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Abstract

Background: The ileal-derived hormone, fibroblast growth factor 19 (FGF-19), may promote weight loss and
facilitate type-2 diabetes mellitus remission in bariatric surgical patients. We investigated the effect of different
bariatric procedures on circulating FGF-19 levels and the resulting impact on mitochondrial health in white adipose
tissue (AT).

Methods: Obese and type-2 diabetic women (n = 39, BMI > 35 kg/m2) undergoing either biliopancreatic diversion
(BPD), laparoscopic greater curvature plication (LGCP), or laparoscopic adjustable gastric banding (LAGB)
participated in this ethics approved study. Anthropometry, biochemical, clinical data, serum, and AT biopsies
were collected before and 6 months after surgery. Mitochondrial gene expression in adipose biopsies and serum
FGF-19 levels were then assessed.

Results: All surgeries led to metabolic improvements with BPD producing the greatest benefits on weight loss
(↓30%), HbA1c (↓28%), and cholesterol (↓25%) reduction, whilst LGCP resulted in similar HbA1c improvements
(adjusted for BMI). Circulating FGF-19 increased in both BPD and LGCP (χ2(2) = 8.088; P = 0.018), whilst, in LAGB,
FGF-19 serum levels decreased (P = 0.028). Interestingly, circulating FGF-19 was inversely correlated with
mitochondrial number in AT across all surgeries (n = 39). In contrast to LGCP and LAGB, mitochondrial number in
BPD patients corresponded directly with changes in 12 of 14 mitochondrial genes assayed (P < 0.01).

Conclusions: Elevated serum FGF-19 levels post-surgery were associated with improved mitochondrial health in
AT and overall diabetic remission. Changes in circulating FGF-19 levels were surgery-specific, with BPD producing
the best metabolic outcomes among the study procedures (BPD > LGCP > LAGB), and highlighting mitochondria
in AT as a potential target of FGF-19 during diabetes remission.
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Background
A key factor in the development of type-2 diabetes and
metabolic syndrome is the inability of adipose tissue
(AT) to cope with the chronic insult of over-nutrition,
whilst maintaining important metabolic and endocrine
functions [1, 2]. At the forefront of this challenging en-
vironment are mitochondria, major nutrient sensors and
metabolic regulators, which are fundamental to AT func-
tion [3, 4]. However, during sustained conditions of
chronic nutrient excess, such as obesity and type-2 dia-
betes, mitochondria appear unable to cope well with this
environment, leading to fragmentation, unresponsive-
ness and dysfunction [5–7]. This nutrient-induced mito-
chondrial dysfunction can lead to impaired respiration,
lipotoxicity, oxidative species accumulation and inflam-
mation, further exacerbating insulin resistance and type-
2 diabetes [8–13]. Indeed, the importance of adequate
mitochondrial function for metabolic health is further
highlighted by the observation that mitochondrial DNA
mutations often result in diabetic phenotypes [14–16].
Both insulin resistance and type-2 diabetes status can

be reversed through bariatric surgery, with significantly
greater success rates than pharmacological, exercise and
diet interventions [17–19]. Depending on the procedure,
bariatric surgery involves a type/degree of gastro-intestinal
remodelling, which can lead to reduced stomach volume
and nutrient absorption capacity [20, 21]; however, this
alone cannot fully explain the profound weight loss and
metabolic improvement observed after these surgeries ver-
sus medical/lifestyle interventions [22].
Recently, the ileal-derived hormone, fibroblast growth

factor 19 (FGF-19), has been identified as a novel enter-
okine regulator of glucose and lipid homeostasis, which
is potentially involved in metabolic recovery following
bariatric surgery [23]. Indeed, rodent studies have shown
that mice lacking the receptor required for gut secretion
of FGF-19 show significantly impaired weight loss and
glucose improvement following bariatric surgery com-
pared with their wild-type counterparts [24]. In addition,
direct administration of recombinant FGF-15 (FGF-19 in
humans) to obese mice leads to significant weight reduc-
tion, principally AT reduction, and reverses dietary and
leptin-deficient diabetes [25]. Moreover, in humans, data
from clinical studies would seemingly indicate FGF-19
as a cause rather than consequence of type-2 diabetes
improvement, given that neither lifestyle interventions
nor intense medical management of type-2 diabetes
appears to increase circulating FGF-19 levels, despite
similar reductions in HbA1c to surgical procedures
[26]. However, there is good clinical evidence that
certain bariatric procedures increase serum FGF-19
levels [27–30]. As such, both human and rodent stud-
ies suggest that increased circulating FGF-19 levels
may contribute to the underlying mechanisms of
metabolic improvement following certain types of
bariatric surgery.
Beyond the potential effects on white AT, studies have

shown FGF-19 to exert several advantageous effects on
various metabolic relevant organs [23]. In the central
nervous system, FGF-19 has been associated with low-
ered brain-hedonistic responses, reduced food intake,
improved glycaemic control and enhanced glucose ef-
fectiveness [31, 32]. Furthermore, in the liver, FGF-19
has been shown to increase energy expenditure and fatty
acid oxidation through raised delivery of fatty acids to
the mitochondria [33]. Additionally, in brown AT, ele-
vated FGF-19 (either through genetic over-expression
or systemic administration) can affect the metabolic
rate and activity of this highly energy-consuming tis-
sue [25, 33]. These studies also stress the importance
of mitochondria as a target of FGF-19 [25, 31–33], al-
though its role in white AT mitochondria, particularly
within the context of type-2 diabetes, remains largely un-
known. Therefore, in the present study, we investigated
the hypothesis that changes in serum FGF-19 levels after
bariatric surgery support metabolic recovery via improve-
ment in mitochondrial function within white AT.

Methods
Ethics and study design
The study was approved by the Ethics Committee of the
Institute of Endocrinology (Institute of Endocrinology,
Ethics Committee EC: 19/5/2009, Prague, Czech Repub-
lic). All study participants provided written and informed
consent in accordance with the Declaration of Helsinki.
Thirty-nine morbidly obese (BMI > 35 kg/m2), type-2 dia-
betic, Caucasian women undergoing either biliopancreatic
diversion (BPD; n = 12), laparoscopic greater curvature
plication (LGCP; n = 15), or laparoscopic adjustable gastric
banding (LAGB; n = 12) at the OB clinic, Prague, Czech
Republic, were recruited to participate in this study. Thor-
ough biochemical and anthropometric investigations were
conducted before (baseline) and at 6 months after surgery
with collection of serum samples and abdominal subcuta-
neous white AT biopsies at both of these time points.
Patients on pharmacological treatment with incretin mi-
metics and/or insulin were not included in this study.

Blood biochemistry and body composition analysis
All anthropometric and biochemical measurements were
performed before and 6 months after surgery. Following
a 10-hour overnight fast, venous blood was sampled in
all patients, collected in chilled EDTA-containing tubes
with and without aprotinin (for glucose and insulin mea-
surements), aliquoted and frozen at –80 °C until assayed.
Serum glucose, HbA1c and lipids were determined using
the Cobas 6000 analyzer. Insulin resistance was assessed
using the homeostatic model assessment of insulin
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resistance (HOMA-IR) according to the following equa-
tion: HOMA-IR = fasting glucose (mmol/L) × fasting in-
sulin (mIU/L)/22.5, as previously described [34]. The
Friedwald formula [35] was employed to compute serum
levels of LDL cholesterol. Body weight was measured to
the nearest 0.5 kg and height to the nearest 1 cm. Percent-
age excess weight loss was calculated according to the
following equation: (preoperative weight-postoperative
weight/preoperative weight-ideal body weight) × 100, and
body fat mass was measured using the bioimpedance
method (Tanita TBF-300; Tanita corporation).

RNA isolation and qRT-PCR
For RNA extraction, 100 mg of frozen AT was homoge-
nized in 500 μL Qiazol reagent (#79306 Qiagen, UK)
then isolated using a column-based isolation method
(RNeasy Lipid Tissue Mini Kit; #74804 Qiagen, UK) ac-
cording to manufacturer’s instructions. Samples were
digested with DNase I to remove potential genomic DNA
contaminants (DNase I kit, #AMP-D1 Sigma-Aldrich).
RNA was eluted in 10 μL RNase-free water and 1 μL
quantified in duplicate using a spectrophotometer (Nano-
drop ND-1000, labtech) at 260 nm absorbancy. Synthesis
of cDNA was performed using 200 ng RNA per sample
and a Bioline mRNA reverse transcription kit (#BIO-
65026) according to the manufacturer’s instructions. Gene
expression was assayed through quantitative real-time
polymerase chain reaction (qRT-PCR) using ABI 7500
standard sequence detection system (Applied Biosystems,
UK). Each reaction was prepared to 25 μL final volume
containing Taqman Universal PCR mastermix (#4304437
Applied Biosystems, UK), 1 μL sample cDNA and a
specific commercially available Taqman gene expression
assay (Applied Biosystems, UK; PGC1α, Hs00173304_m1;
POLG, Hs01018668_m1; TFAM, Hs00273372_s1; mtND6,
Hs02596879_g1; SDHA, Hs00188166_m1; COX4I1, Hs0
0971639_m1; mtATP6, Hs02596862_g1; UCP2, Hs010
75227_m1; SOD1, Hs00533490_m1; SOD2, Hs001678
09_m1; MFN2, Hs00208382_m1; OPA1, Hs01047018_m1;
DRP1, Hs01552605_m1; FIS1, Hs00211420_m1). All sam-
ples were assayed in triplicate and multiplexed using 18S
(ribosomal RNA) as a pre-optimised control probe. As per
the manufacturer’s instructions, reactions were carried out
at 50 °C for 2 minutes, 95 °C for 10 minutes, and then
40 cycles of 95 °C for 15 seconds and 60 °C for 1 min. For
data analysis, a ΔCt was calculated based on the difference
between 18S and the target gene. Gene expression was
calculated based on the following formula: mRNA expres-
sion = 2–ΔΔCt, where ΔCt = target gene – 18S.

Evaluation of mitochondrial number
Total DNA was extracted from 50 mg frozen AT samples
using DNeasy Blood and Tissue Mini Kit (#69504 Qiagen,
UK) in accordance to the manufacturer’s instructions.
RNase treatment was performed to eliminate possible
RNA contamination. DNA was eluted with 100 μL AE
buffer and quantified using a spectrophotometer (Nano-
drop ND-1000, Labtech). Relative amounts of mitochon-
drial DNA copy number were assessed through qPCR in
an ABI Prism 7500 thermo cycler (Life Technologies) with
the use of iQ™ SYBR Green Supermix (#170-8880 BioRad).
Mitochondrial (mtND1; forward: 5’-ATGGCCAACCTCC
TACTCCT-3’; reverse: 5’-GCGGTGATGTAGAGGGTG
AT-3’) and nuclear (BECN1; forward: 5’-CGAGGCTCA
AGTGTTTAGGC-3’; reverse: 5’-ATGTACTGGAAACGC
CTTGG-3’) gene primers were used to determine relative
amounts of mitochondrial to nuclear DNA [36]. Each
sample was measured in triplicate. Mitochondrial number
was calculated based on the following formula: mtDNA
copy number = 2ΔCt, where ΔCt = BECN1 – mtND1.

FGF-19 serum levels
For measurement of serum FGF-19 levels (pg/mL), an
enzyme-linked immunosorbent assay (ELISA) kit for
FGF-19 (Quantikine ELISA, R&D Systems, Minneapolis,
MN) was used. All measurements were performed in
duplicate according to the manufacturer’s instructions.
This assay has a detection range of 31–544 pg/mL and a
coefficient of variation of 4.5% for intra-assay and 5.5%
inter-assay precision.

Statistical analysis
Statistical analyses were performed using the SPSS 21.0
software. Data are reported as mean ± standard deviation
(SD), unless otherwise specified. Data were examined for
normality according to the Shapiro–Wilks criteria. Com-
parisons between pre- and post-surgery time-points were
performed via paired two-tailed t-tests (if parametric) and
the Wilcoxon signed ranks test (if non-parametric). For
categorical data, Fisher’s exact test was used. Between-
group (surgery type) differences were assessed using one-
way ANOVA (if parametric) and Kruskal–Wallis test
(if non-parametric) using change variables, calculated
as percentage change from pre-surgery values [(post/
pre) × 100]. For Pearson correlation analyses, change
variables [(post/pre) × 100] were log-transformed prior
to analysis if non-parametric.

Results
BPD patients exhibited greater weight loss and
improvements in serum HbA1c, total and LDL cholesterol
Clinical, anthropometric and biochemical data obtained
before and 6 months after BPD (n = 12), LGCP (n = 15)
or LAGB (n = 12) weight loss operations are shown in
Table 1. All surgeries significantly improved body
weight, HOMA-IR and serum HbA1c; however, BPD re-
sulted in significantly greater reductions of excess weight
loss (approx. 31%, P = 0.004), serum total cholesterol
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Table 3 Correlations between surgery-induced changes in
serum biochemical variables and mitochondrial parameters in
white adipose tissue

Correlation statistics

Pearson’s r P value

FGF-19

Mitochondrial number –0.400 0.023

Total cholesterol

mtATP6 –0.318 0.038

UCP2 –0.343 0.024

HDL cholesterol

COX4I1 –0.335 0.030

mtATP6 –0.359 0.020

Pearson’s correlation coefficient analyses were performed using change
variables (pre- to post-surgery percentage change) in the total patient cohort
(n = 39) between serum biochemistry (bold) and mitochondrial genes
mtATP6 mitochondria-DNA-encoded ATP synthase subunit 6 (complex V), UCP2
uncoupling protein 2, COX4I1 Cytochrome c oxidase subunit 4 isoform 1
(complex IV)
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(24%, P = 0.00001) and LDL cholesterol (29%, P = 0.001).
Serum HDL cholesterol was also significantly lower after
BPD; however, the improvement in HDL/LDL ratio
appeared greater with BPD (15% increase from pre-
surgery, P = 0.154) than with LGCP and LAGB proce-
dures (2% and 4%, respectively).
BPD patients also achieved significantly greater im-

provements in serum HbA1c, compared with LGCP
(P = 0.022) and LAGB (P = 0.002). However, after con-
trolling for BMI, BPD and LGCP were noted to have
similar effects on HbA1c reduction, whilst the differ-
ence between BPD and LAGB remained statistically
significant (P = 0.028).

Post-surgery serum FGF-19 levels increased in BPD and
LGCP patients, but decreased after LAGB
The majority of the BPD (58%) and LGCP (73%), but
only 17% of LAGB patients exhibited increased post-
surgery serum FGF-19 levels relative to pre-surgery values
(Table 2). Overall, post-surgery serum FGF-19 levels in
LAGB patients were significantly lower than pre-surgery
values (P = 0.028), whilst the surgery-induced changes in
FGF-19 concentrations were significantly different be-
tween the three bariatric procedures in the study (as
tested using the Kruskal–Wallis H test, P = 0.018).

Surgery-induced changes in serum FGF-19 levels were
significantly associated with mitochondrial number in
white AT
Abdominal subcutaneous white AT biopsies taken before
and 6 months after bariatric surgery were used to assess
the mRNA expression levels of genes involved in a wide
array of mitochondrial functions (biogenesis, oxidative
phosphorylation, uncoupling and antioxidant action), as
well as mitochondrial number. Changes in FGF-19 levels
were significantly associated with changes in adipose
mitochondrial number across all surgeries (Table 3).
Indeed, circulating FGF-19 was inversely correlated
Table 2 Comparisons of surgery-induced changes in serum
FGF-19 levels between biliopancreatic diversion (BPD), laparoscopic
greater curvature plication (LGCP) and laparoscopic adjustable
gastric banding (LAGB) bariatric procedures

Bariatric
surgery (n)

Percent of patients
with increase (%)

Change from pre- to post-surgery (%)a

Mean (SD) Median (IQR)

BPD (12) 58.3 158.90 (180.60) 121.72 (52.73–152.67)

LGCP (15) 73.3 181.32 (209.65) 135.41 (74.75–172.57)

LAGB (12) 16.7 84.27 (88.49)* 63.28 (41.66–79.24)*

Table shows percentage of patients (%) who exhibited increased serum
FGF-19 post-surgery relative to pre-surgery levels. The Wilcoxon signed-rank
test was used for within group comparisons of pre- and post-surgery
levels (*P < 0.05)
aThe Kruskal–Wallis H test determined there were significant differences in
serum FGF-19 between the three surgery types (χ2 = 7.655; P = 0.022)
SD standard deviation, IQR interquartile range
with mitochondrial number in AT across all surgeries
(n = 39), suggestive of a less fragmented mitochondrial
network when FGF-19 levels are elevated post-surgery.
Neither FGF-19 nor AT mitochondrial number were
noted to correlate significantly with any other biochemical
or anthropometric parameter assessed in this study,
including weight loss, BMI, HOMA-IR, serum HbA1c,
or lipids.
Of all variables captured in this study, mRNA expres-

sion of mitochondrial genes in white AT biopsies was
significantly correlated only with total cholesterol and
HDL cholesterol (Table 3). Indeed, post-surgery reduc-
tion in total cholesterol and HDL cholesterol levels were
associated with increased expression of mitochondrial-
encoded ATP synthase subunit 6 (mtATP6) and uncoup-
ling protein 2 (UCP2), and of mtATP6 and cytochrome c
oxidase subunit 4 isoform 1 (COX4I1) genes, respectively.

Control of mitochondrial gene regulation varied with
bariatric surgical procedure, with greater control
observed after BPD
In order to further examine the overall impact on mito-
chondrial functionality in AT biopsies, surgery-induced
changes in genes involved in mitochondrial function
(biogenesis, oxidative phosphorylation, uncoupling, and
antioxidant capacity) and dynamics (fission and fusion)
were compared to the changes observed in mitochondrial
number using Pearson correlation analyses. In genes con-
trolling function, these relationships were significantly
positive after BPD surgery across 9 of 10 genes assessed,
whilst significantly negative for seven genes after LGCP
surgery, and absent for all genes after the LAGB proced-
ure (Table 4). Analysis of mitochondrial dynamics genes
revealed significant correlations in genes involved in both



Table 4 Relationship of mitochondrial number to mitochondrial
function and dynamics genes after biliopancreatic diversion
(BPD), laparoscopic greater curvature plication (LGCP) and
laparoscopic adjustable gastric banding (LAGB) bariatric
procedures

Mitochondrial
number vs.

BPD (n = 12) LGCP (n = 15) LAGB (n = 12)

Function PGC1α 0.794** –0.688** –0.175

POLG 0.867** –0.407 0.035

TFAM 0.479 –0.560* –0.154

mtND6 0.758* –0.613* –0.153

SDHA 0.855** –0.600* –0.056

COX4I1 0.939** –0.442 0.147

mtATP6 0.782** –0.547* 0.056

UCP2 0.818** –0.389 0.063

SOD1 0.842** –0.604* 0.098

SOD2 0.696* –0.576* –0.017

Dynamics MFN2 0.983** –0.493 0.939*

OPA1 0.808* –0.202 0.963*

DRP1 0.302 –0.426 0.669

FIS1 0.871* –0.337 0.209

Table shows Pearson’s correlation coefficient between mitochondrial number
and genes involved in mitochondrial biogenesis (PGC1α, POLG, TFAM),
oxidative phosphorylation (mtND6, SDHA, COX4I1, mtATP6), uncoupling
(UCP2), antioxidant (SOD1, SOD2), fusion (MFN2, OPA1) and fission (DRP1,
FIS1) processes. Correlations were calculated using change variables
(pre- to 6-months post-surgery percentage change). *P < 0.05, **P < 0.01
PGC1α Peroxisome proliferator-activated receptor gamma coactivator 1-alpha,
POLG mitochondrial DNA polymerase gamma catalytic subunit, TFAM
mitochondrial transcription factor A, mtND6 mitochondrially encoded NADH
dehydrogenase 6, SDHA Succinate dehydrogenase complex subunit A, COX4I1
Cytochrome c oxidase subunit 4 isoform 1 (complex IV), mtATP6 mitochondria-
DNA-encoded ATP synthase subunit 6 (complex V), UCP2 uncoupling protein
2, SOD1 superoxide dismutase 1
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fusion and fission processes within the BPD cohort. These
relationships were absent in the LGCP group and present
only for fusion genes in the LAGB group, indicating that
the control of mitochondrial function and dynamics dif-
fered with the type of surgical procedure.

Discussion
In the present study, we hypothesized that bariatric
surgery-induced elevation of serum FGF-19 target mito-
chondrial function in white AT and support metabolic re-
covery. Our findings highlight for the first time (1) a direct
association between FGF-19 levels and mitochondrial
number in AT consistent across three surgical procedures
and (2) a differential impact of certain bariatric procedures
on circulating FGF-19 levels, with (3) BPD surgery leading
to a tighter control of mitochondrial gene expression than
LGCP or LAGB in association with greater HbA1c, lipid
and weight reduction. Thus, within the post-surgery
follow-up period of our study, a step-wise order in surgical
benefit based on FGF-19 levels and better metabolic health
outcomes was established (BPD > LGCP > LAGB).
The finding that FGF-19 levels are inversely correlated
with mitochondrial number in AT may be interpreted as a
shift towards a less fragmented and more elongated mito-
chondrial network when FGF-19 levels are raised. This
would seem of benefit, given that mitochondrial fragmen-
tation has been associated with apoptosis [37, 38], severely
compromised mitochondrial DNA integrity, inefficiency
[39, 40], accumulation of reactive oxygen species [6],
impaired oxygen consumption and ß-oxidation [7, 8],
lipotoxic species accumulation [41], pro-inflammatory
cytokine production [9], and impaired insulin signalling
[10, 11]. Moreover, fragmentation of muscle mitochondria
has been reported in several mouse and human models of
obesity and type-2 diabetes [42, 43].
However, it must also be stated that long-term sustained

mitochondrial elongation can compromise mitochondrial
quality control and function [44], so mitochondrial elong-
ation per se is not necessarily indicative of mitochondrial
health, and that the cell requires a balance between both
fission and fusion processes to maintain mitochondrial
quality. Thus, to better understand the implications of the
changes observed in mitochondrial number after surgery,
we analyzed them in relation to changes in mitochondrial
gene expression. Genes controlling both fusion and fission
processes were tightly correlated with mitochondrial
number in BPD patients, whilst in the other surgeries, the
genes controlling these processes (particularly fission) ap-
peared dysregulated. In addition, following the BPD pro-
cedure alone, mitochondrial number was significantly and
positively correlated with mRNA expression of most genes
assayed, covering a range of mitochondrial (biogenesis,
oxidative phosphorylation, uncoupling and antioxidant)
functions. This finding would support the assertion that
BPD improves the control of genes involved in maintain-
ing mitochondrial fusion/fission balance and function to a
greater extent than the other two bariatric procedures in
this study, and is consistent with a role of serum FGF-19
in mediating a less fragmented and potentially more func-
tional mitochondrial network.
In contrast, in the LGCP group, the relationships be-

tween mitochondrial number and gene expression followed
a significant inverse association, despite similar rise in
serum FGF-19 levels compared to BPD. This seemingly
paradoxical finding may be better understood within a
wider context of additional factors also likely to play a role
in mitochondrial recovery [3]. Indeed, the BPD operation
(unlike LGCP) produced significantly lower serum lipid
levels and nearly twice as much weight loss (30% versus
17%). This is consistent with previous reports [45], and the
notion that these two factors (weight loss and lipid recov-
ery) may have also contributed to the enhanced mitochon-
drial outcomes observed after BPD versus LGCP. Further
in support of this concept, total and HDL cholesterol were
the only biochemical variables (apart from FGF-19) to
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exhibit a significant association with mitochondrial genes.
Decreased cholesterol levels were directly associated
with enhanced mRNA expression of complex IV
(COX4I1) and V (mtATP6) genes of the electron trans-
port chain. Similar associations were observed with the
uncoupling protein 2 (UCP2) gene, which has been impli-
cated in preventing reactive oxygen species accumulation
and oxidative stress damage [46].
Interestingly, in the LAGB group (the only study pro-

cedure to significantly reduce serum FGF-19 levels),
changes in mitochondrial gene expression in AT were
(with exception of fusion genes) unrelated to mitochon-
drial number, suggesting a dysregulation of mitochon-
drial function in this cohort, potentially resulting from
un-opposed fusion. Though this bariatric procedure re-
sulted in significant weight loss and general metabolic
improvement, the noted HbA1c reduction was signifi-
cantly less pronounced compared with the other two
procedures (even after accounting for BMI), which
might be, at least in part, the result of the mitochondrial
dysfunction and lower serum FGF-19 levels observed.
Previous studies in mice support the hypothesis that

circulating FGF-19 targets WAT mitochondria to exert
metabolic improvements. Mice challenged with a high-
fat diet and treated with fexaramine (an intestine-
restricted FXR agonist which potently induces intestinal
FGF-15, i.e. the mouse FGF-19 homologue) exhibited
significantly less weight gain, systemic inflammation and
improved glucose homeostasis, with specific effects
noted on visceral white AT, including reduced activation
of inflammatory and lipogenic pathways, browning of
white adipocytes, and increased thermogenesis [47].
Though FGF-19 is known to exert several metabolically
beneficial effects by its actions in the liver that regulate
glucose and cholesterol production [23], recent evidence
in mice further suggests that the improvement of glu-
cose homeostasis after recombinant FGF-15 treatment is
likely due to direct signaling in AT and other metabolic
relevant organs rather than through the known hepatic
effects [48]. Furthermore, previous reports of positive
correlations between circulating FGF-19 and adiponectin
[49, 50] lend further credence to the role of FGF-19 as a
regulator of WAT endocrine and metabolic function. In
accordance with previous research, our findings support
the hypothesis that FGF-19 targets white AT and provide
evidence for the first time in humans that circulating
FGF-19 levels strongly and inversely associate with mito-
chondrial fragmentation of this tissue.
We should note that our study has certain limitations.

Firstly, though our study subjects did not follow a
particular dietary regimen and led a relatively sedentary
lifestyle in the period before surgery, these two factors
were not controlled either before or after surgery. Sec-
ondly, despite the prospective study design, it is not
possible to clarify in the context of this study the precise
mechanism by which each studied surgical procedure al-
ters serum FGF-19 levels, thus further research is re-
quired to clarify this point. However, to our knowledge,
this is the first study to compare serum FGF-19 levels
between these bariatric surgical procedures and to pro-
vide evidence of differential mitochondrial and metabolic
outcomes based on the type of surgical procedure.

Conclusion
In conclusion, elevated serum FGF-19 levels post-surgery
were significantly associated with improved mitochondrial
health in AT, leading to greater control of mitochondrial
gene regulation and overall type-2 diabetes remission.
These increased FGF-19 levels were also observed to be
surgery-specific, with BPD patients achieving better meta-
bolic health outcomes compared to LGCP and LAGB
(BPD > LGCP > LAGB), and highlighting mitochondria in
AT as a promising potential target of FGF-19 during
diabetic recovery following bariatric surgery.
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