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Thesis Abstract

Novel, specific and sensitive biomarkers are prerequisite to improve diagnosis and prognosis
of patients with ovarian cancer. Firstly, a proteomic bottom-up MALDI-TOF mass
spectrometric profiling analysis was conducted on a cohort of sixty serum samples specifically
collected for this purpose. An in-house stepwise Artificial Neural Network (ANN) algorithm
generated a biomarker panel of m/z peaks which differentiated cancer from aged matched
controls with an accuracy of 91% and error of 9%, identities were inferred where possible and
validation conducted using ELISA on the same cohort. Lack of complete verification, or the
ability to verify the full panel lead to an in-depth evaluation of the strategy used with the aim
to repeat with an improved methodology. Following this, a feasibility analysis and evaluation
was performed on the next generation of equipment for sample fractionation prior to analysis
on multiple replicates of stock human serum collected in the same way as the ovarian cohort.
The results of which combined with the limited amount of available ovarian cancer sample
cohort altered the trajectory of the project to the mining of transcriptomic data acquired from
an online data repository. A meta-analysis approach was applied to two carefully selected gene
expression microarray data sets ANNs, Cox Univariate Survival analyses and T-tests were used
to filter genes whose expression were consistently significantly associated with patient survival
times. A list of 56 genes were refined from a potential 37000 gene probes to be taken forward
for verification for which more freely available online resources such as SRING, Kaplan Meier
Plotter and KEGG were utilised. The list of 56 genes of interest were refined to seven using a
larger cohort of transcriptomic data, of the seven one, EDNRA, was selected for translational
verification using immunohistochemistry of a tissue microarray of ovarian cancer specimens.
Significant association is seen with cancer stage, grade and histology. The merits and flaws of

the verification are discussed and future work and direction for research is suggested.

viil



1. Introduction

1.1. General Concepts

1.1.1. Cancer

Cancer will at some point effect most people in Western society (Scotting 2011), nearly 50% of
the population will receive a cancer diagnosis in their lifetime (Ahmad et a/., 2015) and the rest
will most likely know someone directly affected. In the UK in 2012 there were 338,623 new
cases of cancer diagnosed, and 161,823 consequent deaths (Cancer Research UK 2016). Fifty
percent of people diagnosed in 2012 were predicted to survive for 10 years or more (Cancer
Research UK 2016). It is the second most common fatal disease in the UK, following only heart
disease (Scotting 2011).

Cancer is a condition of a cell where it has lost its ability to regulate growth. Cancerous cells
are able to migrate to other organs in the body where they may continue to proliferate
uncontrollably, eventually interfering with homeostatic cell, system and organ function, until
potential complete upheaval then malfunction of tissue function (Cooper 2000).

Mutations in the genetic code can subtly alter genes coding for proteins essential for normal
cell growth, regulation and homeostasis resulting in a traits indicative of cancer; oncogenesis.
Cells containing oncogenes and translated onco-proteins exhibit cancerous phenotypes
involved in the cell regulatory process resulting in uncontrolled growth. Malignant cells are
morphologically, genetically and phenotypically distinguishable from normal tissue (Baba and

Catoi 2007).

Cancer is primarily subcategorised by the origin site of a primary tumour. There are over 100
types of cancer by this definition. However, common characteristics are noted between cancers
of different origins and sometimes treated with the same therapy (Barretina et al,, 2012).
Equally, the diversity of pheno- and genotypes of cancers from one origin organ can be wide
ranging and most subtypes are continually being defined/clarified, notably breast cancer is now
able to be grouped by genotype into specific subtype for a more targeted treatment (Dent et al.,

2007, Banerji et al., 2012 and Caldas and Stingl 2007).

A large proportion of people suffering from or affected by cancer are unaware of the complex

and conflicting/ complex molecular mechanisms in play. Often human characteristics are used
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to attain a lay understanding. Figure 1 is a personification of Hanahan and Weinbergs (2000,
2011) widely used/known depiction of cellular attributes hallmarking cancer. Stickmen
represent how cells within a cancer cell ‘act selfishly’ (Scotting 2011) making (cellular)
environmental alterations for personal gain. The lack of programmed cell death, senescence or
other noble self-limiting traits of non-cancer cells is in disregard to the (cellular) society they
are in. Sooner or later the rebellious actions of the cells, like colonising other tissues; metastasis,
altering existing resources and supply routes; angiogenesis, is destructive to neighbouring and

non-adjacent organs.

Sustaining proliferative
signalling

Resisting ' Evading growth
death SUppressors

Inducing Activating invasion and

angiogenesis metastasis

Activating replicative
immortality

Figure 1. Personification of the Hallmarks of Cancer. An adaptation of Hanahan and Weinburg (2011)
with Illustrated Health (2014)

Each of the cell characteristics used to classify cancer are satirised into a bad human characteristic. The analogy
being; cancer harms the body as some human characteristics do to a society. In the six sections key
characteristics are represented by a pictograms: From the top centre and continuing clockwise: In green multiple
stickmen represent limitless proliferation - overcrowding straining recourses, the hulk-like character in brown
represents increased growth — greed or an inadvertent overpowering by size, in black the tank driver presents
invasion — metastasis, in blue the infinity symbol represents the immortality — lack of a natural death, in red
roadworks symbol a sign well associated with disruption of traffic infrastructure to redirect supply routes,
finally, in grey a character performing a death defying stunt - resisting death.

In 2000 and again in 2011 Hanahan, and Weinberg compiled cancer literature and defined six
hallmarks of cancer, all cancer traits can be categorised as one or more hallmark, phenotypical
of cancers; these are summarised below and a brief example outlined for each.

e Uncontrolled cell proliferation, or the dis-regulation of cell proliferation. Cancer

cells may display up-regulation of cell surface receptors to growth factors, typically



tyrosine kinases, the receptors themselves may be onco-proteins, altered, activating
independently or change in tertiary structure increasing affinity to ligands, or cells may
release the ligands growth factor themselves. Additionally, cancer cells have exhibited
altered glycolic metabolism sometimes preferring aerobic glycolysis when oxygen is
available. In multiple examples an altered/dysfunctional/onco-protein plays a key role
in transmitting or receiving in a negative feedback loop in a cell growth system. Such
examples include PTEN and mTOR kinase, both are normally transducers of a signal
which in normal cell growth are triggered to signal for cessation of further growth.
Evading growth suppressors and un-controlled cell growth. A renowned, well
characterised example of which is Tumour Protein 53 (TP53) protein, responsible for
adjudicating the decision/molecular outcome as to whether a cell proliferates, undergoes
senescence or apoptosis. Mutations in, or faulty production of, 7P53 protein products,
many of which have been characterised, results in a loss authority/governance within
the system.

The ability to induce angiogenesis. Tumours over ~lcm display the ability to induce
the growth of neo-vasculature from otherwise quiescent adjacent blood vessels. Like all
cells the supply of nutrients and removal of waste products is requisite. Descriptively
named -Vascular Endothelial Growth Factor-A (VEGF-A) and downstream effectors of
it have been noted in numerous tumour types, it’s up-regulation is known to be triggered
by hypoxia, a natural consequence of excessive tissue growth.

The ability to invade and metastasise to other organs/sites in the body. Metastasis
is a multistep process sometimes referred to as the invasion-metastasis cascade. Cancer
cells have been shown to release factors, Matrix Metalloproteases, which disrupt the
extracellular cellular bonds and status quo. Further to this cancer cells enter the
lymphatic system bloodstream where they are transported to distant parts of the body
where they settle and continue to mitose/colonise/grow/duplicate.

The ability to evade immune detection. Cancer immunology is a wide and growing
field. Cancerous cells are thus harder to detect by immune system than foreign invaders.
Additionally, if triggered the immune system can exacerbate a cancerous environment
if an inflammatory process is activated releasing cells/biomolecules/creating an
environment to promote tumour growth, nurturing conditions for angiogenesis, cell
growth and proliferation and invasiveness.

Replicative immortality or the lack of programmed cell death. Telomeres are
comprised of repeating hexonuclotides cap each chromosome within a cell nucleus, as

well as having a barrier protective role they are shortened every time the cell undergoes
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mitosis. Telomerase is able to counter this shortening adding hexonucleotides
lengthening the telomeres and increasing the number of mitotic events before
irreparable damage of the DNA chromosome ends thus triggering apoptosis. Up-
regulation of telomerase has become a common trait in the immortalisation of cancer
cell lines.
Eleven years later Hanahan, and Weinberg (2011) narrate the following decades of cancer
research to define two more emerging hallmarks and two enabling characteristics of cancer.
The additional hallmarks are; deregulating cellular energetics and avoiding immune destruction.
The enabling characteristics being genome instability and mutation and tumour promoting
inflammation. The reader is referred to Hanahan and Weinberg (2000) and Hanahan and
Weinberg (2011) for a detailed benchmarking definition and characterisation of the phenotypes

of cancer.

A poignant progression when the literature is summarised, is the change of emphasis from
cancer cells alone, to put them in a scene of a cellular microenvironment, and the contribution

of and communication with pericytes and paracrine signalling (Hanahan and Weinberg 2011).

Identifying and understanding the specific molecular pathways and mechanisms responsible for
the malevolent characteristics of malignant cells will expose ways to detect, treat and even
prevent cancer. Under the premise that molecules such as proteins are secreted from, shed by
or released in response to the tumour microenvironment into the circulation, cancer research

endeavours to detect these molecules for use as a biomarker in serum samples.

1.1.2. Ovarian Cancer

Typical/normal ovarian function: Ovaries are almond shaped structures approximately 2 x 3
x 4 cm located within the female pelvis at the top of the genital tract. Their role is to generate
and release germ cells into the reproductive system. They are suspended in the opening to the
fallopian tubes by ligament and connective tissues called the tunica albuginea, this is covered
by the germinal epithelium which is a simple squamous mesothelium (Peckham et al., 2004).
In the endocrine system, ovaries release oestrogen and progesterone and are stimulated by
gonadotrophin which is released from the anterior pituitary. The ovary is the female gonad, and
is the site of oogenesis within the ovary germ cells mature from Primordial follicles mature to
Secondary, to mature then Graaffian Follicle phase to be released as into fallopian tube

(Peckham et al., 2004). Other cells found within ovarian tissue include epithelium surrounding
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the capsule and stroma creating structural foundation to the tissue. Ovum mature and are
released from the ovary surface as part of the menstrual cycle, corpus luteum cyst is the term
for an ovarian cyst that may burst around the time of menstruation, repair of this action can take
up to 3 months (Adam et al., 2012) Follicular and/or Granulosa cells “are somatic cells of the
sex cord that are closely associated with the developing female gamete” (Adam et al., 2012)

The Anral follicle, also known as a Graafian follicle is the term for the mature ovum cyst prior
to rupture and releasing the ovum into the fimbriae and the fallopian tubes, Folicular fluid

surrounds the ovum and fills the ovum follicle (Adam et al., 2012)
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Figure 2. Histological Anatomy of the Ovary

Annotated from (Peckham et al., 2004) A histological cross section of a human ovary. Stages in oogenesis are
observed and in different locations within the section: Germ cells mature from Primordial follicles to Secondary,
then Mature then Graaffian Follicle phase and are released into the phallopian tube

A subtype of follicle epithelial cells known as border cells are of interest as a cancer model and
have been used as a model in studies researching metastasis on account of their unique
migratory characteristics and ability to invade adjacent tissue; a number of their characteristic
genes have been identified in cancer cell lines (Naora et al., 2005). Primates are often used as
an ovarian model as healthy human ovarian samples are in shorter supply (Adam et al., 2012)

however cannot fully represent a human genome.

Incidence. With approximately 136 new diagnoses each week in 2011 in the UK alone, ovarian
cancer is the 5™ most common cancer in the UK (Cancer Research UK 2015), it is the fourth
most common cancer in US females aged 40-59 and 5th most in US females aged 60-79 (Siegel
et al., 2013).



Survival. The key prognostic for the survival time is the stage and grade at diagnosis (Erickson
et al.,, 2014). A 92%, 5-year survival can be expected from a Stage 1 diagnosis, this drops to
22% at Stage 3. Little changed in 5-year survival rates between 1975 and 2008 (Vaughan et al.,
2012, Siegel et al., 2013). Unfortunately, due to the asymptomatic nature of the early stages, its
insidious growth pattern of the disease and the lack of a sensitive screening tool, over half of

ovarian cancer is diagnosed at Stage 3 or above (Cancer Research UK 2012).

When diagnosed, ovarian cancer can be categorised by stage and grade to determine the
prognosis and direct treatment. Tumour grade refers to cell morphology with the tumour and
the Stage refers to the occurrence and distance of secondary tumours from the primary tumour
site; metastasis. Figure 3 below illustrates the typical abdominal distribution metastasis of a
Stage 3 ovarian cancer. The high morbidity of ovarian cancer is often attributed to the majority
being diagnosed at a later stage. The ability to stratify patients with this heterogeneous disease,
based on identification of molecular pathways, would enable precision treatment and improve
prognosis. Hundreds of genes have been significantly associated with ovarian cancer yet few

have been verified by peer research (Braem et al., 2011).
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Figure 3. Stages in Ovarian Cancer

Adapted from Naora et al., (2005); cancer cells are confined to one (1a) or both (1b) ovaries and may also be
present on the surface of the ovary or ascites (1c). Stage 2; local metastasis where the cancer lesions are also
found in the fallopian tubes or womb (2a), other local organs such as bladder or bowel (2b) and may also be
present in ascites (2c). Stage 3; abdominal metastasis, cancer cells (3a) or larger visible lesions (3b) are found on
the lining of the abdomen, or in the lymph nodes and upper abdomen and or groin (3c). Stage 4; distant
metastasis, tumours found outside of the peritoneum or inside other organs for example within the liver or lungs.

The underlying reason for late stage diagnosis is the asymptomatic nature of the early stage
disease. Few if any symptoms are expected from Stage 1 and 2 disease and indicators of the
later stages often at best vague and easily miss-attributed to general less serious complaints

including; back or abdominal pain, bloating or abnormal menstrual patterns.

Currently, factors known to influence a patients’ survival time from ovarian cancer include but
are not limited to the histology and grade of the tumour (Matuzaki et al., 2015), distance of
metastasis or stage and, if the cancer displays resistance to chemotherapy. Some chemo-
resistant molecular pathways, mainly involved in DNA repair have been demonstrated in some
ovarian cancer cell lines (Marchini ef al., 2013) but this has not yet been extrapolated to apply

to the general population. Specific pathways are discussed at molecular level in (Chapter 5).
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Cytology. As yet, there is no defined pre-malignant stage, as there is in cervical or prostate

cancer (cervical/ prostate intraepithelial neoplasia).

Prognosis. Only 22% of patients diagnosed at Stage 3 are expected to live for 5 or more years,
this is improved to 92% if diagnosed at Stage 1. Other than the increase in reported incidence
in the early part of the 20" century nothing to date has made a dramatic impact on the death

rates from ovarian cancer (Siegel et al., 2013).

Currently there is no screening tool with a performance specific or accurate enough to be

implemented to the general population.

Current Treatment. Despite the continuing study of ovarian cancer cell lines and patient
material with numerous publications implicating novel genes associating with its incidence,
little has changed in the treatment and expected outcome of patients presenting with ovarian
cancer. Platinum based chemotherapy sometimes administered with an adjuvant. A response to
which is seen in approximately 70% of patients, however most will develop a resistance to the
therapy and experience a recurrence of tumour some more aggressively than others (Miller ef
al., 2009). Repeated cycles of platinum therapies are administered for most recurrent disease,
however, typically the length of progression free survival shortens due to chemo-resistance until
the disease is terminal (Marchini et al., 2013). Additionally, not all patients diagnosed with the

disease are eligible for treatment (Erickson et al., 2014)

Chemotherapy. Platinum based chemotherapies act by binding directly to DNA strands and
disrupting the cells ability to divide. Historically cisplatin was the original platinum therapy
this was replaced with Carboplatin which is less toxic to other organs, more recently Oxaplatin
was developed which is still considered an analogue but has been shown to be effective were
resistance to Carboplatin or cisplatin has occurred (Martin et al., 2008). This treatment pathway
yields 50% 1.5-year progression free survival of patients diagnosed with Stage 3 ovarian cancer
20-30% of these patients will progress after this with 10-year survival rates as low as 10%

(Marcus et al., 2014).

More recent therapies target the tumour microenvironment, such as Bevacizumab which
inhibits the angeogenic pathway (Kim et al., 2012). Bevacizumab has been administered as an

adjuvant in disease recurrence after resistance to platinum chemotherapy has occurred with
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some improvement in survival, it has also been trialled as an adjuvant to first line therapy
alongside cisplatin in platinum-sensitive cases (Vaughan et al., 2012). However, resistance to

anti-VEGF agents such as Bevacizumab have been reported (Vaughan et al., 2012).

Preliminary studies have identified some success using immune therapies, were by antigenic
stimulation of T-cells the body’s natural anti-tumour response and can be stimulated to
recognise and eliminate tumour (Vaughan ef al., 2012). Immunotherapy strategies are
developing quickly for many cancers, however, identifying the immunogenic biomarker is a

key prerequisite to this.

Metastatic Pattern, Nomenclature and Peritoneal Cancer. Ovarian cancer metastatic pattern
is distinctive from other cancers in that, although spread is seen and defined by its presence in
local and distant lymph nodes and blood vessels it also ‘seeds’ in to adjacent organs via aescetic
fluid to form numerous lesions across the abdominal cavity (Naora et al., 2005, Vaughan et al.,
2012) as seen in Figure 3. For this reason, the presence of aescitic fluid is associated with a
poor prognosis (Rosano et al., 2011). Surgical removal of innumerable tiny lesions requires
radical surgery at least and could be considered near-futile, thus debulking and adjuvant

chemotherapy is the best possibility.

It has been agreed among experts that what falls under the label ovarian cancer could originate
from a number of tissues of vastly differing in histology. It has been suggested that the term
ovarian cancer replaced with “pelvic” or “peritoneal” but it was agreed to be too confusing to
change the meanings (Vaughan et al., 2012).

Research has shown that metastatic spread is not a random event and that cancer cells can also

be directed by factors such as a chemokine gradient (Scotton et al., 2001).

Immune response in the tumour microenvironment. There is a strong body of evidence
uncovering the role of chemokines and the immune system in orchestrating angiogenesis,
metastatic patterns as well as directing T-cell directed anti-tumour responses and inhibition of
apoptosis in the tumour microenvironment, which is of use for sub-typing and identifying

targets for therapies (Obermajer ef al., 2011, Balkwill et al., 2004, Vaughan ef al., 2012).

Risk Factors.
e First degree female relative with ovarian cancer

e Tobacco smoking



e A postmenopausal status

e age of >50 years

e BRCAI and BRCAZ2 mutations

e Years of oral contraceptive use

e Other pre-existing conditions such as polycystic ovarian disease

e Parity (number of times a woman has given birth to a foetus with a gestational age of

24 weeks or more)

1.1.3. Biomarkers

A biomarker is defined as “a naturally occurring molecule, gene or characteristic by which a
particular pathological or physiological process, disease, etc. can be identified” (Oxford
Dictionaries 2015). Or, a measurable factor that is used to represent a clinical end point (Strimbu

etal., 2011).

In this context, a biomarker is defined as a measurable biochemical found in bodily tissue
believed to be produced by, or in response to, diseased tissue in the body. The objective of
biomarker discovery research is to identify non-invasive methods to detect specific, sensitive
and accurate markers of disease. A specific, sensitive, reliable biomarker may be applied as a
screening tool for the general population to detect early stage disease, or to known sufferers of

a disease to stratify the most appropriate treatment or monitor the progression or reoccurrence.

In a standard clinical setting, biomarkers can be grouped as either:
e Diagnostic: The presence or absence of the biomarker can be used a classifier, to
diagnose a disease or clinical condition.
e Prognostic. The presence or absence of the biomarker can be used to assign a likely
cause of a disease or clinical condition.
e Predictive. Predictive biomarkers can be used to categorise subpopulations of patients
and used as a marker of risk or likely hood of an event. For example, a likely response

to a given therapy.

Biomarker discovery experiments aim to stratify patients according to clinical parameters or
therapeutic response, it can also be the optimal scenario that they also are appropriate target

genes / proteins for therapeutic intervention. For example, in breast cancer an overexpression
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of the Her2/neu receptor correlates with poor prognosis and likelihood of metastasis (Carmen
et al., 2008). It is also the target of therapy, trastuzumab (Herceptin). HAGE (DDX43) has been
shown to be overexpressed in sarcoma, testis and breast solid tumours (Abdel-Fatah et al.,
2014), and, has also shown immunogenic potential with view to be used as an

immunotherapeutic target (Mathieu et al., 2007).

1.1.3.1. Essential and Desirable biomarker properties

A biomarker is only able to progress from scientific discovery to clinical implementation firstly
though extensive scientific peer reviewed research, followed by the rigour of all stages of
clinical trials (de Gramont et al., 2014, Henry et al., 2012 and Goossens et al., 2015), for this
reason there are few new fully approved biomarkers. Anderson (2010) reports the rate at which
novel protein analytes are introduced has stabilised and remained the same for 15 years, at an

average of 1.5 per year.

A clinically useful biomarker test must be:

e Biochemically stable.

e Specific and sensitive enough to minimise the number of false positives and false
negatives respectively. Specificity of >99% and positive predictive value of 10%
(Hays et al., 2010). Jacobs et al., (2004) state most researchers in the area agree at no
more than 1 false positive for every nine true positives and a 99.6% specificity.

A clinically useful biomarker would ideally be:

e Detectable from sample attained from a non-invasive method i.e. urine or blood
sample, not tumour biopsy or exploratory surgery.

e Unaffected by natural variations caused by circadian rhythm, seasonal rhythm, diet,
lifestyle, sex and race.

e In the case of a combination of biomarkers compiling a clinical test, the biomarker
panel must contain no more than four or five biomarkers to make it a marketable tool
(NBDA 2016).

The specificity and sensitivity of a biomarker is needed to calculate the risk to potential patients.
In a clinical setting, false positive results cause unnecessary harmful exploratory surgery or
treatment, false negatives result with disease going undiagnosed or untreated and therefore

likely to worsen.
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Biomarkers currently used in clinical practice to detect or monitor progression of cancer include
Cancer Antigen 15.3 (CA15.3) for breast cancer, Cancer Antigen 19.9 for pancreatic cancer,
Prostate Specific Antigen (PSA) for prostate cancer, Cancer Antigen 125 (CA125) for ovarian
cancer and Carcinoembryonic Antigen (CEA) for colorectal and other cancers (Engwegen et

al., 2006, Hanash et al., 2008).

The predictive performance can sometimes be improved by concurrent measurements, a
biomarker panel. However, less than half of FDA approved biomarkers have more than one
protein analyte (Anderson 2010). Screening strategies may be based on other factors, such as

cytology of a collected specimen for pap smear tests for cervical cancer.

Existing monitoring of ovarian cancer progression or recurrence assays the levels of circulating
Cancer Antigen 125 (CA125) and carcino-embryonic antigen (CEA) in blood, however these
tests are flawed by the natural variation and fluctuations of these proteins resulting in false

positives and unnecessary explorative surgery.

Strimbu et al., (2011) critiques the current conceptual status of biomarkers as clinical diagnostic
tools and identifies room for vast improvement. In clinical settings and studies the use of a
biomarker is often necessary to make a clinical endpoint measurable, however is a reductionist
view and does not allow for consideration of wider influences to the measured system. Strimbu
et al, (2011) concludes that we will only be able to use biomarkers to represent clinical
endpoints when we fully map out and understand all of the biomolecular interactions within
normal physiology which is not currently the case. This notion is also outlined by Hanahan and
Weinburg (2011), who in their decennial review of cancer explain how fully mapping
heterotypic as well as atypical cellular molecular circuits is central to the understanding of
cancer and future personalised or now more realistically “precision” (Goossens et al., 2015)
medicine. They predict that over the next decade mapping of cellular mechanisms will “eclipse”
current knowledge. These advances should increase the confidence in the measured

biomolecules chosen to represent a clinical endpoint.

1.1.4. The Need for Effective Screening Strategies

Nearly 50 years ago the World Health Organisation (WHO) identified the number one priority

for ovarian cancer as being a screen for early stage ovarian cancer in the asymptomatic
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population (Wilson and Junger (1968) in Nossov ef al., (2008)), however, one with the required

specificity or sensitivity is yet to be verified.

Many currently used diagnostic biomarkers and biomarker panels listed above are not specific
or sensitive enough to be implemented as a screening tool; this poor performance also events
in misdiagnosis and false positives which further risks the lives of patients. For example, CA-
125 has a sensitivity and specificity of (85-90%) and is less sensitive to detection the early,
asymptomatic stage ovarian disease where treatment has an enormously greater impact on 5-
year survival, or specific enough to distinguish many benign from malignant growths leading
to unnecessary and harmful investigative biopsy procedures (Timms et al., 2011, Buys et al.,
2011). CA125 is only elevated in 60-80% of ovarian cancer patients, it is more sensitive to the
later stage and serous cancers, however does not perform as well to detect Stage 1 (50%
sensitivity), or other histological subtypes such as mucinous (Marcus ef al., 2014). For every
100 patients with an ovarian cancer screened for CA125 either as follow up for a previous
cancer or for suspected new cancer, 15 will not have a serum CA125 level above the normal
distribution, thus leaving 15 cancer patients with false negative screen and potentially untreated.
Currently, a “high” CA125 blood level (above 351U/ml) followed by a ultrasonogram indicating
ovarian cancer - a positive biomarker screen, would most likely need to be investigated by
explorative surgery to attain a biopsy for a conclusive diagnosis (NICE, 2016). Due to the
location of the ovaries all surgery, even laparoscopic, has associated risks including general

anaesthetic.

Prostate Serum Antigen (PSA) is an example of an unstable biomarker. PSA is a kallikrein
protease expressed exclusively in the epithelial cells of normal, benign and malignant prostate,
(Oesterling et al., 1991). Its measurable presence in the serum make it a convenient biomarker
to detect and monitor prostate cancer and is the main tool utilised for this by the NHS today.
Unfortunately, both false negatives and false positives are common, PSA serum levels are
increased in benign prostatic hyperplasia, in certain ethnic groups, bacterial prostatitis, and
acute urinary retention, all common conditions. Further to this, PSA binds to other circulating
serum proteins so is present in multiple forms bound and unbound (Catalona ef al., 1996) only
the non-bound molecule will be measured. Hence PSA is not accurate enough to rely on alone
to monitor cancer progression or recurrence. An invasive biopsy is the only route more
conclusive diagnosis, although, often still hold question. It is important to identify accurate
biomarkers or biomarker panels to improve diagnosis, monitor progression and predict a

patient’s response to a therapy.
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Other serum biomarkers investigated as potential ovarian cancer screening tools include CA72-
4 or TAG72, CA125, LASA, CA15-3, CA19-9, CA54/61, Serum macrophage colony-
stimulating factor (M-CSF), Monoclonal antibody OVX (OVX1), Lysophosphatidic acid (LPA),
Prostasin, Osteopontin, HE4 (Homosapiens epididymis specific 4, Inhibin, and various
Kallikreins (Jacobs et al., (2004), Nossov et al., (2008)). Table 1 below, summarises some
investigated promising biomarkers of interest from a comprehensive review (Jacobs et al.,
2004). The reader is referred to Jacobs et al., (2004) for a full review on investigating novel
biomarkers, panels combining existing biomarkers and other screening strategies tested in

ovarian cancer worldwide.

Table 1. Past Potential Markers for Ovarian Cancer. Summarised from Jacobs et al., (2004) lists some
select past potential markers for ovarian cancer.
Abbreviation Summary

CA72-4 or Cancer antigen 72 (CA72-4) also known as tumour-associated glycoprotein 72 (TAG 72) is a
glycoprotein surface antigen found in gastric, colon, and ovarian cancer.
TAG 72 . . . .
Higher expression has been observed in mucinous tumours.
It has been investigated as marker panel with CA125 but no conclusive data.

Serum macrophage colony-stimulating factor (M-CSF) is a cytokine released by normal as
M-CSE well as neoplastic ovarian epithelium. I_El_evated levels have been demonstrated in 68% ovarian
cancer compared to 2% of those classified as healthy controls. M-CSF has been shown to be
sensitive in ovarian cancer cases where CA125 is not elevated.

Monoclonal antibody OV X1 specifically binds an antigenic determinant found in ovarian and
breast cells. Combining OV X1 and M-CSF with CA125 yields a higher sensitivity for the
detection of earlier ovarian cancer than CA125 alone. However, the methodology used to

conclude this is susceptible to sample handling instability.

OVX1

Lysophosphatidic acid (LPA) is a bioactive phospholipid has mitogenic potential its functions
with similarity to growth factors. LPA has been shown to stimulate the growth of cancer cells.
LPA Plasma levels of LPA are under investigation as a biomarker of ovarian as well as other
gynaecologic cancer. Increased LPA levels were detected in the plasma 9 of 10 Stage 1
ovarian cancer as well as the later stage disease. This performed with a higher specificity than
the cohort tested.

Prostasin is a serine protease found in prostate gland secretions. Identified as a biomarker after
discovery from microarray platform. RNA of Prostatsin was found to be overexpressed in
ovarian cancer pooled from ovarian cancer and normal human ovarian surface epithelial cell
lines. The sensitivity of both CA125 and prostasin is improved when used in conjunction.

Prostasin

Osteopontin is secreted phosophoprotein. Also, discovered from gene expression profiling.
Osteopontin  Increased levels of osteopontin were found to be cancers from patients with epithelial ovarian
cancer compared with healthy controls, ovarian disease, and other gynecologic cancers

Inhibin Serum inhibin, a natural ovarian product decreases to levels below detection in post-
menopausal women. Some cancers (mucinous, sex cord stromal tumours and granulosa cell)
have been shown to secrete Inhibin hence it’s the basis for a diagnostic test for serum.
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Different forms of Inhibin have been found in serum; free, dimer subunit assays that are able
to detect both forms have shown promising specificity and sensitivity.

Kallikreins are serine proteases, there are 15 identified members of the human kallikrein
Kallikrein family. One of note is Prostate Specific Antigen (PSA) also known as hK3. Two reports have
suggested that hK6 and hK10 have potential a serum biomarkers of ovarian cancer diagnosis.

Several biomarkers for ovarian cancer have been found to be inflammatory markers, such as
chemokines and their receptors, though they have been shown to have the sensitivity to detect
disease, they lack the specificity to distinguish cancer from benign disease, infection or simple
inflammation. For example, overlap has been observed between panels of potential ovarian
cancer and other polycystic ovarian syndrome (Galazis et al, 2012). Furthermore,
inflammatory markers/inflammation is a characteristic that can exacerbate the cancer
environment, tumour cells typically release or stimulate the production of inflammatory
cytokines and as a consequence, avoid detection and elimination by the immune system

(Vaughan, et al., 2012).

Ultrasonography can be used to visualise the ovaries, malignant growths have distinctive
asymmetric, irregular morphology. Doppler imaging can also be used, as reduced blood
flow/pressure is commonly observed in malignant growths due to the lack of smooth muscle in
the endothelium of blood vessels, formed by cancer-induced angiogenesis. Both have been
investigated as a potential screen of the early detection of ovarian cancer. Jacobs ef al., (2004),
Nossov et al., (2008). However, ultrasonography is subject to inter-observer variability of the
radiologists, a study described in (Marcus et al., 2014) found only 25% agreement between
radiologists to identify the focal point of the ovarian cancers and 15% variability in
measurements. This error may be exacerbated by the diverse morphological and metastatic

patterns, tumours surrounded by ascites are viewed more clearly using a CT scan.

Tumour vascularisation has also been used as a prognosticator of survival (Brown et al., 2000).
By simply counting the number of blood vessels in tumour sections, it has been shown that an
increased number of blood vessels correlates with decreased survival. However, this requires a

tumour section and such is thus not suitable for a detection of early disease.

Using combinations of existing screening tools or targeting screening to a high-risk population
1s believed to reduce the number of false positives and reduce exposure to the associated harms

from medical procedures (Buys et al, 2011). A multimodal trial incorporating more than
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ultrasonography together with CA125 monitored over several time periods termed the Risk of
Ovarian Cancer algorithm (ROC) has been shown to increase detection of the diseases (Jacobs
et al. 2004), but none have as yet proved sensitive or specific enough to change NICE guidelines.
For a full historical review of ovarian cancer screening strategies investigated worldwide,
including number of cancers per positive screen, the reader is referred to Jacobs et al. (2004),
the author of which is a key investigator on the United Kingdom Collaborative Trial of Ovarian

Cancer Screening (UKCTOCS) trial (discussed below).

There is also a mandate for an effective tool for the monitoring of disease progression or
recurrence of treated patients (Marcus et al., 2014), identification of low volume metastasis,
and, detection of cancer grade (Vaughan, et al., 2012). However, again, currently CA125 and
ultrasonography are the best available tool for this, however, their performance is poor. A small
study described in Marcus et al., (2014) of 80 patients undergoing a “second look™ surgery,
found no correlation between CA125 levels and tumour burden. They also found little or no
evidence to show that screening for recurrence using CA 125, or physical examination strategies,
improves survival over a patient waiting for symptoms (Marcus et al., 2014). Preliminary
reports from a United States based screening trial based on CA125 and ultrasonography as a
screening strategy, show that screening for detection of early disease does not improve overall
survival, due to the high risk involved in following up a positive test resulting from screening
tools with such low accuracy, i.e. a positive high CA125 level or irregular ultrasonogram was
followed up by a explorative surgery which itself holds significant risk to the said target
population (Vaughan, et al., 2012). One such sizeable US study testing screening strategies in
the general population in fact found a higher mortally rate in the screening arm (Buys et al.,
2011). Buys et al, 2011 attributes an increased mortally to the increased exposure to the

associated harms from medical procedures.

It is accepted that ovarian cancer is a relatively rare yet genotypically diverse disease, in fact
the term ovarian cancer has been described as “a general term for series of molecularly and
etiologically distinct diseases that simply share the same anatomic location” (Vaughan et al.,
2012). A tangible risk of screening a general population with a screening tool of dissatisfactory
accuracy has been demonstrated at the cost of those screened (Buys et al., 2011). Cooperation
and sharing of sample material, data and technology worldwide will speed up the progress of
research, Worldwide organisations-supporting such research include: Ovarian Cancer
Association Consortium (OCAC), The Cancer Genome Atlas (TCGA), United Kingdom

Collaborative Trial of Ovarian Cancer Screening (UKCTOCS), The Australian Ovarian Cancer
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Study (AOCS), OCTIPS (Ovarian Cancer Therapy Innovative Models Prolong Survival) and
Ovarian Tumour Tissue Analysis Consortium (OTTA). It is hoped that these efforts will
generate novel biomarkers that are prerequisite to an effective screening strategies and have
paved the way to access appropriate sample and data cohorts to evaluate emerging biomarkers

on a wide scale across the variety of populations.
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2. Methodological Overview

2.1. Proteomic Approaches to Biomarker Discovery and Onco-proteomics

2.1.1. Proteomic Techniques for Cancer Biomarker Discovery

Due to the heterogeneity of all types of cancer, and the numerous number of molecular changes
that occur in a tumour, it is reasonable to assume that the expression level of one molecule alone
would not provide an indication of cancer status with sufficient sensitivity and specificity. It is
more logical to assume there will be a change in a combination of protein expressions from, or
in response to, a tumour. However, detection and confirmation of multiple smaller changes in

protein expression is a far more complex task (Hanash et al., 2008).

Proteomic biomarker discovery workflows can be segregated into two approaches; top-down
proteomics or bottom-up proteomics. Bottom-up proteomic biomarker discovery workflows
entail recording as much information about a samples proteome as possible (proteome
mapping), then comparing and contrasting the recorded proteomes of two sample groups to
observe the identifiable differences. A bottom-up approach is most fitting to detect the multiple
yet minute changes expected in protein expression, and general biomarker discovery. Top-down
approaches are a targeted methodology focusing on changes in the expression of one or more
markers of interest, the majority of the information on the samples proteome is disregarded to
focus on the changes in presence of this or these key proteins, top-down proteomics is

commonly seen in verification and validation stage experiments.

Protein mapping/profiling studies have evolved since the 1930’s. The number of proteins
identified in serum has exponentially increased as the technology to separate and de-convolute
the proteome has become available (Anderson and Anderson 2002). These studies began with
separating proteins based on their mass using ultracentrifugation. Electrophoretic separations
in liquid, paper, agarose, starch then polyacrylamide followed. The first two dimensional
separation of plasma were published in 1977 (Anderson and Anderson 1977); the number of
proteins isolated and identified from 2D gel electrophoresis steadily increased since then as it
has been coupled with other sample fractionation methods including immune-depletion, size
exclusion, lectin binding, ion exchange and hydrophobic interaction (Anderson and Anderson

2002).
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Identifying proteins using mass spectrometry to measure and match a proteins fragment masses
to those known or calculated in databases of protein amino acid sequences, has become
fundamental to proteomics (Nesvizhskii 2007). Mass spectrometers have evolved dramatically
since their invention yet since their application to proteomics the reliability and accuracy of
mass spectrometry has been unparalleled by any other proteomic identification technique at any
given time (Jennings 2012). Firstly, for the quantification and identification of proteins isolated
using other techniques such as 2D gels or immuno-precipitation. But also for the discovery/

generation of biomarkers themselves.

Current NICE approved biomarker detection tools used in the NHS are mainly based around
the use of labelled antibodies to specifically bind and signal the presence of known biomarkers.
A review of the currently used FDA approved diagnostic assays based on protein measurement
are predominantly immune-assay (approximately 80%) with the remainder being enzyme assay
or in one case a coagulation assay (Anderson 2010). Two key examples include; Enzyme Linked
Immunosorbent Assay (ELISA) analysis of blood or Immunohistochemistry (IHC) on sections
of biopsy sample. Mass spectrometry is accepted mostly as a research and discovery tool,
however, there are a few instances where mass spectrometry and database matching is applied
in clinical laboratories, namely the Bruker BioTyper from Bruker Daltonics. This is used to
classify strains of bacteria (Buchan et al., 2012). Potential future clinical applications protein
biomarkers and mass spectrometry include the iKnife® currently in phase II clinical trials or
Rapid Evaporation Ionisation Mass Spectrometry (REIMS) where the vapour from the cuts of
an electric surgical knife is used as the ionisation source and directly fed in to a mass
spectrometer for near real time detection of cancer biomarkers from tumour reduction surgery’s
(Balog et al., 2013). Immuno-based techniques such as ELISA and IHC are tried, tested and
trusted to measure the presence their known biomarker target protein/s however do not offer
the same scope, speed or accuracy or type of measurement of the targeted mass spectrometric
techniques mentioned. Incorporation of mass spectrometers to clinical laboratories would
require investment in capital equipment and the patient benefit would need to be deemed to

offset this cost by appropriate authorities.

2.1.2. Analysis of the Serum Proteome

Blood serum and plasma are a popular source for biomarker discovery investigations as they
can be easily sampled non-invasively to a patient. It is logical to expect abnormal or altered

expression levels of molecules released from tumours to spread into the circulation, carried
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around the body and be detectable at lower levels in the blood. Although a higher concentration
of a biomarker released from a tumour would be expected nearer the tumour site and diluted
levels in the general circulation. Few biomarkers though have currently been first identified in
tumours and then shown to be present in serum (Hanash ez al., 2008).

The study of the serum proteome is challenged by the huge dynamic range and size of its

constituent proteins and the natural inter- and intra- variation in people (Timms ef al., 2011).
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Figure 4 The Complexity and Challenge of Studying the Human Proteome.

A) The Wide Dynamic Range and Mass of Proteins in Serum. Abundance of measured proteins range over 13
orders of magnitude; the graphics of albumin verses cytokines are approximately to scale. B) Complexity of the
Proteome Compared to the Genome. Splice variants and post translational modifications such as glycosylation
or phosphorylation exponentially increase the possible number of protein species to detect. C) The Increase in
Protein Species Resolved and ldentified in Plasma over a 70-Year Period. Adapted from Anderson and
Anderson (2002) Illustrates how the number of protein species has increased, as new sample preparation
methodologies became available.
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In contrast to the calculated number of coding genes in the human genome, which has been
steadily decreasing discovery (Harrow et al., 2012) the number of proteins being postulated and
discovered in the human proteome is larger and increasing.

As Figure 4a indicates, the abundance of proteins known to be present in the serum, span over
thirteen orders of magnitude, further to this, a plethora of potential splice variants and post
translational modifications increase the size of the possible protein species in the proteome
exponentially. As Figure 4 (inspired from Anderson and Anderson 2002) depicts, the final
count/ exact number of proteins in serum is remains unknown and the estimated number is
expected to steadily increase as the tools to detect them have become more and more sensitive

(Anderson and Anderson 2002).

Any person’s serum proteome is a moving target. Measurable clinically relevant chemical
analytes in serum, including proteins, have been shown to vary to differing extents both,
between different patients within the same demographic group (age and sex) and within an
individual when repeat samples are taken at multiple time points (Harris et al., 1970, Williams
et al., 1978). Inter and intra individual variability poses a huge challenge to biomarker discovery
and validation. This highlights the need for including large numbers of appropriate samples into
a cohort to suitably represent the natural variation of any measured component across a
population, and, if at all possible repeat measurements could be used to establish intra-variation.
However, experimentally the logistics of sampling such appropriate control or comparator
groups is sometimes not possible and as close a match as possible is used instead. This can limit
the ultimate utility of the biomarkers. A biomarker needs to be robust enough to detect a disease

state despite the noise of sample variation to be clinically applicable.

Gil et al., (2015) identified data management to be the current bottle neck in progression of the
omic research. It is still not foreseeably possible to fully enumerate or catalogue the human
plasma/serum proteome. Each generation of discovery platform offers increased sensitivity and
specificity, exponentially advancing computer processing and software provide the capacity to
compile and combine measurements with both existing databases and measurements from other
platforms. For example, Sciex have created the OneOmics Cloud data processing platform
(Sciex 2016, Illumina 2016), where, both gene and protein measurements are compiled from
the same samples.

The holistic aim to study ‘omics’ encompasses the aim to map the full proteome as the ability

to do so into a wider body of data emerges (Gil ef al., 2015). This approach holds promise to
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confront the long-held challenges of proteomics of the wide range in size and abundance of

proteins present, and the innumerable permutations of post translational modifications.

Post translation modifications such as ubiquitination or a proteins activation-state i.e.
phosphorylation or glycosylation can be investigated by extracting phosphopeptides or
glycoproteins using commercially available kits prior to protein identification (Jensen 2004,

Thermo Fisher Scientific 2016).

Many initial biomarker studies searching for biomarkers for ovarian cancer, to distinguish
cancer from control, applied mass spectrometry to search for differences in the expression of
low molecular weight serum proteome by preparing their samples onto specialised surfaces
(SELDI) described more fully in Chapter 3 (Petricoin ef al., (2002); Kozak et al., (2003);
Vlahou et al., (2003); Zhang et al., (2004); Yu et al., (2006); Zhang et al., (2006) Kong ef al.,
(2006)). An et al., 2006 focused on glycans in sera not proteins (An et al., 2006).

2.1.3. Mass Spectrometry and Tandem Mass Spectrometry

A mass spectrometer is an instrument designed to measure the mass of electrically charged
molecules; ions, see Figure 5. Mass spectrometry can be used to quantify known molecules,
identify unknown molecules and further elucidate their chemical structure and properties.

Molecules need to be charged, either positively or negatively, in order to be measured by a mass

spectrometer (Greaves and Roboz 2014).

2.1.3.1. An Historic Summary

It could be said that mass spectrometry was an incidental discovery by Physicist J. J. Thomson
whilst researching cathode rays in the late 1800s (1889). The first “mass spectrometers” were
invented whilst attempting to prove the existence of electrons, and later to investigate the
masses of charged atoms. Since then the technology of the mass spectrometry field has evolved

and the breadth of application widened unimaginably (Griffiths 2008).

Fundamentally, all molecules have an electromagnetic characteristic/charge. By applying
electromagnetic fields to molecules trapped within a vacuum it is possible to trap or direct
/control their trajectory. Hence mass spectrometry is used to separate molecules based on their

mass to charge ratio (m/z). In lay terms, molecules are weighed using mass spectrometers.
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Key developments that advanced the field include:

The development and application to wider fields than physics by Alfred Nier (1911-1994), who,
amongst countless accomplishments developed the 60° sector field instrument, the first widely
used mass spectrometer, and as a spontaneous collaboration, separated the >*Uranium isotope
prompting researchers in the Manhattan Project, which began the nuclear age (Nier (1991),
Griffiths 2008).

Increased resolution. Marshall and Camiasow in the 1970’s were the first to apply furrier

transform (FT) method, a mathematical function, and altered the ion path at detection to
enhance deconvolution of wave data to interpret and vastly increase the resolution of recorded

MS data (Griffiths 2008).

Identification of unknown compounds. The concept and development of identification of
unknown compounds using database matching by McLafferty, Beinman and Djerassi in the
1960’s and 70’s where systematic experiments data-basing/recording the fragmentation
characteristics of each class of organic molecule thus opening the field to the identification of
unknown molecules (Griffiths 2008).

Inclusion in proteomics. Most relevantly to this document, the introduction of soft ionisation of

analytes via either MALDI or ESI, opening the technique to large organic molecules, proteins,
DNA and complex carbohydrates.

It was in the 1980’s when the two methods of soft ionisation (section 2.1.3.2) were developed
that mass spectrometry was opened to and advanced biology and proteomics (Fenn 2002,
Hillenkamp and Karas 2000). Mainly because it enabled the analysis and identification of
protein opening the technology to biology - proteomics (Griffiths 2008). Prior to the advent of
soft ionisation MS was mostly applied to small organic molecules. Larger organic molecules,
proteins, oligonucleotides, lipids and complex carbohydrates were of interest however suffered
excessive fragmentation or degradation prior to analysis during the ionisation into a gaseous
phase (Griffiths 2008).

ESI came from Fen in the US Fenn (2002). The matrix assisted element of MALDI came from
Hillenkamp and Karas of Germany (Hillenkamp and Karas 2000) and the laser desorption part
from Tanaka in of Shimadzu Corp (Japan). Although Fenn and Tanaka, not Hillencamp were

credited with the 2002 Nobel Prize for soft ionisation techniques (Griffiths 2008).

The fundamental components of MS are as follows: source, analyser detector. Analytes are
ionised in the source prior to separation in the mass analyser, the detector counts/senses the

frequency of ions as they contact it and converts this information into a digital output.
23



' Vacuum pumps |

Inlet ) s Mass Analyser Ion Detector _}_)
Sample ! ]
| Gas Phase Ions Ion Sorting Ion Detector [ :
‘ ‘ atit 0
1
1
v

Introduction

Data L
Analysis |

0

Figure 5. The Basic Components of a Mass Spectrometer.

A schematic diagram of a typical mass spectrometer: samples are introduced in a gaseous phase in at the source,
separated based on m/z in the mass analyser and counted at the detector the process happens under vacuum and
the system is controlled by an online PC.

2.1.3.2. Soft Ionisation: Matrix Assisted Laser Desorption Ionisation (MALDI) and
Electrospray lonisation (ESI)

Matrix Assisted Laser Desorption Ionisation (MALDI):

When using MALDI, the analyte is mixed with a chemical matrix, and dried to a crystal on a
metal target plate, a high-power laser is then fired at the crystal, the energy is preferentially
absorbed then transferred through chemical matrices causing excitation and ionisation of the
matrix-analyte crystal into a gaseous phase plume ready for separation and detection. A
progression from the original application of laser desorption method for biological molecules
developed by Tanaka ef al., 1988, analyte was dissolved in a mixture of glycerol and metal
nano-particles to convey the laser energy (Griftiths 2008). The vast majority of MALDI uses
matrix the most common of which are 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid),
a-cyano-4-hydroxycinnamic acid (CHCA, alpha-cyano or alpha-matrix) and 2,5-

dihydroxybenzoic acid (DHB) respectively for small medium and large organic molecules.

In the example of serum proteome analysis using MALDI-TOF-MS, small amounts of sera are
combined with the matrix and spotted on to a specialised steel target plate. SA can be used for

analysis of intact proteins whereas CHCA can be used for digested peptides.

The matrix-sample amalgam is then pipetted into a small spot and left to dry. Upon close
inspection, the spot will have a crystalline formation. The crystal formation is closely related to
the amount, concentration, distribution, dissolution and nature of the proteins in the sample.

Depending on the make and model of the MS, the target plate can contain any number of spots
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(up to hundreds of spots), each spot potentially containing a separate sample. The target plate

is then inserted into the mass analyser through an air lock and the source area brought to vacuum.

An ultraviolet laser is fired in pulses at each sample location in turn. Each firing of the laser
separately desorbs the sample from its crystallised matric into a tiny gaseous plume. It is
assumed that for each desorbed ion will acquire one proton from the matrix mixture. Thus, all
ions are singly charged in a positive state. As the samples are separated on their mass to charge
ratio (m/z) if all the molecules of the analytes carry a single positive charge the only property
that will cause them to have different flight paths down the flight tube will be their mass.
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Figure 6. Matrix Assisted Laser Desorption Ionisation (MALDI).

A schematic diagram depicting sample-matrix crystal of one of multiple spots on a steel target. Sample is ionised
via a UV laser exciting transferring energy through the chemical matrix. One positive charge is transferred to
each ion.

Ions generated from MALDI are all predominantly singly charged (=+1), however occasionally
a second or third proton is imparted. This simplifies and almost negates the need for calculation

mass using the m/z ratio (Perkel 2012).

Surface Enhanced Laser Desorption Ionisation (SELDI), such as Cyphergens’s ProteinChip ©
arrays are a version of MALDI, in which, a sample/analyte/protein is prepared directly onto the
specialised surface on a chip platform (Tang et al., 2004). The chip coating is comprised of a
factor such as a receptor ligand, antibody, hydrophobic, hydrophilic, cationic or anionic
substance to immobilise specific components for analysis. Only components of the
sample/analyte/protein complementary to the chip surface will be retained during a wash phase.
Examples include Hydrophobic ProteinChips, Weak Cation exchange ProteinChips (WCX2),

Strong anion exchange ProteinChips (SAX2), Immobilised metal affinity ProteinChip surfaces
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(IMAC) or Immobilised copper ProteinChip surfaces (IMAC3 ) (Roboz 2005) which will bind
different analytes/proteins with greater or less affinity depending on the properties of their

constituent amino acids.

Hillencamp, a pioneer of MALDI (Hillenkamp and Karas 2000), views MALDI to be
“competing and complementary” to ESI (Griffiths 2008), some experiments could be conducted
using either a MALDI or ESI source, however some would be better suited to one. Some
molecules would not be identified using one or the other. As analytes are dried using MALDI,
it is more tolerant of contaminants such as salts. ESI is better suited to coupling to liquid
chromatography increasing the directionality, and data acquired from an experiment (Griffiths
2008). Multiply charged ions are thought to fragment better if singly charged (Perkel 2012),
making MALDI a more challenging platform for fragmentation and consequently protein
identification. Further to this, the possibility of multiply charging ions provided by ESI,
increases the likelihood of detection of those on the cusp of the detection range in their singly
charged state. Thus, ESI enhances the analysis of larger molecules (Perkel 2012). Researchers
are challenged to choose an instrument best suited to their individual work demands, ESI and
MALDI have been the two main soft ionisation options for many years. However, an increasing

number of ambient sources are being development for bespoke purposes.

Electrospray Ionisation (ESI):

ESI, was a modification of a current high voltage ionisation where non-volatile solutes analytes
such as proteins were first dissolved in solvents (Griffiths 2008). A high voltage is applied to a
spray of the solution creating charged micro droplets. The solvent evaporates leaving the
gaseous analyte with one or more charges. As depicted below, during the evaporation of the
solvent, analyte molecules can be left with varying number of positive charges, multiply
charged species of the same molecule may exist +1, +2, +3. The speed an ion will travel through

the mass analyser is reduced as the charge it holds increases.
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Figure 7. Electrospray Ionisation (ESI).

A schematic diagram adapted vastly from (Gates 2009) depicting ESI, high voltage is applied to the exterior of a
probe through which an analyte dissolved in a solvent is being sprayed. A gaseous plume of droplets is created in
front of the inlet to the MS. Solvent evaporates leaving a gas phase analyte which has retained one or more
charges.

Ambient Sources

During the popularity and common usage of ESI or MALDI in a biological/proteomic research
lab setting, alternative ionisation techniques have continued into emerge, especially in the
context of clinical setting and precision medicine. A key goal in the applicability of these
technologies is the ideal that a clinical sample could be analysed with minimal or no sample
preparation and fed directly into the mass analyser. For this reason, they can be grouped as
“ambient” sources, these include:

e Desorption Electrospray lonisation (DESI), where an electro-statically charged mist is
passed over a liquid sample and the pneumatic perturbation of the surface, fires sample
particulates into the analyser inlet (Takats et al., 2014).

e Acoustic mass spectrometry, where sound waves are used to eject a droplet from a wave
and disrupt it into a spray with partials fine enough to effectively release analyte
molecules into the mass analyser (Ho et al, 2011).

e Rapid Evaporative lonisation Mass Spectrometry (REIMS) where a sample heated and
the vapour from a sample is directed into the mass analyser. One such example is the

iKnife© described above (Balog et al., 2013).
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2.1.3.3. Mass Analysers

Separation of ions occurs in the mass analyser, after ionisation and before detection. Separation
of ions is done using at least one of the following; Time of Flight (TOF), Quadrupole,
Quadrupole ion Trap (QTrap), Ion Cyclotron Resonance (ICR), Electrostatic Sector Mass
Analyser or a Magnetic Sector Mass Analyser (Greaves and Roboz 2014).

TOF, Quadrupole and ion traps are most commonly seen in proteomics/clinical research

laboratories and will be summarised below.

Time of flight (TOF):

Using TOF, gas phase ions are accelerated down a flight tube. If all the ions carry the same
charge their kinetic energy will be equal and the only thing effecting their velocity is mass. lons
with a lower mass will reach the end of a flight tube faster than ions with a larger mass and

equal charge. Thus, they have a lower m/z ratio (Greaves and Roboz 2014).

Most TOF analysers can be run in linear or reflectron mode. In linear mode, desorbed ions
travel down a straight flight path to a detector located at the opposite end to the source. In
reflectron mode, an ion mirror at the end of a linear flight tube deflects their trajectory toward
a detector in a different location, this may be at an <90° angle flight tube or back at the base of
the flight tube near the source. Reflection is applied to extend the flight path enabling better
resolving power. The separation distance between ions of a similar mass will increase the
further their flight path, the longer the flight tube the higher the resolution and sensitivity to

smaller masses.
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Figure 8. Linear and Reflectron Mode of the MALDI-TOF-MS.
A schematic diagram of the ion mirror increasing the flight path in reflectron mode allowing amplified
separation then analyses of the smaller molecules.

The laser of the MALDI-TOF-MS is often fired in a raster (at regular points across the dried
spot of sample) to ensure even sampling from all areas of the spot. Alternatively, some models,
including the Bruker UltrafleXtreme offer an auto-quality function, in which, the areas of the
crystallised sample that yield the highest signal ‘hot spots’ are automatically ascertained and
the laser is focused on these locations for data acquisition. Spectra acquired in auto-quality
mode will have lower background noise and higher intensity signal in comparison to that
acquired in Rasta mode, where data is acquired from evenly spaced locations across the sample

spot. A good signal to noise ratio is necessary to distinguish low intensity peptide species.

Magnetic and electrostatic sector field mass analysers are similar to TOF in that ions are
directed down a flight tube with a detector at the far end. However, in this case the flight tube
is not straight, a magnetic/electric force is applied at the bend of the flight tube. The force will
affect each ion differently depending on its m/z. Only ions of a specific m/z flight path will be

altered at the correct trajectory to reach the far end and hit the detector (Greaves and Roboz
2014).

The principal of using specific electric forces to direct and separate ions by influencing their

flight path is key to most mass analysers.
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Quadrupoles: As its name suggests a quadrupole is structure of four steel poles positioned
longitudinally and equidistant along an ion flight path. Electrical currents are applied to the
poles and surrounding environment to separate ions based on their mass and charge properties.
A DC is applied at the base of the poles to give the ions a forward trajectory down the centre of
the four poles. The quad of poles act as two pairs, each pole is twinned with the one on the
opposite side of the ion flight path. Specific electrical currents are applied to each pair and
alternately switched from positive to negative creating two sinusoidal electrical fields at a 180-
degree orientation as they oscillate create a circle of electrical force. lons will have a spiral
motion path as they are attracted to and repelled from each pole as they pass. The amount the
poles voltage influences the flight path of the ion is dependent on its m/z charge. At any given
set of voltages, only ions of a specific m/z will be directed to the end of the flight path without
hitting the edge or being thrown out. Thus, the quadrupole selectively filters out ions that are
not the intended m/z (Greaves and Roboz 2014).

Ion traps work using the same principal where instead of directing in ions along forward path,

the electrical fields trap them in repeating shape or orbit (Greaves and Roboz 2014).

2.1.3.4. Tandem Mass Spectrometry

Within a mass spectrometer, ions can be deliberately broken down/fragmented to measure the
masses of their resulting fragments (McLafferty 1981, Hoffman 1996, Greaves and Roboz
2014). The masses of these fragments can then be used to ascertain the chemical makeup and
infer the identity of the parent ion (Hoffman 1996, Nesvizhskii 2007). For small molecule ions
or short peptide ions the fragment masses can only be matched (within an appropriate tolerance)
to the known mass of one or more element/compound. Thus, making its identity unequivocal.
For larger molecules and the majority of protein/peptide experiments, this needs to be done by
best matching the mass difference between fragment peaks to known masses of elements and
compounds and incrementally compiling these in the order the parent ion fragmented them.
This method is based on assumptions such as; the ion has been successfully and thoroughly
fragmented to create a fragment at each stage of destruction/deterioration of the parent ion, or,
in a peptide experiment that the beginning and end fragment is signified by a peak difference
the same mass as the amino acid cleavage site target of the proteolytic enzyme used
(Nesvizhskii 2007).

Ions are fragmented within a mass spectrometer by different means depending on the model
and type of the mass spectrometer. These include, an increased laser power when using laser

desorption ionisation, within the vacuum of the mass spectrometer a high voltage can induce
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fragmentation to ions isolated along the flight path, or ions can be directed through a "collision
cell” where ions traveling along the flight path current collide with molecules of a known gas
which inhabits the collision cell, the force physical force of the collision fragments the ions
(McLafferty 1981, Hoffman 1996, Greaves and Roboz 2014). Additionally, ions may be

inadvertently fragment at the source, ion source decay.

For MALDI-TOF-MS/MS ions are desorbed from the target using a significantly higher laser
power than that used for the spectra of parent ions. Once desorbed the fragmented MS/MS ions
are detected the same was as they are in MS some designs include devices to boost detection of
fragment ions. The Bruker Ultraflex III utilises such technology, where a "LIFT" cell is inserted
into the ion flight path in MS/MS mode to add velocity to fragment ions, their improved
acceleration increased the number that reach the detector for measurement (Suckau ez al., 2003).
In tandem mass spectrometry, each peak detected has two identifying features; its mass, and the

parent mass from which is was fragmented.
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Figure 9. Peptide Backbone Fragmentation.

A schematic diagram depicting ion fragmentation. Coloured lines depict where the molecule would fragment and
the common nomenclature for the fragment ions until they are matched to a known mass and assigned an
identity.

Figure 9 (above) depicts a peptide ion, the coloured lines depict where the peptide would
fragment in the mass spectrometer. Until they are matched either manually or automatically to
a known entity the common terminology for the fragmented ions is from the carboxyl terminus
from “z, y, x” and from the N terminus “a, b, ¢” A consensus between the distance of each of

the “b” ions and each of the “y” ion is used to measure assign the unique amino acid identity.
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2.1.4. Mass Spectrometry Approaches/Techniques used for Biomarker Discovery

Since its development in the 1980's MALDI mass spectrometry has been applied to protein
samples to separate them based on their mass to charge ratio. Identifying proteins using mass
spectrometry relies on databases of hypothetical protein masses derived from genomic sequence

information.

Protein Identification Using Mass Spectrometry. Inside a mass spectrometer charged ions,
for example enzymatically digested peptides, can be isolated and fragmented further i.e. to the
amino acid level. The identity of the amino acids sequence can be derived from the fragment
masses and possible protein identity calculated using online databases such as Mascot (Perkins

et al., 1999).

ESI and MALDI, are the two MS techniques applicable to biological molecules, they work on
different concepts, variation in the properties of analyte fragment ions mean some are better

detected using one platform than the other, thus their results are complimentary.

MALDI: Popularity of biomarker discovery via MALDI or SELDI-MS peaked in early to mid-
2000s; numerous groups published mass values of peptides identified from mass spectra that
were significantly differentially expressed in ovarian cancer, control or benign (see Table 3
section 3). Failure to reproduce findings or give meaning to the mass values of ions that
discriminated the cancer cohorts damaged the image and trust/confidence in its use. This is
reflected by a drop in the number of publications from MALDI-TOF-MS data (Albrethsen
2011). To confirm any potential novel biomarker findings results must be reproduced on either

or both of; a second technological platform and a separate sample cohort.

MALDI mass spectrometers do not produce numerically quantitative data. Amino acids behave
differently in the ionisation and desorption phase depending on their efficacy to transfer energy
when excited. Consequently, some proteins will ionise and be detected more easily than others
depending on their amino acid composition (Benk and Roesli 2012). However, the data can be

treated as relatively quantitative.
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2.1.5. Sample Fractionation and Liquid Chromatography

2.1.5.1. Reducing Sample Complexity

Fractionating a serum sample, prior to a bottom-up analysis, allows access to identify lower
abundant proteins (Faca et al., 2007), the total protein content of each fraction will be lower
than the whole sample thus decreasing the overlap of proteins in any one dimension, which
potentially masks lower abundant proteins which share the same properties. In mass
spectrometry, this is termed “ion suppression" (Mallick ez al., 2010). The strength of the signal
from detection of highly abundant proteins, expressed at several orders of magnitude more than
lower abundant proteins, masks the detection of the latter. Fractionating samples reduces the
complexity of each fraction of a sample to be analysed, thus increasing the potential to see the
proteins expressed in smaller amounts. However, fractionation reduces the sample throughput.
Firstly, due to the time taken to perform the fractionation steps to the sample and, secondly each

fraction then needs to be analysed separately.

Albumin, the most abundant protein in human serum, can be extracted using commercially
available kits (Margulies and Shevack 1996). This vastly reduces signal suppression of lower
abundant proteins allowing their investigation, evaluation and analyses. However, anything
bound to the albumin fraction is lost, some researchers have chosen to focus on the albumin

and its bound proteins; the albuminome (Gundry and Cotter 2007, Gundry et al., 2007)

Other fractionation techniques used to deconvolute a sample include; immunodepletion of the
high abundance proteins (Tang ef al., 2013), separation by pl isoelectric focusing (Stein et al.,
2013), this can be done to whole proteins after proteolytic digestion and most commonly reverse
phase liquid chromatography using Cs, Cig or strong or weak cation exchange (SCX WCX)
media packed into a column or pipette tip (Chen et al., 2009).

2.1.5.2. The Mechanics of and Sources of Variability in Liquid Chromatography

Liquid chromatography (LC) or liquid chromatographic gradients are often employed upstream
of mass spectrometric analysis as a means to fractionate or deconvolute samples. As defined by
the International Union of Pure and Applied Chemistry (IUPAC) Chromatography is “a physical
method of separation in which the components to be separated are distributed between two

phases, one of which is stationary and the other moves in direction” (Ettre 1993). High
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Performance Liquid Chromatography (HPLC), developed in the 1970s (Hager 2008), is a
process where analytes are passed through a column packed with microscopic particles with a
deliberately engineered surface chemistry; the stationary phase. The column is washed through
with an analyte followed by solvents of differing strengths/properties; the mobile phase. The
components of the analyte interact with the particle surfaces and retains components with
affinity, changes in the composition of the mobile phase as it is washed through alters the
chemistry of the environment surrounding the interactions. Components within the analyte are
separated based on their affinity to bind in the altering environment. Polar compounds prefer
the mobile phase environment whereas non-polar compounds favour the stationary phase, the
mobile phase flow may be isocratic or a gradient of continuously increasing solvent. As the
solvent concentration of a mobile phase increases it becomes a favourable environment for
more of the molecules bound to the surface, thus components of the analyte are separated based
on their differential interactions between the mobile and stationary phase. The chromatographic
separation does not need to be coupled to a mass spectrometer, detection of the eluted sample
may also be via UV, fluorescence, Refractive Index, Conductivity, Evaporative Light Screening
Detection (ELSD) and Charged Aerosol Detection (CAD). The retention time (tr) of a
compound is the measured time from injection of the sample into the system to the elution of
the peak at its highest point. Retention factor (k), is the amount of a molecule that remains
bound in the solid phase in proportion to that eluted into the mobile phase. A goal of liquid
chromatography is for all identical molecules within an analyte to elute from the column with
the same tz both within one experiment and when measured on multiple occasions; a
reproducible tz. Factors effecting tz variation include: the differing length of possible route
identical molecules take around and through the packed particles in the column known as "the
multipath" effect or Eddy Diffusion, the dispersion via random molecular diffusion of identical
molecules within the mobile phase after they have eluted, the strength of the interactions from

the particles surface chemistry and temperature (Snyder, Kirkland and Dolan., 2010).

Since the 1970's technological developments in column production, namely the engineering of
silica particle attributes, have made HPLC a robust and reproducible platform with wide
reaching applications. Purity of the silica from metal ions, associated with the production
process, has steadily improved since the 1980s. Regulation of particle size and consistency
minimise the multipath effect by standardising the path lengths taken by compounds within an
analyte as they travel through the column thus increasing the reproducibility of their tz. The
move to solid core/ superficially porous silica particles has the same result, analyte will only

travel the prescribed distance throughout the outer layer of the particle. Designing the terrain
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of the particle surface to make be a smooth sphere with pores of regulated shape can firstly,
further standardise the path lengths and number of interactions between the analyte and
stationary phase and secondly, as a means to filter analyte based on size exclusion. Compounds
too large to enter the pores are unable to bind with the surface within them. Smaller particles
increase the overall column surface, as does pore size. The pores throughout silica particles
provide over 99% of the surface area. The longer the column length the larger the
chromatographic effect and distance between different molecules within an analyte. Column
ovens regulate column temperature ensuring the consistency of the environment sample
injections. Increasing flow rates minimises the opportunity for identically eluted molecules to
spread by random molecular diffusion. Ultra-HPLC (UHPLC) describes the use of HPLC at a
lower volumes and higher pressure to increase sensitivity and resolution for working with
smaller volumes. The van Deemter Equation (van Deemter et al., 1956) is used to compute all
the potential factors effecting retention time spread, and column efficiency. Efficiency is

measured in Theoretical plates (Snyder, Kirkland and Dolan, 2010)

The van Deemter Equation:
Theoretical Plate Height = Eddy Diffusion (multi-path effect) + (random molecular diffusion /

velocity) + (mass transfer between phases x velocity)

Theoretical plates are a model to measure column efficiency and performance. The various
factors effecting a columns efficacy and the result can be calculated and conceptualised as
layers within the column, theoretical plates. The more plates the column has the greater its

efficacy at separating compounds within a sample.

Different modes of HPLC include: reversed-phase where the sample is bound to and then eluted
from a column, ion exchange where the bonds between the analyte require and anion or cation
exchange, size exclusion, Hydrophilic Interaction Chromatography (HILIC) where surface
chemistry is added to another to encourage water molecules to the surface for a hydrophilic
environment, Chiral, Affinity, Hydrophobic Interaction. lon pairing is when an intermediate
chemical with a higher affinity to an analyte of interest is used to bind to the column and act as
an intermediary (Majors 2012). However, reverse-phase is the most commonly used by far 93%
(Majors 2012). Hydrocarbon chains of 18, 8 or 4 are a commonly used surface chemistry for
the solid phase. Majors 2012 states Cis to be the most commonly used (38%), followed by Cs
(22%), Phenyl (16%), CN (10%), Fluorinated (6%), C4 (4%), Graphitised carbon (2%) and
longer than Cis(2%).
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2.1.5.3. Deconvolution of Complex Biological Samples Using Liquid Chromatography

In a typical proteomic reverse-phase Cig LC-MS experiment aiming to fractionate a complex
biological protein extract, a complex sample is passed through the analytical column containing
Cis media, molecules with a corresponding surface chemistry i.e. hydrophobic peptides bind
with varying degrees to the resin within the column. The proteins bind to, and are eluted from,
the column at increasing concentrations of an organic solvent within the mobile phase. More
relevantly, using LC, proteins within a serum sample can be bound to and then separated from
a Cig column based on their affinity to bind to the chains of 18 carbons attached to the surface
of the silica in the presence of a solvent such as acetonitrile or methanol.

Depending on the downstream analysis the column eluate can either be monitored in real time

or in periodical fractions collected and analysed, now at a greater detail than the original sample.

LC systems are often coupled to an electrospray mass spectrometer for a continuous mass

spectral analysis of the sample as it is eluted at an increasing concentration from the column.
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Figure 10. Liquid Chromatographic Separation Coupled to Mass Spectrometric Detection.

a) a representation of a complex protein sample containing proteins of varying sizes and biochemical properties
represented by their size and dotted/dashed/solid border; b) depicts how the peptides are first separated to fractions
based on their biochemical properties by their affinity to a solid phase inside an LC column c) in the mass
spectrometer fractionated proteins within the sample are separated by mass d) Heat map generated by Bruker
software of a serum sample analysed by LC-MALDI-TOF. The 384 fractions spotted over an 80-minute gradient
of increasing solvent eluting proteins from a Cig solid phase is plotted on the Y axis, mass to charge ratio is plotted
on the X axis, brighter colours represent a higher intensity. ) is a MS/MS spectrum of a peptide fragmentation
with annotations assigning amino acid identities derived from the fragment masses, these could be imagined as the
Z dimension of the heat map in d. See also Figure 9.
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When using LC-ESI a sample analyte is in liquid form and is directly fed into the mass
spectrometer as it ionises at the source inline/online as it is eluted from the analytic column.
This is different to LC-MALDI as the sample needs to be mixed with a chemical matrix and
dried to a crystal as a spot on a MALDI target plate first, this is prepared separately to entering

the mass spectrometer so can be referred to as an offline separation.

2.1.6. Advantages or Disadvantages of Tagging in MALDI-TOF-MS.

Proteins can be labelled before MALDI analysis to enable a quantitation of results. These
methods include: Isotope tagging, isotope coded affinity tagging (ICAT) late 1990s (Benk and
Roesli 2012), Stable isotope labelling with amino acids in cell culture (SILAC), Isobaric
tagging for relative and absolute quantitation (iITRAQ), Isotope-coded protein labelling (ICPL),
Tandem mass tags (TMT).

Other than the obvious advantage that tagging produces exact quantitation of peaks proteins,
tagging protocols also have high reproducibility as samples are normally pooled to be analysed
Christoforou and Lilley 2011). On the other hand, not only are the tagging systems listed above
costly, there e is a limit of how many comparisons can be made in one experiment. Pooling
samples is disadvantageous as it dilutes signal from each sample. Labelling protocols increase
sample handling which gives opportunity for variation, error and loss of sample material.
Isobaric tagging has been shown to decrease accuracy if not incorporated into methods

appropriately (Christoforou and Lilley 2011).

2.1.7. Label Free Quantitation Techniques

Quantitative mass spectrometry data from methods not using labelling has been gathered using
one of two approaches (Benk and Roesli 2012):

e Area under the curve (AUC) of precursor ion peaks. This approach assumes that the

amount of protein present for detection from a sample is directly correlated with the

amount detected.

e Methods counting MS? spectra of parent ions calculated to belong to one protein. Again,
this makes the assumption the amount of protein detected is correlated with the amount

of sample loaded, and, the time the spectra is collected for.
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A trade-off of a more accurate quantitation in exchange for less sample processing, lower costs

and no limit on the amount of possible protein identities and comparisons is made.

2.2. Transcriptomic Approaches to Biomarker Discovery and Onco-genomics

Above, methods of recording protein expression, a gene’s translated information is described.

Transcriptional information from mRNA is also mined from biomarker discovery.
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Figure 11. A Schematic Depicting How Genomic and Proteomic Data Represent a System at Different
Perspectives.

The difference between transcriptional and translational data is depicted. A transcriptomic measurement is of a
biologically upstream factor and is therefore less complicated by the possibility of posttranslational modifications.
The current common method to measure each proteins is by database matching of measured masses whereas genes
are measured via specific complementary binding.

Figure 11 depicts the difference between transcriptional and translational data. Firstly, a
transcriptomic measurement is of a biologically upstream factor and therefore is less
complicated by the possibility of downstream modifications. Secondly, the current common
methods to measure each; proteins are currently measured by database matching of their
measured masses whereas genes are measured via specific complementary binding. Proteomic
data measures only what is active in a system at a given time and it is complicated by a plethora
of potential posttranslational modifications (PTMs) such as glycosylation or phosphorylation.
Genomic data (i.e. of mRNA fragments) can be less ambiguous yet still not conclusive due to

splice variation or other factors controlling transcription.
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2.2.1. Gene Expression Profiling

2.2.1.1. DNA Microarray Experiments

DNA Microarray experiments, also referred to as RNA transcriptomic, mRNA chip,
GeneChip® DNA array microarray and gene expression array, allow determination of the
expression of large numbers of genes in nucleic acid extracted from biological samples.
Expression patterns of entire genomes, known splice variants, Single Nucleotide
polymorphisms (SNPs) or collections of genes are generated and compared (Heller 2002). Early

versions of the technique were first reported in the 1980’s (Taub et al., 1983)

Fundamentally, microarrays consist of short sections of single stranded nucleic acid (referred
to as oligonucleotides or probes) immobilised to a glass or Nylon surface which are used as bait
to bind and measure genetic material with a complementary sequence extracted from a
biological sample. The oligonucleotide probes are designed and manufactured to be
complementary in sequence to the coding regions of genes, and in some cases exons, the

expression of which are to me measured (Koboldt ez al., 2013, Life Technologies 2013).

In a typical microarray experiment, genetic material is extracted from a biological sample,
fragmented using restriction enzymes, labelled and hybridised to a gene chip to assign an
expression value to each probe representing a transcribed gene. The immobilised
oligonucleotide probes are complimentary in sequence to their target coding gene and will
therefore bind to a corresponding sequence of mRNA if present in the analysed genetic material.
A well-designed gene chip has multiple probes corresponding to each gene (Life Technologies
2013, spread at random locations across the surface to minimise experimental bias. Microarrays
can contain probes for a small number of genes or a represented portion of an entire genome.

As long as the sequence is known (Koboldt ef al., 2013, Life Technologies 2013).

Figure 12 below summarises the fundamental steps in the generation of microarray data: RNA
is extracted from a biological sample such as a tumour tissue lysate, it is then transcribed into
cDNA and labelled with a fluorophore; more than one fluorophore is used for comparative
studies. The labelled cDNA is hybridised with the microarray, cDNA binds with the
corresponding single stranded DNA probes. The remaining unbound tissue labelled material is

removed and a reading is taken. Each probe is assigned a value depending on the fluorescence
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emitted which will be higher the more corresponding cDNA has bound to the complimentary

probes (Life Technologies 2013).
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Figure 12. A Typical Gene Array Experiment Workflow.

Adapted from Life technologies 2013.Tissue containing genetic material is collected in vivo (as above) or grown
in vitro, from this RNA is extracted cut in specific locations, restriction sites, using restriction enzymes (depicted
above with scissors). The resulting short strands of RNA are amplified using polymerases strands with a
complementary nucleotide sequence. The cDNA strands are fluorescently labelled at the signature beginning/end
sequence used to cut them. The cDNA is then hybridised against a gene chip array consisting of specifically
designed short strands of nucleotides called probes or oligo’s which are positioned in specific locations across a
surface. After a wash step a fluorescent reading is taken the location of any fluorescent emission is inferred as the
presence of a cDNA with a specific sequence match to the probe. Multiple probes are used to constitute a
representative proportion sequence of a gene.

2.2.1.2. Next Generation DNA Sequencing

Aptly termed, Next-generation DNA sequencing (NGS), is a more recently developed
methodology for sequencing DNA or RNA (EMBL-EBI 2015). Instead of binding the cDNA
sample to probes of denoting predetermined known genes sequences, the DNA is cleaved into
shorter strands approximately between 100 bp and 1 kb, the strands are then annealed to a
position on a platform, the probes are then exposed to a mix of nucleotides, a DNA polymerase
and a terminator which ensures only one nucleotide is bound at a time. The first nucleotide is
bound and its character recorded, the terminator is unbound, and the process repeated. The exact
method of recording what nucleotide varies depends on the platform used; [llumina anneal the
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probes to a slide, then fluorescently label each nucleotide with a different colour, the colour
emitted from each location is recorded each cycle. In 454 Sequencing the DNA fragments are
bound to beads and the beads are immobilised into wells on a platform, the slides are flooded
with one nucleotide species at a time (A or G or T or A) which emit a light for detection, the
strength of the light signal emitted from each location denotes how many of that nucleotides
base pair is next in the sequence. For example, if the slide was washed with a Guanine species
bead location X a recodes a signal of 1 out of 4 and bead location Y records a signal of 4 out of
4, the next part of the sequence for bead location X is T (thymine) and bead location Y is TTTT
(thymine, thymine, thymine, thymine) (Life Technologies 2013).

Ion Torrent or Proton sequencing is similar to [llumina and 454 in that DNA is fragmented and
one end is then immobilised to a slide, however it does not record emitted signal with light.
When a nucleotide species is bound to its counterpart the reaction releases a hydrogen ion (H")
thus changing the pH within the well. The pH change is measured for each probe between each
wash to determine the strength of signal i.e. how many nucleotides were bound after that wash.
Like 454 sequencing the slides is washed in one nucleotide species at a time and the strength

of signal emitted recorded (Life Technologies 2013).

NGS sequencing is preferable to using microarrays as it more accurately reveals the genomic
sequence within each sample (EMBL-EBI 2015). The use of microarrays limits researchers to
detection of predetermined probes. This is sufficient to interrogate a sample of presence/
absence or changes in expression of known genes. Whereas NGS allows a wider scope for
investigation of single nucleotide polymorphisms, mutations and more (Koboldt ef al., 2013)

thus are a closer biological representation of any a given disease state.

None the less, gene microarrays are able to report the presence or absence of a gene within
biological samples and assign a quantitative value thus are still popular investigative tool

(Koboldt et al., 2013, Life Technologies 2013).

2.2.2. Data Mining

Gene microarray, protein profiling and many omics protocols produce highly dimensional noisy
data requiring in-depth bioinformatics approaches to interpret (Lancashire et al, 2009).
Moreover, prerequisite data pre-processing steps such as alignment, normalisation, baseline

subtraction or feature extraction add to an expanding maze of possible data processing
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workflows (Allison et al., 2006). Suppliers of omic technology platforms commonly integrate
a data processing workflow within their software, however, interrogation of complex
multidimensional data using different bioinformatic processes can yield different answers.
Often researchers merit from re-exploration of such data by alternative analyses. Combine these
challenges with the often-limited sample numbers and wide heterogenetic inter-sample
variation from biological samples. The challenge of data mining in biomarker discovery is to
filter through the meaningless variation between samples from natural biodiversity and identify

only those relating to the disease (Allison ef al., 2006).

2.2.2.1. Statistical Analysis for Omics Data

After the overall research goal, the parameters/variables available with clinical samples
primarily dictate the appropriate analyses for any given data set. Common examples of
controlled variables from cancer research include

e Paired categorical: - cancer verses control
e Categorical: — Stage 1 verses 2, 3 and 4.

e Continuous: — time to event data time until relapse or death after a particular
treatment, commonly referred to as survival data.

In a clinical research setting, it can occur that the ideally desired information to answer the
research question is not available and has to be accommodated for post analysis during result

data interpretation.

For each data type, there are numerous statistical analyses that would be considered appropriate,
each with benefits and disadvantages and each yielding slightly, or not so slightly, different
findings from the same data (Allison et al., 2006). An ongoing scrutiny of published data and
debate as to what is the most appropriate set of analyses for each data set encourages evaluation
of statistical methodologies and encourages development of new or more widely accepted data
handling procedures (Allison et al, 2006). One could argue a robust approach would
incorporate more than one type of data analysis, focuses on results common between the two

and evaluates the reasons behind differing results.
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2.2.2.2. Categorical and Continuous Variables in Omics Data

T-test

Used for over a century the T-test is a widely-accepted test to assign a significance to the
difference between two populations of data. For example, the differential expression of a gene
across two cohorts. Incorporated into most software packages of omics technology platforms a
T-test can be applied to thousands of inputs simultaneously.
Limitations of using T-test include that they only compute two-dimensional data, and do not
account for sample variation, or noisy data which inherent problems of large omics data sets.

With respect to biomarker discovery, a T-test is a rudimentary assessment.

False Discovery Rate (FDR) control such as the Benjamini Hochberg or the more stringent
Bonferroni are normally applied to multiple hypothesis testing procedures of data sets with
large variables compared to sample sizes. The purpose is to minimise the number of falsely

rejected null hypotheses; Type 1 errors (Devlin ef al., 2003).

Principal Component Analysis (PCA), is another analysis/algorithm often written into the
software of omics technology platforms. PCA identifies which variables of a data set to plot the
sample cohort against to explain the maximum variance. The top principal components are
separated recorded and the process is repeated thus finding the successive combinations of
variables which best separate a sample cohort. PCA can be applied to biomarker discovery
where in two sample subpopulations are identified when the data is separated on its principal

components (Ringnér 2008).

Cluster analyses is an exploratory grouping analysis applied to group samples within a cohort
with similar expression patterns of particular subsets of variables. This is done by identifying
similar attributes between samples. Most commonly in gene microarrays this would be applied

to ontology or pathway categories when these descriptors are available (Eisen ef al., 1999).

2.2.2.3. Analysis of Omics Survival Data

Time to event data in the biomedical research setting is commonly termed survival data.
Survival data is continuous numeric unpaired data. The demand for analysis of survival data is
predominantly from medical data were the measurement of time to event, often death is

poignant (Machin, Cheung and Parmar 2006). Referring to the following particular set of
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collections of statistical analysis as ‘survival analyses’ is believed to have become popular from
the mid-20™ century with an increase in commercial interest into safety (Singh and

Mukhopadhyay 2011).

The statistical methods used to analyse survival data are constantly evolving as the availability
of increasingly powerful software is developed to handle data of escalating size and

dimensionality (Machin, Cheung and Parmar 2006).

Numerous software packages including SPSS and Statistica enable non-statisticians to perform

survival analysis without needing to know the mechanics of the calculations.

A life table is a rudimentary way to look at survival data (Singh and Mukhopadhyay 2011). The
survival results are divided displayed separated by their variables and set time intervals. From
this, further calculations can be made; the proportion of samples not survived/ failed, the portion

surviving, the hazard function and the hazard ratio.

The hazard function is the calculated probability that the event will happen at any particular
given time point. The hazard ratio is the proportional difference between the calculated hazard

function between two groups.

Regression Analysis for Survival Data

Regression analysis is applied to investigate the relationship between risk factors and various
events, logistic regression for categorical variables and linear regression for continuous
variables like survival data. A correlation plot of time versus continuous variable Y, the potential
risk factor, can be plotted, the distance between each data plot and the line of best fit, the
residual value is used to assess the fit of the correlation i.e. the strength of the association, or,
the likely hood that the risk factor influences the survival time. Basic regression models cannot

compute survival time as a viable or censored data (Singh and Mukhopadhyay 2011).

Censored data is incomplete survival data. Censoring is problematic to survival data analyses,
however commonly occurs in the biomedical setting for the following reasons; if the study ends
before all the participants experience the measured event, if something happens so a participant
is unable to experience the measured event or if a participant leaves the study. Respective
examples for a study of patient survival after a test treatment; if a patient outlives the study

period, if a patient dies of a reason irrelevant to the study and if a patient chooses to leave the
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study. Censoring can have a left or right bias termed left censored or right censored data. In
biomedical research, right censoring is more common as after a deliberately designed study
start event is almost always known the end date may not be not be possible to collect due to

reasons listed above (Singh and Mukhopadhyay 2011).

Kaplan Meier plot

A Kaplan Meier plot is survival table data graphically depicted as a Kaplan Meier plot (Kaplan
and Meier 1958). Time is seen on the X axis and Y axis is the number of survivors usually as a
percent. A line is plotted for each sample group which decreases/increases at every point an
event occurs, often taking the appearance of a set of stairs with varying sized steps. The
difference between the two groups plots can be observed. Visualisation of the survival on a
Kaplan Meier Plot can be more informative than a test statistic from a set time point, or a
comparison of overall influence of the risk factor on survival as these will not illustrate or work
calculate indicate a lower significance if the survival curves may cross at any point or if there

is a far greater difference in survival within one sub time period.

The Cox Proportional Hazard (Cox 1972), followed by the Log-rank Test and Wilcoxen Rank
test are the most common survival analyses used in the biomedical setting. The Cox
proportional is the most popular as it is accommodating of censored data (Singh and

Mukhopadhyay 2011).

The Log-rank Test

The Log-rank test is commonly implemented to compare survival data of two or more groups
(Peto and Peto 1972). Using ovarian cancer survival data as the example, the Log-rank
calculation tests the null hypothesis that there is no difference between the probabilities of a
death occurring at a time point between two groups of patients: The calculation compares the
difference of the observed and expected survival values and X is used to assign a significance
value:

For each group the following calculation is made at each event time point, where A is the
number of patients in each group, B is the number of events that has occurred and C the number
still alive.

A(B/C)

The sum of the observed (O) and expected (E) values for each group from all event time points

are compared
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(O1 - E1)*/E1 + (02 - E2)*/E2

This value and the degrees of freedom, which is the number of groups minus one, is applied to
a X2 distribution table to return a p-value describing the significance of the difference between
the two groups (Bland and Altman 2004).

The advantage of the Log-rank test is it takes the trend of the entire follow up period into
account which can be a more representative analysis compared to looking at survival rates at a
particular time point, for example 3 or 5-year survival rates.

Alone, the limitation of the Log-rank test is it only describes the significance of the difference
between the two groups. Hazard ratios need to be incorporated to comment on the size and trend
of the differential (Bland and Altman 2004). It is not essential to visualise the shape of the
survival curve to perform a Log-rank Test, however may be beneficial to understand the trends
of the data, the Log-rank test is less likely to find significance if the survival curves overlap.
Overlapping survival cures are common in medical research trials with surgical intervention as
the surgery itself has a high risk within a small time interval (Bland and Altman 2004). Bias
can occur if censored data is not evenly distributed between the two groups. (Bland and Altman

2004)

A limitation to parametric methods is that assumptions are made about the data. Both the Log-
rank Test and the Kaplan Meier make the following assumptions about the data to which they
are applied

e Censoring has no effect on prognosis

e (ases recruited at the beginning and the end of the study have the same survival
probabilities as those at the beginning

e That the time periods recorded are accurate (Bland and Altman 2004)

Cox Proportional Hazard Regression Model

The Cox proportional hazard regression model measures and compares the length of time
between two marked events in two or more cohorts of samples. Introduced in 1972 (Cox 1972),
it is a regression model applied to survival data, it can be used with data with and without
censoring (Singh and Mukhopadhyay 2011). It compares the difference between the group’s
measurements and assigns a significance, whilst at the same time accounting for influential

covariates, i.e. censored data. Most commonly this is the time from the commencement of
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observation to and event of relevance namely death, disease recurrence or recovery, hence the

name ‘survival analysis’ (Singh and Mukhopadhyay 2011).

Cox model assumes two parameters; that the hazard ratios of each data point/ patient are
independent of time, and are only for time-independent covariates (Singh and Mukhopadhyay

2011).

2.2.2.4. Machine Learning.

Machine learning, is a division of artificial intelligence (Al) relating to the creation and
development of pattern recognition algorithms. The use of Al in place of conventional
parametric linear based statistics is believed to improve the probability of identifying novel
biomarkers from omics data via iterative processes that are designed to accommodate highly
dimensional, noisy data. Data derived from nature is inherently ‘fuzzy’ (Lec and Guégan 2000),
Al such as ANNs allow computational biologists to create a bespoke interrogation method for

each data set, that will accommodate the non-linear relationships between variables.

Lancashire et al., (2009) reports omics data to be considered be challenging due to the high
number of input variables and limited number of cases, an inherent characteristic of biological
data sets. Yet, in an in-depth comparison of MLP-ANNSs with other statistical methods applied
to large, multidimensional non-linear omics data sets was found to be the optimal analysis to
apply, mainly due to their architecture giving ability to cope with highly dimensional or noisy

data (Lancashire ef al., 2009). This however may not apply to all data sets/ data types.

The overall goal of machine learning or Al applied to data mining is to identify and interpret
meaning from large highly dimensional data sets that it would be impossible to calculate
manually. Al is applied to feature extraction and data pre-processing stages of omics data as
well as the key applications which include supervised learning, such as relevance vector
machines (RVM), decision trees, neural networks and Support Vector Machines (SVM).
Decision trees are a predictive model used to make predictions of data based on sequential
observations of a model data set. SVMs are an Al model used to find an optimal
multidimensional line, a hyper-plane, to define subgroups or clusters of multi-dimensional data
as if data were plotted in an artificial highly dimensional space (Dreiseitl et al., 2001). RVMs
are akin to SVMs however include probability into the classification (Tipping, 2001).
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“The Curse of Dimensionality” a term coined by Richard E. Bellman (1966) is a phrase used to
acknowledge the complexity of studying large data with numerous variables using algorithms,
where the dimensionality of the data has the potential to mask the key features driving the

structure of the data.

2.2.2.5. Artificial Neural Networks (ANNs)

ANNS, the most popularly used Al in medicine and molecular biology (Lec and Gué€gan 2000)
are a statistical application of Al that can be applied in classification or predictive modelling.
“A neural network consists of an interconnected group of artificial neurons, and it processes
information using a connectionist approach to computation” (Caudil 1987). The term neural
network is used in reference to biological neurons in that, the conditioned plasticity of synapses

dictate future behaviour.

Multilayer feed-forward neuronal networks, also known as back propagation or multilayer
perceptron (MLP) neural networks were first described by Rumelheart ef al., (1986). Who,
details a then new procedure where connections within networks of neurone like processing
units were continually being adjusted based on the measurements performance in comparison

to an output vector.

MLP ANNSs are a form of supervised learning, meaning that a training step is required from a
set of model data with known outputs. The association between the input and output layer needs
to be derived from training information or example data. A relevant example would be using

measured gene or protein levels as input and the categorisation of cancer or control as output.

The work described below will focus on multilayer perception (MLP) ANNSs, a basic form of

ANN used for generalisation.
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Input layer Hidden layer Output layer

Figure 13. Typical Multilayer Perception Artificial Neural Network Architecture.
A fixed number of input and output neurons and hidden layer intermediating communication. A calculation made
in each hidden layer node tailors the output based on learned information from each set of inputs.

Figure 13 displays an example architecture of an ANN. Each circle represents a calculation
centre, also termed a node. MLP-ANNSs consist of three layers of nodes; an input layer, an
output layer and a hidden layer. Or, two layers of variables sandwiching a layer of calculation
neurons. The input nodes represent predictor variables, the hidden layer nodes are where the
weighting for each variable is calculated and the output layer is the calculated predicted
outcome. The MLP-ANNS used below are tailored for categorical data (i.e. cancer vs control),
however the output is in a decimal place format ranging from 0 to 1, anything above 0.5 is
rounded up and below is rounded down to create a categorical output. The input and output
variable nodes will vary depending on the nature of the data under scrutiny, a basic example
model would be where the input variables are genes from an expression microarray derived
from cancer or control tissue.

The ANN is perceived to ‘learn’ when pattern recognition algorithms in the hidden layer
calculate the relative importance of one input/output node in relation to another, then, assigns
the connection between them a respective weighting i.e. the strengthening or weakening of the
in silico synapse.

MLP-ANNs can have an internal training, testing and validation phase, used to prevent
overfitting. Sample cases of data sent to the ANN are allocated, often randomly, to train test or

validate the network in a process termed cross validation.

Data used to train the ANN is not blinded, hence this is termed supervised learning. Weighting
of the network is attributed to the input/output node connections, based on the two variables

correlation. In the example of microarray data from cancer and control samples, if one genes
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expression is consistently high in the cancer group and consistently low in the control group the
algorithm in the hidden layer node will increase the weighting of this genes outbound influence,
thus giving it more influence for the test and validation stages. During the testing stage the now
trained model is applied to the test sample cohort predicting what their output would be based
on the training set. The measured error between the test groups predicted and actual output is
determined, and the error is fed back into the model to adjust weightings. The adjusted model
can then be applied to the validation set, the performance of the model can be assessed on its

ability to correctly categorise the data from the blind validation set.
Within each node is a sigmoidal activation function which calculates whether to feedback

positively or negatively, either increasing or decreasing the weight of the preceding in-silico

Synapse.

Neuron j

A= T 0,

JiM

Figure 14. A Representation of a Hidden Layer Node from a MLP ANN
Adapted from Lec and Gu&gan (2000). Each input synapse value (xi) is associated with a weight (w;i). The output
(%) is calculated in the node. The node may be connected to more than one output, this diagram has only one
output to signify the node is only able to produce one output value per input.

Figure 14, adapted from Lec and Guégan (2000), depicts how the MLP ANN node mirrors the
physiology of a biological neuron. Signal is received from dendrites converging from multiple,
separate locations or inputs (x), the information is processed and transduced in the cell body or
calculation node (Neuron j) and one single output signal is emitted, which may create a positive

or negative feedback loop.
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The weight of the effect of the ith neuron to the jth neuron is represented w;;. The formula is

expressed as:

Aj = 2 WiiXitO

Where; i is the totalled count of nodes in the preceding layer. O is a bias term, this influences
the calculations horizontal offset. If 6j is used as the weight from the modified output unit Lec
and Guégan (2000). After the association between the input and output layer is established, the

predictive error, the output value is determined.

Not only can MPL-ANNSs be implemented in different ways, the calculations can be extracted
at different stages for interpretation as needed. In the example of an MLP-ANN applied to a
gene microarray to classify cancer samples from control, the ANN can be used in a stepwise
manner to generate a biomarker panel or simply to rank genes in order of their significance. To
generate a biomarker panel, the MLP-ANN can be used in a stepwise manner wherein after one
cycle of training, testing and validation the most influential gene is selected based on the lowest
error, the data relating to that gene is set aside and the training stage is repeated. At the validation
stage of the second loop the predictive performance is measured on all the top ranking from this
training cycle together with those of all preceding cycles. This process is repeated until the
performance of the model stops increasing, thus yielding a panel of the most predictive markers.
Alternatively, the genes can be ranked based on their predictive performance in the first cycle,

or an average performance over several cycles to assign a predictive value to all genes

Benefits of using MLP-ANNSs include:

- They are able to perform generalisation that is that they can be used to make predictions
of new data based on training data.

- They are able to handle highly dimensional data and do not rely on a normal data
distribution.

- Calculations or results can be extracted at several junctures for an in-depth and flexible
analysis. These are 1) analysis of the interconnecting network weights 2) sensitivity
analysis and 3) rule extraction

- They are able to process complex non-linear relationships or interactions within data

that are too complex to de-convolute using conventional linear methods.
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The detrimental effect of noisy data is dampened by the redistribution of samples across

multiple cycles of training i.e. they are fault tolerant.

The limitations and caveats of using MLP-ANNSs include:

They are limited by the quality of their training data. The inherently wide heterogeneity
found in biological samples will hinder the ability to isolate potential biomarkers from
noisy inputs. Predictive algorithms, modelled from poor quality data, with poorly
controlled extraneous variables will perform badly at validation.

They can take a long time to complete the training stage calculations. The higher the
number of hidden layers the longer the model can take to train. The number of hidden
layers required is determined by the number of data features needing to be captured i.e.
the complexity of the data.

Over fitting (Hawkins 2004) can occur and will be detrimental to performance at the
test and validation stage. Over fitting is a ‘memorisation’ of the training data and is most
commonly caused by a small training data set, a common challenge with clinical data
sets.

ANNSs, and other Al have been dis-affectionately labelled “black boxes” as the
calculations and algorithms within them are often not seen or available for scrutiny. The
MLP-ANNSs utilised in the following work were created specifically with intent to apply
to omics data from biomedical sample cohorts and successfully applied as such
(Lancashire et al., 2008, Dhondalay et al,, 2011 Kafetzopoulou et al., 2013) and a
researcher familiar with their programming oversaw their application to the following
work.

Another common adage associated with analyses of complex, fuzzy high noise data
‘rubbish in rubbish out’ refers to the propensity of models to perform poorly if the
quality of the training data is poor or high in extraneous variables. This highlights the
necessity to control any extraneous variables everywhere possible. A specific example
is seen in the reporting of MALDI-TOF based studies into novel serum biomarkers of
ovarian cancer. Subsequent acclaimed novel biomarker panels were later accused as
being an artificial product of not controlling sample handling extraneous variables prior
to a predictive modelling analysis thus producing potentially artefactual interpretations
See section 3.1.1. (Petricoin ef al., 2002, Baggerley et al., 2005, Vaughan et al., 2012).
Hence standardised sample handling and quality control and data pre-processing

protocols must become part of data prep (Tong ef al., 2012, Allison et al., 2006).
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ANNSs can also be applied to visual spatial data such as ultrasonography (Jacobs et al. 2004) to

do this measurements and image intensity is broken down to numerical format.

The reader is referred to Lancashire et al., (2009) for a full evaluation of MLP-ANNSs against
other machine learning approaches such as support vector machines, logistic regression, nearest
neighbour analysis (kNNs) and other computational strategies for analysing large

multidimensional data sets.

2.2.3. Curated Data Repositories and Online Tools

Sharing of information is key to progress scientific knowledge. Establishing databases of
scientific measurements/information/sequence enables for peer critique/review allows for
dispute/conflicting interpretations to be addressed and resolved the ease and speed this can
happen will dictated the maturity and reliability of the data within. Ultimately/eventually/
eventuating in libraries of trusted/widely accepted almost-facts.

One potentially problematic observation explored below is when multiple databases of the same
information exist. This will naturally happen in the event novel types of information, or curation
of existing information, creating a need for novel databases, these will most likely begin at a
small scale potentially in parallel timescale with peer researchers at different institutes.

A simple example of this and how this problem is resolved with the time/evolution of a database
is that of Uniprot a world-wide trusted library of proteins sequence data. The need for a
proteomics database was first identified and published in 1969 (Dayhof 1969). In the prevailing
40 years, the creation of various databases of protein knowledge has evolved with discovery
and demand for their use. Uniprot, is now comprised of a consortium of three major institutes
the European Bioinformatics Institute (EBI), the Protein Information Resource (PIR) and the
Swiss Institute of Bioinformatics, each are responsible for a key aspect of Uniprot. These were

previously separately available containing contrary sequence data and annotation priorities.

A more complex example of this is databases of protein interaction, several exist and are
explored below. Although some draw their source information from multiple sources, a
consortium of all protein interaction database providers does not currently exist, multiple are
available. Some are painstakingly manually curated by researchers, others are created using
algorithms searching and matching key words from literature. The former contains a qualitative
data that has been read and interpreted in the context it was meant, however, may not be as

comprehensive as a search performed by a computer. The latter is a more comprehensive search
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however the data must be considered with the caveat that is the way that is was created — without

human thought.

2.2.3.1. Data Sharing

Array Express

The European Bioinformatics Institute, part of the European Molecular Biology Laboratory
(EMBL-EBI) website hosts ArrayExpress; an online database of functional genomic
experiments. All publications using gene arrays are encouraged to upload data generated for

fellow researchers to scrutinise and attempt to validate published findings.

Regulations enforcing the availability details of each published experiment are in place. Details
of the samples source, collection protocol, and arrays used data acquisition protocol and data
normalisation and must be listed to ensure as meaning full interpretation as possible can be

made (ArrayExpress 2013).

Gene Expression Omnibus (GEO) hosted by the National Centre for Biotechnology Information
(NCBI) is the US counterpart to Array Express (Gene Expression Omnibus 2015).

There is a crossover between Array Express and GIO, most importantly data submitted to either
must meet the Minimum Information About a Microarray Experiment (MIAME) guidelines.
Having this template as a basis means that incomplete data cannot be uploaded, and that
variables are not recorded in an ambiguous, confusing or misleading format. This is essential
as the purpose of sharing the data is for peer scrutiny, it is essential that the way the data was

collected and recorded is clear.

The Proteomics IDEntification database (PRIDE), also hosted by EMBL-EBI is a database of
proteomic mass spectrometry data experiments where data from such experiments can be shared

among peers for reanalysis (Vizcano ef al., 2016).

2.2.3.2. Protein interaction databases

STRING 9.05
Search Tool for the Retrieval of Interacting Genes/Proteins 9.05 (STRING) (Snel et al., 2000)

is a user friendly online resource containing listings of proteins linked by; localisation,
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homology, text-mining, databases, experiments, co-expression, co-occurrence and gene fusion.
Lists of gene or protein identifiers can be entered and interactions between those listed are
generated and displayed diagrammatically. Filters can be applied to control the nature of the

interactions listed (STRING 2013).

Reactome

Reactome is a freely available curated database of protein interactions from EMBL-EBI (Croft
et al., 2010). It prides itself on being manually curated and peer reviewed. Stringent regulation
of what qualifies as a protein interaction allows for a higher confidence to be put in any
interaction identified via Reactome compared to that of an automated, non-curated database
such as STRING or IMEx. However, any new, missed or misinterpreted interactions by the

curation team will not be identified.

IMEX

The International Molecular Exchange Consortium (IMEX) is another project to centralise
knowledge of protein interactions IMEx (Orchard ef al., 2012), it sources its information from
curated databases however itself does not state to be manually curated. The constituent
collaborators of IMEx include; Cardiovascular Gene Annotation Initiative funded by the British
Heart Foundation (UCL-BHF), The SIB Swiss Institute of Bioinformatics (SIBm), Uniprot,
Molecular Connections plc, , Extracellular Matrix Interaction Database (MatrixDB),
Interlogous Interaction Database (I12D), Molecular Interaction Database (MINT), Database of
Interacting Proteins (DIP) an immune response pathway database (InnateDB), a
mechanobiology database (MBInfo) and IntAct the molecular interaction database hosted by
EMBL-EBI (Orchard ef al., 2012). Although IMEXx is of a larger collaboration than STRING,
search results are links to the origin database thus necessitating a deeper, analytical review of

search results to use. Both STRING and Reactome facilitate searches of multiple terms.

IntAct is a database of molecular interactions, it is hosted by EMBL-EBI and is curated by their

web-based curation tool (Kerrien ef al., 2012).

MINT is a manually curated protein-protein interaction database with a focus on experimentally
proven interactions (Licata et al., 2012).
More recently, considerations have been made to combine IntAct and Mint for a more

comprehensive database (Orchard ef al., 2014).
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12D (Brown and Jurisica 2007) is a database of experimental, predicted and known protein-

protein interactions. It was developed in the Ontario Cancer Institute.

UniProtKB Interactions is a search tool subpage of UniProt that facilitates searching for
interacting proteins. Its information is derived from IntAact and is updated monthly. However,
it is limited to binary interactions, and, when tested on two known interacting proteins IGF2

and IGF2BP, a value of “no match found” is returned.

Genes and proteins commonly have multiple aliases, formatting of search terms for each
database is different and information can be lost by mislabelling a search term especially when

databases are searching each other.

KEGG
Kyoto Encyclopaedia of Genes and Genomes (KEGG) is a database curated of genomic and
molecular level information, containing schematic diagrams of systems and pathways that were

manually created using bespoke software and algorithms (Kanehisa and Goto 2000, KEGG
2016)

More Pathway data bases can be found on
e Qiagen
e Tocris from R&D systems.

e Thomson Reuters pathways, also known as METACORE Life Science Research

Other protein interaction or pathway databases services that are not freely available include
e C(Cell Signalling Technologies (CST), a curated pathway database from CST
e Extra Cellular Matrix Database Interaction Database (Matrix DB) (faulty website)
(Matrix DB, 2015)
e Qiagen Pathways, a curated pathway database from Qiagen
e Pathway guide and iPathwayGuide from Adviata,
e NextBio Research from Illumina
e BioSystems pathways, incorporates NCBI, Entrez and KEGG, no fee but a membership

credentials are required for use.
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Table 2 (below), summarises the nature of the contents and key features in the curation of some

widely used major data repositories and resources. For a full, detailed report on currently

available data resources in the context of cancer the reader is referred to Pavlopoulou et al.,

(2014), who, highlights how, in the area of cancer alone, the production of exponentially

increasing amount of data from studies focused on genes, proteins, immunomics protein-protein

or gene-gene interactions are being compiled into various repositories. There are repositories

available for individual cancers these include lung, breast, osteosarcoma, pancreatic, renal,

cervical prostate but most relevantly ovarian (Ganzfried et al., 2013).

Table 2. A Summary of Globally Accessible Data Repositories and Resources.
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Archive - proteomics data
Repository PRIDE repository Manual Y
Database of functional
Repository  Array Express genomic experiments Manual Y
The Gene Expression
Repository GEO Omnibus Y
Search Tool for the Retrieval
Resource STRING of Interacting Genes/Proteins Algorithm Y Y Y Y
Reactome Database of Protein
Resource Reactome Interactions Manual Y Y Y
The International Molecular
Resource IMEX Exchange Consortium Algorithm Y Y Y
Molecular interaction database
Resource IntAct hosted by EMBL-EBI Algorithm Y Y
Molecular interaction database
Resource MINT hosted by EMBL-EBI Manual Y Y
Database of experimental,
predicted and known protein-
Resource 12D protein interactions Hypothetical
Kyoto Encyclopaedia of
Resource KEGG Genes and Genomes ? Y Y Y
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2.2.3.3. Ontological Databases

Databases annotating classifications of genes, gene products and sequences have been evolving
in parallel with gene and protein characterisation. Two examples are the Protein ANalysis
THrough Evolutionary Relationships (PANTHER) Classification System, where proteins are
grouped by subfamily/family, molecular function, biological process or a pathway (Thomas et
al., 2003, PANTHER 2016). Or, the Database for Annotation, Visualization and Integrated
Discovery (DAVID) (Huang et al., 2008, DAVID 2016) which hosts tools to annotate and
visualise refined gene or proteins result lists based on function, functional classification,
biological theme, interactors, and more (Huang et al., 2007, DAVID 2016).

Importantly, large scale centralised collaborative efforts exist (Gene Ontology Consortium 2004)
however, in the case of ontology although source data needs to be clarified and not duplicated,
there is more of a justification to have multiple, individual niche tools which may focus on a
specialist classification. The categories listed between the two examples above are similar yet

notably different.

2.3. Aims of the Project Overall

e To identify novel biomarkers that can improve the prognosis of ovarian cancer suffers.

e To discover novel protein biomarkers detectable in serum using MALDI-MS that
could be used as a screening tool for the early detection and monitoring of progression
of disease.

e To find a reproducible sample preparation and MALDI-MS workflow which enables
identification of novel protein biomarker/s in serum.

e To identify genes that are associated with the progression and survival of ovarian
disease.
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3. Proteomic Evaluation: MALDI-MS Profiling Strategy for Biomarker

Discovery in Ovarian Cancer

Chapter Abstract

The work described in this chapter aims to identify novel serum protein biomarkers using
MALDI-TOF mass spectrometry. A MALDI-TOF MS profiling comparison was conducted and
detailed. Briefly; MALDI-TOF-MS profiles were acquired from serum samples collected from
30 patients with ovarian cancer and 30 age matched controls. Tight regulations were applied to
the sample collection and processing to address criticisms of previous similar studies and
prevent the degradation of proteins within the serum. MALDI-TOF-MS data was generated,
processed, exported to Excel and analysed using Artificial Neural Networks (ANN’s). A
biomarker panel of five peptide masses was found to differentiate cancer from aged matched
controls with an accuracy of 91% and error of 9%. To assign a protein identity to each of the
five peptide mass values to a protein identity a pool of cancer serum samples and a pool of the
age matched controls were created. The two sample pools were separated by liquid
chromatography (LC) on a Cis column into 384 fractions. Tandem mass spectrometry of the
384 fractions produced a matched peptide sequence to every possible mass value present across
the two samples (LC-MALDI-MS/MS). These masses values of the biomarker panel were cross
referenced with those of the LC-MALDI-MS/MS sequence data to assign an identity based on
the matched mass. This produced a list of several possible identities for each peptide value of
the biomarker panel and for some no potential identities were matched. The lists of possible
identities of the biomarker panels were cross-referenced with literature, two selections were
made to attempt a validation of finding on a separate platform. ELISA was used to assay the
expression of these two proteins, Transferrin and Vitronectin, in the serum. The expression
patterns seen in the ELISAs did not correlate with the trends observed in the MS data and
literature.

On evaluation of the available data it was noted that, although the best available option, an
ELISA assay of two proteins is an inadequate to validate the biomarker panel of the five protein
identities generated via ANN analysis. Individually, the peptide identities held little statistical
significance. Unfortunately, not all peptide mass values were able to be matched to a possible

protein identity, thus it was not possible to attempt to fully validate the panel
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Further to this, the use of the immunological approach assumes the link between the peptide
and the whole protein. The statistical significance of identifying a peak based only on its mass
is questionable.

In conclusion, more information on identity of mass values significantly differently expressed

between cancer and control groups would be needed for this data to be successfully validated.

3.1. Introduction

The aim of the following work was to identify novel protein signatures of serum proteins that

could be used as a diagnostic or prognostic tool in ovarian cancer.

3.1.1. MALDI Mass spectrometry and ovarian cancer

Matrix Assisted Laser Desorption and lonisation Time of Flight Mass Spectrometry (MALDI-
TOF-MS) is (was — when this work was conducted) a potentially powerful novel biomarker
discovery tool in bottom-up proteomics and is introduced in section 2.1.3.2. Briefly, an analyte
of interest such as blood serum containing complex mixture of proteins is combined with an
acid matrix and dried to a crystal on a target, inside a mass spectrometer a laser is fired on the
crystal, laser energy is transferred through the matrix and into the protein sample, ionised
proteins are desorbed from the target and travel through a vacuum towards a detector, over the
length of a flight tube proteins are separated massed on their mass; smaller molecules will have
a shorter flight time than larger ones. Signal from the detector is commonly presented as spectra,
a graph with time of flight convert to mass to charge ratio on the x-axis plotted against the
intensity of signal detection at the time. Using MALDI-TOF-MS hundreds of samples can be
spotted to one target, unique profiles of from all generated simultaneously and compared. Using
this bottom-up approach minimises experimental bias as data from all samples for a comparison
is acquired in a small time frame. Due to the sensitivity of the instrumentation MALDI-MS is

susceptible to bias introduced from the variation in sample preparation and handling.

Popularity of biomarker discovery via MALDI/SELDI-TOF-MS peaked in early to mid-2000s;
numerous groups published mass values of peptides identified from mass spectra that were
significantly differentially expressed in ovarian cancer, control or benign (see Table 3). Failure
to reproduce findings or give meaning to the mass values of ions that discriminated the cancer

cohorts damaged the image and trust/confidence in its use. This is reflected by a drop in
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publications from MALDI/SELDI-TOF-MS data. To confirm any potential novel biomarker
findings results must be reproduced on either or both of; a second technological platform and a

separate sample cohort.
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Table 3. A Summary of Similar Research. An overview of the sample selection, preparation, purification, methods and data analysis used by researchers investigating specific
proteomic fingerprints in the sera of ovarian cancer patients. Numerous mass to charge values found to be significantly linked to ovarian disease detection. Few mass values are assigned

to a protein identity.

Mass to charge ratio (m/z7)
(or mass in Da where indicated)

values where significant

Researcher Sample source

occurred in ovarian disease
vs control spectra

differences in peak amplitude

Sample purification
technique utilised

Data analysis technique used Statistical significance attained.

The National Ovarian

Cancer Early Detection

Program Clinic at

Northwestern University ~ 534Da, 989Da, 2111Da,
Hospital (Chicago) (n=100) 2251Da, 2465Da.
Simone Protective Cancer

Petricoin et al.,
(2002)

Institute (Lawrenceville)

(n=17)

Three sets from The

Clinical Proteomics

Program Databank: 2665.397, 3969.46, 3991.844,

(Data set 2-16-02 used in ~ 4003.645, 4027.3, 4056.967,
Sorace and Zhan Petricoin., ef al., (2002), 4- 4744.889, 6801.495, 7786.054,

(2003) 3-02 consist of the same  8349.266, 14796.14, 15955.47,
samples but run on WCX2, 17034.05
and 8-7-02 a different data
set)
n=469
Baggerly et al 435.46, 465.57, 2760.67,
yetal,
A 3497.55, 6631.70, 14051.98
(2003) s above 97.55, 70, 98,

19643.41

C16 Hydrophobic
interaction ProteinChip.

1% set Ciphergen H4
ProteinChip array (since
discontinued).

2" and 3" set Ciphergen

weak cation exchange 2
ProteinChip array (WCX2)

As above

Genetic algorithms combined
with cluster analysis. 100% sensitivity, 95% specificity,
positive predictive value of 94%
Samples divided into training

and validation. (no test set)

Nonparametric statistics. No
baseline subtraction. Wilcoxon
test; then Wilcoxon with
stepwise non-discriminant

100% sensitivity and specificity

analysis.

Peak alignment, the 506 most
frequent peaks were selected for
two-sample T-test analysis, 15
were significant.

94% Correctly classified samples.
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Zhu et al.,
(2003)

Vlahou et al.,

(2003)

Kozak et al.,
(2003)

Zhang et al.,
(2004)

167.8031, 321.4157, 322.4204,
359.6322, 385.5688, 413.1668,
433.9079, 434.6859, 444.4690,
445.2563, 1222.1849,
1528.3431, 3345.7995,
3449.1503, 3473.3084,
3528.5266, 6101.6299 and
6123.5190

National Institutes of
Health and Food and Drug
Administration Clinical
Proteomics Program
Databank web site (Ovarian
Data Set 4-3-02 and
Ovarian Data Set 8-7-02)

Weak cation exchange
protein chip (WCX2)

5.54,6.65,and 11.7 kDa
(detected on the IMAC chip)
4.4 and 21.5 kDa (detected on
the SAX surface form the main
splitters).

3.1 kDa, 4.5 kDa, 5.1 kDa, 7.8
kDa, 8.2 kDa, 16.9 kDa, and
18.6 kDa (increased expression
in the cancer group)

13.9 kDa, 21.0 kDa, 28.0 kDa,
79.0 kDa, 93.0 kDa, and 106.7
kDa contrary

Division of Gynecologic
Oncology, University of
Texas, Southwestern
Medical Center.

n=139

Strong anion exchange
(SAX) and immobilised-
copper (IMAC) chip
surfaces.

Gynaecological Oncology
Group and Cooperative
Human Tissue Network.
n=184

Strong anion-exchange
(SAX2)
(Ciphergen Biosystems).

M.D Anderson Cancer
Centre, Duke University
Medical Centre, Groningen
University Hospital,
Netherlands, The Royal
Hospital for Woman,
Australia. (Four different

Bound in triplicate with a
randomised chip/spot
allocation scheme to
IMAC3-Cu, SAX2, H50
and WX2

12828Da 28043Da (decreased
expression in cancer group)
3272Da contrary

medical institutes) n=503

Smoothing via Gaussian filters,
pointwise two sample #/z test
between groups of the training
set, random field theory to
identify the threshold and
validated using the /-nearest
neighbour method which also
attains the sensitivity and
specificity.

Samples separated to learning
and test set. Five peaks were

selected by the BPS algorithm to

discriminate cancer from the
non-cancer groups.

Univariate and multivariate
statistical analysis applied to
protein-profiling data

Divided into test and training set
for the derivation and testing of

non-linear unified maximum
separability analysis. Then
further analysed using Mann-
Whitney U-test or Krusckal-
Wallis test

Sensitivity and specificity of the test are
both 100%. The 95% confidence intervals
for sensitivity and specificity are (93%,
100%) and (95%, 100%), respectively.

A specificity of 80% and sensitivity of
84.6% were obtained from the cross-
validation set.

The individual proteins in the malignant
biomarkers group had values for ROC
area ranging from 0.617 to 0.851,
sensitivities from 48.1% to 81.5%,
specificities from 66.1% to 88.1%, and
accuracies from 61.3% to 79.3%.

Sensitivity 83%
Specificity 94%
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5881Da, 7564Da, 6044Da
(increased expression in the
cancer group)

Serum banks of Guangxi
Yu et al., (2005) Medical University.

=61
n=6 2085 Da, 9422 Da contrary
UC Davis Medical Centre
. . 788.545Da and 899.690Da.
An et al., (2006) Clinical Laboratories aobaan a
=10 (peptide peaks)

Gynaecology and Obstetrics
Hospital, Fudan University 7676 21, 114638, 11545 9,

Kong et al., in Shanghai, China, from 11681 2.11706 6, 13790 8,
(2006) October 2002 to November 1590 8_ 3) - -

2003 -

n=195

125 samples from

Department of Obstetrics  6195Da, 6311Da, 6366Da
Zhang et al., and Gynaecology, Qilu (decreased expression in cancer
(2006) Hospital of Shandong group)

University, China Between 11498Da contrary

Apr 2004 and April 2005

120 serum samples

collected from Derby City 16478, 1219.6, 3312.2, 1493.8, Millipore C18 ZipTips

Current Study  General Hospital, England
Between September 2005-

2008

and 1820.

estimated specificity of the test sets was
96.7%, the estimated sensitivity was
96.7%, the estimated positive predictive
value was 96.7%

Tenfold cross-validation support
Hydrophobic surface (H4) vector machine established a
diagnostic pattern.

Dialysed with Pierce
Slidealyzers, MWCO 7000-
10000 for glycan analysis n/a
but some peptises

identified.

n/a

ProPeak software. Calculates and

ranks the contribution of each
Immobilised metal affinity individual peak toward the
capture arrays (IMAC3) separation of the two groups.
Unified maximum separability
analysis (UMSA) combined with
CA 125
A decision tree algorithm. The
receiver operation characteristic

Combining the three biomarkers and
CA125 produced sensitivity and
specificity of 97%.

Weak cation exchanger
(WCX2)

Sensitivity of 87%

curve found most significant Specificity of 95%

peaks. Candidate biomarkers
evaluated by Mann Whitney-U
test or Kruskal-Wallis test.

ANN used to compare the

peptide profile of digested cancer Accuracy (test performance) 91% Error
serum verses age matched (test error) (9%)

controls.

"before and after a tryptic
digest.
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A number of the studies detailed in Table 3 use a SELDI approach and could be criticised for
doing so, SELDI data only represents the proteome of protein species complementary to the
ProteinChip© utilised. Vlahou et al., (2003) demonstrates this by generating multiple
biomarker panels from repeating the analysis of one set of samples with two SELDI platforms.
A processed or purified sample is not representative the full serum proteome, which, biomarker
discovery experiments would ideally aim to represent. For this reason, the data of many of the
studies in Table 3 cannot be used to verify, validate or refute each other’s generated biomarker

panels.

Zhang et al., (2004) attempted this by using a combination of four SELDI surfaces in a
randomised layout. Another approach explored below would be to minimise or negate sample
preparation with an aim to best represent the entire proteome. In this chapter sample preparation
is kept minimal and MALDI is employed to attempt to measure a larger portion of the proteome

as possible.

A common criticism of studies in Table 3, namely Petricoin et al., 2002 is that they are biased
by artefacts in sample collection and processing (Baggerly ef al., 2005, Vaughan et al., 2012).
For example, Petricoin et al., 2002 tested samples and control samples were collected from
different sources. The importance of control and standardisation of collection and storage of
serum and plasma have been reviewed in Engweden et al., 2003. Alterations of known serum
cancer biomarkers has since been demonstrated to be altered by diet (Ong et al., 2009). The

sera for this study were collected in a tightly controlled manner with this in mind.

Though it should be fairly noted that supporting evidence for the peptidomic signature
published in Petricoin et al., (2002) was later reported (Conrads et al., 2004) as summarised in
Nossov et al., (2008). The exact overlap in results is not specified in the original paper. Conrads
et al., (2004) begins by noting that the low resolution TOF-MS used to generate the initial
intriguing results is reproducible within runs and over small intervals of time, however week-
to-week and machine-to-machine variation was at an unacceptable level for work in a clinical
setting. The study expands by applying a higher resolution instrument and several
bioinformatics approaches for interpretation of, quality control, and analysis of the data on an

expanded double-blinded cohort to yield four models with 100% sensitivity and specificity.
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Sample collection was another theme in the critique of this methodology. Protein signatures
may be affected by any part of the sample collection procedure. Namely, the about of time
samples are stored and at what temperature. Data sets have now become available online,
including one of ovarian cancer tumour samples, collected with a 0, 5, 30 and 60 min delay
between collection and freezing for storage (National Cancer Institute 2015). However,
measuring the effect of degradation is an ambiguous task, as measuring the potential biomarkers
themselves, lack of confirmed identity assigned every peak or a quantitative measurement
prohibit this clarification. It has also since ben argued that a large enough sample size, though
rarely available, should dampen the effect of outliers from unwanted inter-sample variation
(Dunetal, 2011). These critiques can be pre-empted by collecting both control and test samples

under as similar conditions as is possible.

3.1.2 Aims and Hypotheses of the Chapter.
To identify peptide masses and identities that are significantly differently expressed in the serum

of ovarian cancer patients compared to the serum of benign condition and control patients.

Ho.i: MALDI-TOF-MS with ANN analysis will not be able to detect unique protein patterns

expressed in the sera of ovarian cancer sufferers.

Hy.i: That unique protein patterns expressed in the sera of ovarian cancer sufferers can be
detected using MALDI-TOF-MS with ANNs and can be used to positively identify a blind

validation set.

If Ho-1 above i1s rejected: To identify the peaks found to be present in significantly different
amounts in the tested serum by matching by matching LC-MALDI-MS/MS of a pool of the
samples to MALDI-MS data.

Ho.ii: The masses of the peptide peaks expressed differentially in the tested serum cannot be

identified by linking data from LC-MALDI-MS with the MS profiles.

Hiii: The masses of the peptide peaks expressed differentially in the tested serum can be

assigned a protein identity by linking the MS-MALDI data with LC-MALDI-MS/MS data.

To reproduce the difference in expression observed using a different platform; immunoassay.
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Ho-iii: No difference in expression will be noted of the proteins demonstrated to be expressed

using MALDI-MS.

H\.ii: That unique protein patterns expressed in the sera of ovarian cancer sufferers can be
detected using MALDI-TOF-MS with ANNs and can be used to positively identify a blind
validation set.

3.2. Materials and Methods

3.2.1 Materials

3.2.1.1. Equipment used

Table 4. Equipment Utilised for MALDI-TOF-MS

Equipment

Supplier

Bruker UltrafleXtreme Matrix Assisted
Laser Desorption lonisation-Time of Flight
Mass Spectrometer (MALDI-TOF)

Desktop computers with use of SpecAlign,
Excel, Statistica and Bruker Software
which comprises of: FlexControl 3.3,

FlexAnalysis 1.3

384 spot MALDI-TOF targets
(Grounds Steel 384)

Automated pipetting machine

Sonicator
-80°C freezer
37°C Incubator
Vortex

10 pL Millipore ZipTips Cisg pipette tips
Polypropylene bottles for reagent storage

1.5 mL Eppendorf
1 mL pipette
200 mL pipette
2 mL pipette
0.2-1 mL tips
20-200 pL tips
0.5-10 pL tips

Bruker Daltonics

Bruker Daltonics

Bruker Daltonics

FluidX

VWR Ultra Sonic Cleaner
New Brunswick
Heraeus
Scientific Industries

Millipore

Nalgene F.E.P.

Eppendorf
Gilson
Gilson
Gilson

Gilson
Gilson
Gilson
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3.2.1.2. Reagents used:

Table 5. Reagents Utilised for MALDI-TOF-MS

Reagent Supplier Grade
Acetone Sigma LC MS
Acetonitrile (ACN) Sigma LC MS
Alpha-Cyano-4-hydroxycinnamic acid (CHCA) Bruker Daltonics MAL:\DAIS'TOF'
Ammonium bicarbonate Sigma Laboratory
Distilled water Ba}rnstead nano pure

Diamond

Methanol Sigma LC MS
Peptide Calibrant Il Bruker Bruker Daltonics MS
Trifluoroacetic acid (TFA) Fisher Scientific HPLC
Trypsin — Trypsin Gold, Mass Spectrometry Grade Promega MS
Tryptic Digest of Bovine Serum Albumin Bruker Daltonics MS

3.2.1.3. Stock Solutions Made and Used

Table 6. All stock solutions made and used for MALDI-TOF-MS

Reagent Composition
0.1% TFA in H,0 S0 pL TFA
(50 mL) 49.95 mL — Distilled water
0.1% TFA in Acetonitrile 49.95 mL — Acetonitrile
(50 mL) 50 uL TFA
40 mL - ACN

80% ACN diluted with 0.1%TFA
(50 mL) 10 mL - 0.1% TFA solution

100 mg — Trypsin Gold, Mass Spectrometry Grade

Trypsin solution 0.5 mg/mL 200 mL — 100 mM ammonium bicarbonate

Evu NH;HCO3
lodoacetamide 200 mM 36 mg lodoacetamide
(1mL) 1 mL of 50 mM ammonium bicarbonate
Dithiothreitol (DTT) 200 mM 30 mg DTT
(1 mL)

1 mL 50 mM ammonium bicarbonate

3.2.1.4. Samples

Two hundred serum samples were selected and categorised by a consultant gynaecologist from

a bank of serum samples ethically collected from patients in a Derby City General Hospital
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Gynaecology ward between 2004 and 2007 (Southern Derbyshire Local Research Ethics
Committee: REC reference number: SDLREC Ref 0205/495).

The four categories were age matched as closely as possible
30 Cancer. (1 Clear cell carcinoma,l4 endometrioid adenocarcinoma, 1 mucinous
cystadenocarcinoma, 1 mucinous papillary cystadenocarcinoma, 1 poorly differentiated
adenocarcinoma, 6 serous adenocarcinomas, 2 serous cystadenocarcinomas, 4 serous papillary
cystadenocarcinoma).
e 30 Cancer controls. Treated in the gynaecology ward but not for ovarian malignancy or
benign condition aged matched to the cancer group.
e 20 Benign (4 mucinous cystadenoma, 2 serous cysts, 3 serous cystadenofibromas, 18
serous cystademonas and 3 serous papillary cystadenomas.
e 20 Benign controls. Treated in the gynaecology ward but not for ovarian malignancy or

benign condition age matched to the benign group cohort.

A full analysis between each group was conducted, however for this report only cancer vs

cancer control will be reported.

3.2.2 Methods

3.2.2.1 Sample Preparation and Data Acquisition

Two hundred serum samples were defrosted on ice, diluted 1 in 20 in 0.1% TFA and refined
using Millipore Cig ZipTips and an automated pipetting robot. Trypsin was manually added to
each sample for an overnight 37°C digestion then the automated pipetting robot was used to
repeat the Cig ZipTip clean up and spot to the ground steel target for MALDI-MS analysis (as
described in the section 2.1.3.2).

Samples were placed in randomised order to negate batch effect, and appropriate standards and
blanks run alongside. 60% of the samples were processed on one date for biomarker discovery,
the remaining 40% were processed on a second date to be used as a validation set, to test any

biomarker discoveries.
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MALDI-MS spectra profiles 800-3500 m/z were acquired for each sample using the Bruker
Ultraflex III. All spectra were reviewed visually alongside control samples before progressing

to data analysis.

3.2.2.2 Biomarker Panel Generation

Data was exported from the Bruker software to Excel and an in-house designed artificial neural
network (ANN) (as described in the section 2.2.2.5) algorithm was used to data mine it and

generate set of peptide masses that can discriminate two groups.

A stepwise analysis of 10 steps (repeats) was used.

3.2.2.3 Identification of m/z Values in the Biomarker Panel

At the time of defrosting for MALDI-MS profiling 2uL of each of the samples was taken to
amass a pooled sample from each category. i.e. one “cancer pooled” and one “control pooled”

sample that is made up of all of the other samples

The two pooled serum samples were sent to the collaborative/sales contacts at Bruker (the
supplier of the mass spectrometer) in Bremen, Germany to be analysed by the next generation
of mass spectrometric technology. At Bruker, each pooled serum sample was deconvoluted via
Cis liquid chromatography fractionation prior to tandem mass spectrometry (see section 2.1.3
and 2.1.5). This was done in the same model of instrument (Bruker UltrafleXtreme) however
using an automated program and different mode within Flex Control 3.3. Using this function
an automated run acquires all the m/z values detected in each spot and compiles a list, following
this the instrument switches to a more sensitive mode/reflection mode (see section 2.1.3) then
returns to each spot and selectively isolates, fragments and measures each of the best intensity
m/z values for each spot. In reflectron mode, the flight path of the ions is increased allowing for
separation of the small, fragmented peptides (see 2.1.3.4). The fragment parent and fragment
m/z values were searched at Bruker and the list of protein identities assigned to each was

returned.

The peptide m/z values from the biomarker panel generated above were cross-referenced to the

parent m/z values of the file returned from LC-MALDI-TOF profiling. A very wide boundary
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(1 Da) was applied to allow for machine-to-machine variation and the disconnected nature of
this method. Additionally, with the knowledge that thousands of peptides share the same m/z
value, these potential identities were used to not conclude a match but as a research clue/piece
of evidence to guide future experiments. The potential error in identity matching is reduced
slightly by this being the same model of instrument analysing the same samples. For this reason,

more than one protein identity may be assigned to each peak.

3.2.2.4 ELISA

Two ELISA kits for were purchased and performed as per instructions in the kits.
Genway Vitronectin ELISA KIT Catalog number 40-831-160002.

Immunology Consultants Laboratory Inc Transferrin L11 0-3S1

3.2.2.5 Additional Analyses
The following additional analyses were conducted and not relevant or reported in this line of
investigation.
e Comparison of Transferrin and Vitronectin ELISA results against tumour stages and
grades.
e Box plots of peaks of interest against stages and grades.
e CAI125 and CEA levels supplied from clinical information were
o Correlated with MS values of interest
o Correlated against Transferrin and Vitronectin levels as assayed by ELISA
o Included in a stepwise analysis
e CKI10Ab was purchased as there was not an ELISA KIT available. It was used for IHC
and western blots and also SILAC work started with CK10.
o [IHC of Biomax ovarian cancer TMA
o [IHC of frozen tissue from same source as
e The ANN analysis was repeated only containing the peptide masses that had matched

identities.
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3.3. Results

3.3.1. Generation of Biomarker Panel from MALDI-TOF-MS Data

Spectra of the test samples were acquired (as described in the methods section 3.2.2.1) and
viewed in FlexAnalysis, any spectra deemed not to be of sufficient quality were removed from
analysis at this stage. Intensity values of monoisotopic peak values for each sample were
exported to MS Excel format using FlexAnalysis software. Statistica and in house developed
software was used to compute the mass values that are differentially expressed between cancer

and cancer-control groups.

Table 7 (below) details the results of the stepwise analysis. The performance (Average Test
Performance), and error (Average Test Error) of the model with the addition of each peak value
(input ID) is seen. Optimal performance of the model is at loop 5, the m/z for ions 1647.8,
1219.6, 3312.2, 1493.8 and 1820.0 produce a test performance of 91% and a test error of 9%.

Table 7.Stepwise Analysis Generation of a Biomarker Panel. Summarises each step of the stepwise
model. The performance and error of the model is detailed with the addition of each input ID/ peak label.

Average Average Average Average  Average

Input ID Train Average Valid. Train Test Valid. Input

LOOP 1 (m/z) Perf Test Perf Perf Error Error Error Index
1 1647.8 0.59 0.64 0.50 0.22 0.22 0.27 4240.00
2 1219.6 0.76 0.73 0.75 0.18 0.18 0.18 2099.00
3 3312.2 0.82 0.86 0.75 0.14 0.13 0.18 12562.00
4 1493.8 0.85 0.91 0.83 0.12 0.12 0.15 3470.00
5 1820.0 0.91 0.91 0.83 0.10 0.09 0.13 5101.00
6 3293.8 0.91 0.91 0.83 0.08 0.07 0.15 12470.00
7 2269.2 0.91 0.91 0.83 0.09 0.08 0.14 7347.00
8 25414 0.88 0.91 0.83 0.09 0.08 0.13 8708.00
9 1981 0.90 0.91 0.83 0.09 0.08 0.14 5906.00
10 2202.6 0.88 0.91 0.83 0.09 0.08 0.14 7014.00

The ANN model was remade in Statistica software using identical parameters with 60% of the
samples, tested using 20% then validated on the final 20%. Then all of the cases were blindly
classified using the Statistica ANN fifty times.
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Figure 15 (below) is a population chart of the performance of the model in Statistica. Each
sample is seen in the x-axis; the y-axis represents the amount of times that case was correctly
or incorrectly classified. Three control cases were incorrectly classified as cancer and 7 cancer

samples were classified as controls.

PopulationChart 1.CANvsCANCON Based on
1647.8,1219.6,3312.2, 1493.8 and 1820.0

TIHITH i1

Figure 15. Population Chart of the Performance of the Biomarker Panel Discriminating Cancer from
Controls.

All cases with a value above 75/the red line were classified as cancer, all cases below 75/the red line were
classified as controls. Three false positives and 7 false negatives are seen.

3.3.2. Identification of the Peaks in the Biomarker Panel

LC-MALDI-TOF-MS/MS was performed on a pool of the cancer and cancer control serum to
produce a list of possible identities for each peptide mass identities in the biomarker panel. The
possible identities were compared with current literature and Vitronectin and Transferrin were

selected to be interesting candidates for validation using immunoassay.

The peptide m/z values from the biomarker panel were cross-referenced to the parent m/z values
of the file returned from LC-MALDI-TOF profiling. Table 8 below details the protein identities
nearest to the m/z values of interest. This gave more than one possible identity for some of the

m/z and none for one. A very wide boundary (1 Da) was applied to allow for machine-to-
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machine variation and the disconnected nature of this method. Additionally, with the knowledge
that thousands of peptides share the same m/z value, these potential identities were used to not
conclude a match but as a research clue/piece of evidence to guide future experiments. The
potential error in identity matching was reduced slightly by this being the same model of

instrument analysing the same samples.

Table 8 Potential Identities of the m/z values of the biomarker panel. The m/z values generated from the
cancer vs control panel (left column) are cross-referenced against the m/z values of the parent ions generated

from tandem mass spectrometry of the same samples by Bruker in Bremen, Germany. Empty cells indicate no
match.

m/z Pooled Cancer Pooled Cancer Pooled Control
from Run 1ofl Run 20f1 Run 1ofl
OvCa
vs Con Identity m/z Identity m/z Identity m/z
panel
Homo sapiens APOE_HUMAN
Vitronectin APOE_HUMAN Apolipoprotein
(sterile-Cell Culture 1646.8 Apolipoprotein E 1647.8 E OS=Homo 1647.8
Tested Attachment Homo sapiens sapiens APOE
1647.8 Factor) PE
VTNC_HUMAN V'I\'/l\llﬁ (—);‘éJC';/ilﬁN
- - V|tronecpn Homo 1646.8 Homo sapiens 1646.82
sapiens VTN

LV102_HUMAN Ig
lambda chain V-I

1219.6 - - region Homo 1219.66 - -
sapiens
Homo sapiens
3122 \eratin 1 (KRT1) 33123 i i i i
. K1C10_HUMAN TRFE_HUMAN
KRHUO keratin 10 = - .
! Keratin, type | Serotransferrin
type I_, r(;‘ytncszléeletal 1493.7 cytoskeletal 10 1493.73 Homo sapiens 1494.73
u Homo sapiens TF
1493.8
TRFE_HUMAN
- - Serotransferrin 1494.73 = s
Homo sapiens TF
1820 - - - - - -

Table 8 shows, when the samples were re-analysed with the same instrument with peptide
matching functionality. The protein identities with the closest m/z values to 1647.8 were
Apolipoprotein E and Vitronectin, 1219.6 to lambda chain V-1, 3312.2 to Keratin 1, 1493.8 to

Serotransferrin and no parent m/z values were within 1 Da of 1820.

Keratin 1 is a common contaminant in mass-spectrometric experiments and is generally
discounted from results, leached from researcher’s skin and hair despite personal protective

equipment can be hard to eliminate entirely, thus is a poor biomarker candidate for further
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research. Apo lipoprotein is a highly abundant serum protein so without a quantitative

application it would be hard to make a publishable novel contribution to current knowledge.

The lists of potential identities were then compared with current literature and two identities
were chosen for further investigation based on their relevance, reported link to ovarian cancer,
and therefore their potential use as a prognostic biomarker. Transferrin has been reported to be
expressed in serum at decreasing levels relating to increasing stage (Nosov ef al., 2009). The
role of Vitronectin in ovarian cancer progression has been inferred in a cell line study of the

effects of its agonist on cell adhesion and motility/ metastatic potential (Beck et al., 2005)

Keratin 10 and lambda chain V-1 were chosen as secondary candidates to be investigated at a
later stage. Namely CK10, from these results CK10 was chosen to immunohistochemically
stain a tissue microarray of ovarian cancers by other researchers however the results are not

available to this study.

3.3.3. Validation of the Peaks in the Biomarker Panel

The Figures below show the amount of inferred proteins as measured by immunoassay for each
cancer and cancer-control case. The cancer control group show a wider range of Transferrin
serum levels which is significantly (p-value = 0.0243) higher in the cancer control group. Figure
17 (below) shows the amount of Vitronectin as measured by immunoassay for the cancer and
cancer control group. No significant difference in expression between the two groups is noted

(p-value = 0.258)
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Figure 16. Boxplot of Transferrin Levels as Measured by ELISA.
Transferrin levels of 30 cancer cases and 30 cancer control cases as measured by immunoassay. The average serum
concentration of the cancer group is (2.56 mg/mL) is lower than that of the cancer-control group (3.25 mg/mL)

with a p-value of 0.0243.
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Figure 17. Boxplot of Vitronectin Levels as Measured by ELISA.
Vitronectin levels of 30 cancer cases and cancer control cases as measured by immunoassay. The average serum
concentration of the cancer group is 85.8 pg/mL and the control group is 75.5 pg/mL.

The peak intensities of a peak suggested to be Vitronectin were correlated against the immune

assay values. Figure 18 (below) shows that no correlation was seen between the level of
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Vitronectin as measured by immune assay and peak intensity of the peak suggested to have
been Vitronectin. To better demonstrate the poor correlation all 200 serum samples analysed
(cancer, cancer control, benign and benign control) are shown, zero values are seen in cases
where either no Vitronectin was measured by ELISA (x axis), or, no m/z of 1647.8 was

detected in the MALDI-TOF spectra (y axis).
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Figure 18. Vitronectin Levels as Measured by ELISA (ng/mL) and Peptide Peak m/z 1647.8 Intensity.
Correlation of Vitronectin as measured by ELISA against the intensity value of the peptide peak with the suggested
identity as Vitronectin.

3.4. Discussion

This chapter aimed to address the need for robust replacements for out-dated low-accuracy
diagnostic clinical tools currently used. Despite its popularity, MALDI-MS profiling studies of
ovarian cancer patient material have so far not produced any robust biomarker identities to

further this field (Cadron et al., 2009, Hays et al., 2010, Timms et al., 2011)

There are instances where the biomarker discovered by MALDI-MS data has been utilised
(Yang et al., 2013) and (Timms et al., 2011). Most recently Timms ef al., 2011, published a
MALDI data profiling study with methodologies similar to those in this report. Combined with

CA125 two chemokines improved the prognostic ability of serum analysis. Analysis of peptide
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yielded peptides which when combined with CA125 improved sensitivity and specificity. Due
to the nature of the data identity of the peptides were disputable. They used this identity as a
suggestion, and combined with literature and made an inferred identify. Based on the calculated

guess a separate platform was used to validate the differential expression of this which worked.

In this study MALDI-MS profiles of serum from cancer patients were acquired and analysed
using bioinformatics methodologies. It was demonstrated that a biomarker panel can be
generated from MALD-MS data using ANN algorithms with a promising predictive power
comparable to that of CA125.

AMLP-ANN used in a stepwise manner was used to generate the biomarker panel. MLP-ANNs
have been criticised for their closed, black-box nature, the ANN used to generate the panel was
created in-house and conducted under the supervision of one of its creators to ensure its correct
use (Lancashire et al., 2008)

A biomarker panel of five peptide mass values discriminated cancer from age matched controls
with a 91% sensitivity (Table 7). Possible protein identities were assigned to these peptide
masses reanalysing a pool of the serum using LC-MALDI-MS/MS and online databases to
calculate probable protein sequence information thus protein identities. Immunoassay was
performed for the quantitation of Transferrin and Vitronectin, two potential identities of peptide

peaks of interest (Figure 16 and Figure 17).

In an ideal scenario, a biomarker panel would be repeated and validated on a different
technological platform, and on a different cohort of serum samples from patients with ovarian

cancer and age matched controls and the same changes in protein expression observed.

The sensitivity and reproducibility achieved with the biomarker panel generated from the MS
data was not reproduced for a series of reasons including

e The heterogeneity of the sample set used

e The lack of a second cohort serum of samples

e The lack of identities of the peptide masses in the biomarker panel

e The allocation of possible identities for a peptide based only on mass the same sample

but on different machine or different analyses in the same machine.
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3.4.1. Samples

No other cohorts of serum from ovarian cancer patients with aged matched controls, collected
in a standardised protocol were available to this group for validation of the biomarker panel
produced. Blinding the data and presenting it to the trained ANN is the closest that could be
attempted to ‘blind validation’ of the model. Presenting the same data to the ANN may arguably
produce a higher performance. Though it should be noted the results of the validation seen in

Table 7 are truly blinded 20%.

Although all samples analysed were selected by a consultant gynaecological oncologist from a
biobank collected over three years it was unavoidable to include a variety of stages, grades and
histologies in the cancer group. See section 3.2.2.1 sample details. Treating this ‘mixed bag’ of
cancer samples as one group will hinder the detection of biomarkers that that would categorise

between the subcategories.

3.4.2. Identification of the Biomarker Panel Proteins

Not all peaks in the biomarker panel were matched to any potential identities. Thus, the full
performance of the biomarker panel cannot even be attempted to be repeated using another
technological platform. As in other biomarker detection studies using MALDI-MS data (Timms
et al, 2011 and Yang ef al., 2013), the data served mainly as a guidance, and where a story

seemed to match the other literature this was investigated further.

One of the potential identities of the peaks in the biomarker panel was Transferrin. Nosov ef al.,
(2009) published their interest in this protein alongside Transthyretin, Apolipoprotein A-1 and
CA125 based on their previous evidence and the hypothesis that all three of these play a role in

oxidative stress which links to carcinogenesis (Nossov ef al., 2008 and Nossov et al., 2009).

The increased expression of Transferrin in the serum of cancer patients compared to controls
produced in this study (Figure 16) did not reflect the trend noted in the literature; where serum
Transferrin levels decreased with higher grade of tumour (Nosov et al., 2009). This discrepancy
may be explained by the particular subset of samples, it was suggested by Nossov et al., (2008)

that these markers were more sensitive to a mucinous histopathological subtype.
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The approach of matching peptide mass values from MS MALDI data to LC-MALDI-MS/MS
data for an identity was used as it was the best available option, however, is fundamentally

flawed.

The exact peptide mass values from the biomarker panel have 4 decimal places and is a result
of what the Bruker FlexAnalysis software has recognised to be a monoisotopic peak value and
used to export as the raw data. The mass values for the LC-MALDI-MS/MS ‘identity’ run were
also generated using the Bruker software suite however on a different instrument in a different
laboratory. Some inter and intra instrument variation is to be expected so a very wide window

of 1 Da either side of the biomarker was used to generate the possible identities.

Researchers at the time (early 2000s) see Table 3, were less concerned with the identity of
biomarkers generated by SELDI and MALDI MS if they were clinically applicable this was all
that mattered: “Although knowledge of the identity of a marker is not prerequisite to its utility”
Jacobs et al. (2004)

Further to this, it is possible that the peptides that were not matched to an identity are novel
proteins coded by a cancerous mutation or novel single nucleotide polymorphism (SNP)
therefore would not be found by conventional database searching. If a SNP or mutation was
suspected the MALDI-TOF-MS/MS data could be searched against an in-silico database of
hypothetical mutations however, this is not currently available. Moreover, is more likely that
the peptides were either not detectable by or not detected on in the MALDI-TOF-MS/MS

sample used for the matched identification.

In summary, the inability to identify markers, and the ambiguity of the identities assigned to

peptides of the biomarker panel, was a major limitation to this strategy for biomarker discovery.

3.5. Conclusion

In conclusion, the first null hypothesis (Ho-i) can be rejected: Unique patterns in protein

expression in the sera can be detected by MALD-TOF-MS and ANNSs and used to distinguish

cancer from control on a blinded validation set.
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However insufficient data or evidence leads to the acceptance of the second null hypothesis
(Ho-i1): The masses of the peptide peaks expressed differentially in the tested serum cannot be

identified by linking data from LC-MALDI-MS with the MS profiles.

Consequently, the third null hypothesis cannot be addressed as the full set of peptides in the

biomarker panel were not identified.
Approaching the task with the next generation of technology, where all protein and sequence

data is available from the same analysis the biomarker panel is generated from will result in a

biomarker panel of peptides of a known identity.
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4. Proteomic Evaluation of LC-MALDI-TOF-MS as a Profiling Strategy for

Biomarker Discovery in Ovarian Cancer

Chapter Abstract

Spectral features alone, such as the biomarker panel of m/z values generated in chapter 3 have
limited real world applicability, and are not able to be validated fully without further insight as
to what they are. A confident assignment of a protein identity to each data/spectral feature was

key to being competitive with current literature.

The work described in this chapter aimed to test and evaluate the capabilities and reproducibility
of the (now available) next generation of protein profiling instrumentation LC-MALDI-MS/MS,
and upstream sample preparation and fractionation techniques, such as the OFFGEL
fractionator and Millipore Cig Zip Tips. Several sample preparation protocols were planned to
be compared with a view to apply the best performing to the cohort of clinical samples used in

chapter 3, of which there were limited stocks.

Multidimensional data was produced from ten replicates of four sample preparation techniques;
due to time restrictions, this was not as many as initially outlined. The ten replicate experiments
of each of the four methods were compared to assess the overall reproducibility of sample
preparation and data acquisition. Of the tested sample preparation methods analysed to
completion one was found to consistently yield a higher number of protein identities.
Unfortunately, a deeper analysis of the data collected indicated that there was an overall
relatively low/poor reproducibility in the data acquisition. This was demonstrated by a retention
time shift of the chromatograph however the accuracy is also limited by the experimental design
of LC MALDI spotting being an ‘offline” analysis. It was concluded that, as the capability of
the instrumentation had been measured and its limitations now known, a clinical cohort of
samples could be analysed in this manner and the resulting data used with the caveat that there
is a margin of error of a known size which must be taken into consideration on final analysis.
However, this caveat may make it unappealing to apply to a rare sample set of which there is a

limited stock.
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4.1 Introduction

4.1.1 Need for Identification and Reproducibility of Biomarkers.

The results from chapter 3 as with many studies listed in Table 3 produced results that had
potential, if validated, to improve the prognosis of ovarian cancer sufferers. However, these
proved to be massively flawed by the lack of conclusive identification of peptide mass values

that distinguished cancer from controls.

Previously the identification of the peptide mass values of interest generated from MALDI-
TOF-MS data were matched to protein identities from a separate LC-MALDI-TOF data
acquisition based on its mass alone (Section 3). LC-MALDI-MS/MS analysis of each test
sample individually would provide a three-dimensional peptide map and matched protein
identities of peptides present in the sample (as opposed to a two-dimensional MS spectrum with
no sequence information), analysis of this data would provide the identity of any proteins found
to be differentially expressed between groups. Reproducibility of data and validation of findings
needed to be addressed to compete with criticisms in the current literature. Had the technology
been available, the samples for biomarker discovery could have all been analysed via LC-
MALDI-TOF-MS/MS. The mass values that distinguished cancer from control with protein
identities assigned to them could have been generated at this stage, thus more confidence in
their identity, and likelihood of validation. When LC-MALDI-TOF technology became
available to the project, the ovarian cancer cohort could be reanalysed. Due to limited sample,
optimisation of the sample preparation protocols was needed to ensure the samples were

analysed under the conditions that would produce the maximum protein identities.

To maximise the information recorded from each test sample, experiments were conducted to

test the capabilities of the available Bruker LC-MALDI-MS platform.

Different sample preparation and data extraction methods were tested to uncover which

produced the highest number of proteins identified with a high confidence.
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4.1.2. Liquid Chromatography

Liquid chromatography (LC) is used to fractionate molecules within a sample based on their
affinity to bind to an analytical column (as described in section 2.1.5.). A complex sample is
bound to an analytical column and eluted from it at increasing concentrations of a solvent; the
mobile phase. For example, using LC, proteins within a serum sample can be bound to then
separate from a Cis column based on their affinity to bind to Cys silica in the presence of the
solvent acetonitrile. Periodical fractions of the eluent from the column can be collected and
analysed at a greater detail than the original sample. LC systems are often coupled to an
electrospray mass spectrometer for a continuous mass spectral analysis of the sample as it is

eluted at an increasing concentration from the column.

4.1.3. The need to Address Reproducibility to Progress with the Research in the Area.

Publications based on MALDI data are heavily criticised on the reproducibility of the data and
the lack of the identification of the peptide peaks of interest.

It is also seen (Cadron ef al., 2009) that the majority of the identities that have been implied are
high abundant proteins, or already known acute phase reactants (Diamandis 2004). In theory, a
serum protein released by or in response to a tumour would be found at concentrations orders

of magnitude lower than these.

4.1.4. Sample Fractionation Techniques.

Removal of the highly abundant proteins, or separation of the proteome on a separate dimension,

can be conducted to allow access to the lower abundant proteome (Margulies and Shevack

1996). Additionally, fractionating the proteome on a third dimension and analyses of each

separate fraction decreases the complexity of the sample and increases the chance of access to
proteins of lower abundance. Two different examples of fractionation techniques include.

e Immuno-depletion proteome (Margulies and Shevack 1996). Relevantly to serum

proteomics is the Sigma ProteoPrep20 immuno-depletion column (Sigma-Aldrich

2012); Sera to be analysed is run through a column containing antibodies to the 20 most

highly abundant proteins in serum. The abundance proteins are captured and removed

or analysed separately. This process removes 90-95% of the total protein from the

sample (Sigma-Aldrich 2012).
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e Isoelectric focusing. The OFFGEL fractionator 3100 (Agilent Technologies 2010)
applies an electric current to the sample loaded. Proteins or peptides within the sample

are fractioned into 12 or 24 portions based on their isoelectric point (pl).

Analysed data acquired from each fraction can be compiled post-acquisition to piece together

a proteome at an increased resolution than a non-fractionated sample.

4.1.4.1. Millipore Zip Tips.

A ZipTip, or solid phase extraction in a pipette tip (see section 2.1.5 for solid phase extraction),
is one such method of sample purification; they are relatively cheap means for liquid
chromatography used with an isocratic mobile phase. Millipore Zip Tips are a 10 pL pipette tip
with a bed of chromatography media fixed at its end. Drawing in and aspirating a sample
through a ZipTip will remove salts and detergents which, due to their charged nature, can hinder
spectral quality by increasing signal to noise ratio: biomolecules in the sample bind to the
immobilised absorbent resin inside each tip, damaging salts and detergents are washed away
resulting in de-salted, purified and concentrated sample. Cis and C4 are two types of ZipTip that

can be used depending on the nature of the analyte (Millipore Corporation 2005).

4.1.4.2. Alkylation and Reduction.

Proteins are commonly reduced and alkylated prior to analysis.

Breaking disulphide bonds relaxes and linearises the 3D structure of a protein (Sechi and Chait
1998, Hale et al., 2004 and Wedemeyer et al., 2000). Disulphide bonds between cysteine
residues are key to the stability of tertiary structure of proteins (Wedemeyer et al., 2000).
Reductive unfolding, is the loss of protein tertiary structure due to the chemical reduction of
these bonds (Wedemeyer et al., 2000). The resulting exposed sulphydryl groups are highly
reactive so an alkylating agent is often added to oxidise and stop unwanted reactions or
refolding within the protein (Hale et al., 2004). In gel-based techniques such as in 1 or 2-
Dimensional Polyacrylamide Gel Electrophoresis (1 or 2D-PAGE) this standardises the
movement of proteins through medium increasing the resolution of bands or spots (Sechi and
Chait 1998). Additionally, the linearisation or the protein increases access of proteolytic

enzymes to digestion cleavage sites prerequisite for protein identification from mass
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spectrometric peptide mass fingerprinting. Improving digestion efficiency should result in more
peptides cleaved per protein, and a cleaner mass spectrum with better resolved peaks for optimal

protein identification through database matching (Hale et al., 2004).

To be able to publish in the area, and more importantly for confidence in the reproducibility in
the data, repeated measurements of the capabilities of the instrumentation, sample preparation,

and methods used was a necessary step.

To do this, a large stock of human serum used for regular quality control was analysed multiple
times through different sample preparation workflows and data acquisition and extraction to
discover the optimal rout for the future analysis of the serum from ovarian cancer patients with

controls.

Figure 19 (below) depicts 40 replicates of one sample being analysed via four protocols/
workflows (10 in each). Some requisite procedures are consistent across all 40 replicates i.e.
thawing and dilution or tryptic digestion. Other potentially optional steps i.e. alkylation and
reduction or pre-digestion Cig ZT are conducted on 10 replicates and 10 replicates of a control

condition which was identical barring the optional procedure was shown next to it.
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QC Reproducibility

QC serum sample

Figure 19. Multiple Analysis of one Serum Sample via Different Sample Preparation Workflows.
One serum sample used for quality control seen on the top level was analysed 10 times four each of four
workflows. Each line and circle represents one replicate.

4.1.5. Aims and Hypotheses of the Chapter

To assess the quantitative power of MALDI-TOF-MS data.
HO-1v: There i1s no correlation between protein amount loaded for detection and the signal
intensity of protein detected.

Hi—iv: The signal intensity values of a detected protein is relative to the amount of protein

loaded.

Optimise Sample preparation; identify a satisfactorily reproducible combination of sample
fractionation and preparation techniques to maximise the number of meaningful protein
identities from one serum sample using MALDI-TOF MS.

HO-v: All tested sample preparation techniques prior to LC-MALDI-MS produce equal amounts
of meaningful protein identities.

Hi—v: One sample preparation technique prior to LC-MALDI-MS will yield a greater amount

of meaningful protein identities.
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Method validation. Assess reproducibility and robustness of above protein mapping methods.

To assess the validity of using LC-MALDI-MS data to find differences in protein expression in
serum.

Ho—vi: There will be no significant difference between the LC-MALDI-MS profiles of serum
samples prepared under identical conditions.

Hi—vi: Differences will be seen in the LC-MALDI profiles of serum samples prepared under

identical conditions.
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4.2. Materials and Methods

4.2.1. Materials

4.2.1.1. Equipment used

Table 9. Equipment Utilised for LC-MALDI-TOF-MSMS
Equipment Supplier

Bruker UltrafleXtreme Matrix Assisted
Laser Desorption lonisation-Time of Flight Bruker Daltonics
Mass Spectrometer (MALDI-TOF)

Nano-HPLC-Protineer fc-11 Target Spotter Bruker Proteineer

Desktop computers with use of SpecAlign,
Excel, Statistica and Bruker Software
which comprises of: FlexControl 3.3,
FlexAnalysis 1.3, Profile Analysis 1.1, Bruker Daltonics
Biotools 3.2, ClinProTools 2.2 software
controlled by WarpLC 1.2 as part of the
Compass Series 1.3.

384 spot MALDI-TOF targets; Grounds

Steel 384, Anchor Chip 384 and PAC 384 S DElimiEs

Automated pipetting machine FluidX
Sonicator VWR Ultra Sonic Cleaner
-80°C freezer New Brunswick
37°C Incubator Heraeus
Vortex mixer Scientific Industries
10 pL Millipore ZipTips Cis pipette tips Millipore
Polypropylene bottles for reagent storage Nalgene F.E.P.
1.5 mL Eppendorfs Eppendorf
1 mL pipette Gilson
200 mL pipette Gilson
2 mL pipette Gilson
0.2-1 mL tips Gilson
20-200 L tips Gilson
0.5-10 pL tips Gilson
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4.2.1.2. Reagents used:

Table 10. Reagents Utilised for LC-MALDI-TOF-MSMS

Reagent Supplier Grade
Acetone Sigma LC MS
Acetonitrile (ACN) Sigma LC MS
Alpha-Cyano-4-hydroxycinnamic acid (CHCA) Bruker Daltonics MAL:\DAIS'TOF'
Ammonium bicarbonate Sigma Laboratory

. Barnstead

Distilled water Diamond nano pure
Methanol Sigma LC MS
Peptide Calibrant 11 Bruker Bruker Daltonics MS
Trifluoroacetic acid (TFA) Fisher Scientific HPLC
Trypsin — Trypsin Gold, Mass Spectrometry Grade Promega MS
Tryptic Digest of Bovine Serum Albumin Bruker Daltonics MS

4.2.1.3. Stock Solutions Made and Used

Table 11. All stock solutions made and used for LC-MALDI-TOF-MSMS

Reagent

Composition

0.1% TFA in H,O
(50 mL)

0.1% TFA in Acetonitrile
(50 mL)

80% ACN diluted with 0.1%TFA
(50 mL)

Trypsin solution 0.5 mg/mL
(200 uL)

lodoacetamide 200 mM
(A mL)

Dithiothreitol (DTT) 200 mM
(A mL)

50 uL TFA
49.95 mL — Distilled water

49.95 mL — Acetonitrile

50 pL TFA
40 mL — ACN

10 mL - 0.1% TFA solution

100 mg — Trypsin Gold, Mass Spectrometry Grade

200 mL — 100 mM ammonium bicarbonate
NH4HCO3

36 mg lodoacetamide
1 mL of 50 mM ammonium bicarbonate
30 mg DTT

1 mL 50 mM ammonium bicarbonate
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4.2.2. Methods

4.2.2.1. Production of the BSA Standard Curve.

The following dilutions (Table 12) were made from an unused tube of Bruker Tryptic Digest of
Bovine Serum Albumin (125 pL was added to the new vial containing 500 pMol to create a 4

pMol/uL stock.)

Table 12. Dilutions made for production of a BSA standard curve.

Volume of 0.1%TFA (uL) Volume of BSA BSA (fMol/uL)
10 0 0
195 5uL of (4 pMol/uL) 100
5 5 uL (100 fMol/pL) 50
6 4 uL (100 fMol/uL) 40
7 3 uL (100 fMol/pL) 30
8 2 uL (100 fMol/pL) 20
9 1 uL (100 fMol/uL) 10
9.5 0.5 uL (100 fMol/uL) 5
10 0 0

0.5 pL of each dilution were manually spotted to a Bruker PAC target. One of each replicate
were used for optimisation of the mass spectrometer parameters i.e. laser power and detector
sensitivity then the remaining seven were fired on under identical parameters using an
automated data acquisition function within the Bruker FlexControl software. Bruker
FlexAnalysis software was used to export the intensities of the calculated monoisotopic peaks

present in the sample.

4.2.2.2. QC Serum Sample

QC serum sample was collected in November 2008. Briefly; 50 mL of vein blood was taken
from 4 volunteers; 2 female and 2 male fully informed and consenting volunteers. The blood
was left to clot for between 30 min and one hour at room temperature until clotted then
processed under contamination level 2 conditions. Firstly, the bloods were centrifuged at 22°C
for 15 min and at 2000 x rcf, then the serum supernatants were collected with Pasteur pipettes

and pooled into one sterile container and gently agitated at 4°C while aliquots were made. Three
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thousand 30 pL aliquots were made into sterile 0.5 mL micro tubes. Aliquots were stored at -

80°C for future use.

Following standard practice for serum samples in the John van Geest Cancer Research Centre
proteomics lab, serum samples are used for no more than three freeze thaw cycles before they

are discarded.

Later protein assay revealed the QC serum concentration to be 70 mg/mL; (1.061 pL contains

1 mg of protein).
4.2.2.3. Multiple Workflows Tested for Optimisation
Although more workflows were originally planned and would have been insightful, data was

collected for 10 replicates of each of four workflows. As depicted in Figure 19 above and Table

13 below, multiple replicates of one test serum sample were tested under each condition.

Table 13. Summary of the Workflows Applied to Replicates of one Test Sample.

Sample
Sample .
. Preparation
Preparation Controls run . . Controls run
- i . Condition 2: .
Condition 1: in Parallel to Alkvlation "™ Parallel to
Pre-digestion Condition 1 gnd Condition 2
ZIpTip Reduction
Sample Number n=10 n=10 n=10 n=10
Samples were digested
prior to digestion s N N Mo
Samples Reduced and
Alkylated No No Yes No

See sections 4.2.2.5 and 4.2.2.6 below for the protocols used in each condition.

4.2.2.5 Alkylation and Reduction of Sera

The following protocol was adapted from an online source (http://www.ocbn.ca/insolution.htm

2012). Urea was omitted for compatibility with MALDI-TOF-MS.

5 uL of DTT was added to 1.06 pL of QC serum (containing 1 mg total protein) diluted in 100
pL 50 mM ammonium bicarbonate and the sample thoroughly vortexed. The sample was

wrapped in foil to protect from light and incubated at 37°C. After one hour precisely, 20 uL of
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200 mM iodoacetamide was added and the sample was again vortexed. 20 pL of 200 mM DTT
added and the sample vortexed and left at room temperature for one hour. 10 puL Trypsin (0.5
mg/mL in 100 mM ammonium bicarbonate) was added then the sample incubated at 37°C
overnight (18 h). Following the digestion, digests were refined using Millipore Cig ZipTips:
(see3.1.4). Elutes were diluted in 20 pL 0.1%TFA and chromatographically separated and
spotted to Bruker MALDI-TOF targets using the Bruker nLC. Data was acquired using the
Bruker UltrafleXtreme

See Table 13 and Figure 20. Flow chart of alkylation and reduction of QC sera and controls.

4.2.2.5.1 Controls for Alkylation and Reduction Protocol

1.06 pL QC serum (containing 1 mg total protein) was diluted in 21.2 pL 0.1% TFA timed to
match dilution time of the paired test sample (section 4.2.2.5). The sample was vortexed and
kept at 4°C for the duration of the additional steps for alyklation and reduction in section 4.2.2.5.
10ul Trypsin (0.5 mg/mL in 100 mM ammonium bicarbonate) added at the same time as the
paired test sample (section 4.2.2.5) and incubated at 37°C overnight (18 h). Digests were refined
using Millipore Cis ZipTips: see 3.1.4. Elutes were diluted in 20 pL 0.1%TFA and
chromatographically separated and spotted to Bruker MALDI-TOF targets using the Bruker
nLC. Data was acquired using the Bruker UltrafleXtreme in as close as possible time to the

paired test sample (section 4.2.2.5)

See Table 13 and Figure 20. Flow chart of alkylation and reduction of QC sera and controls.

4.2.2.6 Pre-digestion Cig ZipTip of Sera

2 uL QC serum diluted in 38 puL 0.1%TFA and vortexed. 10 uL was removed and used for
control (see 3.1.6.2), the remaining 30 pL was refined using Millipore Cig ZipTip: See 3.1.4
producing 4 pL of refined proteins in 4 pL of 80% ACN in 0.1% TFA.

The following reagents were added to the 4 uL eluate: 7.6 uLL HPLC grade water, 16.6 uL 100
mM ammonium bicarbonate and 1 pL of 0.5 mg/mL Promega trypsin gold in 100 mM
ammonium bicarbonate and the sample vortexed. Samples were incubated overnight at 37°C.

Following this the digests were refined using Millipore Cig ZipTips: (see .4.1.4).
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The resulting elutes were diluted in 20 pL 0.1%TFA and chromatographically separated and
spotted to Bruker MALDI-TOF PAC targets using the Bruker nLC and data was acquired using
the Bruker UltrafleXtreme.

See Table 13 and Figure 21. Flow chart of pre-digestion ZipTip of sera versus controls

4.2.2.6.1 Controls Pre-digestion Cis ZipTip

Firstly 10 uL of a one in 20 dilution of QC serum was prepared; see 3.1.6. After the paired test
sample (3.1.6) had been ZipTipped, 7.6 uL HPLC grade water, 16.6 pL 100 mM ammonium
bicarbonate and 1 pL of 0.5 mg/mL Promega trypsin gold in 100 mM ammonium bicarbonate
were added and the sample vortexed. Samples were incubated overnight at 37°C. The digests
were refined using Millipore Cig ZipTips (see 4.1.4). The resulting elutes were diluted in 20 pL.
0.1%TFA and chromatographically separated and spotted to Bruker MALDI-TOF PAC targets
using the Bruker nLC and data was acquired using the Bruker UltrafleXtreme in as close as

possible time to the paired test sample.

See Table 13 Figure 21. Flow chart of pre-digestion of sera versus controls

4.2.2.7. Paired Comparisons

To produce LC-MALDI-MS/MS data up to four samples could be analysed each day, this
averaged at two per day. To avoid day-to-day variations such as lab temperature affecting the

results, each of the 10 replicate test samples were processed in tandem with a control. See Figure

20 and Figure 21 below.
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Alkylation & Reduction and Control Workflow

1.06uL QC serum diluted in 1.06uL QC serum diluted in -
/ 0.1%TFA

ammonium bicarbonate

Reducing agent added ( Sul DTT)

Dark for 1 hour at 37°C ®

Alkylating reagent added 20uL ﬁ v
iodoacetamide . Vortexed g Stored at 4°C during alkylation and
l reduction

Reducing reagent to quench any unreacted alkylating
agent DTT . Vortexed

Room temperature 1 hour

l v

Trypsin added \ / Trypsin added

18hr incubation at 37°C

Figure 20. Flow Chart of Alkylation and Reduction of QC Sera and Control Workflow.
Control and test condition 2 serum samples defrosted, processed and analysed together to minimise external

variation.

Each pair were run alternately to negate batch effect i.e. one test sample, one control one test,

one control.
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Pre Digest Zip Tip Workflow

QC serum 1 in 20 dilution 0.1%TFA . QC serum 1 in 20 dilution 0.1%TFA
| / [/

Zip Tip Millipore C,g

f=

Wetting 4 cycles of 80% ACN

|

Contitioning 4 cycles of 0.1% TFA £

v

|
‘1‘ I= Stored at 4°C during Zip Tip
Sample binding 20 cycles of QC dilute

L
£z
Wash 2 cycles of 0.1% TFA (both fresh) E\

|

Elute 20 cycles in ul of 80% ACN -

W

w

v ﬁ
Digestion mixture added. Vortexed Digestion mixture added. Vortexed ‘ %

-

18hr incubation at 37°C

Figure 21. Flow Chart of Pre-digestion Zip-tip QC Sera and Control Workflow.

Control and test condition 1 serum samples defrosted, processed and analysed together to minimise external
variation.

4.2.2.8. A Model for use on Clinical Cohort of Samples

To assess the applicability of the experimental and data-processing set-up ready for application
to a clinical cohort of samples, the data from the 10 alkylated and reduced samples with the 10
controls run in parallel were exported from the software and compared. Differences between

the groups were investigated in two ways

e Comparison of the protein lists acquired — a qualitative assessment.

e Comparison using Bruker software (see 4.2.2.8.2) — a semi quantitative assessment

4.2.2.8.1 Comparison of the Protein Lists Acquired

The full lists for each of the 20 samples (10 alkylated and reduced and 10 controls) calculated

peptide sequences and protein identities were exported from the Bruker WARP-LC and Protein
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Viewer software to Excel. Basic Excel functions such as Sort, IF and PiVot-Tables were used
to compare the presence or absence of proteins across and between replicates. This is a
qualitative analysis as no values are assigned to the protein identities only their presence or

absence counted.

4.2.2.8.2. Comparison using Bruker Software

Bruker Profile Analysis software was used to semi-quantitatively compare the data of the ten
alkylated and reduced replicates with the 10 controls run in parallel as a model for use on sample

with clinical disease and controls.

Profile Analysis software aligns, collates and compares the retention times and mass values to
produce bins of data which, to the best of its ability, aims to separate out each peptide peak
based on the two dimensions; mass and retention time. Full description of the method of this

calculation can be found in (Bruker Profile Analysis User Manual 2.0.).

The Scheduled Precursor List (SPL) is an account of peptide peaks detected and their alignment
to a retention time. The bins, referred to as ‘buckets’ are of varied size depending on what it has
calculated to be one peak/peptide. It is calculated within the Bruker software and contains the
values from the bucket list and the values of error tolerances and the size of the windows and
boundaries of the calculated ‘buckets’. The intensity values of the buckets are compared using
an MS-T-test within the software to list the buckets in order of the difference in intensity

between the two groups.

With great difficulty, the SPL list, the bucket table, and the MS T-test were exported from the
software into Excel using Adobe Acrobat Reader and manually checked in word and Excel for

further analysis.

The peak m/z values from buckets whose intensity values were found through T-test to be
significantly differentially expressed between the two groups (p-value of >0.05 and >= 2-fold
change) were searched against the peptide sequence/ protein identity tables to match protein

identity information.

The SPL list was searched to find the time shift tolerance calculated by the Bruker software.

98



PiVot Tables in Excel were used to further investigate the occurrence of proteins identified by
T-test to be differentially expressed between the two groups. These and the identities of the
significant buckets were compared with that of the qualitative analysis as described in section

4.2.28.1.

4.3. Results

4.3.1. Semi-quantitative Nature of MALDI-TOF-MS

As a proof-of-principal, to asses if MALDI-TOF data can be treated as semi-quantitative a
standard sample of BSA digest was diluted at several concentrations, spotted to a MALDI-TOF

target plate and data acquired. Flex Analysis software was used to view spectra (Figure 22) and

export the numerical monoisotopic peak values to Excel to plot a standard curve (Figure 23).
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Figure 22. Increase of Peak Intensity with Increase in Concentration of Sample Loaded from a BSA digest.
20a) A monoisotopic distribution of a peptide mass 2044.9 is exported from FlexAnalysis software; mass (m/z
ratio on the x axis) is plotted against the intensity (arbitrary units on the y axis). The trace in red depicts a sample
loaded at 100 fMol/uL; orange 50 fMol/uL, yellow 40 fMol/uL, green 30 fMol/uL, light blue 20 fMol/uL, indigo
10 fMol/uL, grey 5 fMol/uL and black 0 fMol/uL. A stacked view of the same spectra are seen in 8b in visual
range of neighbouring peaks.

A standard curve of BSA concentration was plotted against the intensity of one BSA peptide

peak measured in the spectra. Linear line of best fit has a R? of 0.9567.
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BSA Concentration (fMol/uL) Against Signal to Noise Ratio of BSA
Tryptic Digest Peak 2044.9
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Figure 23. BSA Standard Curve from Peak Intensity.

BSA Concentration (fMol/uL) of the sample loaded on the x axis is plotted against the signal intensity (arbitrary
units) detected from the m/z value 2044.9 a known BSA digest peak as measured by MALDI-TOF-MS on the y
axis. The linear regression curve fitted has a R? value of 0.9567.

4.3.2. Reproducibility of the Third Dimension; Retention Time of the Analytical Column

To measure the shift variability of the retention time, the total number of peptides that had eluted
from the analytical column were plotted against retention time for all 10 replicates or each
workflow. The time at which 50% of the total compounds had eluted was used to assess the
variability of retention time. As an example Figure 24 (below) includes the 10 replicates of the

controls run in tandem with the alkylated and reduced samples.
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Figure 24. Retention Time Reproducibility.

Total number of eluted peptides from the column is plotted against retention time/fraction (spot over a 384-spotted
target plate) for 10 replicates of controls run in parallel with the alkylated and reduced workflow (condition 2
controls, Table 13). Percent of the total compounds eluted is on the y axis plotted against retention time on the x
axis Retention time is represented in fractions 10 seconds apart. The retention time/fraction at which 50% of the
peptides had been eluted from the column were compared.

For the 10 replicates from the control samples run in parallel with the alkylated and reduced
samples (seen in Figure 24). The time/fraction at which 50% of the sample loaded had been
eluted had a range of 500 s from 2080 s to 2580 s with a mean average of 2221 s, median and

mode of 2160 s and a standard deviation of 159.5 s.

See section 4.3.5.1. for Bruker Software calculations of retention time shift. In summary,
retention time windows calculated to correspond to each peptide peak ranged from 0 to 1333 s
(22.13 min) with an average of 421 s (7.01 min) preceding the peak and 534 s (8.54 min)
following the peak.

4.3.3. Reproducibility of Identities Acquired using LC-MALDI-TOF-MS/MS

The full list of peptides identified from each run for all replicates were exported to Excel using

Bruker WARP-LC and ProteinViewer software. For an explanation of the power model the
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results from the 10 alkylated and reduced replicates are presented in a histogram below; Figure
25; wherein the occurrences of the accession codes across each replicate were examined. A
larger proportion of the identities only occurred in one replicate. Based on the distribution noted
a power model was used. If a peptide identity occurred in 80% or more replicates it was
considered true (Figure 25 solid colour bars). Identities occurring in 70% or less replicates were

not considered reproducible and excluded from further analysis (Figure 25 faded bars).
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Figure 25. Histogram of Protein Identity Occurrence.

The number of times a protein identity occurred out of the 10 replicates of the alkylated and reduced workflow
(condition 2, Table 13) is represented. The largest proportions of identities only occur in one of the replicate.
Identities that occurred in 7 or less replicates were regarded as non-reproducible and not included in further
analysis (faded bars). The identities that occurred in 8 or more replicates (bold bars) were regarded as reproducible
and included in further analysis.

The power model exemplified here on the alkylated and reduced samples was applied to all four
workflows, cross-reference and displayed in Venn diagrams below. The application of the
power model can be observed within the concentric circles of each workflow. Protein identities
not meeting the 80% power model criteria are represented by the seven faded bars above are in
the outer seven grey circles. Protein identified considered reproducible represented in the three

non-faded bars above are in the central three coloured circles below.

4.3.4. Comparison of the Proteins Identified from each Workflow
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The power model as described above was applied to the test samples.

The 10 replicates from the alkylation and reduction workflow detailed in methods section
4.2.2.5 resulted in 38 reproducible identities; the control replicates run in parallel with the pre-
digestion ZipTip samples described in section 4.2.2.6. produced 74 reproducible identities
(Figure 26). Four identities were only reproducibly identified in the samples that were alkylated
and reduced, 40 were reproducibly identified in only the control group and 34 identities were

reproducibly identified from both workflows.

Alkylated and reduced Controls for A&R

Figure 26. Venn Diagram Comparing the Lists Protein Identities Acquired from the Alkylation and
Reduction Sample Preparation Workflow and Control.

The 10 replicates that were alkylated and reduced before digestion produced 217 protein identities; 38 of which
occurred in 80% or more replicates and considered reproducible (blue), the remaining 179 occurred in 70% or less
replicates and were disregarded from further analysis (grey). For the control samples run in parallel with the pre-
digested alkylated and reduced workflow 339 protein identities were acquired; 74 occurred in 80% or more of the
replicates (red), the remaining 265 only occurred in 70% or less of the replicates and were removed from further
analysis (grey). When the reproducible identities acquired from alkylated and reduced group were cross compared
with the controls run in parallel. 4 identities are unique to the alkylated and reduced group, 40 are unique to the
controls and 34 are reproducibly found in both.

The 10 replicates from the pre-digestion ZipTip work flow detailed in methods section 4.2.2.6
resulted in 36 reproducible identities; the control replicates run in parallel with the pre-digestion

ZipTip samples described in section 4.2.2.6.1. produced 58 reproducible identities (Figure 27).
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Four were unique to the pre-digestion ZipTip group, 26 were uniquely found in the control

group and 32 were reproducibly identified from both sample preparation workflows.

ZipTipped pre-digest Controls ZipTip

0 @
AN /

Figure 27. Venn Diagram Comparing the Lists of Protein Identities Acquired from the Pre-digestion
ZipTip Sample Preparation Workflow and Control.

The 10 replicates that were ZipTipped before digestion produced 265 protein identities; 36 of which occurred in
80% or more replicates and considered reproducible (green), the remaining 229 occurred in 70% or less replicates
and were disregarded from further analysis (grey). For the control samples run in parallel with the pre-digested
ZipTip workflow 722 protein identities were acquired; 58 occurred in 80% or more of the replicates (red), the
remaining 664 only occurred in 70% or less of the replicates and were removed from further analysis (grey). When
the reproducible identities acquired from pre-digest ZipTip group were cross compared with the controls run in
parallel. 4 identities are unique to their-digestion ZipTip group, 26 are unique to the controls and 32 are
reproducibly found in both.

The identities of the 74 proteins considered to be reproducibly identified from the best

performing workflow above; the controls run alongside the alkylated and reduced samples are:

AlAG1, AlAG2, AlAT, AlBG, A2MG, AACT, ALBU,
ANTS, APOA1, APOA4, APOB, APOC1, APOC3, APOE,

C1QB, C4ABPA, CERU, CFAH, CLUS, FETUA, FINC,
GELS, HBA, HBB, HEMO, HEP2, HPT, HPTR,
HRG, HV304, HV305, IC1, IGHAL, IGHGI, IGHG2,

IGHG3, IGHG4, IGHM, IGKC, ITIHL, ITIH2, ITIH4,
KNG1, KV119, KV402, LAC?2, LV403, PLMN, PON1,
THRB, TRFE, TTHY, VTDB, VTNC, CBG, CFAB,
COg3, KV105, LV302, SC6AZ2, ZA2G, A2AP, AB12B,

AFAM, ANGT, CIR, CO4B, ITSN1, KV114, Kv121,
LUM, PZP, TANCI, and ZCH18
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Highly abundant serum proteins are highlighted in bold. Albumin (ALBU), Apolipoprotein A1
(APOA1), Transferrin (TRFE) Alpha 1 Acid Glycoprotein (A1AG1), Complement Clq
(C1QB), Fibronectin (FINC) and a2-Macroglobulin (A2M2).

4.3.5. A Model for use on Valuable Clinical Samples

To assess the applicability, data exportability, ease of use and computer processing time of this
experimental and data processing set up with an aim to apply it to a to a more valuable clinical
cohort of samples, the data from the 10 alkylated and reduced replicates and their 10 controls
run in parallel were analysed using Bruker Profile Analysis Software. To re-iterate in this
context the comparison of the alkylated and reduced verses control is less relevant, the point of
this was to assess the reliability of the available software to process, extract features (i.e.
recognise spectral peaks accurately) from the multiple replicates of the multidimensional data

and make a comparison.

The software collated and aligned the retention times and mass values to produce a list of

peptide peaks that are differentially expressed between the two groups (see section 4.2.2.8.2).

The bucket table consisted of 4458 buckets. The MS T-test within the Profile Analysis software
found 553 buckets to have a p-value of <0.05 and a fold changer greater than 2. That is to say
the intensity values of 553 areas of spectra aligned by retention time and mass significantly

differed between the two groups.

4.3.5.1. Measured Error.

On exporting the SPL list the margin of error of the retention time shift and mass shift calculated
by the software are as follows: Retention time windows ranged from O to 22.13 min with an
average of 7.01 min preceding the peak value and 8.54 min following the peak value. The shift
in mass value of peaks calculated to be the same compound ranged from 0 to 0.23 Da with an

average of 0.08 Da preceding the peak value and 0.06 Da proceeding the peak value.

4.3.5.2. Investigation of Peaks Calculated to be Significantly Differentially Expressed Between

the two Groups.
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The mass and retention time values of the ‘buckets’ found to be significantly differentially
expressed between the two groups were cross compared with the peptide sequence lists
exported from each of the sample runs. The window sizes and boundaries of error for the

buckets from the SPL list were used to do this.

Within the 10 alkylated and reduced replicates and the 10 controls run in parallel, there were
30 incidences where one ‘bucket’ value corresponded to more than one peptide identity. That is
to say two or more peptide of different sequence identity were shown to have the same mass

and retention time within the boundaries/tolerances of the SPL list.

It should also be noted that multiple ‘bucket’ values correspond to one protein identity. From a
list of 533 values corresponding to location in spectra aligned by retention time and mass 136

protein identities in total were linked to these values.

Using the SPL list, the peptide sequence and protein identity table for all 20 samples were
filtered to only include peptides within a ‘bucket’ values. A consistency confidence of 80% was
applied to these peptide lists, in that an identity had to appear in 8 out of the 10 replicates to be
included. Sixty-seven identities were matched in the 10 replicates of the alkylated and reduced
samples; 6 peptides occur in 80% or more replicates, 61 occurred in 70% or less replicates and
are not considered reproducible. One hundred and twenty-two peptide s from the control group
remained after filtering with the bucket boundaries 30 peptides occurred in 80% or more of the
replicates, 92 occurred in 70% or less. When the reproducible peptides are cross compared 24
were unique to the control group, 6 were found in both and none were unique to the alkylated

and reduced samples.

107



Alkylated and reduced Controls for A&R
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Figure 28. Venn Diagram Comparing the Lists of Protein Identities from Peptide IDs Matched from MS-
T-test.

The data from the alkylated and reduced replicates and 10 controls run in parallel were filtered to only include
values in the SPL list. Sixty-seven identities were matched in the 10 replicates of the alkylated and reduced
samples, 6 of which occur in 80% or more replicates (yellow), 61 occurred in 70% or less replicates (grey). One
hundred and twenty-two peptides from the control group remained after filtering with the bucket boundaries 30
peptides occurred in 80% or more of the replicates (red), 92 occurred in 70% or less (grey). When the
reproducible peptides are cross-compared 24 were unique to the control group, 6 were found in both and none
were unique to the alkylated and reduced samples (yellow).

This provides evidence of 24 proteins detectable in the controls that are not in the alkylated and
reduced samples, and 6 proteins that are present at significantly different levels between the

two groups.

4.4. Discussion

This chapter aimed to assess the applicability of LC-MALDI-TOF to serum biomarker
discovery in ovarian cancer. The Bruker software has no inbuilt feature to corroborate, collate
or compare technical replicates, so this was performed where possible using the Bruker Flex
software package and for a wider comparison the data was exported and transferred into Excel

for analysis.

4.4.1. Semi-quantitative Nature of MALDI-TOF MS

As a proof-of-principal, to asses if MALDI-TOF-MS data can be treated as semi-quantitative a
standard sample of BSA digest was diluted at several concentrations, spotted to a MALDI-TOF
target, data acquired, exported then reviewed (Figure 22 and Figure 23).
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On visual analysis (Figure 22), a clear trend of increased signal intensity with increase in
concentration of sample loaded is seen. When the spectra are exported numerically and plotted

on a graph (Figure 23) the trend has a R? value of 0.9567

Data provided is sufficient to reject the null hypothesis (Ho-iv) and accept the alternate

hypothesis: Intensity values of detected proteins is relative to the amount of protein loaded.

4.4.2. Chromatographic Reproducibility

The reproducibility of the chromatography of the Cis column in the LC system was assessed.
This was done firstly by comparing the amount of the total protein eluted at each fraction time
point from 10 replicates (section 4.3.2. and Figure 24). The time at which 50% of the total
protein eluted from the column in 10 replicates had a 500s range. As the samples are spotted

into 384 10s fractions (3840s), the 500s range represents a 13.02% of the run time in total.

A more accurate representation of the retention time shifts was found in the Bruker SPL list,
where each individual peptide peak shift time is being calculated (see section 4.3.5.1.). These
had a large range; 1333s, 34% of the total run time. But when averaged they show a slightly

smaller range in retention time shift; 421s which represents 10% of the total run time.

In both calculations, the retention time variability compares poorly, is 10 times larger, in
comparison to recent literature (Benk and Roesli 2012, Neubert et al., 2008). However, this
data was produced on different instrumentation with smaller time intervals between fractions
and a lower number of replicates, in Neubert ef al., 2008 retention time shift calculations were
assessed on 6 peak values. Retention time and area under peaks can be attributed to column

packing, column age, contamination, temperature and gradient instability (Hsieh et al., 2014).

When the peptide identity lists were filtered to only include the values in the SPL list there were
numerous occurrences of multiple identities being linked to one bucket value. It is possible that
numerous peptides have the same m/z values and chromatographic properties on a Cig column.
It is also possible that there is room for error in the bucket window size and boundary calculation
and two or more peaks are held within the bucket. The mathematics/algorithms behind the SPL

list generation are encrypted in the Bruker program; not known.
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Precise assessment of the chromatography of this workflow cannot be conducted with the
instrumentation available as the chromatographic unit has no online detection system. Column
elute can only be viewed in 10 second fragments. If time allowed the addition of a retention
time standard, spiked into a sample before processing could be evaluated. This would address
retention time shift problems but is an additional processing step and may suppress signal

sample signal of proteins in very low concentration s with similar affinity to the Cis column.

Unfortunately, due to the fractionated and uncoupled nature of the LC separation to the
MALDI-TOF-MS data acquisition, a thorough investigation of retention time was not possible.
Moreover, online monitoring and ad hoc adjustments were not able to be made during data
acquisition. Although some of the assessments were made based on the identification of a
peptide or bucket table calculation, which holds a potential yet limited possibility of error, it

was satisfactory to indicate the size of the retention time variation.

As described in Escher et al., (2012), in LC-MS setups that are directly coupled to a detector,
standards of a stable and reproducible retention time can be included or run alongside samples
and the variation in their elution time is used to calibrate retention times of sample data as it is
being collected.

Bruker software used does not easily accommodate retention time alignment so would have to
be done post data acquisition in the data analysis. Although retention time standards were
available for purchase, to apply a retention time calibration using them would need to be

developed thus would not be simple.

4.4.3. Reproducibility of Identities Acquired Using LC-MALDI-TOF-MS/MS

For a qualitative assessment of protein identities, the full lists of peptides identified from each
run for all of the workflows replicates were exported to Excel using Bruker WARP-LC and
Protein Viewer software. The occurrences of the accession codes across each set of replicates
were observed. Figure 25 is a histogram that displays the typical distribution of protein identity

occurrence across 10 replicates.

A large number of protein identities occur only in one replicate. This pattern reflects that shown
in similar research where 3 LC-MALDI-MS workflows were compared (Hattan et al., 2005).

These are likely to be an error produced from the combination of the size of tolerance in mass
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shift, algorithms with in Mascot and the probabilities involved with matching when peptides
with similar sequences occur. It should be noted that other search databases other than Mascot
are available and could be made compatible with the Bruker software output. Mascot is an
industry standard and accepted utility in peer research, it has merits and pitfalls, Mascot is not
able to incorporate the mass accuracy of the fragment ions when searching, future iterations of
the software may do so however on this occasion a measurement made with potential to increase
validity of a protein identity match that was not able to be incorporated. Searching the MS data
against another database would most likely produce similar, but not identical lists of protein
identities for each sample. Although it is possible this may have marginally increased/improved
any result adding this extra parameter to explore was not considered relevant expansion of the
analysis. The variation of the measured m/z values is constant despite the choice of database to

deduce protein identities.

When a power model of 80% was applied, in all four workflows the number of protein identities
considered ‘reproducible’ drops dramatically: Of the 10 alkylated and reduced replicates, just
17.5% of total identities were found reproducible; 21.8% in that of the controls run in parallel
(Figure 26). Of the 10 replicates that were ZipTipped before digestion, 13.6% of the total
proteins identified were found to be reproducible and just 8% for the controls run in parallel

(Figure 27).

The purpose of this work was to evaluate sample preparation and data acquisition workflows
with a view to apply the best to a cohort of clinical samples. This data demonstrates the
importance of running test samples in replicate. However, it would be impracticable/ a drain on
sample volume and instrument time to run each of a cohort of test samples in duplicate (10
times). The difference in number of protein identities that occur in three or more replicates

warrant running a test sample in as least triplicate.

4.4.4. Comparison of the Proteins Identified from each Workflow

When using the power model of 80% in both sample work flows tested the control group
produced more reproducible identities.

Thirty-eight proteins were reproducibly identified in the 10 alkylated and reduced replicates

compared to 74 for that of the controls run in parallel (Figure 26). Thirty-six proteins were
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reproducibly identified from the 10 replicates that were ZipTipped before tryptic digestion,
compared to 58 for that of the controls (Figure 27).

Contrary to published work stressing the importance of alkylating and reducing samples prior
to aid digestion and therefore identification (Sechi and Chait 1998, Hale et al., 2004 and
Wedemeyer et al., 2000), the evidence from this work (Figure 26) shows a marked reduction of

proteins identified from serum samples reduced and alkylated prior to digestion.

A Cis ZipTip purification prior to digestion was performed to reduce the amount of noise and
signal suppression from salt and large, overabundant proteins such as albumin. However, data
from this work showed that performing that Cig ZipTip step prior to digestion decreases the

number of achievable reproducible protein identities (Figure 27)

The protocols selected were tried and tested (Vafadar-Isfahani et al., 2010, Ontario Cancer
Biomarker Network 2012). However, if time allowed it would be worth investigating the ZipTip,
alkylation and reduction procedure further to assure they were successful before disregarding
literature and concluding they do not increase the number of proteins identified. It is possible
that the alkylation and reduction procedure used did in fact reduce and alkylate the samples,

however confirmation the protocols were successful would support the findings from this work.

Evidence is provided to reject the null hypothesis (Ho-v) and accept the hypothesis that: One
sample preparation technique will produce greater amount of meaningful protein identities. This

was the method for the controls for the alkylated and reduced samples (section 4.2.2.5.1)

4.4.5. A Model for use on Valuable Clinical Samples

To assess the ease of use, applicability and computer processing time of the experimental/data
processing setup ready for use on a more valuable cohort of clinical samples, the data from the
10 alkylated and reduced replicates and their 10 controls run in parallel were compared using
Bruker Profile Analysis Software. A function within the Bruker software package, which
appropriately handles and performs semi-quantitative comparison of the multidimensional data

generated.
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This was conducted to confirm the reliability and ability of the software to recognise and extract
spectral features (i.e. consistently recognise spectral peaks accurately) from the multi-replicate
multidimensional data, and, to investigate the exportability of any data generated. To confirm,
in this context the comparison of alkylated and reduced versus control is less relevant, this was

conducted on these data, as this was the only data set with multiple replicates generated so far.

Data provided in section 4.3.4. and 4.3.5. provides evidence to reject the null hypothesis (Ho--
vi) and accept the hypothesis that: Differences will be seen in the LC-MALDI profiles of serum
samples processed through different sample preparation conditions. However, the
reproducibility of this difference is questionable. Two different sets of proteins were found to
be significantly different between the two groups when the data was exported and analysed in
two different ways; qualitatively (section 4.4.4. above), and semi quantitatively (section

422.82)

When the power model of 80% confidence (see section 4.4.3) was applied to the potential
peptide identities from the semi quantitative comparison (Figure 28); 24 proteins were shown
to be significantly expressed in the controls and not the alkylated and reduced samples, 6 were
found to be expressed at different levels, and none were found to be expressed in the test
samples and not the controls. This is contrary to the qualitative comparison (section 4.3.4);
where 4 proteins were demonstrated to be expressed more in the alkylated and reduced

replicates compared to the controls.

This investigation has shown that the data from samples run in LC-MALDI-TOF-MS/MS has
low reproducibility and can easily be interpreted in multiple ways to draw contradicting
conclusions.

Furthermore, the final number of protein identities accepted with 80% confidence is low. In
comparison to hypothesised size of the serum proteome (see section 2.1.2.) it is miniscule
evidencing this to be an insufficient model to represent the system and thus a questionable

platform for biomarker discovery.

4.4.6. Limitations of the Methods Tested
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The comparison was made to firstly corroborate or refute any differences already seen using
each method. Secondly, to rehearse a method and unearth any difficulties that may arise when

applied to valuable clinical samples.

To match the areas of spectra aligned by mass value and retention time found to be significantly
different between the two groups to a peptide identity with the software resources available the
data needed to be exported and matched to the peptide identity lists manually; outside of the
Bruker software. This in its self is a source to introduce error. The difficulty of exporting the
processed data in the form of a SPL list was noted (section 4.2.2.8.2.) The Bruker software
prohibits direct export of the numerical values. The values of the table were exported as an
image and converted into text using Adobe reader. The values of the exported table were
checked for errors against the original manually. The size of the table leaves large opportunity
for human error. This increases the time involved in analysis, decreases the validity of any
findings and therefore reduces the utility of this method to biomarker discovery on a cohort of

valuable clinical samples.

There were 30 incidences of one ‘bucket value’ corresponding to more than one identity (section
4.3.5.2.). Separating the protein identities from the peptide mass on a third dimension (retention
time) was introduced to reduce the ambiguity that has previously been problematic in Chapter
3. As ambiguity in identity still exists the sample preparation workflows and advance in

technology tested adds little to the potential of previous work (Chapter 3).

Limitations found with the workflows tested are linked mostly to the flexibility of software
provided with the instrumentation, the necessity to export data for use in another, or, the
unknown parameters embedded in the software’s coding such as the Bruker ‘bucket’ boundary
generation or those within Mascot matching masses to sequences. This view is shared in a recent
review, Benk and Roesli 2012 state the capabilities of LC-MALDI-MS have not been realised
due to the lack of suitable computer programs. The difficulty in using LC-MALDI-MS data is
aligning the data with confidence on both dimensions and normalisation before it is analysed,
the way this is conducted has a massive influence on any results (Van den Berg et al., 2006,
Podwojski et al., 2009). The purpose of adding the LC separation is to add another value to a
peptide of one m/z so it can be differentiated. The Bruker software does not take this value into
consideration when calculating sequence identity based on probability. This leaves the users of

the technology responsible to add in this extra value to the data. Researchers must choose
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between using the software provided which contains unknown parameters of feature selection
which are a possible source of error, or, developing bioinformatic analyses tailored to the nature
of the data, samples and study design, which though achievable (Tong et al., 2012, Timms et
al., 2011, Shin et al., 2008) in itself is overly demanding on time and a questionable devotion

of time and resources compared to overarching goals of research; cancer biomarker detection.

Additionally, due to the high number of possible amino acid combinations making any
particular pre-cursor ion (m/z value), this methodology is fundamentally challenged. The lack
of resolution by chromatographic separation means that multiple peptides with the same mass
to charge ratio will likely overlay in a MS spectrum so multiple identities can be inferred from,
leaving the question: Which is the correct protein identity? As highlighted in Figure 4, the
limited number of separable data points in each spectrum verses the number of proteins or
peptides expected to be present in each sample, thus making it impossible to represent this data

in the space of a single mass spectrum.

Peak area is a widely-accepted measurement in mass spectrometry and arguably better
represents the ion measurements quantity compared to overall intensity as used above.
Unfortunately, within the Bruker Flex software package ‘peak area’ data was available but not
clearly defined or readily accessible, so, deducts from this methods ability to be intemperate as

semi-quantitative measurement.

It is also noted in section 4.3.4 that a number of the proteins significantly consistently identified
from all workflows were common, high abundant serum proteins. The utility of these proteins
expression in serum is already doubted to have value in disease detection and have been shown
to supress the detection of differential expression of lower abundant proteins believed to be of

more importance as biomarkers (section 2.1.5).

4.5. Conclusion

To conclude, all null hypotheses listed in section 4.1.5. Ho.iv,v,vi can be rejected in favour of their

alternate hypotheses.

¢ Intensity values of MALDI-TOF-MS data can be used to indicate the relative protein
quantity within a sample, however it was noted the accuracy of this is low.
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e One sample preparation technique produced more reproducible peptide identities than
others.

e Difference in the LC-MALDI profiles of serum samples produced under different
conditions was shown to be different using a qualitative and semi-quantitative method.

Evidence is also provided to suggest

e Both sample processing workflows tested reduced the number of reproducible
identities attained from samples.

e Clinical samples should be run in at least triplicate to reduce the number of false
identities attained

e Of the two methods of data export and analysis conducted, different conclusions can
be drawn from the raw data collected.

4.6 Review of Findings and Future Direction for Onco-proteomics in MS

During the time of this study, advances of instrumentation improved considerably allowing a
more reliable output of larger numbers of protein identities and more accurate quantitation. At
the time of this study it was not possible to generate accurate quantitative data which subsequent
generations of mass spectrometer were capable of doing. The precious ovarian cohort of
samples was therefore not analysed using the workflows investigated in chapter 4. Considering
the rarity and diminished volume of the clinical cohort of ovarian cancer patient serum, the lack
of confidence in the potential yield of the LC-MALDI-MS approach and the likelihood that a
more accurate way of conducting serum protein biomarker discovery by MS existed (Marx
2013), and would soon be available, these samples would be saved for when they can be
employed in a more meaningful way. Meanwhile, the now-evaluated LC-MALDI workflow
could be applied to more appropriate cohorts with more abundant sample volumes, the
measured error in retention time and protein identity used as a caveat to include upon analysis
of results. Other sources can be mined for ovarian cancer biomarkers, namely gene array

databases available online.
In the below chapter, an alternative source of data is explored. Gene microarray data sets

available through online repositories, are freely available, offer larger sample numbers, and

higher accuracy in the measurement of gene targets that lead to protein production.
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A repository of gene expression data sets was searched as an alternative source to discover
relevant biomarkers. The line of questioning aimed to interrogate data acquired from the cohort
of serum samples collected for use in chapter 3 could not necessarily be continued due to the
availability of clinical information. Available variables for the cohort of serum samples in
chapter 3 categorise the patients by cancer or control, supporting only categorical comparisons
designed to detect serum biomarkers differentially expressed between the two groups. The best
data sets available in the online repository were derived from genetic material of grade 3
tumours with gene expression and survival time available, both continuous variables. Therefore,

a study design to compare gene expression with patient survival time was put in place.

4.6.1. Future of Protein Mass Spectrometric Biomarker Discovery

Shotgun proteomics; is a metaphorical description of a close-range wide-target approach to
analyse the entire proteome. As much proteomic information as possible is catalogued from
samples then conclusions or further hypotheses are drawn from these. This strategy was used
in chapter 3 and 4 of this document and a large portion of mass spectrometry protein biomarker
discovery research since the early 2000’s (Table 3).

The results suggest that this approach is flawed for the following reasons:

o Identification of the peptides/proteins present are generated from matching masses of
hypothetical sequence calculated from genomic information on online databases (i.e.
Mascot) to the MS/MS measurements collected from the mass spectrometer.

o The MS/MS measurements are dependent on the type of mass spectrometer
itself, some peptides ionise better under different conditions; i.e. EST or MALDI
(Benk and Roseli 2012), thus not all will be catalogued from one mass
spectrometer and generate identity.

o The tolerances and margins of error in the matching algorithms of the mass
spectrometer software and the database itself.

e Data dependent acquisition. The MS/MS data acquisition procedure within the Bruker
UltrafleXtreme is similar to other mass spectrometers of its generation and now can be
termed Data Dependent Acquisition (DDA) (Law et al., 2013). When data is acquired
in this manner the list of peptides which are selected for fragmentation for identification
acquisition is dynamic as it is dependent on the detection of the peptide. There are

numerous reasons a peptide would not be detected consistently including sample
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preparation, its intensity sitting on the threshold of detection or in the case of MALDI
inconsistent distribution of the peptide across the matrix crystals of the dried spot. In
the Bruker UFX detailed above, the instrument would take an MS scan from each of the
384 fractions, pause while compiling a list of peptides present and assign each peptide
to the fraction in which it is expressed the highest, then move on to MS/MS each of the
peptides in its assigned fraction. Which m/z are selected for MS/MS data acquisition
from each run are selected based on the consistency of their ability to ionise within the
mass spectrometer, and, algorithms within the mass spectrometer software recognising
their consistency (Picotti et al., 2013). In the Bruker software detailed in chapter 4 the
peptide precursor list is dependent on what is recognised to be one peptide value based
on its retention time to a Cig column and its m/z values. The lists were shown not to
separate out peptides individually, and were shown to have irreproducible variations
between samples.

The generations of mass spectrometers produced after the Bruker UltrafleXtreme
address this inconsistency by changing the order the sample is fragmented and detected
within the mass spectrometer, termed Data Independent Acquisition (DIA) (Law ef al.,
2013, Chapman et al., 2014). Using DIA quantitative measurements are independent of
the detection of the precursor (see Figure 9 and Figure 10 for parent and fragment ion
information). DIA approaches fragment the entire sample prior to detection. The
detected fragment quantitative measurements are summated and matched to their parent
ion using databases or a separate run of MS data. DIA approaches are preferable as they
offer increased sensitivity as less sample within a run is lost to the MS scan, improved
reproducibility as the detection of fragments are more consistent over replicate samples
and have the potential to detect theoretical proteins with use of theoretical ion databases.
DIA approach for analysing complex protein mixtures include; Waters® instrumentation
which separate the fragments in another dimension, drift time, using the Synapt
(Distiller et al,, 2014), Thermo who combined existing quadrupole and Orbitrap
constituents in the Q-star Exactive (Hao ef al., 2012), and ABSciex SWATH (Gillet et
al., 2012) which again uses existing technology but detects the sample in a different
order (Griffiths et al., 2014, Ziqi et al., 2014). Currently SWATH is an emerging popular
and increasingly referenced DIA approach (Biognosis 2014).

With hindsight, MALDI-MS offers a fast, instantaneous measurement of the protein
content of a sample, which is an attractive concept for biomarker research, however

speed of analysis is of limited effect for discovery and may only be relevant at the
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clinical implementation stage. As a discovery platform although speed of acquiring data
increases the amount of samples that can be analysed in the same time frame as each
other however the difference between instant or minutes to an hour when coupled to and
LC does not impact results of a typical discovery cohort of 50-100 samples. In fact, for
this reason desorption ionisation is popular in developing mass spectrometric techniques
emerging for precision medicine/clinical proteomics such as FAIMS and DESI (ELRIG
2016, Takats et al., 2014, Balog et al., 2013).

It is still not currently possible to catalogue the entire serum proteome although
proteomic discovery technology has experienced extraordinary technological advances
in recent years. The exponentially increasing sensitivity and specificity of novel
technologies and data processing algorithms, together with the ever-increasing
capabilities and solutions in computing, provide a promising future for not only
characterising the proteome but combining data and technology platforms creating a
holistic aim to study ‘omics’ (Gil et al., 2015). This conceptually also holds promise to
confront additional challenges posed in proteomics which add to the dynamicity of the
proteome, including the measurement/quantification of global phosphorylations,
glycosylations, or any post translational modifications. However, this is not currently
the case.

This sentiment is echoed by Anderson (2010). Who, in commentary on general protein
biomarker discovery (not only cancer biomarkers) identifies a similar futility in protein
biomarker discovery using the currently (in 2010) available technological platforms.
They also site the difficulty in obtaining access to high quality sample sets, the absence

of an organised development pipeline and a lack of a “useful theory of biomarkers”.

To refer to the shotgun analogy, so far technology available allowed researchers to undertake

studies using in the correct range to hit a portion of a large target, with little aim to reproduce

the result. The new fashionable term is Targeted Proteomics; crowned method of the year 2012

by Nature Methods (Nature Editorial 2013), focuses on how technology available is best suited

to quantifying a smaller subset of proteins/peptides of interest based on an hypothesis, rather

than profiling the whole proteome in all of its complexity repeatedly and in more depth every

time new technology is available (Marx 2013).

119



A quantitative mass spectrometer capable of targeting multiple ions is all that is needed to apply
a ‘targeted’ tactic. So far this has typically been a triple quadrupole (Marx 2013). Multiple
Reaction Monitoring (MRM), also called Selected Reaction Monitoring (SRM) (Hoffman
1996) is the isolation and quantification of fragments of a peptide based on their characteristics
of mass, flight and behaviour in a collision cell. MRM data can provide ‘absolute quantitation’
of protein content, it is reproducible, selective and robust. MRM has been referred to as the
mass spectrometrists ELISA (Picotti ef al., 2013) and has been professed to supersede immuno-
based protein detection solutions. Quantitative mass spectrometry data of a number of proteins

fragments could potentially one day be used in place of a multiplex of ELISA of other immune-

technique (Picotti et al., 2013).

However, in the case of ovarian cancer, which protein fragments need to be quantified, remain
to be found. The targeted approach has since been applied to early detection of ovarian cancer
Tang et al., (2013), however is not a discovery platform which is still needed in this field.

Some suppliers have incorporated bioinformatics/ software-solutions to process MRM-type
measurements with the potential to be used for quantitative biomarker verification, for example

ABSciex SWATH analysis (Gillet et al., 2012, Marx 2013).

4.6.2. Future for Biomarkers for Ovarian Cancer

Despite a wealth of data and information being produced from ovarian cancer patient material
little has changed in the diagnostic, prognostic or treatment care for patients with ovarian
cancers (Hays ef al., 2010, Siegel ef al., 2013 Vaughan et al., 2012). This represents an unmet

need in patient management.

Detection of ovarian cancer disease in its early stages is accepted to be the ideal route to
improved survival. A biomarker from a non-invasive screening test is the awaited discovery.
However, firstly; the ideal sample is not available, secondly; if it were there is no confirmed
technological analysis platform available with a proven reproducible sensitivity to detect the
subtle differences (if any) expected. This view is supported by Jacobs et al, 2004, who
acknowledges the majority of cohorts are flawed as they are from late stage disease. A
biomarker of late stage disease may be of use to detect recurrences and response to therapy yet

may be completely different to early stage. It is possible that metabolic and molecular events
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are completely different in early or premalignant disease and that an accurate marker of this
could have decreased specificity or sensitivity at detecting later stage disease (Jacobs et al.,
2004).There are very limited samples from preclinical/pre-diagnosed patients in existence

(Jacobs et al., 2004), the samples from UKCTOCS screening trial is one of a handful worldwide.

The majority of samples collected from patients volunteering for research are of those already
admitted to hospital and already on a treatment pathway. The only biological samples currently
available for study are from the late stage disease. The tissue samples donated by patients of
later stage disease can be used with their clinical information to stratify subgroups within them
then used to predict future patients’ likely response outcome and response to treatment: the

concept of precision or personalised medicine.

Ovarian cancer is most commonly diagnosed in Stage 3. For which the prevailing treatment is
cyto-reductive surgery proceeded by platinum based chemotherapy. Although 70% of patients
respond at first, a majority will develop a resistance to platinum based therapy (Miller et al.,
2009). The ability so segregate the patients who are likely to develop resistance may aid

treatment.

For the current body of work represented in this document evidence has been produced to
suggest that pursuit of the goal of an early stage biomarker is currently not an effective use of
funds and samples. Using a “targeted approach” and the next generation of mass spectrometry
technology such as those listed in Marx (2013), which offer significant confidence of protein
identities shown quantifiably to be differentially expressed between two samples. If proven to
yield reproducible results when extensively tested on more freely available human samples

would then provide further information.

The human genome is far better characterised than the proteome, thus making its analysis more
likely to produce results with lower ambiguity and higher reproducibility. In the following
section an alternative approach to biomarker discovery is taken, using genomic array data from

in-silica sources online, and literature already available.

This change in tactic offers the project the opportunity to move from evaluation of technological
capabilities and methodologies to an evaluation of biological measurements acquired from a

pear reviewed source relevant to the hypothesis allowing the clinical question to be addressed.
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Figure 29 taken from (Braem et al., 2011) was generated from an extensive investigation and
review of potential biomarkers associated with ovarian cancer. The figure highlights the
absence of validation or refuting of potential biomarkers published to date rather than

generating new. Also mentioned by (Vaughan et al., 2012).

1065 Investigated genetic variants

v 2
[ 865 ] [ 200 J Statistically significant variants

]
2 v

Not attempted to replicate [ 95 ] [ 105 ] Included in replication studies

FPRP <0.5 ’ Never positively replicated

Figure 29. Number of Investigated Genes in Ovarian Cancer.

Remade from Braem et al., (2011) lays out numbers accounting for the high number of investigated ovarian
cancer genetic markers (>1000), no attempt has been made to replicate a large number of them (865) the rest
have been replicated to differing extents.

In arecent collaborative report (Vaughan et al., 2012), strategising effective research on ovarian
cancer, it was accepted that the sharing of data, results, methods and samples is crucial to
narrowing down common active cellular mechanisms in what is a relatively rare yet
genotypically diverse disease. Thus, reinvestigating published genes and data is a worthy

endeavour.
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5. Transcriptomics: Gene Expression Array Analysis as a Strategy for

Biomarker Discovery in Ovarian Cancer

Chapter Abstract

Stratification of patients with the demonstrably heterogeneous disease ovarian cancer, based on
evident active molecular pathways, would aid a targeted treatment and improve prognosis.
Hundreds of genes have been significantly associated with ovarian cancer, although few have
yet been fully verified by peer reviewed research, or clinical trials.

A meta-analysis approach was applied to two carefully selected gene expression microarray
data sets (E-GEOD-13876 and E-GEOD-26712) downloaded from ArrayExpress, a freely
available repository of microarray experimental data. In both cases the data was collected from
full genome arrays applied to Stage 3 serous ovarian carcinoma and tumour samples collected
and processed under regulated conditions. Artificial Neural Networks, Cox Univariate Survival
analyses and T-tests were used to filter genes whose expression were consistently significantly
associated with patient survival times.

A list of 56 genes were distilled from a potential 37000 gene probes to be taken forward for
validation. The rigour of combining a meta-analysis approach with multiple testing using a
variety of statistical procedures, increases power and confidence in the relevance of genes found
to be of interest. Encouragingly, a number of the 54 are already reported to have an association
with ovarian cancer survival. Further investigation and validation of the genes that are not yet
reported to associate with survival may be clinical of interest and have potential to predict a

patient’s response to treatment or be used as a novel target for therapy.

5.1 Introduction

RNA Microarray experiments, allow determination of the expression of entire genomes from
nucleic acid extracted from biological samples (see Figure 12). To obtain the data in the current
study RNA acquired from ovarian tumours was hybridised against microarray gene chips
designed to detect expression levels of the entire human genome, multiple probes corresponding
to different sequences within each gene are measured. These large, multidimensional data could
be interpreted using endless analytical strategies to draw different conclusions. The debate and

discussion of which is the appropriate statistical analysis for different types of data sets is open
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(Allison et al., 2006) and the huge numbers of genes reported to have an association to ovarian
cancer that have not yet been replicated, warrant reanalysis of data where available (Braem et
al., 2011, Vaughan et al., 2012). Array Express is an online repository of microarray data which

facilitates researches to share raw data for scrutiny and validation.

In this chapter, two cohorts of data, publicly available on ArrayExress were selected,
downloaded and analysed using a different strategy to that in their accompanying original
publications; Crijns et al., 2009 and Bonome et al., 2008.

e Crijns et al., 2009 used a continuous prediction algorithm to publish a panel of 86 genes
that were shown to be strong predictors of survival in women with late stage ovarian
cancer. Within the paper some of these, but not all, were validated on other data sets.

e Bonome et al., 2008 differed from Crijns et al., 2009 by first categorising their patients
based on their assigned debulking status, then used a Cox regression analysis published
a prognostic gene expression signature of 57 probes which they validated on a separate
blinded data set.

The content focus is different in the two papers, in that Bonome et al., 2008 includes patient
dependent variables and risk factors in analysis where Crijns et al., 2009 centre around survival
time and gene expression. However for these purposes they both generated data from tumours
from late stage ovarian cancer patients who then followed a similar treatment pathway of
debulking surgery and platinum based chemotherapy (where appropriate) so were considered

comparable.

The statistical strategies used to meta-analyse the two cohorts of data consist of Cox univariate

survival analysis, MLP-ANNs and T-tests (see section 2.2.2.).

Parts of the work reported in the following chapters were published in (Coveney et al., 2015)
see Appendix A.

5.1.1. Known Influences on Survival time from Ovarian Cancer

5.1.1.1 Platinum Resistance
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Platinum based chemotherapies are used to treat a wide range of cancers with varying effect
(Martin et al., 2008, Eckstein 2011). Their mechanism of action is to bind covalently to both
strands of the DNA helix thus preventing the separation of the two strands prerequisite for
translation and cell division. Platinum resistance and evasion of this damage depends on the
tumour cells ability to recognise this as DNA damage and repair it or adapt in another way.
Different cancer cell lines have been shown to both have this ability inherently, and to acquire
it (Marchini et al., 2013). It is still to be proven whether resistant the cells are present in smaller
subpopulations within the cancer prior to platinum therapy or whether they are a consequence

of it (Marchini et al., 2013).

Clear cell ovarian carcinomas, which are identifiable by histology, are already known to be a
more aggressive phenotype of ovarian cancer that are less likely to respond to platinum therapy

(Matsuzaki et al., 2015).

Two of the five known DNA repair mechanisms have been reportedly linked to platinum
resistance. These are:

e Nucleotide Excision Repair (NER), where abnormalities in the helical structure of the
DNA are recognised and enzymatically excised (Chang et al., 1999).

e Mismatch Repair (MMR) in which unmatched, mismatched, inserted deleted base
pairs are recognised then enzymatically excised (Kelland 2000).

For a full review of DNA repair and platinum resistance in ovarian cancer and more the reader

is referred to Martin et al. (2008)

5.1.1.2 Epithelial to Mesenchymal Transition (EMT)

Cell line studies have also implicated the phenomenon of epithelial to mesenchymal transition
(EMT) in platinum based drug resistance in epithelial ovarian cancer (Rosano et al., 2011).
However, the exact mechanisms by which this happens are unconfirmed, in fact conflicting
results have been reported from both in vivo and in vitro studies (Miow et al., 2014). The
presence of markers of EMT such as SNAIL and E-cadherin have been linked with ovarian
cancer invasiveness (Rosano et al., 2011 ) and the activation of anti-apoptotic pathways such

as NF-kB have been observed in cisplatin resistant cell lines (Miow et al., 2104).
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Contrary to prior evidence, Miow et al., (2014) found that cisplatin had a higher efficacy on

ovarian cell lines with mesenchymal status than those with an epithelial one.

Interestingly, EMT may be inherent or acquired, different chemoresistant phenotypes have been
described between cells that have naturally undergone EMT-like changes and those that have
undergone EMT-like changes after exposure to a platinum based drug therapy (Miow et al.,
2014). The clarification between inherent and acquired EMT is relevant to unearthing molecular
pathways involved in chemoresistance, however it is not always discussed when reporting

results linking to EMT.

Though there is a lot of research into the mechanisms of platinum resistance (Martin et al.,
2008), nothing has yet aided treatment in the clinic. Pathways directing clonal diversity, tumour

adaptation and acquisition of resistance need to be verified.

There are a number of geno- and phenotypes documented to correlate survival times from
ovarian cancer including:

e Mutations in the PI3K subunit, ARIDIA and PIK3CA are linked to clear cell and
endometreoide cancers (Jones ef al., 2011, Kuo et al., 2009).

e CyclinEl (CCNE) associated with poor outcome (Farley et al., 2003).

e There is an increased statistical likelihood of survival via clonal selection due to the
large number of smaller peritoneal metastatic ‘seed’s’ recognised to be the metastatic
pattern of ovarian cancer (Vaughan et al., 2012).

There are numerous other factors affecting a patient’s survival time that are not specific to
ovarian cancer, but would be a consequence of a specific onco-phonotype or characteristic of a
type of cancer micro-environment the reader is referred to (introduction) and Hanahan and

Weinberg (2011).

In this chapter biomarker investigations were undertaken using mining of gene expression
microarray data and is in contrast to the analysis of the previous chapter’s protein serum
biomarker investigation in that the analyte measured is biologically “upstream”. The reader is
referred to Figure 4 and Figure 11 in the introduction. Hypothetically the RNA measured here
may well code for proteins that could be measured by mass spectrometry and the two results

could be used to provide complementary evidence of one system. However, by necessity the
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cohort of patients observed in the two chapters is different. Interestingly in theory gene
expression microarrays should be provide a smaller number of variables to compare as the
genome is smaller than the estimated proteome (Anderson and Anderson 2002 and Harrow et
al., 2012), however, due to the technical challenges of analysing serum protein described above,

far more variables are measured in gene expression microarrays.

It is reiterated here the purpose of this change is to tailor the analysis to best suit the available

samples, so the data is interrogated with the most relevant scientific question.

5.1.2. Aims and Hypothesis of the Chapter

This chapter aims to characterise genomic differences between tumours from patients with
Stage 3 ovarian cancer that responded well to therapy and those which did not, based on the

patient’s survival times.

Hy vii: None of the gene expression measurements from the two cohorts will be found to be
consistently associated with survival times from ovarian cancer when tested with a complement
of statistical strategies.

H, vii. Genes will be found to be consistently significantly associated with survival time when
a complement of statistical strategies are applied in a meta-analysis approach to two separate
cohorts of patients measured with two different microarray platforms

5.2 Materials and Methods

5.2.1. Selection of Data Sets

5.2.1.1. Array-Express Search Parameters for Sample Cohort Selection

Factors that were considered when selecting data cohorts included:
e The number of patient samples within the data set, this needed to be as large as possible
to best represent the population of cancer cases studied. The larger a cohort is the higher

confidence can be assigned to any results or conclusions drawn, in this context a sample
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size of 44 versus 44 is the minimum for statistical significance (Abdel-fatah et al.,
2016).

The sample source. Only studies using patient tumour samples were considered, studies
using cell lines were rejected.

The completeness of the data. In particular the Sample and Data Relationship Format
(SDREF) file, those which did not contain clear data for all files available were not
considered.

The focus of the study. A ‘fair’ meta-analysis needs utilise as similar sample cohorts as
is possible. For example, a cohort of data generated from a trial of a novel drug/therapy
cannot be fairly compared alongside cohort with patients on a standard/different
treatment pathway.

The depth and detail of the data available. To take a meta-analysis approach, the same
variable needs to be available for all data sets included. For example, time to relapse
was measured in one data set is not comparable to survival time in anther data set.

The Array Design File (ADF) files needed to be cross-referenceable, one element of
the adf table i.e. gene code needs to be in all data sets for a meta-analysis. The available
data sets are generated from different gene chip platforms i.e. Affymetrix, [llumina,
Agilent, each with their own probe design and number to represent a genome. Though
possible, it is not practical to search and annotate this manually.

Full genomic representation. Only data generated from gene microarrays representing
the full genome were considered. Those including only a subset or set of mutations

were discounted.

Survival time was the only dependent variable available in both the study cohorts selected for

the analysis. Patients in both studies selected were subject to the same general treatment strategy

of a possible debulking surgery, followed by platinum based chemotherapy where necessary.

5.2.1.2. Two Data sets used for Meta-analysis

In this context the term meta-analysis is used to describe a comparison looking for concordance

across more than one data set, using more than one statistical analysis.
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Gene array data was downloaded from Array Express, the data set was derived from analysed
tissue from patients with ovarian cancer who have been treated with the same care pathway.
Full data and information is available at http://www.ebi.ac.uk/arrayexpress/experiments/E-

GEOD-13876/ and http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-26712/

(ArrayExpress accessed 2011).

From the variables and data available this data could be mined for more genes that are expressed
with significance in relation to survival time from Stage 3 serous ovarian cancer, and, to validate

or refute any genes recently reported to be linked to ovarian cancer but not fully validated.

Cohort 1:

Full data and information is available at http://www.ebi.ac.uk/arrayexpress/experiments/E-

GEOD-13876/ (ArrayExpress 2011)
Array: A-GEOD-7759 - Operon human v3 ~35K 70-mer two-color oligonucleotide

microarrays.

Sample information: 157 consecutive patients with advanced stage (3, 4) disease donated
tumour from cyto-reductive surgery prior to platinum based chemotherapy treated at University
Medical Center Groningen (UMCG, Groningen, The Netherlands) in the period 1990-2003.
Accompanying Publication: Crijns et al., (2009).

Cohort 2:

Full data and information is available at http://www.ebi.ac.uk/arrayexpress/experiments/E-

GEOD-26712/ (ArrayExpress 2011)
Array: A-AFFY-33 - Affymetrix GeneChip Human Genome HG-U133A [HG-U133A]

Sample information: 185 late-stage (3, 4) high-grade (2, 3) ovarian cancer tumours donated
from previously untreated patients at Memorial Sloan-Kettering Cancer Center between 1990
and 2003.

Accompanying Publication: Bonome et al., (2008).
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5.2.2. Pre-analysis Data Evaluation and Processing

Firstly, the survival distributions of the population of the two data sets were observed, the
survival times ranged from 1 to 234 months and 0.7 to 130.4 months with a mean range of 25
and 39 months in GEOD13876 and GEOD26712 respectively. The survival distribution was

observed to be left skewed and similar between the data sets (See Figure 30).

The MLP-ANN algorithm utilised requires a categorical variable, a cut off defining a short and
long term survival group needed to be defined on survival (which, is a continuous variable). To
minimise bias introduced from fitting a cut off to a continuous variable, the process was
repeated at three possible time points. These were; above and below 16, 23 and 30 months (See

Table 14 and Figure 30).

The cut off points were fitted as closely to median, upper and lower quartiles survival time as

possible without unbalancing the sample populations more than a ratio of 1:3.

Table 14. Numbers of Cases in Short and Long or Short Term Survival Groups. Group sizes
when of short and long term cut off are applied

No. of patients No. of patients
Survival cut-off E-GEOD- 13876 E-GEOD-26712

Lower 58 32

Cut off 1 (16 months) Upper 55 97
Lower 75 48

Cut off 2 (23 months) Upper 38 81
Lower 84 62

Cut off 3 (30 months) Upper 29 67
Total samples 113 129
Minimum cohort size 29 32
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Figure 30. Histogram of Distribution of Survival Times of Two Cohorts of Patients with Ovarian Cancer

To enable a categorical analysis artificial cut-off points defining long and short term survivors were made. This
was done at three different time points; Cut-off 1, 2 and 3 these were made at 16, 23 and 30 months.

5.2.3. Analyses Applied

5.2.3.1. ANN of Short versus Long Term Survival

The ANN analysis does not accommodate censored variables i.e. those categorised as “death

not from ovarian cancer” or “alive with disease”, so were excluded from this analysis.

An in-house designed, multilayer, back propagation ANN algorithm (Lancashire et al., 2009,
Lancashire et al., 2010 Kafetzopoulou et al., 2013), with an architecture of 1-2-1 was utilised.
Within this a Monte Carlo Cross Validation (MCCV) was applied; the population is randomly
divided into training, test and validation cohort with a ratio of 3-1-1 (60, 20 and 20%).

For each gene probe, the gene expression values for a randomly selected 60% of the patient
population are used to train the model, 20% to test, then 20% are applied as a blind validation

This cycle is repeated 50 times and a report of the averaged predictive performance created;
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this includes training, test and validation performance and error. This loop is repeated ten times
for each gene probe. At the end, the ten reports for each gene probe were compiled in Excel and
a mean average of the ten reports calculated. The average performance over the ten was

calculated. All the gene probes were then sorted by the Test Error.

Using the three-time point cut-offs ANNs was conducted on the two data sets. Each ANN was
used to rank the gene probes in order of the predictive performance to distinguish short and
long term survival on the blind validation subset. Two ANNs were conducted for each time
point for each data set, a total of twelve analyses. Within each of the twelve analyses the gene
probes were ranked by their predictive performance on an internal blind validation step and
gene probes ranking below 0.05% were disregarded. The gene codes of these shortlisted gene
probes were cross-referenced across the six ANNs from each time point in each data set.
Multiple cross comparison systems were explored. Gene codes were weighted based on the

frequency of their presence in the twelve ANNS.

The list of weighted gene codes with a consistent predictive performance between long and

short term survival were taken forward to the meta-analysis.

5.2.3.2. Cross Validation with Cox Univariate Survival Analysis

Cox proportional hazard model has the capacity to compute both censored and non-censored
cases (Singh and Mukhopadhyay 2011) so “death not from ovarian cancer” or “alive with
disease” were included increasing the sample numbers.

A Cox univariate survival analysis was conducted on every gene probe in each data set
individually to determine if the is expression significantly correlated with survival. To do this
a macro (see Digital Appendix A) was created within Statistica 8 software that cycled round
each of the thousands of gene probes within each data set and produced a report for each one.
The reports were exported to Word, transferred to Excel and a macro function used to compile

the results. Gene probes were ranked by their p-value and any below 0.05 were disregarded.

The gene codes of the gene probes with a p-value of <0.05 were taken forward for the meta-

analysis.
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5.2.3.3. Cross-comparison of Significant Genes

The PiVot table function within Excel was used to cross-compare the gene codes that performed
well as predictors in the MLP-ANNs and had a significant p-value in the Cox univariate survival

analysis. Gene probes that did not occur in all four categories were disregarded.

5.2.3.4. T-tests

Two tailed type two Student’s T-tests were conducted in Excel applying the same time point
cut-offs described above (Table 14 and Figure 30) to find a categorical analysis to a continuous
variable. Genes that did not have a significant T-test p-value for one or more probe in both data
sets were disregarded. Finally the averages of each were compared. Genes whose expression

trends when correlated with survival differed between the data sets were disregarded.

5.2.3.5 STRING Analysis

The final list of 56 genes were searched in STRING 9.0 (2013) (see section 2.2.3.) to uncover

any already published knowledge of association or interactions between them.

5.3. Results

A meta-analysis approach was applied to two carefully selected gene expression microarray
data sets (E-GEOD-13876 and E-GEOD-26712) downloaded from ArrayExpress. In both cases
the data was collected from full genome arrays applied to Stage 3 serous ovarian carcinoma and

tumour samples collected and processed under regulated conditions.

5.3.1. ANN of Short and Long Term Survival

As described above the only available variable for analysis was survival time, a continuous
variable. The ANN algorithm used requires a categorical variable. For this reason a cut off had
to be made separating short from long survival. As described in section 5.2.2 multiple ANNs

were conducted to best accommodate a categorical analysis around a continuous variable.

Using the three time point cut-offs ANNs were conducted on the two data sets to generate six

sets of gene codes of interest. Within each of the 6 ANNs analysis the gene probes were ranked
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by their predictive performance on an internal blind validation step and gene probes ranking
below 0.05% were disregarded. See Digital Appendix B for the ranking of each probe from

both data sets ranked by their performance (Average Test Error) at all three cut-off points tested.

5.3.2. Cox Univariate Survival Analysis

Cox univariate survival analyses was conducted on every gene probe individually to determine
if its expression significantly correlated with survival. See Digital Appendix B for the full

listings of p-values of each Cox Univariate Analysis.

5.3.3. Cross-comparison of Significant Genes

When the gene codes of the gene probes found to be statistically significant from the ANN
analysis and the Cox univariate survival analysis from the two data sets were cross compared

there was an overlap of 126 gene codes, see Figure 31. These were:

AASS, ACHE, ACOXL, ANGPTL2, ANKMY1, ARHGAP26, ATG4B,
ATP2A3, BACHL1, BACH2, BLMH, BMP4, BNC2, C19orf42,
CACNALE, CACNB2, CDC25B, CEP152, CLIP3, COL13A1, COLEC12,
CSDC2, CTBPZ2, DCN, DCTD, DECR2, DHPS, DNAJC4,
DOM3Z, EDNRA, EFNB3, EIF1AY, EPS8L1, EXOSC7, FAMB32A,
FAMG0A, FGFR1, FHOD3, FKBP14, FYN, FzD7, GJB1,
GLP1R, GLT8D2, GULPL, H2AFV, HBD, HIST1H3C, HNRPDL,
HSD17B14, IDE, IGF2, IGFBP3, IGFBP6, IL178B, INTS5,
KCNC2, KCNJ15,  KIAA0528, KLHL23, LDB2, LIMAL, LRRC17,
MAP4K4, MATK, MFAP4, M ME, MORC2, MPG, MTERF,
MYCN, MYH6, MYQOT7A, NAV3, NCOR1, NDN, NEBL,
NFX1, NOL11, NSUNG, NTRKS, OLFM1, OLFML3, PCDH17,
PDZRNS, PHIP, PJA2, PKD2, POGZ, POLL, PPFIBP1,
PPP3CA, PTK2, PTPRE, RABGAP1, RARRESZ, RBM17, RBMG,
RPL10, SCAMP1, SCN2B, SEMA3C, SERPINEL, SFRP4, SLC11A2,
SMARCA4, SMARCD3, SMCS3, SMGS5, SPAGY, SPCS3, TMEMA45A,
TNFAIP6,  TNFRSF14, TPM2, TPPP, TRO, TRPM4, TUSC2,
WDR59, WTAP, WWC1, ZFHX4, ZMYMS5, ZNF133, ZNF45.
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Figure 31. Overview of Gene Microarray Meta-analysis Methodology.

Two data sets (Cohort 1 containing 157 cases and 37632 gene probes, Cohort 2 containing 153 cases and 22283
gene probes) were mined for gene expression values significantly associating with ovarian cancer survival using
two statistical approaches. Method 1: a set of three ANNs using differing time point cut offs to define short and
long term survival, Method 2; a Cox univariate survival analysis performed on every gene. Upon cross comparison
of statistically interesting genes 126 gene probes were selected from a potential 37632 for further analysis.

The list of GOIs was cross reference with the lists reported to be of interest by the initial
investigators who generated the data GEOD 13876 (Crijins et al., 2009) and GEOD 26712
(Bonome et al., 2008). Four genes were found to overlap; these are GULP from Bonome ef al.,

(2008) and LRRC17, TMEM45A and TRO from Crijins et al., (2009).

Gene codes were weighted based on the consistency of their performance to predict survival
times of a blind validation set in the twelve ANNS performed at the three time point cut offs on
two data sets see section 5.2.3.1. This is visualised in Figure 32, genes that occurred multiple

times carry a higher weighting thus positioned higher in a pyramid of interest.

When compiling the data for each quadrant of the overall meta-analysis depicted above, the
lists from each set of three ANN analyses (depicted as method 1 above) could be combined/sub-
cross-compared at increasing levels of stringencies. For example if a gene occurs in the highest-
ranking portion if any of the three survival time cut offs are applied, or if it had to occur in two

or more (more restive), or if it had to occur in all three (most restrictive). The overarching
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stringency in this meta-analysis is attained from testing using multiple, different methods. For
this reason, the least stringent combination was applied to maximise the genes taken forward
for analysis by a different method. However the as the analysis had been conducted using all
levels this information was compiled to rank the genes in order of occurrence across the

increasingly stringent repeats. This may serve as an approximate rank in confidence.

GLT8D2,
TNFRSF14,
SLC11A2, MFAP4,

DCN, TMEM45A,
ZNF133, ZFHX4, NDN,
IGFBP6, FZD7, FYN, DOM32Z,
PDZRN3, PPP3CA, LDB2, KCNC2,

GLP1R, CACNA1E, EIF1AY, DNAJC4,
POGZ, WWC1, SFRP4, MYHG, PCDH17,
PTPRE, OLFM1, NSUN6, KCNJ15, CACNB2,
WTAP, WDR59, SMC3, SEMA3C, SCN2B, PTK2,
PKD2, PJA2, OLFML3, NCOR1, MORC2, MATK,
KIAA0528, IDE, GJB1, FKBP14, FAM32A, BLMH, BACH1,
ATG4B, ZMYM5, TUSC2, TRPM4, TRO, TPPP, SPCS3, SERPINE1,
SCAMP1, RPL10, RBM6, RABGAP1, POLL, NTRK3, NFX1, NEBL,
MYO7A, MPG, KLHL23, HNRPDL, HIST1H3C, FAM60A, EXOSC7,
DHPS, DECR2, DCTD, CEP152, CDC25B, C190rf42, BMP4, ANKMY1, ACHE,
NOL11, EFNB3, MYCN, LRRC17, ARHGAP26, EPS8L1, ZNF45, :

Figure 32. A Graphical Representation of the Order of Significance of the Genes of Interest.

The 126 genes of interest were weighted based on the frequence of occurrence in the twelve ANNS. Genes at the
top of the pyramid were seen more frequently than those at the bottom (see See Digital Appendix B for full gene
rankings).

All of the genes in the triangle were found to be of significant interest via meta-analysis from
two data sets by both univariate cox regression survival analysis and ANN. The gene codes at
the top of the triangle re-occur in multiple, and higher stringency options for combining lists
prior to meta-analysis. The gene probe for GLT8D2 was the most consistent and high-ranking
probe thus is positioned at the top of the pyramid; gene codes toward the bottom of the pyramid
may have only appeared in the least stringent compilation of the pre-meta-analysis ANN lists

however do meet all the criteria for the final analysis.
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5.3.4. T-tests

Using excel the data for all 126 genes listed above underwent T-tests using the same cut offs to
define short and long term survival as described in section 5.2.2. Genes that did not have a

significant p-value for one or more probe in both data sets were removed from the list.

After the T-test elimination a data trend comparison (described in section 5.2.3.4.) was
conducted. The purpose of this was to remove genes whose significant differential expression
disagreed between the two data sets. Genes that were removed at this stage include ACHE,
ATP2A43, COL13A41, EIF1AY, EPSSL1, FGFRI, KCNC2, KIAA0528, KLHL23, MATK, MYO74,
NEBL, NFXI1, PTK2, RABGAPI, RPL10, SCN2B, SMARCA4, TPPP, TRO, and WWC1 which
were all discounted because the significant differential expression between long and short term
survival was observed to be opposed between the two data sets. For example, ACHE was in
this comparison observed to be expressed at a significantly higher level in the tissue of short
term survivors in data set GEOD13876, however a significantly lower expression observed in
the tissue of short term survivors in data set GEOD26712.

Genes whose expression trends were not consistent between the two data sets were removed,

reducing the list of 126 genes of interest were refined to 56. These were:

BACH]1, BACH?2, BMP4, CDC25B, CLIP3, COLEC12, CTBP2,

DCN, DCTD, EDNRA, EFNB3, FHOD3, FKBP14, FYN,

FzD7, GJB1, GLT8D2, GULP1, H2AFV, HBD, HIST1H3C,
HNRPDL, IGF2, IGFBP3, IGFBPG6, INTSS, LDB2, LRRC17,
MAP4K4, MFAP4, NAV3, NCOR1, NDN, OLFML3, PCDH17,
PDZRNS, PJAZ, PKD2, PPFIBP1, PPP3CA, PTPRE, RARRES?2,

SCAMP1, SEMASC, SFRP4, SLC11A2, SMC3, SPCS3, TMEMA45A,
TNFAIP6, TNFRSF14, TPM2, WTAP, ZFHX4, ZNF45.

A superficial observation, even without deep research, it was apparent at this stage that several
of the remaining genes were already associated with cancer by name; Tumour Necrosis Factor,
Alpha-Induced Protein 6 (TNFAIP6), Tumour Necrosis Factor Receptor Superfamily, Member
14 (TNFRSF14), Wilms Tumour Associated Protein (WTAP). Additionally apparent pathway
associates in Insulin Growth Factor Binding Protein 1 (IGFBP3) and Insulin Growth Factor Binding
Protein 6 (IGFBP6) and Insulin Growth Factor 2 (IGF2).
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More relevantly, a brief exploration of literature found NAV3, SPAGY, SMC, IGFBP6 and
more have been described/ implicated in cancer studies (Carlsson et al., 2012, Garg et al.,
2008, Ghiselli 2006, Fu et al., 2007). The most pertinent are /GF2 and BMP4, which have
been reported with relevance to ovarian cancer survival time (Sayer et al., 2005, Shepherd et

al., 2008 and Thériault et al., 2007).

5.3.5. STRING Analysis

For observation purposes only, the final list of 56 genes were searched in STRING 9.05 (see
section 2.2.3.) to uncover any obvious or already published association or interactions between
them. This version of string was current between March 3™ 2013 and December 27™ 2013, it
lists 5,214,234 proteins from 1133 organisms (although only human was searched) and holds
information of 336,561,678 interactions and is still available through archived databases within
the website. Fourteen of the genes are reported to be linked by co-mention in literature and five

by co-expression see Figure 33.
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Figure 33. Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) Output Displaying
known Associations between the Genes of Interest.

56 gene codes found to be significantly relevant to ovarian cancer survival were entered into STRING. Any
relations are represented as a colour coded connection between genes represented by a ball. Fourteen of the genes
are reported to be linked by co-mention in literature (yellow lines) and five by co-expression (black lines).

These links can act as leads to the publications linking creating the link.

138



5.3.6. Interaction Intact Analysis

To follow up on the links observed using STRING, Reactome (Reactome 2013) and IntAct
(IntAct 2013) were explored to find interactions or pathways for any demonstrated physical
links between the 56 genes. These databases are both manually curated hence this is a more
rigours search, only the gene codes for which there is published evidence relating to proteins
with confirmed physical interaction should be listed. Using IntAct, evidence was found of
translational interaction between IGF2 and Decorin. In that, the translated protein Decorin may

act as a stimulatory competitive ligand to IGF2 (Morcavallo et al., 2014).

5.4. Discussion

This chapter aimed to characterise genomic differences between tumours from patients with

Stage 3 ovarian cancer that responded well to therapy and those which did not.

Using survival time as a measure of response to therapy based on the patient’s survival times a
list of 56 genes were distilled from a potential 37000 gene probes to be consistently significantly
expressed in relation to survival times from ovarian cancer measured from two separate

populations of patients, on two microarray platforms measured in two laboratories.

The rigour of combining a meta-analysis approach with multiple testing using a variety of
statistical approaches, increases power and confidence in the relevance of genes found to be of
interest. Encouragingly, a number of the 56 were immediately recognised as having known
association with ovarian cancer survival (/GF2 and BMP4 and more). Further investigation and
validation of the genes that are not yet reported to associate with survival may have clinical
relevance and have potential to predict a patient’s response to treatment or be used as a novel
target for therapy. These results warrant genomic and or proteomic validation, for example,
using immunohistochemistry on tissue micro array. Moreover using the genes in combination
with each other as a biomarker panel and clarifying the nature of these commonalities using
more, freely available online resources such as STRING (Figure 33), KEGG, Reactome,
BioGrid, Panther and HeTop. This could begin to unearth molecular pathways with potential to
characterise and categorise the nature of an individual tumour and enable more tailored

treatment.
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The most ‘robust’ biomarkers remained.

5.4.1. Comparison of Results with the Data Source Publications

Based on a continuous prediction analysis the owners of the data have published a list of 86
genes they calculated expression to correlate with time of survival (Crijns et al., 2009), some
of which had not previously been linked to ovarian cancer. Crijns ef al., 2009 used a continuous
prediction analysis to list 86 genes whose expression was strongly correlated with survival time.
They were able to find and use data sets containing 57 of these genes for validation of their

findings.

To validate the finding of any biomarker study the results must be reproduced with a different
sample set or on a different technological platform. Crijns ef al., (2009) were unable to attempt
to reproduce 31 of 88 genes found to be significantly associated with ovarian cancer survival
times as the validation data sets though having twin experimental design produced data using a
different microarray technology which did not contain probes corresponding to these genes.
Equivalently the 56 gene of interest listed above are biased to those genes whose probes on both
Operon and Affymetrix platform, the nature of the meta-analysis will have filtered out genes

only present on one.

When compared to the accompanying publications of the data sets there were four gene overlaps;
three from GEOD 13876 (Crijns et al., 2009) , and one with GEOD 26712 (Bonome et al., 2008)
These are LRRC17, TMEM454 and TRO from Crijns et al., (2009) and GULP! from Bonome
et al., (2008). Their appearance in this meta-analysis acts as a second or third step of validation
for each marker from the point of view of each paper. However the lack of crossover is more
poignant. The lack of association of the other 83 genes listed to be of interest by Crijns et al.,
(2009) with survival, and 54 by Bonome ef al., (2008) exemplifies the point made by Braem et
al., (2011) and Devlin et al., (2003) that the need for reanalysis and meta-analysis of existing
data and how different data processing and analysis applied to the same data can yield different
results. Completely different gene sets and numbers of genes can be shown to be significantly
differentially expressed between two data sets depending on the data mining methods applied

to the same data (Devlin ef al., 2003).
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Interestingly commonalities with other larger meta-analyses were discovered (Ganzfried et al.,
2013 or Yang et al., 2014), the results of which were published after the initiation and majority
of the work described above (Chapter 5).

Ganzfried ef al., (2013) used the R statistical package to compile data from 2973 cases from 23
manually selected gene array data set. The emphasis of their study was to curate the larger
resource, as it was not focused on biomarker discovery only reported the identification of one

single marker (CXCL12) as an independent predictor of survival time.

The analysis above (Chapter 5) based on two data sets contributes as well as any comparable
study, (Ganzfried et al., 2013, Yang et al., 2014, Crijns et al., 2009 and Bonome et al., 2008)
and contributes to knowledge with novelty by its unique combination of samples and analytical
methods. Meta-analyses utilising a larger number of sub-cohorts to increase sample number,
such as Ganzfried et al., (2013) n=2973, will experience detrimental effects consequent from
extraneous variables introduced when combining cohorts from different sources such as, sample
collection procedure, microarray platform or majority ethnicity. The base studies generating the
data (such as Crijns et al., 2009 and Bonome et al., 2008) contain smaller, yet notably sized
sample numbers inherently avoid such problematic extraneous variable influencing findings.
The analysis in Chapter 5 falls between these two extremes. A larger sample number n=310 was
achieved by the use of two data sets (157 + 153) which were carefully, manually selected. Genes
of Interest (GOI) were ranked based on their performance in each cohort in parallel
/discretely/simultaneously and the highest ranking taken forward for the comparison. Any GOIs
that concord with similar studies findings will add a level of validity to an existing body of
evidence implicating that genes role. Any discrepancy, are candidates for further investigation.
If it were possible, a deeper investigation of each sample, data processing and analysis method
used to draw each conclusion may in itself lead to identifying reveal new knowledge (e.g. if
one cohort had a higher number of one ethnicity — ethnicity could be investigated as a potential
effector variable) however lack of wider sharing and availability of raw data and software used

to generate results prohibits this.

As discussed above the same data can be re-analysed to draw different conclusions depending
on the analysis applied (Allison et al., 2006). As Ganzfried ef al., (2013) combined numerous
data sets generated from different microarray platforms a global normalisation would have been

applied. Normalisation of data can itself influence downstream results depending on the method
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applied (Zyprych-Walczak et al., 2015). It may be insight full to analyse the performance of
each gene in each constituent cohort, to its performance across the combined, normalised data

set as a whole.

5.4.2. Interpretation and Implications of Results

This chapter’s analysis infers that the variation of survival times is a consequence of different
genes activations acting to either make the tumour more aggressive or able to evade platinum
based chemotherapy. Though there are numerous non-recorded uncontrollable extraneous
variables that could also determine patient survival times, this assumption must be made in

order to hypothesise and derive possible meaning from the results.

A key observation was that the /GF2 gene, already accepted to be implicated in ovarian cancer
was identified to be present in higher amounts in the short term survivors, together with a
stimulatory ligand (Morcavallo et al., 2014). This strongly implicates activation of the growth

pathway downstream of IFG2 in the cancers from the short term survivors.

5.4.2.1. Known Mechanisms of Resistance to Platinum Based Chemotherapy

Proteins that are reported to play a role in platinum chemoresistance include Excision Repair
Cross-Complementation group 1 (ERCC1), xeroderma pigmentosum complementation group
F of the NER pathway; increased in acquired chemo resistance, and Mut and Mut associated

proteins of the MMR pathway as reviewed in (Martin et al., 2008). See section 5.1.1.

At a superficial level ERCC1, though representative probes were on both of the arrays was not
found to be amongst the top ranking gene probes associated with survival times in the meta-
analysis of two patient cohorts using these the above described analysis. This suggests that
different/other cell signalling or/chemoresistance pathways are responsible for this particular

difference in survival times observed in the above meta-analysis.

On closer examination, ERCC/ was found to be in the significant portion (p=0.03744) of
highest ranking genes from the Cox univariate analyses of the GEOD 13876 data set if censored
cases are removed. This could be taken to suggest that in this patient subset the ERCCI

mechanism of DNA repair was responsible for their shorter survival, however as recurrence
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data is not available no conclusion could be drawn. Or, it is possible that there is a subgroup
within or outlier within the GEOD 13876 cohort influencing this. This was just a preliminary
comparison, as discussed below a deeper investigation into all the genes associated with the
ERCCI1, Mut and any other known pathways of mechanisms of chemoresistance would be
insightful, however is a separate top-down/reductionist/targeted type of data analysis entirely.
To be done properly is beyond the scope and resources of the current study. Fishing for one

gene of interest is not the appropriate use for this analysis data.

However, any conclusions or indications derived from comparison with current knowledge can
be considered to be restricted. The main limitation being the majority of current ovarian cancer
chemo resistance knowledge is based from studies of cell lines with acquired resistance
(Marchini et al, 2013). Though insightful to delve into specific mechanisms, cell line models
do not incorporate the heterogeneous character of tumours and the tumour microenvironment
as variables, which are accepted to be a significant component of ovarian tumours. Many cell
line studies fail to investigate the histopathological origins of the cell they are drawing

conclusions from (Vaughan ef al., 2012).

The genes found to significantly associate with survival times in the above chapter were are
linked to mechanisms of chemo resistance, for example EMT pathways; EDNRA (Rosano et

al., 2011)

5.4.3. Support of the Methods Used

Incorporating false discovery testing to an analysis increases the confidence of any deductions,
thus, yields results with a higher validity (Devlin ef al., 2003). False discovery refers to the
phenomena that over any number of observed measurements a proportion of them will have
been discovered by random chance. Strategies such as multiple testing, meta-analysis, or adding
in decoy data mitigate false discovery, or by its measurement allows researchers to crop result
to only include those with minimal probability of having occurred by chance. Gene array studies
finding differential expression of a handful of interested genes have been criticised for
insufficient hypothesis testing and rejecting the null hypothesis too readily (Devlin et al., 2003).
Encouragingly, the approach used in this study has been adopted by other researchers. Marchini
et al., (2013) used a similar filtering approach; a series of statistical analyses of different types

to gradually refine a list of differentially expressed genes to investigate further.
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Using more than one analytical method increased the rigor of a test, in this chapter we have
used three different approaches to filter genes based on their association with survival time from
ovarian cancer. The differing characteristics of each compile a stringent filter and enhance the

meticulousness of the analysis/ made a really stringent shortlist.

Cox proportional hazard analysis was applied to determine if the continuous independent
variable of each genes expression levels associated with survival time (see section .2.) The Cox
univariate analysis added the capacity to include censored cases/incomplete data, which neither
ANN nor T-tests have. ANNs are a form of machine learning applied to non-linear data to assess
the predictive power of each variable. Thus adding a predictive element to the finalised list.
(See section 2.2.2 for details of each). The T-test is a widely accepted test to assign a
significance to the difference between two populations this process coupled with a trend

analysis added an extra, fundamental/widely accepted level of confidence in the finalised genes.

Two of the approaches, ANN and T-tests are best suited to data with categorical variables where
here they are applied to a continuous independent variable: survival time. Performing these
analyses thrice at each of three definitions of what is long or short term survival (Figure 30)

tailored these analysis for this purpose.

The observation that a number of the condensed list of 56 GOI contains genes and proteins
already associated with cancer is encouraging: TNFAIP6, TNFRSF14 and WTAP are implicated
with tumours by name, NAV3, SPAGY9, SMC, IGFBP6 and more have all been reported or
specifically implicated in cancer studies (Carlsson et al., 2012, Garg et al., 2008, Ghiselli 2006,
Fu et al., 2007), and some associate with ovarian cancer survival, namely, IGF2 (Sayer et al.,

2005) and BMP4 (Shepherd et al., 2008, Thériault ef al., 2007 )

5.4.4. Criticisms of the methods used

Multicentre studies increase the opportunity for operator bias, even from sample collection. The
meta-analysis in this this thesis limited sample numbers to only include samples that could be
defended to be described as comparable, however, are they? From the documented evidence
available, the samples considered for this analysis were comparable, however, if the full sample

collection and patient information were scrutinised in depth there is likely a parameter that
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would separate them. Due to the nature of experimental design at the different centres there will

always be some fundamental differences.

5.4.4.1. The Availability of Additional Information

Non-controlled, non-recorded extraneous or confounding variables that may have also
influenced the patient’s survival time from ovarian cancer. Namely overall health, smoking
status or family cancer history. Despite having more than the MIAME requirements, limited
information about the samples used, processing of samples and data acquisition was available.
None of the known risk factors associated with ovarian cancer are available such as: BRCA1

and 2 status, oral contraceptive use, parity and menopausal status (though this could be deduced

by age).

Other factors that affect survival time that may differ between patients in the above data sets
and patients in data sets used for validation, include the experience and expertise of the care

givers of the patients in the two centres (Erickson ef al., 2014).

This data is only based on patients who were entered into a treatment pathway. Though based
on a different population, a recent US report found that nearly half of patients diagnosed with
ovarian cancer did not receive the ‘standard’ NCNN endorsed treatment pathway (Erickson ef
al., 2014). Reasons for this included the overall severity of the condition combined with the
average age of patient at diagnosis and co-morbidities. Thus, nearly half of the patients that this

data appears to be drawn from are not genomically represented in the above analysis.

5.4.4.2. Challenges in Studying Ovarian Cancer

Survival time is a common measurement applied to assess treatment efficacy or subcategorise
patient groups in clinical study. It is used as it is an accessible measure, however, can not include
any number of extraneous factors effecting each patient’s vitality, neither does it incorporate
the quality of the life measured. There is still a need to address the way success in treatment is
evaluated. As with this body of work, researchers are limited to the samples and variables
recorded. Time of survival is a common measure, however, an increase in life span is still
normally less than 5 years and not a solution or cure to the disease, the quality of life of a patient

undergoing drastic treatment is not considered. A recent collaborative focus group (Vaughan et
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al., 2012) called for the inclusion of quality of life and symptom benefit analysis to be included

as a measure of success or parameter/ variable in such research.

According to Machin, Cheung and Parmar (2006), survival analysis has a predetermined ideal
sample size which should ideally be determined prior to data collection. As this was a
retrospective analysis of data this was not possible however the minimum ideal sample number,
based on a log rank power model to achieve a power of 0.8 and a p-value of 0.05 is 65. Using
the selection criteria of Stage 3 serous the data utilised in this analysis is nearly double the
minimum. However, due to the relative rarity incidence of samples cohorts of such a size are
rare. A cohort of comparable size consisting of only Stage 1 tumour would be of great scientific

value but near impossible to acquire.

Ovarian tumours are known for their wide ranging reported cellular histology compared to other
cancers. This may be due to the tumour microenvironment accounting for a larger proportion

of the tumour burden, although this is not quantified (Vaughan et al., 2012).

The data analysed above is from gene arrays are based on lysates of ovarian tissue, Crijns ef al.,
2009 details the strict requirement for tumour tissue included in the study, however, even within
the tumour microenvironment multiple cell types with different activated gene pathways are
present. Even with these inclusion criteria in place, the genetic information available represents
the entire tumour microenvironment, not just tumour cells, this includes the host reaction to
tumour cells. Not all data sets available on ArrayExpress detail their inclusion criteria for tissue,
comparing samples with an unknown mixture of both within them is not a fair comparison, and
will increase the probability of creating irreproducible results. Laser capture micro-dissection
prior to microarray analysis to extract tumour cells from the surrounding stoma cells increases
the accuracy of the measurement to represent the genome of the cancer would to some extent
mitigate this , as performed in Sayer ef al., 2005. However, is not always practicable, the yield
from micro-dissected sections are comparatively small and the addition of an extra sample

handling protocol may add variation.

5.4.4.3. The Array and Data Analysis Methodology

The data used was selected on criteria that it represented genes from the whole known human

genome. However they do not contain probes to all known genes, additionally as the two were
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from different gene chip platforms a small proportion of genes were not represented on the

other chip.

One challenge in meta-analysis of gene microarray data, also disapprovingly reported by
Ganzfried et al., (2013), is the disambiguation of in syntax, semantics abbreviations used to
annotate variables in both the sample information files and the microarray platform annotation.
For example the gene TNFAIP6 has eleven possible aliases in the format of gene codes alone.
On a smaller scale using a search and match function in Excel “/GF2” will not be matched to
“IGF-2". Curated databases may have basic formats for information to be in before publishing

however are not completely standardised.

It is commonly accepted that, database and clinical annotations formats need to be standardised
to maximise their utility to meta-analyses (Array Express 2010, Wu ef al., 2014 and Carey et
al., 2008 in Ganzfried at al., 2013). However they are each tailored to their own purpose and

still may make using multiple resources a challenge.

In this chapter, a concordance strategy was applied to across multiple analyses to mitigate false
discovery. This strategy was reasoned to be more appropriate than other adjustments for false
discovery such as the Benjamini-Hochberg or Bonferroni corrections where the p-value
threshold of significance is adjusted based on the number of variables and or sample size. Yang
etal., (2013) in a study of common cancers used p-values of <0.05 and did not correct for false

discovery.

5.4.4.4. Downstream Analyses

STRING and all protein text mining interaction databases are inherently bias to well-studied
entities/genes. As acknowledged by Yang et al., (2013). The encouraging web of association
observed in Figure 33 needs to be considered in context of the colour coding between each
point and how it was generated within STRING. Yellow lines represent associations drawn from
algorithm text mining, black and pink represent co-expression and experimental evidence. It is
possible that all the genes represented as linked with yellow lines are not co-expressed/ have
no relation to one and other. Additionally, it is possible that all the genes represented as separate
are connected or part of a pathway/family but there is as yet no evidence. STRING analysis is

not a result as such, more a tool to direct further investigation.
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In summary, 56 genes were found to have a consistent significance throughout the meta-

analyses. The chances of having focused on these genes by chance was is minimal due to the

number of, and differing statistical filtration steps applied. The inclusion of some genes already

implicated in ovarian cancer adds to the confidence in the strategy applied however the study

is limited due to the data sets and information available. There are still multiple ways the

existing data could be re-examined to add even more rigor to the existing analysis, or, derive

different information.

5.4.5. Future work

Re-analysis of the data available

All the gene probes could be collapsed into one per gene. This would reduce the
influence of each probe.

An interaction analysis could be performed so observe the influence of each genes of
interest on all others in the data set. Findings would be interesting to compare to (Yang
etal., 2014), who in a similar study, found that the genes with the most prognostic power
tended not to hub i.e. be influential of the expression of large numbers of other genes.
Hypothesis lead data mining. Prior analyses could give evidence that the genes found
to be of interest share a common characteristic. All gene probes could then be separated
and grouped by an ontological annotation i.e. cellular location, function, or pathway
involvement, then then each category could be given an overall significance score based
what proportion of the genes of interest are has a significant T-test, Cox univariate
survival or high predictive performance. In particular; if pathway annotations for both
sets of gene probes were available for example, it would be possible to deduce a really
informative conclusion. Which ontological category is overrepresented in the set of
genes that significantly associate with survival times? For example: DNA repair /
angiogenesis pathway contained x% probes that significantly associated with survival,
whereas housekeeping pathway had none. However, though possible there is no short
way to annotate the gene probes from the two platforms (Affymetrix and Operon) with
common pathway search terms. Also see Table 2 for discussion on interaction and
pathway databases. Marchini ef al., (2013) exemplifies hypothesis lead gene data

mining whilst investigating chemo-resistance in ovarian cancer; analysis of quantitative
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PCR and microarray analysis of a test set of tumour tissue generated a list of
significantly relevant genes. A hypothesis was derived from this list that EMT /MET
signalling pathways were significantly associated with chemo resistance in ovarian
cancer. Following this, signalling pathway category annotations were assigned to their
gene interest list using Reactome and KEGG to assess which pathways are
overrepresented in each listed pathway. This approach can be criticised as being bias,
commonly reported and investigated genes will be better documented an more likely to
come up in a pathway analyses than their newly discovered counterparts. Constant re-
use and basing conclusions from databases of existing pathway records such as KEGG
may drown out newly discovered interaction and pathways.

Evaluation of existing evidence. Namely Transferrin, Vitronectin and ApolipoproteinAl
as published by Nosov et al., (2009), though these markers are for early detection of the
disease there role in survival. Their lower expression was shown to negatively correlate
with early disease detection. Are their increased expression associated with improved
survival? (though not replicated by this study).

Re-divide the full genome to pathways and see which have the highest proportion as
significant to survival time however this is currently not feasible due to no ready/ fast
way of assigning pathway to each gene probe and ensuring it is officially correct.
Molecular pathways involved in angiogenesis are increasingly well characterised and
implicated in survival from and incidence of ovarian cancer (Zhang et al., 2003), a
deeper analysis of the genes in these pathways expressions relation to survival time
could make an interesting contribution to this body of research.

When using online databases of information, great care must be taken to ensure they are
being used both to their full potential and appropriately so not to misunderstand the
information displayed in them. In the example of STRING there is little room for error
conducting a search however the interpretation of the results must be done with the
known caveats that, well reported genes will display more connectivity, the database is
based on algorithms literature searching the internet i.e. not curated by specialists.
Connections between proteins categorised “databases” or “text mining” is vague and
may have little scientific meaning. Additionally understanding who has sponsored or
curated a search engine or database may influence the interpretation of results. This is

often the explanation as to the reasons behind differing findings from different databases.
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e A current barrier to the progress of the work is the lack of factual, accepted circuitry
diagrams of heterotypic inter and intra cellular interactions, identified by Hanahan and
Weinburg (2011) to be an obstacle to current research, but they also predict these
circuitry diagrams to develop exponentially over the next decade. Some progress is
already noted and discussed (chapter 5 and 6.1) and however not yet truly centralised.
Although until these exist in a 100% validated format development of these database
are a reductionist approaches that do not truly represent biology. Current existing
versions such as KEGG are based from multiple sources of evidence, it could be argued
that it is over simplistic impossible to accurately to knit together information separate
research sources into something as intricate and individual and variable as a cellular
molecular pathway. Obviously, these resources need to be developed somehow but it is
up to the scrutiny of a researcher to understand the strength/foundation of these
resources whilst under construction.

In the above chapter a number of calculations, interpretations and analyses of the of two
microarray data sets are made. These could still be reanalysed using any combination of known
or novel data mining strategies. Evidence from other sources could confirm or refute such

observations.

5.5. Conclusion

Within the listed boundaries of what was available for analyses, 56 genes were found to
significantly and, consistently associate with survival from ovarian cancer. The meta-analysis
tactic means these findings are less likely to be biased by sample cohort, collection centre, gene
array platform or statistical analysis computation and the risk of false discovery is reduced. The
RNA expression micro array platform by nature limited this discovery to a known gene to which
a predesigned oligonucleotide probe existed on both arrays used, so a novel onco-sequence was
never a potential discovery despite being likely occurrence. Additionally, although expression
of mRNA implies translation into protein expression would occur this is not guaranteed, and if
it does then any number of post translational modifications could take effect between this
measurement and an onco-phenotype. None the less, these findings need to be confirmed on

other patient samples and technological platforms.
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6. Validation Strategies

Chapter Abstract

A meta-analysis in chapter 5 ranked probes from genome wide microarrays by their relevance
to survival time from ovarian cancer. A potential list of 37632 genes were whittled down using
increasing levels of stringency into a list of 56 with an encouraging body of evidence indicating
they are expressed at different levels between samples from patients with short and long
survival times.

In this chapter, after reintroducing and defining validation and verification, the list is further
refined based on additional evidence of their differential expression. Firstly each of the genes
of interest generated in chapter 5 were individually verified on a larger sample set of gene
microarray data using Kaplan Meier Plotter, a freely available online resource which accesses
arange of additional microarray data sets. This verification step reduced the list of 56 to 7 genes
with observations corroborating the findings of the meta-analysis in chapter 5. Verification of
the translated proteins of these 7 genes could give insight into their role at a cellular level within
the tumour environment. One of the candidates EDNRA was selected to be the first for
verification at a protein level by immunohistochemistry on a tissue microarray of ovarian tissue.
Significant trends association the expression of EDNRA with cancer stage, grade and histology

are observed. The merits, limitations and direction for further research are discussed.

6.1. Introduction

As eluded to in the introductory chapters (section 1.1.3.1.) for any potential biomarker (defined
as “a naturally occurring molecule, gene or characteristic by which a particular pathological or
physiological process, disease, etc. can be identified” Oxford Dictionaries, 2015) to progress
from a discovery stage to a clinical setting it must first undergo challenging and rigorous stages
of peer review, verification, validation before clinical trials to satisfy firstly the scientific
community regarding discovery methodology, then the clinical community for the safety of is
application in testing the general public (de Gramont et al., 2014, Henry et al., 2012 and

Goossens et al., 2015), for this reason there are few new fully approved biomarkers.
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The word “validation” has been used with different meaning between clinical or research
settings (Suresh et al., 2011, Halling at el., 2012). It is therefore poignant to clarify where the
results from chapter 4 and 5 fall in this continuum. The verb “validate” means to confirm or
substantiate: in a research laboratory setting, a discovery generated from one methodological
platform are reported as validated when reproduced on another, however from a wider
perspective reproducing results on a second platform is actually “verification” of a finding, in
that is not conclusive but supportive evidence warranting further research. Full “clinical
validation” requires the rigor of multistage clinical trials including thousands of samples and

multiple methodological platforms.

Figure 34 (below) adapted from the National Cancer Institute (NCI 2016) portrays biomarker
discovery as a continuum roughly divided into three stages. This encompasses both the clinical
and academic/research perspective of either a stage 1 approach for discovery or a stage 2
approach for clinical validation. By definition to verify is “to make sure of” or “demonstrate an
accuracy or truth” in practicality verification step biomarker discovery is an analytical

validation.

Like Braem et al, (2011) The Office of Cancer Clinical Proteomics also recognise the
imbalance in the past decade of thousands of reported biomarker discoveries compared to the
handful of those that are clinically validated for any cancer, not just ovarian. As discussed in
section 3.6 they also imply the reason for this to be due to the current status/model of research
at the moment. Although larger multicentre cohorts or meta-analyses exist, the majority of the
1000s of biomarker discoveries derive from independent research groups operating
independently across the globe with seemingly large but in-fact insufficient sample numbers

which are the maximum resources available to them.
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Stage 1 Stage 2

Discovery Verification Clinical Validation

Analytes 100s 10s -

10,000s - 1000s
s 3 3
e 10s Biospecimens
Untargeted Targeted Immunoassay
platforms platforms
~100s — 1000s of ~10s of verified Panel of candidate
candidates candidates biomarkers

Figure 34. The Biomarker Discovery to Validation Pipeline.

Adapted from NCI, 2016). Stage 1 discovery stage data is commonly generated in a research lab from a non-
targeted bottom-up approach of thousands of potential variables on low sample numbers. Stage 2 Verification
experiments entail hundreds of samples on a more targeted platform able to measure 10 — 100s of variables. Finally
if evidence to substantiate a clinical trial results, the potential individual or sometimes panels of biomarkers are
clinically validated via the standard four phase clinical trials, on thousands of prospectively collected patient
samples.

Figure 34 above summarises the biomarker discovery to validation pipeline as outlined by the
NCI (NCI 2016). Stage 1 discovery stage research is commonly generated in a research lab
from a non-targeted bottom-up approach of thousands of potential variables on low sample
numbers such as; gene chip microarrays, mass spectrometry, 2D-PAGE perhaps on cell lines,
or animal models. Variables indicating signatures with potential diagnostic value are taken
forward to scale-up experiments to verify findings. Stage 2 verification experiments entail
hundreds of samples often sourced from clinical patients conducted in a research laboratory on
a more targeted platform able to measure 10-100s of analytes more accurately for example
ELISA, Western blot, targeted mass spectrometry, PCR. Finally, if evidence to substantiate a
clinical trial results the potential biomarkers may undergo full four phase clinical validation on

prospectively collected clinical samples as part of a four phase clinical trial.

It is at this point and in this context worth highlighting the rarity and value of the large cohort
of samples collected prospectively for the UKCTOCs ovarian cancer screening study (Jacobs
et al., 2004, Menon et al., 2014, Jacobs et al., 2015), this is a rare example of wide scale
standardised sample collection. So far, these samples have been used for their primary purpose;
the clinical validation of the Risk of Ovarian Cancer Algorithm (Jacobs et al,
2015).Additionally, banked surplus samples have been utilised for the discovery and

verification of more ovarian biomarkers (Russell ef al., 2016). Successful completion of such a
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collaboration of this scale in this context is rare (NCI 2016), the value of these specimens should
be highlighted as specimens are suitable for all 3 stages of the biomarker discovery pipeline

above, the samples and any data acquired from them should be utilised to its maximum potential.

The analyses described herein (chapter 6), progress the Stage 1 potential biomarkers discovered
in chapter 5, through Stage 2 analytical validation alternatively termed biomarker verification
and their clinical implication investigated. Firstly the biomarkers discovered in chapter 5 are
filtered for accuracy by validation on the same technological platform they were discovered:
gene microarray expanded to a considerably larger sample cohort, the consequent/ filtered

verified GIOs are investigated at a protein level using immunohistochemistry.

Encouragingly, the 56 genes of interest generated from Chapter 5 include both known and novel
candidates associating with ovarian cancer survival. Notably, overexpression of IGF2 in ovarian,
and many cancers in general, is well documented. IGF2 and BMP4 are both independent
predictors of survival in ovarian cancer (Sayer et al., 2005, Laatio et al., 2011). Increased IFG2
ligand binding/activation is seen in ovarian cystic fluid (Kanety et al., 1996), which eventuates
inactivation of molecular pathways key to cell invasion (Lee et al., 2005). IGFBP6 and IGFBP3
are part of these pathways and the latter is downstream of a p53 cascade, TP53 being described
as a “near-invariant” feature in ovarian cancer (Bowtell ef al., 2015). BMP4 is a recognised
mediator of ovarian metastasis and cell invasion (Thériault et al, 2007), overexpression
indicative of poor prognosis, and, has been implicated in cisplatin Chemoresistance (Laatio et
al., 2011). Others, namely NAV3, WTAP and MAPK, have been discovered in or implicated in
cancers of other organs, but less so for ovarian (Carlsson ef al., 2012, Little et al., 2000 and
Wagner et al., 2009). In a large scale system-level meta-analysis of genomic data from The
Cancer Genome Atlas (TGCA) TNFAIP6 and NAV3 amongst a panel of 15 other genes were
implicated in ovarian cancer survival and possibly other cancers namely glioblastoma breast

and kidney cancer in the context of their signalling pathways (Yang et al., 2013).
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6.2 Validation of Genes of Interest using Gene microarrays

6.2.1. KM Plotter Introduction

The Kaplan Meier Plotter (KM plotter) is a free meta-analyses web tool which allows
researchers to assess the performance of their biomarkers in silica on a manually curated data
bank of multiple cohorts of micro-array data (Gyorffy et al., 2103 and KM Plotter 2014).

The curators source their databank from published micro array data and created a simple web
interface, researchers enter the gene of interest and selected relevant parameters to tailor the
sample subset to their needs. The service is available for breast (n=4142), lung (n=1464) and
ovarian cancer (n=1715), although the final sample number is dependent on the parameters

selected.

Hypothesis

Hi-viii. Genes of interest will be verified to significantly associate with ovarian cancer survival

time when investigated on a wider sample cohort.

Ho-viii. None of the genes of interest found to significantly associate with ovarian cancer

survival time will be verified to do so when investigated on a larger sample cohort.

6.2.2. Kaplan-Meier Methods / Utilisation Strategy

A broad perspective was taken with regards to sample selection. The largest number of available
samples were included in this analysis. This is primarily; due to the lack of ability to manipulate

and select cases within the separate samples sets in the KM plotter.

The gene code of each of the genes of interest was entered into the web-tool. For the first layer
of analysis (round of elimination) the default search parameters were used. These were; to
produce a report for all available gene probes, to auto-select the best cut off to separate short
and long term survivors and to measure the output in progression free survival. No restrictions
were made based on stage, histology, grade, CA125 Ilevels, debulking status or
chemotherapy/treatment pathway. The latest version of the web tool (version 2013) was used.

One thousand one hundred and seventy one samples were available using these parameters.
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A report was generated for every available gene probe, some probe gene codes only had one
available probe set. The output was available and saved as a .pdf of the Kaplan Meier plot and

a .txt file of what is reportedly the raw plot data.

KM plotter gives a score for the reliability of the gene probes in the array that represent that
gene, this is based on their criteria; probes are ranked as excellent, medium or poor. For clarity
and to minimise any ambiguity in this analysis any probes ranked by KM plotter as “poor” were
recorded by default however discounted for the purpose of evaluating each genes validator
performance.

Genes of interest were ranked by how many probes separated short and long term survival that
matched the pattern observed in the analyses in chapter 5, i.e. higher expression associated with
shorter term survival. The number of probes available for each gene of interest were considered.
Those which were represented by more than one probe were given extra weight when choosing
which were the best candidates for protein validation.

See Appendix (Digital Appendix B) for evaluation of each gene and Table 15 for the summary

of this evaluation.

As a second round of analysis the exact process was repeated however with the patient group
split cut-off set at median. This is a more stringent evaluation of the performance of the gene.
A report generated from a gene represented by multiple gene probes may have all been
significant predictors of survival using different time point cut offs. However if they are also
all significant using the same cut-off this is a better representation of the whole gene.

See Table 15 for a summary report of the performance of each of the genes of interest from
chapter 5 ability to predict progression free survival in the KM plotter assembled cohort
described above.

KM plotter does not optimise the cut point based on p-value, at best it can find the best of five
(lower quartile, lower tertile, median, upper tertile, upper quartile). For this reason the p-value
presented may not represent the optimal p-value for each probe. Given these uncertainties, and
other caveats discussed above and below a p-value of 0.05 was used as the criteria to label a
result “of interest”. A Bonferroni correction was considered (resulting in a p-value of 0.00089)
of which most probes still pass; however some may be falsely excluded. More weight was

placed on the qualitative aspects of the comparisons; number of probes, trends matching
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hypothesis and probe quality. The results presented here are as is without correction or further

exclusion.

As a third round of analysis the above process was repeated with filters applied. These were
selected to best fit the two data sets in chapter 5. Overall survival with a follow up threshold of

5 years, Stage 3 and 4, serous with possible platin therapy.

The sample cohorts utilised in KM plotter are; GSE14764 (n=80), GSE15622 (n=35),
GSE18520 (n=63), GSE19829 (n=28), GSE23554 (n=28), GSE26712 (n=195), GSE30161
(n=58), GSE3149 (n=116), GSE9891 (n=285), TCGA (n=565).

6.2.3. Results and Discussion of KM Plotter Reports

The first, low stringency, round of analysis removed genes whose probes expression did not
match the trend observed in the data from chapter 5 and did not distinctly separate short and
long term survivors using any group cut off point. A lenient p-value of <0.05 was used to
maximise the number of genes that could remain in the analysis, given the caveats of using KM
plotter, which are discussed below, the hierarchy of qualitative considerations were deemed to
be of more value to evaluate a genes performance. Using the auto-select best cut off function,
KM plotter does not reveal which group cut off was used for each individual probe leaving the
possibility that they may be different from each other. Hence, information from this round may
not appropriately represent, and is of limited use to assess, the performance of genes represented
by multiple probes. For genes who had multiple probes strongly separating short and long term
survival groups using an undisclosed group cut off the process was repeated using the median
as a set group cut off for all probes. It is possible that the genes that were discounted at this
level probes best performing cut off points were all the same but not the median, but this was
not investigated further at this stage. The genes whose median expression used as a cut-off point
to group patients support the findings of chapter 5 are DCN, EDNRA, IGF3, NAV3, TNFAIPG6,
WTAP and PPFIBPI. Genes that strongly supported trends in chapter 5 yet were only
represented by one probe are BMP4, COLECI12, GJBI, GLT8D2, LDB2, MFAP4, OLFML3,
PDZRN3, PJA2, RARRES?2, TMEM45A4, TNFRSF14, ZFHX4.

Using the high stringency approach MAP4K4 was the only gene represented by multiple probes,
and GJBI, GLTS8D2, LDB2, MFAP4, OLFML3, PDZRN3, PJA2, RARRES2, TMEMA454,
TNFRSF14, ZFHX4 by single probes.
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Table 15. Summary of KM Plotter Analysis. The performance of each gene of interest (rows) in KM plotter is noted against
increasingly stringent criteria (columns), a tick marks the criteria has been met.

Is the same trend in correlation
with short or long term survival Is there a strong p-value for
Comment Isthere more  observed in all "reliable™ probe all available "reliable”
[Gene than one probe sets for the gene? probes?
Symbol]  set available? AND
Does the trend match that Using any cut-off
observed in the meta-analysis?

Is there a strong p-value for all

available "reliable" probes?
Score

Using median cut-off

DCN
EDNRA
IGF2
NAV3
TNFAIP6
WTAP
PPFIBP1
GJB1
LDB2
OLFML3
PDZRN3
PJA2
TMEM45A
GULP
IGFBP3
INTS5
SMC3
FYN
HNRPDL
MAP4K4
PPP3CA
SEMA3C
SPAG9Y
TPM2
ZNF45
BMP4
COLEC12
GLT8D2
MFAP4
RARRES2
TNFRSF14
ZFHX4
BACH1
CTBP2
DCTD
EFNB3
FzD7
H2AFV
HBD
NCOR1
PKD2
SCAMP1
SFRP4
SLC11A2
SPCS3
BACH2
CDC25B
CLIP3
FHOD3
FKBP14
HIST1H3C
IGFBP6
LRRC17
NDN
PCDH17
PTPRE
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Table 15 above lays out how GOIS were ranked based on the consistency of the significance in

their performance under increasingly stringent criteria.

Genes were eliminated or progressed based on; the number of probes available to represent
their identity, the reliability of these probes (as evaluated by KM plotter), if the trend of
expression difference observation noted matches all the probes for each gene from the KM

plotter cohort, and that of the data generated in Chapter 5.

This evaluation was performed in two rounds, firstly using the “find best cut-off” option,
meaning different probes may have been found to be of interest based on different survival
time cut-offs. This was considered and although not specified by the software can be deduced
based on the number of cases assigned to each group, which is shown. The second round was
repeated using the median cut-off only. This narrowed this list to a manageable number to take

forward to the next round of validation/verification.
Figure 35 displays the Kaplan Meier plots exported from KM plotter for each of the finalised

genes. These were produced at the final elimination round where the median cut-off was applied

to all.
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From the KM plotter validation all using a median cut off. Only high quality probes were considered. Strong
differential expression between long and short term survivors was seen probes for the following genes DCN p=
0.0022, p=0.0000045, p=0.00059, EDNRA p=0.0011, p=0.014, p=0.0084, Two for TNFAIP6 p=0.018 and 0.026,
WTAP p=0.033 and 0.0099, IGF p=0.014, NAV3 p=0.015 and PPFIBP1 p=0.00023

Figure 35 above visualises the significance of the difference in survival time of patients

categorised by the expression of the GOIs in their tumours.

6.2.3.1. Cautions and Caveats Considered when Interpreting KM Plotter Data

KM plotter is a powerful tool however has limited functionality and its calculations are closed,
that is, researchers input a question based on limited selection variable parameter selection and
a statistical output is given. The rigidity of the analysis meant that several cautions and caveats

were considered alongside the data generated from KM plotter.

An important point to consider was if the microarray data of the multiple cohorts accessed by
KM plotter was truly representative of the target population. Here, a broad perspective was
taken with regards to sample selection. This means the samples used are not as tightly controlled
as in chapter 5, where a thorough search of available data sets on Array express was performed
and the two data set with the most comparable data patients selected. All available samples were
included in this analysis, this is not ideal as different cancer stages, grades, histologies and
treatment pathways are inadvertently/involuntarily included. The effect of this was limited by
the decision to measure the output as progression free survival and not overall survival as this
would have exacerbated the effect of effective/successful treatment pathways. This is primarily
due to the lack of ability to manipulate and select within the separate samples sets. Certainly,
the next step to fully validate these findings would be to download and explore all the data sets
that are included in KM plotter however the data sets are sourced from various repositories, not
all are freely available, and the scale of this is beyond the remit of this project. A specific
example of the scale of the task is the KM plotter has the option to search each sample cohort
separately, however, each gene code (of which there are often multiple aliases) must be
manually entered and searched separately. This is very time consuming and may be a more
worthwhile exercise in an investigation with a different, more specific, hypothesis for example
an investigation of a cell-signalling pathway exploring how a gene is orchestrating a response.
A limited number of genes could be manually tested in each selected data cohort ant the

concordance of their performance observed.

161



This analysis is bias towards the genes represented by multiple gene probes within the arrays.
For the current purpose of selecting a gene for protein validation, the simplest standard of
multiple probes yielding the same trend was used to best indicate up or down-regulation of the
gene. Future experiments could bring insight into genes only represented by one gene probe, or
for genes with probes yielding highly significant yet conflicting trends, it is possible that these
represent mutations or single nucleotide polymorphisms, however, verification of the
suggestion of mutation is outside the remit of this project. Genes represented by one gene probe
may be highly biologically meaningful however did not have the potential to perform well in
the high stringency analysis. This shows how one probe is not best to represent the gene and
would need to be addressed by a different array design, or, next generation sequencing (section

2.2.1.2).

This verification could be considered subtly bias as GEO26712 was not able to be removed
from the sample set, however, although exactly how many overlapping cases is unknown and
not able to be found out, the potential problematic subset can only account for a small portion
of the total number n=1171. Evidence also strongly indicates that when the filters to stage were
applied the GEO26712 samples were removed. Curiously, this raises concern as to why the
curators of the database interpreted the data differently, as this information is clearly stated in
the publication this data set was generated from (Bonome ef al., 2008). This may suggest the
database curators had access to more sample information than what was available to this study,
or interpreted the given information in a different way. An unexpected benefit of discovering
this was that it makes a cohort of n=808 that does not include GEO26712, a selection process
the web tool was not able to do deliberately. From this observation and testing, MAP4K4 was
the only gene with multiple probes that strongly separated short and long term survivors when
the median cut off was applied. This could suggest that MAP4K4 is an indicator of poor overall
survival in this particular sample subset: stage 3 and 4 serous ovarian cancers treated with
platins. If more time was available repeating this on all the iterations of sample subsets may
add to building a profile of its relevance to each category available i.e. gene stage, grade or

treatment pathway.

Five categories of group cut off are available. The web tool does not indicate which samples
are allocated to each category when each cut of is applied. An “auto select best cut off”” option

is available and was utilised here, however it is possible that the best performing place, or most
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appropriate place to divide the cohort is in between one of these 5. A desirable future feature

for the web tool may include more iterations of cut off values, or even a sliding scale.

It is also worth noting that at least one of the data sets available in KM plotter cohorts met the
stringent criteria and were considered for the meta-analysis in chapter 5, however, rejected on
the basis of lack of availability of sample information. The major shortcoming in using KM
plotter to verify the findings of chapter 5 is that no considerations and adjustments to sample

data are traceable/visible.

Nonetheless, KM plotter provided a platform to perform a powerful analysis to begin the
verification of observations generated in the meta-analysis of Chapter 5. Data has been
compiled to evaluate and refine the list of GOIs to a manageable number for the next available

method of verification.

6.2.3.2. Indications for Further Research

Encouragingly, the finalised genes include those whose expression are already reported to
associate with ovarian cancer survival, such as /GF?2 (Sayer et al., 2005, Kanety ef al., 1996,
Lee et al., 2005) NAV3 and TNFAIP6. Strong association of the expression of NAV3 and
TNFAIP6 and survival time supports findings of Yang et al., (2013) who in a systems level
analysis found these genes amongst 13 others to be prognostically significant in the context

pathways involved in multicellular organisational development.

From this data mining EDNRA and DCN gathered the strongest evidence to take forward for
further validation; although their probes did not have the highest significance values, they were
both represented by multiple probes graded as high quality, the measured expression of all of
these show a consistent and strong difference for all to separate long and short term survivors.
The next best performing GOIs; TNFAIP6; WTAP; IGF2; NAV3; PPFIBP1 were represented by

fewer (two or one) probes.

6.3. Translational Validation Strategy using Immunohistochemistry

Rationalisation for selection of one GOI for Immunohistochemical validation.
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The interest list was reduced from 56 using a larger cohort of gene array data (Chapter 6.2.).
The members of the short list could vary depending on the choices of stringencies applied used
however put succinctly, /IGF2, WTAP, TNFAIP6, NAV3, DCN, PPFIBPI and EDNRA were of
interest as their expression was verified to correlate with survival time from ovarian cancer in
an larger, independent sample. Progressing from these genomic findings, evidence of translated

protein in ovarian tissue were considered.

Two tissue microarrays of ovarian cancer were available to this project. One sourced from a
clinical collaborator, an additional TMA was also sourced from Biomax. The former had
survival data that would make comparable analysis of protein expression to the analysis of gene
microarray data in chapter 5, the latter was the largest commercially available TMA containing
ovarian cancer and accompanying information about cancer stage and grade, however lacked
patient survival data. The clinical TMA would provide a better validation strategy however

delays were encountered using this TMA inhibiting its use in this project.

Although the visualisation of protein expression matching all finalised genes of interest would
provide an informative, comprehensive/ holistic validation of the finding so far and insight for

further work. It was unfortunately only feasible to investigate one marker further at first.

A report was compiled for each of the seven finalised GOI. Various data sources were mined
for more information namely GeneCards (GeneCards 2013) and The Human Protein Atlas
(Pontén et al., 2008, Uhlen et al.,, 2010, Human Protein Atlas., 2014). GeneCards (2013) was
particularly useful for this purpose, its comprehensive compilation of all aliases decreased the
chance of overlooking important information related to each gene due to incomplete
nomenclature information. Additionally the summarised representation of numerous other
databases allowed insight into associated genes and proteins, genetics, domains, function,
cellular location, ontology, known pathways, pharmacology of associated drugs, othologs,
paralogs, variants, associated disorders and publications. A thorough review of all of these was
outside the remit of this project and again many may have been overlooked entirely if it were
not for the continual growth of this resource. The holistic view of information allowed
hypothesising and insight of the genes of interest in a wider setting than the ovary or cancer

tissue.
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Table 16 below, lists each of the finalised seven GOI pseudonyms and briefly outlines how
different nomenclature can hinder a thorough literature search and how information could be
overlooked if it were in not for attempts to catalogue and centralise information. There are at
least 11 aliases for each of the seven genes of interest, the number of search terms increases

from 7 to over 77.

Table 16. Aliases of the Finalised Seven Genes of Interest. (GeneCards 2015)

Gene Code Full Name Aliases

Decorin Proteoglycan, Bone Proteoglycan Il , SLRR1B, PG-S2 , CSCD,
DCN Decorin PG40, Dermatan Sulphate Proteoglycans Il, Small Leucine-Rich Protein 1B,
Proteoglycan Core Protein, DSPG2, PGII, PGS2.

Wilms Tumour 1 Associated Protein, Wilms Tumour 1-Associating Protein,
Female-Lethal(2)D Homolog, WT1-Associated Protein, HFL(2)D, Putative
Pre-MRNA Splicing Regulator Female-Lethal(2D, Wilms Tumour 1-
Associating Protein, Pre-MRNA-Splicing Regulator WTAP, PNAS-132,
KIAA0105, MUM2.

Insulin-Like Growth Factor, T3M-11-Derived Growth Factor, IGF-II, Insulin-
IGE2 Insulin-like Like Growth Factor 2 (Somatomedin A), Chromosome 11 Open Reading
growth factor 2 Frame 43, Insulin-Like Growth Factor Type 2, Insulin-Like Growth Factor II,
Somatomedin A, Somatomedin-A, Cl1lorf43, PP9974.

Wilms tumour 1

WTAP associated protein

Tumour Necrosis Factor, Alpha-Induced Protein 6, TNF-Stimulated Gene 6
Tumour Necrosis  Protein , Hyaluronate-Binding Protein, TNF Alpha-Induced Protein 6, TSG-6,
TNFAIP6 Factor, Alpha- TSG6, Tumor Necrosis Factor Alpha-Inducible Protein 6, Tumour Necrosis
Induced Protein 6  Factor-Stimulated Gene-6 Protein, Tumour Necrosis Factor-Inducible Gene 6
Protein, Tumour Necrosis Factor Alpha-Induces Protein 6.

Neuron Navioator Neuron Navigator, POMFIL1, Pore Membrane And/Or Filament Interacting
3 9 Like Protein, Unc-53 Homolog, STEERIN3 , KIAA0938 , Unc53H3, Pore
Membrane And/Or Filament-Interacting-Like Protein 1, Steerin 3, Steerin-3.

NAV3

PTPRF Interacting Protein, Binding Protein 1 (Liprin Beta 1), Protein
PTPREF interacting Tyrosine Phosphatase Receptor Type F Polypeptide-Interacting Protein-
PPEIBL protein, binding Binding Protein 1, PTPRF-Interacting Protein-Binding Protein 1, HSGT2 ,
protein 1 (liprin Protein-Tyrosine Phosphatase Receptor-Type F Polypeptide-Interacting
beta 1) Protein-Binding Protein 1, Liprin Related Protein-1, Liprin-Beta 1, Liprin-
Beta-1, KIAA1230, HSgt2p, SGT2, L2,

Endothelin Receptor Type A, HET-AR, ETA-R, ET-A, ETRA, ETA ,
Endothelin-1 Specific Receptor, Endothelin Receptor Subtype A, G Protein-
Coupled Receptor, Endothelin-1 Receptor, Endothelin A Receptor, ETAR,

Endothelin

ESl receptor type A

Insulin growth factor 2 (IGF2) is a growth factor from the insulin family, has already been
reported in colon lung and breast cancer (Sayer ef al., 2005, Kanety., ef al., 1996). Higher gene

expression of IGF2 has already been shown to be a poor predictor of survival in ovarian cancer
(Sayer et al., 2005).
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Sayer et al., (2005) lists four possible mechanisms which lead to higher levels being seen in
short term survivors of ovarian cancer. These are; alteration of downstream binding proteins,
loss of transitional suppression or increased transcriptional activation and loss of imprinting.
IGF2’s synergistic interactions with endothelin’s and the endothelin axis which themselves
have been characterised in the growth and neovascularisation of a number of cancers namely

ovarian (Nelson et al., 2003).

IGF2 overexpression has been shown in relation to the cancer progression (Sayer et al., 2005),
thus it is less likely to be a good biomarker of the early stage disease and current investigations
are underway investigating its potential to guide treatment by predicting poor responders who
develop a resistance to platinum therapy. Evidence from cell line studies have shown IGF2 as

a possible therapeutic target (Sayer et al., 2005).

Endothelin receptor type A (EDNRA) is the primary receptor for endothelin-1. Activation of
EDNRA initiates G protein coupled receptor (GPCR) mediated activation of
phosophatidylinositol-calcium second messenger system. In animal studies it has been shown
to be involved in, but not dependent on ovulation via its activation of Endothelin-2 (EDN2)
(Bridges ef al., 2010). Endothelin 1 is reported to be involved in long lasting vasoconstriction,
polymorphisms in EDNRA are believed to be linked to migraines and scarlet fever (GeneCards
2014). More relevantly, expression of EDNRA is reported to be associated with poor survival
from ovarian cancer, cell line studies have directly implicated activation of EDNRA with EMT
in ovarian cancer cell lines. Rosano et al., (2011) detail endothilin-1 activation of EDNRA as
having anti-apoptotic results via downstream activation of the PI3K Akt pathway. In an earlier
study the group report the receptor agonist endothelin-1 to be present in high concentrations in
ascites (Rosano, et al., 2003). Both in vivo and in vitro inhibition of EDNRA increased
sensitivity to platinum chemotherapies (Rosano et al., 2011) making it a potential drug target.
Antagonists of EDNRA have been shown in vitro and in vivo to increase tumour cell apoptosis
(Rosano, et al., 2003 and 2006) and inhibits mutagenic effect (Rosano, et al., 2003), however,

has not emerged from clinical trial.

Decorin. There are multiple known splice variant transcripts for the DCN gene. The protein
coded for is a small peptidoglycan found intracellularly and as part of the extracellular matrix.
Decorin is involved in normal cellular matrix assembly binding to collagen fibrils. Decorin has

been shown to be expressed in healthy human ovarian stroma and granulosa cells around
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ovulation and in increased amounts in the corpus luteum at the time of mensuration and the
levels detected were dependent on hormone signalling (Adam et al., 2012) Despite being listed
as having growth suppressor activity on tumour cell lines (GenCards 2014, Nash et al., 1999)
a recent review has compiled evidence from several sources/studies implying that Decorin is
actually a tumour promoting factor itself, or by interaction with members of pathways involved
in cell survival, cell growth, metastasis, and neovascularisation/angiogenesis (Bi and Yang
2013). This juxtaposition/conflict of evidence may be explained by Bi and Yang (2013) being
a collaboration of a wider body of information, whereas Nash et al., (1999) evidence is based
solely on two cell lines. In another cell line study, Sherman-Baust et al., (2003) isolated cisplatin
resistant ovarian cancer cell lines and explored collagen IVs role in chemoresistance, decorin
alongside other genes were found to be contributing factors. More recently in a functional
genomic study investigating myofibroblast from gastric cancer, increased amounts of DCN,
alongside other proteins, were found to be consequent after stimulation by growth factors, one
of which was IFG2, and that loss of ability to regulate secretion of these were associated with
advanced cancer (Waugh et al., 2015). Similarly, the direct interaction of Decorin as a ligand to
IGF2 has been demonstrated (Morcavallo et al, 2014). Most relevantly, in a quantitative
proteomic analysis of ovarian cancer specimens sourced from primary debulking surgery, listed
decorin, alongside 44 other proteins, to have significantly higher expression in the cases that
would go on to develop chemo resistance (Pan et al., 2009) this evidence is most
complementary to the findings above where increased expression of gene DCN significantly
associate with a poorer prognosis from ovarian cancer. This evidence could also be used to
support the suggestion that the shorter survival observed in chapter 5 and 6.2 is indeed due to
chemo resistance. Further to this some of the additional co-expressing proteins of interest listed
by Pan ef al., (2009) were found to be significant in the meta-analysis of chapter 5 however
eliminated in a round of increasing statistical stringency when refining to the genes with the

strongest association with survival, namely IGFBP2.

NAV3. The protein coded for by the Neuron Navigator 3 (NAV3) gene is expressed
pronominally in cells of the nervous system. The NAV proteins as a group are involved in
cytoskeletal dynamics (Carlsson et al., 2012) the C.elegans equivalent of human NAV3 is
responsible for axon guidance during neuronal growth. Several point mutations in the NAV3
gene have been identified which are missense and lead to increased or decreased activity.
Maliniemi et al., (2011) demonstrate its silencing in keratinocytes events in upregulation of up

to 20 genes involved in inflammation cell signalling and associates mutations in NAV3 to Basal
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and Squamous cell carcinomas. Deletion of the NAV3 gene correlated with increased tumour
metastasis (Carlsson et al., 2012). Bleeker et al, (2009) narrate NAV3 amongst a wider list of
genes found to have mutated variants in melanoma and pancreatic carcinoma but not
glioblastoma. Carlsson et al., (2012) demonstrate two mechanisms decreased NAV3 expression
could promote colorectal tumour growth; firstly, colorectal cancer cells became less susceptible
to growth control mechanisms and secondly became more sensitive to cell growth signals from
inflammatory signals. Though this is at odds with the trend observed in the current data (derived
from ovarian cancers) which shows increased expression of normal NAV3 associating with poor
survival, is likely attributed to, thus not worth commenting on, the different tumour origins

colorectal and ovarian.

PTPREF Interacting Protein, Binding Protein 1 (Liprin Beta 1) (PPFIBPI) gene codes for a
protein which is a member of the LAR protein-tyrosine phosphatase-interacting protein (liprin)
family. This family of proteins are known to interact with transmembrane protein tyrosine
phosphatases who are involved in mammary gland development and axon guidance. PPFIBP1
has been shown to bind to and inhibit a calcium binding protein implicated in tumour
invasiveness and metastasis (GeneCards 2014, NCBI 2015) and binds 14-3-3 a known onco-
protein (Benzinger et al., 2005). Most relevantly PPFIBP1 was listed amongst over 100 genes
to be significantly differentially expressed between 19 serous papillary ovarian tumours and 15
controls as measured by microarray (Bignottii et al.,, 2006). However this particular link was

not followed up in any subsequent publication.

Tumour Necrosis Factor, Alpha-Induced Protein 6 (TNFAIP6) gene codes for a protein of
the same name, a member of the hyalouron-binding protein family. This domain is involved in
cell migration and extracellular matrix stability. TNFAIP6 expression is induced by tumour
necrosis factor alpha and interlukin-1, pro-inflammatory cytokines, and makes its inflammatory
effects via its interaction with inter-alpha-inhibitor (GeneCards 2014, NCBI 2015). Despite its
name it is involved in the normal function of the ovary in the expansion and fertility of the
oocyte (Irving-Rodgers and Rogers 2006). TNFAIP6, alongside NAV 3 and 13 other genes, was
included in Yang ef al. (2013) in a list of genes with high centrality gene expression network
analysis in a wide reaching study of glioblastoma, breast, kidney and ovarian cancer. Zhang et
al., (2011) finds a strong correlation between the expression of TNFAIP6 and YAP which was

demonstrated to confer the characteristics of chemo-resistance in ovarian cell lines although its
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association was not statistically significant on its own after correcting for multiple testing this

observation was still noteworthy.

Wilms tumour suppressor gene (W7TAP) codes for the protein Wilms tumour suppressor
associated protein expressed across the nucleoplasm, implication in transcription and post-
transcriptional regulation of other cellular genes via mRNA splicing regulator (GeneCards
2014). WTAP specifically interacts with Wilms Tumour suppressor gene (WTI1), Wilms
tumours are a rare paediatric condition in which nephroblastomas occur as a consequence gene
mutation causing abnormal development of the kidney or genitourinary system (Little ez al.,
2000). Jin et al., (2012) identify WTAP to be overexpressed in glioblastomas as well as
demonstrating via knockdown experimentation its regulatory role in cell migration and invasion.
WTAP has been included in a panel of genes representing stem cell characteristics in a study
aiming to isolate subpopulations of breast cancers (Christgen et al., 2007). Helleman et al.,
(2006) listed WTAP as of interest in a study investigating genes responsible for chemo-

resistance in ovarian cancer, however was not shortlisted it for further investigation.

For an ortho- and ontologic summary, each of the short listed GOIs were searched using the
KEGG web tool (see section 2.2.3) the results of which are summarised in Table 17. Of the 7
GOlIs three (DCN, EDNRA and IGF2) were included in at least one functional pathway.

Pathways relating to cancer were adapted and included below:

Table 17. KEGG Pathways found to be Associated with the Shortlisted Genes of Interest. Bold text
indicates any which include cancer and are adapted below. Genes are in alphabetical order.

KEGG Orology KEGG
Gene Code Code Pathway Code Participant Pathways
ko04350 TGF-beta signalling pathway
DN LY ko05205 Proteoglycans in cancer
ko04020 Calcium signalling pathway
ko04022 cGMP-PKG signalling pathway
ko04024 cAMP signalling pathway
EDNRA K04197 ko04080 Neuroactive ligand-receptor interaction
ko04270 Vascular smooth muscle contraction
ko04924 Renin secretion
ko05200 Pathways in cancer
IGF2 K13769 k005205 Proteoglycans in cancer
NAV3 89795 None found No KEGG pathways listed
PPFIB1 None found n/a
TNFAIP6 K19018 None found No KEGG pathways listed
WTAP None found n/a No KEGG othologs listed

169



Both DCN and IGF2 pathways were categorised as Proteoglycans in Cancer: DCNs pathway
code Ko005205 is subcategorised as Chondroitin sulphate/ Dernatab sulphate proteoglycan
(GSPG/DSPG) (Figure 36), IGF2 orthologue code ko05205 is subcategorised as of Heparan
sulphate proteoglycans (HSPGs) (Figure 36). EDNRA pathway code is ko05200 under the

category Pathways in Cancer.

The following figures have been adapted from the KEGG web tool (KEGG 2015), the
limitations of which have been mentioned above - that the reductionist view to construct such
diagrams from currently available data cannot yet accurately represent biology. Never the less,
putting the genes of interest into context of current knowledge known pathways holds some
insight: the colour coding of the pathway end points is that of the hallmarks of cancer diagram
from Hanahan and Weinberg (2011). Green referring to sustaining proliferative signalling,
brown; evasion of growth suppressors, black; activation invasion and metastasis, blue;
immortality, red; angiogenesis, grey; resisting cell death, purple; deregulating cellular
energetics, pink; avoiding immune destruction orange; tumour-promoting inflammation and

blue genome instability.
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Figure 36. Verified GOIs Location in the Proteoglycans in Cancer pathway.

Adapted from KEGG 2015, Genes of interest have been highlighted in red text. Hallmarks endpoints that are
relevant to cancer have been highlighted with white text and a background linking the characteristic to a
hallmark of cancer. In-between is known cellular processes as annotated by KEGG (2016). Refer to the key
above for detail:

The KEGG pathway figures depict the direct interactors with the GOIs as well as the consequent

downstream effects in the context of cancer pathways. The reader is reminded that any gene or
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protein or factor depicted in the diagram is not limited to the interactions seen. For focus, these

are KEGG pathways of cancer only.

Direct interaction of the GOIs: In the top left of Figure 36, Upon ligation, DCN (red text) is
seen to activate IGF-1, TLR2 and 4, RTK’s and Met, or to have an inhibitory effect on TGF-
B1. IGF2 (red text lower left of Figure 36) binds and activates IGF-1R or GPC3. As Figure 37
(below) is an adaptation of the KEGG Pathways in Cancer map; the tag EDNRA (red text) has
been added onto the map in the place of a g-generic protein coupled receptor (GPCR) label that
could be any or all of EDNRA, EDNRB, BDKRB2 or BDKRBI1. These are shown to be ligated
by Thrombin, Endothelin 1 or Angiotensin II but all effect by activation of GNAQ or GNA11

a common transducer of transmembrane signals

In the context of cancerous phenotypes: IGF2 signalling events to increased cell proliferation
and cell survival cell signal cascade involving direct interaction and activation with IGF-1R
which downstream signalling events in phosphorylation of ERK, a mitogen activated protein
kinase, which has multiple actions causing a cellular activation cascade as mentioned above

and documented in Hanahan and Weinburg (2011).

DCN is also shown to activate cell survival and proliferation via either indirect activation of
IGF-1R, PI3K then the mTOR signalling pathway, or by activation of EGFR, MAPKinases.
Confusingly activation of the same pathway also initiates apoptosis, evading apoptosis is a
hallmark of cancer. Finally DCN is seen to inhibit the VEGF angiogenesis signalling pathway,
both by activation RTK to inhibit the activation of B-cadherin which would stimulation
production of VEGFA, or by activation of THBS1 inhibiting MMP2 oro 9 then consequently
VEGFA. This mixture of tumorigenic and anti-tumour characteristics echoes the conflicting
findings of reported by Nash et al., (1999) and Bi and Yang (2013) when trying to understand

the role of DCN in ovarian cancer.

Figure 37 The GPCR denoted by EDNRA is seen to transduce an extracellular signal to
intracellular signal cascade ending with sustained angiogenesis and cell proliferation. The
cascade of activated proteins/ molecules triggered by EDNRA ligation diverges at several points
however converge along the Ras — Raf - MEK - ERK cell activation pathway where
phosphorylated ERK phosphorylates c-Jun, c-Fos, c-Myc or Etsl which in turn glycosylates
either VEGGF, MMPs or IL8 to stimulate angiogenesis, or, Cyclin D1 CDK4 to add to cell
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proliferation signals. RAS also directly activates RASSF1 mutations in which have been linked

to downstream mechanisms evading apoptosis

All three KEGG figures highlight the complexity of systems of gene, protein and small
molecule interactions they portray, and how being forced into a reductionist model for focus on
one or a few genes or molecules to represent a large system for biomarker discovery is

challenged 