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Abstract

We investigate whether the Fiscal Theory of the Price Level (FTPL) can explain UK ination in

the 1970s. We confront the identi�cation problem involved by setting up the FTPL as a structural

model for the episode and pitting it against an alternative Orthodox model; the models have a reduced

form that is common in form but, because each model is over-identi�ed, numerically distinct. We use

indirect inference to test which model could be generating the VECM approximation to the reduced

form that we estimate on the data for the episode. Neither model is rejected, though the Orthodox

model outperforms the FTPL. But the best account of the period assumes that expectations were a

probability-weighted combination of the two regimes.
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1 Introduction

In 1972 the UK government oated the pound while pursuing highly expansionary �scal policies whose aim

was to reduce rising unemployment. To control ination the government introduced statutory wage and

price controls. Monetary policy was given no targets for either the money supply or ination; interest

rates were held at rates that would accommodate growth and falling unemployment. Since wage and

price controls would inevitably break down faced with the inationary e�ects of such policies, this period
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appears to �t rather well with the policy requirements of the Fiscal Theory of the Price Level: �scal

policy appears to have been non-Ricardian (not limited by concerns with solvency) and monetary policy

accommodative to ination - in the language of Leeper (1991) �scal policy was `active' and monetary

policy was `passive'. Furthermore, there was no reason to believe that this policy regime would come to

an end: both Conservative and Labour parties won elections in the 1970s and both pursued essentially the

same policies. While Margaret Thatcher won the Conservative leadership in 1975 and also the election

in 1979, during the period we study here it was not assumed that the monetarist policies she advocated

would ever occur, since they were opposed by the two other parties, by a powerful group in her own party,

as well as by the senior civil service. Only after her election and her actual implementation of them was

this a reasonable assumption. So it appears that in the period from 1972 to 1979 there was a prevailing

policy regime which was expected to continue. These are key assumptions about the policy environment;

besides this narrative background we also check them empirically below.

Under FTPL the price level or ination is determined by the need to impose �scal solvency; thus it

is set at the value necessary for the government's intertemporal budget constraint to hold at the market

value of outstanding debt. Given this determinate price level, money supply growth, interest rates and

output are determined recursively as the values required by the rest of the model to permit this price

level.

The FTPL has been set out and developed in Leeper (1991), Sims (1994, 1997), Woodford (1996,

1998, 2001) and Cochrane (2001, 2005) - see also comments by McCallum (2001, 2003) and Buiter (1999,

2002), and for surveys Kocherlakota and Phelan (1999), Carlstrom and Fuerst (2000) and Christiano and

Fitzgerald (2000). Empirical tests have been proposed by Canzoneri, Cumby and Diba (2001), Bohn

(1998), Cochrane (1999), Woodford (1998b) and Davig et al. (2007). Loyo (2000) for example argues

that Brazilian policy in the late 1970s and early 1980s was non-Ricardian and that the FTPL provides

a persuasive explanation for Brazil's high ination during that time. The work of Tanner and Ramos

(2003) also �nds evidence of �scal dominance for the case of Brazil for some important periods. Cochrane

(1999, 2005) argues that the FTPL with a statistically exogenous surplus process explains the dynamics

of U.S. ination in the 1970s. This appears to be similar to what we see in the UK during the 1970s.

With �scal policy of this type, the �nancial markets - forced to price the resulting supplies of govern-

ment bonds - will take a view about future ination and set interest rates and bond prices accordingly.

It will set bond prices so that the government's solvency is assured ex post (i.e. in equilibrium); thus it

will be ensuring that buyers of the bonds are paying a fair price. Future ination is expected because if

the bonds were priced at excessive value then consumers would have wealth to spend, in that their bonds

would be worth more than their future tax liabilities; this would generate excess demand which would

drive up ination. However this mechanism would only come into play out of equilibrium. We would not
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observe it because markets anticipate it and so drive interest rates and expected ination up in advance;

ination follows because of the standard Phillips Curve mechanism by which workers and �rms raise

ination in line with expected ination. Thus the FTPL can be regarded as a particular policy regime

within a sequence of di�erent policy regimes.

Our aim in this paper is to test the Fiscal Theory of the Price Level (FTPL) as applied to the

UK in the 1970s episode we described above. Cochrane (1999, 2001, and 2005) has noted that there

is a basic identi�cation problem a�ecting the FTPL: in the FTPL �scal policy is exogenous and forces

ination to close the government constraint while monetary policy is endogenous and responds to that

given ination. But similar economic behaviour can be consistent with an exogenous monetary policy

determining ination in the `orthodox' way, with Ricardian �scal policy endogenously responding to the

government budget constraint to ensure solvency given that ination path - what we will call the Orthodox

model. Thus there is a besetting problem in the empirical literature we have cited above, that equations

that appear to reect the FTPL and are used to `test' it, could also be implied by the Orthodox set-up.

To put it more formally the reduced form or solved representation of an FTPL model may in form be

indistinguishable from that of an orthodox model; this is true of both single equation implications of the

model and complete solutions of it.

We meet this problem head on in this paper by setting up both these two models and testing each

against the data using Indirect Inference. This procedure, in outline, uses a descriptive model of the

data, the `auxiliary' model, to act as the summary of data behaviour, shared by any structural model

that is a candidate to generate the data. Then each candidate model is simulated to see whether it could

be the generating mechanism for this data behaviour in its exact quantitative manifestation.

We go in detail below into how this still unfamiliar procedure works. However, before we do so, we

should explain why we do not choose alternative, more familiar evaluative procedures. First, we deviate

from the popular use of Bayesian methods in evaluating models. Our reason is that Bayesian evaluation

(by marginal likelihood and odds ratio tests) does not test any model as a whole against the data; indeed

Bayesians dismiss the idea of `testing models'. What Bayesian evaluation does is estimate the model

assuming the truth of the prior distributions and the model structure; then one variant of the model may,

on those assumptions, turn out to be more probable. But the model in question may still be rejected,

assumptions and all, by the data. Furthermore, a model which is `less probable' under these assumptions

than another model, may not be rejected, or may be rejected at a lower con�dence level, than the other

by the data. Thus Bayesian methods cannot be used to test whole models against the data - our aim

here, where the issue is whether either or both of these two models �t the facts of this episode.

Bayesians may still argue that it is wrong to do what we do here: that one should not test models as a

whole against the data but rather only check improvements conditional on prior assumptions which should
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not be challenged. However, in macroeconomics it is hard to argue that any set of prior assumptions

can be taken for granted as true and beyond challenge. This can be seen from the number of `schools

of thought' still in existence in macroeconomics; this situation of a wide divergence of beliefs has been

exacerbated by the �nancial crisis of the late 2000s. Furthermore, the two models being compared here

are so di�erent that it is hard to see what common and unchallengeable prior distributions could be found

to impose on them.

Second, as our test of these two models against the data we choose indirect inference over the widely-

used direct inference tests based on the data likelihood, such as the Likelihood Ratio test. The reasons

for this choice, which we elaborate below, are partly that it tests the model's causality which is of greatest

interest to users such as policymakers, rather than its forecasting ability which is of much less interest

to them; partly that it has more power than direct inference in small samples and by implication that it

will provide more powerful discrimination between the models.

Our paper is organised as follows. We review the history of UK policy during the 1970s in section 2;

in this section we establish a narrative that suggests the FTPL could have been at work. In section 3 we

set up the model of FTPL that could apply for this UK episode; side by side with it we set out a rival

Orthodox model in which monetary policy is governed by a Taylor Rule and �scal policy is Ricardian.

In section 4 we explain the method of indirect inference. In section 5 we discuss the data and the results.

Section 6 concludes.

2 The nature of UK policy during the 1970s

From WWII until its breakdown in 1970 the Bretton Woods system governed the UK exchange rate and

hence its monetary policy. While exchange controls gave some moderate freedom to manage interest rates

away from foreign rates without the policy being overwhelmed by capital movements, such freedom was

mainly only for the short term; the setting of interest rates was dominated in the longer term by the need

to control the balance of payments su�ciently to hold the sterling exchange rate. Pegging the exchange

rate implied that the price level was also pegged to the foreign price level. Through this mechanism

monetary policy ensured price level determinacy. Fiscal policy was therefore disciplined by the inability

to shift the price level from this trajectory and also by the consequent �xing of the home interest rate to

the foreign level. While this discipline could in principle be overthrown by �scal policy forcing a series

of devaluations, the evidence suggests that this did not happen; there were just two devaluations during

the whole post-war period up to 1970, in 1949 and 1967. On both occasions a Labour government viewed

the devaluation as a one-o� change permitting a brief period of monetary and �scal ease, to be followed

by a return to the previous regime.
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However, after the collapse of Bretton Woods, the UK moved in a series of steps to a oating exchange

rate. Initially sterling was �xed to continental currencies through a European exchange rate system known

as `the snake in the tunnel', designed to hold rates within a general range (the tunnel) and if possible

even closer (the snake). Sterling proved di�cult to keep within these ranges, and was in practice kept

within a range against the dollar at an `e�ective' (currency basket) rate. Finally it was formally oated

in June 1972.

UK monetary policy was not given a new nominal target to replace the exchange rate. Instead the

Conservative government of Edward Heath assigned the determination of ination to wage and price

controls. A statutory `incomes policy' was introduced in late 1972. After the 1974 election the incoming

Labour government set up a `voluntary incomes policy', buttressed by food subsidies and cuts in indirect

tax rates. Fiscal policy was expansionary until 1975 and monetary policy was accommodative, with

interest rates kept low to encourage falling unemployment. In 1976 the Labour government invited the

IMF to stabilise the falling sterling exchange rate; the IMF terms included the setting of targets for

Domestic Credit Expansion. These were largely met by a form of control on deposits (the `corset') which

forced banks to reduce deposits in favour of other forms of liability. But by 1978 these restraints had

e�ectively been abandoned and prices and incomes controls reinstated in the context of a pre-election

�scal and monetary expansion - see Minford (1993), Nelson (2003) and Meenagh et al. (2009b) for further

discussions of the UK policy environment for this and other post-war UK periods.

Our description of policy suggests that the role of the nominal anchor for ination may have been

played during the 1970s by �scal policy, if only because monetary policy was not given this task and was

purely accommodative. Thus this episode appears on the face of it to be a good candidate for FTPL to

apply.

3 An FTPL Model for the UK in the 1970s

We assume that the UK �nances its de�cit by issuing nominal perpetuities, each paying one pound

per period and whose present value is therefore 1
Rt
where Rt is the long-term rate of interest. We use

perpetuities here rather than the usual one-period bond because of the preponderance of long-term bonds

in the UK debt issue: the average maturity of UK debt at this time was approximately ten years. All

bonds at this time were nominal (indexed bonds were not issued until 1981).

The government budget constraint can then be written as

(1) Bt+1

Rt
= Gt � Tt +Bt + Bt

Rt

where Gt is government spending in money terms, Tt is government taxation in money terms, Bt is

the number of perpetuities issued. Note that when perpetuities are assumed the debt interest in period
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t is Bt while the stock of debt at the start of period t has the value during the period of
Bt

Rt
; end-period

debt therefore has the value Bt+1

Rt
: Note too the perpetuity interest rate is by construction expected to

remain constant into the future.

We can derive the implied value of current bonds outstanding by substituting forwards for future

bonds outstanding:

(2) Bt

Rt
= Et

P1
i=0 (Tt+i �Gt+i) 1

(1+Rt)
i+1

We represent this equation in terms of each period's expected `permanent' tax and spending share, tt

and gt, and assume that EtTt+i = ttEtPt+iyt+i and EtGt+i = gtEtPt+iyt+i:

We can then simplify (2) (see Appendix) to:

(3) Bt

RtP ty�t
=

(tt�gt)
(1++�t)(r�t�)

where Rt = r
�
t + �t (respectively the perpetuity real interest rate and perpetuity ination rate, both

`permanent' variables),  is the growth rate of equilibrium real GDP , y�t (which is a random walk with

this as its drift term). All these expected permanent variables are by construction expected to be constant

in the future at today's level.

The pricing condition on bonds in equation (3) thus sets their value consistently with expected future

primary surpluses. Suppose now the government reduces the present value of future primary surpluses. At

an unchanged real value of the debt this would be a `non-Ricardian' �scal policy move. According to the

FTPL prices will adjust to reduce the real value of the debt to ensure the government budget constraint

holds and thus the solvency condition is met. This is to be compared with the normal Ricardian situation,

in which �scal surpluses are endogenous so that �scal shocks today lead to adjustments in future surpluses,

the price level remaining una�ected.

Since the pricing equation sets the ratio of debt value to GDP equal to a function of permanent

variables, it follows that this ratio bt follows a random walk1 such that:

(4) bt =
Bt

RtP ty�t
= Etbt+1 and (5) �bt = �t, an i:i:d:process.

This in turn allows us to solve for the ination shock as a function of other shocks (especially shocks to

government tax and spending). With the number of government bonds issued, Bt;being pre-determined

(issued last period) and therefore known at t � 1, equation (3) could be written as follows (taking logs

and letting log xuet = log xt � Et�1 log xt, the unexpected change in log xt)

(6) log buet = � logRuet � logPuet � log y�uet [LHS of equation (3)]

= log
�
tt � gt

�ue � log (1 + �t + )ue � log(r�t � )ue [RHS of equation (3)]
With all the variables in the equation de�ned to follow a random walk, and making the approximative

assumption that the actual and permanent ination are the same, we can rewrite the above expression

1A `permanent' variable xt is by de�nition a variable expected not to change in the future so that Et xt+1 = xt. Thus
xt+1 = xt + �t+1, where �t+1 is an iid error making the process a random walk.
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as approximately (note that for small , log (1 + �t + )
ue � �uet = logP

ue

t )

(7) �� log (�t + r�t )�� log y�t = � log(tt � gt)�� log(r�t � )

Using a �rst-order Taylor Series expansion around the sample means we can obtain a solution for ��t

as a function of change in government expenditure and tax rates

(8) ��t = �(�gt ��tt) + ��r�t � �� log y�t
where � = �+r�

t�g
; � = �+

r�� ; � = � + r
�; �, r�, t and g are sample mean values of the corresponding

variables. We can integrate (8) to obtain:

(9)�t = �(gt � tt) + c+ �r�t + � log y�t
Tax and spending ratios are assumed to deviate from their permanent values according to error

processes (which must be stationary by construction). Thus

(10) (gt� tt) = (gt� tt)+ �t: Since by construction a permanent variable is a random walk, this gives

us:

(11) �(gt � tt) = �(gt � tt) + ��t = err
g�t
t

where errg�tt is a stationary error process. We may now note that there is some unknown error

process by which actual ination is related to permanent ination: thus �t = �t + �t: We use (9) for the

determinants of �t and since we cannot observe (�r
�
t +� log y

�
t ) we include this in the total error process,

errpit , so that �nally our FTPL model for ination is:

(12) �t = �(gt � tt) + c� + errpit
We can now complete the DSGE model by adding a forward-looking IS curve, derived in the usual

way from the household Euler equation and the goods market-clearing condition, and a New Keynesian

Phillips Curve2:

(13) yt � y�t = Et(yt+1 � y�t+1)� 1
� (R

s
t � Et�t+1) + errISt

(14) �t = �(yt � y�t ) + �Et�t+1 + errPPt
Note that the interest rate in the IS curve, Rst , is the usual short term rate. Also we can see that since

(12) sets ination, (14) will solve for output and (13) will solve for interest rates. Equilibrium output,

y�t , approximated in the FTPL derivation as a random walk, is represented empirically by the H-P �lter

of output and estimated as an I(1) process:

(15) y�t � y�t�1 = cy� + (y�t�1 � y�t�2) + err
y�
t

The permanent real interest rate is absorbed into the error term of the IS curve, as it was into that

of (12) for ination.

The FTPL model thus consists of equations (11)-(15).

2One might well argue that for FTPL a more natural assumption would be a New Classical Phillips Curve, in which there
is price exibility. It turns out, as we con�rm below in the empirical results section, that it makes virtually no di�erence.
This can be seen if one solves for output from (14); the only di�erence to the solution will come from having (�t� Et�1�t)
on the RHS instead of (�t� �Et�t+1). These expressions are very similar in practice.
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3.1 An Orthodox model:

To construct the Orthodox model we jettison equations (11) and (12) above in favour of a Taylor Rule to

set Rst and a Ricardian �scal equation that restores the de�cit to some equilibrium level. Thus in place

of these we have:

(12)'

Rst = (1� �)[rss + ���t + �xgap(yt � y�t )] + �Rst�1 + errR
S

t

and

(11)'

4(gt � tt) = ��[(g � t)t�1 � cg�t] + errg�tt
0

3.2 Model identi�cation

It would be reasonable to ask whether a macroeconomic model of a few equations like the ones here can

be considered to be identi�ed. Le et al. (2013) examined this issue for a three equation New Keynesian

model of the sort being considered here. They found that it was likely to be heavily over-identi�ed.

Thus there were many more coe�cients in the reduced form than in the structural model; under normal

assumptions this should give several sets of estimates of the structural coe�cients from the reduced form.

With enough data these sets would coincide and so even a partial reduced form should be su�cient

to yield a set of structural parameter estimates. In that paper they went further and sought to �nd

alternative structural parameter sets that could generate the same reduced form; using indirect inference

they were able to establish that no other sets could exist. These results suggest that we can regard each

of the two models here as over-identi�ed, implying that there is no chance of confusing the reduced form

of the one with the reduced form of the other.

We can demonstrate this by a Monte Carlo experiment in which we assume that the FTPL model

is true (we give it the parameters similar to those we later estimate for it) and using the FTPL error

properties we generate 1,000 samples of data from it (of the same length as in our 1970s sample here - 28

quarters) and calculate the VECM approximate reduced form from it. We now ask whether any Orthodox

model could generate the same data and hence the same VECM reduced form, using the indirect inference

test at 95% con�dence; if indeed it could do so, thus e�ectively being the same model, then we would

reject exactly the same percent of the time as we reject the true FTPL model - namely 5%. In fact we

reject it for 51% of the samples; thus it cannot be the same model (table 1. We also did the reverse,

and found the same, rejecting about 20% of the time). In doing this check we have searched over a wide

range of parameter values using the SA algorithm, starting from the estimated parameters:
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Table 1: Identi�cation check: FTPL vs Orthodox Taylor

When the true model is
Rejection rate (at 95% con�dence level)

of the false model

FTPL 51.3% (Orthodox)

Orthodox 19.7% (FTPL)

This does not contradict the general problem we noted at the start that the two models have similar

reduced forms. In particular it is easy to show (see below and Le et al., 2013) that the general solution

of these models can in both cases be represented as a VARMA supplemented by coe�cients on the

exogenous stochastic and deterministic trends. Thus there is no formal di�erence between the two models'

reduced forms; though of course the reduced forms can be distinguished according to particular numerical

restrictions on their coe�cients. These restrictions will di�er according to the details of each model, so

that no generic restriction can be proposed that would correspond only to one type of model, such as the

FTPL. Thus estimating a particular set of reduced form equations (let alone any single equation forming

part of the reduced form) cannot on its own distinguish the two models, as has usually been assumed in

empirical work on the FTPL. To distinguish them one needs to know what numerical parameter values

would be found in these reduced forms according to each model. It is this that the indirect inference

procedure allows us to do, as we now go on to explain.

4 The method of Indirect Inference

We evaluate the model's capacity in �tting the data using the method of Indirect Inference originally

proposed in Meenagh et al. (2009a) and subsequently with a number of re�nements by Le et al. (2011)

who evaluate the method using Monte Carlo experiments. The approach employs an auxiliary model that

is completely independent of the theoretical one to produce a description of the data against which the

performance of the theory is evaluated indirectly. Such a description can be summarised either by the

estimated parameters of the auxiliary model or by functions of these; we will call these the descriptors

of the data. While these are treated as the `reality', the theoretical model being evaluated is simulated

to �nd its implied values for them.

Indirect inference has been widely used in the estimation of structural models (e.g., Smith, 1993,

Gregory and Smith, 1991, 1993, Gourieroux et al., 1993, Gourieroux and Monfort, 1995 and Canova,

2005). Here we make a further use of indirect inference, to evaluate an already estimated or calibrated

structural model. The common element is the use of an auxiliary time series model. In estimation

the parameters of the structural model are chosen such that when this model is simulated it generates

estimates of the auxiliary model similar to those obtained from the actual data. The optimal choices of
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parameters for the structural model are those that minimise the distance between a given function of

the two sets of estimated coe�cients of the auxiliary model. Common choices of this function are the

actual coe�cients, the scores or the impulse response functions. In model evaluation the parameters of

the structural model are taken as given. The aim is to compare the performance of the auxiliary model

estimated on simulated data derived from the given estimates of a structural model - which is taken as

a true model of the economy, the null hypothesis - with the performance of the auxiliary model when

estimated from the actual data. If the structural model is correct then its predictions about the impulse

responses, moments and time series properties of the data should statistically match those based on the

actual data. The comparison is based on the distributions of the two sets of parameter estimates of the

auxiliary model, or of functions of these estimates.

The testing procedure thus involves �rst constructing the errors implied by the previously esti-

mated/calibrated structural model and the data. These are called the structural errors and are backed

out directly from the equations and the data3. These errors are then bootstrapped and used to generate

for each bootstrap new data based on the structural model. An auxiliary time series model is then �tted

to each set of data and the sampling distribution of the coe�cients of the auxiliary time series model is

obtained from these estimates of the auxiliary model. A Wald statistic is computed to determine whether

functions of the parameters of the time series model estimated on the actual data lie in some con�dence

interval implied by this sampling distribution.

The auxiliary model should be a process that would describe the evolution of the data under any

relevant model. It is known that for non-stationary data the reduced form of a macro model is a VARMA

where non-stationary forcing variables enter as conditioning variables to achieve cointegration (i.e. en-

suring that the stochastic trends in the endogenous vector are picked up so that the errors in the VAR

are stationary). This in turn can be approximated as a VECM4. So following Meenagh et al. (2012)

3Some equations may involve calculation of expectations. The method we use here to initiate the tests is the robust
instrumental variables estimation suggested by McCallum (1976) and Wickens (1982): we set the lagged endogenous data
as instruments and calculate the �tted values from a VAR(1) { this also being the auxiliary model chosen in what follows.
Once the search procedure (e�ectively indirect estimation) has converged on the best model parameters, we then move to
generating the expectations exactly implied by the parameters and the data, and use these to calculate the errors, which
are then the exact errors implied by the model and data. The reason we do not use this `exact' method at the start is that
initially when the model is far from the data, the expectations generated are also far from the true ones, so that the errors
are exaggerated and the procedure may not converge.

4Following Meenagh et al. (2012), we can say that after log-linearisation a DSGE model can usually be written in the
form

A(L)yt = BEtyt+1 + C(L)xt +D(L)et (A1)

where yt are p endogenous variables and xt are q exogenous variables which we assume are driven by

�xt = a(L)�xt�1 + d+ c(L)�t: (A2)

The exogenous variables may contain both observable and unobservable variables such as a technology shock. The distur-
bances et and �t are both iid variables with zero means. It follows that both yt and xt are non-stationary. L denotes the
lag operator zt�s = Lszt and A(L), B(L) etc. are polynomial functions with roots outside the unit circle.
The general solution of yt is

yt = G(L)yt�1 +H(L)xt + f +M(L)et +N(L)�t: (A3)

where the polynomial functions have roots outside the unit circle. As yt and xt are non-stationary, the solution has the p
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we use as the auxiliary model a VECM which we reexpress as a VAR(1) for the four macro variables

(interest rate, output, ination and the primary budget de�cit, with a time trend and with y�t entered

as the exogenous non-stationary `productivity trend' (these two elements having the e�ect of achieving

cointegration). Thus our auxiliary model in practice is given by: yt = [I � K]yt�1 + xt�1 + gt + vt

where xt�1 is the stochastic trend in productivity, gt are the deterministic trends, and vt are the VECM

innovations. We treat as the descriptors of the data all the VAR coe�cients and the VAR error variances,

so that the Wald statistic is computed from these. Thus e�ectively we are testing whether the observed

dynamics, volatility and cointegrating relations of the chosen variables are explained by the simulated

joint distribution of these at a given con�dence level. The Wald statistic is given by:

(�� �)0
X�1

(��)
(�� �) (1)

where � is the vector of VAR estimates of the chosen descriptors yielded in each simulation, with � andP
(��) representing the corresponding sample means and variance-covariance matrix of these calculated

across simulations, respectively.

The joint distribution of the � is obtained by bootstrapping the innovations implied by the data and

the theoretical model; it is therefore an estimate of the small sample distribution5. Such a distribution

cointegration relations

yt = [I �G(1)]�1[H(1)xt + f ]
= �xt + g: (A4)

The long-run solution to the model is

yt = �xt + g

xt = [1� a(1)]�1[dt+ c(1)�t]
�t = �t�1i=0�t�s

Hence the long-run solution to xt, namely, xt = xDt + xSt has a deterministic trend x
D
t = [1 � a(1)]�1dt and a stochastic

trend xSt = [1� a(1)]�1c(1)�t.
The solution for yt can therefore be re-written as the VECM

�yt = �[I �G(1)](yt�1 ��xt�1) + P (L)�yt�1 +Q(L)�xt + f +M(L)et +N(L)�t

= �[I �G(1)](yt�1 ��xt�1) + P (L)�yt�1 +Q(L)�xt + f + !t (A5)

!t = M(L)et +N(L)�t

Hence, in general, the disturbance !t is a mixed moving average process. This suggests that the VECM can be approximated
by the VARX

�yt = K(yt�1 ��xt�1) +R(L)�yt�1 + S(L)�xt + g + �t (A6)

where �t is an iid zero-mean process.
As

xt = xt�1 + [1� a(1)]�1[d+ �t]
the VECM can also be written as

�yt = K[(yt�1 � yt�1)��(xt�1 � xt�1)] +R(L)�yt�1 + S(L)�xt + h+ �t: (A7)

Either equations (A6) or (A7) can act as the auxiliary model. Here we focus on (A7); this distinguishes between the e�ect
of the trend element in x and the temporary deviation from its trend. In our models these two elements have di�erent
e�ects and so should be distinguished in the data to allow the greatest test discrimination.
It is possible to estimate (A7) in one stage by OLS. Meenagh et al. (2012) do Monte Carlo experiments to check this

procedure and �nd it to be extremely accurate.
5The bootstraps in our tests are all drawn as time vectors so contemporaneous correlations between the innovations are

preserved.
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is generally more accurate for small samples than the asymptotic distribution; it is also shown to be

consistent by Le et al. (2011) given that the Wald statistic is `asymptotically pivotal'; they also showed

it had quite good accuracy in small sample Monte Carlo experiments6.

This testing procedure is applied to a set of (structural) parameters put forward as the true ones

(H0, the null hypothesis); they can be derived from calibration, estimation, or both. However derived,

the test then asks: could these coe�cients within this model structure be the true (numerical) model

generating the data? Of course only one true model with one set of coe�cients is possible. Nevertheless

we may have chosen coe�cients that are not exactly right numerically, so that the same model with other

coe�cient values could be correct. Only when we have examined the model with all coe�cient values

that are feasible within the model theory will we have properly tested it. For this reason we extend our

procedure by a further search algorithm, in which we seek other coe�cient sets that minimise the Wald

test statistic - in doing this we are carrying out indirect estimation. The indirect estimates of the model

are consistent and asymptotically normal, in common with FIML - see Smith (1993), Gregory and Smith

(1991, 1993), Gourieroux et al., (1993), Gourieroux and Monfort (1995) and Canova (2005).

Thus we calculate the minimum-value full Wald statistic for each model using a powerful algorithm

based on Simulated Annealing (SA) in which search takes place over a wide range around the initial

values, with optimising search accompanied by random jumps around the space7. The merit of this

extended procedure is that we are comparing the best possible versions of each model type when �nally

doing our comparison of model compatibility with the data.

4.1 Comparison of indirect inference with alternative methods of model eval-

uation

It may be asked why we use Indirect Inference rather than the now widely-used Bayesian approach to

estimating and testing DSGE models. We considered this frequently-asked question in the opening section

above. As noted there, the Bayesian approach does not test a model as a whole against the data since it

operates entirely under the assumptions that the prior distributions and the model structure are correct.

It would be appropriate to use this approach if we knew that this was the case so that the assumptions

6Speci�cally, they found on stationary data that the bias due to bootstrapping was just over 2% at the 95% con�dence
level and 0.6% at the 99% level. Meenagh et al (2012) found even greater accuracy in Monte Carlo experiments on
nonstationary data.

7We use a Simulated Annealing algorithm due to Ingber (1996). This mimics the behaviour of the steel cooling process
in which steel is cooled, with a degree of reheating at randomly chosen moments in the cooling process|this ensuring that
the defects are minimised globally. Similarly the algorithm searches in the chosen range and as points that improve the
objective are found it also accepts points that do not improve the objective. This helps to stop the algorithm being caught in
local minima. We �nd this algorithm improves substantially here on a standard optimisation algorithm. Our method used
our standard testing method: we take a set of model parameters (excluding error processes), extract the resulting residuals
from the data using the LIML method, �nd their implied autoregressive coe�cients (AR(1) here) and then bootstrap the
implied innovations with this full set of parameters to �nd the implied Wald value. This is then minimised by the SA
algorithm.
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themselves do not need to be tested; but because of well-known controversies in macroeconomics, this

is not the case. Even a major model like the Smets-Wouters (2007) model of the U.S., that has been

carefully estimated by Bayesian methods, is rejected by our indirect inference test, see Le et al. (2011).

It may then be asked why we use Indirect Inference rather than other available tests of overall

speci�cation, given as explained above that Bayesian methods are simply not available for the task here.

The alternatives are based on the likelihood of the data, and a widely-used one is the Likelihood Ratio

(LR) test ; by contrast our indirect inference test is based on the likelihood of the descriptors of the data.

This test is examined carefully in Le et al. (2012) who �nd that the two measures test quite di�erent

properties of the model in their check on its misspeci�cation: the LR test is based on a model's in-sample

current forecasting ability whereas the Wald is based on the model's ability to replicate data behaviour,

as found in the VAR coe�cients and the data variances, reecting the causal processes at work in the

data.

A further �nding of Le et al. was that the Wald has substantially more power as a test of mis-

speci�cation than the LR. This is presumably related to the nature of the two tests: models that are

somewhat mis-speci�ed may still be able to forecast well in sample as the error processes will pick up

the e�ects of mis-speci�cation but mis-speci�ed models will imply a reduced form that di�ers materially

from the true one, and so therefore a VAR approximation to this that similarly deviates from the VAR

given by the true model. Le et al.'s comparison related to models that were mis-speci�ed in the sense

of having wrong calibrations, even though having the correct model. However in our case here we are

concerned with mis-speci�cation in the sense of having the wrong model, since we allow full estimation

(so that the calibration mistakes should be eliminated). Thus we did a Monte Carlo experiment to check

the power of each test against a mis-speci�ed model, allowing the test to be carried out as here after full

reestimation.

For this experiment we assumed that the true model was FTPL and created 1,000 samples of data

from it, all of the same small size as here (28). We then checked whether a pure Orthodox model, and

thus clearly mis-speci�ed, would if estimated on each data sample then be rejected 5% of the time by this

data. With the Indirect Inference Wald (and indirect estimation by Simulated Annealing) the rejection

rate was 12%; thus even with such a small sample there was power against model mis-speci�cation. With

the LR (and FIML estimation) the rejection rate did not rise above 5%, that of the True model8.

We then repeated the power experiment the other way round, making the Orthodox model the true

one and creating 1000 samples from it. In this case the power is greater, with the Wald test rejecting

8In fact in the case of the LR test we found 4.5%, less than 5%, so that the False model is rejected even less than the
True model. We think what may be happening here is that when the false model is freely reestimated for each true sample a
process of data-mining occurs whereby for each sample the SA algorithm �nds a model and set of errors and AR coe�cients
such that the in-sample forecast of current data is `improved' over what even the True model would achieve.
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20% of the time and the LR test rejecting 22.5% of the time. Thus here the power of the two tests is

comparable.

What we see (tables 2 and 3) is that on average the Wald test has more power against mis-speci�cation

with the small sample being used here. Furthermore it is consistent in having power whereas the LR test

can fail to have any power at all. Nevertheless, perhaps not surprisingly, with such a very small sample

(only 28 observations), the Wald test cannot achieve strong power.

Table 2: Power check of Wald test: FTPL vs Orthodox Taylor

When the true model is
Rejection rate (at 95% con�dence level)

of the false model

FTPL 11.9% (Orthodox)

Orthodox 19.9% (FTPL)

Table 3: Power check of LR test: FTPL vs Orthodox Taylor

When the true model is
Rejection rate (at 95% con�dence level)

of the false model

FTPL 4.5% (Orthodox)

Orthodox 22.5% (FTPL)

5 Data and Results

We limit our focus to the period between 1972-1979 during which the FTPL could be a potential candidate

given the economic background. We use un�ltered (but seasonally adjusted) data from o�cial sources.

We de�ne as Rst the Minimum Lending Rates, and as �t the percentage change in the CPI index, both

in quarterly term. We use for yt the real GDP level in natural logorithm and for y�t its trend values as

suggested by the H-P �lter. The primary de�cit ratio g� t is simply the di�erence between G=GDP and

T=GDP , where G and T are respectively the levels of government spending and tax income. In particular,

since for model convergence the amount of government spending is required to be less than taxation for

government bonds to have a positive value, and that government spending on a capital variety is expected

to produce future returns in line with real interest rates, we deduct the trend in such spending from the

trend in G=GDP . By implementing this we assume that the average share of expenditure devoted to

�xed capital, health and education in the period can be regarded as the (constant) trend in such capital

spending; of course the `capital' element in total government spending is unobservable and hence our

assumption is intended merely to adjust the level of g in an approximate way but not its movement over

time which we regard as accurately capturing changes in such spending. This adjustment counts for

about 10% of GDP. Note that the primary de�cit is therefore negative (i.e. there is a primary surplus
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Figure 1: UK Data (1972-1979)
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throughout). Figure 1 plots the time series.

We now turn to the empirical performance of the competing models outlined above as suggested by

the method of Indirect Inference. We summarise the model estimates (by Simulated Annealing) in table

4 (The Wald test results based on these are shown in table 8 in what follows).

Table 4: Indirect estimates of the FTPL and the Orthodox models

Model parameter Starting value FTPL Orthodox Taylor

� 2.4 4.07 1.96

� 0.99 �xed �xed

� 2.27 0.02 0.46

� 0.26 0.35 -

� 0.5 - 0.76

�� 2 - 1.31

�xgap 0.125 - 0.06

� 0.003 - 0.007

cy� 0.0002 �xed �xed

 0.99 �xed �xed

Shock persistence

errpp - 0.43 0.42

errIS - 0.64 0.84

erry� - 0.93 0.93

errg�t - -0.1 -0.1

err� - 0.24 -

errR
S

- - 0.34

The estimates for the two models' shared parameters (� and �) are strikingly di�erent. In the FTPL

� is high and � is low, implying a steep Phillips curve and a at IS curve. Since ination is determined

exogenously by the exogenous de�cit ratio and its own error process, the steep Phillips curve (which
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Figure 2: IRFs - Output (FTPL)
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Figure 3: IRFs - Ination (FTPL)
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determines the output gap) implies that the output gap responds weakly to ination while the at IS

curve (which sets interest rates) implies that the real interest rate responds weakly to the output gap.

The impulse response functions for the FTPL model (�gures 2-5) con�rm this9.

E�ectively this suppresses most of the simultaneity in the model as can be seen from the variance

decomposition in table 5. We �nd this by bootstrapping the innovations of the model repeatedly for the

same sample episode - plainly the variances of non-stationary variables, while unde�ned asymptotically,

9In this model the e�ect of IS curve shock on output and ination is nil.

Figure 4: IRFs - Nom. int. rates (FTPL)
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Figure 5: IRFs - Real int. rates (FTPL)
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are de�ned for this (short) sample period. One sees that ination is disturbed by both the �scal de�cit

and its own shock; output by both the productivity trend and the supply (errPP ) shock, with a minimal

e�ect from the ination shock; real interest rates entirely by its own (errIS) shock; nominal interest rates

respond to a mixture of shocks because they combine ination and real interest rates.

Table 5: Variance decomposition (FTPL)

Unit: % y � R r
errIS : 0 0 23.1 99.9

errPP : 79.1 0 0 0.1

err�: 2.2 67.1 8 0

erry�: 18.7 0 0 0

errg�t: 0 32.9 68.9 0

Total: 100 100 100 100

On the other hand, the estimates for the Orthodox model imply a standard Phillips Curve and also

a fairly at IS curve. The Taylor Rule has fairly standard New Keynesian responses to ination (1.3)

and the output gap (0.06), implying a at response of interest rates to output gap movement. There is

also a weak Ricardian �scal plan, with the de�cit converging extremely slowly (� = 0:007). In this model

the macro-economy is orthogonal to the �scal de�cit but there is considerable simultaneity otherwise.

Shocks to demand (IS), supply (PP) and monetary policy (RS) each move all four macro variables in a

relatively normal way, as can be seen from the impulse responses10 (�gures 6-9) and also the variance

decomposition (carried out just as for FTPL) in table 6. To replicate the data behaviour in this episode,

with its large swings in ination, the model �nds large monetary policy (errR
s

) shocks which need to

be moderated by Taylor Rule interest rate responses to limit ination variation; these shocks dominate

ination variance which triggers the Taylor Rule response limiting the e�ects on real interest rates and

output. Demand (errIS) shocks trigger ination and Taylor Rule responses, so largely a�ecting interest

rate variance. Supply (errPP ) shocks trigger sharp ination responses which are largely neutralised by

10In this model the e�ect of de�cit errors are nil on output, ination, and both nominal and real interest rates.
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Figure 6: IRFs - Output (Orthodox Taylor)
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Figure 7: IRFs - Ination (Orthodox Taylor)
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real interest rate responses; these in turn destabilise output, given the at IS curve.

5.1 What do the tests show about the two models?

We may now consider the way in which each model replicates the VECM estimates on the data, as shown

in table 7.

One thing the table immediately con�rms is that both models have VAR representations (plus trend

e�ects and error variances - we will call this VAR+) that are formally similar to each other's and also in

Figure 8: IRFs - Nom. int. rates (Orthodox Taylor)
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Figure 9: IRFs - Real int. rates (Orthodox Taylor)
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Table 6: Variance decomposition (Orthodox Taylor)

Unit: % y � R r
errIS : 8.9 33.3 93.2 62.8

errPP : 58.8 6.1 4.9 20.8

errR
S

: 16.8 60.1 1.9 16.3

erry�: 15.5 0 0 0

errg�t: 0 0 0 0

Total: 100 100 100 100

general in most cases embrace the actual data coe�cients. This illustrates the formal similarity of the

two models in terms of their data representation, already noted in our discussion of the identi�cation

problem: there is no a priori qualitative or numerical restriction we can apply to any VAR+ coe�cient(s)

that would reect one model and not the other. Instead we rely on the joint distribution of all these

VAR+ coe�cients to di�er in numerical detail across the two models, as we know they do from our

identi�cation discussion above: we then ask via the Wald test whether the joint distribution of each

model could contain the joint values found on the data. These tests are shown in table 8.

The table suggests that when the models are asked to �t all elements of the VAR+, both models

pass the Wald test at 95% con�dence level. Both models deal very well with volatility. On trend and

dynamics, the Orthodox passes comfortably while the FTPL is on the margin of rejection. It is in fact

hard to establish much of a di�erence between the two models; though the p-value of the Orthodox model

on the all-elements test is about double that on the FTPL, this is not a wide margin. Both models in

e�ect marginally fail to be rejected overall11.

However, we know that it is impossible for both models to be true, having checked that they are

identi�ed. Thus this interesting result could mean that one of the two models is true but the other one,

though false, cannot be rejected because there is insu�cient power with the small sample here; or it

could mean that both models are false and a third model that lies somewhere between the two is true.

11The results for the FTPL with the New Classical aggregate supply curve in place of the NKPC are essentially the same.
We show this comparison in the appendix.
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Table 7: VECM estimates: actual vs model simulations

VECM parameter Actual FTPL lower FTPL upper Ortho. lower Ortho. upper

yt on

yt�1 -0.2740 -0.2835 0.6072 -0.2551 0.6552�

�t�1 -0.3808 -0.6171 0.4384 -0.6558 0.3253

Rst�1 -0.3502 -1.9803 1.5379 -2.3809 1.0812

(g � t)t�1 0.7864 -1.1111 0.8165 -1.0967 0.8337

y�t�1 3.2576 -2.8302 4.1891 -3.0749 4.0808

Trend -0.0089 -0.0069 0.0082� -0.0079 0.0074�

�t on
yt�1 0.3353 -0.5080 0.4907 -0.3631 0.6922

�t�1 0.3231 -0.4205 0.4520 -0.4481 0.3925

Rst�1 1.4273 -1.0472 2.1947 -0.8633 2.5227

(g � t)t�1 0.2311 -0.5509 1.3207 -0.7512 1.1868

y�t�1 -0.5633 -2.7752 3.6503 -3.4731 3.1963

Trend 0.0011 -0.0072 0.0072 -0.0075 0.0069

Rst on

yt�1 -0.0400 -0.1318 0.1111 -0.0591 0.1801

�t�1 -0.0424 -0.2102 0.0393 -0.1588 0.0612

Rst�1 0.7967 -0.0015 0.7597� -0.2494 0.9357

(g � t)t�1 0.1672 -0.0162 0.4023 -0.2041 0.2378

y�t�1 0.3204 -0.8594 0.9110 -0.8656 0.7144

Trend -0.0012 -0.0016 0.0019 -0.0024 0.0011

(g � t)t on
yt�1 0.2262 -0.2832 0.3029 -0.3041 0.3116

�t�1 0.1545 -0.3164 0.2785 -0.2908 0.2658

Rst�1 -0.3739 -1.0098 0.9270 -1.1319 1.0838

(g � t)t�1 0.4939 -0.0605 0.8611 -0.1124 0.8305

y�t�1 -0.6407 -2.9531 2.7286 -3.2408 2.5242

Trend 0.0017 -0.0057 0.0060 -0.0062 0.0077

V ar(residy) 1.80�10�4 0.85�10�4 3.18�10�4 0.74�10�4 3.09�10�4
V ar(resid�) 1.27�10�4 0.70�10�4 2.85�10�4 0.59�10�4 2.89�10�4

V ar(residR
S

) 0.10�10�4 0.05�10�4 0.15�10�4 0.04�10�4 0.13�10�4
V ar(residg�t) 0.68�10�4 0.18�10�4 1.11�10�4 0.17�10�4 1.15�10�4

*: number lying beyond the lower/upper bound.

In this case both models could have enough elements of truth in them not to be rejected. This would

suggest that some combination of the two, combining these elements, could be closer to the true model

than either alone.

This was, as should have been clear from our earlier discussion of the context, a period of great

uncertainty in UK economics and politics; in 1975 there was even a proposal by certain Labour politicians

led by Tony Benn, a leading minister in the government, to install a siege economy (e�ectively to insulate

an FTPL strategy from external pressures), and this was only narrowly defeated within the Labour

government. It may therefore well be that people gave some probability to an FTPL regime continuing

and some to an orthodox regime reasserting itself - in the manner described by Leeper (1991).
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Table 8: Wald tests of the FTPL and the Orthodox models

Elements tested FTPL Orthodox

Trend and dynamcis

(VECM coe�. only)

95.2

(.048)

89.4

(.106)

Volatility

(VECM resid. only)

6.4

(.936)

11.8

(.882)

All elements

(VECM coe�.+resid.)

93

(.07)

86.7

(.133)

Note: p-values in parentheses; p-value = (100-Wald percentile)/100.

5.2 Results for a combined model

The above suggests that ination behaviour was being inuenced by expectations of two potential regimes

each with a certain probability. Ination in this model equals expected ination because no information

lag is assumed. Hence we can think of the FTPL ination equation as showing the ination that would be

expected (and would also occur) at time t if the FTPL regime was in operation. Similarly for the Orthodox

model we can think of the Taylor Rule equation as de�ning the ination that would be permitted by the

rule (and so would also occur) at prevailing interest rates; thus this would be the ination expected if

the Orthodox regime was prevailing. We can therefore create a model in which ination expectations are

governed by the probability-weighted ination rate under the two regimes; this will be also the actual

ination, since actual = expected. In this model ination will thus be a weighted combination of the two

models' ination equations - the FTPL and the Taylor Rule equations:

�t = WFTPL�(gt � tt)

+[1�WFTPL]
1

��
[

1

(1� �) (Rt � �Rt�1)� �xgap(yt � y
�
t )� �] + err

Weighted �
t

Given that ination is determined by the probability-weighted average of each regime's own ination

outcome, we now have a composite ination error - which in principle consists of the weighted combi-

nation of the two regime error processes plus any temporary deviations of ination from this weighted

combination (e.g. due to variation in the weight). Since we cannot observe what the ination rate actually

was in each regime, only the average outcome, we can only observe a composite error.

All the other equations are the same, with the exception of the �scal de�cit equation which has an AR

coe�cient that is so close to zero that it cannot resolve the uncertainty about which regime is operating;

we allow it to be determined by the model estimation.

When we examine the results of this weighted model (as we report in tables 9 and 10 in comparison

to the earlier results), we see that it improves on both models alone, giving a weight on FTPL of 0.34.
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The improvement comes in �tting the trend and dynamics, as all the models have little di�culty �tting

the volatility in the data. The model now adopts a very at Phillips Curve, a very steep IS Curve, and

a tough Taylor Rule (with high response to ination and virtually no response to the output gap). The

e�ect of the FTPL de�cit mechanism is strong, as the one-third weight allows the direct e�ect of the

de�cit on ination to be about �ve times as high.

Table 9: Indirect estimates of the models: Weighted vs FTPL Orthodox

Model parameter FTPL Orthodox Taylor Weighted model

� 4.07 1.96 0.07

� �xed �xed �xed

� 0.02 0.46 4.38

� 0.35 - 1.75

� - 0.76 0.69

�� - 1.31 3.93

�xgap - 0.06 0.01

� - 0.007 0.005

cy� �xed �xed �xed

 �xed �xed �xed

Weight 0.34

Shock persistence

errpp 0.43 0.42 0.28

errIS 0.64 0.84 0.47

erry� 0.93 0.93 0.95

errg�t -0.1 -0.1 -0.1

err� 0.24 - -

errR
S

- 0.34 -

errWeighted � - - 0.26

Table 10: P-values of the models: Weighted vs FTPL Orthodox

Elements tested FTPL Orthodox Weighted model

Trend and dynamcis

(VECM coe�. only)
4.8 10.6 11.5

Volatility

(VECM resid. only)
93.6 88.2 88.2

All elements

(VECM coe�.+resid.)
7 13.3 15.8

Note: p-values in %; Wald percentile = 100 - p-value.

The blend of Orthodox with FTPL is revealed in the IRFs (�gures 10-13). The IS and PP shocks

a�ect the economy much as in the Orthodox case. A positive weighted ination error is a combination

of a direct temporary shock to ination as in the FTPL model with an easing of monetary policy in

the Taylor Rule error. The �scal shock behaves as in the FTPL model, strongly a�ecting ination and

nominal interest rates.

The resulting variance decomposition (table 11) gives the supply shock and the weighted ination

shocks about an equal role in output variability; the latter includes both monetary policy and exogenous
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Figure 10: IRFs - Output (Weighted model)
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Figure 11: IRFs - Ination (Weighted model)
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Figure 12: IRFs - Nom. int. rates (Weighted model)
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Figure 13: IRFs - Real int. rates (Weighted model)
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Figure 14: Structural errors (Weighted model)
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ination shock. These two shocks also share the main role in real and nominal interest rate variability

(the �scal shock also contributes an eighth to the nominal rate). For ination variability the �scal shock

becomes dominant, with the supply shock providing the rest. What we see here in the weighted model is

that the FTPL inuences remain important.

Table 11: Variance decomposition (Weighted model)

Unit: % y � R r
errIS : 14.2 0.4 1 0.9

errPP : 40.4 28.1 46.9 47.6

errWeighted �: 36.8 3.2 40 50.4

erry�: 6 0 0 0

errg�t: 2.6 68.3 12.1 1.1

Total: 100 100 100 100

In the next section we review the implications of this successful weighted model for the causes of

what happened quarter by quarter. Clearly, huge errors in policy were made, to permit the large rise in

ination and the prolonged recession both to occur during the mid-1970s. In our �nal concluding section,

we reect on the policy lessons and how they were absorbed subsequently in UK political choices.
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6 A time-line of the UK 1970s episode according to the weighted

models

We see �rst the errors backed out period by period in �gure 14. Begin with the ination error in the

weighted FTPL/Taylor Rule equation. This is some combination of monetary policy and exogenous

ination (notably commodity price) shocks; the 1973 and 1974 peaks were both periods of expansionary

money and surging commodity prices. 1977's low point corresponds to the IMF visit, which tightened

money sharply. Next, we note that the PP shock mirrors this weighted ination error closely; this is

because with a very at Phillips Curve movements in ination are governed almost solely by expected

ination for next quarter; but since the �scal de�cit is close to a random walk this turns out to be very

close to current expected ination which too is dominated by the current �scal de�cit. The IS shock

turns negative in the mid-1970s before recovering in the late 1970s. The �scal de�cit shock is large and

positive early on before being restrained later in the period.

In the timeline for output (�gure 15) we see that all these shocks play a part; the dominant role,

as foreshadowed by our variance decomposition, is taken by the supply and ination shocks but these

essentially cancel each other out, leaving the IS shock as the factor creating recession and the productivity

shock assisting it in generating later recovery. For ination (�gure 16) the �scal shock is the key factor

generating the sharp ination explosion from 1973-5, aided by the supply shock. For interest rates (�gure

17), �scal, supply and ination shocks all three are major factors, but tend to cancel each other out, so

that interest rates move little; this is consistent with the model's �nding that monetary policy itself had

only a small e�ect on ination during the period, because although the weight on the Taylor Rule is high

at 0.66 the Taylor Rule terms themselves vary little - interest rates move little while the movement in

them required to restrain ination (as implied by the high ination response coe�cient) is large.

Thus the overall picture of the period from our weighted model is that the �scal de�cit was a key

factor in driving ination expectations and that monetary policy in practice did little to moderate these;

interest rates varied little. Output was the victim of poor productivity growth and the demand shocks

of the mid-1970s, with these both improving somewhat later in the period.

From these timelines it is clear that poor expected macro policy choices, both �scal and monetary,

reinforced the bad results already created by the poor growth of productivity. The two factors together

produced economic results so bad that the British voters backed Margaret Thatcher's radical policy

changes over a whole decade, embracing not merely macro-policy but also supply-side policy reforms.

Whether the voters would have backed her had the economy not been in such a parlous condition in 1979

is a matter of intense interest for political economy but clearly lies well outside the scope of this paper.
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Figure 15: Time-line for output (Weighted model)
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Figure 16: Time-line for ination (Weighted model)
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Figure 17: Time-line for nom. int. rates (Weighted model)
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7 Conclusions

In this paper we have examined an episode of UK history when �scal policy may have been set without

thought for future solvency implications and monetary policy may have been entirely accommodative - a

case of the �scal theory of the price level. Because the data implications of this theory are qualitatively

similar to those of the Orthodox theory in which monetary policy is set by a Taylor Rule to hit an

ination target and �scal policy is set to achieve solvency at that ination rate, we have set up the two

theories as rival structural models and tested each against the behaviour found in the data, by the method

of Indirect Inference. Our �nding is that neither model is rejected by the data and that the Orthodox

model can account better for the data behaviour than the FTPL; but also that the best account of

the period assumes that expectations were a probability-weighted combination of the two regimes. The

policies pursued in this episode generated generally high as well as volatile ination, together with weak

productivity growth and a long-lived recession. They paved the way for a decisive change of approach to

both �scal and monetary policy after the election of 1979.
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AppendixA Derivation of Government Budget Constraint

The government budget constraint gives us

Bt+1

Rt
= Gt � Tt +Bt + Bt

Rt

Where,

Gt is the government spending in money terms,

Tt is the government taxation in money terms,

Rt is the amount of nominal interest the government must pay. The value of the bonds outstanding

is B � 1
R .

We can derive an expression for government budget constraint in the forward direction by substituting

forwards for future bonds outstanding, yields

Bt

Rt
= Et

P1
i=0 (Tt+i �Gt+i) 1

(1+Rt)
i+1

We approximate this expression by

Bt

Rt
=
P1

i=0
(tt�gt)(1+�t)iPt(1+)iyt

(1+Rt)
1+i

where tt; gt; �t;  are the currently expected permanent values respectively of the tax/GDP and

government spending/GDP ratios, the ination rate, and the growth rate (assumed constant at all times);

P t; yt are respectively the permanent price level and equilibrium output

=
�
tt � gt

�
P ty

�
t

P1
i=0

(1++�t)
i

(1+Rt)
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P ty

�
t

P1
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If  and �t are both small enough,P1
i=0

(1++�t)
1+i

(1+Rt)
1+i =

P1
i=0
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1
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� 1
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Hence, Bt

RtP ty�t
=

(tt�gt)
(1++�t)(r�t�)

.
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AppendixB Estimates and Performance of the FTPL Model

with New Keynesian and New Classical Aggregate

Supply Curves

Panel A

Model parameter FTPL (benchmark NKAS) FTPL (NCAS)

� 3.89 3.74

� �xed �xed

� 0.02 0.02

� 0.34 0.36

Shock persistence

errPP 0.43 0.43

errIS 0.64 0.64

erry� 0.93 0.93

errg�t -0.1 -0.1

errpi 0.25 0.24

Panel B

Wald test type FTPL (benchmark NKAS) FTPL (NCAS)

Directed Wald percentile

(VECM coe�. only)

89

(0.11)

90.4

(.096)

Directed Wald percentile

(VECM resid. only)

36.6

(.634)

33.9

(.661

Full Wald percentile

(VECM coe�.+resid.)

88.8

(0.112)

91.4

(.086)

Note: p-values in parentheses; these are (100-Wald percentile)/100.
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