

Feeding the Future: Sustainable Urban Agriculture/Vertical Farming 未來糧食保障:可持續的城市垂直農業

Prof Chungui Lu Nottingham Trent University, UK

InnoCarnival, Hong Kong, China, 30th October 2016

Outline

- Introduction
- What is the vertical farming?
- Technologies
- Types of vertical farming
- Case study
- Questions

The School of Animal, Rural & Environmental Sciences Nottingham Trent University

The Queen's anniversary prize for higher and further education

eversary Prize

RESEARCH EXCELLENCE HONOURED

NTU awarded prestigious Queen's Anniversary Prize for our world-class research A comprehensive and multifaceted approach to global challenges of food security

International Conference on Vertical Farming and Urban Agriculture Nottingham, 9-10 Sept 2014 2014

2013

Chelsea flower show Gold medal was awarded

Our challenges in the 21st century

- Climate changing (extreme weather is becoming frequent and severe)
- Increasing global population (7 bn people now, 9-10bn people by 2050)
- Land degradation (natural processes, human activity - water erosion, soils etc, costs ~ \$40 billion annually

Need to feed more people on limited agricultural land

Within 20 Years, 80% of population will live in cities or suburbs

Outline

→ Introduction

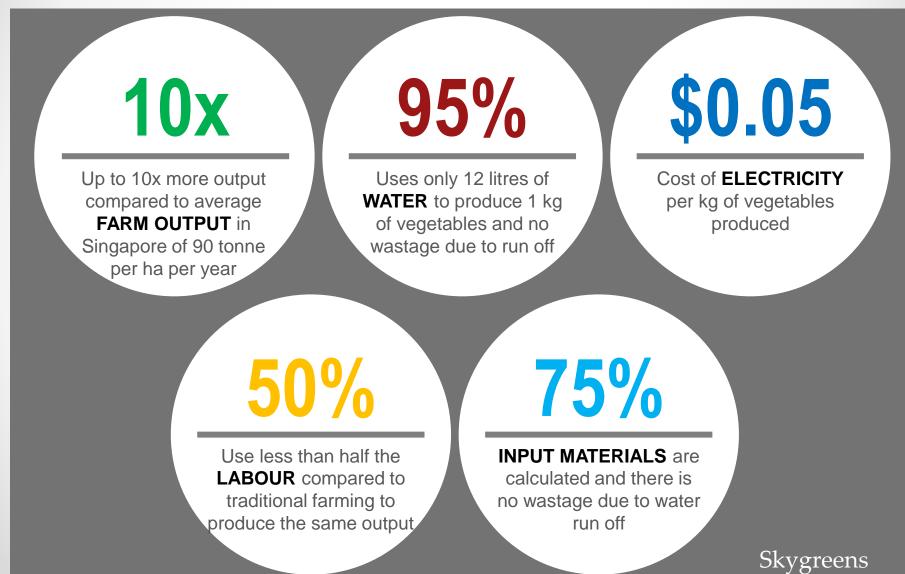
- What is the vertical farming?
- Technologies
- Types of vertical farming
- Case study
- Questions

Vertical farming & urban agriculture

".....indoor agricultural strategies to growing food in protected environment (buildings, glasshouse.....)"

New hope for global food security

What is the vertical farming?


- Cultivating plants or crops within a skyscraper building, greenhouse year round.
- Advanced technologies

 (hydroponics, aeroponics
 LED light, automated multitier vertical growing systems).
- Vertical Farming is "Modern" and "Sustainable" for creating an eco-city.

Benefits from vertical farming

Outline

→ Introduction

What is the vertical farming?

Technologies

- Types of vertical farming
- Case study
- Questions

Vertical farming tool box

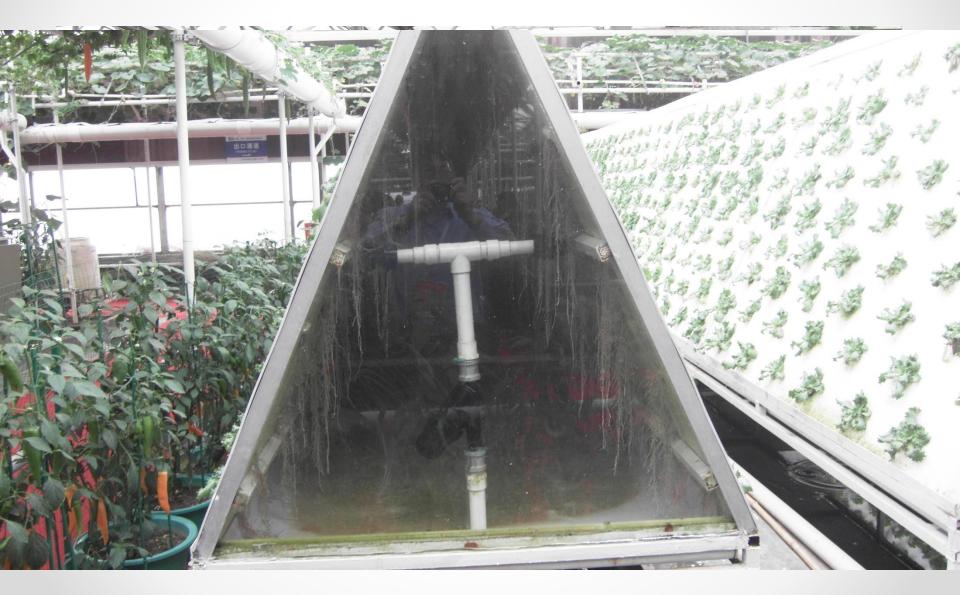
Hydroponics

Aeroponics

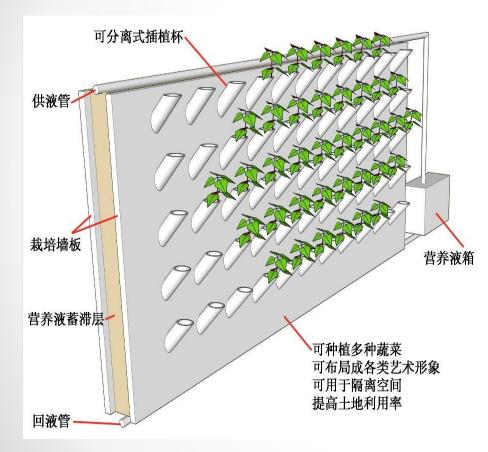
Drip irrigation

Automation

Waste-to-energy Water recapture Passive energy LED lighting

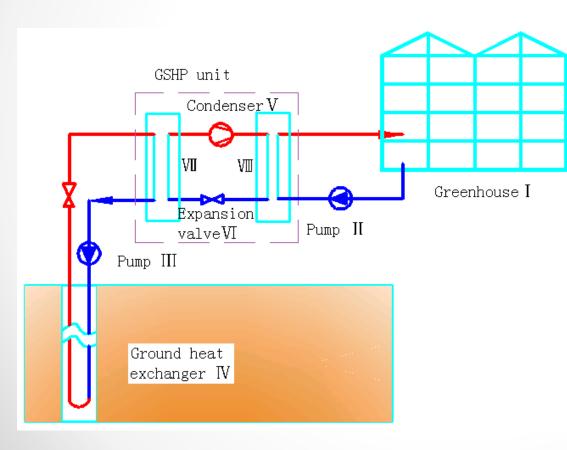


Growing system - Hydroponic


Deep flowing tech (tomato), Nutrient film tech (Lettuce)

Growing system - Aeroponics

Growing system - Vertical culture



Saving-energy in Greenhouse

Application of ground source heat pump in Greenhouse

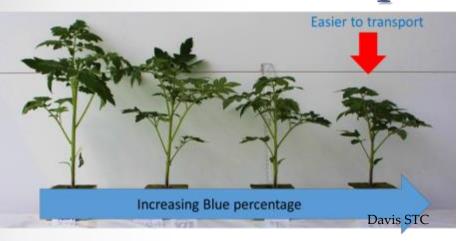
Traditional plant growing lights

-Metal Halide (MH) lights with

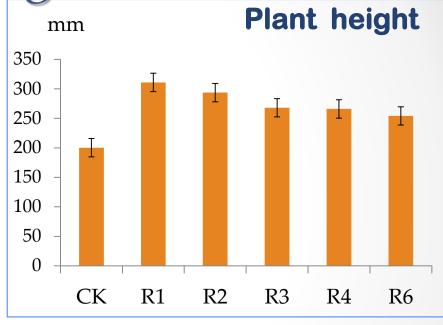
- toxic substances,
- bad recycling,
- lifetime < 10,000 hrs, as well as
- high power consumption and excessive heat generation;

-High Pressure Sodium (HPS) lights with

- mercury and other toxic substances.
- bad recycling,
- lifetime < 18,000 hrs



LED light for plant growth


- LED (light-emitting diode) is a semiconductor light source
- LED provides precise light spectrum from blue (450nm) to red (660nm)
- Achieving significant power savings (80% of power savings) -small size, durability, long lifetime, and cool emitting temperature

The effects of blue light proportion on plant growth

	CK	R1	R2	R3	R4	R5	R6
Blue(%)	/	9	18	27	36	45	54

100% blue light treated: extended hypocotyl petiole

The effects of green light on plant growth and quality in lettuce

+ Green

- Green (RB)

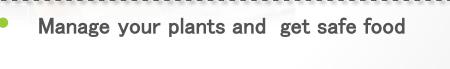
White	RB	RGB			
	Treatments	Total phenolic compounds (mg g ⁻¹ ; FW)	Carotenoids (mg g ⁻¹ ; FW)	DPPH	
	W-CK	1.44 ^{bc}	0.132 ^b	3.16 ^a	
	W-CL	1.50^{b}	0.128 ^b	3.20^{a}	
	RB-CK	1.55 ^b	0.125 ^{bc}	2.70°	
	RGB-CL	1.73 ^a	0.149 ^a	2.93 ^b	
•	RB-CL	1.51 ^b	0.115 ^{cd}	2.82 [°]	

Automation control

Intelligent automated system

Smart Hardware

Cloud Service


Mobile Control

Keep indoor green and eco-friendly

Harvesting vegetables by robotics

Outline

→ Introduction

→ What is the vertical farming?

→ Technologies

Types of vertical farming

Case study

Vertical farm (indoor) category

Hydroponic greenhouse

- ETFE roof
- Automated control
- Energy saving

- Hydroponic growing
- Use sunlight
- Multi-layers vertical growing

In home systems

Aquaponics for water/nutrient reuse

Green wall

Special cultivation

Sweet potato in the air: Completely change the traditional model of cultivation, plant life of up to 5 years, more than 1 ton yield/plant

Vertical arming for others

Aircraft carrier & submarine

NASA project

Desert (Sahara Forest Project in Qatar)

Outline

→ Introduction

→ What is the vertical farming?

→ Technologies

Types of vertical farming

Case study

The rise of vertical farms

Skygreens Vertical Farm – in Singapore Korea's vertical farms – Seoul, Korea Nuvege – Kyoto, Japan National Urban Agriculture Park – Beijing, China Cevesca 2 story VF – Seattle 3 story VF – Jackson, Wyoming

GrowUP & Underground Growing– London, UK

SkyGreens- in Singapore

- World's first commercial VF farm
- Mr Jack Ng the founder of Sky Greens, started the building in 2009, and commercialized in 2012
- The A-Go-Gro vertical systems which are 9m in height (**3 storeys**) in protected greenhouses.

SkyGreens- in Singapore

- Sky Greens Retail Pack leafy vegetables
 - fresh, safe, eat local, eat well

Seoul, Korea

South Korea moving towards vertical farming

AUazeeraEnglish님이 2012.06.5.에 게시

Scientists in South Korea are developing a farming system that could allow food to be grown in any climate, a project that becomes increasingly pressing as the world's population reaches new heights.

좋아요 124개, 싫어요 7개

더보기


Plant Factory, Nuvege Kyoto, Japan

City farms in USA

MIT, City Farm

AeroFarm, New Jersen

The challenge in vertical farms

- More expensive than traditional farming methods
 - High energy consumption is (lighting, heating and power supply)
 - High capital costs associated with the technology
- Can we solve the problems?
 - Increasing resources (energy/nutrients/ water) use efficiency
 - Intelligent automated control system

Acknowledgements

University of Nottingham: Chinese Academy of Agri Sci:

- Nanjun Jiang (PhD student)
- Lorna McAusland (Postdoc)
- Steven Grundy (PhD student)

- Qichang Yang
- Zhonghua Bian (Postdoc)

UNITED KINGDOM · CHINA · MALAYSIA

