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ABSTRACT 

At present, little is known about the effect(s) of organophosphorous compounds (OPs) on 

cardiomyocytes. The present study aimed to investigate the effects of phenyl saligenin 

phosphate (PSP), two organophosphorothioate insecticides (diazinon and chlorpyrifos), and 

their acutely toxic metabolites (diazoxon and chlorpyrifos oxon) on rat H9c2 and human 

cardiomyocyte-like cells. The rat embryonic H9c2 myoblast cell line, which has the ability to 

differentiate into a cardiac muscle phenotype, can be instrumental in understanding OP 

cytotoxicity at different differentiation stages. Human induced pluripotent stem cell derived 

cardiomyocytes (hiPSC-CMs) were used for the validation of selected OP effects in a more 

human relevant system. The differentiation of both H9c2 and human cardiomyocytes 

resulted in increased expression of differentiated muscle markers such as troponin 1, 

tropomyosin and α-actin.  

OP-induced cytotoxicity was assessed by monitoring MTT reduction, LDH release, and 

caspase-3 activity. Cell death was not observed in mitotic or differentiated H9c2 cells with 

diazinon, diazoxon, or chlorpyrifos oxon (48 h exposure; 200 μM). Chlorpyrifos-induced cell 

death was only evident at concentrations >100 μM. In marked contrast, PSP displayed 

pronounced cytotoxicity towards both mitotic and differentiated H9c2 cells. PSP triggered 

the activation of JNK1/2, suggesting a role for this pro-apoptotic protein kinase in PSP-

induced cell death, which was attenuated by the JNK1/2 inhibitor SP 600125, confirming the 

role of JNK1/2 activation in PSP-induced cytotoxicity. Dansylated PSP was used to identify 

novel PSP binding proteins. 2D-gel electrophoresis profiles of cells treated with dansylated 

PSP (25 μM) were used to identify proteins fluorescently labeled with dansylated PSP. 

Proteomic analysis identified tropomyosin, heat shock protein β-1 and nucleolar protein 58 

as novel protein targets for PSP.  

The present study also examined the effect of sublethal concentrations of OP on 

differentiating H9c2 cells. This was assessed by monitoring morphological changes, levels of 

cardiac cytoskeleton protein expression and AChE activity in cells induced to differentiate in 

the presence and absence of OPs. Results showed that exposure to diazinon and chlorpyrifos 

induced morphological changes, AChE inhibition and decreases in troponin 1 expression. 

Morphological changes were observed with PSP treated cells concomitant with altered 

expression of cardiac cytoskeleton proteins, troponin 1, tropomyosin, α-actin and other 

novel proteins. When hiPSC-CMs were employed to validate differences in cardiac toxicity 

induced by OPs, a similar cardiotoxic pattern when compared to differentiated H9c2 cells. In 

summary, PSP induced cytotoxicity was associated with JNK activation and apoptrosis 

whereas little cytotoxicity was observed with the other OPs. However PSP, chlorpyrifos and 

diazinon induced sub-lethal effects in cultured H9c2 and hiPSC-CMs were associated with 

decrease levels of cardiac cytoskeleton protein expression.  
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1.1 Background 

Organophosphorous (OP) compounds were first synthesised in the 1800s by French chemists 

Jean Louis Lassaigne and Philip de Clermoun (Gallo & Lawryk, 1991). These chemical 

compounds were deployed as nerve agents in World War II (Chambers & Levi, 1992) and as 

chemical gas warfare weapons in the 1995 Tokyo subway terrorist attack (Suzuki et al., 

1995).  In the latter case, OPs were developed as pesticides by the German chemist Gerhard 

Schrader (Gallo & Lawryk, 1991). Since then, numerous OPs have been synthesised and 

commercialised worldwide.  

Nowadays, OP pesticides are widely used for a variety of purposes due to their wide ranging 

chemical and physical properties. For example, in developing countries they are used against 

microbial agents, plant pathogens and insects (Lotti, 2000). Some OPs are also used in jet 

engine lubricants as anti-wear additives, due to their fire-resistant properties (Solbu et al., 

2007). However in the last 25 years, numerous publications have reported passengers 

suffering from chronic symptoms such as cognitive problems and even paralysis 

(Montgomery et al., 1977; Winder et al., 2002). Moreover, neurotoxicity was reported in 

approximately 10–50,000 Americans who suffered from Tri-ortho-cresyl phosphate (TOCP) 

adulterant poisoning, an ethanolic organophosphate compound was first extracted from 

Jamaica ginger known as “Ginger Jake paralysis” (Smith & Lillie, 1931). 

 The increase in the global use of OPs has heightened concerns regarding their associated 

health problems. More than three million cases of OP pesticide poisoning have been 

reported and over 250,000 cases of mortality per year have occurred world wide (Carey et 

al., 2013). As a consequence, there is now considerable interest in determining the 

molecular mechanisms of OP-induced toxicity.  This study will investigate the effects of 

phenyl saligenin phosphate (PSP), the organophosphorothioate insecticides diazinon and 

chlorpyrifos and their acutely toxic metabolites diazoxon and chlorpyrifos oxon on mitotic 

and differentiated H9c2 cardiomyoblasts.   
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1.2 Mechanism of Organophosphate Toxicity 

The most well-known effect of organophosphate acute toxicity is due to the significant 

inhibition of acetylcholinesterase (AChE). AChE enzymes belong to the serine hydrolase 

family and mainly found at the neuromuscular junction, where it is responsible for 

acetylcholine (ACh) hydrolysis in the preganglionic and postganglionic neurons of the 

nervous system. Thus AChE terminates the transfer of signals to skeletal muscles, cardiac 

system and secretory glands (Ray & Richards, 2001). In recent years researchers have also 

shown that AChE activity may play a regulatory role in cell differentiation and cell-to-cell 

interactions; thus, blocking AChE activity may result in obstructed cellular dynamics (Jordaan 

et al., 2013), as shown in Figure 1.1.  

 

 

Figure 1. 1 Common neurotoxicity mechanism of OPs 

(A) Release of neurotransmitter acetylcholine from pre-synaptic neuron and subsequent 

binding to receptors on the post-synaptic neuron or muscle cells. (B) Termination of ACh 

function by AChE at cholinergic synapses. (C) Organophosphates bind to AChE and inhibit 

enzyme action, causing accumulation of free ACh at the synapse. 
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The primary biological targets of OPs are serine esterases. Once the OPs have bound to the 

active site of AChE, this leads to enzyme organophosphorylation and the accumulation of 

ACh at the nerve cholingenic synapse, resulting in the hyper-stimulation of muscarinic and 

nicotinic receptors (Hasan et al., 1979, Costa, 2006). The hydrolysis of OPs can either be via 

A-esterases e.g. PON1 or B-esterases e.g. AChE, butyrylcholinesterase (BuChE), and 

neuropathy target esterase  (NTE). Catalytic hydrolysis by A-esterases is known to break 

down OP compounds to their major metabolites (detoxification) without affecting esterase 

activity (Costa et al., 2003). Conversely, non-catalytic hydrolysis of OPs by B-esterases causes 

significant inhibition of esterase activity and leads to the adverse effect of toxicity (Costa, 

2006).  Poisoning with OPs may occur through inhalation, ingestion or exposure of the skin 

(Karki et al., 2004).  The severity of the symptoms depends on the extent of the OP-AChE 

binding. The inhibition of acetylcholinesterase by OPs through a stoichiometric reaction may 

last from a few hours to several days and may be reversible or irreversible, depending on the 

chemical nature of the OP (Chambers, 2004). Irreversible reaction is that the OP-AChE 

complex can undergo non-enzymatic dealkylation. This is known as an aging reaction, 

resulting in deactivation of phosphorylated esterase via the loss of one or two R groups 

(Costa, 2006) as shown in Figure 1.2.  
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Figure 1. 2 A simplified representation of interaction mechanism between OPs and 

esterases.   

Reaction (1) leads to reversibly organophosphorylated AChE. Reaction (2) leads to the spontaneous 

reactivation of AChE and hydrolysed OP. Reaction (3) leads to the stable inactive (aged) negatively 

charged organophosphorylated AChE. 

 

1.3 Clinical Presentation and Possible Treatments  

Clinical signs may include skeletal muscle fasciculation, respiratory failure, muscle weakness 

and ultimately death (Kose et al., 2009). Organophosphate poisoning has therefore become 

a major research area and a complete understanding of toxicity mechanism(s) is essential to 

identify novel OP protein targets. Exposure to OPs can be evaluated by measuring the 

activity of AChE in the blood or by the detection of OP metabolites in the urine (Atala & 

Lanza, 2001; Eskenazi et al., 2004). However, given the varying nature of AChE inhibition, this 

is dependent upon the specific OP involved (Atala & Lanza, 2001; Quistad, 2005). Protection 

from OP intoxication is suggested for military personnel (Chambers, 2004). This can be 

achieved through the neutralization of OPs by providing exogenous (non-target) esterases, 

such as oximes. This allows the phosphorylation of these non-target esterases prior to the 

phosphorylation of the target esterases. This retains the availability of active AChE and 

prevents undesirable toxic effects (Chambers, 2004). Also, in case of OPs poisoning, atropine 

can be provided for patients to reactivate unaged acetylcholinesterase (Worek & Eyer, 
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2006). However, their use were controversial and treatment depends on the type of OPs and 

the severity of poisoning (Cherian et al., 2005). 

1.4 Chemical Structure of Organophosphorous Compounds  

Organophosphates are esters derived from phosphoric acid (Figure 1.3), which inhibit AChE 

(Eddleston et al., 2008). Organophosphate molecules contain two lipophilic groups R1 and 

R2, and an X group which is the “leaving group” more liable to be displaced when an OP 

binds to the active site serine on AChE, through an organophosphorylation reaction forming 

a stable bond (Costa, 2006).  Figure 1.4 illustrates the structures of several common OP 

compounds.  Some OPs, such as,  chlorpyrifos, diazinon and PSP, which will be focused on in 

this study.  

 

 

 

 

 

 

 

 

Figure 1.3 General chemical formula of organophosphorous esters. 

Oxygen or sulphur are attached to the phosphorus. The leaving group detaches when OPs interact 

covalently at the active site of AChE.  R1 and R2 are commonly alkoxy, amino, thio alkyl and phenyl 

groups, which can be the same or vary. X can be a halogen or alkyl, alkoxy group. 
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Figure 1.4 The chemical structures of several common OP compounds. 

 

1.5 OPs of Relevance to this Study 

This study investigated the effects of PSP, two organophosphorothioate insecticides 

(diazinon and chlorpyrifos) and their acutely toxic metabolites (diazoxon and chlorpyrifos- 

oxon) on mitotic and differentiated H9c2 cardiomyoblasts, the chemical structures of which 

are shown in Figure 1.4. These OPs exhibit differential binding affinity either to AChE or to 

NTE from human tissue to exert their toxicity as shown in Table 1.1. Their bioactivation and 

mechanism to induce toxicity will be briefly discussed in the following sections.  

Table 1. 1 Sensitivity of different inhibitors of OPs toward human AChE and NTE. 

OPs AChE I50  (µM) NTE  I50 (µM) 

Chlorpyrifos oxon 0.01 0.2 (Lotti, 2000) 

Diazoxon 0.0068 (Colovid, 2010) no data presented 

Phenyl saligenin phosphate 0.12 0.003 (Lotti, 2000) 

I50: half maximal inhibitory concentration. 
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1.5.1  Chlorpyrifos  

Chlorpyrifos (O, O-diethyl O-3,5,6-trichloropyridin-2-yl phosphorothioate, chlorpyrifos-ethyl) 

was the first OP to be  released onto the market.  It has been used globally as an active 

pesticide in the agricultural sector (Fenske et al.,2002) and is also used widely in the non-

agricultural sector. For example, in professional golf lawn care, retail lawn care and in 

termite liquid barriers (Eaton et al., 2008; Rush et al., 2010).  However, exposure to trace 

amounts of more than 0.001–0.01 µg/kg/day of these toxic pesticides poses a health risk for 

farm workers (Eaton et al., 2008). 

Chlorpyrifos is well absorbed by the intestines and lungs and rapidly metabolized. The 

toxicity of chlorpyrifos is dependent on its biotransformation via oxidation reactions to form 

the active metabolites TCPy (3,5,6- trichloro-2-pyridinol), diethylthiophosphate (DETP) and 

diethylphosphate (DEP), or via desulphuration to form chlorpyrifos oxon (Chambers, 1992) 

as shown in Figure 1.5. These metabolites are mainly formed in the liver and brain 

(Chambers & Chambers, 1989).  

 

Figure 1.5 Metabolic pathway of chlorpyrifos.  

Desulphuration reaction lead to bioactivation of chlorpyrifos to a more potent cholinesterase 

inhibitor chlorpyrifos oxon, or dearylation reaction lead to the degradation of chlorpyrifos to  TCPy , 

DETP and DEP. Taken from (Eaton et al., 2008). 
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Bioactivation of chlorpyrifos is mainly induced by various cytochrome P450 (CYP) isoforms to 

produce chlorpyrifos oxon.  Cytochrome P450 enzymes are present in the liver and the 

activity of specific isoforms varies between individuals (Demorais et al., 1994) CYP isoforms 

such as CYP2B6, CYP1A1, CYP3A4 and are responsible for OP biotransformation and CYP2C19 

and paraoxonase is important for OP detoxification processes (Sams et al., 2004; Rose & 

Hodgson, 2005). However, the balance between the formation of oxon and its detoxification 

is dependent upon the expression/activity of the various CYP isoforms (Rose & Hodgson, 

2005). For example, CYP2B6 is mostly responsible for the formation of chlorpyrifos oxon, 

whilst CYP2C19 seems to have the highest deactivation activity. Furthermore, the expression 

levels of these isoforms varies between individuals (Sams et al., 2000). Thus, individuals with 

high CYP2B6 and low CYP2C19 are highly susceptible to chlorpyrifos toxicity (Sams et al., 

2004; Mutch & Williams, 2006). Therefore, the profile of CYP isoforms may be an important 

contributor to differences between individuals in their susceptibility to the adverse effects of 

chlorpyrifos (Stevens et al., 2003). 

Several studies have assessed the direct effects of exposure to chlorpyrifos oxon, which is 

known to be more potent inhibitor to AChE than its parent compound chlorpyrifos (Das & 

Barone, 1999; Zhao et al., 2006; Eaton et al., 2008). The influence of chlorpyrifos oxon were 

reported to cause cholingenic hyper-stimulation, which evokes neurobehavioral changes and 

induces alterations in gene expression (Slotkin et al., 2007). Chlorpyrifos toxicity has also 

been reported. For example, chlorpyrifos (60 µM) reduced pro-apoptotic gene expression 

(e.g. Bcl-2 (B-cell lymphoma 2), CDKN2A (cyclin-dependent kinase inhibitor 2A) and MTA2 

(metastasis associated 1 family member 2) in JAR cells (Saulsbury et al., 2008). It has also 

been reported that chlorpyrifos not only causes the inhibition of AChE activity but may also 

affect other organs. For example, Haas et al. (1983) reported gastrointestinal effects in 

piglets when exposed to chlorpyrifos and necropsy examination showed an increased level 

of intestinal fluid associated with severe diarrhoea and ending in mortality resulted from 

chlorpyrifos poisoning. Finally, chlorpyrifos can be detected in blood immediately after 

exposure.  Its clearance from blood can occur rapidly, whereas its clearance from the whole 

body appears to be slow, and higher concentrations of chlorpyrifos are found in lipid adipose 

tissue in its steady state (Eaton et al., 2008). 
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1.5.2  Diazinon 

Diazinon (O,O-diethyl-O-(2-isopropyl-4-methyl-6-pyrimidinyl phosphorothionate) is one of 

the most common and widely used pesticides. However, it has a potential toxic effect on 

water and food resources and therefore its use is highly restricted. Diazinon evaporates 

easily and its half-life varies depending on sunlight, pH, microorganisms present and the 

temperature of the environment (Zhang et al., 2011). Diazinon undergoes degradation 

through direct oxidation degradation hydrolysis, producing the metabolites 2-isopropyl-6-

methyl-pyrimidin-4-ol and diazoxon (Kouloumbos et al., 2003). Diazinon undergoes a 

sulphoxidation reaction to form the toxic metabolite diazoxon (Vittozzi et al., 2001). The 

structures of these metabolites are shown in Figure 1.6.  

 

 

 

Figure 1.6 Metabolic pathway of diazinon.  

The metabolite from the hydrolysis reaction is 2-isopropyl-6-methyl-pyrimidin-4-ol, while metabolite 

from the desulphuration pathway is diazoxon, which exhibits more potency in inhibiting AChE. Taken 

from (Kappers et al., 2001). 

Diazoxon is produced by oxidative desulphuration (P=S), which involves the substitution of 

sulphur with oxygen (P=O; Zhang et al., 2011). Moreover, diazoxon shows a high reactivity, 

which gives it a greater potency to inhibit AChE. It also exhibits more polarity than the 

parent compound and possesses a greater stability in aquatic environments (Kouloumbos et 

al., 2003). In vivo, diazinon metabolism is mediated by several cytochrome P450 isoforms 
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that include CYP2C19, CYP1A2, CYP3A4 and CYP2C19 (Kappers et al., 2001). Several enzymes 

e.g. CYP450, PON1 (paraoxonase 1), and B-esterase present in the intestines and liver are 

responsible for diazinon detoxification. Therefore, resistance to toxicity relies on the balance 

between bioactivation and detoxification following exposure to diazinon (Poet et al., 2003). 

Acute exposure to diazinon has been associated with long-term health problems (Barrett & 

Jaward, 2012). For example, it has been reported that diazinon can cause mutagenicity 

resulting in chromosome abnormalities and sister chromatid exchange (Cox, 2000). Other 

studies have reported renal toxicity following exposure to diazinon (Jha et al., 2013). For 

example, diazinon decreases the activity of metabolizing enzymes such as glutathione-S-

transferase and quinine reductase, leading to increased levels of blood urea nitrogen and 

serum creatinine (Shah & Iqbal, 2010). 

1.5.3 Phenyl saligenin phosphate  

PSP is an analogue of saligenin cyclic-o-tolyl phosphate (SCOTP), the active metabolite of tri-

ortho cresyl phosphate (TOCP), produced in hepatic cells (Fowler et al., 2008). Since TOCP is 

mainly used in aircraft engines. This may lead to an occupational exposure from toxic 

aerosols, potentially resulting in memory loss and cognitive dysfunction (Winder & Balouet, 

2001, Michaelis, 2011).  Extensive studies revealed that some OPs, including PSP and TOCP, 

neither of which is a pesticide, exert their toxicity by organophosphorylation and inhibition 

of NTE which results in organophosphate-induced delayed neuropathy (OPIDN) in vivo  

(Nomeir & Abou-Donia, 1986; Zhao et al., 2006). Both PSP and TOCP act similarly to produce 

neurodegenerative poisoning (Hargreaves, 2012). However, to date, human exposure to 

TOCP is poorly documented; this therefore represents a wide area for research which needs 

to be undertaken (Baker et al., 2013).  

1.6 Molecular Targets of PSP 

PSP has been found to interfere with other cellular targets such as cytoskeletal proteins, 

neurotrophin receptors and transglutaminase enzyme activity (Carlson & Ehrich, 2001; Harris 

et al., 2009; Pomeroy-Black & Ehrich, 2012). Therefore, it is worthwhile to discuss other 

targets involved after PSP exposure, in order to understand the potential molecular basis of 

PSP toxicity more fully. 
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1.6.1 Effect of PSP on neuropathy target esterase 

PSP has been shown to be a classical inhibitor of the NTE enzyme (Baker et al., 2013). NTEs 

are anchored in the endoplasmic reticulum and are essential for lipid metabolism (Forshaw 

et al., 2001; Van Teinhoven et al., 2002). Moreover, NTEs display high catalytic activity in 

neuronal cells, although NTE activity has been demonstrated in non-neuronal tissue and cells 

such as testicles, kidney, and lymphocytes. Increased expression of NTE occurs in the early 

stages of embryo development and is thought to play an important role in signal 

transduction and nervous system development (Lotti & Moretto, 1993; Moser et al., 2000; 

Road, 2010). Thus any alteration in neuronal NTE activity may cause disruption of the 

endoplasmic reticulum, followed by vacuolation in cell bodies leading to defects in cellular 

function (Van Teinhoven et al., 2002; Akassoglou et al., 2004).  

Organophosphorylation of NTE by OPs is necessary for the development of OPIDN (Costa, 

2006). OPIDN occurs when OPs interact with NTE and the latter undergoes an “aging” 

reaction, forming a terminal group with a negative charge linked to the active site of  

esterase, preventing enzyme to reactivate, as shown previously in Figure 1.2 (Williams, 

1983). Complete organophosphorylation of NTE prevents the outgrowth of axon-like 

processes in differentiating N2a cells, following exposure to PSP (Flaskos et al., 1994). 

Moreover, the inhibition of NTE may lead to neuronal degeneration and to modification of 

axonal morphology, both of which are early events of OPIDN in response to OP exposure 

(Ehrich & Jortner, 2001).  

1.6.2 Effect of PSP on mitogen-activated protein kinase  

To further characterize PSP-induced toxicity, the effects of PSP on mitogen-activated protein 

kinase (MAPK) and phosphoinositide-3-kinase/protein kinase B (PI-3K/PKB) signalling 

pathways has been investigated (Hargreaves et al., 2006; Pomeroy-Black & Ehrich, 2012). For 

a detailed description of MAPK and PI-3K/PKB signalling pathways, see section 1.9. These 

signalling pathways play a vital role in the neuronal response to OP exposure, as they are 

responsible for regulating neurite outgrowth and cell survival (Kaplan, 1995). An increase in 

both phosphorylated PKB and MEK1/2 protein kinases was observed in human SH-SY5Y 

neuroblastoma cells after PSP exposure (Pomeroy-Black & Ehrich, 2012). Interestingly this 
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study explored OP-induced activation of neurotrophin receptors by very low concentrations 

of PSP (e.g. 0.01-1.0 μM).  Thereby any disruption in these cascades may promote 

morphological changes and/or neuronal cell death (Nostrandt et al., 1992, Carlson et al., 

2000). The effect of other neuropathic OP compounds on MAPK pathway-signalling proteins 

has been demonstrated in differentiating mouse N2a neuroblastoma cells (Hargreaves et al., 

2006). For example, PSP (2.5 µM; 4 h) triggered transient activation of extracellular-signal-

regulated kinases 1/2 (ERK1/2) which is associated with inhibition of NTE activity in mouse 

N2a neuroblastoma cells (Hargreaves et al., 2006).  

1.6.3 Effect of PSP on cytoskeleton proteins  

Further studies have assessed the disruption of cytoskeleton proteins during the induction of 

OPDIN by PSP. For example, in white Leghorn hens, PSP (2.5 mg/kg) promoted an increase of 

serum autoantibodies toward cytoskeleton protein neurofilament (NF) subunits (El-Fawal & 

McCain, 2008). NF subunits are proteins that play a vital role in the regulation of axonal 

diameter and regulation of the dynamics of cytoskeletal proteins such as microtubules and 

actin filaments (Perrone Capano et al., 2001). If this regulation fails, cells will produce 

unstable microtubules with consequent disruption of axonal transport. Massicotte et al. 

(2003) also showed that PSP (1 µM) induces microtubule and neurofilament degradation 

associated with marked masses of cytoplasmic debris and neurite swelling in chick embryo 

dorsal root ganglia cultures. Hargreaves et al. (2006) also observed an increase in the 

phosphorylation of NF heavy chain in differentiating mouse N2a neuroblastoma cells when 

exposed to a sub-lethal neurite outgrowth inhibitory concentration of PSP (2.5 µM). 

Therefore, changes in these proteins can be considered as biomarkers for the progression of 

neuronal injury and neurotoxicity and a key event of the development of OPDIN following 

extensive PSP exposure (McConnell et al., 1999; Yang et al., 1999; Lalonde & Strazielle, 

2003). 

Previous studies have also shown that neuronal protein myelin-basic protein (MBP) is also 

phosphorylated by PSP (El-Fawal & McCain, 2008). This protein is a key component of myelin 

and is involved in its formation and maintenance (Boggs, 2006). It is also required for 

neuronal cell migration, survival and neurite outgrowth (Maness & Schachner, 2007). It is 

possible that phosphorylation of NF heavy chain and MBP might indicate myelin 
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degeneration and axonal damage, which was also seen in brain and spinal cord of chickens 

exposed to TOCP (Abou-Donia & Lapadula, 1990). Supporting evidence has come from an in 

vivo study by Ehrich & Jortner (2001), which reported that a toxic dose of PSP (10 mg/kg) 

resulting in the appearance of abnormal neurite growth and axonal damage in large 

myelinated fibres. All together, these studies support the claim that chronic exposure to PSP 

induces cytoskeletal disruption as well as NTE inhibition, which are all characteristic of an 

early event of OPIDN. 

1.7 Effect of Organophosphorous Compounds on The Cardiovascular System  

A number of studies have drawn attention to the cardiac effects associated with 

occupational exposure to OPs (Zoltani et al., 2006). Evidence suggests that cardiac 

complications may occur after exposure to OPs (Roth et al., 1993; Karalliedde, 1999); 

however, the pathophysiology of cardiotoxicity following exposure to OPs is still not known.  

Multiple studies have, however, reported that sudden death may take place after exposure 

to OPs, with patients showing myocardial necrosis and toxic myocarditis (Anand et al., 2009). 

This is due to the accumulation of ACh at ganglionic and cardiac centres leading to hypoxia 

and disruption of ion transportation (Karki et al., 2004). 

Growing evidence also suggests that OPs (e.g. methamidophos) may trigger cardiac 

hypertrophy (Calore et al., 2007). These authors suggest that the main cause of hypertrophy 

is a persistent systemic arterial hypertension following exposure to the toxin (Saadeh et al., 

1997).  Hypertrophy is caused by the modulation of several complex biochemical pathways, 

such as calcineurin signalling. Calcineurin is a serine/threonine phosphatase, whose 

activation leads to the dephosphorylation and activation of transcription factors such as the 

nuclear factor of activated T cells (NFAT). The NFAT transcription factor family is involved in 

the regulation and development of the cardiac system (Shiojima, 2005). These studies have 

increased the interest in the study of cardiac abnormalities associated with OP toxicity and 

how they may modulate cardiac specific signalling pathways. 

The various alterations seen in cardiac cells reveal a clinical picture of severe poisoning, with 

observed symptoms such as ventricular tachycardia, prolonged QT interval (the heart 

rhythm condition; measurement between Q wave and T wave in the heart's electrical cycle) 

and atrioventricular block (Kiss & Fazekas, 1979). Some authors believe that significant 
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cholinesterase inhibition in the plasma may produce changes in the electrocardiogram (ECG) 

leading to prolonged QT and ultimately cell death (Lotti, 2000). Pimentel & Carrington da 

Costa (1992) also reported that cholinergic overstimulation of cardiomyocytes is associated 

with lysis of myofibrils, micro-necrosis and an abnormal Z band. However, at present there 

are no current data concerning the cardiac biochemical markers associated with cardiac 

damage due to OP exposure. For this reason it is important to understand the molecular 

mechanisms associated with OP-induced cardiotoxicity. This project will investigate the 

effects of OPs on rat H9c2 cells and human stem cell derived cardiomyocytes. 

1.8 Alternative Molecular Targets of Organophosphates  

Emerging evidence suggests that not all of their toxicological actions involve the inhibition of 

the AChE, since other proteins and enzyme targets of OPs are involved (Casida & Quistad, 

2005; Lopachin & Decaprio, 2005). Investigations of other markers beyond AChE were 

essential to detect post-OP exposure. Interestingly, the hypothesis that OPs may affect 

targets other than AChE is supported by numerous studies and will be discussed in the 

following sections. 

1.8.1 Cytoskeleton proteins 

A number of studies have observed significant effects of OPs on motor proteins such as 

kinesin, which can result in the disruption in axonal transport (Massicotte et al., 2003). Thus 

kinesin mediates the transport of vesicles and organelles and other cellular proteins along 

the microtubules through the axon and it is essential for a number of cellular functions 

(Pernigo et al., 2013). Gearhart et al. (2007) have clearly shown that administration of 0.59 

nM diisopropylfluorophosphate and 10 μM chlorpyrifos affected kinesin function leading to 

impairment of axonal transport and axonal swelling of bovine brain cortex cells. This is 

further supported by Inui et al. (1993) who correlated axonal swelling with the development 

of organophosphate induced delayed neurotoxicity in male Wistar rats exposed to TOCP. 

According to Abou-Donia (1993) axonal swelling is mediated through the hyper-

phosphorylation of cytoskeletal proteins following TOCP exposure, leading to a decrease in 

transportation and an aggregation of proteins along the axon (Abou-Donia, 1993). 

Organophosphorus compounds were found to target cytoskeleton proteins such as tubulin, 

and thus they interfere with their assembly leading to impairment in microtubule function 
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(Prendergast et al., 2007). For example, low concentrations (0.005 and 0.01 mM) of 

chlorpyrifos oxon were found to bind to tubulin and prevent its polymerization (Grigoryan & 

Lockridge, 2009). Tubulin polymerization is implicated in the formation of microtubules 

which are essential components of the cytoskeletal system, which is disrupted in 

neurodegenerative diseases (Gendron & Petrucelli, 2009). It has also been shown that 

dichlorvos exposure results in increased phosphorylation of tubulin affecting its assembly, 

resulting in axon dissociation and synaptic dysfunction (Choudhary et al., 2006). Moreover, 

the effect of individual OPs on actin cytoskeleton filaments in human neuroblastoma cells 

varies and relies on their distinct potency and structural activity (Carlson & Ehrich, 2001). 

Future studies should focus on the identification of possible non-cholinergic targets of OP 

compounds, which will help to increase understanding of the molecular mechanisms of OP-

induced toxicity. 

1.8.2   Albumin adducts 

In 2005, Peeples et al. investigated novel protein targets for OPs used as pesticides. Initially, 

their research started by incubating mice with OP-labelled with FB-biotin (10-

(fluoroethoxyphosphinyl)-N-(biotinamidopentyl) decanamide). Labeled FP-biotin can be used 

to identify proteins that bind to OPs (Schopfer et al., 2005). Organophosphates including 

chlorpyrifos oxon, dichlorvos, diisopropylfluorophosphate and sarin were incubated with 

human serum albumin, after which albumin peptide sequences were compared with and 

without OP treatment by mass spectrometry (MS; Peeples et al., 2005). These compounds 

were found to bind covalently to Tyr411 and residue in albumin (Li et al., 2007). Thus, this 

OP-albumin binding shows more stability than OPs binding to the serine active site of 

cholinesterase (Read et al., 2010).  These findings support the claim that albumin is one of 

the biological markers that could act as a detoxifying protein in cases of OPs endogenous 

intoxication, however this also depend on the type of OPs (Xu et al., 2007; Lockridge & 

Schopfer, 2010).  

1.8.3   Acyl peptide hydrolase 

APH is a serine acyl peptide hydrolase primarily present in red blood cells which is 

responsible for cleaving N-acetylated peptides for detoxification (Shimizu et al., 2004). The 
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detection of such enzyme activity may show more sensitivity than other OP targets due to its 

life-span, which is approximately 120 days, thus lasting long after OP in vivo exposures 

(Umlas et al., 1991; Quistad et al., 2005). In vivo study with mice have demonstrated that OP 

exposure can inhibit the activity of APH in brain (Cardona et al., 2013).  Three types of 

insecticides (dichlorvos, naled, and trichlorfon) showed sensitivity to the APH enzyme 

(Quistad et al ,2005). Other study documented how other serine proteases (dipeptidyl 

peptidase IV and t-PA (tissue plasminogen activator) that belong to the APH subfamily may 

react with distinct types of OPs (Rosenblum & Kozarich, 2003). In comparison to AChE, 

different oxons (toxic metabolites of parent OP) showed ability to inhibit APH at lower 

concentrations than those required for AChE inhibition during in vivo exposure (Richards et 

al., 2000). APH has been shown to be a potentially sensitive biomarker for identifying OP-

delayed neurotoxicity with respect to AChE (Olmos et al., 2009).Based on these facts, 

inhibition of APH activity may be used as a biomarker for monitoring OP toxicity. 

Numerous non-cholinesterase targets of OPs were discussed in the previous section.  

However, it needs to be emphasized that other non-cholinesterase targets may be 

implicated in OP toxicity. An experimental design needs to be developed to study the 

association of all types of OPs with their specific targets. As the current study has focused on 

the effects of OPs on mechanisms of cell death and signaling pathways a detailed discussion 

of such events would be worthwhile. 

1.9 Cell Signalling 

Organophosphate exposure may modulate cell signalling pathways which are critically 

important in the development of differentiated cells and numerous other cellular processes 

including cell survival and cell death (Slotkin, 2005). Cell signalling is a response that occurs 

within the cytoplasm when a cell receives an external signal leading to the activation of a 

cascade to transfer internal signals to the desired place in order to achieve the appropriate 

intracellular action. Moreover, this control mechanism involves regulatory proteins 

communicating with each other through signal transduction pathways to evoke a myriad of 

cellular functions (Weinberg, 2007). 
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1.9.1 MAPK signalling pathway 

Mitogen-activated protein kinases (MAPKs) are a family of protein kinases that respond to 

stimuli and catalyse the phosphorylation of specific proteins inside the cell. They are 

involved in the regulation of numerous cellular functions that include cell proliferation, cell 

differentiation, cell survival and apoptosis (Kim & Choi, 2010). Their activation is induced by 

several external factors such as cytokines, growth factors and hormones (Stathopoulou et 

al., 2008). The mammalian MAPK family consists of three major groups, which are the 

extracellular signal-regulated kinases (ERK1/2), the c-Jun N-terminal kinases (JNK1/2/3) and 

the p38 MAPKs (p38 MAPK-α/β/γ/δ). Activated MAPKs phosphorylate a multitude of protein 

substrates that include transcription factors, in order to bring about a specific cellular 

response (Zhang et al., 2003). Each individual MAPK pathway involves the sequential 

activation of several different proteins kinases that are summarised in the following 

sections.  

1.9.2 Extracellular-signal-regulated kinases 1/2 

The ERK1/2 signalling pathway plays a key role cell proliferation and differentiation (Johnson 

& Lapadat, 2002). Activation of the ERK1/2 signalling pathway is initiated when a ligand such 

as epidermal growth factor (EGF), insulin, or platelet-derived growth factor (PDGF) binds to 

its respective tyrosine kinase receptor e.g. insulin receptor, EGFR, and PDGFR. This promotes 

receptor dimerization and auto-phosphorylation of tyrosine residues. After that the adaptor 

protein, growth factor receptor bound protein 2 (Grb2), binds to the phosphorylated 

receptor via its SH2 domain. Grb2 functions to link proteins to one another and contains one 

central SH2 and two SH3 domains which interact directly with Son of sevenless (Sos) and 

place Sos near the membrane. Sos functions as a ubiquitous guanine nucleotide exchanger 

for Ras and possesses a Ras binding site. Once Sos is recruited to the plasma membrane, it 

catalyses the exchange of GDP for GTP on the monomeric G-protein Ras (Pierre et al., 2011) 

as shown in Figure 1.7.  
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Figure 1.7 Activation of MAPK signalling transduction by RAS.  

Binding of a growth factor (GF) to a tyrosine kinase linked-receptor leading to receptor dimerization. 

The receptor then undergoes auto-phosphorylation and binds to Grb2 (adaptor protein) via its SH2 

domain.  Grb2 then interacts with Sos via SH3 domains which leads to the recruitment of Sos to the 

plasma membrane, which stimulates the exchange of inactive Ras-GDP  to its active Ras-GTP form. 

 

Activated Ras (Ras-GTP) then promotes the activation of several members of the MAPKKK 

family, which in this case are Raf protein kinases (A-Raf, B-Raf, C-Raf). Activated Raf triggers 

the downstream phosphorylation and activation of MEK1 and MEK2 (Weinberg, 2007). After 

that, MEK1 and MEK2 phosphorylate and activate ERK1/2 as shown in Figure 1.8; once 

activated, ERK1/2 phosphorylates a number of downstream targets including transcription 

factors (e.g. CREB; cAMP response element-binding protein), phospholipase A2 and 

ribosomal S6 protein kinase  (Bornfeldt, 1996; Chen et al., 1998; Davies et al.,2000).  These 

targets play essential roles in proliferative responses, cellular machinery and cytoskeletal 

reorganization (Reszka et al., 1995; Roskoski, 2012). The ERK1/2 pathway plays a major role 

in myocardial growth in the embryonic mouse (Stathopoulou et al., 2008). Similarly, 

reduction in phosphorylated ERK1/2 causes an alteration in the ventricular compact layer 

outgrowth and affects coronary vessel development (Lin et al., 2010). These observations 

support the fact that ERK1/2  is an essential  regulator of myocardial growth (Kang & Sucov, 

2005). 



Chapter 1 

20 
 

1.9.3 Jun N-terminal kinases 

JNK or Jun N-terminal kinases comprise three distinct members, namely JNK1, JNK2 and 

JNK3 (Derijard et al., 1994; Kallunki, 1994;  Gupta et al., 1996).  Generally these kinases are 

activated in response to stress stimuli such as heat shock, UV-radiation and osmotic shock 

(Bogoyevitch et al., 1996). Initially, their activation starts with the activation of small 

GTPases of the Rho family (Rac, Rho, Cdc42), which promote the activation of several 

members of the MAPKKK family e.g. MEKK1/2/4. Activated MAPKKKs then phosphorylate 

and activate MAPKK family e.g. MKK4/7  which in turn phosphorylate and activate JNK1-3 

(see Figure 1.8). Once JNK has been activated, it translocates to the nucleus and 

phosphorylates several transcription factors to induce programmed cell death or apoptosis 

(Weston & Davis, 2002; Dhanasekaran & Reddy, 2008). 

Several studies have shown that phosphorylated JNK evokes activation of the transcription 

factor AP-1 (activator protein 1; Kolomeichuk et al., 2008). The JNK/AP-1 pathway promotes 

apoptotic action via the increased transcription of pro-apoptotic genes such as TNF- (tumor 

necrosis factors-), Fas-L (Fas ligand) and Bak (Bcl2 antagonist/killer 1; Dhanasekaran & 

Johnson, 2007; Raman et al., 2007). In addition, JNK phosphorylates a number of pro-

apoptotic substrates, which play a vital role in the intrinsic and extrinsic pathways involved 

in apoptosis (see section 1.10). For example, JNK phosphorylates pro apoptotic BAD in 

primary granule cells which leading to the inhibition of pro-survival proteins such as Bcl-2 

(Gross et al., 1999). Moreover, JNK signals also induce the release of cytochrome C from 

mitochondria, leading to the activation of caspase-9 and ultimately apoptosis (Aoki et al., 

2002).  

There is substantial evidence derived from studies of the effect of JNK inhibition in different 

cell types (Chen & Tan et al., 1998; Maroney et al. 1999). For example, the inactivation of 

JNK prevents apoptosis in liver cells (Uehara et al., 2005). Similarly, Ferrandi et al. (2004) 

observed that JNK inhibitors attenuated apoptosis of rat cardiomyocytes. In addition, the 

knockout of JNK1 and JNK2 in mice causes a defects in T-cells and apoptosis, while JNK3 was 

found to be responsible for excitotoxicity of the murine hippocampus (Yang et al., 1997). 
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Figure 1.8 Mitogen-activated protein kinase (MAPK) signaling pathways.  

ERK and JNK pathways are presented schematically. Each pathway is initiated by Ras activation, 

which phosphorylates serine/threonine residues of MAPKKK, which subsequently phosphorylates 

tyrosine/threonine residues of a MAPKK. This leads to the activation of MAPK, which in turn activates 

other protein kinases involved in cellular responses. 

 

1.9.4 The  Protein kinase B/Akt signalling pathway 

There are three PKB/Akt isoforms in mammalian cells, namely, PKBα/Akt1, PKBβ/Akt2 and 

PKBγ/Akt3 (Cheng et al., 1992).  PKB/Akt is employed in the centre of downstream signalling 

pathways that are activated in response to a wide variety of extracellular stimuli including 

GPCR (G-protein-coupled receptors) agonists and growth factors.  PKB is involved in the 

regulation of cellular growth, metabolism and cell survival via the phosphorylation of 

downstream targets (Brazil & Hemmings, 2001; Song et al., 2005; Dillon et al., 2007). PKB 

activation is associated with the downstream effector PI-3K. As shown in Figure 1.9, the 

pathway starts with the up-stream activation of PI-3K via the monomeric G-protein Ras 

(Wymann et al., 2003). Activated PI-3K phosphorylates PIP2 (phosphatidylinositol 4,5-

bisphosphate) resulting formation of the second messenger PIP3 (phosphatidylinositol 

(3,4,5)-trisphosphate). Increases in PIP3 lead to the recruitment PDK1 (pyruvate 
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dehydrogenase kinase 1) to the plasma membrane and subsequent phosphorylation of PKB 

at Thr308. PKB is then phosphorylated at Ser473 by mTORC2 (mammalian target of rapamycin 

Complex 2) leading to full activation of the enzyme (Weinberg, 2007). However, the activity 

of PKB can be de-regulated by PTEN (Phosphatase and tensin homolog). PTEN is a 

phosphatase responsible for dephosphorylating PIP3 to PIP2, thereby causing the inactivation 

of the PKB signalling pathway (Simpson & Parsons, 2001).  

 

 

Figure 1.9 Schematic representation of PKB/Akt activation.  

Activation of PKB/Akt signalling pathway is initiated by RAS activation, which in turn activates PI3K. 

PI3-Kinase is activated and generates the second messenger PIP3, that activates the downstream 

PKB/Akt. PKB/Akt is an important mediator of organismal growth.  

 

The role of the PKB/Akt cascade in the heart is characterized as a central effector in cardiac-

signalling mechanisms (Lee et al., 2009).  The functional description of PKB/Akt is a growth-

promoting protein that stimulates myocyte growth, allowing the recruitment of angiogenic 

growth factors such as VEGF (Vascular endothelial growth factor) and inducing coronary 

angiogenesis (Shiojima & Walsh, 2006).  In normal heart cells, PKB-dependent signalling 

pathways maintain the balance between the two mechanisms, myocyte growth and 

coronary angiogenesis. Activation of the PKB-mTOR pathway induces both myocyte growth 

and coronary angiogenesis recruitment (Takahashi et al., 2002). However, prolonged 
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activation of PKB results in a blockage in VEGF secretion and attenuation of coronary 

angiogenesis, which leads to the development of cardiac pathological stimuli (Shiojima & 

Walsh, 2006). Thus, the PKB/Akt signalling pathway is implicated in the regulation of cardiac 

growth (DeBosch et al., 2006). 

1.10 Apoptosis and necrosis 

Apoptosis is a form of programmed cell death which is energy-dependent. It plays an 

essential role in both physiological and pathological processes (Norbury & Hickson, 2001). It 

is regulated by specific receptors that activate downstream caspases, which leads to the 

degradation of proteins and subsequent apoptosis (Metzstein et al., 1998). An alternative 

form of cell death is necrosis, which is considered to be an uncontrollable passive process 

and is known to be an energy-independent death (McLaughlin et al., 2001). Necrosis is 

characterized as the degenerative processes that can  exclusively occur  after cell death; it is 

known to be an irreversible and un-regulated process (Elmore, 2007).  

Structural changes and the biochemical network of cell death have been investigated, using 

a number of approaches, to determine the difference between apoptosis and necrosis with 

regard to various extracellular stimuli.  Studies found that apoptotic cells appear to be DNA-

fragmented: the cells shrink and exhibit membrane blebbing, but they do not release their 

cellular organelles into the extracellular space; thus they are rapidly phagocytosed, 

preventing inflammation (Savill & Fadok, 2000; Kurosaka et al., 2003). In contrast, necrosis 

shows a swelling of the cell and a loss of membrane integrity, followed by the release of 

cellular constituents to the surrounding tissue, forming an inflammatory response (Kerr et 

al., 1972; Majno & Joris, 1995; Trump et al., 1997). However, despite the fact that each type 

of cell death can have different mechanisms, it can be difficult to distinguish necrosis from 

apoptosis using morphological analysis. In fact both forms of cell death may occur 

simultaneously relying on intracellular ATP (Adenosine triphosphate) and caspase activation 

(Zeiss, 2003). Major differences between apoptosis and necrosis are summarized in Table 1.2 
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Table 1.2 Apoptosis versus necrosis. Taken from (King , 2000). 

 Apoptosis Necrosis 

Stimuli Genomic damage 
Imbalance in signalling pathways 
Programmed tissue remodeling 
Hypoxia 

Changes in pH 
Hypoxia 
Anoxia 
Absence of nutrients 

 
Morphological 

changes 
 

Individual cell affected 
Decreased cell volume 
Condensed chromatin 
Unaffected lysosome 
No inflammatory response 
Apoptotic bodies are phagocytes  

Groups of cells affected 
Increased cell volume 
Fragmented chromatin 
Abnormal lysosome 
Marked inflammatory response 
Cell lysis 

 
Molecular 
changes 

Gene activity required for 
programmed cell death 
Increase in intracellular calcium 
Ion pumps continue to function 

Don’t require gene activity 
Unaffected intracellular calcium 
Impaired ion pumps 

 

1.10.1 Two distinct signalling pathways of apoptosis 

The molecular machinery of apoptosis involves two main pathways, the extrinsic and the 

intrinsic pathway, both of which converge on the cleavage of caspase-3 and result in a 

biochemical modification of the cell (Igney & Krammer, 2002).  Caspase-3 is a proteolytic 

enzyme belonging to the cysteine protease family, playing a major role in both apoptotic 

pathways (Gown & Willingham, 2002). Its sequential activation occurs in the early stages of 

apoptosis, similar to other caspase family members, as shown in Figure 1.10 (Krysko el al., 

2008). The extrinsic pathway is initiated by extracellular ligand binding to death receptors at 

the plasma membrane; such ligands are members of the TNF (tumour necrosis factor) family. 

Some examples of include FasL, TNF-α and TRAIL (TNF-related apoptosis-inducing ligand. 

(Chicheportiche et al., 1997). Members of their receptors possess a cytoplasmic “death 

domain” (Ashkenazi & Dixit, 1998). Once these receptors are activated by ligand binding, the 

adaptor protein FADD (Fas associated death domain) is  recruited and binds to the death 

domains of the receptor (Wajant, 2002). The resultant DISC (death-inducing signalling 

complex), cleaves pro-enzyme caspase-8 into active caspase 8 (Kischkel et al., 1995). 

Caspase-8 then activates the “executioner” caspase-3, thereby converging with the intrinsic 

pathway (Weinberg, 2007). Following activation, caspase-3 cleaves various death substrates 

such as ICAD (inhibitor of caspase activated DNase) and lamin, which in turn induces the 

apoptotic cell phenotype (Weinberg, 2007). The extrinsic pathway can be controlled by c-
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FLIP (cellular FLICE-like inhibitory protein). This protein binds to the FADD and caspase-8, 

thus inhibiting apoptotic signals (Kataoka et al., 1998). 

An alternative extrinsic apoptotic pathway is triggered by cytotoxic T-cell. These cells are 

able to kill target cells such as tumour cells and virus-infected cells by attaching to their 

surface and secreting the serine protease granzyme B (Trapani & Smyth, 2002). Following 

secretion, granzyme B attaches and becomes internalized in the cytosol of target cells, 

resulting in the cleavage of pro-caspases 10 and 3.  In this way, they converge with other 

apoptotic pathways, leading to morphological biochemical changes which characterize 

apoptotic cell death.  

Another spectrum of apoptotic cell death is the non-receptor intrinsic pathway, since it is 

initiated by internal signals that originate within the cell such as excessive calcium, radiation, 

free radicals and hypoxia (Elmore, 2007).  These signals cause the mitochondria to release 

cytochrome c and Smac (second mitochondria-derived activator of caspases) into the 

cytoplasm. Cytochrome c interacts with Apaf-1 (apoptotic protease activating factor-1) 

forming an apoptosome complex resulting in the activation of caspase-9, while 

Smac/DIABLO proteins (second mitochondria-derived activator of caspases /direct IAP 

binding proteins) function to inactivate anti-apoptotic proteins (Weinberg, 2007). The 

resultant active caspase-9 is involved in processing pro-caspase-3 into active effector 

caspase-3, thereby converging with the extrinsic pathway as shown in Figure 1.10 (Hill et al., 

2004). 

The release of cytochrome c from mitochondrial channels is regulated by members of the 

Bcl-2 family of proteins (Cory & Adams, 2002). For example, anti-apoptotic proteins including 

Bcl-2 (B-cell lymphoma 2) and Bcl-XL (B-cell lymphoma-extra-large) are involved in keeping 

the outer mitochondrial channel closed, thus preventing the release of cytochrome c. On the 

other hand, Bax (Bcl-2-associated X protein), Bad (Bcl-2-associated death promoter), Bak 

(BcL-2 antagonist/killer 1) and Bid (BH3-interacting domain death agonist) are pro-apoptotic 

proteins that function to open mitochondrial channel and induce the release of cytochrome 

c to stimulate the initiation of apoptosis (Weinberg, 2007). Therefore, Bcl-2 family proteins 

play a major role in determining whether a cell commits to apoptosis or cell survival (Elmore, 

2007). 
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Figure 1.10 A simplified schematic representation of extrinsic and intrinsic apoptotic 

pathways.   

Each pathway requires specific stimuli to induce molecular machinery events that promote activation 

of their own caspase (8,10,9). The resultant active caspase-3 induces apoptotic cell death. 

 

1.10.2 OP-induced apoptosis 

Several studies have shown that OP exposure results in the induction/modulation of 

apoptosis. For example, exposure to chlorpyrifos resulted in DNA double-strand breaks 

associated with cell apoptosis in human HeLa and HEK293 cells (Li et al., 2015). A large 

amount of evidence has shown that OP-induced cell death involves several apoptotic 

markers such as cytochrome c release, caspase activation, and nuclear fragmentation (Saleh 

et al., 2003). For example, treatment of NK-92C1 cells with the OP dichlorvos triggered 

apoptosis via JNK activation and subsequent caspase-3 stimulation (Li et al., 2007). Another 

study using primary cortical neuron cells reported that chlorpyrifos induced neurotoxicity, 

triggered apoptosis and reduced mitochondrial function via the activation of ERK1/2, JNK, 

and p38 MAP signalling pathways (Caughlan et al., 2004). This is consistent with a recent 

study that found that chlorpyrifos targeted 40% of apoptotic genes in undifferentiated and 

differentiating PC12 cells (Slotkin & Seidler, 2012). Taken together, these findings suggest 
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that OPs induce cell death by apoptotic-dependent pathways both in vivo and in vitro. 

Studies demonstrating OP-induced apoptosis are summarized in Tables 1.3 and 1.4. 

 Table 1. 3 OP-induced cell death by apoptotic-dependent pathways In vivo studies 

 

 

 

Table 1. 4 OP-induced cell death by apoptotic-dependent pathways in vitro studies 

 

 

 

 

Organophosphate 
 

Animal model Dose Incubation Time 

Dichlorvos Rat brain 6 mg/kg bw    12 weeks 
(Kaur et al., 2007) 

Chlorpyrifos Mouse retina 63 mg/kg  Single treatment- 24 h  
 (Yu et al., 2008) 

Diazinon New born rats 1 or 2 mg/kg    
on postnatal 
days 1-4  

4 days  
(Slotkin & Seidler, 2007) 

Phosphamidon Wistar strain male 
albino rats 

35 ppm in 
drinking 
water 

30 days  
(Akbarsha & Sivasamy, 
1997) 

Organophosphate Cell line Concentration Incubation time 

Chlorpyrifos PC12 cell line 30 μM 24 and 72 h 
(Slotkin & Seidler, 2012) 

Chlorpyrifos and 
dichlorvos 

Human monocyte 
cell line U937 and   
NK-92MI , NK-
92CI cell lines 

25, 50, 100 ppm  4h  (Li et al., 2009) 

Carbofuran Rat neuronal 
cortical cells   

500 µM 3 days (Kim et al., 2003) 

Endosulfan and 
zineb 

SH-SY5Y human 
neuroblastoma 
cells 

100 µM 20 h (Jia & Misra, 2007) 
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1.11 H9c2 cells 

Of particular interest to the current study was the availability of a cardiomyocyte like rodent 

cell line. H9c2 cells are derived from embryonic rat heart tissue (Kimes & Brandt, 1976) and 

have been used widely as an in vitro model, since they display similar morphological, 

electrophysiological and biochemical properties to primary cardiac myocytes (Hescheler et 

al. 1991). A number of studies have used mitotic H9c2 cells which possess a more skeletal 

muscle-like phenotype and express nicotinic acetylcholine receptors (Kimes & Brandt, 1976; 

Zara et al., 2010).  However, H9c2 cells in their mitotic form lack some of the properties of 

cardiomyocytes, such as gap junction communication and T tubules, and also show an 

absence of multi-nucleated cells due to cardiomyocyte de-differentiation (Hescheler et al., 

1991). With regard to H9c2 mitotic cells, this may actually limit the utilization of H9c2 cells 

and for this reason differentiated H9c2 cells represent a more physiological relevant cell 

model. 

1.11.1 Differentiation of H9c2 cells  

A number of studies have used this cell line as an in vitro model for cytotoxicity studies 

(Hosseinzadeh et al., 2011). Under the right conditions, H9c2 cells are able to be 

differentiate into a more cardiomyocyte-like phenotype. This property enhances the use of 

H9c2 cells as a model cell line in which to study OP-induced toxicity.  When cultured with 

reduced levels of foetal bovine serum (FBS) and 10 nM retinoic acid, H9c2 cells undergo 

morphological and physiological changes (Menard et al., 1999). These changes include the 

appearance of elongated multinucleated myotubes with recognizable actin filaments and 

branched fibres of differentiated cardiomyocytes (Kadivar et al., 2006; Zara et al., 2010). 

Differentiation of H9c2 cells into a more cardiomyocyte-like phenotype is associated with 

the increased expression of cardiac specific proteins. For example, it has been shown that 

differentiated H9c2 cells express specific cardiac markers such as cardiac specific Ca2+ 

channels and cardiac troponin (Menard et al., 1999). Cardiac troponin is a specific cardiac 

cytoskeleton protein that is involved in muscle contraction (O’Brien et al., 2008). 

Furthermore, its expression has been shown in differentiated human embryonic stem cell-

derived cardiomyocytes but not in undifferentiated human embryonic stem cells (Xu et al., 

2002).   
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At the molecular level, differentiation of H9c2 cells is regulated via a complex signal 

transduction pathway involving lipid and protein kinases. Several kinase cascades are 

associated with and up-regulated during cellular differentiation; the activation of such 

cascades may help to explain the differentiation process in cell behavior (Qiao et al., 2012). 

For example, the PI-3K/PKB pathway promotes the differentiation of H9c2 cardiomyoblasts  

(Kim, 1999; Naito et al., 2003). In addition, PKC (protein kinase C) has been reported to be 

involved in the differentiation of H9c2 cells (Zara et al., 2010). The interaction of PKC with 

serine/arginine-rich splicing factor 2 (SC35) contributes to the morphological changes that 

are related to the cardiomyoblast phenotype (Zara et al., 2010). More importantly, the 

physiological and cellular changes associated with retinoic acid-induced differentiation is 

complex and involves the expression of distinct proteins (Duester, 2013).  It is therefore 

important to identify how retinoic acid induces differentiation.  
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1.11.2 Cardiac excitation-contraction coupling  

Excitation-contraction coupling (ECC) is the process where heart cells contact via an action 

potential process. Actin potential is an electrical stimulation achieved by an ion flux through 

a specialised channels in the cardiomyocyte membrane (sarcolemma) leading to heart 

contraction. Calcium ions is an important mediator for cardiac excitation-contraction process 

by entering in and out the heart cells during each action potential (Katz, 1992) . When 

calcium ions enter the cell through L-type calcium channels located on the sarcolemma. This 

calcium activates a calcium release from the sarcoplasmic reticulum (SR) through a 

specialised calcium receptors  called ryanodine receptors and further induce a large release 

of calcium in the cell (Flucher & Franzini-Armstrong, 1996) as shown in Figure 1.11. 

 

Figure 1.11 Cardiac contraction mechanism 

Calcium ions inter the cardiac cell via L-type calcium channels. Calcium then activates 

ryanodine receptors on the sarcoplasmic reticulum. ryanodine receptors induce calcium 

release from the sarcoplasmic reticulum leading to increase cytosolic calcium. As the 

contractile cycle ends, cytosolic calcium returns to the sarcoplasmic reticulum via the 

sarcoplasmic reticulum calcium channel. 
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Cardiac contraction is regulated by binding of free calcium ions to troponin-C protein which 

is a part of the regulatory contract complex attached to the thin filaments (Mckillop & 

Geeves, 1993). Binding of calcium ions to troponin-C results in the conformational change of 

troponin/tropomyosin complex and exposing the actin binding site. Cross-bridge formation 

of myosin to actin occurs with ATP hydrolysis to ADP+Pi. A power stroke moves actin 

filament toward the center of the sarcomere and ADP+Pi are released from myosin heads as 

ATP energy is used to contract cardiac muscle (Mckillop & Geeves, 1993). At low cytosolic 

calcium concentration induces a conformational change in troponin complex leading 

troponin/tropomyosin complex binding to actin and a new ATP binds to the myosin head. 

Binding of ATP to myosin lowers the binding affinity of myosin to actin and allows myosin 

release from actin. (Balaban et al., 2003). Myosin then cock back to its position and ready to 

make cross bridge for a further contracting cycle (Balaban et al., 2003). 

The H9c2 cell line has been established from embryonic rat cardiac ventricle and it has 

properties similar to neonatal and adult cardiomyocytes (Menard et al., 1999). After 

undergoing differentiation, these cells can functionally express L-type calcium channels ATP-

sensitive potassium channels (Menard et al., 1999). Examination of the action potential and 

contractility of H9c2 cells cardiac cells has been well-established previously by using cell 

contraction assay. H9c2 cells was successfully proven to contract by measuring changes in 

the planar surface areas at different time point (Ku et al., 2011). Previous study also 

characterized the calcium dependent activation and ion selectivity in H9c2 cells. In H9c2 

myotubes, cells were found to express L-type calcium that activates potassium channels 

directly or indirectly via calcium induced calcium release from sarcoplasmic reticulum. Thus, 

H9c2 cell line has served as a useful alternate of cardiac and skeletal muscles (Wang et al., 

1999).  

1.11.3 The role of retinoic acid in the differentiation of H9c2 cells 

Retinoic acid (RA) is an active form of vitamin A (retinol). It is involved in cardiac 

development as well as in cellular proliferation and differentiation in the mammalian 

embryo (N’soukpoé-Kossi et al., 2014). RA enters the cell and binds to cellular retinoic acid-

binding protein (CRABP), which facilitates its transport into the nucleus. In the nucleus, RA 

binds to the nuclear receptor RAR/RXR (retinoic acid receptor/ retinoid X receptor) 

heterodimer which recognizes a specific DNA sequence within the target gene known as the 
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RA response element (RARE; Chambon, 1996). In response, this recruits co-activator 

proteins, which themselves induce transcriptional activity and trigger cardiac differentiation 

as shown in Figure 1.12 (Kumar & Duester, 2011). 

 

 

 

Figure 1.12 Retinoic acid signaling pathway in H9c2 cells. 

Retinol enters the cell and binds to cellular retinoic acid-binding proteins (CRABPs) and is 

metabolized to retinaldehyde followed by metabolism of retinaldehyde to retinoic acid (RA). RA 

binds to CRABPs, enters the nucleus and binds to RARs and RXRs, termed heterodimer receptor 

(RAR/RXR). These heterodimers bind to RAREs in target genes and regulates gene expression. 

 

Commitment to cardiac lineage is controlled by the up-regulation of specific cardiac genes 

such as Nkx2.5, which promotes differentiation of progenitor cells into cardiomyocytes 

(Martinez-Fernandez et al., 2014). Homeobox protein Nkx2.5 is expressed in the secondary 

heart field where it acts upstream of the BMP (bone morphogenic protein) and the FGF 

(fibroblast growth factor) pathways, both of which promote myocardial differentiation (Prall 

et al., 2007; Dyer et al., 2010). Nkx2.5 is also known to interact with another transcriptional 

factor, namely, Pitx2c, where this interaction is normally required for heart looping (Simard 

et al., 2009).   
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More recent studies have suggested that RA acts in parallel to EPO (erythropoietin) 

pathways and in this way both EPO and RA induce the release of cardiac mitogens, such as 

neuregulin (Chen et al., 2002; Kang & Sucov, 2005). RA also induces cardiomyocyte 

proliferation through biochemical pathways that involve the activation of PI-3K and ERK1/2 

(Niederreither & Dolle, 2010). Furthermore, it has been observed in heart tissue that has a 

deficiency in RXR (a specific RA receptor) produces a reduction in the phosphorylation of PKB 

and ERK1/2, two important signalling pathways associated with cellular proliferation and 

differentiation (Kang & Sucov, 2005). 

Another function of RA is the regulation of growth factor signalling such as FGF (fibroblast 

growth factor), as confirmed in a study of the developing hearts of chickens and mice (Mima 

et al., 1995). Moreover, it was also found that FGF was responsible for controlling cardiac 

proliferation at early stages of development (Lavine et al., 2005). Potentially, the activation 

of FGF expression is important with regard to heart expansion, as demonstrated in Zebrafish 

where excess exposure to RA leading to an increased expression of fibroblast growth factor 

9 in the epicardial layer (Marques et al., 2008).  

As previously mentioned, RA-mediated pathways play a critical role in cell lineage control 

(Huang et al., 2011). More importantly, RA induces the differentiation of cardiac myoblasts 

and a key to understanding this is the characterization of embryonic stem cell models that 

have been differentiated towards cardiac lineage. For instance, Wobus et al. (1997) 

observed that RA controls the differentiation of precursor germ cells in a concentration-

dependent manner (Wobus et al., 1997).  Similarly, Honda et al. (2005) noticed that RXR 

directs the undifferentiating embryonic stem cell into a beating cardiomyocyte. Indeed, 

blocking the RA receptor prevents progenitor cells from differentiating into cardiomyocytes 

(Zhou et al., 1995; Wang et al., 2002). Moreover, it was also found that RA inhibited the 

expression of myogenin in embryonic muscle cells, leading to the inhibition of myogenic 

differentiation and enhancing cardiac differentiation (Xiao et al., 1995). Myogenin is a 

transcription factor involved in the coordination of skeletal muscle development that is 

regarded as a specific marker for skeletal muscle (Menard et al., 1999). 

It is also important to note that electrophysiological studies have confirmed that RA induces 

differentiation of cardiomyocytes (Menard et al., 1999). For example, RA induces the 
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expression of cardiac specific ion channels e.g. L-type Ca2+ channels (Gassanov et al., 2008) 

which are crucial for cardiac contractile function (Trautwein & Hescheler, 1990). 

Furthermore, RA is associated with an increased expression level of the pore-forming 1C 

subunit of cardiac L-type Ca2+ channels, which is essential for maintaining the cardiac 

phenotype  (Kimes & Brandt, 1976; Kolossov et al.,1998).  

On the basis of the above it can be seen that RA is involved in the differentiation of 

cardiomyoblasts into cardiomyocyte-like cells. To date, very few studies have investigated 

the effects of organophosphates on cardiac cells. The present study will therefore 

investigate the effect of OPs using H9c2 cardiomyoblasts cells that have been derived from 

embryonic cardiac tissue and have similar features to cardiomyocytes. This will provide 

further valuable understanding of the cellular mechanisms involved in OP-induced 

cardiotoxicity. 

1.12 Stem cells 

Stem cells are defined by 3 fundamental properties and they the ability to self-renew and 

replace themselves, the ability to differentiate into 1 or more lineages or specialized cell 

types, and enormous proliferative potential to renew and maintain the tissues they populate 

(Thomson, 1998). Potency specifies the differential potential of the stem cells. Totipotent 

stem cell is the fertilised egg that gives rise to the first divisions of the cell. These cells can 

differentiate into embryonic and extraembryonic cell types; only the morula cells are 

totipotent which are able to become all tissue type including a placenta. Pluripotent stem 

cells (PSCs) are cells that originates from the inner mass cell of the blastocyst and have the 

ability to generate several different tissue types, excluding the placenta. Multipotent stem 

cells can produce only cells of a closely related family of cells e.g. cells in the brain that give 

rise to different neural cells and glia, but they can not produce blood cells or haematopoietic 

cells, which can give rise to different blood cell types, but they can't produce brain cells. 

Unipotent stem cells are able to develop into only one kind of cell. They normally develop 

into the same type of cell as those in the tissue from which they derive (Figure 1.13; Odorico 

et al.,2001). Finally, stem cells can be divided into different types, namely embryonic stem 

cells (ESCs), adult stem cells (ASCs) and induced PSCs (iPSCs).  
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Figure 1.13 Simple diagram of stem cell potency. 

Differential potential of the stem cells are totipotent embryonic stem cell that can produce any type 

of cells. Pluripotent stem cell that can also differentiated in to any specialized cell type, this include 

endoderm, mesoderm and ectoderm cell line and excluding embryonic tissue. Multipotent stem cell 

that can give a raise to unipotent stem cell, which can be differentiated into one specific cell type. 

 

1.12.1 Embryonic stem cells  

ESCs are PSCs that have the ability to differentiate into the three embryonic germ layers, 

which are the ectoderm, mesoderm, and endoderm (Shamblott et al., 1999). These cells can 

be isolated and maintained as undifferentiated cell lines or stimulated to differentiate into 

specific cell lineage in the body (Thompson, 1998). ESCs can be distinguished from 

multipotent cells present in adults according to their pluripotency, as multipotent cells are 

only capable to differentiate into specific tissue cells (Thompson, 1998). ESCs specific 

properties have attracted major research interest, particularly in cell therapy (Mitsui et al., 
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2003). However, a number of ethical controversy have been raised in relation to the 

utilisation of human embryos as a cell source (McLaren, 2001). 

1.12.2 Adult stem cells  

ASCs are undifferentiated cells found throughout the body that divide to replace dying cells 

and regenerate damaged tissue. They are also known as somatic stem cells which can be 

found in children as well as adults (Takahashi et al., 2006). These cells can appear to exist in 

bone marrow and other tissues. However, in vitro, their differentiation process is challenging 

and poses some difficulties, as they have less possibility to differentiate in culture than ESCs. 

Ethically, these somatic stem cells are well accepted and they are not mired in controversy 

because no embryos are harmed when obtaining them (Wang et al., 2009). However, most 

ASCs are considered unipotent, as they are destined to grow into the same cell type from 

which tissue they originate (Avasthi et al., 2008).  

Certain ASC types are multipotent such as, mesenchymal stem cells (MSCs). They are highly 

heterogenous cells population consist of multiple cell types with different potential for 

proliferation and differentiations. They can be also be isolated from placenta and umbilical 

cord. Umbilical cord blood (UCB) makes allogeneic cell treatment possible due to the low 

possibility of immune rejection (Erices et al., 2000; Weiss & Troyer, 2006). Moreover, these 

cells have been shown to be useful in cellular therapy, as their healing effects have been 

proven in many pre-clinical and clinical studies. MSCs have been clinically tested and are 

associated limited ethical concerns (Hida et al., 2008). The possibility of healing 

improvement of impaired cardiac function via an MSC lineage derived from UCB has shown a 

practical recovery ability (Nishiyama et al., 2007). However, there is a remarkably low 

amount of MSCs in UCB (Kogler et al., 2004; Terai et al., 2005). Therefore, additional 

experiments need to be undertaken to establish an efficient source for MSCs. 

1.12.3 Induced pluripotent stem cells  

Previous researchers have proposed that cardiomyocytes can be derived from various 

human tissues as a source of stem cells (e.g., foetal tissues, adult cardiac progenitor tissue, 

BM and adipose tissue). However, cardiomyocytes derived from foetal or adult tissue are 

controversial due to their limited plasticity, which prevents their complete differentiation 

into functional cardiomyocytes (Dimmeler et al., 2008). Cardiomyocytes derived from adult 
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cardiac progenitor cells were shown to possess the strong opportunity to differentiate into 

beating cells (Blin et al., 2010). Furthermore, the ability of PSCs to efficiently differentiate 

into contracting cardiomyocyte-like cells has been demonstrated in vitro (Kehat et al., 2001; 

Mummery, 2003). However, due to the difficulties to obtain cardiomyocyte from adult 

cardiac progenitor, there have been breakthroughs of human induced pluripotent stem cell 

(iPSc). New techniques have been established  to provide a new source of differentiated 

functional cardiomyocytes in vitro that share similar properties of cardiomyocyte derived 

from hESC (Zhang et al., 2009). Therefore the current study utilised cardiomyocyte iPSCs due 

to the difficulty of obtaining them from human PSCs. 

iPSCs can be described as genetically reprogrammed somatic cells to express specific genes 

to transform the cells into an ESC–like state with defining properties. iPSCs possess the 

advantage of being similar to ESCs, as they can form different cell type (Takahashi & 

Yamanaka, 2006). The reprogramming of adult somatic cells (human fibroblasts) to iPSCs has 

been established by the transduction of transcription factors, such as Oct4 (octamer-

binding transcription factor 4), Sox2 (Sex determining region Y-box 2) and  Klf4 (Kruppel-like 

factor 4; Takahashi et al., 2007; Shi et al., 2008; Huangfu et al., 2008). These iPSCs are 

capable of indefinitely renewing themselves and differentiating into numerous cell types, 

including pancreatic β-cells, hepatocytes, haematopoietic cells and cardiomyocytes (Sanders, 

2012). More recently, certain reprogramming factors and chemical compounds, such as 5'-

azacytidine (a DNA demethylating agent) and valproic acid (a histone deacetylase inhibitor), 

have been demonstrated to improve the efficiency of iPSCs without causing genetic 

alterations (Mikkelsen et al., 2008). To emphasise cardiac differentiation, iPSCs can be 

treated with signalling molecules, such as activin A and BMP4 (bone morphogenic protein 4; 

Laflamme et al., 2007, Yang et al., 2008). Remarkably, some studies have reported minimal 

and insignificant differences in transcriptional profiles between cardiomyocytes derived 

from ESCs and cardiomyocytes derived from iPSCs. Moreover, Gupta et al. (2010) reported 

that the two types of PSC-derived cardiomyocytes’ transcriptional profiles were identical. It 

has also been demonstrated that ESC and iPSC-derived cardiomyocyte types show similar 

sarcomere organisation and the ability to differentiate into cardiomyocyte subtypes (eg, 

ventricular, atrial, and nodal); furthermore, they are both able to differentiate into 

cardiomyocyte subtypes like ventricular, atrial and nodal cardiomyocytes (Zhang et al., 

https://en.wikipedia.org/wiki/Octamer_transcription_factor
https://en.wikipedia.org/wiki/Transcription_factor
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2009). This appears to indicate that it is possible for iPSCs to replace ESCs successfully for 

cardiac tissue engineering and cell-based treatment sources as shown in Figure 1.13 (Batalov 

& Feinberg, 2015).  

 

 

 

 

 

Figure 1.11 Schematic representation of iPSC generation  

Patient-derived somatic cells can be reprogrammed or genetically engineered and expanded in vitro 

to produce iPSC. These cells then can differentiate into the interested specialized cell type and 

candidate for several use including disease modelling and drug screening. Taken from (Batalov & 

Feinberg, 2015).  
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1.15 Aims and Hypothesis 

Literature review indicated that OPs can and cause human poisoning. Exposure to OPs lead 

to neurotoxic effects depending on the dose, frequency of exposure, and the type of OP. 

Toxicity of OP may also induce toxic myocarditis and a late occurrence of sudden death. At 

present, the majority of studies have focused on the effects of OPs on the central nervous 

system. There is very little information on the effect of OPs on muscle function, particularly 

toxic effects on cardiac muscle. There for it was important to investigate direct  toxic effect 

of OPs on cardiomyocytes. The present study hypothesis that OPs would cause apoptotic cell 

death in H9c2 cardiomyocyte-like cells, and modulate cell signalling involved in cell death 

and cell survival.  In addition OPs may target specific proteins involved in cardiac contraction 

leading to a serious cardiac complication. There for this study aimed :  

• To study the morphological characteristics of differentiated H9c2 

cardiomyocytes. 

• To determine the effects of OPs on the viability of undifferentiated (mitotic) and    

differentiated rat H9c2 cells. 

• To identify cell signalling pathways implicated in OP-induced effects.     

• To detect and identify using dansylated PSP possible protein targets of PSP in 

differentiated H9c2 cells. 

• To assess the effect of sub-lethal concentrations of OPs on the differentiation of 

H9c2 cells. 

• To validate the cytotoxic effects of OPs in a human induced pluripotent stem cell 

derived cardiomyocytes 
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2.1 Material 

2.1.1 Cell culture reagents 

Dulbecco’s modified Eagle’s Medium (DMEM), foetal bovine serum (FBS), trypsin (10 ×), L-

glutamine (200 mM), penicillin (10,000 U/ml)/streptomycin (10,000 µg/ml) were purchased 

from BioWhittaker Lonza Group Ltd., UK. Phosphate buffered saline (PBS) were obtained 

from Life Technologies (Invitrogen, UK). All-trans-retinoic acid was obtained from Sigma-

Aldrich Co. Ltd (Gillingham, Dorset, UK). All other chemicals were purchased from Sigma-

Aldrich and of analytical grade.  

2.1.2 Human induced plouripotent stem cells (hiPSC-CC)  cell culture 

Vial of frozen hiPSC-CC, cardiomyocyte plating medium-basal, Cardiomyocyte Growth 

supplement were purchased from (Sciencell research laboratories, Carlsbad, USA).  

2.1.3 Chemical compounds 

Chlorpyrifos, chlorpyrifos oxon, diazinon, and diazoxon were purchased from Greyhound 

Chromatography and Allied Chemicals (Birkenhead, Merseyside, UK). Phenyl saligenin 

phosphate (PSP) and dansylated PSP were synthesized in house at Nottingham Trent 

University. Stock concentrations of 100 mM OPs were diluted in DMSO (dimethyl 

sulphoxide), which was present in all treatments including the control at a final 

concentration of 0.5 % (v/v). 

2.1.4 Kinase inhibitors 

LY 294002 (30 mM), PD 98059 (50 mM), SB 203580 (30 mM), SP 600 125 (20 mM) and 

wortmannin (10 mM) were obtained from Tocris Bioscience (Bristol, UK) were diluted in 

DMSO which was present in all treatments including the control at a final concentration of 

0.5 % (v/v). 
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2.1.5 Antibodies 

Table 2. 1 List if Primary antibodies for Western blotting and immunocytochemistry 

techniques and their working dilutions. 

 
 

Antibody 

 
Working 
dilution 

(Western 
blotting) 

 
Working 
dilution 

(immuno- 
Cytochem.) 

 
 

Company 

 
Monoclonal phospho-specific JNK 

(Thr183/Tyr185) 

 
1:1000 

NA New England Biolab, 
UK, 9251 

Polyclonal total unphosphorylated JNK  
 

1:1000 
NA New England Biolab, 

UK, 9252 

Polyclonal phospho-specific PKB (Ser473)  
1:1000 

NA Sigma-Aldrich, UK, 
9271 

Polyclonal total unphosphorylated PKB   
1:1000 

NA New England Biolab, 
UK, 9272 

Monoclonal phospho-specific ERK1/2 
(Thr202/Tyr204) 

 
1:1000 

NA Sigma-Aldrich, UK, 
M8159 

Monoclonal phospho-specific p38 MAPK 
(Thr180/Tyr182) 

 
1:1000 

NA New England Biolab, 
UK, 9216 

Polyclonal total unphosphorylated p38 
MAPK  

 
1:1000 

NA New England Biolab, 
UK, 9212 

Monoclonal total unphosphorylated 
ERK1/2 (9107) 

 
1:1000 

NA New England Biolab, 
UK, 9107 

Monoclonal cleaved caspase-3  
1:500 

 
1:500 

New England Biolab, 
UK, 9661 

 
Polyclonal Troponin 1 

 

 
1:1000 

 
1:1000 

 
Abcam, UK, 47003 
   

 
Polyclonal Tropomyosin 

 

 
1:100 

 
1:500 

 
Abcam, UK, ab77884 
 

  
Monoclonal  α-actin 

1:1000 1:100 Abcam, 
UK,  ab124964 

GAPDH 1:1000 NA Abcam, Uk, ab8245 
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Table 2. 2 List if secondary antibodies for western blotting and immunocytochemistry 

techniques and  their working dilutions.  

 

Antibody 

 
Working dilution 

(Western blotting) 

Working dilution 
(immuno- 

cytochemistry) 

 

Company 

Anti-mouse IgG-HRP 1:5000 NA Sigma-Aldrich,UK 
(A4416) 

Anti-rabbit IgG-HRP 1:5000 NA Sigma-Aldrich, UK 
(A0545) 

Anti-mouse-Alexa 568 NA 1:200 Molecular Probes, 
UK, A-11031 

Anti-rabbit-Alexa 568 NA 1:200 Molecular Probes 
Invitrogen, UK, 

A10042 

 

2.2 Methods  

2.2.1 Cell Culture 

Cells (H9c2) derived from rat embryonic cardiomyoblast were purchased from the European 

Collection of Animal Cell Cultures in (Porton Down, UK). Mitotic H9c2 cells were  cultured in  

T75 culture flasks in  Dulbecco’s Modified Eagle’s Medium (DMEM), supplemented with 2 

mM L-glutamine, 10% (v/v) Fetal Bovine Serum, 100 U/ml penicillin and streptomycin (100 

µg/ml). Cells were grown in a humidified incubator of 5% CO2, 95% air at 37 °C and left 

overnight.  Cells were grown until they reached 70-80% confluence and growth monitored  

using a light microscope. Cells were sub-cultured by removing the medium and washing the 

cells with 10 ml sterile phosphate buffered saline (PBS). Cells were then detached  by using 

trypsin (0.05 % w/v)/EDTA (0.02 % w/v) in PBS and left for 2-3 min in the humidified 

incubator. 10 ml of fully supplemented DMEM medium was added to the trypsinized cells 

and centrifuged for 5 min at 5000 xg. Supernatant was discarded and the cell pellet 

resuspended in 1 ml of the medium. Cells were then further sub-cultured  (1:5 split ratio). 

2.2.2 H9c2 cell differentiation 

Differentiation of H9c2 cells were induced by culturing the myoblasts cells for 7 days with  

growth medium (DMEM) supplemented with 1% (v/v) FBS and 10 nM all-trans retinoic acid. 

The medium was replaced every 2 days. To confirm the effect of differentiating treatment, 

cells were monitored under a light microscope every 2 days. Cells showed cardiomyocyte-
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like phenotype by forming multinucleated elongated myotubes. Further confirmation was 

performed by monitoring the expression of cardiac specific troponin 1 via 

immunocytochemistry and western blotting. 

2.2.3 Human induced stem cell (hiPSC-CC) cell culture 

Prior to HPSC-CC culture, three wells of 6-well plate were coated with 2 ml 1% (v/v)  

fibronectin in sterile Ca2+ and Mg2+ free Dulbecco’s phosphate buffered saline, (DPBS) per 

well and incubated overnight in a humidified incubator at 37oC. Next day Cardiomyocyte 

Plating Medium (CPM) was warmed at room temperature, and the coating fibronectin 

solution aspirated from the three wells and 1 mL of the warmed CPM was added to each 

well. Cryopreserved cells (hiPSC-CC), obtained from Sciencecell research laboratories, were 

thawed gently in a  water bath (37oC) for 90 seconds and transferred to a 15 mL conical tube, 

resuspended in 10 ml of CPM and centrifuged at 5000 xg for 5 min at room temperature. 

The supernatant was carefully aspirated avoiding any disturbance of the cell pellet and 6 mL 

of CPM add to the pellet with gentle mixing 2 - 3 times. After which 2 mL of cell suspension 

was added to each fibronectin coated well (3000,000 cell/well) and incubated 48 h in a 

humidified incubator 37oC to avoid any disturbance of cultured cells. On the third day the 

medium was replaced by cardiomyocyte growth medium (CGM) to remove unattached cells. 

Cells were then detached by trypsin (0.05 % w/v)/EDTA (0.02 % w/v) in sterile phosphate 

buffered saline (PBS). Maturation and contraction of HPSC-CC was induced by culturing the 

cells for 7 days in CGM. The CGM medium was replaced every 48 h. The cells were 

monitored under light microscope to maturation and contraction. Further confirmation was 

performed by monitoring the expression of cardiac specific troponin 1, trypomyosin and α-

actin via immunocytochemistry. 

2.2.4 Cells count 

The amount of viable cells was determined prior to any treatment. Trypan blue exclusion 

assay a method was used to estimate viable cell count. The H9c2 cell pellets were re-

suspended in 1.0 ml of medium that was prepared during sub-culturing (section 2.2.1). A 

volume of 10 μl of cell re-suspension was mixed with 10 μl trypan blue dye. This mixture was 

pipette onto an Improved Neubauer haemocytometer (Camlab, UK) (0.1 mm depth, 400 

mm-2) and the cells were counted in the four (0.1 mm3) corner squares via light microscope 
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at (100x) magnification (Olympus CK40-54-SLP, Japan). The cell density per ml was then 

calculated according to the following formula : 

 Cell density = cell number (mean from four fields) x 104 x dilution factor 

2.2.5 Experimental procedure  

 
Figure 2.1 A schematic representation of the experimental procedure 

A) Cultured mitotic H9c2 cells. B) Cells were induced to differentiate for 7 days. C) Differentiated 

H9c2 cells are incubated with the desired concentration of OPs at different time points. Different 

analyses were performed to study the effect of different concentrations of OPs on differentiating 

H9c2 cells. 

 

2.2.6 Immunocytochemistry 

Cells (H9c2) were seeded in 8-well chamber slides (BD Falcon Culture Slide) at a cell density 

of 15,000 cells/ chamber, for 24 hours with DMEM medium. The medium was removed and 

replaced with differentiation medium and incubated for a further 7 days with the 

differentiation medium changed every 2 days. After 7 days incubation H9c2 cells were 

completely differentiated. The medium was then aspirated gently from the chambers and 

the adherent cells were washed gently with pre-warmed PBS (37 C°) three time for 5 min. 

Cells were then fixed in 3.7% (w/v) paraformaldehyde (Sigma-Aldrich, UK) in PBS for 15 min 

at room temperature without agitation. Cells were then washed gently with pre-warmed 

PBS (37 °C) three times for 5 min and  permeabilized with 0.1% (v/v) Triton X-100 in PBS for 

15 min at room temperature without agitation. Cells were washed gently with pre-warmed 

PBS (37 °C) three times for 5 min. Fixed cells were then blocked by incubating the cells for 2 

h with 3% (w/v) bovine serum albumin (BSA) in PBS (BSA/PBS) at room temperature without 
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agitation to prevent non-specific binding of antibodies. After blocking, cells were then 

incubated with specific primary antibody (1:1000) in 3 % (w/v) BSA in PBS (see table 2.1) and 

left over night at 4 °C in a humidified chamber. Cells were then washed gently with PBS three 

times for 5 min to remove unbound primary antibody. Cells were then then incubated for 2 

h at 37 °C in a humidified chamber with the secondary antibody anti-mouse immunoglobulin 

G conjugated Fluorescein isothiocyanate (FITC; Abcam, UK),  diluted 1:1000 in 3 % (w/v) BSA 

in PBS (see table 2.2). The chamber slides were then washed gently three times with PBS for 

5 min. Cells were air dried and mounted with Vectashield® mounting medium (Vector 

laboratories Ltd, Peterborough, UK) containing DAPI (4',6-diamidino-2-phenylindole) nuclear 

counterstain for nuclear visualization. Slide were then cover-slipped and sealed from the 

edges of the cover slip by transparent nail varnish and left to dry for 5 min at room 

temperature. Finally, immunostained cardiomyocytes were visualized using an Olympus 

DP71 epifluorescence microscopic system equipped with an argon/krypton laser (FITC: 

EX493/EM528; DAPI: EX360/EM460).  

2.3 Cell Viability Assays 

2.3.1 MTT assay 

Cell viability was determined by measuring the activity of mitochondria respiratory chain via 

MTT (thiazolyl blue tetrazolium bromide, Sigma-Aldrich) reduction assay. The MTT is a dye 

that will is converted to water-insoluble purple formazan on the reductive cleavage of its 

tetrazolium ring by the respiratory enzyme succinate dehydrogenase in active mitochondria. 

Undifferentiated H9c2 cells were seeded in 24-well plat at a density of 15,000 cells/well for 

24 h (Sarstedt, Leicester, UK) in fully supplemented DMEM growth medium. Cells were then 

subsequently induced to differentiate for 7 days as described above in section (2.2.2). Cells 

were then treated with OPs at the indicated concentrations and incubation time. Following 

OPs exposure, cell viability was determined by incubating the cells with 0.5 mg/ml MTT 

solution in DMEM at 37 °C for 1 h. After that, the medium in each well was aspirated, and 

replaced with 500 µl of DMSO. The plate was then gently agitated to ensure sufficient 

dissolution of the water-insoluble purple formazan crystals. After that, 200 μl of the resulting 

solution was transferred into a 96-well plate (Sarstedt, Leicester, UK) and the absorbance of 

the solutions was read at 570 nm using a standard 96-well plate reader (Expert 96, Scientific 

laboratory, UK). The absorbance of the blank was subtracted from each sample absorbance 
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reading and the viability of the cells is directly proportional to the MTT reduction, which 

determined by the absorbance of the solubilized formazan product at 570 nm.  

2.3.2 LDH assay 

Cytotoxicity induced by OPs was assessed by lactate dehydrogenase (LDH) release into the 

culture medium. The LDH assay was performed according to the manufacturer’s instructions 

(CytoTox 96® non-radioactive cytotoxic assay kit, Promega, Southampton, UK). The assay is a 

colorimetric assay based on the measurement of LDH release from damaged tissue that 

catalyze the conversion of lactate to pyruvate via reduction of NAD+ to NADH. Then, the 

dehydrogenase enzyme diaphorase (present in the substrate mix in the kit)  coupled with 

NADH and the formation of red formazan product tetrazolium salt (INT). Thus, LDH release 

was proportional to the red formazan product. Cells (H9c2) where seeded into 96-well plates 

at a density of 5000 cells/well (Sarstedt, UK) and incubated overnight at 37 °C in fully 

supplemented DMEM growth medium to allow cell to adhere at the bottom of the plate.  

Cells were then differentiated for 7 days in differentiation medium as described in section 

(2.2.2). Following OP exposure, the plate was centrifuged (5 min, 300 g) to allow cellular 

debris to be compacted to the bottom of wells. A volume of 50 µl of the supernatant was 

then transferred to a new non-sterile 96 well plate and 50 µl of the reconstituted assay 

buffer (10 ml assay buffer added to one bottle of substrate mix, in kit) added to each sample 

well. The plate was then covered with foil and incubated at room temperature for 30 min 

using a mixer shaker. After that, a volume of 50 µl of assay stop solution (1 M acetic acid) 

was added to stop the reaction. The change in absorbance was monitored at 490 nm using a 

standard plate reader.  

2.3.3 Acetylcholinesterase (AChE) activity assay 

Cells (H9c2) were cultured in T75 culture tissue flasks and induced to differentiate for 7 days 

as described in section (2.2.2). Following experimentation, cells were detached using trypsin 

(0.05 % w/v)/EDTA (0.02 % w/v) and incubated for 2-3 min at 37 °C. Following detachment, 

10 ml of fully supplemented medium was added to the flask and centrifuged for 5 min at 

5000 Xg. The supernatant was then discarded and the pellet was resuspended in 1 ml ice 

cold PBS and transfered to an Eppendorf tube on. The cell suspension was centrifuged at 

47,000 xg for 3 min. Supernatant was discarded and 1 ml of ice cold 200 mM sodium 
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phosphate buffer (pH 7.4) containing 0.2% (v/v) Triton X-100 was added to the pellet and 

mixed gently up and down using a pipette. 100 µL of the sample suspension was added to 96 

well plate in four replicates,  followed by 50 µL of (0.03 % w/v) 1.25 mM acetyl thiocholine 

iodide in PBS and 50 µL of (0.047 % w/v) 1.25 mM of 5,5-dithiobis (2-nitro-benzoic acid) 

DNTB in PBS with gentle mixing. Using a standard plate reader change in absorbance was 

monitored at 405 nm and was linear over a 10 min period. Color intensity is proportional to 

the enzyme activity and data were expressed as mean specific activity (absorbance 

change/min/mg protein) from at least three independent experiments. 

2.4 Coomassie Blue Staining 

Cells were stained with Coomassie blue for morphological change detection and visualised 

under light microscopy. Cells were cultured and differentiated for 7 days as mentioned 

previously and exposed to OPs. The growth medium was aspirated and the cells were 

washed with PBS three times. The cells were then fixed at -20 °C with 90 % (v/v) methanol 

solution for 15 min. The methanol fixing solution was then removed and Coomassie blue 

staining solution (0.1% (w/v) Coomassie brilliant blue G, 50 % (v/v) methanol, 10 % acetic 

acid) was added the cells for 10 min to stain the cells. Staining solution was aspirated and 

stained cells were washed three times with deionised water and left to air dry at room 

temperature. 

2.5 Western Blot 

2.5.1 Cell lysis 

To examine the activation or the expression of cell signaling proteins, Western Blotting was 

employed. Cells (H9c2) were differentiated for 7 days in T25 tissue culture flasks. Following 

experimentation cells were rinsed twice with 2 ml of warmed PBS. A volume of 300 μL of hot 

(100 °C) sodium dodecyl sulfate buffer (0.5% w/v SDS in Tris buffered saline) was added and  

cells were removed by a scrapper from the flask surface. The resulting cell lysates were 

transferred to 1.5 ml Eppendorf™ tubes in order to guarantee the total lysate.  Cell lysates 

were then boiled for 10 min and samples stored at  -20°C until required.  
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2.5.2 Protein estimation 

Protein concentration in cell lysates was measured by  Bicinchoninic acid (BCA) protein 

method (Bio- Rad laboratories, Hertfordshire, UK) . In brief,  5 μl of the sample cell lysate  

was added in duplicate to a 96 well plate. After which 200 µl of assay reagent B and 25 µl of 

assay reagent A (1 ml of reagent A, 20 µl of reagent S, and set according to the instructions 

of the manufacturer) were added. The samples were then covered with foil and placed in 

the shaker for 30 min at room temperature. Bovine serum albumin (BSA) protein standards 

were prepared in a range of 0–10 mg/ml.  A standard plate reader was used to read the 

absorbance at 620 nm and the concentration of  the protein samples  were compared with 

standard curve produced of BSA.  

2.5.3 SDS-PAGE 

A volume of 75 μl of the sample lysate was mixed with 25 μl 4x Laemmli (8 % w/v SDS, 40 % 

(v/v) glycerol, 10 % (v/v) β-mercaptoethanol, 0.01 % (w/v) bromophenol blue, 250 mM Tris-

HCl pH 6.8) in deionised water and boiled for 10 min. A 0.75 mm thickness 15 % (w/v) 

acrylamide gel was prepared, which contained the resolving gel (23 % (v/v) deionised water, 

50 % (v/v) ProtoGel® acrylamide mix (30 % acrylamide solution 37.5:1 ratio, Geneflow Ltd, 

Staffordshire, UK), 25 % (v/v) 1.5 M Tris-HCl pH 8.8, 1 % (v/v) SDS solution, 10 % (w/v) 

Ammonium persulfate (APS) solution and 0.04 % (v/v) N,N,N’,N’-

tetramethylethylenediamine (TEMED) and were poured in to the gel cast  (Bio-Rad Mini-

Protean III system)  and a space was left at the top of the gel cast for the stacking gel 

(Stacking gel; 68 % (v/v) deionised water, 17 % (v/v) ProtoGel® acrylamide mix, 12.5 % (v/v) 

1.0 M Tris-HCl pH 6.8, 1 % (v/v) SDS solution (10 % (w/v) Sodium dodecyl sulphate in 

deionised water) 1 % (v/v) APS solution (10 % (w/v) Ammonium persulfate in deionised 

water), 0.1 % (v/v) TEMED) and the comp was added immediately. Once the gel was 

polymerized, 5 μl of protein ladder (Precision Plus Protein™ dual standards, Bio-Rad 

laboratories, Hertfordshire, UK)  and the buffered lysate samples which contained 15 µg of 

protein were loaded into the gel wells. After that the gel was placed in electrophoresis 

container that contained  1x electrophoresis buffer (0.01 % (w/v) SDS, 2.5 mM Tris, 192 mM 

glycine, pH 8.3,). Gels were run at 200 V for 45 min. After protein separation,  gels were 

placed  in Western blot transfer buffer (25 mM Tris, 192 mM glycine and 20% (v/v) MeOH) at 

4°C for 5 min. 
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2.5.4 Western blot 

Proteins were transferred to nitrocellulose membranes using a Bio-Rad Trans-Blot system. A 

set up of a wet transfer was performed as follows; pre-wet sponge - filter paper - gel- 

nitrocellulose membrane - filter paper – pre-wet sponge. The layers were then placed into a 

western blotting cassette and closed gently to avoid air bubble and placed in the transfer 

tank that contained chilled transfer buffer. Proteins were transferred at 100 V for 1 h. After 

electrotransfer of the proteins, the nitrocellulose membrane was stained by Ponceau red 

stain (Sigma-Aldrich, UK) to confirm protein transfer from the gel. The membranes were 

then washed with PBS for 5 min with agitation to remove Ponceau staining. Un-occupied 

protein binding sites on the membrane were blocked using blocking buffer (5 % (w/v) 

skimmed milk powder and 0.1% v/v Tween-20 in TBS) for 1 h at room temperature with mild 

agitation. This will prevent nonspecific binding of the antibodies. Following blocking, the 

proteins of interest were detected by using primary antibodies diluted in a fresh blocking 

buffer  (1:1000; see table 2.1) and incubated overnight at 4°C with mild agitation. After that, 

the antibody is removed and the membrane was washed with TBS/tween three times for 15 

min. The membrane was then incubated for 2 hours at room temperature with mild 

agitation with secondary antibody conjugated with horseradish peroxidase diluted in a 

blocking buffer (1:1000; see table 2.2). The membrane was then washed at room 

temperature in TBS/Tween three times for 15 min. Blots were developed by Ultra 

Chemiluminescence Detection System (Cheshire Sciences Ltd, Chester, UK) and proteins 

were quantified by (Advanced Image Data Analysis). Software (Fuji; version 3.52). Target 

protein were normalized to GAPDH or to its total protein target to measure the value of 

target protein. 

2.6 Two-Dimensional Electrophoresis (2-DE)  

2D gel electrophoresis could separate proteins in a mixture according to  their charge (pI) in 

the first dimension and their molecular weight in the second dimension. This reproducible 

technique enable protein identification when combined with mass spectrometry. and 

assessment of protein expression levels.  

Differentiated H9c2 cells (7 days) were cultured in T25 culture flasks. Following 

experimentation, cells were washed twice with warm PBS (37 °C) and lysed in 300 μL of urea 

lysis buffer (8 M urea, 50 mM DTT, 4% w/v CHAPS, and 0.2% v/v Bio-Lyte 3/10 ampholyte; 
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Bio-Rad, UK) in deionised water. Cell lysates were then precipitated in a proportion of 10% 

(v/v) cell lysate to 90 % (v/v) acetone and kept overnight in -20 °C. After that, the 

precipitated cell lysates were then centrifuged at 10,000 RCF at 4°C for 10 min and the 

supernatant removed. The pellets were partially covered to prevent any contamination and 

left to dry for 1 h in the fume cupboard. To determine protein concentration, 5 µl of the 

sample was used for DC Lowry protein assay. An amount 300 μg of protein sample was 

added to 120 µL rehydration buffer (Biolite®ampholytes (pH 3-10), 8 M urea, 50 mM DTT, 

0.0002% (w/v) bromophenol blue, 4% (w/v) CHAPS, 0.2% (v/v) Biolite®ampholytes (pH 3-10) 

in deionised water. In the first-dimension (isoelectric focusing), 120 µl of the sample was 

applied on to an IEF focusing tray making sure that the spreading of the protein sample was 

even and makes contact with the cathode and anode of the wires. Then a 7 cm 3-10 pH 

ReadyStrip™ IPG strips (pH 3−10; Bio-Rad, UK) was applied in the IEF tray in contact with the 

protein sample without any air bubbles and sample protein was absorbed into the IPG gel to 

allow a passive rehydration for 1 h at room temperature. After that, mineral oil (Bio-Rad 

laboratories, Hertfordshire, UK) was added  on top of the IPG strip to avoid buffer 

evaporation. The protein sample then went through active rehydration at 50 V for 16 hours. 

Once the rehydration was completed, IEF system electrode wicks (Bio-Rad laboratories, 

Hertfordshire, UK) were added in-between the top of the electrodes in the focusing tray and 

the IPG strip to ensure an effective focusing and to get rid of excess salt. A linear voltage 

slope up to 250 V was then applied for 20 min. A second linear voltage slope increasing to 

4000 V was applied for 2 h. A rapid voltage slope to 4000 V for 10,000 Volt-hours was then 

applied. Finally, a rapid voltage slope down to 500V was applied to the gel for 25 h. After 

that, IPG strips were equilibrated by placing the IPG strips in 2500 µl of equilibration buffer 1 

(1.5 M Tris/HCl pH 8.8, 6 M urea, 50 % (v/v) glycerol, 2 % (w/v) DTT, 2 % (w/v) SDS, in 

deionised water) for 10 min at room temperature with gentle agitation. Equilibration buffer 

1 was then removed and 2500 µl of equilibration buffer 2 added  (2 % (w/v) SDS, 50 % (v/v) 

glycerol, 6 M urea, 2.5 % (w/v) iodoacetamide, 1.5 M Tris/HCl pH 8.8, in deionised water) for 

10 min at room temperature with gentle agitation. After equilibration, proteins were 

resolved in IPG strips and applied for the second dimension gel, were proteins are separated 

according to their molecular size. IPG strips were placed on the top of 15 % (w/v) SDS 

acrylamide gel (including a stacking gel) as described in section 2.6.3.  Then a 0.5 cm strip of 

filter paper was immersed in a mixture of 10 % (v/v) protein ladder (Precision Plus Protein™ 
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dual standards, Bio-Rad laboratories, UK, Hertfordshire) and 90 % (v/v) 4x Laemmli buffer 

(40 % (v/v) glycerol, 8 % w/v SDS, 0.01 % (w/v) bromophenol blue, 250 mM TRIS-HCl pH 6.8, 

10 % (v/v) β-mercaptoethanol, in deionised water) and placed at the IPG strips side for 

comparison of molecular weight. Gel molten ReadyPrep™ (Bio-Rad laboratories, UK, 

Hertfordshire) were then added over the IPG strip. A 1x electrophoresis buffer was added in 

to electrophoresis container (Bio-Rad laboratories, UK, Hertfordshire) and 200 V was applied 

for 45 min to allow protein separation. After electrophoresis, the gels were washed for 5 min 

in deionised water for three times. The gels were then stained by ProtoBlue™safe colloidal 

coomassie G-250 stain (Bio-Rad laboratories, IK, Hertfordshire), and the gel left for staining 

overnight at room temperature. After staining, the gel was then washed for 1 h in deionised 

water to remove any additional background staining. Stained gels were imaged by Syngene 

G-box with Genesnap software. The gels were then placed between two layers of acetate 

plastic that contain 0.001 % w/v sodium azide solution in deionised water at 4 °C to maintain 

the gel and avoid its breaking.  

2.6.1 SameSpot analysis 

The imaged gel was then analyzed by the software known as Progenesis SameSpot (V 

3.1.3030.23662, Non- linear Dyramics, UK). The images of the gels were aligned to a gel 

picked to be a control, either untreated mitotic or untreated differentiated H9c2 cells. 

Densitometric analysis was then carried out to identify gel spots proteins which have 

decreased or increased in expression when compared to the control spot in the control gel. 

The significance of the change in density of the gel spots is then reported with p < 0.05 

reported as a significant change and spots were circled with a defined number. 

2.6.2 De-staining 

Proteins whose expression was significantly altered were selected and excised from the gels 

using a pipette tip cut the exact size spot. Excised proteins were placed in a 1 ml Eppendorf™ 

tube containing a mixture of equal volumes of deionised water, 50 mM ammonium 

bicarbonate, and acetonitrile and incubated for 5 min at 37 °C with gentle agitation. The 

supernatant was poured carefully making sure that the gel spot is still inside the Eppendorf™ 

tube. A mixture containing equal volumes of 50 mM ammonium bicarbonate, deionised 

water and acetonitrile was added and incubated at room temperature for 15 min with gentle 
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agitation. After that, an equal volume of 100 % acetonitrile was added for spot dehydration 

and incubated for 5 min at room temperature with gentle agitation. The supernatant was 

removed  and 50 mM ammonium bicarbonate solution was added and incubated for 5 min 

at room temperature with gentle agitation. The supernatant was again removed  and 100 % 

acetonitrile was added for 1 min at room temperature poured. A volume of 100 µl of 

deionised water was added for 5 min to make sure that the proteins  were completely 

rehydrated. The supernatant was removed and trypsin digestion mixture was added (16.6 µl 

100 mM ammonium bicarbonate, 1 µl Mass spectrometry grade Promega gold trypsin, and 

7.6 µl deionised water) and incubated at 37 °C for 16 h. 1 µl 1 % (v/v) Trifluoroacetic acid 

(TFA) was added to terminate the digestion reaction. 

2.6.3  ZipTip reverse phase chromatography 

After tryptic digestion of the proteins, samples  were prepared for MALDI-TOF MS (matrix-

assisted laser desorption/ionization mass spectrometry) using C18 ZipTips (200 Å pore size; 

Millipore, Hertfordshire, UK) to concentrate and sanitize the peptide sample. A Milllipore 

C18 ZipTip was set by cleaning in 80 % v/v acetonitrile with 10 µl pipette tip for three times 

cycling, followed by 10 µl pipette tip in 0.1 % v/v TFA for three times cycling. The peptide 

digest was then bound to the C18 ZipTip chromatography medium by 10 µl of the peptide 

digest sample for 25 times cycling. The C18 ZipTip was then washed in 0.1 % TFA 10 µl three 

times cycling. The bound peptides were then eluted from the chromatography medium by 

the up-take of 5 µl of 80 % acetonitrile and cycled 25 times into a sterile 0.5 ml Eppendorf™ 

tube. 1.5 µl of the peptide digested sample was then added onto the MTP 384 ground steel 

Mass Spectrometry target plate (Bruker, UK) and 1.5 µl of CHCA matrix mixture (5mg/ml α-

Cyano-4- hydroxycinnamic acid (Bruker, UK), 50 % v/v acetonitrile, 0.1 % v/v TFA) was added 

to the peptide digest spot with a gentle mix by the pipette tip and covered to prevent 

contamination and left to dry at room temperature for 15 min. For calibration, a volume of 1 

µl of peptide calibrate mixture (Bruker peptide calibration standard) was added next to the 

protein samples onto the MTP 384 ground steel Mass Spectrometry target plate along with 1 

µl CHCA matrix mixture was spotted onto the target plate.  
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2.6.4 MALDI-TOF MS/MS 

Target plate containing the digested peptides was analysed by Bruker Ultraflextreme MALDI-

TOFTOF mass spectrometer (reflectron positive mode, ion suppression m/z 650, and mass 

range m/z 0−4000). Calibrate mixture spot was used to calibrate the mass spectrometer with 

a Laser power and shots (≈ 1000-3000 shots) to produce the best SNR (signal-to-noise ratio). 

Proteins were identified using Bruker-Daltonics Biotools (v 3.2, build 2.3) software, searched 

against the SwissProt database, rat species, using Mascot (version 2.3 server, Matrix Science, 

UK), PMF 100 ppm tolerance, and reported according to percentage sequence coverage 

(SC%). MS/MS search parameters: MS tolerance, 100 ppm; MS/MS tolerance, 0.8 Da; and 

three missed cleavages. All identified proteins exhibited Mascot scores that were considered 

statistically significant (p < 0.05). 

2.7 Binding of Dansylated PSP to Purified Tropomyosin.  

To validate the identification of one of the proteins labeled by dansylated PSP, 10 µl of 

purified human heart tropomyosin (10 μg; Lee Biosolutions, USA) was incubated with 10µl of 

25 μM dansylated PSP or unlabeled PSP for 1 h at room temperature  The sample was then 

mixed with 6 µl of 4x Laemmli and incubated for 5 min at 100 °C.  The sample was then 

subjected to SDS/PAGE on a 0.75 mm thickness 10 % acrylamide gels, which contain 

resolving gel (40 % (v/v) deionised water, 33 % (v/v) ProtoGel® acrylamide mix (30 % 

acrylamide solution 37.5:1 ratio, Geneflow Ltd, Staffordshire, UK), 25 % (v/v) 1.5 M Tris-HCl 

pH 8.8, 1 % (v/v) SDS solution, 1 % (v/v) APS solution and 0.04 % (v/v) TEMED) and were 

poured in to the gel cast  (Bio-Rad Mini-Protean III system)  and a space was left at the top of 

the gel cast for the stacking gel (Stacking gel; 68 % (v/v) deionised water, 17 % (v/v) 

ProtoGel® acrylamide mix, 12.5 % (v/v) 1.0 M Tris-HCl pH 6.8, 1 % (v/v) SDS solution (10 % 

(w/v) Sodium dodecyl sulphate in deionised water) 1 % (v/v) APS solution (10 % (w/v) 

Ammonium persulphate in deionised water), 0.1 % (v/v) TEMED) and the comp was added 

immediately. Once the gel was polymerized, 5 μl of protein ladder (Precision Plus Protein™ 

dual standards, Bio-Rad laboratories, Hertfordshire, UK)  and the sample was then loaded 

into the gel wells. After that the gel was  placed in electrophoresis container that contain in a 

1x electrophoresis buffer (0.01 % (w/v) SDS, 2.5 mM Tris, and pH 8.3, 19.2 mM glycine). 

Then, 200 Voltage was applied for 45 min. The gels were removed from the electrophoresis 

tank and from the glass casting frames and placed in 10% methanol for 15 minute to allow 
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fixation. The fluorescence visualized under UV light. Gels were imaged by Syngene G-box 

with Genesnap software. The same gel was then stained by ProtoBlue™safe colloidal 

coomassie G-250 stain (Bio-Rad laboratories, IK, Hertfordshire), and the gel left for staining 

overnight at room temperature. After staining, the gel was then washed for 1 h in deionised 

water to remove any additional background staining. Stained gels were imaged by Syngene 

G-box with Genesnap software. 

2.8 Statistical analysis 

Statistical analysis was performed using Prism software (GraphPad 6 version 6, 

California, USA). Statistical significance was determined by one-way ANOVA 

(analysis of variance of means) which  compares three or more sets of data, with 

Student’s t test being used to compare two sets of data. Tukey’s multiple 

comparison post hoc analysis was used to further demonstrate significant 

differences between multiple data sets. (p < 0.05 was considered statistically 

significant and highlighted with an asterix (*). Organophosphate IC50 values 

(concentrations of drug producing 50% of the maximal inhibition) derived from 

MTT assays and EC50 values (concentrations of drug producing 50% of the maximal 

stimulation) derived from LDH assays were obtained by computer assisted curve 

fitting using Prism software. All data is presented as the mean ± SEM The n in the 

text refers to the number of separate experiments. The number of replicates within 

each experiment is indicated, where appropriate, in the figure ligends.
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3.1 Introduction 

H9c2 cells are cardiomyoblasts derived from embryonic rat heart cells that display skeletal 

muscle properties and cardiac-specific characteristics (Sardao et al., 2007). In addition, these 

cells possess similar electrical signalling pathways to those present in adult cardiomyocytes. 

Therefore, they are widely used as an in vitro model to study molecular mechanisms 

associated with toxicology, hypertrophy and apoptosis (Pereira et al., 2011; Watkins et al., 

2011). Importantly, H9c2 cells have the ability to differentiate and develop into a more 

cardiomyocyte-like phenotype when treated with all-trans retinoic acid (RA) and in the 

presence of low-serum medium (Menard et al., 1999). However, to date, the vast majority of 

toxicity studies use mitotic H9c2 cells as a model cell line, while differentiated H9c2 cells 

display the formation of myocytes/myotubes from H9c2 myoblasts (Pagano et al., 2004). 

Furthermore, it has been shown that differentiated H9c2 cells display increased expression 

of cardiac-specific markers, such as troponin (Menard et al., 1999), and cytoskeleton 

proteins, such as myogenin and actin (Pagano et al., 2004). More interestingly, when 

comparing mitotic and differentiated H9c2 cells in toxicological studies. It has been found 

that differentiated H9c2 cells show more sensitivity to toxic agents such as doxorubicin 

(Branco et al., 2012). This might relate to the observation that differentiated H9c2 cells 

showed increased levels of mitochondrial superoxide compared to their undifferentiated 

state (Branco et al., 2012). In addition, another study also showed that differentiated H9c2 

cells were found to be more susceptible to toxicity than their mitotic form when exposed to 

the β-receptor agonist isoproterenol (Branco et al., 2011). However, no studies have 

investigated the effect of OPs using differentiated H9c2 cells. The use of differentiated H9c2 

cells provides a better model to study the cytotoxic effect of OPs and facilitates a better 

understanding of the cellular mechanism(s) involved in OP-induced cardiac toxicity.  

As reported previously, culturing mitotic H9c2 cells in low-serum medium and RA will induce 

differentiation of H9c2 cardiomyoblasts (Menard et al., 1999). The present study has 

assessed the effective differentiation of H9c2 cells by morphological characterisation of 

cardiomyoblasts as they differentiate into cardiomyocytes. Moreover, it has monitored the 

expression of cardiac-specific markers, such as cardiac troponin 1. After assessment of the 

cardiomyocyte-like phenotype, further studies were conducted to identify novel proteins 
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expressed in differentiated cells; these novel proteins may be implicated in OP-induced 

toxicity. 

3.2 Aims 

The aim of the work in this chapter was to investigate the differentiation of mitotic H9c2 

cells into a more cardiomyocyte-like phenotype. Initial experiments examined the 

morphological characteristics of differentiated cardiomyocyte-like H9c2 cells and confirmed 

the expression of known specific cardiac markers, such as troponin, during cardiogenic 

differentiation. Subsequently, mass spectrometry was used to identify novel proteins that 

were significantly expressed in differentiated H9c2 cells. 

3.3 Methods 

As described in chapter 2 section 2.2.5, 2.4, 2.5 and 2.6. 

3.4 Results 

3.4.1 Morphological characterisation of cardiomyocyte-like cells 

Rat cardiomyoblast H9c2 cells were cultured in differentiation medium (containing 1% v/v 

foetal bovine serum [FBS] and 10 nM RA) for 7 days to induce differentiation into a more 

cardiomyocyte-like phenotype. Following 7 days differentiation, cells were stained with 

Coomassie Blue and cell morphology was assessed microscopically. As shown in Figure 3.1, 

after 24 h culture under normal culture conditions, mitotic cells exhibit a rounded cell mono-

nucleated cell (control). H9c2 cells following 7 days in differentiation medium appeared 

larger, elongated and multinucleated.  
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Figure 3.1 Light microscopy examination of H9c2 cells.  

Mitotic H9c2 cells (control) cultured under normal culture conditions (medium alone) appear to be 

mono-nucleated rounded myoblasts (black arrow); differentiated cells undergo a morphological 

change when treated with 1% FBS and 10 nM RA in DMEM medium for 7 days. Cells appear 

elongated and some are multinucleated (red arrow). Images were visualised on days 2, 4 and 7 using 

a 20× objective lens. Scale bar = 100 μm.  
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3.4.2 Measurement of cardiac-specific troponin  

To confirm mitotic H9c2 cell differentiation to a more cardiomyocyte-like phenotype, the 

expression of the cardiac-specific marker troponin 1 in cells cultured in differentiation 

medium was monitored over a period of 9 days using western blot analysis and compared 

with that of control mitotic cells. In agreement with previous studies, cardiac troponin 1 

expression increased following H9c2 cardiomyocyte-like differentiation (Branco et al., 2011). 

Quantitative values (in percentages) showed that troponin 1 expression peaked after 7days 

treatment (see Figure 3.2). Data was confirmed by immunocytochemistry, results showing 

significant increase in troponin 1 staining at 4, 7 and 9 days when compared to the control 

mitotic cells. In agreement with the western blot data, troponin 1 expression peaked after 7-

day treatment. Structural examination of 7 and 9 day differentiated cells demonstrated 

large, long, multi-nucleated myotubes displaying clear myofilaments. This provided 

additional evidence that the cells had gained a cardiac-like phenotype (see Figure 3.3). 

 

 

Figure 3.2 Cardiac-specific troponin 1 expression in differentiating H9c2 cells. 

Mitotic H9c2 cells (control) were differentiated with RA (10 nM) in a 1% FBS medium. (A) Cell lysates 
(15 µg) were analysed for cardiac troponin 1 expression on days 1, 2, 4, 7 and 9 via western blotting 
using anti-cardiac troponin 1 antibody. Lysates were also analysed on separate blots for GAPDH 
expression to confirm equal protein loading. Quantified values are expressed as a percentage of 
troponin 1 expression in control mitotic cells (100 %) and represent the mean ± SEM of three 
independent experiments. *p<0.05 and ****p < 0.0001 versus control (mitotic) cells. 
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Figure 3.3 Cardiac-specific troponin expression of H9c2 cells upon differentiation. 

 Mitotic H9c2 cells (control) were cultured in differentiation medium and cardiac troponin 1 was 

assessed on days 1–9 via indirect immunofluorescence staining using a cardiac-specific troponin 1 

antibody (green) and DAPI counterstain for nuclear visualisation (blue) of H9c2 cells. Scale bar = 100 

μm. Images presented are from one experiment and are representative of four experiments. 

Quantified data are expressed as a percentage of control (mitotic) cell values and represent the 

mean ± SEM of four independent experiments. ***p < 0.001 and ****p < 0.0001 versus control 

(mitotic) cells. 
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3.4.3 Identification of proteins associated with H9c2 cell differentiation 

The results presented thus far indicate that 1% FBS and 10 nM all-trans RA in DMEM 

medium induced differentiation of H9c2 cells to a cardiomyocyte-like phenotype. To identify 

other proteins and monitor changes in protein expression associated with H9c2 cell 

differentiation, 2D gel electrophoresis was performed as described in Chapter 2. Several 

protein spots, which were significantly increased in expression in differentiated H9c2 cells 

when compared to undifferentiated cells. Four protein spots (Spot ID: 1, 2, 3, 5) were 

significantly up regulated in differentiated H9c2 cells as determined by using Progenesis 

SameSpot software (see Table 3.1). Protein spots were visually distinct for spot picking 

(Figure 3.4). Protein spots were picked from the stained gel and digested with trypsin 

followed by MALDI-TOF mass spectrometry analysis of the peptides produced. Mass 

spectrometry analysis identified tropomyosin ß-chain, tropomyosin α4-chain, cytoplasmic α-

actin and vimentin as novel proteins that exhibited a significant increase in levels in 

differentiated H9c2 cells when compared to mitotic H9c2 cells. The identified proteins are 

listed in Table 3.2. These proteins were also confirmed by comparison of their gel position 

with their theoretical molecular weights and isoelectric point (pI).  

Table 3.1 Progenesis SameSpot analysis represent a significant increase in density of 

protein spot in differentiated H9c2 cells.  

 

Data table represent a significant increase in protein spots densities using ANOVA analysis of protein 

spot densities. Data values of 3 accumulated 2D gel electrophoresis, *p < 0.05 was viewed as 

significant.  
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Figure 3.4 Representative 2D gel images of protein expression in H9c2 cells. 

 A) Mitotic cells and B) cells differentiated with 1% FBS and 10 nM all-trans RA in DMEM medium for 

7 days. Cell lysates (300 µg) were analysed by 2D gel electrophoresis using pH 3–10 gradient strips. 

Gels were stained with ProtoBlue Safe colloidal Coomassie G-250 stain and Gel images analysed using 

Progenesis SameSpots software. Data values of 3 accumulated 2D gel electrophoresis and circled 

spots represent proteins that showed significantly stronger staining when compared to mitotic cells. 

Spot 1, vimentin; spot 3, cytoplasmic α-actin; spot 5, tropomyosin ß-chain; spot 2, tropomyosin α4-

chain. 
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Table 3.2 Identification of novel proteins significantly expressed in differentiated H9c2 

cells. 

 

Proteins significantly expressed in differentiated H9c2 cells were identified using MALDI-TOF 

MS (PMF) as described in the Material and Methods. Sequencing data were analysed using 

Mascot software and reported according to percentage sequence coverage (SC%) or Mascot 

score (ion scores for PMF > 51 indicate extensive homology). All identified proteins exhibited 

Mascot scores that were considered statistically significant (*p < 0.05).  

 

 

 

 

 

 

 

 

 

 

 

 
Spot 

number 

 
Protein 

 
Accession 

no. 

 
PMF 

sequence 
coverage (%) 

 
Mascot 
score 

 
kDa 

 
pI 

1 vimentin P20152 56 79.7 54 6.3 

3 α-actin P62737 53 76.2 42 4.72 

5 tropomyosin  
ß-chain 

P58774 9 73 33 4.2 

2 tropomyosin  
α4-chain 

P09495  
45 

92 28.5 4.4 
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To further validate the MALDI-TOF MS/MS data, α-actin and tropomyosin were selected to 

confirm their up-regulation in differentiated H9c2 cells via western blot. As shown in Figure 

3.5 there was a significant increase in reactivity of cell lysates with anti-α-actin and anti-

tropomyosin antibodies in the differentiated cells when compared to the undifferentiated 

control cells.  

 

 

 

Figure 3.5 Cardiac cytoskeleton α-actin and tropomyosin expression in differentiating H9c2 

cells.   

Mitotic H9c2 cells (control) were differentiated with RA (10 nM) in a 1% FBS medium. Cell lysates (15 
µg) were analysed for cardiac tropomyosin on day 7 via western blotting using anti-α-actin and anti-
tropomyosin antibody. Lysates were also analysed on separate blot for GAPDH expression to confirm 
equal protein loading. Quantified densitometry values are expressed as the percentage of α-actin 
and tropomyosin expression in control mitotic cells (100 %) and represent the mean ± SEM of three 
independent experiments. **p < 0.01 versus control cells. 
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3.5 Discussion 

3.5.1 Assessment of the differentiated H9c2 cardiomyocyte-like phenotype 

In the present study, H9c2 myoblast cells were induced to differentiate to produce a well-

established H9c2 cardiomyocyte-like phenotype in vitro. Establishment of a differentiated 

H9c2 cell model will enable further examination of OP toxicity in a cardiomyocyte-like cell 

line. The current results confirmed the differentiation of mitotic H9c2 cells to 

cardiomyocyte-like characteristics; cells expressed cardiomyocyte-specific markers, such as 

troponin 1. Troponin 1 expression increased during the time course of cell differentiation 

when cultured in low-serum medium and all-trans RA. In contrast, expression of troponin 1 

was not detected in mitotic H9c2 cells. The data presented support the hypothesis that all-

trans RA and low-serum medium enhance the differentiation of H9c2 myoblasts to 

myocytes/myotubes, as reported in previous studies (Menard et al., 1999; Pagano et al., 

2004; Comelli et al., 2011).  

Mitotic H9c2 cells have been used previously as an in vitro model in several toxicological 

studies (Spallarossa et al., 2005; Ellis et al., 2010; Hosseinzadeh et al., 2011), since they 

display morphological, electrophysiological and biochemical properties that are similar to 

those of primary cardiac myocytes (Hescheler et al., 1991). With regard to H9c2 mitotic cells, 

these may lack some cardiomyocyte properties, such as gap junction communication and T 

tubules, which will limit their use (Hescheler et al., 1991). However, H9c2 cardiomyoblasts 

have the ability to differentiate into cardiac muscle cells under certain growth conditions. In 

their differentiated state, cells express specific cardiac proteins, such as L-type voltage-

dependent Ca2+ channels and undergo morphological and physiological changes (Menard et 

al., 1999). These changes include the appearance of elongated multinucleated myotubes 

consistent with noticeable branched fibres and actin filaments (Kadivar et al., 2006; Zara et 

al., 2010). These characteristics show that the H9c2 cell line is an appropriate model for 

studying the effects of OPs on the cardiomyocyte phenotype. More interestingly, H9c2 

cardiac-like differentiation was shown to be more susceptible to toxicity when exposed to 

toxic compounds, such as isoproterenol, in comparison with their mitotic form (Branco et al., 

2011). Hence, the use of differentiated H9c2 cells to study OP-induced cytotoxicity 

represents a more physiologically relevant cellular model than mitotic H9c2 cells. 
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In the present study, the process of cellular differentiation proceeded by culturing mitotic 

H9c2 cells in low FBS and 10 nM RA medium for 7 days in a similar manner to that used in 

previously published studies investigating cardiomyocyte-like differentiation (Menard et al., 

1999; Kageyama et al., 2002; Comelli et al., 2011). Treatment of the cells confirmed 

successful cardiac differentiation into more cardiac-like phenotype characteristics. In terms 

of their morphological features, differentiated cells appeared to be thin and multinucleated 

cells, as shown by Coomassie staining and compared with the mitotic cell line (Figure 3.1). 

This is consistent with previous research that investigated cardiomyocyte-like differentiation 

(Menard et al., 1999; Kageyama et al., 2002). Moreover, as shown in Figure 3.2, western blot 

analysis demonstrated that differentiated cells expressed higher amounts of cardiac 

troponin 1, a specific marker of cardiac differentiation (Decker et al., 2009; Kuzmenkin et al., 

2009). This globular protein present in myocardial tissue plays an important role in actin–

myosin interactions, which are necessary for muscle contraction (O’Brien, 2008). Troponin is 

released in serum as a result of myocardial injury; it is considered to be more specific than 

other cardiac biomarkers (Apple et al., 1999; Brogan et al., 1999). More interestingly, the OP 

fenthion induces cardiotoxicity and increased the levels of troponin 1 in blood rats (Yavuz et 

al., 2008). Therefore, troponin 1 expression and/or release can be monitored as a sensitive 

marker indicating the presence of OP poisoning. 

Immunofluorescence staining confirmed the increase in troponin 1 expression in the 

cardiomyocyte-like phenotype induced by RA treatment of H9c2 cells. Cells appeared to 

change from rounded shaped to elongated multinucleated cells characterised by the parallel 

arrangement of the branched fibres. This was previously shown to be accompanied by the 

formation of myofibrils, intercalated disks and T tubules (Perissel et al., 1980; Isenberg & 

Klockner, 1982). The developed ultra-structural features were in accordance with those 

observed in the differentiation of primary cultures of cardiomyocytes (Borisov et al., 2008). 

Striated cardiac myofilaments are involved in the development of sarcomere assembly 

structure with appearance of dense Z-lines in the cardiac cytoskeleton (Niederreither et al., 

2001). In differentiated H9c2 cells, cells were characterised by the organised, linear 

arrangement of filamentous architecture in the cytoskeleton, indicating the formation of 

ultra-structural assemblies required for cardiac myogenesis. In contrast, undifferentiated 

H9c2 cells appear to be devoid of myofilaments. 



Chapter 3 

68 
 

3.5.2 Expression of proteins associated with differentiated H9c2 

cardiomyocyte-like cells  

It was apparent that differentiated H9c2 cells exhibited increased expression of cardiac-

specific troponin 1. However, it would be of interest to investigate further proteins 

expressed in differentiated cells as these novel proteins may be implicated in OP-induced 

toxicity in differentiated H9c2 cells. The present study identified several other proteins that 

were expressed more highly in differentiated H9c2 cells; these proteins are listed in Table 

3.2. They include α-actin, tropomyosin ß-chain, tropomyosin α4-chain and vimentin. Proteins 

were selected based on visual observation of spots from 2D gels electrophoresis and 

confirmed by their significant score in Progenesis SameSpot analysis and MALDI-TOF MS/MS.  

All proteins identified are cytoskeletal proteins, thereby confirming the cytoskeletal changes 

of mitotic cells adopting structural cardiomyocyte-like features. The increased expression of 

these cytoskeletal proteins may contribute to the process of myogenesis-like differentiation 

(Comelli et al., 2011). Identifying significant protein expression changes in differentiated 

H9c2 cells gives the opportunity to study biochemical remodeling and specific pathways 

involved in the process of differentiation (Branco et al., 2015). Although 2D gel 

electrophoresis is a powerful tool in proteomic identification and cardiac troponin is a 

specific cardiac marker. This method occasionally under estimated the presence of proteins. 

However, failure to detect specific proteins such as troponin 1 does not confirm its absence 

from the sample and this may be due to several reasons. One reason may be that the 

troponin is less abundant in the samples prepared for 2D gel electrophoresis. 

Tropomyosin isoforms represent important regulators of microfilament stability in both 

muscle and non-muscle cells (Robinson & Shoichiro, 2006). It regulates the interaction of 

some actin-binding proteins, such as, ADF-cofilin, Arp2/3, formin, and tropomodulin (Lehrer 

& Morris, 1984; Clayton et al., 2010). Tropomyosin is a component of contractile filaments 

known also as a sarcomeric contractile protein. In cardiac muscle, regulation of myosin 

binding to actin is achieved by tropomyosin and troponin complex. In the presence of 

troponin and the absence of elevated level of Ca2+, tropomyosin blocks the interaction of 

myosin heads (thick filaments) with actin (thin filament) allowing filament sliding and 

subsequent muscle contraction (McKillop & Geeves; 1993). Generally, tropomyosin is a 
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muscle-specific marker protein and it has been previously used to evaluate differentiated 

cardiomyocytes derived from human embryonic stem cells (Hollweck et al., 2011).  

The α-actin is a cytoskeletal actin-binding protein and a member of the spectrin superfamily. 

It forms an anti-parallel rod-shaped dimer with one actin-binding domain at each end of the 

rod and join the actin filaments in multiple cell-type and cytoskeleton frameworks (Pollard & 

Cooper, 2009). In cardiac and muscle cells, it is localized at the Z-disk and stabilizes the 

muscle contractile mechanism and associates with a number of cytoskeletal and 

signaling molecules to form an important structural and regulatory roles in cytoskeleton 

organization (Sjoblom et al., 2008). The up-regulation of α-actin expression observed as a 

consequence of RA treatment, reflects the increased expression of functional skeletal muscle 

actin that was observed in trans-differentiation of embryonic rat stem cells to adult 

cardiomyocytes (Swynghedauw, 1986). Furthermore, Yamada et al. (2007) also observed 

increased expression of cardiomyocyte specific genes such as, cardiac α-actin in 

cardiomyocytes derived from mesenchymal stem cells. More interestingly, disruption of α-

actin levels may be a potential biomarker for OP exposure in differentiated H9c2 cells, as 

previous results have demonstrated that the OP pesticide malathion induced a decrease in 

α-actin expression and caused the re-distribution of cellular microfilaments in the human 

mammary carcinoma cell line MCF-7 (Cabello et al., 2003). 

MALDI-TOF MS/MS analysis of 2D gels also identified increased levels of vimentin in 

differentiated H9c2 cells. Vimentin is a cytoskeletal protein that is normally expressed in 

mesenchymal cells; an increase in its expression can indicate the transition of epithelial cells 

to mesenchymal cells (Hendrix et al., 1997). Mesenchymal cells are precursor cells that are 

important in the formation of heart valves during embryonic development (Casper, 2004). 

Therefore, the increased expression of vimentin in the present study may further verified 

the transformation of mitotic cells into a more cardiomyocyte-like phenotype. A potential 

link between the effects of the OP sarin and vimentin has been previously investigated in the 

central nervous system of rats. Thus, the toxic effect of sarin leads to a change in level of 

vimentin that causes astrocyte dysfunction associated with astroglial dedifferentiation 

(Tirupapuliyar et al., 2002). Since these cytoskeletal structural proteins, such as tropomyosin 

isoforms, α-actin and vimentin, are significantly expressed when compared to the 

https://en.wikipedia.org/wiki/Heart_valve
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cardiomyoblast form of H9c2 cells, it will be worthwhile to study the effect of OPs on them 

during the differentiation of H9c2 cells. 

3.6 Conclusion 

H9c2 rat cardiomyoblasts treated with all-trans-RA and low-serum medium were 

investigated for cardiomyogenic differentiation. The results demonstrated morphological 

changes developing over a period of 7 days of differentiation. The cardiomyocyte-like 

phenotype was confirmed by the expression of the cardiac-specific marker troponin 1, which 

indicates the formation of cytoskeletal branched fibres and the development of myogenesis. 

Finally, differentiation of H9c2 cells was associated with the increased expression of several 

cytoskeletal proteins of which tropomyosin and α-actin were identified. These proteins are 

strongly linked with the development of the myofilament assembly, which contains tubular 

and Z-structure proteins.  
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4.1 Introduction 

Diazinon and chlorpyrifos are highly toxic, commonly used pesticides that induce 

neurotoxicity by primary inhibition of acetylcholinesterase (AChE) activity in neuromuscular 

junctions and the central nervous system (Chambers, 1992; Hargreaves, 2012). Thus, 

adverse effects of OPs can be fatal to non-target species including humans. PSP is a 

structural analogue of saligenin cyclic-o-tolyl phosphate (SCOTP) an active metabolite of tri-

ortho-cresyl phosphate (TOCP) which is commonly used in jet engine oils and jet hydraulic 

fluid due to its anti-wear properties under certain conditions of temperature and humidity 

(Liyasova et al., 2011). However, they were found to be toxic to both passengers and 

aircrew, resulting in muscle weakness, dizziness, nausea, disorientation and memory loss 

(Schopfer et al., 2010; Carletti et al., 2011; Liyasova et al., 2011). The appearance of 

neurological symptoms of OP-induced delayed neuropathy (OPIDN) is caused by 

bioactivation of TOCP to active the toxic metabolite SCOTP (Carletti et al., 2011). The 

majority of studies have focused on the effects of OP toxicity on the central nervous system.  

However, there is very little information on the effect of OPs on muscle function, particularly 

toxic effects on cardiac muscle. Cardiotoxic effects are also of particular concern because it 

has not yet been established whether the latter effects are induced due to excessive 

accumulation of ACh, or due to the inhibition of the enzyme itself (Baskin & Whitmer, 1991).   

A considerable number of studies have shown that OPs interfere with the signalling 

pathways associated with members of the MAPK family (Kaplan, 1995; Hargreaves et al., 

2006, Pomeroy-Black & Ehrich, 2012). For example, chlorpyrifos was found to induce 

apoptosis of rat cortical neurons via the activation of ERK1/2, p38 MAPK and JNK signalling 

(Caughlan et al., 2004). On the other hand, PSP was found to cause a significant activation of 

PI-3K signalling, a pathway which plays an important role in neurite outgrowth (Pomeroy-

Black & Ehrich, 2012). More importantly, other studies have reported that OPs may affect 

several biochemical pathways independently from inhibition of AChE activity (Akbarsha & 

Sivasamy, 1997). Therefore, it was important to further explore the cytotoxic effect of OPs at 

the molecular level. The present study will investigate the effects of OPs on protein kinase 

signalling cascades that play an important role in cell survival (PKB, ERK1/2) and cell death 

(JNK and p38 MAPK). Inhibitory studies will be directed to ascertain which MAPK pathway 

mediated the toxic effects of OPs. H9c2 cells will be exposed to OPs in the presence of 
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specific inhibitors of PKB, ERK1/2, JNK and p38 MAPK. Inhibitors are used are SP 600125 (10 

µM; JNK1/2 inhibitor), LY294002 (30 µM, PI3K inhibitor), PD 98059 (50 µM, MEK1/2 

inhibitor), SB 203580 (30 µM; p38 MAPK inhibitor) and Wortmannin (100 nM, PI-3K).  

Organophosphates have also been found to induce apoptosis in vivo in mice, rats and 

Drosophila melanogaster and also in vitro in different cell types such as neuronal cells, 

fibroblasts and placental cells (Li, 2010). In particular, PSP induces apoptosis in a 

concentration dependent manner in human SH-SY5Y neuroblastoma cells, as determined by 

the measurement of activation of caspase-3, suggesting that apoptosis is a consequence of 

OP poisoning (Ehrich et al., 1997). Therefore, in the present study, the effect of OPs on 

caspase-3 will be investigated to establish the role of apoptosis.  

Previous studies have reported possible covalent binding of OPs (e.g. chlorpyrifos oxon, 

diazoxon and dichlorvos) to target proteins other than AChE, such as albumin and transferrin 

(Peeples et al., 2005; Li et al., 2009). However, the identity of protein targets for OPs in 

cardiac cells has not been investigated. This study utilized fluorescently labeled OPs 

(dansylated OP) to identify critical proteins is required in order to fully understand the 

mechanisms of OP-induced cytotoxicity. This type of approach is an accurate, specific and 

sensitive means of detecting novel protein targets of toxic compounds (Greenbaum et al., 

2002).  

4.2. Methods 

 As described in chapter 2 section 2.3, 2.5, 2.2.5, 2.6 and 2.7. 

4.3 Aims 

This study is designed to examine the effect of the OPs chlorpyrifos and diazinon, their 

corresponding metabolites (chlorpyrifos oxon and diazoxon), and PSP on the viability of 

mitotic and differentiated rat embryonic cardiomyoblast-derived H9c2 cells and to identify 

novel non-acetylcholinesterase protein targets  of OPs to fully understand the mechanisms 

to determine the molecular mechanisms underlying their cytotoxicity. 
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4.3 Results 

4.3.1 Effects of organophosphates on the viability of mitotic H9c2 cells 

Initial experiments in this study investigated the cytotoxic effects of OPs and their 

metabolite on the viability of mitotic H9c2 cells, which display properties of skeletal muscle. 

The effects of OP treatment on cell viability were assessed by monitoring MTT reduction (a 

measure of cellular dehydrogenase activity) and measurement of LDH activity released into 

the culture medium. Chlorpyrifos at concentration of 200 μM and 100 μM inhibited MTT 

reduction following 24 and 48 h exposure (Figure 4.1a and c) but had no effect on LDH 

release at these time points (Figure 4.1b and d). In contrast, chlorpyrifos oxon at 

concentrations up to 200 μM had no significant effect (p> 0.05) on MTT reduction or LDH 

release after 48 h of exposure (Figure 4.2). Also, at concentrations up to 200 µM both 

diazinon and its acutely toxic metabolites diazoxon had no significant effect (p> 0.05) on 

MTT reduction or LDH release following 48 h of exposure (see Figures 4.3 to Figure 4.4).   

Phenyl saligenin phosphate significantly (p˂0.05) induced cell death in a concentration and 

time-dependent manner, as determined by MTT reduction and LDH release following 24 h 

and 48 h exposure (Figure 4.5). Therefore, subsequent experiments assessed the effects of 

PSP on LDH release and MTT reduction at earlier time points e.g. 1, 2, 4, and 8 h (see Figures 

4.6 to Figure 4.7).  The data from these experiments revealed that PSP induced inhibition of 

MTT reduction was first evident at 4 h (IC50 = 8.5 ± 5.5 µM), with comparable results 

obtained at 8 h exposure (IC50 = 7.1 ± 4.7 µM). Similarly, significant (p˂0.05) LDH release was 

first evident at 4 h (EC50 = 13 ± 1.1 µM) and at 8 h (EC50 = 13 ± 1.5 µM), with levels of LDH 

release comparable to those observed following 24 h of treatment. Overall, these data 

indicate that PSP displays marked cytotoxicity towards mitotic H9c2. 
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Figure 4.1 Effect of chlorpyrifos on the viability of mitotic H9c2 cells monitored by MTT 

reduction and LDH release.  

Mitotic H9c2 cells were exposed to the indicated concentrations of chlorpyrifos for 24 h (panels A 

and B) and 48 h (panels C and D). Following chlorpyrifos exposure, cell viability was assessed by 

measuring the metabolic reduction of MTT by cellular dehydrogenases (A and C) and release of LDH 

(B and D). Data are expressed as a percentage of control cell values (=100%) and represent the mean 

± SEM of four independent experiments each performed in quadruplicate (MTT) or sextuplicate 

(LDH). **p ˂ 0.01 ****p ˂ 0.0001 versus the control response.  
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Figure 4.2 Effect of chlorpyrifos oxon on the viability of mitotic H9c2 cells monitored by 

MTT reduction and LDH release.  

Mitotic H9c2 cells were exposed to the indicated concentrations of chlorpyrifos oxon for 24 h (panels 

A and B) and 48 h (panels C and D). Following chlorpyrifos oxon exposure, cell viability was assessed 

by measuring the metabolic reduction of MTT by cellular dehydrogenases (A and C) and release of 

LDH (B and D). Data are expressed as a percentage of control cell values (=100%) and represent the 

mean ± SEM of four independent experiments each performed in quadruplicate (MTT) or 

sextuplicate (LDH).  
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Figure 4.3 Effect of diazinon on the viability of mitotic H9c2 cells monitored by MTT 

reduction and LDH release.  

Mitotic H9c2 cells were exposed to the indicated concentrations of diazinon for 24 h (panels A and B) 

and 48 h (panels C and D). Following diazinon exposure, cell viability was assessed by measuring the 

metabolic reduction of MTT by cellular dehydrogenases (A and C) and release of LDH (B and D). Data 

are expressed as a percentage of control cell values (=100%) and represent the mean ± SEM of four 

independent experiments each performed in quadruplicate (MTT) or sextuplicate (LDH).  
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Figure 4.4 Effect of diazoxon on the viability of mitotic H9c2 cells monitored by MTT 

reduction and LDH release.  

Mitotic H9c2 cells were exposed to the indicated concentrations of diazoxon for 24 h (panels A and 

B) and 48 h (panels C and D). Following diazoxon exposure, cell viability was assessed by measuring 

the metabolic reduction of MTT by cellular dehydrogenases (A and C) and release of LDH (B and D). 

Data are expressed as a the percentage of control cell values (=100%) and represent the mean ± SEM 

of four independent experiments each performed in quadruplicate (MTT) or sextuplicate (LDH).  
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Figure 4.5 Effect of PSP on the viability of mitotic H9c2 cells monitored by MTT reduction 

and LDH release.  

Mitotic H9c2 cells were exposed to the indicated concentrations of PSP for 24 h (panels A and B) and 

48 h (panels C and D). Following PSP exposure, cell viability was assessed by measuring the metabolic 

reduction of MTT by cellular dehydrogenases (A and C) and release of LDH (B and D). Data are 

expressed as a percentage of control cell values (=100%) and represent the mean ± SEM of four 

independent experiments each performed in quadruplicate (MTT) or sextuplicate (LDH). *p ˂ 0.05, 

**p ˂ 0.01, ***p ˂ 0.001, ****p ˂ 0.0001 versus the control response.  
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Figure 4.6 Effect of PSP on the viability of mitotic H9c2 cells monitored by MTT reduction 

and LDH release.  

Mitotic H9c2 cells were exposed to the indicated concentrations of PSP for 1 h (panels A and B) and 2 

h (panels C and D). Following PSP exposure, cell viability was assessed by measuring the metabolic 

reduction of MTT by cellular dehydrogenases (A and C) and release of LDH (B and D). Data are 

expressed as a percentage of control cell values (=100%) and represent the mean ± SEM of four 

independent experiments each performed in quadruplicate (MTT) or sextuplicate (LDH).  

 

 



Chapter 4 

81 
 

 

 

 

 

 

Figure 4.7 Effect of PSP on the viability of mitotic H9c2 cells monitored by MTT reduction 

and LDH release. 

Mitotic H9c2 cells were exposed to the indicated concentrations of PSP for 4 h (panels A and B) and 8 

h (panels C and D). Following PSP exposure, cell viability was assessed by measuring the metabolic 

reduction of MTT by cellular dehydrogenases (A and C) and release of LDH (B and D). Data are 

expressed as a percentage of control cell values (=100%) and represent the mean ± SEM of four 

independent experiments each performed in quadruplicate (MTT) or sextuplicate (LDH). *p ˂ 0.05, 

**p ˂ 0.01, ***p ˂ 0.001, ****p ˂ 0.0001 versus the control response.  
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4.3.2 Effects of organophosphates on the viability of differentiated H9c2 cells 

Mitotic H9c2 cells can be differentiated into a more cardiomyocyte-like phenotype as shown 

in Chapter 3. Therefore, the effect of OP treatment on the viability of differentiated H9c2 

cells was investigated. Chlorpyrifos at 200 µM and 100 µM inhibited MTT reduction 

following 24 and 48 h exposure (Figure 4.8a and c) and at 200 µM triggered a small but 

significant (p˂0.05) release in LDH at these time points (Figure 4.8b and d). In contrast, 

chlorpyrifos-oxon at concentrations up to 200 µM had no significant effect on MTT reduction 

or LDH release after 48 h exposure (Figure 4.9). At concentrations up to 200 µM, both 

diazinon and diazoxon had no significant effect (p>0.05) on MTT reduction or LDH release 

following 48 h exposure (see Figures 4.10, Figure 4.11).  

In differentiated cells, PSP significantly inhibited (p˂0.05) the reduction of MTT and triggered 

the release of LDH following 24 h and 48 h of exposure (Figures 4.12). Subsequent 

experiments assessed the effects of PSP on MTT reduction and LDH release at earlier time 

points e.g. 1, 2, 4, and 8 h (see Figures 4.13, Figure 4.14). The data from these experiments 

revealed that PSP-induced MTT reduction and was first evident at 2 h (IC50 = 6.5 ± 1.2 µM), 

with further inhibition observed following 4 h (IC50 = 12.8 ± 4.9 µM) and 8h (IC50 = 25 ± 9.3 

µM) exposure. In contrast, PSP-induced LDH release was first evident at 4 h (EC50 = 15.8 ± 6.1 

µM) and increased at 8 h (EC50 = 15.1 ± 4.3 µM), when levels of LDH release were 

comparable to those observed following 24 h treatment. Overall, these data (summarised in 

Table 4.1) indicate that PSP displays greater toxicity towards differentiated H9c2 cells 

compared to the other OPs tested. 
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Figure 4.8 Effect of chlorpyrifos on the viability of differentiated H9c2 cells monitored by 

MTT reduction and LDH release.  

Mitotic H9c2 cells were exposed to the indicated concentrations of chlorpyrifos for 24 h (panels A 

and B) and 48 h (panels C and D). Following chlorpyrifos exposure, cell viability was assessed by 

measuring the metabolic reduction of MTT by cellular dehydrogenases (A and C) and release of LDH 

(B and D). Data are expressed as a percentage of control cell values (=100%) and represent the mean 

± SEM of four independent experiments each performed in quadruplicate (MTT) or sextuplicate 

(LDH). *p ˂ 0.05, **p ˂ 0.01, ****p ˂ 0.0001 versus the control response.  
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Figure 4.9 Effect of chlorpyrifos oxon on the viability of differentiated H9c2 cells monitored 

by MTT reduction and LDH release.  

Differentiated H9c2 cells were exposed to the indicated concentrations of chlorpyrifos oxon for 24 h 

(panels A and B) and 48 h (panels C and D). Following chlorpyrifos oxon exposure, cell viability was 

assessed by measuring the metabolic reduction of MTT by cellular dehydrogenases (A and C) and 

release of LDH (B and D). Data are expressed as a percentage of control cell values (=100%) and 

represent the mean ± SEM of four independent experiments each performed in quadruplicate (MTT) 

or sextuplicate (LDH).  
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Figure 4.10 Effect of diazinon on the viability of differentiated H9c2 cells monitored by 

MTT reduction and LDH release.  

Differentiated H9c2 cells were exposed to the indicated concentrations of diazinon for 24 h (panels A 

and B) and 48 h (panels C and D). Following diazinon exposure, cell viability was assessed by 

measuring the metabolic reduction of MTT by cellular dehydrogenases (A and C) and release of LDH 

(B and D). Data are expressed as a percentage of control cell values (=100%) and represent the mean 

± SEM of four independent experiments each performed in quadruplicate (MTT) or sextuplicate 

(LDH).   
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Figure 4.11 Effect of diazoxon on the viability of differentiated H9c2 cells monitored by 

MTT reduction and LDH release.  

Differentiated H9c2 cells were exposed to the indicated concentrations of diazoxon for 24 h (panels A 

and B) and 48 h (panels C and D). Following diazoxon exposure, cell viability was assessed by 

measuring the metabolic reduction of MTT by cellular dehydrogenases (A and C) and release of LDH 

(B and D). Data are expressed as a percentage of control cell values (=100%) and represent the mean 

± SEM of four independent experiments each performed in quadruplicate (MTT) or sextuplicate 

(LDH).  
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Figure 4.12 Effect of PSP on the viability of differentiated H9c2 cells monitored by MTT 

reduction and LDH release.  

Differentiated H9c2 cells were exposed to the indicated concentrations of PSP for 24 h (panels A and 

B) and 48 h (panels C and D). Following PSP exposure, cell viability was assessed by measuring the 

metabolic reduction of MTT by cellular dehydrogenases (A and C) and release of LDH (B and D). Data 

are expressed as a percentage of control cell values (=100%) and represent the mean ± SEM of four 

independent experiments each performed in quadruplicate (MTT) or sextuplicate (LDH). *p ˂ 0.05, 

**p ˂ 0.01, ***p ˂ 0.001 ****p ˂ 0.0001 versus the control response.  
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Figure 4.13 Effect of PSP on the viability of differentiated H9c2 cells monitored by MTT 

reduction and LDH release.  

Differentiated H9c2 cells were exposed to the indicated concentrations of PSP for 1 h (panels A and 

B) and 2 h (panels C and D). Following PSP exposure, cell viability was assessed by measuring the 

metabolic reduction of MTT by cellular dehydrogenases (A and C) and release of LDH (B and D). Data 

are expressed as a percentage of control cell values (=100%) and represent the mean ± SEM of four 

independent experiments each performed in quadruplicate (MTT) or sextuplicate (LDH). *p ˂ 0.05, 

**p ˂ 0.01 versus the control response.  
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Figure 4.14 Effect of PSP on the viability of differentiated H9c2 cells monitored by MTT 

reduction and LDH release.  

Differentiated H9c2 cells were exposed to the indicated concentrations of PSP for 4 h (panels A and 

B) and 8 h (panels C and D). Following PSP exposure, cell viability was assessed by measuring the 

metabolic reduction of MTT by cellular dehydrogenases (A and C) and release of LDH (B and D). Data 

are expressed as a percentage of control cell values (=100%) and represent the mean ± SEM of four 

independent experiments each performed in quadruplicate (MTT) or sextuplicate (LDH). *p ˂ 0.05, 

**p ˂ 0.01, ***p ˂ 0.001, , ****p ˂ 0.0001  versus the control response. 
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Table 4.1 Summary of effects of organophosphorous compounds on the viability of H9c2 

cells. (+) represent significant  effect (p˂0.05) and (−) represent no significant effect 

(p>0.05) of four independent experiments. 
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4.4 Phenyl Saligenin Phosphate Induced Apoptosis in H9c2 Cells 

From the previous results in this study it was found that PSP significantly induced H9c2 cell 

death in a concentration and time dependent manner in both mitotic and differentiated 

cells. Whilst MTT reduction and LDH release are widely used markers of cell viability, they do 

not discriminate between apoptotic and necrotic forms of cell death. To assess whether PSP-

induced cell death involved apoptosis via caspase-3 activation following PSP exposure, 

caspase-3 activation was initially monitored by Western blotting at different time periods, 

(e.g., 1, 2, 4 and 8 h) using an antibody that recognises the large fragments (17/19 kDa) of 

activated caspase-3. As evident in Figure 4.15, treatment of differentiated H9c2 cells with 25 

µM PSP for 4 h triggered a significant increase (p˂0.05) in caspase-3 activation. Similar 

results were obtained when PSP-induced caspase-3 activation was monitored via 

immunocytochemistry as shown in Figure 4.16. 

 

Figure 4.15 PSP-induced caspase-3 activation in differentiated H9c2 cells.  

Differentiated H9c2 cells (7 days) were incubated without (-) or with (+) 25 µM PSP for the indicated 

time periods. Following PSP, exposure cell lysates (15 µg protein) were analysed for caspase-3 

activation (17 kDa) by Western blot analysis using specific caspase-3 antibody. The same samples 

were consequently analysed to confirm equal loading of protein in each well using anti-GAPDH 

antibody. Quantified data are expressed as percentage of control cell values (100%) and represent 

the mean ± SEM of three independent experiments.*p < 0.05 versus untreated control cells. 
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Figure 4.16 PSP-induced caspase-3 activation in differentiated H9c2 cells. 

Differentiated H9c2 cells (7days) were exposed to 25 µM PSP for 4 h and assessed for caspase-3 
activation via immunocytochemical staining. A) Untreated differentiated H9c2 control cells; only 
nuclei shown by DAPI staining (blue). B) Caspase-3 activity detected using FITC-labelled anti-activated 
caspase-3 (green) after 4 h incubation with 25 µM PSP. Scale bar = 100 µm. Images presented are 
from one experiment and are representative of three. 
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4.5 Effects of Phenyl Saligenin Phosphate on Protein Kinase Activation  

PSP-induced cell death in mitotic and differentiated H9c2 cells may involve the modulation 

of pro-survival and/or pro-apoptotic signalling pathways. It is generally accepted that ERK1/2 

and protein kinase B (PKB; also known as Akt) promote cell survival by activating anti-

apoptotic signalling pathways, whereas the activation of JNK and p38 MAPK are associated 

with apoptotic cell death (Armstrong, 2004; Hausenloy & Yellon, 2007). PSP-induced 

modulation of protein kinase activity was assessed by Western blotting using phospho-

specific antibodies that recognise phosphorylated motifs within activated ERK1/2 (pTEpY), 

p38 MAPK (pTGpY), JNK (pTPpY) and PKB (S473). Exposure of differentiated H9c2 cells to PSP 

(25 µM) for 1 h, 2 h, 4 h and 8 h had no significant effect on the levels of phosphorylated 

PKB, ERK1/2, (Figure 4.17 and Figure 4.18) or p38 MAPK (no appearance of any bands). In 

marked contrast, PSP (25 µM) induced a time dependant increase in JNK1/2 activation  in 

differentiated H9c2 cells with significant activation observed at 4 h (Figure 4.19). 
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Figure 4.17 Effect of PSP on PKB activation in differentiated H9c2 cells.  

Differentiated H9c2 cells (7 days) were exposed to 25 µM PSP for the indicated time periods after 

which cell lysates (15 µg protein) were analysed for PKB activation (56 kDa) by Western blot analysis 

using anti-phospho-specific PKB antibody. The same samples were consequently analysed to confirm 

equal loading of protein in each well using anti-total PKB antibody. Quantified data are expressed as 

the ratio of phosphorylated PKB to total PKB and represent the mean ± SEM of three independent 

experiments.   
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Figure 4.18 Effect of PSP on ERK1/2 activation in differentiated H9c2 cells.  

Differentiated H9c2 cells (7 days) were exposed to 25 µM PSP for the indicated time periods after 

which cell lysates (15 µg protein) were analysed for ERK1/2 activation (42/44 kDa) by Western blot 

analysis using anti-phospho-specific ERK1/2 antibody. The same samples were consequently analysed 

to confirm equal loading of protein in each well using anti-total ERK1/2 antibody. Quantified data are 

expressed as the ratio of phosphorylated PKB to total PKB and represent the mean ± SEM of three 

independent experiments.   
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Figure 4.19 PSP induced JNK1/2 activation in differentiated H9c2 cells.  

Differentiated H9c2 cells (7 days) were exposed to 25µM PSP for the indicated time periods after 

which cell lysates (15 µg protein) were analysed for JNK1/2 activation (46/54 kDa) by Western blot 

analysis using anti-phospho-specific JNK1/2 antibody. The same samples were consequently analysed 

on separate blots to confirm equal loading of protein in each well using anti-total JNK1/2 antibody. 

Quantified data are expressed as ratio of phosphorylated JNK1/2 to total JNK 1/2 and represent the 

mean ± SEM four independent experiments. ****p ˂ 0.0001 versus untreated control cells.  
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4.6 The Effect of the JNK1/2 Inhibitor SP600125 on PSP-Induced Cell Death 

and JNK 1/2 Activation 

To investigate further the role of JNK1/2 in PSP-induced cell death, differentiated H9c2 cells 

were pre-treated for 30 min with the JNK1/2 inhibitor SP 600125 (10 µM; Bennett et al. 

2001) prior to OP exposure. As shown in Figure 4.20, SP 600125 had no significant effect on 

25 µM PSP-induced inhibition of MTT reduction or LDH release following 4 h or 8 h OP 

exposure. Western blot analysis was subsequently used to establish whether SP 600125 (10 

µM) had attenuated PSP-induced JNK1/2 activation in H9c2 cells. As depicted in Figure 4.21, 

SP 600125 pre-treatment significantly inhibited PSP (25 µM)-induced JNK1/2 activation 

following 1h and 2 h OP exposure. However, it did not block PSP-induced JNK1/2 activation 

after 4 h of exposure, which presumably accounts for the lack of effect observed with SP 

600125 when monitoring PSP-induced inhibition of MTT reduction and release of LDH at 4 h 

and 8 h. Since PSP-induced caspase-3 activation was evident at 1 h and 2 h OP exposure, 

present study determined the effect of SP 600125 on PSP-induced caspase-3 activation at 

these earlier time points via immunocytochemistry. As shown in Figure 4.22, SP 600125 (10 

µM) attenuated PSP-induced caspase-3 activation, confirming the involvement of JNK1/2 in 

PSP-mediated cell death in H9c2 cells. For comparison, the kinase inhibitors LY 294002 (30 

µM; PI-3K inhibitor), PD 98059 (50 µM; MEK1/2 inhibitor), SB 203580 (30 µM; p38 MAPK 

inhibitor) and wortmannin (100 nM; PI-3K inhibitor) had no significant effect on PSP-induced 

caspase-3 activation (Figure 4.23). 
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Figure 4.20 Effect of the JNK1/2 inhibitor SP 600125 on PSP-induced inhibition of MTT 

reduction and release of LDH. 

 Differentiated H9c2 cells (7 days) were pre-treated for 30 min with the JNK1/2 inhibitor SP 600 125 

(10 μM) prior to exposure to 25 μM PSP for 4 h (panels A and B) and 8 h (panels C and D) in the 

presence and absence of SP 600125 as indicated. Following PSP exposure, cell viability was assessed 

by measuring the metabolic reduction of MTT by mitochondrial dehydrogenases (A and C) and 

release of LDH (B and D). Data are expressed as the percentage of control cell values (= 100%) and 

represent the mean ± SEM of at least three independent experiments each performed in 

quadruplicate (MTT) or sextuplicate (LDH). *p < 0.05, **p < 0.01 ***p < 0.001 and ****p < 0.0001 

versus the untreated control response. 
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Figure 4.21 Effect of the JNK1/2 inhibitor SP 600125 on PSP-induced JNK1/2 activation. 

Differentiated H9c2 cells (7 days) were pre-treated with SP 600125 (10 µM, JNK1/2 inhibitor) 30 min 

prior to stimulation with 25 µM PSP for A) 1h, B) 2h and C) 4h. Cell lysates (15 µg protein) were 

analysed for JNK1/2 activation (46/54 kDa) by Western blot using anti-phospho-specific JNK1/2 

antibody. The same samples were consequently analysed to confirm equal loading of protein in each 

well using anti-total JNK antibody. Quantified data are expressed as the percentage of control cell 

values (100%) and represent the mean ± SEM of three independent experiments. *p < 0.05 versus 

the untreated control response. 
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Figure 4.22 Effect of the JNK1/2 inhibitor SP 600125  on PSP-induced caspase 3 activation. 

Differentiated H9c2 cells (7 day) were exposed to 25 µM PSP for A) 1 h, B) 2h, and C) 4 h in the 

presence and absence of SP 600125 (10 µM; 30 min pre-incubation). Following PSP exposure, 

caspase 3 activation was assessed via immunocytochemistry using anti-active caspase 3 antibody 

(green) and DAPI counterstain for nuclei visualisation (blue). Scale bar = 100 µm. Images presented 

are from one experiment and representative of four. Quantified data are expressed as a percentage 

of control cell values and represent the mean ± SEM of four independent experiments. **p<0.01, 

***p<0.001, ****p<0.0001, (a) versus control and (b) versus PSP alone treated cells. 
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Figure 4.23 Effects of PI-3K, MEK1/2 and p38 MAPK inhibition on PSP-induced caspase 3 

activation.  

Differentiated H9c2 cells (7 day) were exposed to 25 µM PSP for 4 h in the presence and absence of  

LY 294002 (30 µM; PI-3K inhibitor), PD 98059 (50 µM; MEK1/2 inhibitor), SB 203580 (30 µM; p38 

MAPK inhibitor;) and wortmannin (100 nM; PI-3K inhibitor) 30 min pre-incubation. Following PSP 

exposure, caspase 3 activation was assessed via immunocytochemistry using anti-active caspase 3 

antibody (green) and DAPI counterstain for nuclei visualisation (blue). Scale bar = 100 µm. Images 

presented are from one experiment and representative of four.  Quantified data are expressed as a 

percentage of control cell values and represent the mean ± SEM of four independent experiments. 

****p<0.0001, (a) versus control and (b) versus PSP alone treated cells. 
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4.7 Effects of phenyl saligenin phosphate on AChE activity in differentiated 

H9c2 cells 

In order to establish the relationship between the cytotoxic effects of OPs in differentiated 

H9c2 cells and the level of AChE activity, cholinesterase assays were performed in the 

presence and absence of 25 µM chlorpyrifos, diazinon and their metabolites (chlorpyrifos 

oxon, diazoxon) and PSP. Figure 4.24 shows that there was much stronger inhibition of AChE 

by the oxon forms chlorpyrifos oxon and diazoxon, followed by the parent compounds 

chlorpyrifos and diazinon. By contrast, PSP proved to be a very weak inhibitor of AChE 

activity in H9c2 cells, causing only approximately 30% inhibition compared to control levels 

of activity.   

 

Figure 4.24 Effects of OP compounds on acetylcholinesterase activity. 

Cells were induced to differentiate for 7 days and then exposed to A) chlorpyrifos B) chlorpyrifos 

oxon C) diazinon D) diazoxon E) PSP for (8 h,25 μM). Shown are the mean specific activities ± SEM 

from three independent experiments. **p<0.01, ***p<0.001, ****p<0.0001 versus non-OP-treated 

control cells (Student’s t test).  
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4.8 Dansylated PSP 

This study utilized fluorescently labeled PSP (dansylated PSP), which was a gift from Dr. 

Garner (Nottingham Tent University) as shown in Figure 4.25 This type of approach is an 

accurate, specific and sensitive means of detecting novel protein targets of toxic compounds 

(Greenbaum et al., 2002). 

 

 

 

Figure 4.25 Chemical structures of A) PSP and B) dansylated PSP. 
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As illustrated in the current study that a concentration of 25 µM of PSP was incubated with 

differentiated H9c2 cells and produced optimal cardiotoxicity associated with the activation 

(phosphorylation) of JNK signalling pathways and the induction of apoptosis by caspase-3 

activation. Proteins that bind to OPs can be separated by denaturing gel electrophoresis and 

visualized under UV transillumination as simplified in Figure 4.26. This was followed by 2D 

gel electrophoresis and MALDI-TOF mass spectrometry to identify tryptic peptides.  

 

 

 

 

Figure 4.26 Strategy of using dansylated PSP for protein targeting.  

The H9c2 cells enriched proteins are incubated with dansylated PSP, cell lysates are then separated 

by  SDS PAGE and target proteins visualized under UV transillumination. 
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4.8.1 Dansylated-PSP induced cytotoxicity in H9c2 cells 

Prior to investigation of novel protein targets of PSP, initially more thorough analyses were 

undertaken in order to compare the cytotoxic effects of dansylated PSP with those of PSP 

shown in section 4.3.2. Differentiated H9c2 cells were treated with different concentrations 

of dansylated PSP up to (200 µM) for 8 h. From the assay results obtained, it can be seen 

that dansylated PSP was shown to reduce significantly MTT reduction and increase the 

release of LDH in a concentration dependent manner, as indicated in Figure 4.27.  

 

 

 

 

Figure 4.27 Effect of dansylated PSP on the viability of differentiated H9c2 cells monitored 

by MTT reduction and LDH release.  

Differentiated H9c2 cells (7 days) were exposed to the indicated concentrations of dansylated PSP for 

8 h. Following PSP exposure, cell viability was assessed by measuring the metabolic reduction of MTT 

by mitochondrial dehydrogenases (A) and the release of LDH (B). Data are expressed as a percentage 

of control cell values (=100%) and represent the mean ± SEM of three (MTT) or four (LDH) 

independent experiments, each performed in quadruplicate (MTT) or sextuplicate (LDH). *<p0.05, 

**p<0.01, ***p<0.001 and ****p<0.0001 versus control response. 
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4.8.2 SDS-PAGE analysis for dansylated-PSP binding to differentiated H9c2 

cells 

Differentiated H9c2 cells were incubated for 8 h with 25 µM dansylated-PSP. This 

concentration and time point were chosen based upon results obtained from the 

cytotoxicity experiments described in section 4.3.2. Following incubation, cell lysates were 

initially subjected to SDS-PAGE and dansylated PSP binding proteins visualised under UV 

light. In these experiments the presence of a detectable fluorescent band was defined as a 

positive test and hence the presence of protein targets, whereas undetectable fluorescence 

is defined as a negative result.  As shown in Figure 4.28, several bright fluorescent bands 

were identified via SDS PAGE of dansylated-PSP treated cell lysates, indicating the presence 

of OP labeled target proteins, while in non-PSP treated control cells there were no 

fluorescent bands. Later, the gels were stained with Coomassie blue to confirm the presence 

of proteins in differentiated H9c2 cells. However, further experiments were required in 

order to identify these target proteins. 

 

Figure 4.28 Visualisation of proteins labeled with dansylated-PSP. 

 Differentiated H9c2 cells were untreated or treated with dansylated PSP (8 h, 25 µM) and cell lysates 

(15 µg) were separated by SDS-PAGE. A) Gels were visualised under UV light. The arrows point to 

prominently dansylated-PSP labelled proteins. B) After visualisation of fluorescent bands, the same 

gels were stained with Coomassie blue to confirm the presence of protein bands. Images are 

presented from three independent experiments. 
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4.8.3 Identification of PSP labeled proteins by mass spectrometry  

Identification of dansylated PSP labelled proteins was achieved by 2D gel electrophoresis 

followed by MALDI-TOF analysis of the peptides produced by trypsin digestion. 

Differentiated H9c2 cells were untreated (control) or treated with 25 µM dansylated-PSP, 

and cell lysates prepared and subjected to 2D gel electrophoresis. Visualisation of 2D gels 

under UV light revealed control cells did not show any fluorescent spots (Figure 4.29a). In 

comparison, treated cells showed several fluorescent protein spots (Figure 4.29b). After 

visualisation under UV light, gels were stained with ProtoBlue™ safe colloidal Coomassie G-

250 stain and imaged as described in Chapter 2 (section 2.7). In order to identify dansylated-

PSP labeled protein targets, Progenesis SameSpots software was used and was able to 

identify three protein spots that showed significant binding of labeled PSP  (Figure 4.29d). To 

identify these spots, these proteins were excised from the stained gel and digested by 

trypsin, and analyzed by a MALDI-TOF/TOF mass spectrometry. Target protein spots showed 

significant similarities with searched databases; these identified proteins are listed in Table 

4.2. 
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Figure 4.29 Visualisation of proteins labelled with dansylated PSP.  

Differentiated H9c2 cells were untreated or treated with dansylated PSP (8 h, 25 µM) and cell lysates 

processed and analysed by 2D gel electrophoresis using pH 3-10 gradient strips. Gels were visualised 

under UV light (panels A and B) prior to staining with ProtoBlue™safe colloidal Coomassie G-250 stain 

(panels C and D). Gel images are presented from three independent experiments and were analysed 

using Progenesis SameSpots software and circled spots represent those labelled with dansylated PSP. 

Spot 1: nucleolar protein 58; Spot 2: tropomyosin α-4; Spot 3: heat shock protein β-1. A list of 

identified proteins labelled by dansylated PSP is provided in Table 6.1  
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Table 4.2 Identification of PSP-Binding proteins in differentiated H9c2 cells. 

Spot 
no. 

Protein Accession 
no. 

PMF 
sequence 
coverage 

(%)
a
 

Identified peptide 
sequence 
(MS/MS) 

Mascot 

score b 

kDa pI 

2 tropomyosin α-4 P09495 39 - 52 28.5 4.4 

3 Heat shock 
protein β-1 (HSP-
27) 

P42930 - LFDQAFGVPR 80 22.9 6.1 

1 nucleolar protein 
58 

Q9Q286 32 - 52 59.5 9.2 

 

H9c2 cells treated with dansylated PSP (8 h, 25 μM) were analyzed by 2D gel electrophoresis and 

PSP-labeled proteins identified using MALDI- TOF MS (PMF) or MS/MS as described in chapter 2 

(section 2.7.4). Sequence data were analyzed using Mascot software and reported according to 

percentage sequence coverage (SC%) or Mascot score (ion scores for MS/MS > 27 indicate identity or 

extensive homology; > 51 for PMF). All identified proteins exhibited Mascot scores that were 

considered statistically significant (*p < 0.05). aMALDI-TOF MS. bMS/MS. 
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4.9 Binding of dansylated PSP to purified tropomyosin 

To confirm the identification of one protein labelled by dansylated PSP, tropomyosin was 

chosen for validation by incubation of purified human heart tropomyosin (10 µg) with or 

without dansylated PSP or unlabelled PSP. The purified tropomyosin was then subjected to 

SDS-PAGE and visualised under UV light followed by staining with Coomassie blue. As shown 

in Figure 4.30, purified tropomyosin was labelled with dansylated PSP. 

 

 

 

 

Figure 4.30 Labeling of purified human heart tropomyosin with dansylated PSP.  

Human heart tropomyosin (10 µg) was incubated for 1 h in presence or absence of 

dansylated/unlabelled PSP (25 µM). Tropomyosin samples were then subjected to SDS-PAGE, 

visualised under UV light (B) and subsequently stained with Coomassie Blue (A). Lane 1: tropomyosin 

incubated with Tris-buffered saline; Lane 2: tropomyosin incubated with DMSO (the solvent for PSP); 

Lane 3: tropomyosin incubated with unlabeled PSP; Lane 4: tropomyosin incubated with dansylated 

PSP. Gel images are presented from three independent experiments. 
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4.10 Discussion  

4.10.1 Phenyl saligenin phosphate-induced cytotoxicity  

Organophosphate poisoning may affect heart function causing cardiac complications such as 

bradycardia due to enhanced cholinergic stimulation and conduction disturbance (Brill et al., 

1984; Wang et al., 1998). Thus far, a limited number of studies have investigated cardiac 

toxicity induced by OPs, but still the detailed mechanisms underlying the cellular toxicity are 

not known (Ludomirsky et al., 1982, Saadeh et al., 1997) and there is very little information 

on the direct effect of OPs on muscle cell function. 

Initial experiments in this study examined chlorpyrifos and diazinon and their in vivo 

metabolites chlorpyrifos oxon and diazoxon. It was found that chlorpyrifos showed toxic 

effects at the highest concentrations >100 µM in mitotic and differentiated H9c2 cells. 

Chlorpyrifos oxon, diazinon and diazoxon at concentrations up to 200 µM had no cytotoxic 

effects on mitotic and differentiated H9c2 cardiomyoblast cells. These results are in stark 

contrast to the cardiovascular consequences of acute OP poisoning, which reflects over-

activity of sympathetic and parasympathetic pathways due to enhanced levels of 

acetylcholine (Roth et al. 1993; Anand et al., 2009). 

The oxon forms of chlorpyrifos and diazinon did not show any cytotoxic effects in H9c2 cells. 

Taking into account the fact that oxon metabolites of chlorpyrifos and diazinon are potent 

inhibitors of AChE  (Eaton et al., 2008). This supports the view that the cytolethal effects of 

these compounds is not only associated with AChE inhibition (Masoud et al., 2003). This is in 

agreement with the results of Saulsbury et al. (2008) who investigated the differences 

between chlorpyrifos and chlorpyrifos oxon, and found that chlorpyrifos induced a reduction 

in cell viability more than its oxon metabolite. Thus, OP intoxication depends on the 

physiological response of cells towards specific OP compounds (Rush et al., 2010). In 

summary, OPs that mediate acute in vivo toxicity, primarily via AChE inhibition, display little 

cytotoxicity towards mitotic and differentiated H9c2 cardiomyoblasts. In marked contrast, 

PSP (a weak AChE inhibitor) displayed pronounced cytotoxicity towards both mitotic and 

differentiated H9c2 cells. PSP is an analogue of SCOTP, an active neuropathic metabolite of 

TOCP which is known to be a direct inhibitor of NTE (Chen et al., 2012) and a weak inhibitor 

of AChE (Jortner & Ehrich 1987). Hence, the cytotoxic effects of PSP observed in this study 
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are presumably mediated via non-cholinergic mechanisms. As shown in Figure 4.7a, findings 

pointed to PSP cytotoxic effects on mitotic H9c2 cells at the shorter incubation time 4 h with 

MTT reduction and LDH release, whereas in differentiated H9c2 cells PSP-induced toxicity 

was evident at 2 h when monitoring MTT reduction (Figure 4.13c). Here, results showed that 

MTT reduction was more sensitive than LDH release in detecting cytotoxic events in 

differentiated cells. The difference in sensitivity between MTT and LDH assays is in 

agreement with previous studies, which have reported the MTT assay as being more 

sensitive in detecting cytotoxic effects (Fotakis & Timbrell, 2006). These cytotoxic effects are 

consistent with earlier studies that have shown that PSP inhibits MTT reduction in mouse 

N2a neuroblastoma cells and human hepatic HepG2 cells (IC50 values of approximately 10-15 

µM; Harris et al., 2009). 

4.10.2 Phenyl saligenin phosphate-induced apoptosis  

It has been questioned whether the observed PSP-induced cytotoxicity is associated with 

apoptosis or necrosis. Therefore, caspase-3 was measured following PSP exposure. The 

present findings showed that treatment with PSP (25 µM) triggered the rapid activation of 

intracellular caspase-3 (Figure 4.15 and Figure 4.16), indicating that PSP induced apoptosis in 

cultured differentiating H9c2 cells. These results are consistent with a previous study 

showing that PSP (10 and 100 µM) induced apoptosis in human SH-SY5Y cells via activation 

of caspase-3 (Carlson et al., 2000). As PSP was found to be a weak inhibitor of AChE (Figure 

4.24e), and this also supports the fact that OP-induced apoptosis can occur independently 

from AChE inhibition (Li, 2010). A review by Ehrich et al. (1997), which compared various 

OPs, concluded that PSP-induced apoptosis was inversely associated with the extent of AChE 

inhibition.  

4.10.3 Phenyl saligenin phosphate-induced JNK1/2 signalling 

There is increasing evidence showing that apoptosis is modulated by different members of 

the MAPK family (Hetman & Xia, 2000). However, there is very little known about the effect 

of OPs on MAPK signaling pathways in differentiated H9c2 cells. To determine whether 

various MAP kinase signaling pathways were involved with PSP-induced apoptosis, the 

current study investigated the effect of PSP exposure on protein kinase cascades associated 

with cell survival (ERK1/2 and PKB) and cell death (p38 MAPK and JNK1/2). It was presumed 
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that PSP induced cytotoxic effect may induce activation of ERK1/2, PKB, p38 MAPK and 

JNK1/2 signalling pathway. In the current study it appears that PSP did not significantly 

modulate PKB phosphorylation or ERK1/2 MAPK or p38 MAPK activation status in 

differentiated H9c2 cells (Figure 4.17; Figure 4.18; with anti-p38 no bands appeared). In 

contrast, previous reports provided evidence that administration of sub-lethal 

concentrations of PSP was able to modulate these important protein kinase signal 

transduction pathways. For example, in differentiating mouse N2a neuroblastoma cells, PSP 

triggered the transient activation of ERK1/2 (2.5 µM; 4 h; Hargreaves et al. 2006). Also, 

Pomeroy-Black & Ehrich (2012) observed elevated levels of phosphorylated PKB in human 

SH-SY5Y neuroblastoma cells following exposure to PSP (0.1 µM). It is notable that the effect 

of PSP on PKB activation in SH-SY5Y cells was a consequence of OP-induced activation of the 

low affinity neurotrophin p75 receptor (Pomeroy-Black & Ehrich 2012). Thus, neurotrophins 

play an important role in neuronal survival and development (Ginty, 2002). 

Data from this study also showed that PSP administration to differentiated H9c2 cells was 

found to increase significantly the phosphorylation of JNK 1/2 (Figure 4.19) indicating that 

JNK1/2 activation plays a major role in PSP-induced apoptosis in differentiated H9c2 cells. As 

this is supported by previous study that reported that JNK1/2 pathway plays an important 

role in the induction of apoptosis (Dhanasekaran & Reddy, 2008). Thus, as JNK1/2 belongs to 

the MAPK family, any disturbance in MAPK pathways could lead to morphological changes 

which may induce loss of cell viability as observed in previous studies (Nostrandt et al., 1992; 

Carlson et al., 2000). These results are consistent with an earlier study showing that sarin 

and soman-like organophosphate nerve agents ([bis(isopropyl methyl)phosphonate, BIMP 

and bis(pinacolyl methyl)phosphonate, BPMP]) induce JNK activation in  rat brain cells 

(Niijima et al., 2000). Interestingly, the activation of JNK by these two OPs was dependent 

upon phospholipase C and protein kinase C activation (Nijima et al., 2000). 

Moreover, activation of the JNK pathway initiates harmful inflammation and, if unabated, 

can lead to apoptosis (Abraham & Clark, 2006). Interestingly, in cultured adult rat cardiac 

ventricular myocytes, JNK activation triggers the release of pro-apoptotic molecules such as 

cytochrome c and AIF (apoptosis-inducing factor; Aoki et al., 2002). This may suggest the 

potential mechanism of PSP-induced apoptosis in differentiated H9c2 cells. 
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To ascertain the role of the JNK1/2 pathway in PSP-induced cytotoxicity, H9c2 cells were 

exposed to PSP in the presence of the JNK1/2 inhibitor SP 600125. However, pre-treatment 

with SP 600125 (10 µM) did not reverse the toxic effect of PSP in terms of either MTT 

reduction or LDH release following 4 h or 8 h exposure (Figure 4.20).  In contrast, pre-

administration of SP 600125 attenuated PSP-induced JNK1/2 activation at 1 h and 2 h (Figure 

4.21a and b). However, SP 600125 ineffective to block JNK activation at 4 h (Figure 4.21c).  

The results showed that SP 600125 did not play a vital role in preventing cell death as shown 

in MTT and LDH assay. The reversible inhibition of PSP-induced JNK1/2 activation by SP 

600125 may reflect removal of the inhibitor from the cell (although the inhibitor was present 

throughout the experiment) and/or its metabolism to an inactive metabolite. Another 

possibility may be that alternative pathways are involved in the death machinery of 

differentiated H9c2 cells. 

However, SP 600125 did block caspase-3 activation at 1 h, confirming the involvement of 

JNK1/2 in PSP-induced apoptosis. It is interesting to note that although SP 600125 blocked 

caspase-3 activation at 4 h, it did not block PSP-induced JNK1/2 activation at 4 h (Figure 4 

22). This is could potentially be a consequence of caspase-3 activation being downstream of 

JNK1/2 and hence inhibition of JNK1/2 at early time points (˂2 h) prevents subsequent 

caspase-3 activation. Regarding the clinical relevance, a previous study has shown that 

similar levels of SCOTP (an analogue of PSP) can be achieved in the heart tissue after normal 

levels of accidental exposure (Somkuti & Abou-Donia, 1990). Since the present data showed 

that 25 µM PSP was able to induce caspase-3 activation at the first hour of exposure, it is 

most likely that such levels can be achieved transiently in vivo. More interestingly, previous 

study shown that 100 µM TOCP were observed in heart tissue in rats after a repeated oral 

doses (50 mg/kg) of TOCP, suggesting that high levels of metabolite are achievable and 

longer exposure of PSP at lower concentrations can induce caspase-3 activation (Somkuti & 

Abou-Donia, 1990). 

Furthermore, pre-treatment with other kinase inhibitors LY 294002, PD 98059, SB 203580 

and wortmannin did not block caspase-3 activation at 1,2 and 4 h, confirming that neither 

ERK 1/2 nor p38 MAPK and PKB are involved in PSP-induced cell death (Figure 4.23). 

Although this is the first report describing PSP-induced activation of JNK 1/2 in differentiated 
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H9c2 cells, further studies are required to reveal other molecular mechanisms implicated in 

PSP-induced cytotoxicity towards H9c2 cells.  

4.10.4 Effect of OPs on cellular AChE activity in differentiating H9c2 cells 

In the current study, the results from AChE activity assays showed that exposure to 

chlorpyrifos and diazinon and their acutely toxic metabolites (diazoxon and chlorpyrifos 

oxon) was associated with significant inhibition in AChE activity (Figure 4.24a, b, c and d).  

The extent of inhibition associated with each compound was in agreement with previous 

observations in nerve tissue treated with chlorpyrifos and diazinon showing significant 

inhibition of AChE activity (Murphy, 1986; Sultatos, 1994). In contrast, PSP confirmed to be a 

weak inhibitor of AChE under the same experimental conditions as used for LDH and MTT 

assays (Figure 4.24 e). These data pointed to the idea that cytotoxic effects of PSP on H9c2 

cells were unrelated to significant cholinesterase inhibition and it is more likely that other 

cellular targets contribute to its toxicity. At present the cellular effect(s) of neuropathic OPs, 

such as PSP, on cardiomyocytes are largely unknown. 

4.11 Identification of PSP Binding Proteins. 

Over the years, OPs are known to be a highly reactive compounds that have been shown to 

bind to the active site of AChE causing hyper-stimulation of cholinergic receptors resulting in 

OP intoxication (Abdollahi & Karami-Mohajeri, 2012). However, OPs are also known to 

interact with non-cholinergic targets. For example, mass spectrometry analysis has 

demonstrated that OPs may bind to human albumin (Ding et al., 2008; Li et al., 2007), alpha- 

and beta-tubulin (Grigoryan et al., 2008), human transferrin and mouse transferrin  (Li et al., 

2009). In a previous study, OPs were confirmed to form covalent adducts on tyrosine 

residues of these proteins (Grigoryan et al., 2009). Binding of OPs such as chlorpyrifos-oxon 

with tubulin was found to inhibit tubulin polymerization, affecting neuronal cytoskeleton 

function resulting in neuronal cytotoxicity in the hippocampus of rodent brain (Prendergast 

et al., 2007; Grigoryan et al., 2008). On the other hand, other OP-binding proteins such as 

albumin and transferrin were not linked to any toxic effects. Thus OP adducts with these 

proteins may serve as biomarkers for OP exposure (B. Li et al., 2009). Despite the variety of 

proteins identified as targets to different OPs, to date targets proteins of PSP in cardiac cells 

have not been investigated.  
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Exposure to PSP was found to induce OPIDN, in which NTE inhibition and found to be a 

primary target (Jortner & Ehrich, 1987). NTE is a member of the patatin-like phospholipase 

(PNPLA) family, whose functions include regulation of lipid metabolism and cell signalling 

(Chang et al., 2010; Richardson et al., 2013). Although NTE (PNPLA6) has been detected in 

non-neuronal tissues including human heart (Wilson et al., 2006), it is not known whether 

mitotic or differentiated H9c2 cells express NTE. Although beyond the scope of the present 

study, it would be of interest to investigate NTE expression and the effect of PSP on NTE 

activity in H9c2 cells.  Previous studies have only focused on the effect of PSP on proteolytic 

enzymes, as well as cytoskeleton proteins and signalling molecules in neuronal cells 

(Hargreaves 2012; Pomeroy- Black & Ehrich 2012). However, the mechanism of PSP toxicity 

in differentiated cardiac cells remains unclear. For this purpose in the present study, 

modified (dansylated) PSP was used to facilitate the search of new biomarkers and 

identification of protein targets of PSP in differentiated H9c2 cells. 

Several methods are available to tag proteins and molecules and the most commonly used 

tags on a chemical probe are biotin, fluorescent, and radioactive tags, which use simple 

labeling techniques to identify the protein of interest in gel electrophoresis with high protein 

selectivity (Patricelli et al., 2001). However, both fluorescent and radioactive probes are 

known to be more sensitive for detection than biotin (Greenbaum et al., 2002). 

Fluorescently labeled probes contain a reactive group which has the ability to covalently 

attach to a functional group on the molecule to be labelled, which gives the compound a 

detectable property (Probes, 2013). They are suitable for in vitro assay procedures to probe 

particular compounds that can be detected through fluorescence emission (Jeffery & Bogyo, 

2003).  

Mass spectrometry analysis identified tropomyosin, heat shock protein β-1 and nucleolar 

protein 58 as novel protein targets for PSP. Heat shock protein β-1 (also known as HSP-27) is 

a member of small heat shock protein family. These proteins are induced in response to 

stress and are known to have a cardioprotective effect.  At the subcellular level they play an 

important role in preventing apoptosis and necrosis (Mymrikov et al., 2011; Wettstein et al., 

2012). Moreover, they have been found to be associated with the regulation and stability of 

cytoskeleton proteins,  by promoting their structural stability and increasing their resistance 

to stress (Huot et al.,1995; Guay et al.,1997). Based on the results presented in this chapter, 
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it is suggested that  binding of PSP  to HSP27 could lead to changes in its activation status, 

resulting in alterations in its protective function against apoptosis and cardiac toxicity. 

Tropomyosin is known to play a central role as a contractile regulatory protein, which also 

plays an important role in actin stability in muscle and non-muscle cells (Yo & Ono, 2006). In 

vitro studies have suggested that tropomyosin functions to protect actin from actin 

depolymerizing factor proteins (ADF) such as cofilin (Bernstein & Bamburg, 1982; Broschat, 

1990). Actin is known to be a core component of the microfilament network, which  is 

involved in a number of biological function such as regulation of cell motility, contraction 

and cell shape (Khaitlina 2001; Yarar et al, 2005). In vivo studies showed that alteration in 

tropomyosin expression  directly contributes  to significant alteration in cardiac function, 

including  cardiac hypertrophy, ventricular fibrosis and atrial enlargement (Prabhakar et 

al.,2003).  

More interestingly, exposure to PSP (100 µM) induced in vitro cytotoxicity and apoptotic cell 

death mediated by caspase-3 activation in SH-SY5Y human neuroblastoma cells, suggesting 

that activation of caspase-3 is associated with numerous substrate degradation, such as 

actin (Carlson et al., 2000). Later on, exposure to PSP (10 µM) was observed to significantly 

decrease the levels of cellular filamentous actin in human SH-SY5Y neuroblastoma cells 

(Carlson & Ehrich, 2001). Although, all these studies reported the effect of PSP using 

neuronal cells as a model system, none of them used cardiomyocytes. However, It is not 

known whether the changes in actin expression reported in the previous study is a result of 

the direct effect of PSP on actin or an indirect effect from PSP modification of  tropomyosin 

or potentially other actin binding protein. Therefore, it is reasonable to suggest that PSP 

binding to tropomyosin  may affect actin stabilization, which could in turn contribute to the 

development of cardiac toxicity.  

Moreover, it is important to mention that there is clear evidence supporting the link 

between actin stability and apoptosis. For example, drugs that inhibit actin filament 

organization, such as Jasplakinolide, were found to trigger apoptosis in human Jurkat T cells 

(Bubb et al., 1994; Odaka et al., 2000). Thus, changes in actin dynamics are associated with 

different stages of programmed cell death (Desouza et al., 2012). These observations are 

consistent with the possibility that the toxicity of PSP towards differentiated H9c2 may be 
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due to tropomyosin binding affecting actin polymerization, which could alter its activity 

status and induce the activation of downstream caspases that mediate apoptosis. Moreover, 

it is conceivable that PSP binding to tropomyosin attenuates its interaction with other actin 

binding proteins (e.g. cofilin) that are linked to cytoskeleton mediated modulation of 

apoptotic signalling (Desouza et al. 2012).  

Finally, PSP also bound to nucleolar protein 58 which is MSP58 protein is found in the 

microspherules of the nucleolus (Ren et al., 1998) and  required for 60S ribosomal subunit 

biogenesis (Lyman et al. 1999). PSP binding to this protein might impair the translation of 

proteins essential for cell survival; thus, overexpression of MSP58 protein was suggested to 

be associated with alteration in nucleolus size and shape (Ren et al., 1998). However, it 

remains to be established if there is a definitive link between any of these novel protein 

targets and PSP-induced cytotoxicity. 

 

4.12 Conclusion  

In summary the data presented in this chapter indicate marked differences between the 

effects of the tested OPs on mitotic and differentiated H9c2 cells. PSP was shown to be the 

most cytotoxic compound that induced significant increase in LDH release and inhibition of 

MTT reduction, without a major effect on AChE activity. Furthermore, the findings indicate 

that the toxic manifestations induced by PSP administration are associated with activation of 

JNK1/2 and caspase-3. However, the cytotoxic effects of PSP may involve other molecular 

mechanism and biological targets. Therefore, further investigations into the intracellular 

protein targets of PSP are necessary. Mass spectrometry identified tropomyosin, heat shock 

protein β-1 and nucleolar protein 58 as novel binding proteins that may be involved in PSP 

toxicity. PSP binding with such proteins may affect fundamental cardiac function. However a 

number of questions remain unanswered, such as the location and nature of the binding 

sites and whether PSP binding with these protein occur in vivo. Therefore, additional 

experiments are needed to determine the potential significance of these observations and 

whether the biomarkers identified could be of potential value for diagnostic purposes or as 

targets for the development of therapeutic approaches to attenuate OP-induced cardiac 

damage.
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Chapter 5: 

Sublethal Effects of OPs on 

Differentiating H9c2 Cells 
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5.1 Introduction 

Organophosphate pesticides and nerve agents are chemical compounds that cause toxicity 

via inhibition of AChE, which results in overstimulation of cholinergic and nicotinic receptors 

in the central nervous system. In turn,  they affects other organs including the heart 

(McDonough & Shih, 1997). In addition to their effects on AChE, such OPs may have direct or 

indirect effects on other target molecules  (Silveira et al., 1990; Jett et al., 1991). For 

example, OPs were found to directly affect cytoskeleton proteins. For example, sublethal 

concentrations of chlorpyrifos oxon were found to bind covalently to tubulin and tubulin-

associated proteins resulting in disruption of microtubule function in neuronal cells (Jiang et 

al., 2010). Organophosphates may also affect proteins involved in the regulation of axonal 

transport in neuronal cells, leading to neuronal dysfunction and cell death (Morfini et al., 

2009). However, no studies conducted so far have examined the effect of sublethal 

concentrations of OPs and their metabolites on cytoskeleton proteins in differentiating H9c2 

cells and on cardiomyocyte-like development. 

Heart structural proteins can be divided into four types: normally contractile proteins, 

sarcomeric skeleton proteins, true cytoskeleton proteins and membrane-associated proteins 

(Kostin et al., 2000). Cytoskeleton proteins, such as myosin, actin, tropomyosin and 

troponins, play a significant role in cardiac contractile function, morphological stability and 

signal transduction (Kostin et al., 2000). Thus, any alterations in these structural and 

functional proteins may result in an increase in mechanical stress and morphological 

alterations in cardiac cells that can cause cardiac dysfunction (Ehler & Perriard, 2000). For 

example, in patients with heart failure, the expression of contractile proteins such as, actin 

and myosin was   downregulated and accompanied by contractile and diastolic dysfunction 

(Kostin et al., 2000). Also, tubulin and desmin expression increased in the early development 

of heart failure in guinea pig hearts, highlighting the importance of cytoskeletal changes 

associated with heart failure (Wang et al., 1999) and over expression of tropomyosin in 

hearts  resulted in dilated cardiomyopathy  (Rajan et al., 2010). Therefore, to study the 

effect of OPs on the development of differentiating H9c2 cells, it is important to evaluate the 

expression of cardiac cytoskeleton proteins, as the expression of these proteins is strongly 

correlated with functional alteration and structural degeneration. At present there are few 

reports on the effects of sublethal concentrations of OPs on cardiac cells. However, a recent 
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in vivo study demonstrated changes in heart rate and anatomical abnormalities in both 

Xenopus and zebrafish following exposure to low concentrations of chlorpyrifos and 

dichlorvos (Watson et al., 2014). Another study also demonstrated that sublethal doses 

methamidophos induced cardiac hypertrophy in rats (Calore et al., 2006). The importance of 

the OPs effect at different  stages of developmental is of concern. For example, amphibian 

species were shown to be more susceptible to sublethal doses of OPs in their early stages of 

development when compared to later stages (van der Schalie et al., 1999). Some toxicity 

studies have found that sublethal doses of OPs cause morphological changes and behaviour 

problems (Zalizniak & Nugegoda, 2006). However, the exact molecular mechanism 

underlying the effect of sublethal concentrations of these compounds on cardiomyocytes is 

still unclear. Therefore, the present study aimed to investigate the sublethal effects induced 

by OPs by monitoring changes in cellular morphology, AChE activity and expression of 

cytoskeletal proteins. 

5.2  Methods 

As described in chapter 2 section 2.3, 2.4, 2.5, 2.6  

5.3 Aims 

This aims of this chapter were to assess the potential effects of sublethal concentrations of 

the OPs chlorpyrifos and diazinon, their corresponding metabolites (chlorpyrifos oxon and 

diazoxon), and PSP on differentiating mouse H9c2 cells, in order to understand the 

molecular basis for the potential long-term toxicity of these compounds. The study focussed 

on the effects of these OPs on morphological features, AChE activity and expression of 

cardiac cytoskeleton proteins. 
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5.4 Results 

The sublethal concentrations of 3 µM and 0.3 µM were selected according to the previous 

result in chapter 4, which demonstrated that OPs compounds at these concentrations had 

no significant effect on MTT reduction or LDH release following 48 h exposure in 

differentiated H9c2 cells. Therefore, these sublethal concentrations 3 µM and 0.3 µM were 

used to investigate if repetitive exposure to sublethal concentrations of OPs can disrupt the 

differentiation of H9c2 cells. In the present study cultured mitotic H9c2 cells were induced to 

differentiate with the desired concentrations of OPs in differentiation medium. Every 48 h 

the differentiation medium was replaced along with the relevant concentration of OPs. 

Then, cells were assessed at days 7, 9 and 13, as shown in Figure 5.1. 

 

 

Figure 5.2 A schematic representation of the experimental procedure in the present 

chapter.  

A) Cultured mitotic H9c2 cells. B) Cells were induced to diffrentiatiate in the presence of the disired 

concentration of OPs for 7 days,  9 days and 13 days . C) Different analyses were performed to study 

the effect of sublethal concentrations of OPs on differentiating H9c2 cells. 
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5.4.1 Effect of sublethal concentrations of OPs on cell morphology  

Initial experiments assessed the effect of sublethal concentrations of OPs on morphological 

changes in differentiating H9c2 cells via Coomassie Brilliant Blue staining following 7, 9 and 

13 day exposure periods. Overall, results showed variation in the size and shape of the cells 

according to the concentration of the OP, and the degree of cell deterioration ranged from 

slight to severe according to the type of OP used.  

Exposure to 3 μM chlorpyrifos was shown to have a moderate effect on the morphology of 

differentiating H9c2 cells, which appeared to be more rounded rather than elongated with 

mild changes at days 7, 9 and 13 when compared to the control (Figure 5.2). By contrast, 

chlorpyrifos oxon proved to have a no observable effect on differentiating H9c2 cells at the 

7-day and 9-day time point, as shown in Figure 5.3a and b. However, chlorpyrifos oxon had 

less observable effect than chlorpyrifos at 13-days as shown in Figure 5.3c.  Exposure to 

diazinon showed similar effects to chlorpyrifos, in that some cells were shown to be to more 

rounded and less elongated at days 7, 9 and 13 when compared to control cells (Figure 5.4). 

More interestingly, the morphological effect of diazoxon was not observed at 7-days 9-day 

time point and at 13-days exposure had less effect than diazinon on differentiating H9c2 

cells as shown in Figure 5.5. 

Exposure of 3 μM PSP to differentiating H9c2 cells induced the most striking effect on cell 

morphology, when compared to other OP compounds (chlorpyrifos, chlorpyrifos oxon, 

diazinon and diazoxon). Cell deterioration was evident, since the PSP-treated cells did not 

exhibit a fibroblast-like structure, elongated spindle shape, or multiple nuclei at days 7, 9 

and 13 (Figure 5.6). Lastly, treatment with 0.3 µM OPs did not cause any observable 

morphological changes and cells appeared to differentiate as normal. Therefore, further 

studies investigated the effects of 3 μM OPs on AChE activity and expression of cytoskeletal 

proteins. 
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Figure 5.3 Effect of sublethal concentrations of chlorpyrifos on differentiating H9c2 cells. 

Mitotic H9c2 cells were induced to differentiate in the presence of 3 µM and 0.3 µM chlorpyrifos for 

A) 7 days B) 9 days and C) 13 days. Following treatment cells were fixed with 90 % (v/v) methanol, 

stained with Coomassie brilliant Blue and then visualised using light microscopy (20x objective lens). 

The black arrow indicates elongated and multinucleated differentiated cells and red arrows indicate 

typical rounded and compact cells. Images presented are from one experiment and representative of 

three independent experiments. Scale bar = 100 µm.  
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Figure 5.4 Effect of sublethal concentrations of chlorpyrifos oxon on differentiating H9c2 

cells.  

Mitotic H9c2 cells were induced to differentiate in the presence of 3 µM and 0.3 µM chlorpyrifos 

oxon for A) 7 days B) 9 days and C) 13 days. Following treatment, cells were fixed with 90 % (v/v) 

methanol, stained with Coomassie Brilliant Blue and then visualised using light microscopy (20x 

objective lens). The black arrow indicates typical elongated and multinucleated differentiated cells 

and red arrows indicate typical rounded and compact cells. Images presented are from one 

experiment and representative of three independent experiments. Scale bar = 100 µm.  
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Figure 5.5 Effect of sublethal concentrations of diazinon on differentiating H9c2 cells.  

Mitotic H9c2 cells were induced to differentiate in the presence of 3 µM and 0.3 µM diazinon for A) 7 

days B) 9 days and C) 13 days. Following treatment cells were fixed with 90 % (v/v) methanol, stained 

with Coomassie Brilliant Blue and then visualised using light microscopy (20x objective lens). The 

black arrow indicates typical elongated and multinucleated differentiated cells and red arrows 

indicate rounded and compact cells. Images presented are from one experiment and representative 

of three independent experiments. Scale bar = 100 µm.  
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Figure 5.6 Effect of sublethal concentrations of diazoxon on differentiating H9c2 cells. 

Mitotic H9c2 cells were induced to differentiate in the presence of 3 µM and 0.3 µM diazoxon for A) 

7 days B) 9 days and C) 13 days. Following treatment cells were fixed with 90 % (v/v) methanol, 

stained with Coomassie Brilliant Blue and then visualised using light microscopy (20x objective lens). 

The black arrows indicate typical elongated and multinucleated differentiated cells and red arrows 

indicate typical rounded  cells. Images presented are from one experiment and representative of 

three independent experiments. Scale bar = 100 µm.  
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Figure 5.7 Effect of sublethal concentrations of PSP on differentiating H9c2 cells.  

Mitotic H9c2 cells were induced to differentiate in the presence of 3 µM and 0.3 µM PSP for A) 7 

days B) 9 days and C) 13 days. Following treatment cells were fixed with 90 % (v/v) methanol stained 

with Coomassie Brilliant Blue and then visualised using light microscopy (20x objective lens). The 

black arrows indicate typical elongated and multinucleated differentiated cells and red arrows 

indicate rounded compact cells. Images presented are from one experiment and representative of 

three independent experiments. Scale bar = 100 µm.  
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5.4.2  Effect of sublethal concentrations of OPs on cell viability  

Under the same experimental conditions as described in section 5.3, the possible long-term 

effects of sub-lethal concentration of OPs on cell viability of differentiating H9c2 cells was 

assessed via MTT and LDH assays.  Chlorpyrifos at a concentration 3 μM had no significant 

effect (p>0.05) on MTT reduction or LDH release following 7, 9 and 13-days exposure. 

Similarly, its acutely toxic metabolite chlorpyrifos oxon at the same concentration had no 

significant effect (p>0.05) on MTT reduction or LDH release following 7-days, 9-days and 13-

days exposure (Figure 5.7). Also, diazinon and its metabolite at a concentration of 3 μM had 

no significant effect (p>0.05) on MTT reduction and LDH release following 7, 9 and 13-days 

exposure (Figure 5.8). Finally, 3 µM PSP had no significant effect on MTT reduction at 7-days. 

However, it had significant effect (p˂0.05) on MTT reduction at 9-days and 13-days 

exposure. PSP had no significant effect (p>0.05) on LDH release following 7-days and 9-days 

exposure. However, it had significant effect (p˂0.05) on LDH release following 13-days 

exposure. Thus, the MTT reduction assay was shown to be more sensitive than the LDH 

release assay for the detection of cytotoxic effects of PSP in differentiating H9c2 cells (Figure 

5.9).  
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Figure 5.8 Effect of chlorpyrifos and  chlorpyrifos oxon on the viability of differentiating 

H9c2 cells monitored by MTT reduction and LDH release.  

H9c2 cells were induced to differentiate for 7 days, 9 days and 13 days in the presence and absence 

of 3 µM chlorpyrifos (A and B) and 3 µM chlorpyrifos oxon (C and D). Following chlorpyrifos and 

chlorpyrifos oxon exposure, cell viability was assessed by measuring the metabolic reduction of MTT 

by cellular dehydrogenases (A and C) and release of LDH (B and D). Data are expressed as a  

percentage of control cell values (= 100%) and represent the mean ± SEM of three independent 

experiments each performed in quadruplicate (MTT) or sextuplicate (LDH). 
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Figure 5.9 Effect of diazinon and diazoxon on the viability of differentiating H9c2 cells 

monitored by MTT reduction and LDH release.  

H9c2 cells were induced to differentiate for 7 days, 9 days and 13 days in the presence and absence 

of 3 µM diazinon (A and B) or 3 µM diazoxon (C and D). Following diazinon and diazoxon exposure, 

cell viability was assessed by measuring the metabolic reduction of MTT by cellular dehydrogenases 

(A and C) and release of LDH (B and D). Data are expressed as a percentage of control cell values (= 

100%) and represent the mean ± SEM of three independent experiments each performed in 

quadruplicate (MTT) or sextuplicate (LDH).  
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Figure 5.10 Effect of PSP on the viability of differentiating H9c2 cells monitored by MTT 

reduction and LDH release.  

H9c2 cells were induced to differentiate for 7 days, 9 days and 13 days in the presence and absence 

of 3 µM PSP. Following PSP exposure, cell viability was assessed by measuring the A) metabolic 

reduction of MTT by cellular dehydrogenases and B) release of LDH. Data are expressed as a 

percentage of control cell values (= 100%) and represent the mean ± SEM of three independent 

experiments each performed in quadruplicate (MTT) or sextuplicate (LDH). *p < 0.05 and **p < 0.01 

versus the control response. 
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5.4.3 Effect of sublethal concentrations of OPs on cellular AChE activity 

Under the same experimental conditions as described in section 5.3, cellular AChE activity 

was measured to determine whether this enzyme was a molecular target of OPs 

(chlorpyrifos, diazinon chlorpyrifos oxon, diazoxon and PSP) at the sublethal concentration 

of 3 µM in differentiating H9c2 cells. Data from these experiments revealed that chlorpyrifos 

and diazinon and their metabolites chlorpyrifos oxon and diazoxon significantly inhibited 

(p˂0.05) AChE activity; this inhibitory effect was observed at days 7, 9 and 13 (Figures 5.10 

and 5.11). In contrast, PSP did not show significant inhibition of AChE activity at days 7, 9 or 

13 (Figure 5.12).  

 

 

 

 

Figure 5.11 Effects of chlorpyrifos and chlorpyrifos oxon on AChE activity in differentiating 

H9c2 cells.  

H9c2 cells were induced to differentiate in the presence of 3 µM  A) chlorpyrifos and B) chlorpyrifos 

oxon for 7 days, 9 days and 13 days. AChE specific activities are expressed as a percentage of control 

cell values (=100%) and represent the mean ± SEM of three independent experiments. ***p ˂ 0.001, 

and ****p ˂ 0.0001 versus the control response. 
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Figure 5.12 Effects of diazinon and diazoxon on AChE activity in differentiating H9c2 cells.  

H9c2 cells were induced to differentiate in the presence of 3 µM A) diazoxon and B) diazoxon for 7 

days, 9 days and 13 days. AChE specific activities are expressed as a percentage of control cell values 

(=100%) and represent the mean ± SEM of three independent experiments. **p ˂ 0.01, ***p ˂ 0.001, 

and ****p ˂ 0.0001 versus the control. 
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Figure 5.13 Effects of PSP on AChE activity in differentiating H9c2 cells.  

H9c2 cells were induced to differentiate in the presence of 3 µM PSP for 7 days, 9 days and 13 days. 

AChE activities are expressed as a percentage of control cell values (=100%) and represent the mean 

± SEM of three independent experiments.  
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5.4.4 Effect of sublethal concentrations of OPs on cardiac cytoskeleton 

proteins  

In this section the effects of chlorpyrifos, diazinon chlorpyrifos oxon, diazoxon and PSP on 

cytoskeletal protein expression were investigated. Cells were induced to differentiate as 

detailed previously in section 5.3. Cells were exposed to a 3 µM OPs for 7, 9 and 13 days. The 

protein expression levels of cardiac cytoskeleton proteins (troponin 1, tropomyosin and α-

actin) associated with H9c2 differentiation were measured via Western blot analysis. The 

parent compounds chlorpyrifos and diazinon had a significant effect (p˂0.05) on cardiac 

cytoskeletal protein expression, whereas their oxon metabolites did not demonstrate such 

an effect. For example, treatment with chlorpyrifos resulted in a significant decrease 

(p˂0.05)  in troponin 1 levels in differentiating H9c2 cells at 13-days exposure, whereas other 

proteins such as tropomyosin and α-actin were not shown to be affected at 7, 9 or 13-days 

exposure (Figure 5.13). Chlorpyrifos oxon had no significant effect (p>0.05) on the levels any 

of the cytoskeleton proteins examined (Figure 5.14). In contrast, diazinon exposure resulted 

in a significant decrease in the levels of troponin 1 but had no significant effect (p>0.05) on 

tropomyosin or α-actin levels at 7, 9 and 13-days exposure (Figure 5.15). In contrast, its 

acutely toxic metabolite diazoxon had no significant effect (p>0.05) on any of the 

cytoskeleton proteins examined at any exposure time point (Figure 5.16). Finally, exposure 

to 3 µM PSP resulted in a significant decrease (p˂0.05) in the levels of troponin 1, 

tropomyosin and α-actin at 7-days, 9-days or 13-days exposure (Figure 5.17). Table 5.1 

summarizes the effects of OPs used in the present study on cytoskeletal protein expression 

in differentiating H9c2 cells. 
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Table 5.1 Summary of the effects of OPs (chlorpyrifos, diazinon, chlorpyrifos oxon, 

diazoxon and PSP) on cardiac protiens  in differentiating H9c2 cells.   

 

Effects of OPs on cardiac cytoskeleton protein (troponin 1, tropomyosin and α-actin) 

expression in differentiating H9c2 cells. H9c2 cells were induced to differentiate for 7 days, 9 

days and 13 days in the presence of 3 µM OPs. (+) represent a significant (p˂0.05)down 

regulating effect of OPs on cardiac cytoskeleton protiens and (-) represent no significant 

effect (p>0.05)of OPs on cardiac cytoskeleton protiens expression in differentiating H9c2 

cells. These are total data of at least three independent experiments. 

 

 

 

 

 

 

 

 
 

Organophospate 

Cardiac sytoskelton protien 

Troponin Tropomyosin α-Actin 

Exposure time (days) 

7 d 
 

9 d 
 

13 d  7 d 
 

9 d 
 

13 d 7 d 9 d 13 d 

Chlorpyrifos _ _ + _ _ _ _ _ _ 

Chlorpyrifos 
oxon 

_ _ _ _ _ _ _ _ _ 

Diazinon + + + _ _ _ _ _    _ 

Diazoxon _ _ _ _ _ _ _ _ _ 

PSP + + + + + + + + + 
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Figure 5.14 Effects of chlorpyrifos on cardiac cytoskeleton protein expression in 

differentiating H9c2 cells.  

H9c2 cells were induced to differentiate for 7, 9 and 13 days in the presence (+) and absence (-) of 3 

µM chlorpyrifos. Cell lysates (15 µg) were analysed via western blot and probed with antibodies that 

recognise A) cardiac troponin 1, B) tropomyosin and C) α-actin. All values were normalised to GAPDH 

levels and are expressed as mean % control values ± SEM of three independent experiments. ***p ˂ 

0.001 versus the control. 
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Figure 5.15 Effects of chlorpyrifos oxon on cardiac cytoskeleton proteins in differentiating 

H9c2 cells.  

H9c2 cells were induced to differentiate for 7 days, 9 days and 13 days in the presence (+) and 

absence (-) of 3 µM chlorpyrifos oxon. Cell lysates (15 µg) were analysed via western blot and probed 

with antibodies that recognise A) cardiac troponin 1 B) tropomyosin C) α-actin. All values were 

normalised to GAPDH level and are expressed as mean % control values ± SEM of three independent 

experiments.  
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Figure 5.16 Effects of diazinon on cardiac cytoskeleton proteins in differentiating H9c2 

cells. 

 H9c2 cells were induced to differentiate for 7 days, 9 days and 13 days in the presence (+) and 

absence (-) of 3 µM diazinon. Cell lysates (15 µg) were analysed via western blot and probed with 

antibodies that recognise A) cardiac troponin 1 B) tropomyosin C) α-actin. All values were normalised 

to GAPDH level and are expressed as mean % control values ± SEM of three independent 

experiments.  **p ˂ 0.01,  and ***p ˂ 0.001 versus the control. 
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Figure 5.17 Effects of diazoxon on cardiac cytoskeleton proteins in differentiating H9c2 

cells. 

H9c2 cells were induced to differentiate for 7 days, 9 days and 13 days in the presence (+) and 

absence (-) of 3 µM diazoxon. Cell lysates (15 µg) were analysed via western blot and probed with 

antibodies that recognise A) cardiac troponin 1 B) tropomyosin C) α-actin. All values were normalised 

to GAPDH level and are expressed as mean % control values ± SEM of three independent 

experiments.  
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Figure 5.18 Effects of PSP on cardiac cytoskeleton proteins in differentiating H9c2 cells. 

 H9c2 cells were induced to differentiate for 7 day, 9 day and 13 day in the presence (+) and absence 

(-) of 3 µM PSP. Cell lysates (15 µg) were analysed via western blot and probed with antibodies that 

recognise A) cardiac troponin 1 B) tropomyosin C) α-actin. All values were normalised to GAPDH level 

and are expressed as mean % control values ± SEM of three independent experiments. **p ˂ 0.01, 

***p ˂ 0.001, and ****p ˂ 0.0001  versus the control 
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5.4.5 Effect of sublethal concentrations of PSP on the proteome profile of 

H9c2 cells 

The results presented thus far have shown that exposure to 3 µM PSP resulted in a more 

significant effect on cardiac cytoskeleton proteins: troponin1, tropomyosin and α-actin of 

differentiating H9c2 cells when compared to other OPs compound. Therefore, would be of 

interest to identify changes in the levels of other cardiac proteins that may be implicated in 

the toxic effect of PSP on differentiating H9c2 cells. These proteins can be considered as 

novel biochemical changes in H9c2 cells that were induced to differentiate for 7 days in the 

presence of 3 µM PSP. In the present study, 7 days was selected as a preliminary exposure 

period since H9c2 cardiomyoblasts were confirmed to be differentiated at 7-days in to a 

more cardiomyocyte-like phenotype and displayed cardiac-specific characteristics, as shown 

in chapter 3. Thus, long-term incubation such as 9-days and 13- days can be assessed for 

future adverse effect of PSP. 2D gel electrophoresis was performed as described in Chapter 

2. Several protein spots showed a significant reduction in PSP-treated differentiating H9c2 

cells when compared to untreated cells and the significant (p˂0.05) in down regulating 

protein expression was determined by using Progenesis SameSpots software. Five protein 

spots (Spots ID 12, 16 , 14, 27 and 23) were identified as significantly decreased as shown in 

Table 5.2 and were visually distinct for spot picking (Figure 5.18). Protein pots were picked 

from the stained gel and digested with trypsin followed by MALDI-TOF mass spectrometry 

analysis of the peptides produced. Mass spectrometry analysis identified tropomyosin α-4 

and α-actin, which is in agreement with previous findings in described in section 5.3.4. In 

addition, coiled-coil domain containing protein 61 (Ccdc61), calumenin and PDZ-LIM domain 

protein 1 were also identified as novel proteins that showed a significant decrease in density 

in treated differentiating H9c2 cells when compared to untreated H9c2 cells. The identified 

proteins are listed in Table 5.3. The identity of these proteins were also confirmed by 

comparison of their in gel position with their theoretical molecular weights and isoelectric 

point (pI).  
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Table 5. 2 Progenesis SameSpot analysis represent decrease in density of protein spot in 3 

µM PSP treated cells.  

 

Data table represent a significant decrease in protein spots densities using ANOVA analysis of protein 

spot densities. Data values of 3 accumulated 2D gel electrophoresis, *p < 0.05 was viewed as 

significant.  

 

Figure 5. 19 Representative 2D gel images of PSP effects on cardiac protein expression in 

differentiating H9c2 cells.  

H9c2 cells were induced to differentiate for 7 days in the A) absence and B) presence of 3 µM PSP: 

Cell lysates (300 µg) were analysed by 2D gel electrophoresis using pH 3–10 gradient strips. Gels 

were stained with Proto Blue Safe colloidal Coomassie G-250 stain and gel images analysed using 

Progenesis SameSpots software. Circled spots represent proteins that were significantly down 

regulated when compared to untreated cells. Spot 12, calumenin; spot 14, PDZ-LIM domain protein 

1; Spot 16, coiled-coil domain containing protein 61; spot 23; tropomyosin α-4; spot 27, α- actin. 
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Table 5.3 Identification of proteins affected by sublethal concentrations of PSP in 

differentiating H9c2 Cells 

Spot 
number 

protein accession 
no. 

PMF sequence 
 coverage (%) 

Mascot 
score 

kDa pI Fold 
change 

16 Coiled-coil domain 
containing protein 
61 

A0JPP8 
 

47% 54  57 5.52 11 

12 Calumenin O35783 37% 65 40  4.40 5 

27 α-actin P68035 55% 53 41 4.72 6 

23 Tropomyosin α-4 P09495 45% 68 28.5 4.4 5 

14 PDZ-LIM domain 
protein 1 

P52944 47% 

 

67 35 6.79 2 

 

Mitotic H9c2 cells were induced to differentiate in the presence of 3 µM PSP for 7 days. Cells 

were analyzed by 2D gel electrophoresis. Proteins were identified using MALDI-TOF MS 

(PMF) as described in Materials and Methods. Sequence data were analyzed using Mascot 

software and reported according to percentage sequence coverage (SC%) or Mascot score 

(ion scores for PMF > 51 indicate extensive homology). All identified proteins exhibited 

Mascot scores that were considered statistically significant (*p < 0.05).  
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5.5 Discussion 

The present study examined the morphological, enzymatic and molecular changes induced 

by chlorpyrifos and diazinon, their corresponding metabolites (chlorpyrifos oxon and 

diazoxon), and PSP in differentiating H9c2 cells. Numerous in vivo studies have examined the 

mechanism underlying the toxicity of low doses of OP compounds in the brain; these studies 

have shown that these compounds target neuronal cytoskeleton proteins and cause 

inhibition of neurite outgrowth (Gearhart et al., 2007; Prendergast et al., 2007; Terry et al., 

2007). However, the molecular mechanism underlying the effects of sublethal concentrations 

of OPs on differentiating H9c2 cells were still unknown at the start of the current work. This 

is the first study to demonstrate the effect of OPs on cardiac cytoskeleton proteins in 

differentiating H9c2 cells. Figure 5.19 summarizes the major findings illustrated in the 

present study. Figure 5.20 represents a simple diagram outlining the possible sublethal 

effects of OPs in differentiating H9c2 cells. 
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Figure 5.20 Summary of major finding of sublethal effects of OPs in differentiating H9c2 

cells illustrated in the present study.  
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Figure 5.21 Simple diagrammatic representation of the sublethal effects of OPs 

(chlorpyrifos, diazinon, chlorpyrifos oxon, diazoxon and PSP) in differentiating H9c2 cells. 

OPs may target AChE leading to enzyme activity inhibition and stimulation of myocardial muscarinic 

acetylcholine receptors and contractile dysfunction, resulting in changes in cellular morphology. OP 

exposure may also decrease cardiac cytoskeleton protein expression leading to disruption in cellular 

integrity and cellular morphology. 
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5.5.1 Effect of OPs on the morphological features of differentiating H9c2 cells  

Two major OP concentrations (3 and 0.3 µM) were investigated for toxicity tests in 

differentiating H9c2 cells to determine which concentrations of OPs were harmful and which 

had no apparent effect after long- term exposure. Organophosphates at a concentration of 3 

µM were shown to induce morphological changes in differentiating H9c2 cells, with the 

degree of deterioration ranging from mild to severe, whereas 0.3  µM of all OPs had no 

significant effect on differentiating H9c2 cells.  Chlorpyrifos at a concentration of 3 µM had a 

moderate effect on differentiating H9c2 cells such as cell rounding or irregular cell shape at 

7-days, 9-days and 13-days exposure as shown in Figure 5.2, These data are in agreement 

with previous studies that have reported the morphological change by sublethal 

concentrations of chlorpyrifos. For example, 3 μM chlorpyrifos was able to inhibit the 

outgrowth of axon-like processes in differentiating mouse N2a neuroblastoma (Sachana et 

al., 2001). However, exposure to 3 µM chlorpyrifos oxon did not show major effect on H9c2 

cell viability, and its effect on differentiating cells may be considered as non-cytotoxic (Figure 

5.3).  

Diazinon at a concentration of 3 µM was shown to have a moderate effect on differentiating 

H9c2 cells at 7-days, 9-days and 13-days exposure (Figure 5. 4). This is in agreement with a 

previous study in neuronal cells that showed that exposure to 1-10 μM diazinon induced 

selective inhibition of the outgrowth of neurites in differentiating mouse N2a neuroblastoma 

cells (Flaskos et al., 2007). On the other hand, exposure to 3 µM diazoxon did not show any 

major effect on differentiating H9c2 cells and may be considered as the least toxic (Figure 

5.5). In contrast, 5 µM diazoxon caused significant reductions in the number of axon-like 

processes produced by N2a neuroblastoma cells. This was associated with increased the 

expression of phosphorylated neurofilament heavy chain (NFH) when compared to controls 

(Sidiropoulou et al., 2009).  

The parents compounds chlorpyrifos and diazinon showed an observable effect on cellular 

morphology more than their oxon metabolites, this may be due to their low water solubility 

(lipophilic) and can be readily absorbed by cells (Bowman and Sans, 1983).On the other 

hand, the oxons are often more hydrophilic compounds (Gupta, 2006). Thus, 

Bioaccumulation chlorpyrifos and diazinon in cells of may be considered as an early exposure 

biomarker for adverse effect to toxic substances (Franke et al., 1994). 
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As indicated in Figure 5.6, exposure to PSP induced apparent deterioration in cell shape and 

size. Thus, 3 µM PSP inhibited the differentiation of these cells into a more cardiomyocyte-

like phenotype characterised by an elongated spindle shape and multiple nuclei at days 7, 9 

and 13. These effects are consistent with a previous study showing that 2.5 µM PSP for 24 h 

exposure decreased neurite outgrowth in differentiating N2a cells (Hargreaves et al., 2006). 

Moreover, it is important to note that morphological change may be due to the alteration in 

the basic cell membrane mechanisms by OPs. For example, the OP parathion was found to 

stimulate Ca2+ uptake and ATP hydrolysis via Ca++ pump system in the sarcoplasmic 

reticulum, leading to alterations in cellular ionic balance and affecting myocardial 

conductivity and cellular structure (Ballantyne & Marrs, 1992). Overall, the data presented 

suggest that 3 µM levels of the OPs tested can be considered as sub-toxic toward 

differentiating H9c2 cells. Morphological analysis of the effect of OPs on differentiating H9c2 

cells can be arranged from the most effective to the less effective, as shown PSP > diazinon > 

chlorpyrifos > chlorpyrifos oxon and diazoxon. 

5.5.2 Effect of OPs on cell viability of differentiating H9c2 cells  

Morphological changes are an indicator of OP-induced stress (Atale et al., 2014). The results 

indicated that cell morphology seemed to be affected by sublethal concentrations (i.e. 3 µM) 

of OP. Therefore, it would be of interest to investigate whether longer term exposure to OPs 

are associated with cell death. To the author’s knowledge, no study has been conducted on 

the long- term toxicity of OPs in differentiating H9c2 cells. From the findings in this chapter, 

it is quite clear that chlorpyrifos and its toxic metabolite chlorpyrifos oxon at a sublethal 

concentration 3 μM had no significant effect on MTT reduction or LDH release following 7-

day, 9-day and 13 day exposure (Figure 5.7). This is in agreement with previous study 

showed that sub-lethal concentrations 1–10 μM of chlorpyrifos and chlorpyrifos oxon had no 

effect on the level of MTT reduction in differentiating mouse N2a neuroblastoma 

concomitant with inhibition of the axon-like neurites outgrowth (Sachana et al., 2001; 

Flaskos et al., 2011). Similarly, in the present study, chlorpyrifos treated cells exhibited 

rounded and irregular cell shape.  

Diazinon and its toxic metabolite diazoxon at sublethal concentration 3 μM had no 

significant effect on MTT reduction or LDH release following 7-day, 9-day and 13-day 

exposure (Figure 5.8). In this study this may indicate that diazinon and diazoxon are not 
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cytotoxic under the conditions used. This is consistent with previous findings with 

differentiating mouse N2a neuroblastoma cells and sublethal concentration 1–10 μM 

diazinon and its oxon metabolite diazoxon, no significant MTT reduction. However, they 

inhibited the outgrowth of axon-like neurites (Flaskos et al., 2007; Sidiropoulou et al., 2009).  

PSP exposure showed significant effects on MTT reduction following 9-days and 13 days, 

whereas it showed significant effect on LDH release following 13-days exposure of 

differentiating H9c2 cells. Both exposure periods (9 and 13 days) can be considered as long-

term. However, MTT reduction was shown to be more sensitive than LDH.  This may be 

explained by the cytotoxicity mechanism of each assay. For example, the MTT reduction 

assay assesses cellular mitochondrial function whereas the LDH release assay measures loss 

of cell membrane integrity (Haider & Rauf, 2014). Therefore, the present results may 

possibly suggest that exposure to PSP may lead to impaired mitochondrial function (MTT 

reduction) in differentiating H9c2 cells prior to disturbance of cell membrane and loss of cell 

membrane integrity (LDH release). In a previous study, it has been reported that OPs were 

able to cause disturbance of mitochondrial integrity and permeability and led to the release 

of cytochrome c to the cytosol and ultimately activated caspase-3 and induced apoptosis 

through intrinsic pathway (Razavi et al., 2013). In contrast in a previous study in neuronal 

cells, no cytotoxicity was observed when N2a neuroblastoma cells were exposed to PSP at 

concentrations 3 µM or lower (Harris et al., 2009). The present findings clearly indicate that 

sub-lethal exposure to PSP for 13 days could cause deleterious effects in differentiating H9c2 

cells and may disturb cell survivability and can considered cytotoxic.  

5.5.3 Effect of OPs on AChE activity in differentiating H9c2 cells  

AChE is a key enzyme biomarker of neurotoxicity and is known to be a primary target of OPs. 

Its inhibition can lead to accumulation of ACh and results in hyperstimulation of the 

sympathetic and parasympathetic pathways (Mileson et al., 1998). Therefore, it is important 

to investigate the effects of sublethal concentrations of OPs on AChE activity, as this is 

essential in understanding their cytotoxic effect more fully in differentiating H9c2 cells.  

Chlorpyrifos and its metabolite chlorpyrifos oxon showed significant inhibition of AChE 

activity in differentiating H9c2 cells following 7, 9 and 13 days exposure (Figure 5.10). This is 

in agreement with a previous study showed that 10 µg/ml chlorpyrifos and 10 ng/ml 
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chlorpyrifos oxon caused a significant inhibition in the AChE activity in neuronal cells, 

resulting in significant inhibition of neurite outgrowth in the early differentiation process; 

suggesting that AChE activity is strongly associated with neurite outgrowth (Das & Barone, 

1999).  

In a previous study, chlorpyrifos oxon decreased the activity of AChE with a potency which 

was at least 100-fold higher than that of chlorpyrifos in brain cell cultures (Monnet-Tschudi 

et al., 2000). However such a difference in potency was not observed in the current study. 

One possible explanation is that the surface of the peripheral anionic site of AChE varies 

between different species and cell types, although the esteratic site is similar. This may 

result in variation of the steric attraction of the oxon to the active site of the enzyme in each 

cell line (Kemp & Wallace, 1990). For example, AChE in rainbow trout possesses a smaller 

active site than that for rat AChE, which makes it less accessible than rat AChE to certain 

cholinesterase inhibitors  (Kemp & Wallace, 1990). Thus, AChE in H9c2 cells may have less 

steric attraction for OPs compared to AChE in neuronal cells. Another possibility is that if the 

nucleophilic site of AChE is weak, the acidity of the phosphorus atom of the inhibitor 

determines the rate of phosphorylation of the enzyme and thereby determines the overall 

rate of inhibition (Kemp & Wallace, 1990). This may also determine the spontaneous 

reactivation of the inhibited enzyme, as shown previously in other cell lines using different 

OPs (Wallace & Herzberg, 1988). This raises the possibility that H9c2 cells have a relatively 

weak nucleophilic site in their AChE compared to that of neuronal cells. However, AChE 

characterization in H9c2 cells has not been previously addressed, further work in this area 

could be worthwhile. Onother point of view is that oxons are metabolically converted to less 

toxic compounds via hydrolysis by paraoxonase (A-esterase; Sogorb & Vilanova, 2010). 

Therefore, it can be assumed that the effectiveness of paraoxonase in differentiated H9c2 

cells resulted in increase in oxon hydrolysis. Moreover, studies had indicated that the 

paraoxonase activity between different cell lines exhibit different expression level. Thus cell 

may express high, intermediate, or low paraoxonase activity (Eckerson et al., 1983; Mueller 

et al., 1983). However, expression level of paraoxonase in H9c2 cells have not been 

previously investigated.  

chlorpyrifos and its toxic metabolite have been reported to display neurotoxic effects 

primarily via AChE inhibition, which may persist for days to weeks (McDonough & Shih, 
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1997; Wijeyaratne & Pathiratne, 2006). Although chlorpyrifos and chlorpyrifos oxon showed 

significant inhibition of AChE, they displayed little cytotoxicity against differentiating H9c2 

cells even at very high concentrations (100 µM), as shown in Chapter 4. This may be because 

neuronal cells have higher AChE activity than muscle, eye and heart cells (Miron et al., 2008). 

This may suggest that direct inhibition of AChE activity by chlorpyrifos and chlorpyrifos oxon 

may be associated with the mild to slight morphological changes observed in differentiating 

H9c2 cells. 

The present study also showed that treatment of differentiating H9c2 cells with diazinon and 

its metabolite diazoxon induced significant inhibition of AChE activity in following 7, 9 and 13 

days exposure (Figure 5.11). These results are consistent with a previous study that showed 

that 10 µM diazinon and its metabolite diazoxon inhibited AChE activity in human 

lymphocytes and fibroblast cells (Colovic et al., 2010). Moreover, an in vivo study showed 

that sublethal doses of diazinon had toxic effects in rats which resulted in apoptotic cell 

death, mainly induced by lipid peroxidation, and the induction of oxidative stress (Ogutcu et 

al., 2006). In stark contrast, diazinon and diazoxon did not induce cell death at the sublethal 

concentration of 3 µM in differentiating H9c2 cells, as illustrated in Chapter 4.  One possible 

explanation is that in vivo a number of factors contribute to the development of 

cardiotoxicity and induction of cell death, such as over-activation of the sympathetic and 

parasympathetic nervous systems, hypoxia, acidosis and electrolyte derangement (Karki et 

al., 2004). Differences between in vivo and in vitro experiments are expected, given the 

differences in the physiological characteristics of cells and model animals in both 

experimental conditions (Aronzon et al., 2011; Sztrum et al., 2011; Hutler Wolkowicz et al., 

2014). However, In this study, it may be suggested that significant inhibition of AChE activity 

by sublethal concentrations of diazinon and diazoxon may be correlated with the induction 

of sub-toxic effects that may result from long-term exposure without the induction of cell 

death. In summary, chlorpyrifos and diazinon and their metabolites showed significant 

inhibition of AChE activity in differentiating H9c2 cells. This effect may lead to stimulation of 

myocardial muscarinic acetylcholine receptors. In this respect, muscarinic acetylcholine 

receptors were found to be expressed in H9c2 cells and play an important role in 

cardioprotective mechanism in H9c2 cells (Pan et al., 2012). These receptors are strongly 

associated with dysautonomic symptoms such as decrease in cardiac contractility (Liang-
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Xiong Fu et al., 1995; Goin et al., 1997) and changes in the cardiac response to vagal 

innervation (Chemnitius et al., 1999). Thus, this suggests that reversible or irreversible 

inhibition of AChE may reflect changes in cellular morphology in differentiating H9c2 cells. 

However, researches have shown that cholinergic hyperexcitability is not responsible for all 

of toxic effects of OP poisioning. For example, diazinon was showen to accumulates in 

different tissues leading to histological and biochemical damages (Handy et al.,2002) and 

Intoxication with diazinon was found to be associated with changes haematological 

parameters and induces genotoxicity (Hariri et al., 2010). Changes in cellular morphology 

may also be associated with other non-cholinergic molecular targets, which it would be 

worthwhile to investigate in order to assess the long-term effect of sublethal concentrations 

of OPs.  

PSP exposure did not show significant inhibition of AChE activity (Figure 5.12). Therefore, it is 

believed that the cytotoxic effect of PSP in differentiating H9c2 cells is not associated with 

AChE inhibition. However, failure of PSP to interfere significantly with AChE activity indicates 

that alternative proteins targets are involved, which could be useful biomarkers for 

evaluating the cardiac cytotoxicity of PSP. 

5.5.4 Effect of OPs on the cardiac cytoskeleton proteins of differentiating H9c2 

cells 

Certain OPs may have long-term toxic effects and may interfere with brain development by 

binding to molecular targets other than AChE or by affecting neuronal cytoskeletal proteins 

and causing disruption of cellular integrity and cellular structure (Richardson, 1995; 

Crumpton et al., 2000). The current study investigated the possible effects of chlorpyrifos 

and diazinon, their metabolites (chlorpyrifos oxon and diazoxon), and PSP on the cardiac 

cytoskeleton proteins troponin 1, tropomyosin, and α-actin. Changes in the expression of 

these proteins are considered an indicator of cardiac toxicity or cardiac failure (Rajan et al., 

2010). 

The results of the present study showed that treatment with chlorpyrifos at a sublethal 

concentration of 3 µM induced a significant decrease in the expression of troponin 1 at 13 

days exposure in differentiating H9c2 cells, as determined by Western blot analysis (Figure 

5.13 a). Similarly, 3 µM chlorpyrifos exposure was shown to disrupt cytoskeletal protein (NF-

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0ahUKEwiDzqbnxPvLAhXESRoKHZ45BJUQ0gIIOygAMAQ&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCholinergic%23Cholinergic_drug&usg=AFQjCNG6gtGXVGwqdqZ29OhP_nA2D5MBPA
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H; neurofilament heavy chain) in neuronal cells, which suggests that this compound is 

strongly correlated with the inhibition of neurite outgrowth and AChE activity inhibition 

(Schmuck & Ahr, 1997; Flaskos et al., 1998; Li & Casida, 1998, Sachana et al., 2001). In 

cardiac cells, troponin 1 is a sensitive biomarker of cardiac toxicity (O'Brien, 2008). Thus, 

reduction in troponin 1 expression could indicate an early development of a molecular 

lesion, which is directly proportional to the concentration of the toxic given (Ferrans et al. 

1969). Thus, this may be the cause of morphological alterations in differentiating H9c2 cells. 

 The present results showed that chlorpyrifos oxon had no effect on the cardiac proteins 

examined on Western Blots of lysates from differentiating H9c2 cells (Figure 5.14). In 

contrast, 0.03 µM of chlorpyrifos oxon was shown to impair neurite outgrowth in cultures of 

rat PC12 cells (Das & Barone, 1999). Additionally, chlorpyrifos oxon was reported to have a 

more potent effect on differentiation/neurite outgrowth than chlorpyrifos in neuronal cell 

lines (Howard et al., 2005). However, in differentiating H9c2 cells, although chlorpyrifos 

oxon did not show any significant effect on cardiac cytoskeleton proteins, it was shown to 

induce slight morphological changes that may be related to AChE inhibition. A previous study 

on neuronal cells reported that OPs, which interfere with the morphogenic activity of AChE, 

may cause a disruption in axonal outgrowth (Brimijoin & Koenigsberger, 1999). 

In the present study, diazinon was found to have a significant effect on the expression of the 

cardiac cytoskeleton proteins troponin 1 at 7-days, 9-days and 13-days exposure in 

differentiating H9c2 cells (Figure 5.15a). This finding has not been previously reported in 

cardiac-like cells, as the majority of such studies use neuronal cells. For example, a previous 

study reported that sublethal concentrations of diazinon and diazoxon interfered with the 

outgrowth of differentiating mouse N2a neuroblastoma cells after 24 h of exposure (Axelrad 

et al., 2003; Flaskos et al., 2007; Sidiropoulou et al., 2009). Thus, inhibition of neurite 

outgrowth is associated with changes in cytoskeleton proteins e.g. neurofilament heavy 

chain (NFH), microtubule associated protein MAP 1B and heat shock protein 70 (HSP-70; 

Flaskos et al., 2007; Flaskos, 2012). Based on the findings of previous studies, it can be 

assumed that the morphological changes induced by diazinon in differentiating H9c2 cells 

are brought about via its effect on cardiac cytoskeleton proteins.  
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The present data also showed that diazoxon did not have a significant effect on the 

expression of the cardiac proteins examined in differentiating H9c2 cells (Figure 5.16). In 

contrast, it was reported that diazoxon induced a decrease in the expression of cytoskeleton 

proteins such as, tubulin and MAP 1B during the differentiation of rat C6 glioma cells; this 

study also reported a transient decrease in AChE activity, which probably triggers the events 

that later lead to outgrowth impairment (Sidiropoulou et al., 2009). Thus, diazoxon seems to 

have a more potent effect on cytoskeleton proteins in neuronal cells than cytoskeleton 

proteins in cardiac cells or it may affects different proteins to diazinon or it may affects the 

cytoskeleton through different signaling pathways. Such differences between cell lines are 

generally expected (Watson et al., 2014).  

Western Blot analysis indicated that PSP exposure significantly decreased the level of 

troponin 1, tropomyosin and α-actin expression at 7, 9 and 13 days exposure (Figure 5.17). 

The present study, to the best of the author’s knowledge, is the first to report the effect of 

PSP on cardiac cytoskeleton protein expression. In neuronal cells, PSP is believed to induce 

delayed neurotoxicity (Jortner et al., 1999). Sublethal concentrations of PSP were found to 

reduce neuronal cytoskeleton protein expression (neurofilaments), which was found to be 

clearly correlated with the inhibition of outgrowth of axon-like processes (Zhao et al., 2006). 

Cardiac proteins such as troponin 1, tropomyosin and α-actin are proteins associated with 

the normal differentiation process of cardiac muscle contraction (O'Brien, 2008). A decrease 

in the level of these cytoskeleton proteins clearly suggests the presence of an early 

molecular lesion that may interfere with the differentiation of H9c2 cells into 

cardiomyocyte-like cells. This reinforces the idea that the observed effect of PSP may be one 

of the possible factors responsible for its cardiac cytotoxicity. Troponins are globular 

proteins that play an important role in cardiac muscle contraction (O’Brien, 2008). In human 

and animal studies, troponins have been reported to be a sensitive biomarker that is first 

released within minutes in myocardial infarct (Babuin & Jaffe, 2005). Thus, the troponin level 

in blood is not elevated in healthy people (O'Brien, 2008). The effect of OPs on troponin 1 

have been previously studied in vivo. For example, 0.8 g/kg fenthion was found to induce 

myocardial injury and lead to a significant increase in troponin 1 levels in the blood of rats. 

Thus, troponin 1 could be a useful biomarker of OP-induced cardiotoxicity. These findings 

confirm that reduced troponin 1 expression is a key early event following exposure of 
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differentiating H9c2 cells to PSP. Tropomyosin is a central regulator of muscle contraction 

and cellular movement, and it acts in synergy with troponin in actin-myosin interactions 

(Barua et al., 2012). Changes in tropomyosin expression and it’s phosphorylation status play 

an essential role during cardiac development and in response to cardiac hypertrophy and 

heart failure  (Schiaffino et al., 1996). 

 α-actin, a basic regulator of muscle contraction, together with myosin, plays an important 

role in cell migration and cell structure (Pollard & Cooper, 2009). It has been shown that OPs 

such as triphenyl phosphite and parathion can affect the function of the actin cytoskeleton 

(Carlson & Ehrich, 1999; Carlson et al, 2000). More interestingly, caspase activation was 

shown to occur following actin degradation induced by OPs (Carlson et al., 2000).In this 

respect, long term exposure of 3 µM PSP was found to induce cell death in differentiating 

H9c2 cells. Exposure to this concentration in particular involves in α-actin instability and 

cellular structure deterioration leading to cell death. These findings seem to indicate that 

disruption of cardiac cytoskeleton proteins can be a sensitive indicator of PSP-induced 

cytotoxicity in differentiating H9c2 cells. Thus, prolonged exposure to PSP at the sublethal 

concentration of 3 µM may be considered to cause a sub-acute cytotoxic effect. 

5.5.5 Effect of PSP on novel cardiac cytoskeleton proteins expression of 

differentiating H9c2 cells 

It was apparent from blot analysis that sublethal concentrations of PSP induced changes in 

the expression of cardiac cytoskeleton proteins troponin 1, tropomyosin and α-actin. It was 

therefore of interest to further investigate the effects of 3 µM PSP on other cardiac proteins 

expressed in differentiating H9c2 cells. These proteins also may be implicated in the 

mechanisms underlying PSP-induced toxicity. Using 2D gel electrophoresis and mass 

spectrometry the present study identified several novel proteins, specifically coiled-coil 

domain-containing protein 61, calumenin, and PD-LIM domain protein 1, whose expression 

was down regulated in differentiating H9c2 cells in the presence of PSP. These proteins are 

listed in Table 5.3.  

Coiled-coil domain-containing protein 61 (Ccdc61) is present in the centrosomes and plays 

an important role in centrosome function, specifically, in cell division and cell development 

(Kuhn et al., 2014). Ccdc61 connected to the centriole at the centre of the centrosomes and 
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functions as a scaffold and for recruiting various eukaryotic proteins, including kinases and 

phosphatases, thus serving as a signalling centre of multicellular development (Kuhn et al., 

2014).  During the current study, exposure to the sublethal concentration of PSP resulted in 

reduced expression of Ccdc61. This suggests that PSP may affect centrosome function in 

H9c2 cells by disrupting the mitotic spindle of dividing cells and thereby; blocking further 

progress of mitosis. PSP may also promote microtubules disassembly, thereby affecting the 

morphology of the entire cell. Moreover, Ccdc61 was found to play a critical role in the post-

translational modification of proteins (Kuhn et al., 2014); depletion of these proteins thus 

may impair the general structure of H9c2 rat cells during differentiation.  

Calumenin is a calcium-binding protein expressed in various tissues and at particularly high 

levels in heart tissue (Yabe et al., 1997). Calumenin is located in the sarcoplasmic reticulum 

of the mammalian heart (Yabe el al., 1997; Jung & Kim, 2004;). Calumenin has been shown 

to interact with sarco(endo)plasmic reticulum Ca2+ ATPase and ryanodine receptor to 

maintain Ca2+ homeostasis in rat cardiac cell (Sahoo & Kim, 2010). Additionally, extracellular 

calumenin was reported to suppress cellular migration and tumour metastasis by 

inactivating ERK1/2 signalling. Calumenin depletion consequently induced cellular migration 

in hepatocellular and pancreatic carcinoma (Wang et al., 2015). In the present study, a 

sublethal concentration (3 µM) of PSP was shown to down regulate the expression of 

calumenin.  As a result, PSP may alter Ca2+ haemostasis in differentiating H9c2 cells and thus 

also affect muscle contraction (Periasamy & Huke, 2001). Further, depletion of calumenin in 

cardiomyocytes is associated with enhancement of Ca2+ ion transient amplitude in a short 

period to reach peak levels (Koss & Kranias, 1996).  

 

The PDZ-LIM domain protein 1 (PDZLIM 1) is a muscle-specific protein that interacts with the 

α-actin to form the Z-disc structure; disruption in its function results in skeletal myopathy as 

observed in the muscles of male mice (Pashmforoush et al., 2001; Zhou et al., 2001). 

Additional research in mice has revealed increased expression of PDZLIM 1 to be associated 

with the development of malignancy and migration of cancerous cells in the breast, while 

depletion of PDZLIM 1 has been shown to disrupt cell motility and cell migration (Liu et al., 

2015). Thus, PSP may exhibit similar effects in differentiating H9c2 cells, decreasing H9c2 cell 

motility and function.  
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5.6 Conclusion 

The work presented in this chapter shows that exposure to sublethal concentrations of 

chlorpyrifos and diazinon and their metabolites (chlorpyrifos oxon and diazoxon) in 

differentiating H9c2 cells induced significant inhibition of AChE activity, which may be 

strongly associated with the morphological changes in these cells. However, only the parent 

compounds chlorpyrifos and diazinon had a significant effect on cardiac cytoskeleton 

proteins. In contrast, PSP did not show significant inhibition of AChE activity, but it had a 

significant effect on the levels of cardiac cytoskeleton proteins, which is probably closely 

associated with the morphological changes observed. Mass spectrometry data also 

presented novel proteins down regulated in response to PSP. Thus, these findings may 

represent a molecular mechanism for long-term OP-induced cytotoxicity in differentiating 

H9c2 cells.  
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6.1 Introduction 

 Induced pluripotent stem cells are reprogrammed cells generated from differentiated adult 

human somatic cells, which are similar to human embryonic stem cells (Yamanaka, 2007). 

More interestingly, hiPSCs have the ability to form the three primary embryonic germ layers: 

the mesoderm, endoderm and ectoderm, and hence have the potential to differentiate into 

any cell type under certain conditions, including cardiomyocytes (Jq et al., 2003; Yamanaka, 

2007). The ability of immature cells to adopt the features of a mature cardiomyocyte 

provides a promising strategy for various aspects of cardiovascular research including drug 

screening, therapeutic testing and toxicity testing (Ma et al., 2011). Several studies have 

recently evaluated the maturation in vitro of hiPSCs-CMs to the cardiac human phenotype 

(Liu et al., 2009; Sartiani et al., 2007; Foldes et al., 2011). A recent study involving 

ultrastructural analysis of cardiomyocytes derived from hiPSCs showed that they exhibited a 

highly-ordered contractile apparatus similar to that of mature structures of cardiomyocytes, 

such as fascia adherens, dense myofibrils that have clear A and I-bands, gap junctions and 

visible sarcomeres (Lundy et al., 2013). Notably, at the molecular level, cardiomyocytes 

derived from hiPSCs exhibited cardiac structural biomarkers, which were similar to those 

reported in human cardiac myocytes, including connexin-43 and a β-myosin heavy chain 

(Lundy et al., 2013).  

In the previous chapters of this thesis, findings showed significant cytotoxic effects of OPs, in 

particular PSP, on differentiated H9c2 cells. However, an established rodent cell line may 

respond differently to xenobiotic exposure when compared to human cells, due to the 

marked physiological differences between animal and human models (Lewis & Kerry, 2015). 

Therefore, it is essential to assess the cardiotoxic response to OPs on a cellular model that is 

comparable to the functional cardiomyocytes of humans. In this respect, hiPSCs-CMs are 

considered to provide a reproducible, scalable and human-based model applicable for in 

vitro toxicity screening and drug discovery (Burridge et al., 2012). The present study 

employed hiPSCs-CMs as an in vitro model system to assess the effect of OPs on 

cardiomyocytes. This is the first study to explore the toxicological effects of OPs on 

cardiomyocytes derived from hiPSCs; it forms a useful comparison with the toxicological 

effects of OPs that have been previously investigated in differentiated H9c2 cells, and may 

thus represent an opportunity for preclinical evaluation.  
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6.2 Aims 

The aims of this study were to examine the morphological characteristics of mature human-

induced pluripotent stem cell‐derived cardiomyocytes (hiPSCs-CMs), to confirm the 

expression of known specific cardiac markers, such as troponin 1, tropomyosin and α-actin, 

and to validate cytotoxic effects of OPs (chlorpyrifos, diazinon and PSP) observed in earlier 

chapters in a more human-relevant cellular model. 

6.3 Methods 

 As described in chapter 2 section 2.3, 2.4, 2.5. 

 

6.4 Results 

6.4.1 Characterisation of hiPSCs-CMs 

In the present study, hiPSCs-CMs were passaged once and cultured for seven days to enrich 

the contracting cells, as a previous study reported that hiPSCs-CMs start to contract after 7 

days of culture (Burridge et al., 2014). Immunostaining studies were performed to confirm 

cardiomyocyte differentiation and assess the expression of the cardiac-specific proteins in 

myocardial contracting cells. As shown in Figure 6.1, hiPSCs-CMs were positively stained for 

the cardiac troponin 1, tropomyosin and sarcomeric α-actin. The positively-stained 

cardiomyocytes demonstrated mature striated myocytes. Structural examination also 

demonstrated large and elongated cells. This provided additional evidence that the cells had 

gained a mature adult cardiac phenotype.  
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Figure 6.1 Structural characterisation of the hiPSCs-CMs.  

The hiPSCs-CMs were passaged once and cultured for 7 days in cardiac myocyte medium. 

Immunofluorescence staining was performed with antibodies to A) cardiac troponin-1 (green), B) 

tropomyosin (green) and C) α-actin (green). Nuclei were stained with DAPI counterstain (blue). Scale 

bar = 100 μm. The images presented are from one experiment and are representative of four 

experiments.  
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6.4.2 Effects of OPs on the viability of hiPSCs-CMs 

Initial experiments in this study assessed the effect of OP treatment on the viability of 

hiPSCs-CMs and this was investigated via monitoring MTT reduction and the release of LDH 

into the culture medium. Also, the morphological changes of hiPSCs-CMs were assessed via 

Coomassie Brilliant Blue staining following OP exposure. As a starting point, due to the 

limited number of cells, three concentrations of each selected OP (200 µM, 25 µM and 3 

µM) were tested over a 48 h exposure period.  

Chlorpyrifos at 200 µM significantly inhibited MTT reduction and triggered LDH release 

following 48 h exposure (Figure 6.2a and b). Coomassie Brilliant Blue staining, showed that 

cells appeared to be more rounded and compact, rather than elongated when compared to 

the control cells; also at 25 µM and 3 µM morphological changes were observed when 

compared to the control cells (Figure 6.2c).  

Diazinon at a concentration of 200 µM had a significant effect on MTT reduction (Figure 

6.3a), but had no significant effect on LDH release following 48 h exposure (Figure 6.3b). 

Also, at a concentration of 200 µM, stained cells appeared to be more rounded, without an 

appearance of elongated cells. Finally, at concentrations of 25 µM and 3 µM, changes in cell 

morphology suggested toxic effects when compared to control cells (Figure 6.3c).  

PSP had a greater cytotoxic effect when compared to chlorpyrifos and diazinon. At 

concentrations of 200 µM and 25 µM PSP significantly inhibited the reduction of MTT and 

triggered the release of LDH following 48 h of exposure (Figure 6.4a and b). Cell 

deterioration was markedly evident at concentrations of 200 µM and 25 µM, followed by 3 

µM PSP, since cells did not exhibit an elongated spindle shape typically observed in control 

cell cultures (Figure 6.4c). 
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Figure 6.2 The effect of chlorpyrifos on the viability of hiPSCs-CMs monitored by MTT 

reduction and LDH release. 

 hiPSCs-CMs cells were exposed to the indicated concentrations of chlorpyrifos for 48 h. Following 

exposure, cell viability was assessed by measuring the metabolic reduction of MTT by cellular 

dehydrogenases (A) and the release of LDH (B). The data are expressed as a percentage of control 

cell values (=100%) and represent the mean ± SEM of three independent experiments, each 

performed in sextuplicate. **p ˂ 0.01 versus the control response. C) Following chlorpyrifos 

treatment with the indicated concentrations, cells were fixed (90 % (v/v) with methanol, stained with 

Coomassie Blue and then visualised using light microscopy (20x objective lens). The black arrows 

indicate typical elongated differentiated cells and the red arrows point to typical rounded compact 

cells. The images presented are from one experiment and are representative of three independent 

experiments. 



Chapter 6 

166 
 

 

  

Figure 6.3 The effect of diazinon on the viability of hiPSCs-CMs as monitored by MTT 

reduction and LDH release. 

 hiPSCs-CMs cells were exposed to the indicated concentrations of diazinon for 48 h. Following 

exposure, cell viability was assessed by measuring the metabolic reduction of MTT by cellular 

dehydrogenases (A) and the release of LDH (B). Data are expressed as a percentage of control cell 

values (=100%) and represent the mean ± SEM of three independent experiments, each performed in 

sextuplicate. **p ˂ 0.01 versus the control response. C) Following diazinon treatment with the 

indicated concentrations, cells were fixed (90 % (v/v) with methanol, stained with Coomassie Blue 

and then visualised using light microscopy (20x objective lens). The black arrow indicates typical 

elongated differentiated cells and the red arrows point to typical rounded compact cells. The images 

presented are from one experiment and are representative of three independent experiments.  
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Figure 6.4 The effect of PSP on the viability of hiPSCs-CMs monitored by MTT reduction 

and LDH release.   

Following exposure, cell viability was assessed by measuring the metabolic reduction of MTT by 

cellular dehydrogenases (A) and the release of LDH (B). Data are expressed as a percentage of control 

cell values (=100%) and represent the mean ± SEM of three independent experiments, each 

performed in sextuplicate. **p ˂ 0.01, ***p ˂ 0.001 versus the control response. C) Following PSP 

treatment with the indicated concentrations, cells were fixed (90 % (v/v) with methanol, stained with 

Coomassie Blue and then visualised using light microscopy (20x objective lens). The black arrows 

indicate typical elongated differentiated cells and the red arrows point to typical rounded compact 

cells. The images presented are from one experiment and are representative of three independent 

experiments.   
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6.4.3 Phenyl Saligenin Phosphate induced Apoptosis in hiPSCs-CMs 

From the previous results it was confirmed that PSP significantly induced hiPSCs-CMs cell 

death at concentration 25 µM and 200 µM. Therefore it is worth to assess whether PSP 

induce cell death via caspase-3 activation. Caspase-3 activation was monitored via 

immunocytochemistry at different time periods (eg, 1, 2 and 4 h). As evident in Figure 6.5, 

treatment of  hiPSCs-CMs with 25 µM PSP triggered a significant activation of caspase-3 at 2 

and 4 h of exposure. 

 

 

Figure 6.5 PSP-induced caspase-3 activation in hiPSCs-CMs.  

hiPSCs-CMs were induced to differentiate for 7 days, then cells were exposed  to 25 μM PSP for A) 

1h, B) 2 h and C) 4 h. Following PSP exposure, caspase-3 activation was assessed via 

immunocytochemistry using an anti-active caspase-3 antibody (green) and DAPI counterstain for 

nuclei visualization (blue). Scale bar = 100 μm. The images presented are from one experiment and 

are representative of three. Quantified data are expressed as a percentage of control cell values and 

represent the mean ± SEM of four independent experiments. **p < 0.01 and ****p < 0.0001 versus 

the control.  
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6.4.4 The Effect of sublethal concentrations of PSP on hiPSCs-CMs 

Previous results in chapter 5 showed 3 µM PSP caused a significant decrease in the 

expression level of cardiac cytoskeleton proteins; troponin 1, tropomyosin, and α-actin in 

differentiated H9c2 cells. Therefore it was worthwhile to assess if similar effect would apply 

with differentiating hiPSCs-CMs.  hiPSCs-CMs were induced to differentiated in the presence 

of 3 µM PSP. As shown in Figure 6.6 troponin 1, tropomyosin, and α-actin expression were 

significantly decreased in PSP treated cell when compared to untreated cells. 

 

 

 

Figure 6.6 The effects of PSP on cardiac cytoskeleton protein expression s in differentiating 

hiPSCs-CMs. 

hiPSCs-CMs were induced to differentiate for 7 days in the presence and absence of 3 µM PSP. Cells 

were analysed via immunofluorescence staining using antibodies that recognise A) cardiac troponin 1 

B) tropomyosin C) α-actin (green) and DAPI counterstain for nuclei visualization (blue). Scale bar = 

100 µm. The images presented are from one experiment and are representative of three. Quantified 

data are expressed as a percentage of control cells and represent the mean ± SEM of four 

independent experiments. *p < 0.05 and **p < 0.01 versus the control response.  
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6.5 Discussion 

The current study evaluated the effects of the OPs chlorpyrifos, diazinon and PSP on 

cardiomyocytes derived from hiPSCs since these cells have been demonstrated to be one of 

the best models of choice for studies focusing on cardiac disease and cardiac toxicity (Liang 

et al., 2013). hiPSCs-CMs have gained a high interest due to their superiority over 

heterologous studies and their spontaneous cardiac differentiation, during which they show 

cardiac beating, and their ability to address the effect of chronic exposure to toxic 

compounds in terms of morphological and physiological assessment (Dell’Era et al., 2015). A 

number of studies have investigated the effect of OPs on different stem cell types, such as 

mesenchymal stem cells (Hoogduijn et al., 2006), human umbilical cord blood-derived stem 

cells (hUCBSCs; Kashyap et al., 2013) and adipose tissue-derived stem cells (Zarei et al., 

2015). However, cardiotoxic investigations of OPs on hiPSCs-CMs have not been previously 

assessed. A simple summary comparison between differentiated H9c2 cells and hiPSCs-CMs 

illustrating the major findings is shown in Table 6.1.  
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Table 6.1 Comparison of major findings of significant effect (p˂0.05) of OPs in 

differentiated H9c2 cell and hiPSCs-CMs. 

MTT 

 

LDH 

Differentiated 

H9c2 cell 

3 µM 

- 

 

25 µM 

PSP 

200 µM 

   CPF 

   PSP 

3 µM 

- 

25 µM 

PSP 

200 µM 

   CPF 

   PSP 

hiPSCs-CMs 
 

 

- 

 

      PSP 

   CPF 

   PSP 

  Diazinon 

 

- 

 

    PSP 

    CPF 

     PSP 

Caspase-3 activation (25 µM PSP) 

Differentiated 

H9c2 cell 

1 h 

- 

 

2 h 

 

4 h 

 

hiPSCs-CMs 
 

- 

 

 

 

 

 

Sublethal effect of 3µM PSP on cardiac protein  

Differentiated 

H9c2 cell 

Troponin 

 

Tropomyosin 

 

α-actin 

 

hiPSCs-CMs 
 

   

  

                        represents a significant increase;       represents significant decrease 
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6.5.1 Morphological characterisation of hiPSCs-CMs 

The present findings showed that reproducibly differentiated cardiomyocytes derived from 

hiPSCs-CMs cells have the ability to express cardiac markers, such as troponin 1, 

tropomyosin and α-actin (Figure 6.1). Indeed, similar cardiac markers were shown to be 

expressed in adult human cardiomyocytes (Braam et al., 2010). This is also in agreement 

with a study showing that hiPSCs-CMs displayed morphological maturation that involved 

expression of cardiac structural proteins, most notably troponin and α-actin (Zwi et al., 2009; 

Ma et al., 2011) Similar expression levels of these proteins were found in adult human heart 

(Lundy et al., 2013). Moreover, the ultra-structural analysis provided additional evidence of 

cardiac maturation with cells displaying the appearance of highly ordered, dense filaments 

and long myotubes. Moreover, similar structural properties were shown in cultured adult 

human cardiomyocytes (Olivetti et al., 1996). 

6.5.2 The Effect of OPs on the viability of hiPSCs-CMs 

Previous results demonstrated the effect of OPs on differentiated H9c2 cells, as shown in 

Chapter 4. Here, the effects of OPs were assessed on hiPSCs-CMs.  Initial experiments 

assessed the effect of OPs on cell viability of hiPSCs-CMs by monitoring MTT reduction and 

LDH release. Interestingly, cell viability results for hiPSCs-CMs displayed a similar pattern to 

that observed in differentiated H9c2 cells. In the present study on hiPSCs-CMs, chlorpyrifos 

showed cytotoxicity at the highest concentration 200 µM, and Coomassie Blue staining 

indicated that they were more rounded and compact cells at 200 µM, 25 µM and 3 µM  

(Figure 6.2). Diazinon at concentration 200 µM caused significant inhibition of MTT 

reduction but had no significant effect on LDH release, suggesting that the former assays 

more sensitive than the latter (Figure 6.3a and b). This may be due to the earlier onset of 

metabolic effects than membrane leakage, consistent with the suggestion that MTT is a 

better predictor of cytotoxicity as observed in a previous study (Fotakis & Timbrell, 2006). 

Coomassie Blue Brilliant stain at 200 µM, 25 µM and 3 µM  revealed the appearance of 

rounded rather than elongated cells when compared to the control cells (Figure 6.3c).  

In comparison with differentiated H9c2 cells, chlorpyrifos induced cytotoxic effects at a 

concentration > 100 µM, whereas diazinon did not show any cytotoxicity effects at a 

concentration 200 µM. It is possible that hiPSCs are slightly more sensitive to OP toxicity 

than differentiated H9c2 cells due to the physiological differences between animal and 
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human models. Consequently, different responses may be observed, particularly in toxicity 

screening (Lewis et al., 2013). However, stained cell images of chlorpyrifos and diazinon at 

sublethal concentration of 3 µM pointed to the idea that other cardiac parameters may be 

affected that influence cell morphology. Indeed, sublethal toxic effect of chlorpyrifos and 

diazinon towards hiPSCs-CMs cannot be excluded as a recent study showed that in vitro 

exposure to 10 and 200 µM of chlorpyrifos for 12 h was able to induce a significant gene 

alteration in mouse embryonic stem cells without inducing cell death or changes in the 

cellular structure (Estevan et al., 2013). Moreover, diazinon at concentrations 1 μM and 10 

μM have been shown to decrease axonal cytoskeleton microtubule associated protein 

1B (MAP 1B) expression, that may reflect inhibition of axon outgrowth in neuronal cells 

(Flaskos et al., 2007). Also, in the current study sublethal concentrations of chlorpyrifos and 

diazinon (3 μM) significantly decreased the cardiac specific marker troponin 1 in 

differentiating H9c2 cells. This observations suggests that sublethal concentrations of 

chlorpyrifos and diazinon may interfere with myocellular contraction. In the muscle 

contraction process both troponin 1 and tropomyosin  block the binding of actin to myosin 

preventing muscle contraction.  At higher Ca2+ concentration, Ca2+ binds to troponin C, 

leading movement of tropomyosin which allows the myosin head interact with actin thus 

allowing contraction. This demonstrates the critical role of troponin in cardiac function 

(Metzger & Westfall, 2004). Therefore, it is likely that similar parameters may be affected in 

hiPSCs-CMs treated with chlorpyrifos or diazinon, which may subsequently affect cellular 

morphology. It would therefore be of interest in future work to determine if sublethal 

concentrations of OPs interfere with the reported contraction of hiPSCs-CMs. However, 

further work will be required to determine which targets are most altered that may relate to 

disruption of cardiac cellular differentiation or cellular function. 

PSP was shown to be more potent than chlorpyrifos and diazinon in viability assays, since 

PSP cytoxicity was observed at lower concentrations (25 μM) in hiPSCs-CMs. Also, Coomassie 

Blue staining at 200 µM and 25 µM showed cell deterioration. This is strongly in agreement 

with the previous study that demonstrated cytotoxic effect of 25 µM PSP in differentiated 

H9c2 cells. Also, visualisation of Coomassie blue stained cells revealed that 3 µM PSP 

induced morphological changes which were not unexpected. In the previous chapter, it was 

shown that 3 µM PSP significantly down regulated cardiac cytoskeleton proteins, troponin 1, 
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tropomyosin and α-actin in differentiating H9c2 cells. Clinically, cardiac troponins have been 

found to be a sensitive biomarker of drug-induced skeletal muscle and myocardial toxicity 

(Smith et al., 2013). Together, troponin with tropomyosin intertwine with thin filament G-

actin and function to regulate contraction of cardiac muscle mediated by increases in 

intracellular Ca2+ (Barua et al., 2012). Structural instability and conformational changes of 

tropomyosin was found to significantly affect proteins that control Ca2+ flux such as the 

sarcoplasmic Ca2+ ATPase (SERCA2a; Schulz et al., 2012). Also, mutation in tropomyosin was 

found to affect its ability to activate the actin thin filament upon binding of Ca2+ to troponin 

(Mamidi et al., 2013). Thus, functional diversity of actin cytoskeletal is strongly associated 

with alterations of tropomyosin expression (Gunning et al., 2008). Presuming that local 

change of tropomyosin activity by PSP may be sufficient to modulate cardiac contractile 

function. Overall, the data support the idea that PSP exposure is more cytotoxic than the 

other OPs tested as it is observed in both the H9c2 cells (rat) and hiPSCs-CMs. 

6.5.3 PSP-induced caspase activation in hiPSCs-CMs 

In the present study, 25 μM PSP was found to induce a significant increase in caspase-3 

activation at the earlier time point of 2 h exposure (Figure 6.5). This is in agreement with the 

data obtained from studies with differentiated H9c2 cells, in which 25 μM PSP was shown to 

induce apoptosis mediated by significant activation of caspase-3 and JNK1/2. Thus, similar 

molecular mechanisms of PSP-induced cell death in hiPSCs-CMs may be observed. However, 

hiPSCs-CMs appeared to show more sensitivity to PSP than differentiated H9c2 cells, as 

caspase-3 was found to be significantly activated at 2 h, while in differentiated H9c2 cells 

caspase-3 was significantly activated at 4 h. One reasonable explanation for this could be the 

minor variations in DNA repair between mouse embryonic stem cells (mESC) and human 

embryonic stem cells (hESC) which might lead to differences in cell fate during cell 

development (Mahler & Butcher et al., 2011; Arabadjiev et al., 2012). Therefore, it can be 

possible that compounds that may show toxicity towards human cells may not be seen to 

have any toxic effects towards mice cells and vice versa (Xia et al., 2008; Malik et al., 2014). 

However, due to the limited number of hiPSCs-CMs, the present study was not able to 

investigate further the molecular mechanism(s) of PSP toxicity in hiPSCs-CMs. Hence, in 

future work, it would be interesting to validate the human cardiac cellular response against 

PSP and to explore the role of protein kinases e.g. JNK1/2 in the regulation of apoptosis in 
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hiPSCs-CMs. Moreover, the ability to engineer iPSC lines by different techniques makes it an 

advantageous source to study genetic alterations caused by toxic compounds (Zhu et al., 

2011; Zeng et al., 2014).   

6.5.4 The Effect of sublethal concentrations of PSP on hiPSCs-CMs 

The fact that 25 µM PSP was shown to induce apoptotic cell death suggests that it is 

necessary to assess the risk of exposure to sublethal concentrations of 3 µM PSP during the 

development of contracting hiPSCs-CMs. In the present study, PSP was shown to significantly 

decrease the level of troponin 1, tropomyosin and α-actin at 7 days of exposure (Figure 6.6). 

Similarly, in differentiating H9c2 cells, 3 µM PSP was also found to reduce the expression of 

troponin 1, tropomyosin and α-actin at 7 days of exposure. Since, hiPSCs-CMs start to 

contract after 7 days in culture, and troponin 1, tropomyosin and α-actin are important 

myofilament proteins (Burridge et al., 2014;  Kempf et al., 2016), these findings strongly 

support the idea that a non-cytotoxic concentration of PSP may disrupt cardiac development 

processes, such as cell proliferation and differentiation, through direct interference with 

cardiac proteins; thus a decrease in their expression may indicate an early sign of 

cardiotoxicity (Yavuz et al., 2008). 

6.6 Conclusion 

Overall, the work presented in this chapter successfully demonstrated concordance with the 

results presented in chapters 4 and 5 on the effect of chlorpyrifos, diazinon and PSP on 

cardiac stem cells with respect to parameters such as MTT reduction, LDH release and 

caspase-3 pathway activation. The findings of this study revealed the toxic effects of OPs in 

differentiated H9c2 cells was similar to the presently reported hiPSCs-derived 

cardiomyocytes, indicating that hiPSCs-CMs represent a suitable model for in vitro toxicity 

testing although with considerable differences in potency amongst different OPs. The 

evaluation of PSP concentrations lower than 25 µM and their manifestations of effects 

would be very helpful in establishing a basic mechanism of PSP toxicity towards cardiac cell 

proliferation and differentiation. Such types of future testing paradigms could help to 

improve understanding of the possible differences in sensitivity of different cell types after 

exposure to OPs, which could be critical in developing measures or procedures for the 

effective management of OP poisoning cases. 



 

176 
 

 

 

 

 

 

 

 

 

Chapter 7: 

General Discussion, Conclusion and 

Future Work 

 
 

 

 

 

 

 

 

 



Chapter 7 

177 
 

7.1 General Discussion 

7.1.1 Differentiation of H9c2 cells 

The present study used H92c cells to investigate the effect of OPs on cardiac myocytes. 

Mitotic H9c2 cells were reported to be suitable for use in the study of cardiac 

ischemia/reperfusion, diabetes and cardiac toxicity (Yu et al., 2011; Zhu et al., 2011). 

However, they were shown to differentiate into more cardiomyocyte-like phenotype cells 

when treated with all-trans-RA (Menard et al., 1999). In both previous studies and in the 

current work, the generation of cardiomyocyte-like phenotype cells was confirmed by 

monitoring the morphological alteration and the expression of a cardiac-specific markers, 

such as troponin 1, which developed over a period of 7 days of cell differentiation. 

Proteomic analysis also showed that differentiated H9c2 cells expressed significantly  higher 

levels of cardiac cytoskeleton proteins, such as tropomyosin and α-actin, when compared to 

undifferentiated H9c2 cells. Thus, the use of differentiated H9c2 cells as an in vitro model 

could provide a potential application in toxicity screening and will aid in understanding the 

molecular mechanisms that contribute to OP-induced cardiotoxicity (Pagano et al., 2004).  

7.1.2 Effect of OPs on differentiated H9c2 cells 

The clinical effects of OP poisoning can range from neurological complications to 

intermediate syndrome and cardiac conduction disorders (Abdollahi & Karami-Mohajeri, 

2012). Most scientific studies have examined the effect of neuropathic OPs on neuronal 

cells. In contrast, the mechanisms underlying cardiotoxicity are not fully known. Therefore, 

the present study assessed the effects of PSP, chlorpyrifos and diazinon and their in vivo 

metabolites (chlorpyrifos oxon and diazoxon) on mitotic and differentiated H9c2 cells. The 

findings revealed considerable differences in potency among the different OPs. Chlorpyrifos 

diazinon and their oxon metabolites, which display acute toxicity in vivo as a result of the 

inhibition of AChE, were shown to have little cytotoxic effect on H9c2 cell cardiomyoblasts. 

Similarly, previous study showed that subacute exposure chronic administration of 15 and 

30 mg/kg  diazinon did not activate caspase-3 and caspase- 9 in diazinon treated rat groups. 

Moreover, no significant changes were observed in Bax and Bcl-2 ratios. Moreover, 

apoptosis induction was not observed in rat brain (Rashedinia et al., 2013).  
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In contrast, PSP (a weak inhibitor of AChE) was shown to have a significant cytotoxic effect 

on both mitotic and differentiated H9c2 cells. 

7.1.3. Cytotoxic effect of PSP on differentiating H9c2 cells 

In the present study, PSP was found to induce a cytotoxic effect in both mitotic and 

differentiated H9c2 cells, as determined by the MTT and LDH assays. In mitotic cells, cell 

death occurred from 4 h exposure to concentrations of 25 µM–200 µM; in differentiating 

cells, cell death occurred from 2 h exposure to concentrations of 25 µM–200 µM. It was also 

determined that 25 µM PSP induced apoptotic cell death independently from AChE 

inhibition. As a previous study showed, the JNK1/2 pathway plays an essential role in the 

apoptotic pathway (Dhanasekaran & Reddy, 2008). Therefore, the present study 

investigated the effect of PSP on protein kinase signalling pathways such as, AKt ERK and 

JNK1/2. It was showen that PSP-induced apoptosis occurs via JNK 1/2 mediated caspase-3 

activation. A similar phenomenon was observed in a previous study, in which PSP (10 and 

100 µM) induced apoptosis in human neuroblastoma SH-SY5Y cells via the activation of 

caspase-3 (Carlson et al., 2000). In agreement with a previous study revealed that some OPs 

such as, chlorpyrifos and dimethoate have an effect on MAPK pathway. Protein kinases like 

the Akt family or ERK was significantly down regulated after OPs poisoning, these proteins 

are essential for cell survival and proliferation (Schafer et al., 2013)  

Pre-treatment with the specific JNK1/2 inhibitor SP 600125 abolished PSP-induced JNK1/2 

activation and was also able to block caspase-3 activation, indicating the involvement of the 

JNK 1/2 pathway. More interestingly, the results showed that other specific kinase inhibitors 

were unable to block the apoptotic pathway induced by PSP, thus excluding the involvement 

of other protein kinases, such as ERK1/2 and PKB. Since ERK1/2 and PKB pathways are 

associated with the regulation of cell survival (Xia et al., 1995; Brunet et al., 2001), it is 

conceivable that increased ERK 1/2 and PKB activation are not essential to PSP-induced cell 

death.  

The current study identified novel non-cholinesterase targets of PSP that may contribute to 

its cytotoxicity, including tropomyosin, heat shock protein β-1 and nucleolar protein 58. 

Tropomyosin is essential to muscle contraction and responsible for regulation of the 

interaction of actin binding proteins, such as myosin, with microfilaments (Yo & Ono, 2006), 
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Variation in tropomyosin expression can be caused by disease-related substitutions or 

naturally occurring amino acid substitutions in tissue-specific tropomyosin isoforms that may 

lead to unlikly physiological functions. Thus, structural instability in the central region of 

tropomyosin modulates cardiac contractile function (Mamidi et al., 2014). In addition, 

Mutations in alpha-tropomyosin, a thin filament protein involved in structural and regulatory 

roles in muscle cells, are associated  with Dilated cardiomyopathy (van de Meerakker et al., 

2013). Dilated cardiomyopathy is characterized by idiopathic dilatation and systolic 

contractile dysfunction of the ventricles leading to an impaired systolic function. Mutation in 

tropomyosin significantly weakens the binding of tropomyosin to actin by 25% (van de 

Meerakker et al., 2013). Suggesting that binding to PSP may affect actin stabilisation, leading 

to impaired cell motility and cell contraction.  

Heat shock protein β-1 is expressed in response to stress to mediate the cytoprotection 

effect that may prevent cell death (Mymrikov et al., 2011). This protein is found to be 

related to stress and metabolism in skeletal muscles (Kim et al., 2010). Thus, the binding of 

heat shock protein β-1 to PSP may impair its ability to promote cell survival. Nucleolar 

protein 58 is located in microspherules in the nucleolus (Ren et al., 1998), which is essential 

for 60S ribosomal subunit biogenesis (Lyman et al., 1999). Therefore, it is suggested that 

binding to PSP may affect the nucleolus and protein translation. 

7.1.4 Sublethal effect of OPs on differentiating H9c2 cells 

A number of toxicity studies revealed that sublethal doses of OPs might cause morphological 

changes and behaviour problems (Zalizniak & Nugegoda, 2006). Therefore, the possible 

ability of sublethal concentrations of OPs to induce long-term toxicity cannot be neglected. 

The experiments performed in this study were designed to determine whether sublethal 

concentrations of OPs might have a measurable effects on the differentiation process of 

H9c2 cells. Mitotic H9c2 cells were induced to differentiate in the presence of 3 µM OPs and 

the effect of OPs was observed at 7, 9 and 13 days. 

Results showed that both chlorpyrifos and diazinon induced morphological changes and 

elicited significant reduction in cardiac specific marker troponin 1. On the other hand, their 

oxon forms did not show any toxic effects toward differentiating H9c2 cells. Simirlay, 

sublethal concentration of 1, 5 and 10 μM diazinon had no effect on the expression of 
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neuronal cytoskeletal proteins β-tubulin in differentiating N2a neuroblastoma cells, it also 

failed to affect the levels neurofilament light (NFL) and neurofilament medium (NFM) chain 

levels (Sachana et al., 2014). Indicating that the parent compounds were potent to interfere 

with H9c2 cell differentiation. Importantly, changes in a such a protein level is applied in 

clinical diagnostic for cardiomyopathies (O’Brien, 2008) and for chemical induced low dose 

toxicity (Reagan et al., 2013). However, troponin 1 cannot alone account for adverse 

consequences of chlorpyrifos and diazinon, particularly following long-term exposure. These 

data suggest that chlorpyrifos and diazinon may affect other cytoskeleton proteins involved 

in the fundamental cardiac contractile function.  

Although both parent compounds chlorpyrifos and diazinon and their metabolites are 

eliminated relatively rapidly in humans (i.e., metabolized and then eliminated primarily 

through the kidneys; Hill et al., 1995), previous studies in rats indicate that chlorpyrifos and 

diazinon are redistributed to adipose tissue, forming a depot for slow release. More 

intristing, sublethal exposures to diazinon interfered with influence on the adipose tissue 

most probably via stimulation of muscarinic receptors (Pakzad et al., 2013). Thus, the OPs 

may be retained for longer periods than is evident using plasma measurements (Gallo & 

Lawryk, 1991; Abu-Quare & Abou-Donia, 2001). Therefore, it is also important to note that 

chlorpyrifos and diazinon itself may have toxic properties in the absence of conversion to 

their oxon metabolites (Terry et al., 2003). More recently, a study has reported lethal cardiac 

complications and severe histological alterations in the cardiac tissue with diazinon- 

chlorpyrifos treated animals. In addition, diazinon and chlorpyrifos tested increased the 

oxidative stress and oxidative modifications in the genomic DNA content of the cardiac 

tissues, data provided possible evidence of the cardiotoxicity mechanism (Zafiropoulos et al., 

2014). This may suggest that chlorpyrifos and diazinon may be stored in cardiac cells 

resulting in a sub lethal effect that may be longer lasting.  

As mentioned previously, PSP was shown to have a potent effect on the viability of 

differentiating cells when compared to chlorpyrifos and diazinon. Interestingly, PSP was also 

found to affect the differentiation of H9c2 cells, as observed using a light microscope at 7, 9 

and 13 days. Thus, cells appeared more rounded following exposure, rather than elongated 

or spindle-shaped. One explanation for this may be is the effect of PSP was also able to 

significantly decrease in the expression of cardiac cytoskeletal proteins, such as cardiac 

http://www.sciencedirect.com/science/article/pii/S0048357512001800
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troponin 1, tropomyosin and α-actin, at  7, 9 and 13 days, resulting in the loss of cell integrity 

and morphological alterations, as described above (Hamm & Hinton, 2000; Osterauer & 

Köhler, 2008). Morphological alterations were also induced by PSP in the study of 

Hargreaves et al. (2006), who showed a decrease in neurite outgrowth in differentiating N2a 

cells induced by 2.5 µM PSP. The attenuation of these cytoskeleton protein levels might 

reflect early molecular lesions in cardiac cells (O’Brien, 2008). Therefore, it is conceivable 

there is a continuous reduction in cell integrity and cardiac cytoskeletal protein expression 

resulting in PSP-induced cell death of differentiating H9c2 cells after 13 days.  

A proteomic investigation revealed the first report on the effect of sublethal PSP exposure 

on novel protein expression in differentiating H9c2 cells when compared to control. 

Identified proteins included, coiled-coil domain-containing protein 61, calumenin, and PDZ-

LIM domain protein 1.  

Coiled-coil domain-containing protein 61 is abundant in the centrosomes and acts as a 

scaffold to recruit various eukaryotic proteins, such as kinases and phosphatases into the 

centrosomes for vital multicellular development (Kuhn et al., 2014). A sublethal 

concentration of PSP was shown to induce a significant reduction in coiled-coil domain-

containing protein 61 expression that may affect centrosome in H9c2 cells, thus affecting cell 

division and cell differentiation.  

Calumenin is a Ca2+-binding protein located in the endo/sarcoplasmic reticulum of 

mammalian hearts and regulates Ca2+ homeostasis in hearts (Sahoo & Kim, 2010). It is highly 

expressed during the early developmental stage of the heart and regulates the activity of 

sarco/endoplasmic reticulum Ca2+-ATPase and of the ryanodine receptor in the endoplasmic 

reticulum (Sahoo & Kim, 2010). Therefore, calumenin is a Ca2+ sensor, which folds into a 

compact structure, capable of interacting with its molecular partners, when Ca2+ 

concentration within the ER reaches the millimolar range. (Mazzorana et al., 2016). In 

addition, previous study showed that overexpression of calumenin decreased ER stress and 

reduced ER-initiated apoptosis neonatal rat ventricular cardiomyocytes. Thus, calumenin 

may serve as a therapeutic target against various heart diseases (Lee et al., 2013). Thus, 

changes in the expression of calumenin could alter Ca2+ cycling (Sahoo & Kim, 2008). 

https://en.wikipedia.org/wiki/Sarcoplasmic_reticulum
https://en.wikipedia.org/wiki/Endoplasmic_reticulum
https://en.wikipedia.org/wiki/Calcium
https://en.wikipedia.org/wiki/ATPase
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Therefore, a decrease in calumenin expression induced by PSP in cardiomyocytes may 

disturb Ca2+ regulation and thus interferes with heart contraction.  

PDZ-LIM domain protein 1 is a protein expressed in the early stage of heart development 

(Kotaka et al., 2001). Furthermore, it is implicated in cytoskeleton organization and plays an 

important role in myofibrillogenesis (Kotaka et al., 2001). PDZLIM1  binds to α-actinin and 

transfers as PDZLIM1/α-actinin complex to the newly formed actin cytoskeleton during 

migration and contraction of endothelial cells (Bauer et al., 2000). PDZLIM1 is one of the 

proteins that found to increase its expression dramatically in breast cancer cell progression, 

thus disruption in the PDZLIM1/α-actinin complex may significantly affect signaling pathways 

which are relevant to cell migration and invasion (Liu et al., 2014). The observed decrease of 

PDZLIM1 expression in PSP-treated cells point to the idea that PSP is a developmental 

toxicant that may interfere with the early developmental process of cardiomyocytes. 

However, further work is required to validate the effect of PSP on the expression levels of 

these novel identified proteins and to establish the consequences of PSP interaction on their 

biochemical properties/function.  

7.1.5 Effects of OPs on cardiomyocyte derived from human-induced 

pluripotent 

The present study investigated the effect of OPs on differentiating H9c2 cells, which were 

derived from an embryonic rat. However, it is possible that cells derived from a human 

model when compared to cells derived from animals may respond differently, due to the 

physiological differences between the two species (Lewis & Falconer, 2015). Therefore, 

hiPSCs-CMs were used in the later stages of the current work to provide a model more 

similar to the functional cardiac cells in humans (Burridge et al., 2012). A recent study 

charecterized the biophysical and pharmacological properties of hiPS-CMs. the Na+ and Ca2+ 

channels were evaluated and a pattern of increasing Na+ and L-type Ca2+ current density in 

hiPSCs-CMs was observed with increasing time in cell culture. hiPSCs-CMs also exhibited 

action potential heterogeneity, likely reflecting cell types (atrial, ventricular, and pacemaker) 

and a range of cellular maturation in the culture. hiPSCs-CMs showed prominent diastolic 

depolarization and action potentials spontaneously. hiPS-CMs are immature cells that 

proven with time in culture can progressively develop to a more mature phenotype without 

signs of dedifferentiation (Rashedinia et al., 2013). 
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Initial experiments assessed the effect of chlorpyrifos, diazinon and PSP on the cell viability 

of hiPSCs-CMs at three different concentrations (3, 25 and 200 µM).  

The findings revealed that chlorpyrifos and diazinon induced toxicity at a high concentration 

(200 µM), while PSP also showed a potent cytotoxic effect at a lower concentration (25 μM) 

in hiPSCs-CMs. Thus, the cell viability changes were comparable with the cytotoxic effect of 

25 µM PSP on differentiated H9c2 cells. However, morphological changes at sublethal 

concentrations of chlorpyrifos, diazinon and PSP cannot be ruled out, as visualised stained 

cells appeared to be compact rather that elongated cells. This may reflect their toxic effects 

at sublethal concentration in hiPSCs-CMs as shown with differentiated H9c2 cells. 

Chlorpyrifos and diazinon exposure significantly reduced troponin 1 expression in 

differentiated H9c2 cells. However, other proteins and signaling pathways may be involved 

in OP-induced cardiotoxicity. For example, histological and morphometric studies in rats 

showed the development of hypertrophy in cardiac muscular cells exposed to OPs (Calore et 

al. 2007). Previous studies have shown that calcineurin may play a critical role in the 

signaling of cardiac hypertrophy in many experimental models (Kamiya et al., 2001). 

Cardiotrophin-1 (CT-1), a member of the IL-6 family of cytokines that induces hypertrophy of 

cardiac myocytes in vitro. Furthermore, levels of CT-1 are elevated in the serum of patients 

with ischemic heart disease and valvular heart disease (Freed et al., 2003). Therefore, it may 

be of value to study these biochemical pathways in chlorpyrifos and diazinon induced 

sublethal effect in hiPSCs-CMs.  

More interestingly, 25 µM PSP was shown to induce apoptotic cell death mediated by 

caspase-3 activation in differentiated H9c2 cells, which provided further validation of the 

results obtained in hiPSCs-CMs. The current study also investigated the effect of a sublethal 

concentration of 3 µM PSP on the cardiac cytoskeletal proteins troponin 1, tropomyosin and 

α-actin in hiPSCs-CMs that may contribute to PSP toxicity. Exposure to PSP was shown to 

decrease significantly the expression of troponin 1, tropomyosin and α-actin at 7 days 

exposure, and this was consistent with the findings shown in differentiating H9c2 cells. 

These findings showed that sublethal exposure to PSP might affect the cardiac development 

processes and may interfere with cardiac function. On this basis, it can be confirmed that 

PSP exhibited cardiotoxicity, and this highlights concerns regarding human cardiomyocytes. 
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7.2 Concluding Remarks 

The present research provides valuable insights into the effect of OPs on cardiac cells. PSP 

was found to have a potent cytotoxic effect on rodent and human cardiomyocyte-like cells 

when compared to other compounds, and to induce apoptosis in differentiating cells in a 

JNK1/2 activation related manner. Novel binding proteins (e.g. tropomyosin) were identified 

for PSP that may contribute to its cytotoxicity. Furthermore, long-term exposure to sublethal 

concentrations of chlorpyrifos, diazinon and PSP was able to attenuate the expression of 

cardiac cytoskeletal proteins that are important in cardiac differentiation, proliferation and 

migration. The data from the present study will help to establish a basic mechanism of 

cardiotoxicity following exposure to OPs. Figure 7.1 summaries the present study. 
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Figure 1.7  summary of results in the present study. 
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7.3 Future work 

 As some organophosphates showed severe cholinergic toxicity resulting from the 

inhibition of acetylcholinesterase and butyrylcholinesterase and leading to an 

enhanced activation of the autonomic pathways (Lyzhnikov et al., 1975, Ludomirsky 

et al., 1982, Anand et al., 2009), an evaluation of the effects of chlorpyrifos, diazinon 

and PSP on butyrylcholinesterase activity levels could help to further elucidate 

targets in differentiated H9c2 cells that may be involved in cardiac cytotoxicty.  

 Organophosphates are highly reactive compounds and can interact with proteins at 

very low (nanomolar range) concentrations, as determined in vitro (Huff et al., 1994; 

Howard & Pope, 2002). Further research is needed to investigate lower 

concentrations of PSP that can bind to cardiac-specific proteins and whether similar 

binding occurs in vivo.  

 The type of PSP binding to proteins and the possible motifs involved could be 

identified by mass spectrometry, in particular, with low concentration toxicity. Thus, 

the effect of a concentration less than 3 µM might be examined to identify a new 

molecular mechanism and provide novel strategies to control cardiac toxicity. 

 In vivo models, such as mouse, rat, porcine and rabbit are available for toxicity 

screening and were proven to address similar cardiovascular complications in 

humans (Zaragoza et al., 2011). Thus, such types of future testing paradigms could 

also help in the understanding of possible differences in sensitivity between different 

species and their physiological behaviours after exposure to OPs, which could be 

critical in developing measures or procedures in the effective management of OP 

poisoning cases. 

 Further studies are also required to establish time course and dose effects of OPs in 

vivo. It would also be worth determining the lethal dose of OPs, as the LD50 of some 

OPs were reported to be very low (1 mg/kg) in rats (Klaassen, 2007). Thus, this dose 

may evoke adverse consequences in humans and might likely lead to the 

development of cardiotoxicity. 

 Understanding the molecular mechanisms associated with gene expression 

alterations or DNA damage in response to OPs exposure. Further experiments could 
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explore genetic biomarkers that can be detected following early exposure. Thus, this 

would improve the diagnostic tool and clinical treatment. 

 Future studies should focus on the identification of possible non-cholinergic targets 

of OP compounds, which will help to increase understanding of the molecular 

mechanisms of OP-induced toxicity. 

 General physiological studies to provide substantial evidence of that the two cardiac cells 

H9c2 and hiPSCs-CMs such as calcium channels and potassium channels. 

 Measuring gene expression of cardiac proteins including calcium, potassium and sodium 

transport (channel proteins, SERCA, RyR ect) 
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