  

 

3.  Improving the performance of backpropagation learning algorithm 

This section describes a method that allows an improvement in the performance of the 

Backpropagation learning algorithm. This is done by normalising the output values 

between 0.1 and 0.9 instead of 0 and 1 for the sigmoid function and between –0.9 and 0.9 

instead of –1 and 1  for the tanh function. This is related to the effect of the output 

derivative near the saturation levels. At these levels the derivatives tend to zero and hence 

the weight changes would be near zero.  By re-scaling the output data, the minimum value 

of the derivative will be slightly above zero which allows a slight weight change at the 

saturation level. This leads to a faster and more efficient learning process for the artificial 

neural network 

The proposed method is tested on two applications: 1) Function approximation and 2) 

Gear optimisation. Both produce satisfactory results and show an improvement in the 

training and generalisation errors. 

 

3.1  Backpropagation algorithm 

In this algorithm, the goal is to train a multi-layer perceptron network to approximate an 

unknown function, based on some training data consisting of pairs (x,d). The vectors x and 

d represent a pattern of input to the network and desired output (target) respectively. The 

Table 2. Comparing the speed of the execution of the original optimisation 

program and  the new one that implements ANN 

 



backpropagation calculation can be divided into three segments, feed-forward, weight-

adaptation, and feed-back (or error-backpropagation)[8]. 

 

Feed-Forward: 

In feed-forward operation all inputs to each neuron are multiplied by their associated 

weights, which are then summed up and sent to a limiting function to find the output 

values, 

 
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*     (1a)     

 )( jj netfy       (1b)  

where ijw  is the weight value between input i and output j and f(.) is a nonlinear activation 

function which is commonly represented by Sigmoidal approximation function [9] with 

the advantage of having a simple derivative, that is, 

)1/(1)( xexf      (2a)   

))(1(*)()(' xfxfxf     (2b)   

Sigmoid function bounds values between 0 and 1. However for certain applications, 

where a broader range of input and output values might be required, the tanh function is 

used instead. This function limits the activation values between –1 and 1. 

)tanh()( xxf       (3a) 

))(*)((1)(' xfxfxf     (3b) 

The derivatives are used during the learning process where it behaves somewhat like a 

filter. It allows a greater change in the weight values when the neuron output is near zero 

while it permits almost no changes in the weight values when a neuron has reached the 

saturation (0 or 1 for the sigmoid and –1 or 1 for the tanh function).  

 

Weight Adaptation: 

The output weights are updated by an error value that is obtained by, 
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where jd  is a target value and 
L

j  is error value for the jth neuron in the output layer L, 

and )(' L

jyf is the derivative of the activation value of the output layer neuron.  

This error value is then used to update weights of the jth node,  
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where η is learning rate coefficient, h

iy  is the output value of neuron i in hidden layer h, 

ijw  is weight value between hidden neuron i and output neuron j, and t is a time step (i.e. 

iteration). 

 

Feed-back: 

Since there is no explicit target for the internal representation of the network (or hidden 

nodes), the back-propagated error signal from the output layer is used to obtain the error 

values for the hidden neurons. This is a reverse calculation to the feed-forward going from 

output to hidden layer. Here for each hidden node, the error values of all output neurons 

are multiplied by their associated weight values and the summation of all multiplication 

will represent the error value, 
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A similar weight adaptation is performed for the output weight. 

 

3.2  Effect of the output derivative 

In most applications, the values of the outputs used for training data are not in the ranges 

of the artificial neural networks activation function (i.e. sigmoid or tanh). This means that 

the output data must be pre-processed by scaling. Scaling data before training the ANN is 

done by mapping the desired range of the outputs to the full working range of the ANN 

outputs.  

One problem with scaling data to full ranges of activation functions is that the values 

near the two ends (0 and 1 for sigmoid and –1 and 1 for tanh) reach the saturation level. 

This causes the weight adaptation of such neurons to seize or change insignificantly. The 

reason lies in the equation of the backpropagation weight adaptation (see Eq. 4 & 5).   

In weight adaptation equation the derivative of the neurons have significant effect on 

the weight values. As can be seen in figure 5a, the value of the derivative reaches a peak 

value (0.25) at the centre of the sigmoid function (i.e. when y=0.5 for x=0) and progresses 

towards zero very quickly at the two ends of the activation function (when y=0 or y=1). 

Therefore the derivative of the output neurons whose target values are close to 1 or 0, 

become almost zero. Hence any weight adaptation for such output neurons would be zero 

(or significantly low), since derivative affects the weight change formula (i.e. if 

derivative=0  weight change=0). 

As an example if an output value is 0.999, its derivative value would be 0.000999. 

Therefore the weight change, as indicated in Equations 4 & 5, will be very small for the 

neurons that have reached saturation. The same scenario exists for the tanh function (see 

figure 5b). The value of the derivative reaches the peak value at the centre of the activation 

function, (i.e. when y=0 for x=0) and inclines towards zero at the two ends (i.e. when y = -



1 and y = 1). So for tanh activation function, those output neurons that have target values 

close to 1 and –1, their derivatives becomes zero causing no change in the value of the 

weights. 

One solution to the problem of the insignificant weight adaptation of the neurons with 

saturated target values is to allow the derivatives of such neurons to have small effect even 

though they have reached their maximum or minimum values (1 or 0). This can be done 

by lowering the range of the output data to lie between slightly above zero and slightly 

below one for the sigmoid function (e.g. between 0.1 and 0.9). In this case the lowest 

derivative of the neurons would be 0.09 (i.e. 0.1(1-0.1) or 0.9(1-0.9) refer to Eq.2b) as 

compared to 0.0 (i.e. 0(1-0) or 1(1-1) ) for the 0 to 1 data scaling. Therefore the weight 

values will still be changing even though the neurons might have reached their saturation 

levels.  

So the output data are normalised between 0.1 & 0.9, and –0.9 & 0.9 for the sigmoid 

and tanh function respectively.  

 

3.3  Experimental Results 

As was mentioned before, the theory was tested on two applications, i.e. function 

approximation and a gear optimisation problem. 

 

Function Approximation: 

The function [10] that was used for this test is defined as: 

)1.0,0()exp(*)2sin()( Noisexxxf   

where x is in the range [-1, 1] and the Noise is a random value between 0.0 and 0.1. It is 

a sinus-line function with noise added to it. It is a non-linear function, which is difficult 

for AI to estimate the output. The purpose for the addition of the noise is to make it even 

harder for the ANN to predict the output. The network size of 1:10:1 was used for the test 

and output values were scaled in the range [0, 1] for sigmoid activation function and [-1, 

1] for tanh activation function.  

Table 3 summarises the original ANN architecture used for both problems, i.e. function 

approximation and one of the tests for gear optimisation, and lists the training error and 

generalisation error for each network. For these tests, the output data were normalised 

between 0 and 1. 

 

Problem ANN  t   g  

Gear Optimisation 2-3-1 0.044 0.076 

Function Approximation 1-2-1 0.022 0.024 

Table 3 – Test result for the original network  

 



Table 4 summarises the new ANN architecture where the output data were normalised 

between 0.1 and 0.9 and table 5 lists the percentage improvement between the new method 

and the original one.  

 

Problem ANN  t  g  

Gear Optimisation 2-3-1 0.040 0.061 

Function Approximation 1-2-1 0.011 0.014 

Table 4 – Test result for the new network 

 

Problem % Improvement for  t  % Improvement for  g  

Gear Optimisation 9.1 % 19.74 % 

Function Approximation 50 % 41.67 % 

Table 5 – Percentage improvement for the new method 

 

As shown in tables 4 and 5, in both cases the new network resulted in a better training 

and generalisation errors. For the gear optimisation, the training error has improved by 

9.1%, i.e. from 0.044 to 0.04, but the percentage of improvement for the generalisation 

error is much higher, i.e. 19.74%. The generalisation error has been reduced from 0.076 to 

0.061. These figures were relatively the same for different tests carried out on gear 

optimisation. For function approximation problem, the improvement is even higher, where 

there is a  50% improvement in the training error and 41.67% improvement in the 

generalisation error. 

Figure 5 and 6 shows this effect graphically for the function approximation problem. 

The average error is calculated using the equation: NTY  2)( , where Y is the 

calculated value, T is the target value and N is the number of training patterns. The graphs 

of the ANN training results were plotted for the two-dimensional function approximation 

problem. Figure 5 displays the graph for the original network and figure 6 displays the 

graph for the new network with re-scaled output data. There is an obvious improvement, 

specially where the outputs become close to maximum. Scaling the output to 0.9, brings 

the target closer to the output. Similar trend exists where the outputs get closer to 

minimum.  

Another important point which was observed during testing of the gear optimisation 

problem was that the new network was learning much faster than the original one. For the 

gear optimisation, it required 40000 iterations for the original network to reach the 

solution, whereas for the new network, only 5000 iterations were needed. To further 

analyse this, a fixed value was chosen for the final error to see how many iterations both 

the network require in order to reach that fixed value. It was tested for the final value of 

0.049 for the gear optimisation problem and the result was outstanding. The original 

network needed 19,440 number of iterations, whereas the new network reached the final 

value only in 340 iterations. Similar test was carried out for the function approximation 

problem and it followed the same pattern. 
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4.  Discussion and conclusion 

This paper presented a method to improve the speed and performance of a gear design 

optimisation program. The first section described the integration of ANN into the 

optimisation program which resulted in a dramatic reduction in speed. Even though ANN 

requires a lot of time to go through the learning process, once the training is completed, it 

is a matter of a simple calculation to produce the result (i.e. feed-forward computation). 

Therefore, it does not need to go through any iteration. Whereas in GA, the program needs 

to go through a number of iterations to search for the best possible solution. As a result, by 

replacing one tier that performs GA with ANN, it acts as if that tier has been eliminated, 

causing in an impressive reduction in the execution time. The experimental results show 

50% improvement in the execution time. Reducing the execution time improves the 

efficiency of the program. The method is of a particular benefit to the Internet-based 

version of the optimisation program where speed is a crucial factor. 

ANN has the capability of replacing both tiers, in such a case the result would be 

outstanding. Since ANN would be replacing the whole GA in the application, resulting in 

an immediate output of the result. At the moment, the training and testing errors are not 

low enough to replace tier 2. However, with further research in this area, this might be 

accomplishable. 

Output of NN 

Target 

Output of NN 

Target 

Figure 5 – ANN training result for the original network (average error = 0.022) 

Figure 6 – ANN training result for the new network (average error = 0.022) 



The second section dealt with the problem of weight adaptation for the situation when 

the output data reaches the saturation level (0 and 1 for sigmoid and –1 and 1 for tanh). 

The nature of the weight adaptation equation causes insignificant change in the value of 

the weights in such conditions. This problem was addressed by lowering the range of the 

output data to lie between, but not including, the full range of the activation function. The 

range of 0.1 to 0.9 was tested for the sigmoid function. Function approximation and gear 

optimisation were used for testing the proposed method. Experimental results illustrates 

that the proposed method is efficient, resulting in an improvement in the training and 

generalisation errors. It also speeded up the rate of learning of the artificial neural 

network. 
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