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Abstract  

No experimental studies have been conducted on the impact of low EA on bone metabolism 

in relevant physically active populations. We evaluated the effects of low EA on bone 

turnover markers (BTMs) in a cohort of Caucasian, physically active eumenorrheic women 

(Study 1) and men (Study 2), and compared effects between sexes (sex comparison). These 

two studies were performed using a randomised, counterbalanced, crossover design. Eleven 

eumenorrheic women [peak aerobic capacity (VO2 peak): 47.9±5.5 ml·kg-1·min-1] and 

eleven men (VO2 peak: 54.2±5.3 ml·kg-1·min-1) completed two 5-day protocols; controlled 

(CON; 45 kcal·kgLBM-1·d-1) and restricted (RES; 15 kcal·kgLBM-1·d-1) EAs. Participants 

ran daily under supervision on a treadmill at 70% of their VO2 peak resulting in an exercise 

energy expenditure (EEE) of 15 kcal·kgLBM-1·d-1 and consumed diets providing 60 and 30 

kcal·kgLBM-1·d-1 (based on participants’ habitual dietary composition). The effects of short-

term (3 days) low EA induced by diet or exercise alone on BTMs in Caucasian, physically 

active eumenorrheic women (Study 3) and oral contraceptive (OCP) users were explored 

(Study 4), and compared effects between groups (comparison between eumenorrheic 

women and combined OCP users). Studies 3 and 4 were performed using a randomised, 

counterbalanced, crossover design. Ten eumenorrheic women (VO2 peak: 48.1 ±3.3 ml·kg-

1·min-1)  and 10 combined OCP users (VO2 peak: 47.9±5.5 ml·kg-1·min-1) completed three 

3-day protocols; controlled (CON; 45 kcal·kgLBM-1·d-1) and restricted through diet (D-RES; 

15 kcal·kgLBM-1·d-1) and restricted through exercise (E-RES; 15 kcal·kgLBM-1·d-1) EAs. In 

CON, D-RES and E-RES participants consumed diets providing 45, 15 and 45 kcal·kgLBM-

1·d-1 with standardised composition (50% carbohydrates, 20% protein and 30% fat) in all 

experimental conditions. In E-RES only, participants completed supervised laboratory 

exercise sessions at an exercise intensity of 70% of their VO2 peak that resulted in an EEE of 

30 kcal·kg LBM-1·d-1.  

Study 1: Short-term low EA at 15 kcal·kgLBM-1·d-1 decreased bone formation [Amino-

terminal propeptide of type 1 procollagen (P1NP) AUC; P<0.05] and increased bone 

resorption [Carboxyl-terminal cross-linked telopeptide of type I collagen (β-CTX) AUC; 

P<0.05] in physically active, eumenorrheic women. Significant reductions in energy 

regulatory hormones; leptin, insulin and triiodothyronine (T3), but no changes in 

reproductive hormones or markers of calcium metabolism were shown. Study 2: In men, 

low EA at 15 kcal·kgLBM-1·d-1 had no significant effects on bone formation or bone 

resorption. Insulin growth factor 1 (IGF-1) was significantly reduced (P<0.05), whereas 

regulatory hormones or markers of calcium metabolism were not affected. Sex comparison: 

No significant differences were shown between sexes, with the magnitude of the responses 
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in all markers to low EA being similar in men and women. Study 3: Short-term diet-induced 

low EA (15 kcal·kgLBM-1·d-1) resulted in a reduction in bone turnover (BT) ratio (P<0.05), 

despite no alterations in P1NP and β-CTX in eumenorrheic women. Exercise-induced low 

EA did not impact BTM responses. Between diet- and exercise-induced low EAs there were 

no differences in BTM responses. Both low EA were accompanied by reductions in IGF-1 

and leptin; T3 was reduced following diet-induced low EA only and insulin decreased in 

exercise-induced low EA only. Study 4: Neither P1NP nor β-CTX were affected by low EA 

in combined OCP users. These effects were not different depending on whether low EA was 

diet- or exercise-induced. IGF-1 was reduced in the exercise-induced low EA only, T3 

decreased following diet-induced low EA only and leptin decreased in response to both low 

EAs. The direct comparison between combined OCP users and eumeorrheic women 

revealed no differences in BTM responses to either diet- or exercise-induced low EA.  

These findings suggest that short-term low EA (achieved through a combination of dietary 

restriction and exercise) is critical for bone metabolism and health in physically active 

women, supporting the Female Athlete Triad and the RED-S models. Although our study in 

men does not support the RED-S models within the short timeframe of this study, our direct 

sex comparison suggests a similar relationship between low EA and bone metabolism in 

men EA relative to women. Low EA through diet or exercise does not affect bone 

metabolism, despite a reduction in regulatory hormones. Combined OCP use does not affect 

bone metabolism and health following short-term low EA. When compared to eumenorheic 

women, combined OCP users show similar BTM responses when exposed to the same 

dietary and exercise conditions.  
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Chapter 1. General Introduction 
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Bone is a complex, multifunctional tissue that undergoes continuous renewal. The cell 

populations that accomplish this process, termed bone remodelling, are the osteocytes 

osteoclasts and osteoblasts that together, are organised in transient bone structures, named 

basic multicellular units (BMUs). Bone remodelling and structure (i.e., mass, architecture- 

please also see section 2.5.) are critically dependent on processing of mechanical input and 

physiological cues from the systemic environment, and the conversion of these signals into 

the cellular events of bone remodelling. Remodelling is activated when osteoclasts are 

recruited to bone surfaces where they break down bone (bone resorption). Osteoblasts are 

sequentially attracted to the resorption sites where they refill empty cavities with bone that 

undergoes mineralisation (bone formation). The cellular link between bone formation and 

resorption is coupling, which maintains bone structure and strength in healthy bone (Proff & 

Romer, 2009; Crockett et al., 2011). Conversely, distortion of the balance between bone 

formation and resorption, favouring resorption, results in the development of micro-damage, 

which can eventually contribute to bone injury and disease such as stress fracture injury 

(Warden et al., 2006; 2014) and osteoporosis (Burghardt et al., 2010; Feng & MacDonald, 

2011). Mechanical loading is a strong regulator of bone remodelling, which optimises bone 

mass, architecture and strength at sites imposed to stress (Wolff, 1892; Frost, 1987; Bonnet 

& Ferrari, 2010). In parallel, bone has non-mechanical functions; it is regulated by and 

regulates energy metabolism and distribution by communicating its energetic needs 

(Lombardi et al., 2015a; Karsenty and Ferron, 2012) and it has a key role in mineral 

homeostasis (Kular et al., 2012). Given these multiple functions of bone, it is not surprising 

that depending on regulatory inputs, optimisation or maintenance of bone structure through 

bone remodelling could presumably be compromised in favour of others (Turner 2001a; 

Iwaniec & Turner, 2016).  

In humans, exercise (especially weight bearing activities) is mainly anabolic for bone, with 

athletes having higher bone mineral density (BMD), favourable adaptations to bone 

architecture particularly at weight bearing sites and greater bone strength than their 

sedentary counterparts (Scofield & Hecht, 2012; Tenforde & Fredericson, 2011; Ackerman 

et al., 2011; 2012a; Greene et al., 2012; Schipilow et al., 2013). However, when exercise is 

accompanied by inadequate dietary energy intake (DEI), this may compromise bone 

metabolism and health (Ihle & Loucks, 2004; Nattiv et al., 2007; De Souza et al., 2014a). 

Energy availability (EA), defined as DEI minus exercise energy expenditure (EEE) adjusted 

for lean body mass (LBM) or fat-free mass (FFM), represents the amount of energy that can 

be used for physiological functions after considering the energetic demands of exercise 

(Loucks & Thuma, 2003; Ihle & Loucks, 2004). Reduced EA results in physiological 

adaptations to spare energy, with priority given to the functions that are essential for 
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survival, including cellular maintenance, thermoregulation and sensory function (Wade et 

al., 1996; Wade & Jones, 2004), whereas less essential functions such as growth, 

reproductive function and bone health can be compromised (Loucks, 2007; 2013). The 

health consequences arising from energy deficiency are well identified in physically active 

females and are summarised as the Female Athlete Triad. This syndrome describes the 

complex interplay between low EA, menstrual dysfunction, and poor bone health (Nattiv et 

al., 2007; De Souza et al., 2014a). Female athletes with low EA and/or menstrual 

dysfunction are likely to develop low BMD and alterations in microarchitecture (Nattiv et 

al., 2007 Ackerman et al., 2011; 2012a), which may increase the risk of fracture in the short-

term (i.e., stress fracture injury) (Warden et al., 2014) and in the long-term (i.e., osteoporotic 

fracture) (Loucks, 2007). Notably, low EA has a direct impact on bone metabolism and 

health, but also exerts indirect effects through the suppression of menstrual function (Nattiv 

et al., 2007; De Souza et al., 2005; 2008; Mallinson & De Souza, 2014).  

The concept of Relative Energy Deficiency in Sports (RED-S) was introduced by the 

International Olympic Committee and expanded the definition of the Female Athlete Triad 

adding male athletes to the susceptible populations that may attain low EA and experience 

negative health (i.e., bone and reproductive health) and performance consequences 

(Mountjoy et al., 2014; 2015). This change in terminology has been controversial in part due 

to the paucity of studies in men (De Souza et al., 2014b). Thus, further research into the 

effects of low EA on bone metabolism and health in men are necessary to provide an 

evidence base to determine if physically active men are affected to a similar extent by low 

EA, as their female counterparts.  

Another overlooked sub-population in the Female Athlete Triad is physically active women 

using oral contraceptive pills (OCPs). Current evidence suggests that OCP use is highly 

prevalent among physically active females and there are at least an equal number of OCP 

users and non-users (Bennell et al., 1999a; Burrows & Peters, 2007). Combined OCP users 

present a different hormonal milieu than their eumenorrheic counterparts (Wiegratz et al., 

2003; Burrows & Peters, 2007; Hansen et al., 2009; Blackmore et al., 2011), primarily due 

to downregulation of endogenous oestrogen and progesterone as a result of the exogenous 

administration of these hormones (Burrows & Peters, 2007). The bone health of physically 

active OCP users is an issue of concern due to evidence suggesting that i) low oestrogen 

levels achieved by OCP may compromise peak bone mass in adolescent and young adult 

women (Polatti et al., 1995; Cibula et al., 2012) and ii) a combination of exercise and 

inadequate sex hormone levels may result in bone loss (Burr et al., 2000; Weaver et al., 
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2001; Hartard et al., 1997). An important unanswered question that warrants investigation is 

how bone metabolism and structure respond to low EA in OCP users.  

Stress fracture injuries are clinical manifestations of impaired bone health among physically 

active populations, including athletes and military recruits (Bennell et al., 1996a; Beck et al., 

2000; Wentz et al., 2011; Warden et al., 2006; 2014). The exact pathophysiology of stress 

fracture injuries remains unknown and current models are theoretical, however, there is 

increasing agreement that stress fracture injuries are likely to result from disturbances in the 

homeostasis between micro-damage development and its repair. Factors associated with low 

EA have been implicated in the pathophysiology of stress fractures and conversely, stress 

fractures have been identified as a component of the Female Athlete Triad despite their 

exclusion in the diagram of the Female Athlete Triad (De Souza et al., 2014b). Low EA has 

been associated with low BMD (Nattiv et al., 2007) and alterations in micro-architectural 

properties of the bone (Ackerman et al., 2011; 2012a) that in turn, may modify the resistance 

of an applied load to the bone (Warden et al., 2014). Additionally, low EA may reduce the 

rate that microdamages are repaired (Ihle & Loucks, 2004; De Souza et al., 2008), leading to 

their accumulation and also affecting the ability of bone to resist loading.  

Although there is evidence about long-term effects of EA on bone health, little is known 

about the sequence of events through which EA leads to these bone outcomes. Bone 

metabolic activity can be assessed indirectly by determining the levels of bone turnover 

markers (BTMs) to provide useful information in short-term dietary and exercise 

interventions (Grinspoon et al., 1995; Zanker & Swaine, 2000; Ihle & Loucks, 2004) before 

the detection of established changes in bone structure (Villareal et al., 2006; 2016).  Ihle and 

Loucks (2004) demonstrated a dose-response relationship between EA (both diet and 

exercise manipulations) and BTMs in sedentary women and identified a threshold EA of 30 

kcal·kg LBM-1·d-1, below which there is a negative impact on BTMs. However, these data 

come from sedentary women, which may not be indicative of BTM responses to low EA in 

physically active women. As such, it is important to investigate the effects of low EA in this 

population. Understanding the mechanisms linking bone and low EA is of importance and 

has recently progressed. Oestrogen-independent mechanisms mediate the direct effects of 

EA on bone and include short-term endocrine responses to feeding/fasting (Walsh & 

Henriksen, 2010), and longer-term endocrine changes to energy stores in order to save 

energy for vital functions and maintain life (Miller, 2011; Warren, 2011; Misra & Klibanski, 

2011; 2014). Oestrogen-dependent mechanisms communicate the indirect effects of EA on 

bone though menstrual dysfunction. Amenorrheic athletes present with oestrogen deficiency 

and are at higher risk for low BMD (Zanker & Swaine, 1998b; Christo et al., 2008) and 
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stress fracture injuries compared with eumenorrheic athletes (Nattiv et al., 2013; Bennell et 

al., 1999b). These issues require further investigation in order to reduce possible adverse 

bone effects and promote strategies that favour beneficial endocrine responses. 

Understanding the endocrine factors that regulate bone metabolism in response to low EA 

and the differences in endocrine responses, when low EA is diet- or exercise-induced would 

help minimise adverse bone outcomes.  

Our understanding of the effects of short-term low EA on bone metabolism in men is 

limited. Only Zanker & Swaine (2000) have examined the effects of exercise and/or reduced 

food intake on bone metabolism in trained men, showing a reduction in bone formation 

without an effect on bone resorption. However, energy restriction was determined using 

energy balance rather than EA (Zanker & Swaine, 2000) defined as total energy expenditure 

(TEE) minus DEI. As such, the determination of energy balance requires the measurement 

of TEE which comprises resting metabolic rate (RMR), thermic effect of food and exercise 

energy expenditure (EEE)], whereas only the measurement of EEE is essential for 

determining EA. A number of characteristics, such as body composition, regulatory and 

reproductive hormones differ between men and women (De Souza et al., 2014b; Williams et 

al.,2015; Roberts et al., 2016) and may contribute to differences in BTM responses (Ihle & 

Loucks, 2004; Zanker & Swaine, 2000; Shapse & Sukumar, 2012).  Therefore, the effects of 

EA on bone metabolism in men await investigation and a comparison of these responses 

with those in women would be of particular interest for clarifying the interaction between 

EA and bone health proposed in the Female Athlete Triad (Nattiv et al., 2007; De Souza et 

al., 2014a) and the RED-S models (Mountjoy et al., 2014; 2015). Similarly, it is unknown if 

the responses of bone metabolism to low EA in eumenorrheic women may be similar or 

different from those in OCP users. Thus, the investigation of the effects of low EA in these 

groups will inform our understanding of OCP use among physically active women.  

Another fundamental gap in the existing knowledge base in this area is whether EA 

restricted by diet or exercise alone has the same or different effects on BTM responses. 

Current studies have examined dietary restrictions (Grinspoon et al., 1995) or diet and 

exercise manipulations (Zanker & Swaine, 2000; Ihle & Loucks, 2004) on BTMs, but no 

study yet has explored the same level of reduced EA by diet or exercise independently, a 

critical question ahead of determining prevention and treatment strategies.  

The effects of low EA on bone metabolism warrant investigation. There is some evidence 

for unfavourable effects of low EA in sedentary women following three distinct levels of 

reduced EA (10, 20 and 30 kcal·kg LBM-1·d-1) on BTMs, but the effects of intermediate 
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levels of energy restriction i.e., 20-30 or 10-20 kcal·kg LBM-1·d-1 have not yet been 

explored.  Understanding the effects of EA between 10 and 20 kcal·kg LBM-1·d-1 on bone 

health is particularly important, since EA of approximately 16 kcal·kg LBM-1·d-1 occur in 

some amenorrheic athletes (Thong et al., 2000). The influence of short-term reduced EA on 

bone metabolism in physically active populations and differences in bone metabolism 

between men and women or between eumenorrheic women and women using OCPs, have 

not been previously described. Low EA can develop from inadequate DEI, high EEE or a 

combination of the two, but it remains unexplored if diet- or exercise-induced low EA has 

the same or different effects on BTMs.  

The overarching aim of the programme of work was to investigate the effects of short-term 

EA on bone metabolism and health. Some of the fundamental gaps in the literature 

highlighted above were addressed: 

1. Studies 1 and 2 explored the effects of short-term low EA achieved by diet and exercise 

on BTMs in physically active eumeorrheic women (reported in Chapter 4) and men 

(reported in Chapter 5). 

2. The data collected in Studies 1 and 2 were combined to directly compare the BTM 

responses to short-term low EA between physically active women and men (reported in 

Chapter 6). 

3. Studies 3 and 4 investigated the effects of short-term low EA on BTMs dependent on 

whether EA is diet- or exercise-induced in physically active, eumenorrheic women 

(reported in Chapter 7) and women using combined OCPs (reported in Chapter 8).  

4. The data collected in Studies 3 and 4 were combined to directly compare the BTM 

responses to short-term low EA between physically active, eumeorrheic women and 

combined OCP users (reported in Chapter 8). 

5. Studies 1-4 provided information on the changes in regulatory and reproductive 

hormones and markers of calcium metabolism underpinning the effects of low EA on 

BTMs (reported in Chapters 4-8).  
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Chapter 2. Literature Review 
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2.1. Introduction of the literature review 

Chapter 2. provides a review of the existing literature on bone health and EA. The first part 

of this review focuses on bone biology and physiology to provide the necessary background 

for understanding bone health. The main characteristics, advantages and limitations of 

current methods to assess bone health are reviewed; with emphasis placed upon BTMs that 

were used to assess bone health in the current programme. Several factors underpin bone 

health such as genetics, sex hormones, nutritional factors and mechanical loading. In the 

context of this PhD, there will be only a light touch on genetics, since the focus will be 

placed upon sex hormones, nutrition and mechanical loading due to their relevance with the 

components and/or the study populations of the interventions in this programme.  

Osteoporosis and stress fracture injury will be discussed to provide the basis of long- and 

short-term clinical manifestations of poor bone health and provide some context for the 

potential implications of this work.  

The second part of the literature review will provide a review of the concept of EA in 

exercise physiology and the role of low EA as the cornerstone component of the Female 

Athlete Triad (Nattiv et al., 2007; De Souza et al., 2014a) and the RED-S models (Mountjoy 

et al., 2014; 2015). Despite the rapidly growing body of literature on low EA, our 

understanding of the potential effects of EA on bone metabolism and health remains 

incomplete. Current evidence of the effects of low EA on bone metabolism and health from 

animal models; from research in the area of the Female Athlete Triad and the RED-S models 

and from interventional studies in humans will be reviewed and the knowledge gaps will be 

identified. Regulatory hormones with well-established or emerging bone actions may change 

in response to energy deficiency; thus, the last part of this review will review these changes, 

while highlighting the need for future research to assess regulatory hormone responses to 

low EA in relation to bone-related outcomes in relevant populations.  

2.2. Bone structure, function and development 

Bone is a dynamic multifunctional tissue. The axial and appendicular skeleton facilitate a 

number of mechanical functions, including provision of attachment sites for ligaments, 

tendons and muscles to allow locomotion; protection of internal organs (i.e., ribs, vertebrae 

and skull), application of mechanical forces (i.e., fingers) and resistance to mechanical 

stresses (i.e., bones at weight bearing sites) (Morgan et al., 2013). Bone can be separated 

into cortical and trabecular compartments. Cortical bone contributes approximately 80% of 

adult skeleton and is primarily found on the diaphysis (long shaft) of long bones and bone 

surfaces. Cortical bone lies between surfaces or bone envelopes; the outer envelope, the 
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periosteum faces the soft tissue, whereas the inner envelope, the endosteum, wraps the inner 

trabeculae. Owning to its high level of calcification, cortical bone is dense and strong, thus, 

its main role is structure and protection. Trabecular bone is primarily found in the axial 

skeleton and the epiphyses (ends) of long bones. It is light due to its porous build-up to 

allow energy absorption and has a greater metabolic activity compared to the cortical bone 

(Morgan et al., 2013). The basic characteristics of bone structure are presented in Figure 2.1.  

 

 

 

 

 

 

Figure 2.1. Basic structure of bone (adapted from St-Arnaud, 2008). 

In addition to its mechanical functions, bone is an important endocrine organ that is 

functionally linked to other metabolically active tissues via endocrine factors. Bone is 

involved in the homeostasis of calcium and phosphorus, which is controlled by the 

calciotropic hormones (Burr, 2002; Karsenty and Ferron, 2012). Bone also plays an integral 

role in energy homeostasis and reproduction (Wee et al., 2016; Lombardi et al., 2015a; 

Karsenty & Ferron, 2012). Bone regulates energy metabolism and distribution by 

communicating its energetic needs through the production of molecules [e.g., osteocalcin 

(OC)); which, in turn, act on other tissues and organs such as muscle, adipose tissue, liver, 

pancreas and gonads (Lombardi et al., 2015a; Karsenty and Ferron, 2012). These organs 

secrete several regulatory hormones (e.g., insulin, leptin) that are involved in the regulation 

of bone homeostasis in response to EA (Lombardi et al., 2015a; Karsenty and Ferron, 2012). 

Bone is in a dynamic state that enables its modelling during bone development and growth, 

and remodelling during adult life (Morgan et al., 2013). Bone remodelling allows for 

adaptations to its surrounding environment, replacement of damaged tissue and, as 

mentioned earlier, the tight control of mineral concentrations in the blood (Burr, 2002; Proff 
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& Romer, 2009). In the remodelling process, the old or damaged bone is removed, and 

sequentially replaced with new bone of analogous volume (Martin & Seeman, 2008; Proff & 

Romer, 2009). Alterations in bone modelling and predominantly remodelling determine the 

structural and material properties of the bone throughout the lifespan (Bouxsein, 2005; 

Seeman & Delmas, 2006). The attainment of bone mass occurs mostly during childhood and 

adolescence, when bone increases both in length and width (MacDonald et al., 2013; Khosla 

& Pacifici, 2013). Linear bone growth refers to the ossification of growth plates until they 

fuse and radial bone growth is characterised by periosteal apposition, and persists even after 

puberty (MacDonald et al., 2013; Khosla & Pacifici, 2013). Greater periosteal apposition in 

boys than in girls, together with the longer period of bone acquisition in boys (about 1.5 

years), account mostly for the sexual dimorphism of adult bone (Khosla & Pacifici, 2013; 

McDonald et al., 2013; Bailey et al., 1999). Notably, there is no agreement about the exact 

age of peak bone mass acquisition, which ranges from the second to the fourth decade 

(Baxter-Jones et al., 2011; Recker et al., 1992; Berger et al., 2010). Some of these 

discrepancies may be explained by different study designs (cross-sectional, longitudinal) and 

inadequate control of biological age or body composition.  Following the attainment of peak 

bone mass, bone is lost at a slow, steady rate as part of the ageing process, with accelerated 

bone loss seen in women in the peri-and early post-menopausal years (Clarke & Khosla, 

2012). Importantly, the rate and magnitude of bone loss varies considerably amongst 

individuals (Cauley et al., 2009) and depends on a complex interplay between genetics, 

endocrine profile and lifestyle factors (i.e., nutrition and exercise). By favourably modifying 

the factors that influence bone health, optimisation of peak bone mass achieved in young 

adulthood and attenuation of bone loss later in life can reduce the risk for fracture (Boreham 

& McCay, 2011; MacDonald et al., 2013; Weaver et al., 2016). 

2.3. Bone Cells  

2.3.1. Osteoblasts 

Osteoblasts originate from mesenchymal stem cells available in the bone marrow and their 

main role is bone formation (Figure 2.2.). Other cell lineages differentiating from the same 

precursors are chondrocytes, adipocytes and myocytes, which share the same characteristics 

(Bianco et al., 2010). Osteoblast differentiation is promoted by the canonical wingless 

(Wnt)-β-catenin pathway, bone morphogenic proteins (BMPs) and master transcriptional 

factors such as Runt-related transcription factor 2 (Runx2) and Osterix (Osx) (Nakashima et 

al., 2002; Crockett et al., 2011). The canonical Wnt-β-catenin pathway is of critical 

importance for osteoblast differentiation, but also for the activity of mature osteoblasts. Wnt 

proteins bind to a low-density lipoprotein receptor-related protein 5 and 6 (LRP5/6) co-
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receptor to disrupt a protein complex made of adenomatous polyposis coli, axin and 

glycogen synthase kinase 3β (GSK-3β). The suppression of GSK-3β inhibits the 

phosphorylation of ß-catenin, resulting in the accumulation of ß-catenin in the cytoplasm 

and its translocation to the nucleus, where ß-catenin contributes to the transcription of target 

genes. Several antagonist molecules regulate the canonical Wnt-β-catenin pathway. Among 

them, Dickkopf 1 (DKK-1) secreted by osteocytes, binds to LRP5/6 to form a complex that 

result in the removal of LRP5/6 from the cell surface (Proff & Romer, 2009). Sclerostin, a 

product of the sclerostin encoding gene (SOST) also produced by osteocytes, binds to the 

LRP5/6 receptor to prevent the binding of Wnt protein (Proff & Romer, 2009). Osteoblasts 

are the principal cells for bone formation and mineralisation that synthesise and release 

collagen and other non-collagenous constitutes to form bone matrix and express genes 

necessary for these procedures. Osteoblasts express a number of membrane proteins (i.e., 

bone specific alkaline phosphatase-BALP, OC) and receptors for primary bone regulating 

hormones (i.e., parathyroid hormone-PTH and 1,25-dihydroxyvitamin D (1,25-(OH)2D)) 

(Proff & Romer, 2009; Crockett et al., 2011). In addition to their role in bone formation, 

osteoblasts are important regulators of osteoclastogenesis and osteoclast activity through the 

production of the ligand for receptor activator of nuclear factor kappa B (RANKL) and 

osteoprotegerin (for more details, please see 2.3.2.) (Proff & Romer, 2009). Osteoblasts can 

i) become embedded into the bone matrix and differentiate into osteocytes, ii) remain in 

bone surfaces as bone- lining cells, or iii) undergo apoptosis (Manolagas et al., 2002; 

Crockett et al., 2011) (Figure 2.2.).  

2.3.2. Osteoclasts  

Osteoclasts are multinucleated, giant cells located on bone surfaces that facilitate bone 

resorption (Figure 2.2.). They originate from cells of the monocyte-phagocyte lineage and 

important factors for osteoclast differentiation, activity and survival are the macrophage 

colony-stimulating factor (M-CSF), RANKL and OPG (Proff & Romer, 2009; Crockett et 

al., 2011). M-CSF binds to its receptor (colony stimulating factor 1 receptor (c-fms)) and 

stimulates proliferation and differentiation of osteoclast progenitors (Crockett et al., 2011). It 

also reinforces osteoclast activity and inhibits osteoclast apoptosis (Crockett et al., 2011). 

RANKL is a membrane bound on the osteoblast surface and thus, its binding to the receptor 

activator of nuclear factor kappa B (RANK), which is present on the surface of osteoclast, 

allows cell to cell interaction between osteoblasts and osteoclasts, which, in turn, promotes 

osteoclast differentiation. In addition to RANK, RANKL can bind to its decoy receptor OPG 

to inhibit osteoblast differentiation. Loss of function mutations of RANKL/RANK suppress 

completely osteoclastogenesis, resulting in a high bone mass phenotype named osteopetrosis 
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(Guerrini et al., 2008). Once differentiated, osteoclasts are attracted to bone sites requiring 

resorption and attach to bone surfaces, where the cell membrane is folded, and therefore, 

appears as a ruffled border (Boyce et al., 2009). In the areas that undergo bone resorption, 

osteoclasts produce acid and secrete enzymes (e.g., cathepsin K, matrix metalloproteinases) 

that result in bone mineral dissolution and degradation of collagen fragments (Teitelbaum, 

2007; Negishi-Koya et al., 2009).  

2.3.3. Osteocytes  

Osteocytes are the most abundant type of bone cells, composing over 90-95% of the total 

bone cell population. Osteocytes possess a number of dendrite-like cytoplasmic processes 

that allow communication with each other and with other cells including the lining cells on 

bone surfaces, endothelial cells and components of bone marrow (Bonewald et al., 2011). 

The cell bodies of osteocytes are engulfed within individual cavities in the bone matrix, 

termed lacunae, and the processes lie within canals, termed canaliculi (Manolagas & Parfit, 

2010). Over the last few years, new evidence has supported the role and function of 

osteocytes and they are now thought to be the maestros of bone remodelling (Bonewald et 

al., 2011). Osteocytes have a critical role in the activation of bone remodelling, as they sense 

bone defects, mechanical loading or changes in metabolic signals and through signalling 

pathways control the migration of osteoclasts and osteoblasts to the places that need 

remodelling (Bonewald, 2011; Crockett et al., 2011). They also have important endocrine 

functions; they produce factors that affect the recruitment and differentiation of osteoblasts 

and osteoclasts [e.g., RANKL and OPG, osteopontin, regulator of bone mineralisation), 

dentin matrix acidic phosphoprotein 1 (DMP-1, promoter of bone mineralisation), sclerostin 

and DKK-1 (antagonists of Wnt pathway and thus, inhibitor of bone formation)] (Bonewald 

et al., 2011; Manolagas & Parfit, 2010). 

2.4. Bone remodelling 

The cellular mechanisms that allow bone to adapt to prevailing conditions are modelling and 

remodelling. Bone modelling involves the formation of new bone without previous bone 

resorption. This process occurs during bone development and growth and results in 

alterations in bone size and shape (Seeman & Delmas, 2006; Baron & Kneissel, 2013). Bone 

modelling is persistent in adults in cases of fracture repair, development of malignant bone 

metaplasia and in the initial adaptation of bone to biomaterials (Chappard et al., 2008). 

During bone remodelling, old or damaged bone is resorbed first and subsequently, new bone 

is formed to replace it. Bone remodelling is a highly co-ordinated process carried out by the 

synchronised action of osteoblasts, osteoclasts and osteocytes within bone remodelling units 
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(Figure 2.2). Bone remodelling can occur in a random fashion in response to hormonal 

stimuli (e.g., PTH) and is mainly responsible for calcium release into the circulation 

(stochastic bone remodelling) or it can be targeted to specific areas of bone loading or 

damage, which are presumably identified by osteocyte apoptosis (Warden et al., 2014; Burr, 

2002). Bone remodelling takes place on all bone surfaces, but the rate of this process is 

greater in the trabecular, rather than in the cortical compartment, mainly due to the greater 

surface area per unit bone volume of trabecular bone (Morgan et al., 2013; Seeman & 

Delmas, 2006). Bone remodelling involves subsequent phases of activation, resorption, 

reversal and formation (Figure 2.2). Maintenance of structural, metabolic and biomechanical 

integrity together with the control of mineral homeostasis are all achieved through bone 

remodelling (Burr, 2002; Proff & Romer, 2009). Given the importance of these cellular 

activities, it is unsurprising that in adults, bone resorption and bone formation are closely 

coupled. In contrast, an imbalance between bone formation and resorption occurs in several 

bone-related conditions and results in bone loss. For example, osteoporosis is a common 

bone disease resulting from oestrogen deficiency (e.g., postmenopausal osteoporosis), 

immobilisation or drugs (e.g., glucocorticoids), in which bone resorption is favoured and 

bone loss occurs (Feng & McDonald, 2011; Riggs et al., 1998).  

It was long believed that bone remodelling was under the control of key circulating 

hormones including PTH, Vitamin D and sex hormones (McKenna and Frame, 1987). 

Advances over recent decades have shown that the regulation of bone remodelling is more 

complex and, in addition to these hormones, is controlled by central, systemic and local 

factors at different stages of the bone remodelling cycle including differentiation and activity 

of osteoblasts and osteoclasts and intracellular communication (Crockett et al., 2011). For 

example, PTH, interleukin-1 (IL-1) and 6 (IL-6), tumour necrosis factor α (TNF-α), 

prostaglandin E2 and 1,25(OH)2D stimulate the expression of RANKL and promote 

osteoclast differentiation and bone resorption (Proff & Romer, 2009). Growth hormone, 

PTH, transforming growth factor β (TGF-β), insulin growth factor 1 (IGF-1) and 2 (IGF-2) 

upregulate the transcriptional factors necessary for osteoblastogenesis and bone formation 

(Glass & Karsenty, 2006). Osteoblast function is also regulated by the sympathetic nervous 

system; specifically, stimulation of β2-adrenergic receptors, present on osteoblasts, has a 

suppressive effect on osteoblastic activity, whilst reinforcing the function of osteoclasts 

(Takeda et al., 2002).  
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Figure 2.2. Overview of bone remodelling and differentiation pathways for osteoclasts and 

osteoblasts. Bone remodelling is activated in response to various stimuli (mechanical strain, 

damage, changes in hormonal factors or calcium levels). Osteocytes detect these changes 

and are stimulated or die with apoptosis initiating further signalling pathways. These, 

together with signals from osteoblast lineage and factors from the bone matrix, promote the 

recruitment and differentiation of osteoclasts from haemopoietic stem cells and subsequent 

osteoclast activity (bone resorption) and osteoclast survival. M-CSF and RANKL can bind 

to the receptors c-fms and RANK, which are located on the osteoclast precursor, and 

stimulate them to differentiate to fully activated osteoclasts and reinforce their activity and 

survival. OPG that is secreted by osteoblasts competes RANK for RANKL binding. 

Following bone degradation, osteoclasts undergo apoptosis and osteoblasts are recruited and 

differentiated from mesenchymal stem cells with Runx2 and Osx being key transcriptional 

factors in these processes (reversal phase). During the formation phase, osteoblasts deposit 

new bone material, which becomes mineralised. Some osteoblasts are entrapped inside the 

bone matrix and differentiate into osteocytes, some undergo apoptosis and some others cover 

the new bone surface as bone lining cells. RANK: receptor activator of nuclear factor kappa 

B; RANKL: receptor activator of nuclear factor kappa B ligand; Runx2: Runt-related 

transcription factor; Osx: osterix; OPG: osteoprotegerin; c-fms: colony stimulating factor 1 

receptor; M-CSF: macrophage colony-stimulating factor. Adapted from Proff & Romer, 

2009; Bassett & Williams, 2008 and Nappi et al., 2012. 
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2.5 Assessment of bone health  

Bone strength, the load-bearing capacity of bone prior to fracture occurrence (Bouxsein, 

2005; Manske et al., 2010), has increasingly gained scientific and clinical interest (Davison 

et al., 2006; Seeman & Delmas, 2006; Bouxsein & Seeman, 2009). It is determined by 

parameters of bone structure (e.g., bone mass, shape and microarchitecture) and material 

properties of the bone matrix (e.g., mineralisation, porosity, collagen characteristics, 

microdamage accumulation) (Davison et al., 2006; Bouxsein, 2005) (Figure 2.3.). 

Importantly, bone remodelling mediates the changes in all of these properties by altering the 

balance between bone formation and bone resorption (Figure 2.3.).  

There are a number of ways to assess bone strength and its determinants. Bone mass, 

expressed as bone mineral content (BMC) and BMD, is the most widely measured bone 

parameter and can be determined by dual-energy X-ray absorptiometry (DXA). Bone 

geometry can be assessed using quantitative computed tomography (QCT). Recent 

developments of QCT; namely peripheral quantitative computed tomography (pQCT) and 

high-resolution quantitative peripheral computed tomography (HR-pQCT), are useful tools 

to assess bone geometry, but also microarchitecture. Magnetic resonance imaging (MRI) is 

also used to assess bone structure indirectly and for diagnosing stress fracture injuries. 

Similar to QCT developments, MRI advances such as high-resolution MRI (HR-MRI) have 

been used to predict parameters of bone microarchitecture (Link et al., 2003). In addition to 

these measures of bone mass and structure, bone metabolic activity can be assessed 

indirectly by determining BTM levels (Figure 2.3.). Table 2.1 shows the advantages and 

disadvantages of each method. The techniques used to measure the material properties of the 

bone matrix are either invasive (e.g., bone biopsy) or still under development (e.g., set-up of 

testing protocols and optimisation of testing parameters for bone microindentation) (Diez-

Perez et al., 2010) and, as such, have limited applicability in clinical settings so far. 

Therefore, they will not be described in this overview.  
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Figure 2.3. Determinants of bone strength and commonly used methods for their 

assessment. Adapted from Bouxsein (2005).  

2.5.1. DXA 

DXA is a quantitative measure of bone mass based on the different absorption rates between 

high and low-energy X-rays when these pass through the body. High density X-rays are able 

to penetrate the soft tissue and the bone, whilst low-density X-rays can only pass through 

soft tissue. Thus, the difference between the two provides a quantification of BMC (g) 

(Golden, 2015). BMC is divided by the scanned area to estimate areal BMD (g∙cm-2); 

resulting BMD measure is areal rather than volumetric. As areal BMD strongly correlated 

with bone strength (r2=50-90%) and is a predictor of fracture risk (Marshall et al., 1996), the 

current diagnostic criteria for osteoporosis by the World Health Organization is based on 

BMD measurement by DXA (Kanis, 1994.). DXA has several strengths; low radiation 

exposure, high precision and reproducibility (coefficient variation (CV): 0.6-1.9%; Shepherd 

et al., 2006), relatively low cost, when the equipment is available, ease of use and brief 

examination times (Borer, 2005; Bouxsein & Seeman, 2009). When used in conjunction 

with hip structural analysis (applied to DXA images), DXA can provide estimations of 

parameters of bone geometry at the proximal femur such as cross-sectional area, section 

modulus (estimate of resistance to bending), and buckling ratio (estimate of resistance to 

compression) (Ackerman et al., 2013a). Hip structural analysis is, however, depends on 

technical expertise of scanner technologist and is limited by poor image quality and a 

number of assumptions (e.g., relevant with bone tissue mineralisation) (Beck et al., 2007). 

Despite the aforementioned advantages, only two-dimensional measurements are obtained, 

which do not allow the detection of differences in areal BMD due to different bone sizes 
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(Carter et al., 1992). Areal BMD, determined by DXA, overestimates the true vBMD in 

larger bones, whereas it underestimates it in smaller bones (Duan et al., 1999). Another 

limitation of DXA is that it does not provide information about bone geometry and 

microarchitecture, which is important, as changes in BMD cannot be translated into 

morphological changes. For example, bone gain in response to a specific stimulus, such as 

mechanical loading, may occur in trabecular sites, cortical sites or in both, with these 

changes being indistinguishable with areal BMD measurements alone. Small alterations in 

bone dimensions, which may translate into substantial changes in bone strength, cannot be 

identified either (MacDonald et al., 2013; Manske et al., 2010; Golden, 2015).  

2.5.2. QCT, pQCT and HR-pQCT 

The most commonly measured variables of cortical bone are cortical area, cortical diameter, 

cortical thickness and cortical porosity (Manske et al., 2010; Turner et al., 2002; Davison et 

al., 2006). Increases in the outer diameter and in cortical thickness of a long bone and 

reductions in cortical porosity, increase bone strength (Turner et al., 2002; McDonald et al., 

2013; Bouxsein, 2005). Trabecular microarchitecture is characterised by trabecular volume, 

the number of trabeculae (trabecular number) in a given volume (trabecular density), 

trabecular thickness, trabecular morphology (plate-like or rod-like), and variables of 

trabecular connectivity (i.e., intertrabecular spacing and seperations) (Chappard et al., 2008; 

Bouxsein & Seeman, 2009; Davison et al., 2006).  

QCT is a three-dimensional technology that measures vBMD (g∙cm-3) and provides 

information about the cortical and trabecular contributions of bone (Manske et al., 2010). 

Reliability of trabecular BMD estimates using QCT ranges between 0.6 and 4% (Engelke et 

al., 2008). The more recent versions of QCT, pQCT and HR-pQCT, measure vBMD of the 

peripheral skeleton, such as the radius and tibia, therefore, utilising low radiation doses, 

similar to those used by DXA (<3 mSv) (Manske et al., 2010). Both pQCT and HR-pQCT 

distinguish cortical and trabecular bone, providing information about the pathophysiology of 

bone-related conditions and the effectiveness of interventions. pQCT can provide estimates 

of cortical thickness, as well as cortical and trabecular density from cross-sectional images. 

HR-pQCT is able to produce images of high resolution and therefore, allows evaluation of 

bone microarchitecture (e.g., cortical thickness, trabecular number, thickness and 

separation). HR-pQCT measurements are highly reproducible with a CV of less than 1% for 

density and less than 4.5% for variables of microarchitecture (MacNeil et al., 2008). Finite 

element analysis is a modelling technique, which utilises QCT or HR-pQCT images, to 

provide estimates of bone strength parameters, such as stiffness and failure load (Bouxsein, 
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2005; Manske et al., 2010). These parameters have been associated with fractures and can 

improve their prediction (Boutroy et al., 2008). The application of individual trabecula 

segmentation analysis on HR-pQCT is a clinically sensitive technique that provides 

information about trabecular morphology (plate-like versus rod-like), orientation and 

connectivity (Mitchell et al., 2015). This piece of equipment is, however, not routinely 

available in clinical settings. 

2.5.3. MRI 

MRI utilises magnetic fields with specialised sequences of radiofrequency pulses to produce 

3D images of bone structure (Wehrli, 2006). Bone structure is indirectly evaluated though 

measurements of bone marrow and soft tissue (Wehrli, 2006). The absence of radiation and 

the sensitivity to detect changes in bone marrow (Bouxsein & Seeman, 2009; Golden, 2015) 

are some of the strengths of this method. However, it is technically demanding and 

expensive and more time consuming than the other methods discussed; thus, it is used 

mostly in research. Its use in clinical settings for bone health assessment is limited, however, 

MRI scans are often requested to evaluate musculoskeletal injuries (e.g., stress fracture 

injuries) (Warden et al., 2014). HR-MRI can be performed at peripheral skeletal sites (e.g., 

distal radius, distal tibia and calcaneus) using MRI scanners with specific coils to obtain 

parameters of bone microarchitecture. Due to limited resolution, this technique cannot 

provide accurate measures of bone microarchitecture; however, the estimation of bone 

microarchitectural properties based on HR-MRI images have been highly correlated with 

those determined with techniques of greater resolution (Link et al., 2003; Bouxsein & 

Seeman, 2009).  
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Table 2.1. Advantages and limitations of current imaging equipment for bone health 

assessment (Adapted from Manske et al., 2010; Bouxsein & Seeman, 2009; Golden, 2015).  

 DXA QCT pQCT HR-

pQCT 

MRI 

HR-MRI 

Sites scanned Lumbar spine 

Hip 

Distal radius 

Total body 

Lumbar spine 

Hip 

Distal radius 

Distal radius 

Distal tibia 

Distal 

radius 

Distal tibia 

Central and 

distal sites 

Radiation exposure 

(µSv)  

1-6  30-7,000  <3  <5  N/A 

Scan duration  1-6 min <1min  3 min 3min 10 min 

Differentiation of 

cortical-trabecular bone   

No Yes Yes Yes Yes  

Bone microarchitecture  No No No Yes Yes 

Reproducibility (%CV) 0.6-1.9% 0.6-4% 0.7-1.7% 1-4.5% 3-8% 

DXA: Dual-energy X-ray absorptiometry QCT: quantitative computed tomography; pQCT peripheral 

quantitative computed tomography; HR-pQCT: high-resolution peripheral quantitative computed tomography; 

MRI: Magnetic resonance imaging; HR-MRI: high resolution MRI; CV: Coefficient Variation. 

2.5.4. BTMs 

BTMs are measures of the dynamics of bone metabolic activity and are typically categorised 

into markers of bone formation or bone resorption. Potential advantages of their use include 

the non-exposure to radiation, high sensitivity in detecting alteration in bone metabolism, 

ease of collection and analysis. Measurement of BTMs has relative low cost (i.e., compared 

to the purchase of a DXA scanner) and requires blood or urine collection, which are 

tolerable and less onerous than a bone biopsy (Lombardi et al., 2012a; Banfi et al., 2010). 

Some BTMs can be measured in the urine due to their small size, whereas some larger sized 

molecules can be determined in blood. BTMs are analysed using radioimmunoassays, 

immunoradiometric assays, enzyme linked immunosorbent assays (ELISA) and 

chemiluminesence immunoassays (ECLIA) and are predominately automated procedures, 

which allow the convenient, high volume and more accurate measurement of BTMs in 

research and clinical settings (Hlaing & Compston. 2014). BTM are systematic in nature and 

thus, reflective of bone turnover of the whole skeleton and not specific to affected skeletal 

sites. The currently available BTMs are present in bone, but also in other non-skeletal tissues 

(i.e., all markers deriving from Type 1 collagen predominantely originate from bone, but 

also to a small extent from skin, dentin, cornea, vessels or tendons), therefore, their levels 

may be less relevant to bone changes (Lombardi et al., 2012a; Wheater et al., 2013). BTMs 

are not always specific to bone formation or resorption exclusively, instead, they may reflect 

cumulative bone turnover (Banfi et al., 2010; Lombardi et al., 2012a). BTMs are influenced 

by analytical variability and biological variability (please see section 2.6.4.3). The type of 

sample, the duration and the temperature of storage before analysis vary widely and depend 
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predominantly on the equipment and kit used. Importantly, large variability has been 

associated with bone markers measured in the urine (15-25%) and serum (10-15% and 3-5% 

with automated assays), attributed to the intra- and inter-assay variability, but also to 

biological factors (Lombardi et al., 2012a; Vasikaran et al., 2011; Wheater et al., 2013).  

In a clinical setting, BTMs are used to assess the effectiveness of osteoporosis treatments, 

evaluate patients’ compliance to therapy, predict bone loss and risk of developing 

osteoporosis and identify individuals at high risk for sustaining osteoporotic fractures 

(Vasikaran et al., 2011; Wheater et al., 2013). The synchronous measurement of BTMs and 

BMD can provide a multidimensional approach to patient management (Dogan & Posaci, 

2002). The use of BTMs for research purposes has increased rapidly over recent years, as 

they can capture early changes in bone metabolism as opposed to static measures that are 

only capable of revealing already established changes of altered bone metabolism. The 

assessment of multiple BTMs is recommended to evaluate changes in bone resorption, 

formation or total bone turnover and recently, BTMs have been used to assess bone 

responses to EA (Ihle & Loucks, 2004; Zanker & Swaine, 2000), exercise only (Scott et al., 

2010; 2012; 2013), or caloric restriction only (Grinspoon et al., 1995).  

2.5.4.1. Markers of bone formation 

2.5.4.1.1. Carboxyl- or Amino-terminal Pro-peptides of Type 1 Procollagen (P1CP and 

P1NP) 

The mature molecule of type I collagen is formed after the enzymatic cleavage of terminal 

peptides from the procollagen molecule; namely P1NP and P1CP. The release of P1CP and 

P1NP into the circulation is equimolar to newly synthesised type I collagen (Banfi et al., 

2010; Lombardi et al., 2012a). Although type I collagen is the main component of bone, it is 

also present in skin, dentin, cornea, vessels and tendons (Banfi et al., 2010). P1NP may 

better reflect bone formation compared to P1CP, possibly due to differences in the 

regulation of their catabolism. The clearance of P1NP is achieved by scavenger cells at a 

steady pace, whilst P1CP is rapidly cleared by mannose receptor in hepatic endothelial cells, 

which are influenced by several hormones, especially thyroid hormones and IGF-1 (Hannon 

& Eastell, 2006; Luftner et al., 2005; Wheater et al., 2013). P1NP is released in trimeric 

form, but it undergoes rapid thermal degradation to form a monomeric form. P1NP can be 

analysed using two types of assays (RIA, ECLIA), for example the manual Orion RIA is 

able to recognise intact P1NP (trimeric form), whilst the automated Roche Elecsys 2010 

analyser detects total P1NP (trimeric form plus thermal degradation forms of P1NP-
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fragments excluded), therefore the former underestimates P1NP levels (Hlaing & Compston, 

2014). Other advantages of the automated Roche Elecsys over manual RIA include high 

volume analysis and enhanced reproducibility (Garnero et al., 2008; Hlaing & Compston, 

2014).  

2.5.4.1.2 BALP 

BALP is an abundant enzyme that is attached to the membrane of osteoblasts (Vasikaran et 

al., 2011). BALP plays an important role in the mineralisation of bone matrix (Harris, 1990) 

by catalysing the hydrolysis of inorganic pyrophosphate, which inhibits mineralisation. 

BALP allows the release of inorganic phosphate for hydroxyapatite formation (Wennberg et 

al., 2000). Alkaline phosphatase isoforms originate from a number of tissues predominately 

liver and bone, with bone isoforms accounting for approximately 50% of all isoforms in 

healthy individuals. The BALP can be separated from the other isoforms and detected by 

commercially available assays (Vasikaran et al., 2011); however, the cross-reactivity of the 

bone isoform with the liver isoform is high (up to 20 %) and limits its usefulness in patients 

with liver disease (Lombardi et al., 2012a).  

2.5.4.1.3. OC  

OC is the most ubiquitous, non-collagenous protein of the bone matrix. Its synthesis, by 

osteoblasts during bone formation, involves a precursor molecule with three glutamic acid 

(Glu) residues (Lombardi et al., 2015b). The γ-carboxylation of Glu residues by a 

carboxylase in osteoblasts alters the conformation of OC allowing its binding with 

hydroxyapatite (Lombardi et al., 2015b). OC can also bind to other proteins, receptors and 

cell surfaces, properties to facilitate its critical role in extracellular organisation. OC can also 

be decarboxylated or undercarboxylated in the circulation, where it is involved in a range of 

roles including energy metabolism (Lee et al., 2007), insulin sensitivity and secretion 

(Hwang et al., 2012), angiogenesis and reproduction (Oury et al., 2011). OC in the 

circulation contains intact OC, as well as large, medium and small size fragment (Hlaing & 

Compston, 2014). Smaller fragments are the breakdown products reflective of bone 

resorption (Lombardi et al., 2015b). Thus, OC may indicate overall alterations in bone 

turnover, rather than purely bone formation. OC is excreted by the kidneys and therefore, 

fragments can also be determined in the urine (Vasikaran et al., 2011). The heterogenous 

nature of OC fragments limit the clinical applications of OC. Available analytical methods 

for OC include automated or manual RIA, ELISA or ECLIA. Assays that recognise the 

intact OC and large fragments of OC show the greatest reproducibility and may be more 
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relevant to the measurement of bone formation (Lee et al., 2000; Hlaing & Compston, 

2014).  

2.5.4.2. Markers of bone resorption   

2.5.4.2.1. N- and C-terminal cross-linked telopeptides of type I collagen (NTX and 

CTX) 

NTX and CTX originate from the enzymatic cleavage of amino-terminal and carboxyl-

terminal ends of type I collagen. There are different CTX isoforms; α if it is not isomerised 

or β if it is isomerised, with the β -isomerisation being more specific to mature collagen 

(Wheater et al., 2013). Both NTX and CTX can be measured in either the urine or serum 

and, notably, β-CTX can also by analysed in ethylenediaminetetraacetic acid (EDTA), which 

optimises its stability (Vasikaaran et al., 2011). β-CTX, determined in serum/plasma, is the 

preferred measure of bone resorption (Vasikaaran et al., 2011) (please see section 2.5.4.5) 

and can be analysed using ELISA, RIA and ECLIA methods (manual or automated) (Hlaing 

& Compston, 2014). NTX and CTX concentrations obtained in urine samples should be 

corrected for creatinine, and thus, pre-analytical and analytical variability of creatinine 

analysis may add another source of error in the results (Vasikaaran et al., 2011). For 

example, inter-individual and intraindividual variability of urinary NTX have been reported 

15 and 26% (Banfi et al., 2010).  

2.5.4.2.2. Pyridinoline (PYD) and Deoxypyridinoline (DPD)  

Both crosslinks, PYD and DPD, act as molecular bridges that connect collagen molecules. 

During collagen degradation, these bridges undergo enzymatic processing to free collagen 

molecules. Differences in specificity of PYD and DPD have been observed, with DPD being 

more bone specific and almost exclusively derived from bone (Lombardi et al., 2012a). PYD 

and DPD are released in free and peptide-attached forms into the urine, where their 

concentration can be determined by a reverse phase high performance liquid 

chromatography or automated immunoassays detecting free and/or peptide-attached forms 

(Hlaing & Compston, 2014). The use of PYD and DPD as bone resorption markers is marred 

by challenges in controlling sampling conditions (i.e., second void or 24h sampling) and the 

requirement to adjust urinary measures for creatinine (Vasikaran et al., 2011). 

2.5.4.2.3. Tartate-resistant acid phosphatase 5b (TRACP5b) 

Acid phosphatases are a big family of metalloenzymes, present in a number of tissues 

including bone, spleen, lungs, placenta prostate, erythrocytes, macrophage and platelets. The 
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acid phosphatase in bone, spleen and lungs display resistance to L (+) tartrate. The b form of 

isoform 5 (TRACP5b) is an osteoclast-specific isoform (Oddie et al., 2000). During bone 

resorption, osteoclasts release TRACP5b, which produces reactive oxygen species to digest 

bone breakdown products. Thus, TRACP5b was initially thought to indicate osteoclastic 

activity (Hannon et al., 2004). However, recent developments suggest that TRACP5b is 

informative about the number of osteoclasts, rather than their activity (Rissanen et al., 2008). 

The measurement of TRACP5b can be conducted using enzymatic and immunoassay 

techniques, however, they are often limited by the ability of the enzyme to bind to a2-

macroglobulin, which decreases its binding with assay antibodies (Oddie et al., 2000). 

2.5.4.3. Emerging BTM 

Emerging BTMs have been used alongside existing, well-established BTMs. For recent 

reviews, please see Wheater et al. (2013), Garnero et al. (2014) and Chapurlat & Confavreux 

(2016). These emerging BTM can be classified into different categories including non-

collageneous proteins of bone matrix (e.g., osteopontin), regulators of osteoclast and 

osteoblast cell differentiation and activity (e.g., OPG/RANKL, Wnt signalling pathway, 

sclerostin, β-catenin, periostin) and markers of bone matrix processes (e.g., Type I collagen 

isomerisation, post-translational modification of non-collagenous proteins). For example, as 

mentioned in section 2.3.3., sclerostin is secreted by osteocytes to inhibit Wnt signalling 

pathway through its binding to LRP5/6 (Li et al., 2005). Thus, sclerostin blocks Wnt effects 

on osteoblasts and decrease bone formation. Sclerostin is responsive to mechanical loading, 

with decreases concentrations shown after involvement in weight bearing activities and 

increased concentrations shown following bed rest (Spatz et al, 2013; Belavy et al, 2016).  

Despite its relevance with bone formation, its high analytical and biological variability limits 

its current use in clinical settings and requires further study (Wheater et al., 2013). 

2.5.4.4. Factors influencing BTMs  

BTMs are influenced by a considerable number of controllable (e.g., exercise, nutrition, 

circadian rhythm) and uncontrollable biological factors (e.g., age, sex, ethnicity) (Table 

2.2.). The effects of the controllable factors can be reduced by standardising sampling 

conditions; for example, collection of biological samples early in the morning, after an 

overnight fast or absence of systematic exercise 24 hours before collection. Uncontrollable 

factors should be taken into consideration when deciding about characteristics of the study 

population (Banfi et al., 2010; Lombardi et al., 2012a; Vasikaran et al., 2011). For example, 

postmenopausal women experience accelerated bone turnover and thus, they have higher 

BTM levels compared to their premenopausal counterparts (Khosla et al., 1997). BTMs have 
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been reported elevated up to one year after sustaining a fracture (Veitch et al., 2006), making 

it important to exclude participants with recent fractures in studies that investigate the 

effectiveness of dietary and exercise interventions.  

2.5.4.4. Reference BTMs  

Considering the characteristics of each BTM and its analytical and biological variability, it is 

apparent that each BTM has advantages and disadvantages. In 2012, the International 

Osteoporosis Foundation and International Federation of Clinical Chemistry published 

reference standards for BTM use in clinical research (Vasikaran et al., 2011). The selection 

criteria for BTM reference standards were: adequate characterisation and clear definition of 

the BTM; bone-specific origin; prediction of fracture risk; monitoring of osteoporosis 

therapy; widespread availability of the methodology (if possible automated); satisfactory 

levels of biological and analytical variability; ease of sample handling and analysis; good 

stability and ability to be measured in blood (Vasikaran et al., 2011). These 

recommendations were based on meta-analyses of BTM studies that were used to predict 

fracture risk, cohort studies following pre-analytical warnings and clinical trials. CTX 

(serum or plasma) and P1NP (serum or plasma) were chosen as the reference standards for 

bone resorption and formation (Vasikaran et al., 2011). 

CTX is considered to satisfactorily reflect bone resorption (e.g., compared to TRACP5b that 

may reflect osteoclast number), although it is non-specific for bone as are all the available 

markers of bone resorption. CTX is measureable in both serum and EDTA plasma (e.g., 

compared to PYD and DPD that are determined mainly in urine) and automated or manual 

assays are widely available. Its biological and analytical variability and sampling stability 

are well characterised allowing standardisation of sampling and handing conditions.  

Importantly, unlike other bone resorption markers, CTX responds to anti-resoptive treatment 

(serum NTX is less responsive than CTX to therapy) (Vasikaran et al., 2011).  

P1NP reflects bone formation to an acceptable level (compared to OC that may reflect bone 

turnover), has predominantly bone origin (none of the currently available markers is specific 

to bone only), is affected by hormones to a lesser extent than others (P1CP clearance is 

sensitive to thyroid hormones and IGF-1). From an analytical perspective, P1NP can be 

measured in either serum or plasma (EDTA), and currently available automated or manual 

assays show good precision (i.e., BALP- up to 20% cross-reactivity with liver isoforms) and 

low analytical CV (<10%) (Vasikaran et al., 2011). P1NP is superior in monitoring 
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osteoporosis treatment, for example, P1NP concentrations decrease up to 80% from baseline 

following anti-resoptive treatment (Brown et al., 2009).  
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Table 2.2 Controllable and uncontrollable factors influencing BTMs (modified from Vasikaran et al., 2011).  

Source Significance Direction of Effect Indicative reference 

Non-Controllable  factors 

Age  Very important  Infants, children, adolescents and older individuals have higher levels of BTMs compared to adults.  Khosla et al., 1997 

Ethnicity Not important  Small differences i.e., lower BTMs levels in African American compared to Caucasians  Finkelstein et al., 1996 

Henry et al., 2000 

Sex  Very Important  Age dependent sex-differences. Higher BTMs in older women than men  Khosla et al., 1998 

Immobility/ 

Bedrest 

Important  Markers of bone resorption increase. Markers of bone formation decrease or remain unaltered.  Zerwekh et al., 1998 

Genetics Very important  Strong correlations in BTMs between twins Donescu et al., 2007 

Drugs  Important  Corticosteroids, aromatase inhibitors, antiepileptic drugs, thiazolidinediones, statins, heparin  

Well-established effects for corticosteroids (decreased BTM) and anticonvulsants (increased BTM) 

Szulc & Delmas, 2008 

Vasikaran et al., 2011 

OCP Somewhat 

important 

The effects of OCP on BTMs are of particular interest for the current programme. Lower BTM in 

OCP users compared to controls.  

Hermann & Seibel, 2010  

 

Diseases Important  Often increased BTMs with disease including liver disease, renal impairment, thyroid disorders, 

systemic inflammatory disease, diabetes, degenerative joint disease- 

Seibel et al., 2005 

Fracture Important  Elevated BTMs up to 1 year after the injury Veitch et al., 2006  

 

Pregnancy and 

lactation  

Important  Elevated BTM levels during pregnancy (third semester) and breastfeeding. Black et al., 2000 

Ulrich et al., 2003 

Controllable factors 

Menstrual cycle Somewhat 

important  

Small decreases in bone resorption and increases in bone formation during luteal phase.  

 

Zittermann et al., 2000 

Gorai et al., 1998  

Circadian 

rhythm 

Very important  Bone resorption markers display great variability -peak early in the morning and nadir in the 

afternoon. Bone formation markers are affected less than bone resorption markers.  

Qvist et al., 2002  

Sclemmer et al., 1992  

Fasting/ 

nutrient intake 

Very important  Feeding (i.e., glucose, calcium, protein, fat or a mixed meal) decreases bone resorption Bone 

formation markers are less affected by feeding than markers of bone resorption. Great variability 

among BTMs. 

Henriksen et al., 2003 

Schlemmer et al., 1997 

Clowes et al., 2002 

Exercise  Very important  Alterations depending on the type, intensity and duration of exercise.  Woitge et al., 1998 

Welsh et al., 1997  
OCP: oral contraceptives pill; BTM: bone turnover marker 



27 

 

2.6. Key determinants of bone health  

Genetics (Ralston & Uitterlinden, 2010; Ferrari, 2008), sex steroids (Manolagas et al., 2013; 

Clarke & Khosla. 2010; Khosla et al., 2012), nutrition (Rizzoli, 2008; 2014) and mechanical 

loading (Robling et al., 2006; Bonet & Ferrari, 2010) are key influencers of bone health. We 

acknowledge that genetics have well established influences on bone health; a number of 

bone phenotypes including BMD, bone architecture, bone turnover, bone loss and fracture 

risk have a genetic background (for reviews please see Ralston & Uitterlinden, 2010; Ferrari, 

2008; Uitterlinden et al., 2013). Non-skeletal characteristics that influence bone phenotypes 

such as BMI, muscle strength, age at menopause, falls and protective responses may also 

have their own genetic basis (for reviews please see Ralston & Uitterlinden, 2010; Ferrari, 

2008; Uitterlinden et al., 2013). This literature review focuses on sex steroids, nutrition and 

mechanical loading due to their relevance with the intervention and the study populations of 

this thesis.  

2.6.1. Sex steroids and bone  

Both male and female sex steroids, namely androgens and oestrogens, are critical for bone 

acquisition during puberty and for bone mass maintenance in adulthood (Vanderschueren et 

al., 2014; Khosla et al., 2012; Manolagas et al., 2013). Sex steroids act on bone by binding 

to the receptors located on bone cells; oestrogens bind to estrogen receptor (ER) α or ER-β 

and androgens bind to the androgen receptor (AR) (Beato & Klug, 2000). Importantly, the 

greatest proportion of oestrogens and testosterone are tightly bound to sex hormone binding 

globulin (SHBG) (40-65%), which limits the bioavailability of these steroids (Khosla & 

Pacifici, 2013). In contrast, oestrogen and testosterone in the free or bound to albumin form 

are easily accessible (Khosla & Pacifici, 2013). Androgens can be converted into oestrogens 

by the P450 aromatase enzyme complex, providing the mechanism to support that oestrogen 

may mediate at least some of the effects of androgens in men (Vanderschueren et al., 2014; 

Manolagas et al., 2013). Analogously, androgens are also produced by females (ovarian and 

adrenal secretion and peripheral conversion of weak androgens to testosterone) and may 

influence the female skeleton, although these actions are less well established (Khosla & 

Pacifici, 2013).  

2.6.1.1. Normal menstrual function  

Menstrual function is controlled by the hypothalamic-pituitary-ovarian axis (Figure 2.4). 

Gonadotropin-releasing hormone (GnRH) secretion occurs in a pulsatile way by the 

hypothalamus and triggers the release of luteinising hormone (LH) and follicle stimulating 

hormone (FSH) by the anterior pituitary gland. LH and FSH stimulate follicular 
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development and the production of oestrogen from the ovaries, which provides positive 

feedback to the anterior pituitary. Once oestrogen concentrations reach a threshold, a surge 

in LH levels allows ovulation to take place (Figure 2.5.). Following ovulation, the formation 

of the corpus luteum increases progesterone levels to support the hyperplasia of the 

endometrium in the event of implantation. In the absence of pregnancy, the corpus luteum 

degenerates and progesterone and oestrogen levels decrease. The endometrial lining is shed 

and menstruation is initiated (Clarke & Khosla, 2010). The menstrual cycle is defined as the 

period from the onset of menstruation to the day prior to the onset of the next menstruation, 

has a typical duration of 28 days ±7 days and is usually categorised into 3 phases, follicular, 

ovulatory and luteal (Figure 2.5.). The occurence of consistent monthly cycles is termed 

eumenorrhea.  

The increase in oestrogen secretion with menarche (first menstrual cycle), typically between 

the ages of 11–13 years, promotes rapid longitudinal and radial skeletal growth for the next 

decade or so. Importantly, puberty is characterised by accelerated BMD gains, whilst slower 

increases in BMD and consolidation occur during late adolescence and young adulthood, 

until peak bone acquisition is achieved (Clarke & Khosla, 2010). The normal menstrual 

cycle, with its cyclic changes in reproductive hormones, plays a critical role in bone 

maintenance in adulthood until the menopause, when the decline in oestrogen results in 

rapid bone loss (Khosla and Pacifici, 2013; Manolagas et al., 2013).  

Oestrogens have direct and indirect effects on bone resorption through the expression of 

RANKL (expressed by osteoblasts, T- and B-lymphocytes), OPG (expressed by osteoblasts) 

and the production of IL-1, IL-6, TNF-a, M-CSF and prostaglandins (acting on osteoblasts 

and bone marrow stromal cells) to modulate osteoclast differentiation, activity and survival 

(Khosla et al., 2012; Clarke & Khosla, 2010). Oestrogen-dependent regulation of bone 

formation is mediated by alterations in osteoblast activity apoptosis and alterations in 

oxidative stress (Khosla et al., 2012). Some oestrogens actions on the skeleton may include 

control of intestinal calcium absorption and renal calcium reabsorption (Gennari et al., 1990; 

McKane et al., 1995), although these mechanisms are still debated (Manolagas et al., 2002).  
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Figure 2.4. The control of endogenous sex hormones in eumenorrheic women (dark red), in 

men (blue) and OCP users (purple). GnRH secretion occurs in a pulsatile way by the 

hypothalamus and triggers the release of LH and FSH by the anterior pituitary gland in both 

sexes. In women, LH and FSH stimulate follicular development and the production of 

oestrogen from the ovaries. Generally, oestrogen and progesterone exert negative feedback 

on the anterior pituitary, resulting in reduced release of FSH and LH. During the late 

follicular phase, the rapid elevation in oestrogen concentrations exerts positive feedback on 

the anterior pituitary resulting in the LH surge (for more details about the changes of the 

concentrations of these hormones throughout the menstrual cycle, please also see Figure 

2.5.). LH surge allows the release of the oocyte from the dominant follicle and initiates 

ovulation. Under the action of LH, the dominant follicle is luteinised to form the corpus 

luteum, which produces progesterone and oestrogens. In combined OCP users, the 

exogenous provision of oestrogen and progesterone, provide negative feedback on the 

hypothalamus and pituitary gland, supressing FSH, LH and GnRH. In men, LH and FSH 

pulsatile release by the anterior pituitary determines testicular testosterone secretion, which 

in turn exerts negative feedback on the anterior pituitary and hypothalamus, resulting in 

reduced release of LH, FSH and GnRH. FSH: follicle-stimulating hormone; LH: luteinizing 

hormone; GnRH: Gonadotropin-releasing hormone; OCP: oral contraceptive pill; (+): 

positive feedback; (-): negative feedback Adapted from Burrows & Peters, 2007; Clarke & 

Khosla, 2010; Jiménez-Reina et al., 2016.  
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Figure 2.5. Profile of the main reproductive female hormones during a normal menstrual 

cycle. Classic characteristics include the oestrogens peak in the late follicular phase followed 

by the LH surge and the elevation of progesterone levels during the luteal phase. FSH: 

follicle-stimulating hormone; LH: luteinizing hormone. Graph constructed using the data 

from Stricker et al., 2006.   

2.6.1.2. Premenopausal menstrual disturbances  

Studies have demonstrated that age of menarche is an important determinant of bone growth 

and BMD (Sowers et al., 1992; Chevalley et al., 2005). Later age at menarche is a risk factor 

for low BMD, premenopausal bone loss and bone injury (Waugh et al., 2009; Bennell et al., 

1999b). Exercise-associated menstrual disturbances commonly occur among physically 

active women and vary from subclinical menstrual disturbances, including luteal phase 

defects and anovulation, to severe clinical manifestations of oligomenorrhea and 

amenorrhea. Luteal phase defects and anovulation often go undiagnosed, as they are often 

not accompanied by changes in menstrual cycle length, yet research suggests that they are 

the most frequent type of exercise-associated menstrual disturbances (De Souza et al., 2010). 

In contrast, oligomenorrhea (long, irregular menstrual cycles of variable duration between 

36 to 90 days) and amenorrhea (absence of menses for at least 3 months) are severe, clinical 

representations of hypogonadism (De Souza et al., 2010). The basic characteristics and 

hormonal characteristics of these disorders are presented in Figure 2.6. Research shows that 

amenorrheic women have very low concentrations of oestrogens that are accompanied by 

increases in markers of bone resorption, low BMD scores and negative alterations in bone 

geometry and microarchitecture (De Souza et al., 2008; Cobb et al., 2003; Christo et al., 

2008; Ackerman et al., 2011; 2012a). These findings are similar to those from studies in 

amenorrheic women with anorexia nervosa that show that osteoporosis is a well-established 

consequence of this condition (Misra & Klibanski, 2011; 2014). Bone health is also 
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compromised in oligomenohheic atheletes compared to their eumenorrheic counterparts 

(Cano Sokollof et al., 2015). The effects of the subclinical exercise-associated menstrual 

disturbances are less clear; with no apparent reductions in BMD (De Souza et al., 2003; 

1997), which is in line with the milder perturbations in reproductive hormones. Future 

research is needed to explore if other parameters of bone health such as bone 

microarchitecture, BTM and strength are affected. 

Another condition that suggests an important role of sex hormones in premenopausal women 

is polycystic ovary syndrome, which is accompanied by follicular arrest, poly-ovarian cysts 

and an LH-dependent elevation in androgen release (Kassanos et al., 2014; Zborowski et al., 

2001). Women with polycystic ovary syndrome have higher BMD and augmented cortical 

bone properties compared to age-matched controls (Kassanos et al., 2014; Zborowski et al., 

2001). This model provides some evidence of the effects of androgens on the female 

skeleton, although potential confounding factors such as high body mass index (BMI), body 

composition (i.e., high fat mass) and menstrual irregularities (oligo- and amenorrhea) may 

also influence bone in an independent way in these studies. 

Figure 2.6. Spectrum of menstrual function from eumenorrhea to amenorrhea. Primary 

amenorrhea: failure to menstruate by 15 years in girls with secondary sex characteristics; 

Secondary amenorrhea: abnormal cessation of menses after menarche. Adapted from De 

Souza, 2003.  

2.6.1.3. The menopause  

The reduction in oestrogen levels accompanying the menopause is associated with an 

accelerated bone loss, low bone strength and an increased fracture risk (Riggs et al., 1998). 

Postmenopausal bone loss results from increased bone turnover rate as suggested by 
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increases in both bone resorption and formation (Manolagas et al., 2013). However, the 

increase in bone resorption outweighs that of bone formation, resulting in uncoupling of 

bone turnover and net bone loss (Manolagas et al., 2013). Bone loss occurs in both the 

trabecular and cortical bone; however, cortical thinning initiated with menopause is greater 

than trabecular thinning and results from an increase in the medullary diameter and 

endocortical resoprtion (Ahlborg et al., 2003; Bartell et al., 2013). Conversely, periosteal 

apposition may, to some extent, preserve bone strength (Manolagas et al., 2013). The effects 

of oestrogen deficiency on bone are mediated directly by the genesis, activity and apoptosis 

of osteoblasts and osteoclasts (please see section 2.6.2.1), but also through a downregulation 

of oestrogen receptor alpha (ER-α) expression, which attenuates the responsiveness of 

osteoblasts to mechanical loading. Within a decade after menopause, the rate of bone loss 

slows and matches that seen in older men (Clarke & Khosla, 2010). The slower bone loss at 

this phase is explained by ageing-related mechanisms and characterised primarily by loss of 

cortical bone and increased intracortical porosity (Manolagas et al., 2013).  

2.6.1.4. OCP 

The term hormonal contraceptives includes injected contraceptives, OCP and vaginal rings 

(Burrows & Peters, 2007). The progestin-only contraceptive injection depot 

medroxyprogesterone acetate known as DMPA is a highly effective contraceptive that does 

not require compliance on a daily or weekly basis. DMPA injection provides low doses of 

progesterone, which becomes available to the systemic circulation. The use of DMPA have 

been demonstrated to have negative effects on bone health (Curtis & Martins, 2006). 

Combined OCP, the most common type of OCP (Lader, 2009); contain a synthetic oestrogen 

(i.e., ethinyl oestradiol) and a progesterone derivative. The biological characteristics of the 

latter component depend on its potency and its relative binding affinity (Carr, 1998). 

Combined OCP can be prescribed as monophasic, biphasic, or triphasic formulations; with 

differences depending on whether hormones are delivered in constant (monophasic) or 

varying amounts (diphasic and triphasic) across the active pill phase (usually 21 days). 

Modern combined OCP formulations contain low doses (20–35 µg∙d-1) and ultra-low doses 

(15 µg∙d-1) of oestrogen compared to earlier higher dose preparations (≥50 µg∙d-1) 

(Burkmann et al., 2011). Combined OCP, through exogenous oestrogen and progesterone 

supplementation, provide negative feedback on the hypothalamus and pituitary gland, 

supressing FSH, LH and GnRH (Burrows & Peters, 2007) (Figure 2.4.). Low levels of LH 

and FSH inhibit the genesis of follicles and ovulation and down-regulate the endogenous 

production of oestrogen and progesterone. Thereby, cyclical changes in the uterus and 

ovaries are obstructed and pregnancy is prevented.  



33 

 

Despite the great number of studies in the area of combined OCP and bone health, the results 

are mixed at least in part due to the wide range in the available formulations and brands and 

dependent on age and menstrual status. In adult, non-exercising women, OCPs have little 

effect on BMD (Liu & Lebrun, 2006). In peri- and postmenopausal women, there is 

evidence to support a positive effect of OCPs (and by inference low circulating sex hormone 

levels) on BMD (Kleerkopper et al., 1991; Liu & Lebrun, 2006). In contrast, in adolescents 

and young adults still gaining bone, OCPs may slow down bone development and growth. In 

this age group, suppressed BTM response and reductions in BMD acquisition compared to 

BMD gains in age-matched controls have been reported (Cibula et al., 2012; Polatti et al., 

1995; Pikkarainen et al., 2008). These effects appear to be greater among users of ultra-low 

dose formulations (Cibula et al., 2012). OCP use may also have unfavourable effects on 

bone health compared to exercising women with regular, ovulatory menstrual cycles. 

Physically active women taking low-dose OCPs had lower BMD compared to physically 

active non-users (Hartard et al., 1997; Weaver et al., 2001) or sedentary women (Weaver et 

al., 2001). These effects may be at least partially related to the potential reduction in 

oestrogen levels achieved by OCP administration. Furthermore, OCP use is often 

accompanied by further hormonal changes including decreases in IGF-1 and increases in 

IGF-1 binding proteins and T3 levels (Blackmore et al., 2011; Wiegratz et al., 2003; Hansen 

et al., 2009), which exert actions on bone (Giustina et al., 2008; Huang et al., 2000; Lakatos 

et al., 2000). Lastly, OCP are prescribed for the regulation of menstrual function in exercise-

related menstrual disturbances or amenorrhea in women with anorexia nervosa; although 

their use is not recommended as first line of treatment (De Souza et al., 2014a). Current 

evidence suggests OCP alone may be ineffective at correcting BMD in amenorrheic athletes 

or amenorrheic patients with anorexia nervosa, particularly if not combined with non-

pharmacological options (i.e., increased dietary intake and/or reduced exercise, weight gain) 

(Fredericson & Kent, 2005; De Souza et al., 2014a; Fazeli and Klibanski, 2014). As such, 

major guidelines do not suggest the use of OCP for BMD improvements (Female Athlete 

Triad Coalition and ACSM-De Souza et al., 2014a; Nordic Federation of Societies of 

Obstetrics and Gynaecology-Bergstrom et al., 2013). 

2.6.1.5. Sex steroids in men  

In men, the main androgen is testosterone, which is controlled by the hypothalamic-

pituitary- testicular axis. Similar to women, GnRH stimulates FSH and LH pulsatile release 

by the anterior pituitary, which in turn, determines testicular testosterone secretion 

(approximately 95% of testosterone production) (Feldman et al., 2002; Jimenez-Reina et al., 

2016) (Figure 2.4.). Androgens act directly on chondrocytes to increase ossification of 
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growth plates and thus, linear bone growth. Actions of androgens related to bone formation 

include increased calcium absorption and retention, stimulation of osteoblast progenitors’ 

proliferation, reduced osteoblast apoptosis and increased periosteal bone formation 

(Lorentzon et al., 2005; Vanderschueren et al., 2014; Carnevale et al., 2010). Some of their 

effects on osteoclasts include RANK expression in pre-osteoclasts and regulation of 

osteoclast activity and survival (Manolagas e al., 2013). Indirect effects, through their 

impact on muscle (Vandershuerren et al., 2003) and regulatory role on hormones [e.g., 

growth hormone (GH)] cytokines and growth factors at a local level (e.g., TGF-β, IGF-1, 

and IL-6) (Manolagas et al., 2013) have also been demonstrated. 

Oestrogens are also critical for bone health in men and may mediate at least some of the 

effects of androgens on bone (Manolagas et al., 2013; Vanderscueren et al., 2014). Indeed, 

both oestrogen and testosterone are needed for bone growth in men (Vanderscueren et al., 

2014; Khosla & Pacifici, 2013). At low circulating levels of oestrogen, such as those 

experienced by pubertal males, oestrogen acts synergistically with testosterone to enhance 

periosteal apposition, whereas at higher levels of oestrogen, such as those experienced by 

females during later puberty, periosteal apposition is inhibited. The understanding of the role 

of oestrogen in the male skeleton has progressed by observations of male patients with 

impaired responsiveness of bone to oestrogen (e.g., mutations in ER-α gene) or impaired 

oestrogen synthesis (i.e., aromatase deficiency). Both models are characterised by low BMD 

and unfused epiphyses despite normal testosterone levels (Smith et al., 1994; Carani et al., 

1997). Oestrogen replacement in these patients increases bone mass, further supporting the 

role of oestrogen on the male skeleton (Bilezikian et al., 1998). In the general population, 

Khosla et al. (1998), conducted a cross-sectional study of 314 men aged 23-30 years and 

found that bioavailable oestradiol, and to a lesser extent testosterone, were the most 

consistent predictors of BMD at several skeletal sites. Subsequent experiments evaluated the 

relative importance of oestrogens and androgens on bone turnover in younger (Leder et al., 

2003) and elderly men (Falahati-Nini et al., 2000). Both androgens and oestrogens were 

reported to mediate bone resorption independently in younger men (Leder et al., 2003). In 

elderly men, oestrogens were the main regulators of bone resorption, whilst both oestrogens 

and testosterone contributed to the maintenance of bone formation (Falahati-Nini et al., 

2000). Taken together, current evidence suggests an essential role of oestrogens and 

androgens in bone homeostasis in the male skeleton.  
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2.6.2. Nutrition and bone  

Several aspects of nutritional intake, including sufficient caloric intake (energy), 

macronutrient intake (protein, carbohydrates, fat) and micronutrient inakte (e.g., calcium and 

Vitamin D), are essential for bone metabolism and health (Ilich & Kersetter, 2000; Rizzoli et 

al., 2008). These nutritional factors also indirectly influence bone through the release of 

products resulting from their metabolism (e.g., amino acids), modulation of circulating 

hormones (e.g., calciotropic hormones, reproductive hormones) and changes in bone-related 

factors other than hormones (e.g., body weight and body composition) (Rizzoli, 2008; 

Heaney, 2013). This section will review the effects of prominent nutritional factors on bone 

health.  

2.6.2.1. Energy  

Both inadequate and excessive dietary energy intake have been associated with alterations in 

bone measures (Shapses & Sukumar, 2012; Fazeli & Klibanski, 2014). Anorexia nervosa, an 

extreme example of inadequate dietary energy intake, is accompanied by a reduction in 

BMD, altered bone microarchitecture (i.e., decreased cortical thickness and decreased 

trabecular volume, number and thickness) and increased fragility risk (Fazeli & Klibanski, 

2014; Misra & Klibanski, 2011). Less severe caloric restrictions have also been associated 

with bone loss in non-obese populations (Caporaso et al., 2011; Villareal et al., 2006; 2016) 

and physically active individuals (Nattiv et al., 2007; Ihle & Loucks, 2004). For example, a 

cross-sectional study of 52 non-obese women, classified by daily caloric intake at 100%, 

80%, or 55% of their recommended daily energy requirement, showed a significantly lower 

femoral BMD (-10%) in the group with the lowest caloric intake (55%) and a trend toward 

lower spine areal BMD compared to the other two groups (Caporaso et al., 2011). 

Reductions in caloric intake and disordered eating have also been reported to compromise 

bone health (Cobb et al., 2003; Barrack et al., 2008; Nieves, 2010; 2016) of physically active 

women in line with the Female Athlete Triad (Nattiv et al., 2007; De Souza et al., 2014a) 

(for a detailed description please see 2.9 and 2.11.2). The effect of caloric restriction on bone 

is poorly understood and the relative contribution of diet-induced energy deficiency versus 

other nutritional deficiencies is currently unknown.  

Some studies suggest that obesity is associated with increased bone mass and that a greater 

body weight is protective against bone loss (Felson et al., 1993; Maimoun et al., 2016). In a 

cross-sectional study, Evans et al. (2015) examined site-specific BMD, bone structure and 

bone strength in obese and normal-weight young (25-40 y) and older (50-75 y) individuals. 

They showed lower BTM and higher BMD at all skeletal sites, favourable bone 
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microarchitecture (greater cortical thickness and volumetric BMD and greater trabecular 

number) and greater bone strength at the distal radius and distal tibia in the obese 

participants, with these differences being more apparent in the older group (Evans et al., 

2015). However, despite such evidence of a positive impact of obesity on bone, there is 

increasing evidence that excess weight due to adiposity may also result in low BMD (Greco, 

et al. 2010), poor bone quality and increased fracture risk (Compston, et al., 2011; Nielson et 

al., 2012) across a range of age groups. These negative effects appear to be more profound at 

high BMI values (Shapses & Sukumar, 2012; Nielson et al. 2012).  

Bone loss often accompanies weight loss in overweight and obese individuals (Shapses & 

Sukumar, 2012). A recent systematic review and meta-analysis conducted by Zibellini et al. 

(2015) included 41 studies with diet-induced weight loss intervention of 2-24 months in 

overweight and obese populations. They showed a small significant decrease in total hip 

BMD but no change in lumbar spine BMD together with modest changes in BTM early in 

the interventions (2-3 months), indicative of bone breakdown (Zibellini et al., 2015). The 

weight loss achieved in randomised controlled trials is approximately 10% and is 

accompanied by BMD reductions of about 2% (Schafer, 2016).   

Bariatric surgical procedures are classed as restrictive, restrictive/malabsorptive, and 

primarily malabsorptive and result in a 30% reduction in body weight (Schafer, 2016). 

Severe reductions in BMD (approximately 10%) and strength, together with changes in bone 

microarchitecture (i.e., reduced trabecular number) have been reported, with the magnitude 

of these alterations varying depending upon the surgical procedure (Hsin, et al. 2015; 

Frederiksen, et al. 2016). Although bone loss has been observed post-surgery, the long-term 

effects of these changes and the incidence of osteoporosis and fracture risk in these patients 

are still unknown (Scibora et al., 2012; Scibora, 2014). 

2.6.2.2. Protein  

Dietary proteins serve as sources of essential amino acids for the maintenance of bone 

structure. Protein intake also affects bone through alterations in bone trophic factors such as 

IGF-1, calcium absorption and other physiological changes (e.g., maintenance or reduction 

of muscle mass) (Rizzoli et al., 2010; Bonjour, 2005). Dietary protein contains sulfur amino 

acids and their oxidation contributes to acid production and a decrease in pH, which may 

influence the balance between bone formation and resorption and induce urinary calcium 

excretion (Bonjour et al., 2005; Kerstetter et al., 2011). However, there is little evidence to 

support a negative association between protein and bone health (Bonjour et al., 2005). The 
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vast majority of epidemiological, cross-sectional and randomised controlled studies have 

demonstrated a positive effect of a protein intake on BMD (Conigrave et al., 2008; Darling 

et al., 2009; Rizzoli et al., 2008). A systematic review and meta-analysis conducted by 

Darling et al. (2009) on protein supplementation and bone health demonstrated a small 

positive impact of protein supplementation on lumbar spine BMD but no significant effect 

on fracture rate. A high-protein diet is a common dietary prescription for weight loss and 

weight maintenance (Leidy et al., 2007) and has been shown to attenuate BMD reductions 

accompanying weight loss in overweight and obese individuals (Skov et al., 2002; Thorpe et 

al., 2008). 

2.6.2.3. Calcium 

Calcium is an important component of bone mineralisation, with bone containing 

approximately 99% of total calcium in the body. Due to the great dependence of various 

cells and organs upon small variations in extracellular calcium levels, calcium levels are 

tightly controlled in the circulation by three main hormones: PTH, calcitonin and Vitamin D. 

PTH is the major regulator of calcium homeostasis. Elevated extracellular ionised calcium 

levels result in decreased PTH secretion from the chief cells of the parathyroid gland, whilst 

low levels of extracellular ionised calcium trigger an increase in PTH release. In the latter 

case, mobilisation of intracellular calcium is achieved through PTH/PTH-related peptide 

receptor-dependent mechanisms that activate G protein signals (Poole & Reeve, 2005). 

Calcitonin is secreted from the thyroid gland and antagonises the actions of PTH in calcium 

homeostasis (Mundy et al., 1999). Calcium is absorbed in the intestine and reabsorbed in the 

kidneys under the actions of Vitamin D (Mundy et al., 1999). There is a strong body of 

evidence linking calcium intake to skeletal growth (adequate calcium intake) and bone loss 

(inadequate calcium intake) (Bonjour et al., 1997; Matkovic & Heaney, 1992). Several 

studies have used calcium either in the form of supplements or through increased dairy 

consumption in children and adolescents and have shown positive influences in BMC and 

BMD compared to controls (Winzenberg et al., 2006; Rizzoli et al., 2008). Studies in young 

adults have shown a positive association between calcium intake and BMD (Nakamura et 

al., 2001; van den Hooven et al., 2015). Conversely, low calcium intake may be a risk factor 

for stress fracture injury (Nieves et al., 2010) and calcium supplementation (in combination 

with Vitamin D) in individuals with low calcium intake at baseline may reduce stress 

fracture risk (Lappe et al., 2008). In older adults, calcium supplementation may attenuate 

some of the age-related bone loss, with these effects being more profound in individuals 

with low calcium intakes of 500–1000 mg ∙d-1 at baseline. A meta-analysis of 23 trials and 

41,419 participants showed that calcium supplementation alone or in combination with 
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vitamin D supplementation was associated with a 0.5% reduction in hip bone loss and a 

1.2% reduction in spine bone loss (Tang et al., 2008). The same meta-analysis showed a 

13% reduction in fracture risk with superior treatment effects when calcium and Vitamin D 

doses were high (calcium ≥ 1200 mg and Vitamin D ≥ 800 IU) (Tang et al., 2008).  

2.6.2.4 Vitamin D  

Vitamin D is an essential nutrient with several skeletal and non-skeletal roles (i.e., anti-

carcinogenic, immunological, neurological, cardio-protective, anti-diabetic) (DeLuca et al., 

2004; Wacker & Hollick, 2013). Vitamin D can be either synthesised in the skin or 

consumed via diet and supplements. Vitamin D, from both sources, is inactive and needs to 

be hydrolysed twice to its biologically active form 1,25-(OH)2D (Holick et al., 2011). The 

first hydroxylation occurs in the liver and converts Vitamin D to 25-hydroxyvitamin D (25-

(OH)D) and the second hydroxylation takes place in the kidney converting 25-(OH)D to the 

biological active 1,25-(OH)2D. Both 25-(OH)D and 1,25-(OH)2D serve as markers of 

Vitamin D status. 1,25-(OH)2D stimulates intestinal calcium and phosphorus absorption and 

calcium reabsorption from the kidneys. In bone, 1,25-(OH)2D binds to its receptor present on 

the osteoblasts to regulate the expression of RANKL; which can then interact with its 

receptor RANK, or decoy receptor OPG, to promote or inhibit osteoclastogenesis and thus 

control bone resorption and calcium mobilisation from the skeleton (Holick et al., 2011). 

Poor vitamin D status reduces the efficiency of intestinal calcium and phosphorus absorption 

and results in an elevation in PTH levels in an attempt to maintain serum calcium levels 

(Mundy et al., 1999; Wacker & Hollick, 2013). Poor vitamin D status has been associated 

with low BMD in children (known as rickets) and adults (termed osteomalacia) (Gordon et 

al., 2008). In addition to these negative skeletal effects, Vitamin D deficiency contributes to 

muscle weakness (Gordon et al., 2008; Bischoff-Ferrari et al., 2009). In physically active 

individuals, suboptimal vitamin D status has been reported as a risk factor for altered bone 

turnover (Lutz et al., 2012; Evans et al., 2008) and stress fracture injury (please see 2.8.2) in 

some (Ruohola et al., 2006; McClung & Karl, 2010) but not all previous studies (Lewis et 

al., 2013). The impact of an increase in Vitamin D intake via supplementation or dietary 

sources on bone parameters remains unclear mainly due to differences in Vitamin D 

supplementation forms, co-supplemetantion with other micronutrients (e.g., calcium), study 

duration and particiapants’ baseline Vitamin D status . Eight weeks of supplementation with 

800 IU of vitamin D [as 1,25-(OH)2D] in combination with 2000 mg of calcium reduced 

stress fracture incidence in female Navy recruits (Lappe et al., 2008), whereas 

supplementation with Vitamin D [as 25-(OH)D] for the same study duration (8-week) had 

no effect on BMD in elite female basketball players with low Vitamin D levels at baseline 
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(Bellows et al., 2013). Notably, potential side effects resulting from high doses of calcium 

(such as constipation, kidney stones, renal failure, and vascular calcification) and Vitamin D 

(anorexia, weight loss, and polyuria, increased calcium levels and cardiac arrhythmias) 

should be considered (Wesner, 2012).  

2.6.3. Mechanical loading and bone 

Compelling evidence supports the positive effects of mechanical loading in establishing 

bone mass during growth, conserving it during adulthood and mitigating bone loss in later 

life (Nikander et al., 2010; Weaver et al., 2016; Robling et al., 2006). Wolf (1892) first 

proposed that bone is able to adapt its mass and architecture to prevailing mechanical strain. 

Based on this theory, the mechanostast theory, developed by Frost (1990), describes the site-

specific addition of bone in response to large amounts of strain and the removal of bone due 

to insufficient strain (Frost, 1987). Indeed, sports participation in weight-bearing activities 

results in increased bone mass and enhanced architecture compared to non-weight bearing 

activities or a sedentary lifestyle (Taafe et al., 1997; Olmedillas et al., 2012; Scofield & 

Hecht, 2012). Conversely, bone loss has been reported in humans and animals subjected to 

spaceflight or ground-based models for spaceflight (e.g., bed rest) (Sibonga, et al. 2015; 

Spector, et al. 2009).  

Mechanoreceptors are present on osteocytes and have the ability to detect strain-induced 

interstitial fluid flow, fluid shear stress and activate signalling pathways (e.g., canonical Wnt 

pathway) and molecules (e.g., sclerostin, IGFs, prostaglandin and nitric oxide) that control 

bone remodelling (Lombardi et al., 2015a; Bonnet & Ferrari, 2010). The indirect effects of 

mechanical loading on bone are mediated in part by muscle contractions and increases in 

lean body mass, which impose stresses to the bone that are detected by the 

mechanoreceptors (Lombardi et al., 2015a; Bonnet & Ferrari, 2010). Changes in circulating 

hormones and growth factors may also mediate the effects of mechanical loading, by 

altering bone turnover or mineral homeostasis (Lombardi et al., 2015a; Bonnet & Ferrari, 

2010).  

Osteogenic responses are initiated when bone is imposed to strains of greater magnitude than 

a threshold level, which is determined by a habitual strain range (Iwaniec & Turner, 2016; 

Weaver et al., 2016: Robling et al., 2006). Exercise based interventions have demonstrated 

bone gains, favourable alterations in bone architecture and increases in bone strength across 

a range of populations including children/adolescents (Meyer et al., 2011; Lofgren et al., 

2011), adults (Vainionpaa et al., 2007; Mohr et al., 2015) and the elderly (Stolzenberg et al., 
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2003) compared to controls. Sedentary individuals may respond to low-impact loading and 

augment bone mass or structure, whereas individuals that are more habitually active may 

need greater stimuli for bone gains to occur (Turner & Robling et al., 2003).  

The responsiveness of the skeleton to mechanical loading varies considerably with age. The 

growing skeleton is superior in adapting to loads than the mature skeleton. Several studies in 

athletes participating in racquet sports have shown that the age at which training was 

initiated had a significant impact on bone adaptations (Kannus et al., 1995; Kontulainen et 

al., 2002). Girls who began training prior to menarche had a significantly greater (2 to 4 

times) BMC and cross-sectional area (Kannus et al., 1995) in the dominant arm compared to 

the non-dominant arm than athletes who began their training after menarche. Using a similar 

population, a subsequent study also showed increased bone strength in girls who started 

training before or at menarche or who were peri-pubertal, but these positive effects were not 

shown in the post-pubertal group (Kontulainen et al., 2002). As such, childhood and early 

puberty may offer a unique window of opportunity for skeletal benefits.  

The type, intensity, duration, frequency and importantly the magnitude of mechanical 

loading are key characteristics of exercise that influence bone strength and its determinants 

(Banfi et al., 2010). There is no agreement about the characteristics of exercise that are able 

to optimise bone growth and maintenance, and minimise bone loss. However, current 

evidence suggests that bone is most responsive to exercise that is dynamic, of high or 

medium impact, short in load duration and is odd or non-repetitive in load direction (Banfi et 

al., 2010; Weaver et al., 2016; Lombardi et al., 2015a; Marques et al., 2011).  

2.7. Bone disorders  

2.7.1. Osteoporosis  

Osteoporosis is a common disorder of bone remodelling. It is characterised by reductions in 

bone mass and strength up to the point where the skeleton fails to perform its supportive 

function, predisposing it to fragility fractures (Kanis et al., 2013; Baron & Kneissel, 2013). 

Osteoporosis is considered a silent disease; as it remains asymptomatic until it is clinically 

manifested by fractures. Women are affected more than men; 30 to 50% of women and 15 to 

30% of men will sustain an osteoporotic fracture in their lifetime (Johnell & Kanis, 2006). 

These rates are translated as occurrence of an osteoporotic fracture every 3 seconds, with 

approximately 2,000 fractures per day or 9 million fractures per annum worldwide (Akesson 

et al., 2013). Osteoporotic fractures at some skeletal sites (e.g., hip, vertebra) are associated 

with greater disability, morbidity and excess mortality, including reduced function, pain, loss 
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of height, deformity and low quality of life (Center et al., 1999). Sustaining an osteoporotic 

fracture increases the risk by two to four times for subsequent fracture occurrence 

(Klotzbuecher et al., 2000). In addition to the devastating personal health consequences, 

osteoporosis increases direct (e.g., hospitalisation cost) and indirect (e.g., reduced 

productivity, equipment, long-term care) economic costs. It is estimated that osteoporotic 

fractures cost €37 billion each year to health care systems in Europe and approximately US 

$20 billion per year in the US (Hernlund et al., 2013).  

The health burdens associated with osteoporosis underpin the importance of optimising bone 

mass and reducing fracture risk. Although prevention and treatment strategies have been 

historically directed towards older individuals already at risk of osteoporosis, it is now 

understood that the susceptibility to the disease is acquired throughout the lifespan (Harvey 

et al., 2014). Mathematical models suggest that the peak bone mass achieved in young 

adulthood is a strong predictor of fracture risk, with at least equal importance as bone loss 

after this point (Horsman & Burkinshaw, 1989; Hernadez et al. 2003). Thus, maximisation 

of peak bone mass and maintenance of adult BMD may enhance the bone reserve and 

contribute to the reduction in osteoporotic risk later in life (Heaney et al., 2000; Rizzoli et 

al., 2010).  

2.7.2. Stress fracture injury  

Stress fracture injuries can be categorised into insufficiency or fatigue fractures (Datir et al., 

2007). Insufficiency stress fracture injuries are common in older adults and result from 

normal loading applied to weakened bone (Datir et al., 2007). In contrast, fatigue stress 

fractures commonly occur in young adults when they experience repetitive loading that the 

skeleton is unable to withstand (Warden et al., 2006; 2014). The repetitive nature of the 

loading required for stress fracture injury occurrence also differentiates them from traumatic 

fractures, which are single incidence events. This literature review focuses on fatigue 

fractures, as they are the common type of injury diagnosed in physically active populations, 

who are the subject of this thesis. 

The pathophysiology underlying stress fracture injury is poorly understood. Two main 

models have been developed, the first model emphasises the role of mechanical loading, 

supporting the theory that repetitive mechanical loading above the bones’ fracture threshold 

results in the accumulation of microdamage and, if unchecked, the development of a stress 

fracture (Warden et al., 2006; 2014; Schaffler et al., 1990). The second model suggests an 

interaction between mechanical loading and bone remodelling (Figure 2.7). In this model, 
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increased and repetitive mechanical loading increases local bone strain and initiates damage. 

The bone is able to target remodelling in the areas of damage, which are possibly sensed by 

the osteocytes (targeted remodelling, please see section 2.4). As such, the damaged area is 

removed by the osteoclasts (bone resorption) and refilled with new bone by the osteoblasts 

(bone formation). Damage repair through remodelling effectively reduces bone strain for a 

given load, enabling the bone to tolerate greater loads before microdamage occurrence 

(Warden et al., 2005). However, factors that modify the load applied to a bone and/or factors 

that modify the ability of bone to resist load or repair bone, may increase bone remodelling 

sites, thus increasing the porosity of the cortex and reducing bone mass locally (Warden et 

al., 2006; 2014 and Shaffler et al., 1990). Bone stiffness and strength are rapidly affected 

and repetitive loading in this region increases strain and may lead to the accumulation of 

micro-cracks and stress fracture injury (Warden et al., 2006; 2014) (Figure 2.7).  

 

Figure 2.7. Pathophysiology for stress fracture injury (Adapted from Warden et al., 2006; 

2014 and Shaffler et al., 1990). 

Stress fracture injuries are one of the most common injuries in athletes (Fredericson et al., 

2006; Snyder et al., 2006). The highest incidence is estimated in track and field athletes with 

rates between 10 and 31% (Johnson et al., 1994; Bennell et al., 1996a). In military 

personnel, the incidence of stress fracture ranges greatly, up to 49%, depending upon 

population, training programme and phase (Giladi et al., 1991; Kelly, 2000; Finestone et al., 

2011; Milgrom et al., 1985). Sex differences in stress fracture epidemiology have also been 
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reported, with some studies demonstrating higher incidence rates in women compared to 

those in men (Goldberg & Pecore, 1994; Johnson et al., 1994; Wentz et al., 2011), whilst 

others have shown similar incidence rates between sexes (Bennell et al., 1996a; Peter and 

Smith, 1992; Winfield et al., 1997). Anatomical sites of stress fractures injuries are often 

specific to the activity performed; supporting the model of increased mechanical loading in 

the area of development. For example, the tibia is the most common stress fracture site in 

long distance runners and stress fractures of the ribs are almost unique to rowers (Bennell et 

al., 1996a; 1999b).  

A great number of risk factors have been implicated in the pathophysiology of stress fracture 

injuries (Warden et al., 2006, 2014; Jones et al, 2002; Bennell et al., 1999b). These factors 

have been sub-grouped as factors that i) alter the load applied to a bone and ii) modify the 

ability of bone to resist load (Warden et al, 2014). Examples of factors that alter the load 

applied to bone include biomechanical factors (e.g., ground reaction force magnitude and 

frequency, anthropometry, alignment), training factors (e.g., duration, intensity and 

frequency of training sessions), physical fitness (e.g., flexibility, muscle strength, aerobic 

endurance), training surface and terrain and equipment uses (e.g., shoes and inserts) (Warden 

et al., 2014; Beck et al., 2000; Bennell et al., 1999b; Milgrom et al., 2003). Factors that 

modify bone resistance to loading include bone phenotypes (e.g., bone mass, geometry and 

bone turnover), dietary factors (e.g., EA, calcium, Vitamin D, disordered eating), endocrine 

profile (e.g., oestrogen deficiency), training factors (e.g., recovery time) (Warden et al., 

2006; 2014; Wentz et al., 2012; Murguia et al., 1988; Nieves et al., 2010; Lappe et al., 

2008). Clearly, there is no single cause of stress fracture injuries and it appears there is much 

overlap between risk factors. For example, exercise duration, intensity and frequency may 

determine the load applied to a bone. Additionally, exercise through increased EEE may 

contribute to low EA and alter endocrine profile; thereby, modifying the ability of bone to 

resist load.  
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2.8. EA 

The concept of EA originates in ecology and biology and describes how animals use 

digestible energy to overcome an energetically demanding, environmental challenge (e.g., 

cold exposure or cost of foraging) and to cover their physiological functions (Wade & Jones, 

2004; Wade & Schneider, 1996). In human physiology, exercise is the environmental 

challenge, thus, EA defined as DEI minus EEE, represents the amount of energy accessible 

for use for physiological functions after taking into account the energetic demands of 

exercise. EA is commonly normalised to muscle tissue (kilograms of LBM or FFM) to 

represent the metabolically active tissue and account for individual differences in body 

composition (Loucks &Thuma 2003; Ihle & Loucks, 2004; Loucks, 2013). An EA of 

approximately 45 kcal·kgLBM-1·d-1 has been reported to result in energy balance and is 

capable of maintaining bodily functions in normal-weight healthy young adult females 

(Loucks & Thuma, 2003; Ihle & Loucks, 2004; Loucks, 2013). When EA drops below this 

level, the body uses metabolic stores and develops compensatory mechanisms to conserve 

energy (Loucks, 2007; 2013). Energy is prioritised for essential functions, such as cellular 

maintenance, thermoregulation, sensory function and locomotion; therefore, becomes 

unavailable for the other less essential for survival needs such as bone health, immunity and 

reproduction, which are compromised to various degrees depending on the extent of energy 

deficiency (Wade & Jones, 2004; Wade & Schneider, 1996) (Figure 2.8.). 

Several populations experience low EA such as: physically active populations, through 

increased training volume with or without food restrictions (Loucks et al., 2007; 2011), rural 

populations, due to increased occupational physical activity and seasonal food unavailability 

(Pontzer, 2015), patients with eating disorders/disordered eating and/or hyperactivity 

patterns (Miller 2011; Zipfel et al., 2013), obese/overweight individuals under weight loss 

programmes (diet and/or exercise) (Zibellini et al., 2015; Soltani et al., 2016) and bariatric 

surgery patients (Scibora et al., 2012; Scibora et al., 2014). As such, different modalities and 

combinations of DEI and/or EE may result in reductions in EA (Figure 2.9.). In this second 

part of the literature review, the focus will be placed upon the concept of EA as utilised in a 

sports nutrition context. Furthermore, current evidence on the effects of low EA on bone 

metabolism and health in physically active (non-obese) populations will be synthesised.  
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Figure 2.8. The association between low energy availability and bodily functions. Low 

energy availability triggers alterations in metabolic fuels and stores, which, in turn, alter the 

partitioning of energy. The less critical for survival functions are compromised (red box), 

whereas essential for survival processes are prioritised (green box). Drawn by author.  

2.9. Aetiology of low EA 

In physically active populations low EA can be attained intentionally or unintentionally 

(Loucks, 2007; 2013) (Figure 2.9). Low EA may result from intentional efforts to restrict 

food intake or to exercise more, with the goal to achieve or maintain a specific body weight 

or body composition (Nattiv et al., 2007; Loucks, 2007). Athletes participating in aesthetic 

sports (e.g., diving, ballet, figure skating), weight category sports (e.g., judo, boxing, 

lightweight rowing) or sports in which light weight offers gravitational advantages (e.g., 

long distance running, cycling, cross-country skiing) are more prone to adopt disordered 

eating behaviours (Nattiv et al., 2007; Mountjoy et al., 2014; Sundgot-Borgen & Trosveit, 

2010). Clinically diagnosed eating disorders, namely anorexia nervosa and bulimia nervosa, 

have been reported among physically active women, with greater prevalence reported in 

weight sensitive sports (42% in aesthetic sports and 24% in endurance sports) and lower 

prevalence rates among ball sports (Greenleaf et al., 2009; Sundgot-Borgen & Trosveit, 

2004; Thieman et al., 2015) Disordered eating behaviours (e.g., binge eating, use of 

laxatives of diuretics) in the absence of an eating disorder diagnosis are also common among 

athletic individuals and may lead to low EA (Joy et al., 2016; De Souza et al., 2014a; 

Sundgot-Borgen & Trosveit, 2010).  

Unintentional low EA may occur when individuals fail to compensate for the energy cost of 

exercise by analogously increasing their dietary energy intake, with this disparity being 



46 

 

particularly pertinent during periods of increased training volume (Stubbs et al. 2004, 

Loucks 2007; Loucks et al., 2011). This is unsurprising, given that some athletes train or 

compete in sports that contribute to high TEE, such as cycling (Tour de France, TEE: 

8,054±9143 kcal∙d-1 in men), skiing (TEE: 4,374 ±550 kcal∙d-1 in women), running (TEE: 

2,820±311 kcal∙d-1 in women) or triathlon (ironman, TEE: 10,036±931 kcal∙d-1 in men and 

8,570±1014 kcal∙d-1 in women) (Pontzer, 2015; Kimber et al., 2002). Several mechanisms 

have been proposed to explain the difficulty in matching nutritional intake with increased 

energy expenditure, such as an exercise-induced reduction in appetite (Loucks et al., 2007, 

2011) and implementation of low energy diets characterised by a high water-content (e.g., 

fruit and vegetables), high fibre and low fat consumption (Melin et al., 2016). 

Other factors contributing to both intentional and unintentional low EA are: lack of 

knowledge and professional guidance during weight-control attempts (Loucks, 2007), 

incorrect body composition assessment resulting in unnecessary adaptations of athletes’ DEI 

and training (Aerenhouts et al., 2015) and a pre-occupation with body image and body 

weight that is not related to sport performance (Wardle et al., 2006). 

  

Figure 2.9. Origins (blue boxes) and causes (green boxes) of low EA in physically active 

individuals. Drawn by author.  

2.10. EA as part of the Female Athlete Triad and the RED-S models 

The first associations between exercise induced amenorrhea and impaired bone health were 

reported by Drinkwater et al. (1984) and Cann et al. (1984), who observed significantly 
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lower BMC among amenorrheic runners. Subsequently, Drinkwater et al. (1990) 

documented a significant relationship between BMD and menstrual history in female 

athletes (Drinkwater et al., 1990). In 1993, the American College of Sports Medicine 

(ACSM) created an expert group to synthesise the available evidence regarding these issues 

of concerns in female athletes. The first published paper in the field defined the Female 

Athlete Triad as the interplay between disordered eating, amenorrhea and osteoporosis in 

physically active girls and women (Yeager et al., 1993). In 1997, the ACSM published their 

first position statement on the Female Athlete Triad to provide evidence-based information 

about screening, diagnosis, prevention and treatment (Otis et al., 1997) (Figure 2.10.). The 

co-existence of all three components was a pre-requisite for the diagnosis of the Female 

Athlete Triad, omitting athletes at substantial disease risk (Nattiv et al., 2007; Gibbs et al., 

2013). A decade later, the ACSM revised their position statement and published an updated 

version of the Female Athlete Triad, which developed the original static parts of the triangle 

into a continuum from health to disease (Nattiv et al, 2007) (Figure 2.10.). The healthy state 

is characterised by optimal/adequate EA (45 kcal·kgLBM-1·d-1), eumenorrhea and normal 

BMD, which is followed by suboptimal representations of EA (between 30 and 45 

kcal·kgLBM-1·d-1), menstrual function (anovulation and luteal phase defects -please see 

section 2.6.1.2.) and BMD. Lastly, the clinical manifestations include low EA (<30 

kcal·kgLBM-1·d-1) with or without eating disorders, functional hypothalamic amenorrhea 

and osteoporosis (the effects of low EA on bone health, within the framework of the Triad, 

are reviewed in more detail in section 2.11.2.). Notably, the progression of each component 

in the continuum occurs independently and does not necessitate the presence of the other 

two. This updated version of the Female Athlete Triad acknowledges the occurrence and 

consequences of unintentional energy deficits, as indicated by replacing disordered eating 

with low EA and by recognising that low EA/energy deficiency is an underlying cause of the 

other components. In 2014, the Female Athlete Triad Coalition published a consensus 

statement, which was adopted by the ACSM and the American Bone Health Alliance, with 

guidelines regarding treatment and management of the components of the Female Athlete 

Triad and the introduction of an algorithm for return-to-play of athletes with the Triad (De 

Souza et al., 2014a). 

In 2014, the International Olympic Committee Position Stand extended the concept of the 

Triad, to “Relative Energy Deficiency in Sports (RED-S)”, in order to broaden its definition 

and consequences. Thus, RED-S models extend the adverse effect of low EA on health and 

performance beyond those originally described in the Female Athlete Triad (Mountjoy et al., 

2014) (Figure 2.10.). RED-S models propose that male athletes may also experience low EA 

and their subsequent adverse consequences on health and performance (Mountjoy et al., 
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2014). This change in terminology has been a matter of debate, due to the paucity of studies, 

in women and especially in men, in many of the key areas (e.g., male bone and reproductive 

health) proposed in the new RED-S models (De Souza et al., 2014b).  

Many advances have been made in the area of EA in physically active populations. 

Importantly, both the Female Athlete Triad and the RED-S models support that notion that 

low EA triggers an unfavourable cascade of events that compromise health and performance 

in physically active women and men. In order to progress the RED-S paradigm, future 

research is required to: (i) characterise the potential for unfavourable short- and long-term 

effects of energy deficiency in men and (ii) explore the effects of low EA on more areas of 

health and performance in women.  
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Figure 2.10. The Female Athlete Triad (Triad) (A) and the health (B) and performance (C) 

aspects introduced by the RED-S model. The content of the light red square illustrates the 

definition of the Female Athlete Triad (A) provided by Otis et al., 1997. RED-S: Relative 

Energy Deficiency in Sports. Adapted from Otis et al., 1997; Nattiv et al., 2007; De Souza et 

al., 2014a and Mountjoy et al., 2014. 
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2.11. Effects of energy restriction/low EA on bone metabolism and health in young, 

non-obese populations  

2.11.1. Evidence from animal studies  

The use of animal models to explore the effects of energy restriction/low EA has provided 

insight into the independent and synergistic effects of diet and exercise on bone metabolism 

and health. The similarities in the regulatory mechanisms of bone turnover between animals 

and humans (Frost & Jee, 1992), the accurate control of DEI and EEE, the employment of a 

greater number of study arms than human studies and the ability to analyse changes at a 

tissue-level are some of the strengths of the animal based studies (Metzger et al., 2016). In 

contrast, there is significant diversity among the animal models used in bone research, which 

requires knowledge of bone anatomy and physiology in each model and an understanding of 

the differences in bone parameters from those in humans (Turner, 2001b). As such, careful 

interpretation is required when considering the relevance of findings from animal research in 

relation to effects in humans.  

Non-exercising animals exposed to food restriction demonstrate increased bone resorption 

and reduced bone formation (Talbot et al., 2001; Hamrick et al., 2008; Devlin et al., 2010), 

reductions in BMD (Hawkins et al., 2010; Aikawa et al., 2015) and alterations in bone 

microarchitecture (Talbot et al., 2001; Devlin et al., 2010; Turner & Iwaniec, 2011) and 

strength (Hamrick et al., 2008). Baseline body mass appears to be an important determinant 

of bone loss due to energy restriction, as suggested by data showing reductions in BMD 

(tibia, distal and proximal femur and femoral neck) and bone volume of the trabecular 

compartment in lean but not obese female rats following a 40% diet-induced energy deficit 

(Hawkins et al., 2010). Importantly, food restriction involves restrictions in both dietary 

energy and micronutrient intakes; the latter may also play an important role in bone 

conservation. Talbott et al. (1998) showed that 40% dietary energy restriction combined 

with 80% calcium restriction reduced BMD more than 40% dietary energy restriction alone 

in young female rats, suggesting that reductions in micronutrient intake may synergistically 

affect bone-related outcomes. Thus, studies that restrict energy and micronutrients cannot 

separate the individual effects of macro- and micronutrient availability and should be 

interpreted with this limitation in mind.  

Exercise and ad libitum feeding increase BMD in female rats (Shiga et al., 2003; Aikawa et 

al., 2015). However, exercise and food reduction result in reduced EA (Hattori et al., 2013; 

2014; Metzger et al., 2016) (Table 2.4.). Low bone mass (Aikawa et al., 2015; Metzger et 

al., 2016), low bone strength (Metzger et al., 2016) and increased resorption (Metzger et al., 
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2016) have been reported at varying levels of low EA/energy deficiency achieved by 

combinations of exercise and diet. When compared with food restriction alone, the addition 

of exercise to dietary energy restriction may attenuate, but does not prevent bone loss (Swift 

et al., 2012; Metzger et al., 2016). Together, these findings suggest that it is important to 

prevent low EA, given that low EA may override the impact of increased mechanical 

loading provided by exercise. Future studies with robust experimental designs including 

magnitude of energy restriction being equal in their restricted conditions, are needed to 

explore how different levels of low EA and different combinations of exercise and dietary 

energy restriction affect bone metabolism and health.  

A greater susceptibility of female versus male animals to bone loss due to reduced EA is 

supported by studies in female and male rats independently (Aikawa et al., 2015; Hattori et 

al., 2013), although no direct sex comparison has been performed in the same study. For 

example, 30% food restriction with or without exercise, resulted in lower bone strength and 

lower BMD than exercise alone or food restriction alone in female adult Sprague-Dawley 

rats (Aikawa et al., 2015). The same protocol applied in male adult Sprague-Dawley rats did 

not alter bone strength or trabecular bone volume (Hattori et al., 2013). A limitation of both 

studies is that exercise was prescribed on a voluntary basis and was not controlled to 

determine specific EEE. Thus, the restricted conditions (diet only and diet and exercise) did 

not result in the same level of EA. Future studies should explore potential sex differences in 

response to low EA on bone metabolism and health in skeletally mature animal models 

within the same study using well-controlled experimental conditions.  

In animal models, severe food restriction disrupts the reproductive cycle and decreases 

gonad size in female animals (Martin et al., 2007) without affecting gonad size (Martin et 

al., 2007) or fertility in male animals (Nelson et al., 1997; Johnson et al., 1992). Exercising 

female rats, with low EA, exhibit declines in oestrogen levels with concurrent reductions in 

femur and tibial BMD (DiMarco, 2007). Reduced concentrations of regulatory hormones, 

such as IGF-1 and leptin, following low EA, occur in parallel with adverse alterations in 

bone-related outcomes regardless of the modality of EA/energy restriction implementation 

(diet-induced enengy restriction, Devlin et al., 2010; Hamrick et al., 2008; energy restriction 

resulting from combined dietary restrictions and exercise, Metzger et al., 2016). 
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Table 2.4. Summary of energy restriction/reduced EA studies through diet and exercise in animal models. 

Study  Animals1 Duration Groups/ conditions  

(exercise/food intake status) 

Main results for bone-related variables  

 

Metzger 

et al., 

2016 

Sprague-

Dawley 

female rats 

5-month  

12 weeks 1.Exercise- ad libitum fed (EX-Adlib) 

2.Exercise 10%- 30%ood restricted (EX-ER) 

3.Sedentary-40% food restricted(SED-ER)  

Areal BMD was lower after 12 weeks for EX-ER vs EX-Adlib. EX-ER  Areal BMD was 

higher than SED-ER. EX-ER demonstrated higher cortical volumetric BMD at the 

midshaft tibia vs SED- ER CTX was higher for EX-ER than EX-Adlib and P1NP 

declined in all groups. Exercise during ER mitigated some, but not all, of the bone loss 

shown in SED-ER rats. EA between ER groups was equal.  

Aikawa 

et al., 

2015  

Spargue-

Dawley 

female rats 

7-week old 

12 weeks 1.Sedentary-ad libitum fed (SED-Adlib) 

2.Voluntary exercise-ad libitum fed (EX-Adlib)  

3.Sedentary-30% food restricted (SED-FR)  

4.Voluntary exercise -30% food restricted (EX-FR) 

The interaction of exercise and food restriction (EX-FR) resulted in, lower bone strength 

and lower BMD (lumbar spine; total, proximal metaphysis and diaphysis tibia) than 

exercise alone (EX-Adlib) or food restriction alone (SED-FR). EA was lower in EX-

FR than SED-FR, which may have contributed to these results.  

Hattori 

et al., 

2014  

Sprague-

Dawley male 

rats 

4-week  

13 weeks 1.Sedentary-ad libitum fed (SED-Adlib) 

2.Voluntary exercise-ad libitum fed (EX-Adlib)  

3.Sedentary-30% food restricted (SED-FR)  

4.Voluntary exercise -30% food restricted (EX-FR) 

Reductions in femur bone strength, tibial BMD, trabecular and cortical bone volume 

were shown in EX-FR group compared to SED-Adlib. These results suggest that food 

restriction causes low bone strength and deterioration in bone architecture in exercising 

growing male rats.  

Hattori 

et al., 

2013  

Spargue-

Dawley male 

rats 

14-week old 

13 weeks 1.Sedentary-ad libitum fed (SED-Adlib) 

2.Voluntary exercise-ad libitum fed (EX-Adlib)  

3.Sedentary-30%food restricted (SED-FR)  

4.Voluntary exercise -30% food restricted (EX-FR) 

The EX-FR, SED-FR and EX groups did not differ in trabecular bone morphology and 

strength from SED. Cortical bone volume decreased in EX-FR compared to EX. These 

results suggest that low EA has little effect on bone tissues in adult male rats. No 

information if restricted conditions resulted in similar reduced EA- exercise and food 

intake data suggest a lower EA in EX-FR compared to SED-FR.  

Swift et 

al., 2012  

Sprague-

Dawley 

female rats 

4-month 

12 weeks 1.Sedentary- ad libitum fed (SED-Adlib) 

2.Exercise- ad libitum fed (EX-Adlib) 

3.Exercise-40% calcium restriction only (EX-CaR) 

4. Energy restricted (40%) though exercise (EX-ER)  

5. Exercise-40% food restricted  (EX-FR) 

Total body BMD were lower in EX-ER and EX-FR rats compared with the EX-Adlib. 

EX-CaR had few negative effects on bone. Declines in total volumetric BMD, at the 

proximal tibia metaphysis were shown in EX-ER and EX- FR groups. EX-FR exhibited 

increased osteoclast surface and decreased mineral apposition rate in cancellous bone. 

Exercise attenuated some, but not all, deleterious effects on bone after energy or food 

restriction but is more protective during Ca restriction. 
1Animals (animal model, sex, age); EX: Exercise; SED: Sedentary; Adlib: ad libitum; FR: food restricted; CaR: calcium restriction; CTX: C-terminal telopeptides of type I collagen; P1NP: 

Amino-terminal Pro-peptides of Type 1 Procollagen 
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2.11.2. Evidence from human studies –the Female Athlete Triad and the RED-S models 

EA is the cornerstone component of the Female Athlete Triad and the RED-S models and 

underpins the pathophysiology of the remaining components (De Souza et al. 2014a; 

Mountjoy et al., 2014; 2015). EA affects menstrual function and bone health independently. 

Menstrual disturbances associated with low EA may also unfavourably influence bone 

health (Mallinson & De Souza, 2014; De Souza et al., 2008; 2014a).  

2.11.2.1. BMD  

In the Female Athlete Triad, low BMD is defined as a Z-score < -1.0 (in particular, between 

-1.0 and -2.0) in the presence of additional clinical factors (Nattiv et al., 2007), rather than T 

scores<-2.5 used for the diagnosis of osteoporosis by the World Health Organisation (Kanis 

et al., 2013). More specifically, a T-score is defined as the number of standard deviations 

over or below the mean BMD of a healthy, adult, reference population. For men younger 

than 50 years and premenopausal women the use of Z-score has been recommended (Kanis 

et al., 2013). This is defined similarly to T-score but uses an age-matched healthy population 

for comparison (Kanis et al., 2013). This is, at least in part, due to the fact that athletes 

participating in weight bearing sports have 5-15% greater BMD than non-athletes (Nattiv et 

al., 2007). In a systematic review, Gibbs et al. (2013) showed that the prevalence of low 

BMD varied between 0-15.4% when defined as Z-score ≤ -2.0 and by 0 to 39.8% when 

defined as Z-score between -1.0 to -2.0. Numerous reports have shown that amenorrheic 

athletes, who experience energy deficiency and hypogonadism, have lower BMD than 

eumenorrheic controls, especially at sites with greater contribution of trabecular bone 

(Zanker & Swaine, 1998a; Cobb et al., 2003; Christo et al., 2008; Melin et al., 2015). Links 

between disordered eating and low BMD have also been established in physically active 

females with or without menstrual disturbances (Cobb et al., 2003; Barrack et al., 2008; 

Rauh et al., 2010; Melin et al., 2015). There is little evidence available documenting the 

prevalence of low EA and BMD. In their systematic review, Gibbs et al (2013) included 

studies published between 1975 and 2011 that reported the prevalence of the Female Athlete 

Triad. From these studies, only one report by Hoch et al., 2009 included the components of 

the Triad according to the 2007 ACSM position stand (please see section 2.10-Nattiv et al., 

2007; De Souza et al., 2014). Low EA (<45 kcal·kgLBM-1·d-1) and low BMD were prevalent 

in 36 and 13% of high school female athletes respectively, with EA calculations based on 

survey information (Hoch et al., 2009). There is still paucity of studies that have measured 

low EA and BMD concurrently in physically active females (Robbeson et al., 2013; 

Goodwin et al., 2014; Melin et al., 2015). Melin et al., (2015) examined the prevalence of 

the Female Athlete Triad-associated conditions in 40 endurance female athletes; 42.5% had 
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suboptimal EA (30≤ EA (kcal·kgLBM-1·d-1) ≤ 45) and 20% demonstrated low EA (<30 

kcal·kgLBM-1·d-1). Although there was no significant association between EA and BMD; 

out of the 8 participants with low EA, five had normal BMD, one had a BMD Z-score 

between -1.0 and -2.0 and two participants had a BMD Z-score<-2.0 (Melin et al., 2015). 

Similarly, in a population of Kenyan female runners, low EA (<45 kcal·kgLBM-1·d-1) and 

low BMD were independently prevalent in 92% and 76% of the athletes and their concurrent 

presence reached a prevalence rate of 56% (Goodwin et al., 2014). In a longitudinal study, 

Viner et al (2015) measured how EA varied across the competitive season in a mixed 

population of male and female competitive endurance cyclists with lower than expected 

BMD (Z score< 0). They showed that 70% of participants had low EA <30 kcal·kg FFM-1·d-

1 during pre-season, 90% during competition and 80% during off-season; whilst there were 

no significant sex differences (Viner et al, 2015). Although these findings suggest that low 

EA and BMD co-exist in physically active women, the cross-sectional study design does not 

allow the extrapolation of a cause effect relationship between low EA and low BMD. The 

comparison of prevalence rates of low EA and BMD reported in athletes partaking in 

differerent sports is challenging mainly due to the discrepancies in the definitions used for 

low EA and low BMD and the variability in the methods utilised to determine EA (DEI, 

EEE, body composition). For example, DEI has been assessed by using food records (Melin 

et al., 2015), 24-h recalls (Robbeson et al., 2013), surveys (Hoch et al., 2009), pictures of 

food and drink items before and immediately after consumption (Shaal et al., 2016), with 

these methods differing greatly in accuracy (Magkos & Yiannakoulia, 2003) and introducing 

variability in EA values.  

Bone health studies in athletic men are scarce and limited by small sample sizes, unclear 

definitions of low BMD and low EA cut-offs and have failed to synchronously capture EA 

and BMD. Male athletes who partake in weight-sensitive sports and/or non-weight bearing 

activities are at risk for low BMD (Mountjoy et al., 2014). For example, low BMD values 

have been reported in male jockeys (Dolan et al., 2012; Warrington et al., 2009; Wilson et 

al., 2013), with the authors attributing these findings to jockeys’ rapid and extreme weight 

management practices. These findings reinforce the significantly lower BMD Z-scores seen 

among flat jockeys who compete at low BMI and possibly experience severe energy 

deficiency (Wilson et al., 2014). Disordered eating (Tenforde et al., 2015) and volume of 

endurance training (indicative of high EEE) (Hind et al., 2006; Kemmler et al., 2006) 

contribute to low EA and have been associated with BMD deficits in male athletes. Non-

weight bearing exercise may exacerbate the effects of low EA on BMD. EAs as low as 7 

kcal·kg FFM-1·d-1 (Vogt et al. 2005) have been shown in male cyclists during periods of 

high training volume and low BMD (lumbar spine) is a consistent finding among male 
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cyclists (Olmedillas et al., 2012; Nichols et al., 2010; Rector et al., 2008). Conversely, high 

impact exercise provides an osteogenic stimulus that may counteract some of the negative 

effects of low EA, with apparent effects at weight bearing sites in athletic males. This notion 

is supported by Dolan et al. (2011) who compared boxers and jockeys, as they engage in 

similar weight loss practices, and showed higher BMD among the boxers. Similarly, 

Tenforde & Fredericson (2011) showed greater regional BMDs in male soccer players 

compared to runners, and sedentary controls. Endurance runners who may experience low 

EA (Tenforde et al., 2016; Mountjoy et al., 2014) have higher BMD at loaded sites only 

compared to controls (Tenforde & Fredericson, 2011; Hetland et al., 1993; Hind et al., 

2006). Taken together, current evidence indicates that male athletes with low EA are more 

likely to have low BMD values, which is similar to low BMD seen among their female 

counterparts. 

2.11.2.2. Bone geometry, microarchitecture and strength  

An increasing number of studies are using pQCT and HR-pQCT to assess bone geometry, 

microarchitecture and strength in the area of the Female Athlete Triad (Ackerman 2011; 

2012a; Mitchell et al., 2015). Adolescent and young adult amenorrheic athletes appear to 

benefit from the osteogenic effects of exercise at weight bearing sites associated with 

habitual exercise; they exhibit similar total bone area (bone size), trabecular area and cortical 

perimeter at the tibia compared to eumenorrheic athletes and greater values than those of 

non-athletic controls. They have, however, lower trabecular number, greater trabecular 

separation and lower ratio (%) of cortical to total area, together with lower cortical density at 

the weight bearing tibia (Ackerman et al., 2011; 2012a). These data suggest a larger bone 

size resulting from exercise at loaded sites with reduced cortical thickness perhaps due to 

endocortical resorption in the presence of low oestrogen levels in amenorrheic athletes 

(Ackerman et al., 2011). At the non-weight bearing radius, total and trabecular volumetic 

BMD are lowest in the amenorrheic athletes (Ackerman et al., 2011; 2012a). Application of 

finite element analysis to the HR-pQCT images (please see section 2.5.2.) showed that 

estimated tibial stiffness and failure load were higher in the eumenorrheic athletes than in 

the non-athletes. This weight-bearing benefit is absent in the amenorrheic athletes, as 

suggested by the non- significant difference in stiffness and failure load between the 

amenorrheic athletes and the controls. At the non-weight bearing radius, failure load and 

stiffness were significantly lower in the amenorrheic athletes than in the non-athletes 

(Ackerman et al., 2012a). By using individual trabecula segmentation (please see section 

2.5.2.), a recent study further supported these results showing that trabecular morphology 

and alignment differed among amenorrheic and eumenorrheic athletes and non-athletes, with 
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these differences potentially related to a higher fracture risk in amenorrheic athletes 

(Mitchell et al., 2015). Although menstrual status is an indicator of low EA, the 

aforementioned studies did not determine the EA status in this population. The exploration 

of bone microarchitecture and strength in men with RED-S is currently lacking.  

2.11.2.3. Risk for stress fracture injury 

Barrack et al. (2014) explored several Female Athlete Triad-related factors in association 

with the development of stress fracture injuries in a large sample of female athletes. Low 

BMD (Z-score <−1.0), participation in >12 hours of purposeful exercise per week, and a 

BMI<21.0 kg·m-2, were more commonly seen among female athletes who had sustained a 

stress fracture injury (14.7%-21.0%) compared to fracture-free athletes (3.4%-7.6%) 

(Barrack et al., 2014). Furthermore, the investigators demonstrated a dose-response 

relationship between Female Athlete Triad-related factors and stress fracture injury; female 

athletes who presented with any of these three Female Athlete Triad-related factors were 

2.4-4.9 times more likely to sustain a stress fracture, and the concurrent presence of all three 

increased the risk of injury by 6.8-fold (Barrrack et al., 2014). Menstrual disturbances have 

been consistently associated with stress fracture injury (Duckham et al., 2012; S; Cline et al., 

1998) and may contribute to more severe stress fracture injuries (Nattiv et al., 2013). This is 

supported by a study by Nattiv et al. (2013), where female athletes with oligomenorrhea and 

amenorrhea had more severe stress fracture injuries (greater MRI grades) compared to their 

eumenorrheic counterparts.  

2.11.2.4. BTMs 

Previous research has shown that athletes who may experience low EA have either increased 

(Hetland et al., 1993; Dolan et al., 2012; Barrack et al., 2010) or decreased bone turnover 

(Brahm et al., 1997; Zanker & Swaine, 1998b), as evidenced by a synchronous increase in 

bone formation and resorption or a parallel decrease in both. Mean BTM levels have been 

shown to be towards the higher end of clinical ranges in jockeys (Wilson et al., 2013; 

Wardon-Lynch et al., 2010) and endurance runners (Hetland et al., 1993; Barrack et al., 

2010). In contrast with these findings, reduced bone formation and resorption were reported 

in amenorrheic female athletes compared with oligomenorrhoeic or eumenorrhoeic athletes 

(Zanker & Swaine, 1998b) and in male runners compared to age-matched controls (Brahm et 

al., 1997). The clinical significance of these findings is unclear, since either increased or 

decreased bone turnover may accompany changes in bone properties (Davison et al., 2006; 

Hernadez, 2008; Bouxsein, 2005).  Increased bone turnover decreases the duration of 

secondary mineralisation leading to under-mineralised bone (Davison et al., 2006), and 
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modifies the isomerisation of collagen (Viguet-Carrin et al., 2006). Conversely, suppressed 

bone turnover may impair bone-repairing capacity leading to microdamage accumulation 

and altered mechanical properties (Bouxsein 2005; Davidon et al., 2006). 

De Souza et al. (2008) used four experimental conditions (energy and oestrogen replete, 

energy replete oestrogen deplete, energy deplete oestrogen replete and energy and oestrogen 

deplete) to examine the independent and synergistic effects of energy and oestrogens on 

BTMs in exercising women.  The energy replete groups showed no changes in either bone 

formation or resorption independent of oestrogen status. Energy and oestrogen deficiency 

resulted in significantly reduced bone formation (P1NP) and elevated bone resorption 

(urinary β-CTX) (De Souza et al., 2008) compared to the levels of these markers in the other 

groups.  This was accompanied by the lowest BMD values in the energy and oestrogen 

deficient group. This study suggests an uncoupling of bone turnover that resulted in changes 

in BMD, when individuals were deficient in both energy and oestrogen. These finding 

should, however, be interpreted cautiously. The selection of β-CTX measured in urine as a 

marker of bone resorption is surprising, given the requirements for creatinine adjustments 

and standardisation of urine sample collection (Vasikaran et al., 2011; Lombardi et a., 

2012a). Furthermore, this study was observational and did not induce the oestrogen or 

energy deficiencies. As such, a cause-effect relationship cannot be determined and 

prospective studies are required to shed light on the BTM responses to low EA, and to 

investigate how these might translate to long-term changes in bone mass and architecture in 

physically active populations. Direct assessment of the nutritional and reproductive status of 

the study population is an important methodological consideration for future research.  

2.11.3. Interventional studies in humans  

A limited number of experimental studies have investigated the short and long-term effects 

of low EA (or energy restriction) on bone turnover and/or BMD in non-obese populations 

(Table 2.6.). Grinspoon et al. (1995) showed that acute fasting (without exercise) reduced 

bone formation (P1CP: -45%; OC: -58%) and increased bone resorption (PYD: -49% and 

DPD: -50%) following 4 days of energy restriction in sedentary eumenorheic women. 

Although the BTM measured are not included in the recommended BTM of current 

reference standards (Vasikaran et al., 2011, please also see section 2.5.4.5.) and earlier 

assays used to measure these markers were resulting in more heterogeneous results, the 

authors of this study suggest an uncoupling of BTM favouring resorption following 4 days 

of fasting. Energy restriction through exercise (60 min running) and 50% restriction of 

estimated dietary energy requirements reduced bone formation (P1NP), but did not alter 
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bone resorption (uninary NTX) in trained men (Zanker and Swaine, 2000).  P1NP is 

reflective of bone formation, has low intaindividual variability and satisfactory assay 

precision (Vasikaran et al., 2011); however, urinary NTX is limited in part due to sources of 

errors introduced by urine samples and heterogeneous nature of NTX fragments (Vasikaran 

et al., 2011; Wheater et al., 2013). In this study energy restriction was determined using 

energy balance rather than EA. The estimation of energy balance (DEI, RMR, thermic effect 

of food and EEE) may involve greater uncertainty compared to EA (DEI, EEE) (Loucks 

2007; 2013). This study is the only one conducted in a physically active population so far, 

but poor methodological rigour necessitates the conduction of further studies with tight 

experimental control. In subsequent, short-term laboratory studies, Loucks et al. (2004) 

explored the effects of three distinct levels of reduced EA at 30, 20 and 10 kcal·kgLBM-1·d-

1on BTM in sedentary, eumenorrheic women. All three levels of reduced EA were achieved 

by a combination of dietary energy restriction (45, 35 and 25 kcal·kgLBM-1·d-1) and exercise 

(contributing to EEE of 15 kcal·kgLBM-1·d-1 at 70% of their maximal oxygen uptake 

(VO2max)). This study showed a dose response relationship between reduced EA and BTM; 

bone formation (P1CP and OC) was suppressed at an EA below 30 kcal·kgLBM-1·d-1, 

whereas bone resorption (urinary NTX) only increased in the severely restricted EA 

condition at 10 kcal·kgLBM-1·d-1 (Ihle & Loucks, 2004).  

Available evidence suggests that bone formation and resorption may respond differently to 

changes in energy status, with bone formation being reduced first and contributing to an 

imbalance of bone remodelling (Zanker & Swaine, 2000; Ihle & Loucks, 2004). Only a 

limited number of short-term interventional studies have been conducted in the area of 

energy deficiency and bone metabolism, with a number of limitations in their experimental 

design, making it difficult to draw firm conclusions. Although EA has been identified as the 

underlying factor of the well-established Female Athlete Triad (Nattiv et al., 2007) and the 

recent RED-S models (Mountjoy et al., 2014) in physically active women and possibly men, 

no short-term experimental study has been conducted in the area after 2004. Out of the three 

available studies (Grinspoon et al., 1995; Zanker & Swaine, 2000; Ihle & Loucks, 2004), 

only one has been based on EA (Ihle & Loucks, 2004) and only one has been conducted in 

physically active populations. Thus, there is a knowledge gap pertaining to the effects of low 

EA on bone metabolism and health in physically active women and men.   

A small number of longer-term studies have been conducted in normal weight and 

overweight, sedentary men and women (Table 2.6.), but not in physically active populations. 

Two randomised controlled trials conducted in overweight women (BMI between 25 and 30 

kg∙m-2) demonstrated no significant BMD alterations following weight loss achieved 
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through dietary energy restriction alone (Riedt et al., 2007; Redman et al, 2008) or dietary 

energy restriction and exercise (Redman et al., 2008). These findings suggest that BMD is 

maintained during weight loss in young, premenopausal women. Villareal et al (2006) 

examined the effects of weight loss, through dietary energy restriction or increased exercise 

energy expenditure independently, on BTM and BMD for 1 year. Both bone formation and 

resorption increased independent of modality of restriction at the 6-month follow-up and 

translated into significant reductions up to -2.2% in total hip, intertrochanter, and spine at the 

1-year follow-up when energy restriction was attained through diet, but not through exercise 

(Villareal et al., 2006). These findings suggest potential bone sparing effects when weight 

loss is exercise-induced. In a larger randomised controlled trial, the same investigators 

compared the effects of caloric restriction on BTM and BMD over 2 years. At 12 months, 

the caloric restriction group had greater increases in bone resorption (β-CTX and TRACP5b) 

and some decreases in bone formation (BALP, but not P1NP) than the controls. At 2 years, 

the caloric restriction group experienced a 2% reduction in lumbar spine, total hip and 

femoral neck BMD and these changes were greater compared to the changes experienced by 

the control group. Taken together, these studies indicate that diet-induced weight loss results 

in reduced BMD, which is further supported by early BTM responses. Importantly, these 

results are derived from a mixed (men and women), middle-aged (age; mean: 39 y, range: 

20-50 y), non-obese (including some normal weight, but overall, overweight individuals; 

mean BMI: 27 kg∙m-2) sedentary population, with some women potentially being peri- or 

post-menopausal. Thus, they may not be indicative of BTM and BMD responses to energy 

deprivation in younger, lean, physically active premenopausal women and men. Further 

research is warranted to explore the long-term effects of EA in these populations. 
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Table 2.6. Experimental studies exploring the short- and long-term effects of energy restriction (designed based on energy balance or EA concept) on bone 

metabolism health in non-obese participants. 

Study Participants1 Design Prescrption2 EA2 Main bone related outcomes and conclusions 

Short-term studies  (<7 days) 

Grinspoon 

et al, 1995 

Sedentary 

eumenorrheic 

women, A=24 y, 

n=14  

Initial part 

of RCT3 

4 days 

Fasting (-100%) D No Fasting resulted in reductions in P1CP (-58%) and OC (-45%) and increases in PYD (+49%) and DPD 

(+50%).  

Zanker & 

Swaine, 

2000 

Physically active 

men, A= 25 y, n=8 

Crossov

er3 days 

Control (0%) D+EX 

RES (-50%) D+EX 

No P1NP reduced ( -17%) in RES only; but BALP and uNTX did not change in response to either CON or 

RES.   

Ihle & 

Loucks 

2004 

Sedentary 

eumenorrheic 

women, A= n=14 

RCT 

Crossov

er5 days 

Control (0%) D+EX 

RES1 (-33%) D+EX 

RES2 (-66%) D+EX 

RES3 (-78%) D+EX 

 

45 

30 

20 

10 

RES1 OC: -11%, P1CP: -12%  

RES2 OC: -32%, P1CP: -19%  

RES3 uNTX: +34%, OC: -28%, P1CP: -26%  

OC and PICP were suppressed by all restricted EA treatments (all P<0.05), whereas NTX only at 

severely reduced EA (RES3).  
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Longer-term studies (<7 days) (continue)  

Villareal 

et al., 2006 

Sedentary women 

and men A=57 y, 

n=48  

RCT 

1 year 

Control (0) D 

EX (-20%) EX 

CR (-20%)  D 

No Compared with controls, the CR group had decreases in BMD at the total hip (−2.2% ± 3.1% vs 

1.2% ± 2.1%) and intertrochanter (−2.1% ± 3.4% vs 1.7 ± 2.8%). The CR group had a decrease in 

spine BMD (−2.2% ± 3.3%). Despite weight loss, the EX group did not exhibit any decrease in BMD. 

Bone turnover increased in both CR and EX. 

Villareal 

et al., 2016  

Sedentary non-

obese men and 

women , A=39,  

n=218 

RCT 

2 years 

Control (0%) D 

CR (-25%) D 

 

 

No Compared with the control group, the CR group had greater changes in BMD at 24 months: lumbar 

spine, total hip and femoral neck. Changes in BTM were greater at 12 months for β-CTX, TRACP5b 

and BALP but not P1NP; at 24 months, only BALP differed between groups. 

Redman 

et al., 2008  

Sedentary 

overweight men 

and women, A=38 

y, n=49 

RCT 

6 

months  

Control (0%) D 

CR ( -25%) D 

CR + EX (-25%) D+ EX 

LCD (890 kcal- 

approximately -50%) D  

No  Compared with the control group, none of the groups showed change in total body or hip BMD. β-

CTX was increased in all 3 intervention groups, with the largest change observed in the LCD group.. 

BALP decreased in the CR group but was unchanged in the CR + EX, LCD, and control groups. 

Moderate CR, with or without exercise for 6 months does not result in significant bone loss in young 

adults. 

Riedt et 

al., 2007 

Sedentary, 

overweight women, 

A=38 y, n=44 

RCT 

6 monts  

CR (30%) D 

CR+Ca (30%) D 

No No significant decrease in BMD or rise in bone turnover was shown with weight loss at normal or high 

calcium intake. 

1Participants (training status, sex, age, number); 2Prescription (training status, sex, age, number); 3EA concept included in the experimental design (yes-level of EA or no); 4No control group; D: 

Diet, EX: Exercise; RCT: Randomised control trial; RES: Restricted; CR: Caloric restriction; EA: Energy availability; LCD: Low calorie diet; Ca: Calcium; BMD: Bone mineral density; P1NP: 

Amino-terminal pro-peptides of type 1 procollagen; BALP: Bone specific alkaline phosphatase; CTX: C-terminal cross-linked telopeptide of type I collagen; OC: Osteocalcin; TRACP5b: 

Tartate-resistant acid phosphatase 5b. 
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2.12. Endocrine alterations in response to low EA and bone metabolism and health 

Insulin, cortisol, GH/IGF-1, triiodothyronine (T3), leptin, ghrelin, peptide YY (PYY), 

glucagon-like- peptide 1 and 2 (GLP-1 and 2) are the primary hormones that are affected in 

response to changes in energy status (Misra & Klibanksi, 2011; 2014; Shapses & Sukumar, 

2012; Walsh & Henriksen, 2010). It is important to note that most of the available evidence 

is coming from studies in individuals with chronic energy deficiency (i.e., anorexia nervosa 

or weight loss efforts in overweight and obese populations, which may differ from responses 

to short-term EA in normal-weight, physically active individuals with normal physiological 

functions. Although the actions of these regulatory hormones on bone have been previously 

characterised, there are limited data on whether changes in their concentrations in response 

to EA mediate the effects of low EA on bone metabolism and health (Ihle & Loucks, 2004).  

2.12.1. Insulin 

Insulin, an anabolic hormone synthesised and secreted by beta pancreatic cells, regulates 

glucose uptake from the bloodstream to several tissues including the liver, skeletal muscle 

and adipose tissue. Insulin and glucose decrease in low energy states (Misra, 2012), with 

levels being lower in amenorrheic (Laughlin & Lin, 1996) and oligomenorrheic (Rickenlund 

et al., 2004) athletes and athletes with luteal phase defects (De Souza et al., 2003) compared 

with eumenorrheic athletes and non-athletes. Insulin receptors are present on both 

osteoblasts and osteoclasts (Pun et al., 1989). In vivo, insulin increases bone formation 

(insulin injection; Cornish et al., 1996) and decreases bone resorption (endogenous and 

exogenous stimulation tests; Bjarnasson et al., 2002). The insulin deficiency caused by 

energy deficiency in anorexia nervosa is accompanied by reduced BMD and increased 

fragility risk (Misra et al., 2007). At moderately reduced EA, reductions in bone formation 

are reduced in parallel with decreases in insulin levels (Ihle & Loucks., 2004) in sedentary 

women; however, it remains unknown if this holds true for physically active women and 

men.  

2.12.2. Cortisol 

Given that cortisol promotes gluconeogenesis, the hypercortisolaemia developed in low EA 

states, including anorexia nervosa (Lawson, et al. 2009; Misra, et al. 2004) and exercise-

induced amenorrhea (Ackerman et al., 2013) is an established adaptation to maintain blood 

glucose levels (Misra, 2012). Elevated cortisol levels result in decreased bone turnover, an 

increased number of osteoclasts, and decreased osteoclast apoptosis, all favouring bone 

resorption (Canalis et al, 2007; Mazziotti et al., 2015). Impairments in bone formation have 

also been reported with reductions in osteoblasts number, a shift in progenitor cells from 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047520/#R45
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osteoblasts to adipocytes, and accelerated osteoblast apoptosis (Canalis et al., 2007). Some 

indirect effects of cortisol may be mediated though the inhibition of GH (and thus, IGF-1) 

and gonadotropins or an increase in PTH receptor expression on osteoblasts, which have an 

anabolic effect on bone (Misra & Klibanski, 2014). Negative correlations have been shown 

between cortisol concentrations and bone formation (Misra et al., 2004), and cortisol 

concentrations and BMD (Lawson et al. 2009) in anorexia nervosa and hypothalamic 

amenorrhea, but such relationships have not been investigated in the short-term in physically 

active populations.  

2.12.3. GH/IGF-1  

The GH/IGF axis is affected by both acute and chronic energy deficiency (Grinspoon et al., 

1995; 1996; Misra & Klibanski, 2014). GH release reaches its peak at night with this peak 

being exaggerated by fasting and supressed by feeding (Walsh & Henriksen, 2010). In 

response to chronic, severe energy restriction, increased GH concentrations and GH 

resistance have been reported (Misra & Klibanski, 2011). GH has anabolic effects on bone; 

it directly stimulates the proliferation and differentiation of osteoblast precursors through 

GH-receptors present on osteoblasts (Giustina et al., 2008). GH exerts indirect effects on 

bone mediated through IGF-1 (GIustina et al., 2008). IGF-1 reductions have been reported in 

adults under energy or protein restriction (Fontana et al. 2008; Zanker & Swaine, 2000; 

Grinspoon et al., 1995). In the short-term, suppression of IGF-1 may be masked by increases 

in circulating concentrations of binding proteins (Fontana et al., 2016); therefore, it is useful 

to determine the levels of binding proteins. IGF-I has well-established anabolic effects on 

bone; it regulates osteoblasts’ activation either directly by stimulating IGF-1 receptors or 

indirectly via RANKL-synthesis by osteoblasts (Giustina et al., 2008). IGF-I also promotes 

bone formation by stimulating proliferation and differentiation of chondrocytes and 

osteoblasts and increasing the synthesis of type I collagen (Giustina et al., 2008; Mochizuki 

et al., 1992). Low IGF-I levels have been associated with reductions in P1NP during short 

term energy restriction in physically active males (Zanker & Swaine, 2000), with reduced 

BMD (Liu et al., 2008) and unfavourable changes in parameters of bone microarchitecture in 

women under energy deprivation (Faje et al. 2013; Lawson et al. 2010).  

2.12.4. Leptin 

Leptin is the protein product of the obese or ob gene and acts as a peripheral signal to the 

brain to convey information about the amount of energy available in adipose tissue and/or 

changes in EA (Chan & Mantzoros, 2005; Upadhayay et al., 2015). Thus, leptin has a major 

role in the regulation of energy balance and also acts as a physiological cue that links energy 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047520/#R45
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status with reproduction (Donato et al., 2010), bone metabolism (Upadhyay et al., 2015) 

immunity (Conde et al., 2010), wound healing (Schreml et al., 2010) and cardiovascular 

function (Sweeney, 2010). Reduced leptin levels have been shown in anorexia nervosa 

(Grinspoon et al., 1996) and highly trained athletes with low body fat stores (Thong et al., 

2000). In animal models, centrally administered leptin inhibits bone formation and induces 

bone loss (Ducy, et al. 2000), whereas peripheral leptin exerts anabolic effects on bone and 

reduces bone fragility in leptin-deficient animals (Cornish et al., 2002; Hamrick, et al. 

2008). Leptin may exert its bone effect directly through its receptors on osteoblasts and 

chondrocytes, by activating fibroblast growth factor 23 (FGF-23) (bone trophic factor) and 

regulating OC (Upadhayay et al., 2015). Leptin may also have local effects on bone, as bone 

marrow adipocytes have been shown to secrete leptin. Indirectly, leptin may alter other 

hormones including oestrogen, cortisol, IGF-1 and PTH that may, in turn, mediate bone 

responses (Upadhayay et al., 2015). Indeed, in humans, metreleptin replacement therapy in 

women with hypothalamic amenorrhea results in increased LH, oestrogen, IGF-1 and 

thyroid hormones levels, all of which favourably impact bone health (Welt et al., 2004). The 

effects of low EA on leptin levels in physically active men and women need to be elucidated 

and characterised in relation to alterations in bone metabolism. The exploration of sex 

differences is also of interest given that men and women differ in the amount of body fat 

upon which leptin concentrations depend (Chan & Mantzoros, 2005).  

2.12.4. T3 

The thyroid hormones are important mediators of energy and bone metabolism (Lakatos et 

al., 2003; Bassett & Williams, 2008). T3 is one of the most active forms of thyroid hormone, 

which is converted from thyroxine (T4) in the peripheral tissues (Bassett & Williams, 2008). 

T3 has been suggested as an indicator of energy deficiency, as decreases in T3 induce 

adaptive mechanisms to conserve energy in underweight individuals (Misra & Klibanski, 

2011) and in sedentary, eumenorrheic women exposed to low EA (Loucks & Callister, 1993; 

Loucks & Heath, 1994).  Low T3 is a consistent finding in women with anorexia nervosa, 

concurrent with reductions in RMR. Conversely, weight gain in these patients increases T3 

concentrations and REE independent of RMR (Onur et al., 2005). The effects of T3 on bone 

may be exerted directly via thyroid hormone receptors in bone, or through indirect 

regulation of the GH/ IGF-I axis (Huang et al., 2000; Lakatos et al., 2000). Thyroid hormone 

receptors are present on osteoblasts osteoclasts and chondrocytes (Waung et al., 2012). Mice 

devoid of these thyroid hormone receptors have retarded maturation of long bones and low 

trabecular and total BMD (Kindblom et al., 2005). Reductions in bone formation (PICP and 

OC) due to reduced EA occurred in parallel with reductions in T3 levels in sedentary women 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047520/#R20
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047520/#R36
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047520/#R36
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(Ihle & Loucks., 2004). Whether similar T3 reductions following short-term low EA occur in 

physically active individuals in relation to changes in bone metabolism remain unknown. 

2.12.5. Ghrelin  

Ghrelin is a peptide secreted by the gastric fundus and has a critical role in short-term energy 

homeostasis and, thus, it is proposed as an appetite regulator (Kojima & Kangawa, 2005). 

Elevated ghrelin concentrations have been reported in exercising women under energy 

deficiency (De Souza et al., 2004) and anorexic individuals compared to normal-weight 

controls (Lawson et al., 2010). No previous study has, however, documented these changes 

in parallel with alteration in bone-related outcomes when energy deficiency is induced in 

participants with normal function (i.e., bone and reproductive health). Osteoblasts express 

ghrelin receptors and ghrelin stimulates osteoblast differentiation and proliferation in vitro 

(Delhanty et al., 2006). In animal models, ghrelin increases BMD independently of food 

intake or weight gain (Fukushima et al., 2005). In humans, fasting ghrelin levels are 

negatively correlated with β-CTX (Huda et al., 2007), and treatment with an oral ghrelin 

mimetic has been associated with a modest increase in femoral neck BMD, but with no 

change in spine or total hip BMD (Nass et al., 2008).  

2.12.6. PYY 

PYY is a gastrointestinal peptide secreted from L-cells in the intestine in response to caloric 

intake. Thus, PYY signals satiety and inhibits nutrient intake (Batterham et al., 2003). PYY 

is elevated in patients with anorexia nervosa (Misra & Klibanski, 2011) and females with 

exercise-related hypothalamic amenorrhea (Scheid et al., 2011). PYY actions on bone are 

mediated through the Y2 receptor and Y2 receptor knockout mice have increased bone 

formation, bone mass and trabecular bone volume (Russell et al., 2009). These data suggest 

that elevated PYY may be associated with bone loss. Indeed, higher PYY levels are 

associated with lower levels of bone formation markers and lower lumbar BMD Z-scores in 

adolescent athletes (Russell et al., 2009). In adult exercising women, higher PYY levels have 

also been associated with lower hip and whole body BMD Z-scores (Scheid et al., 2011). 

Further studies are needed to investigate these relationships in interventional studies in 

physically active men and women.  

2.12.7. GLP-1 and GLP-2 

GLP-1 and GLP-2 are secreted by L-cells in the intestine, in response to feeding (Naot & 

Cornish, 2014). Anorexic adolescents have low GLP-1 levels (Tomasik et al., 2004), but not 

significantly different GLP-2 levels (Wojcik et al., 2010) compared to normal weight 
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controls. GLP-1 receptors are expressed in bone marrow stromal cells and pre-osteoblasts. In 

vitro studies have not shown direct effects of GLP-1 on either osteoblasts or osteoclasts 

(Yamada et al., 2008). However, GLP-1 stimulates calcitonin secretion and thus, indirectly 

inhibits bone resorption (Yamada et al., 2008). GLP-2 receptors are present on osteoclasts 

(Pacheco-Pantoja et al., 2011). Subcutaneously injected GLP-2 in postmenopausal women 

resulted in a significant dose-dependent reduction of bone resorption as assessed by β-CTX, 

but did not alter bone formation evaluated by OC or P1NP (Henriksen et al., 2007). Current 

understanding of GLP-1 and GLP-2 changes in response to energy deficiency in physically 

active men and women is incomplete and warrants further investigation in relation to bone-

related outcomes.  

2.13. Summary  

Research on the Female Athlete Triad has been conducted for over 20 years and important 

advances have been made to our understanding of this condition during this time. These 

include recognition of low EA as the underlying factor for reduced bone health and 

reproductive function (Nattiv et al., 2007; De Souza et al., 2014a).  Recent advances in our 

understanding have led to the introduction of the RED-S model to describe a spectrum of 

negative consequences arising from low EA and an expansion to the affected populations 

(i.e., men) (Mountjoy et al., 2014; 2015). There are, however, several knowledge gaps 

remaining. Bone health is one of the three initially proposed Female Athlete Triad 

components, but there remains a lack of well-controlled systematic investigations into the 

effects of low EA (attained by diet, exercise or both) on bone metabolism, mass and strength 

in physically active women or men. An understanding of the effects of low EA on regulatory 

and reproductive hormones in physically active, normal-weight individuals also remains 

limited, with our current knowledge often being simply extrapolated from what we know for 

chronic conditions of energy deficiency. The available evidence for men are more limited 

than for women and direct comparisons of regulatory hormone responses to low EA, in 

parallel with the characterisation of bone responses, are lacking. It is important for future 

research to define the responses of the regulatory hormones to low EA and to relate these 

directly to responses of the bone tissue. The current work, presented in this thesis, will 

provide further insight into the effects of low EA on bone metabolism and health in 

physically active individuals.  
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Chapter 3. General Methods  
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This chapter provides a summary of the general methods used throughout all studies, with 

detailed descriptions of the procedures and justification for the methods and analyses used. 

Specific research designs, inclusion/exclusion criteria and statistical analyses are presented 

in the relevant experimental chapters.  

3.1. Ethical approval 

All experimental studies had approval from the Nottingham Trent University Ethical Review 

Committee (Humans). The studies described in Chapters 7 and 8 had dual approval from the 

Research Ethics Committee East Midlands - Derby and the Nottingham Trent University 

Ethical Review Committee (Humans). Approval references are detailed below:  

 Repeatability of exercise energy expenditure measurements in physically active 

individuals by indirect calorimetry- Nottingham Trent University Ethical Review 

Committee (Humans), Application Number: 411 

 Bone Turnover in response to short-term energy restriction in men and women- 

Nottingham Trent University Ethical Review Committee (Humans), Application 

Number: 269  

 Effects of short-term energy restriction achieved by diet or exercise on bone turnover, 

muscle function and cognition- Research Ethics Committee reference: 14/EM/1156 

Intergraded Research Application System project ID: 154899  

3.2. Recruitment  

Recruitment of participants occurred through posters, emails and meetings with sports clubs 

and coaches and by word-of-mouth.  

3.3. Questionnaires  

3.3.1. Health screen 

A standard health screen questionnaire (Appendix 1) was used to confirm that participants 

were able to participate in the exercise sessions, did not suffer from any conditions known to 

affect bone health and were not taking medications that could influence bone metabolism 

and health (for a detailed description please see inclusion/exclusion criteria in each 

experimental chapter). 
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3.3.2. Reproductive function  

Reproductive function, including previous menstrual irregularities, use of contraception, 

frequency and duration of menstrual cycles, was assessed using a standard menstrual cycle 

(Chapter 4 and 7) or OCP questionnaire (Chapter 8). Participants using the non-hormonal 

coil (copper coil) were included and identified as eumenorrheic provided they met all of the 

other criteria for regular menstrual cycles (please see section 3.3.2.1.). OCP users were 

recruited if they were taking a monophasic, low dose ethinyl-oestradiol combined OCP for 

at least 3 months prior to participation and were planning to continue taking the combined 

OCP for at least 2 months.  

3.3.2.1. Menstrual function questionnaire 

Menstrual cycle details were assessed using a questionnaire (Appendix 2), which included 

questions about menstrual frequency and length, bleeding length and previous OCP use. 

Menstrual cycle length was defined as the number of days from the first day of menstruation 

to the day before the next onset of menstruation. Eumenorrhea was established if 

menstruation occurred at regular intervals of 24–35 days. Amenorrheic women (absence of 

menstruation for a minimum of 3 repeated months), oligomenorrheic women (menstrual 

cycles of 36–90 days) and women with short menstrual cycles (menstrual cycles < 24 days) 

were excluded from all studies to ensure that existing reproductive disturbances did not 

affect the findings. 

3.3.2.2. OCP questionnaire 

OCP characteristics were assessed using an OCP questionnaire (Appendix 3-Chapter 8), 

which included questions regarding OCP type, brand and length of use.  Participants were 

included if they were taking a monophasic, low dose combined OCP (containing less than 

50μg oestradiol and synthetic progestin) for at least 3 months prior to recruitment. Women 

with hormonal intrauterine devices or implants, women on non-low dose monophasic 

combined OCP (i.e., biphasic, progesterone only OCP) (please also see section 8.2.1) were 

excluded from participation. The combined OCP was chosen over others, as it is the most 

common used OCP (Lader et al., 2009).  

3.3.3. SCOFF questionnaire and weight history  

The SCOFF questionnaire is a screening tool for eating disorders (Morgan et al., 1999). It 

consists of 5 simple questions on key features of anorexia nervosa and bulimia nervosa and 

the letters in the acronym are taken from key words of these questions; Sick, Control, One 

stone, Fat, Food. It is a validated, highly sensitive, but moderately specific instrument. 
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Although it is not a diagnostic tool, a score greater than 2 yes responses is indicative of a 

potential eating disorder; thus, participants with a score greater than 2 yeses were excluded 

from participation (Study 1 & 2). The SCOFF questionnaire has been used previously in 

clinical settings and is considered to satisfactorily identify cases and exclude non-cases of 

common eating disorders (Tury et al., 2010). Additional typical questions used in dietetic 

practice were used to exclude participants with recent weight changes with potential effects 

on BTM (Ihle & Loucks, 2004) (Appendix 4).  

3.3.4. Physical activity questionnaire 

The short version of the International Physical Activity Questionnaire (IPAQ) was used to 

assess physical activity levels of the participants at the time of recruitment (Craig et al., 

2003) (Appendix 5).  The IPAQ short form asks about three specific types of activity; 

walking, moderate-intensity activities and vigorous intensity activities; frequency (measured 

in days per week) and duration (time per day). Each type of activity is weighted by its 

energy requirements defined in metabolic equivalents (MET- are multiples of the resting 

metabolic rate) to yield a score in MET-minutes·week-1. A MET-minutes·week-1 was 

computed by multiplying the MET score by the minutes performed as detailed below. For 

each individual, the scores for each type of activity were calculated.  

Walking MET-minutes·week-1 = 3.3 * walking minutes * walking days 

Moderate MET-minutes·week-1 = 4.0 * moderate-intensity activity minutes * moderate days 

Vigorous MET-minutes·week-1 = 8.0 * vigorous-intensity activity minutes * vigorous-

intensity days 

Three categories of total PA were determined based on the IPAQ and METs: low (<600 

MET-minutes·week-1); moderate (≥600 MET-minutes·week-1 and <3000 MET-

minutes·week-1); and high physical activity levels (≥ 3000 MET-minutes·week-1) (IPAQ, 

2005). Participants with moderate and high physical activity levels were recruited for the 

current programme.  
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3.4. Anthropometric measurements  

3.4.1. Height  

Height was measured to the nearest 0.1 cm (Stadiometer, Seca, Hamburg, Germany). 

Participants removed their footwear and stood flat footed with their heels against a back 

plate.  

3.4.2. Body mass 

Body mass was measured to the nearest 0.1 kg using electronic scales (Seca, Birmingham, 

UK). Participants wore minimal clothing (i.e., t-shirts, shorts or leggings) and were 

instructed to wear the same clothing for repeated measurements within each experimental 

condition (pre and post). In Study 3 and 4 (Chapters 7 and 8) participants consumed 500 mL 

of water upon wakening in order to account for potential body mass changes due to 

variability in hydration status. This information was verbally confirmed with participants 

when they came to the laboratory. Body mass measurements were conducted in the morning 

following blood testing.  

3.4.3. BMI  

BMI was calculated using the standard formula: body mass (kg) divided by height squared 

(m2). Participants were included if they had a BMI between 18.5 and 30 kg∙m-2. Conversely, 

individuals with a BMI of <18.5 or >30 kg∙m-2 were excluded from participation.  

3.5. DXA 

A DXA scan was performed, using a Lunar iDXA scanner (Lunar, GE Healthcare) to assess 

body composition and to determine baseline bone characteristics, namely total body BMD, 

and total body BMC.  

3.5.1. Quality control assurance  

A quality assurance check was performed using standard techniques at the beginning of each 

day to ensure that the measurements were accurate and precise.  

3.5.2. Total body scan measurement  

Prior to DXA measurements, participants were asked to remove their shoes and any items 

that could lessen the X-ray beam, including belts, earrings, zippers, snaps and buttons. They 

were instructed to wear a sport outfit (t-shirts, shorts or leggings) for the DXA scan. If 
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participants did not have the exact outfit, they were provided with some spare sport outfit by 

the study investigators. Several studies have demonstrated that a number of factors including 

hydration status, fluid fluctuation and food consumption may affect DXA measurements 

(Nana et al., 2015; Rodriguez-Sanchez et al., 2015). In order to minimise these factors, 

participants were instructed to consume 500 mL of water and have their last meal at least 3 

hours before the measurement.  

Participants’ details (forename, surname, date of birth, participant’s ID, weight, height, race 

and sex) were inputted and used to create a participant’s profile. The operator provided 

instructions about right positioning on the scanner table. Participants laid within the 

scanning area and in the centre of the scanner table, with their head, spine and pelvis aligned 

to the reference centreline. Hands were positioned next to the body and within the scanning 

area and legs were placed straight with feet together. Straps were placed around the 

participant’s legs (knee level and ankles) to limit movement during the measurement and to 

maintain positioning. 

All scans were conducted and analysed by the same operator to limit inter-observer 

variability. For Study 1 and 2 (reported in Chapter 5-7) the DXA scans were carried out at 

the Clinical Skills Suite at the University of Derby, as a DXA scanner was not available at 

NTU at this time.  For Study 3 and 4 (reported in Chapter 8 and 9) all scans took place at 

NTU. DXA scans have been shown to be capable of producing highly reliable estimates of 

total and regional body composition; CV <1% for repeated measures (Hind et al., 2011).  

3.5.2.1. Body composition  

The following body composition data were collected: body mass (kg), tissue (% fat), region 

(% fat), tissue (g), LBM (g), FFM (g) and BMC (g). LBM was used in the prescription of 

diet and exercise in all experimental conditions. Tissue (% fat) and FFM were used as 

descriptive participant characteristics of the participants.  

3.5.2.2. BMD and BMC  

For the purposes of this thesis, neither BMC nor BMD were considered main outcome 

measures. However, BMC and BMD at the onset of each experiment were provided as 

descriptive participant characteristics. The DXA output included BMD of total, total right 

and total left body, arms, legs and trunk (right and left sides), ribs, pelvis and spine. T-scores 

and Z-scores were also provided for total BMD (please see section 2.11.2.).  
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3.6. Aerobic fitness test  

Participants performed a sub-maximal incremental test on a motorised treadmill (HP 

Cosmos, Germany), consisting of a speed lactate test and a VO2 peak test previously 

developed by Jones and Doust (1996) to establish the relationship between running speed 

and oxygen consumption during level running. During the test, participants wore a standard 

heart rate monitoring device (Polar FT-2, Finland) using a strap fitted around their chest. 

This provided continuous recordings of heart rate during exercise. Furthermore, participants 

were fitted with a facemask to ensure normal breathing throughout the exercise. Expired gas 

samples were continuously collected and analysed by a breath-to-breath automated gas 

analysis system (ZAN, nSpire Health); for more details about calibration of the system and 

analysis please see section 3.8.2.and 3.8.3. 

Briefly, participants first completed a speed lactate incremental test, which was continuous 

in nature and consisted of graded exercise steps of 3 minutes. Participants commenced 

running at a 0 gradient at an easy-pace speed, between 7 and 9 km·h-1 depending on their 

training background, and thereafter intensity increased by 1 km·h-1 every 3 minutes. 

Participants had capillary blood samples (taken by finger prick) taken at the end of each 

incremental stage to determine blood lactate levels (Yellowstone Scientific Instruments, Big 

Sky, Montana). The test terminated when changes ≥ 1 mmol·L-1 in blood lactate 

concentration were detected between stages. 

After the incremental exercise test, participants were given 10 minutes to recover. Following 

this, participants performed a ramp test to determine maximum oxygen uptake. The ramp 

test was continuous in nature and consisted of 1-minute stages. The initial speed was 

determined according to the speed reached during the incremental exercise test and the grade 

increased by 1% every minute, from a starting gradient of 0%, until volitional exhaustion 

was achieved (Jones & Doust, 1996).  At the end of this test, participants had a rating of 

perceived exertion of 9 or 10 out of 10.  Additionally, the majority, but not all, of the 

participants achieved a respiratory exchange ratio greater than 1.10 (Howley et al., 195; 

Midgley et al., 2009). 

The running speed at each stage of the speed lactate incremental test was plotted against 

oxygen consumption (mL·kg·-1min-1) to determine the sub-maximal relationship between 

speed and oxygen consumption. The computation of this regression line in combination with 

VO2 peak results were used to estimate the running speed corresponding to 70% VO2 peak at 
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0% gradient during the main experimental, exercise protocol based on the regression line of 

VO2 and speed.  

3.7. Habitual dietary intake  

3.7.1. Three-day food records  

Before experimental trials, participants were asked to weigh and record the amount of all 

food and beverages consumed over a 3-day period to provide information about their 

habitual DEI. Three-day food records have been used in EA studies (Ihle and Loucks, 2004; 

Reed et al., 2013) and have been shown to adequately capture habitual macronutrient intake 

(Magkos & Yannakoulia, 2003).  

All participants were shown by a registered dietitian how to complete the dietary record to 

the level of detail required to adequately describe the food and amounts consumed, including 

the name of the food (brand name), preparation methods, recipes for food mixtures and 

complicated dishes, and portion sizes. Written instructions and examples were also provided 

(Appendix 6). Participants were provided with food record forms consisting of 4 columns: 

food/drink item, amount eaten (g), details, amount of leftovers (g) (Appendix 7).  

Several strategies were implemented to aid the collection of the dietary data:  

1. Participants were instructed to maintain their normal food intake and eating patterns 

during the recording period. 

2. The importance of recording at the time of eating was highlighted. This limits the 

problem of omission and provides a more detailed description of the food. 

3. To minimise the errors in estimating food quantities, participants were asked to weigh 

their food using electronic scales (Aquatronic Kitchen Scale, Salter, UK-Study 1 & 2; 

HOME Electronic Kitchen Scale; Argos, UK- Study 3 &4). Participants were shown 

how to use the scales correctly and how to record the weight of food items included in 

more complex dishes. Participants were encouraged to carry the scales provided by the 

investigators even when eating out. Alternatively, instructions were provided for 

estimating quantities when eating out, when weighing food was not possible.  Some 

foods have pre-defined units (i.e., one slice of bread), which was helpful for participants 

when recording the quantity. Household measures (tablespoons, teaspoons and cups) 

were also recommended, but strictly only in cases where participants did not have access 

to the scales provided.  
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4. Often, participants do not provide enough information about specific food items or food 

groups (e.g., sauces, type and amount of fat used during food preparations, beverages 

and complementary food items such as sugar and milk in tea or coffee). In an effort to 

collect this detailed information, participants received specific verbal and written 

instructions on how to record these food items (Appendix 6).  

5. Participants were encouraged to keep nutritional labels, provide restaurant information 

when eating out and record recipes when describing their food consumption. 

6. At the end of the recording period, food records were reviewed and, when needed, the 

participants were asked to clarify entries and crosschecked for forgotten food/meals 

(Study 1 and 2).  

 

3.7.2. Dietary analysis  

All dietary analyses were performed by a registered dietitian using MicrodietTM. DEI (kcal∙d-

1), absolute macronutrient intake (carbohydrates, proteins, fat; g∙d-1) and percent contribution 

of macronutrients to daily DEI were determined for each participant.  

3.8. Measurement and estimations of EE 

3.8.1. Measurement of lifestyle EE-Accelerometers 

Lifestyle physical activity was measured using an Actigraph accelerometer (WGT3X-BT; 

Actigraph, East Chase Street. Pensacola, FL). The Actigraph accelerometer has been widely 

used in previous short-term laboratory studies (Koehler et al., 2016; Hagobian et al., 2009). 

Previous studies have shown that 3 days of physical activity records using accelerometers 

achieve 80% reliability for the measurement of physical activity (Matthews et al., 2002). 

Participants were instructed to wear the accelerometers for all waking hours, except when 

bathing. They were also directed to attach the accelerometer on the right hip, to ensure 

consistency and limit variability.  

Participants’ characteristics (code, weight, height, date of birth, race) were entered manually 

into the system software. The Freedson combination kcal equation was chosen to translate 

the accelerometer output into EE (Freedson et al., 1998). This equation has been previously 

shown to provide close estimates of energy expenditure during both light and moderate 

physical activity compared to other equations that significantly under- or over-estimate the 

time spent in activities of these intensities (Crouter et al., 2006). All equations appear to 

underestimate time spent in vigorous exercise (Crouter et al., 2006), however, the 

accelerometers in this thesis were used to monitor lifestyle physical activity, which is 
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expected to vary from light to moderate intensity, rather than systematic exercise (high 

intensity), which was performed in the laboratory and measured using an indirect 

calorimetry system.  

3.8.2. Measuring EEE 

EEE was measured using a breath-to-breath automated gas analysis system (ZAN, nSpire 

Health). ZAN is a ventilated open-circuit system and has components to collect expired air, 

measure flow rate, analyse gas concentrations and pump air through the system (Levine et 

al., 2005). Prior to each measurement, the gas analysis system was calibrated with oxygen 

and carbon dioxide as a mixture of known concentrations and the volume transducer was 

calibrated with a 3-L calibration syringe according to the manufacturer’s guidelines. 

The exercise experimental protocol involved repeated bouts of running for approximately 60 

minutes (Study 1 & 2) and 2 x 60 minutes (approximately) (Study 3 & 4) on consecutive 

days. Each bout was conducted as 3-to-5, 15-minutes sessions, separated by a 5-minute rest. 

Exercise intensity was controlled by setting the treadmill speed and/or grade to reach 70% 

VO2 peak for each participant (please see section 3.6). Small adjustments were made to 

maintain the intensity at 70% VO2 peak. During the exercise protocol, the participants wore 

a facemask and told to breathe normally throughout the exercise. Expired gas samples were 

continuously collected, averaged over 20 seconds and analysed following test completion. 

The required duration of exercise was determined using the oxygen uptake values and 

respiratory exchange ratio. Data previously collected in our laboratory (please see section 

3.8.3) using the same techniques, have shown that EEE of the same duration and intensity is 

similar when repeated under the same conditions for the same individual. Therefore, 

participants did not wear the facemask during exercise on the following days of the 

experimental protocol.  

3.8.3. Day to day variability in EEE in physically active individuals by indirect 

calorimetry 

3.8.3.1. Introduction  

Due to the prolonged and repeated exercise bouts, we anticipated that some participants may 

not feel comfortable when wearing a facemask for each exercise session during the main 

experimental protocol (Study 1-4). If the exercise protocol employed is able to produce 

consistent measures of EEE, following an initial EEE measurement participants would be 

able to perform exercise bouts without wearing a face mask. The reliability of a protocol 
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reflects the consistency of the data when the measurements are collected on a number of 

occasions under identical conditions (Atkinson & Nevill, 1998). Several factors such as 

circadian rhythm, consistency of the equipment used and participant and researcher error 

may introduce measurement errors. Atkinson and Nevill (1998) have recommended that 

reliability is the amount of measurement error considered satisfactory for the use of an 

analysis system in practice. The aim of this study was to compare EEE values measured 

using the same system of indirect calorimetry as in the main experimental studies, on two 

occasions under the same conditions.  

3.8.3.2. Methods  

Thirty participants (Table 3.1.) volunteered to participate in this experiment having provided 

informed consent (Appendix 8-Paticipant’s Information Sheet, Appendix 9-Informed 

Consent Form). Participants for this study were representative of the population used for the 

main studies of this PhD programme. Participants were included if they were Caucasian, 

aged 18-40 years, non-smokers, had a BMI between 18.5 and 30 kg·m-2, had not sustained a 

bone fracture within the previous year and were currently injury free. Female participants 

were included if they were eumenorrheic or were taking a monophasic, low dose ethinyl-

oestradiol combined OCP. For female participants, exclusion criteria were extended to 

include: breastfeeding, pregnancy, any type of other hormonal contraception and self-

reported short (<24 days), long (>35 days) or irregular menstrual cycles (please see section 

3.3.2.1 and 3.3.2.2.- Appendix 2 and 3).  

3.8.3.2.1. Research design  

Participants attended a preliminary session (P) and 2-main experimental trials on two 

consecutive days (Visit 1 and Visit 2). The preliminary assessments were performed to 

establish inclusion criteria, take anthropometric measurements (please see section 3.4.1., 

3.4.2. and 3.4.3.) and determine the fitness level of the volunteers (please see section 3.6.).  

During Visits 1 and 2, participants completed a standardised protocol for data collection 

consisting of 5 min of rest, followed by 2 bouts of 15 min running at 70% VO2 peak 

separated by a 5 min break on a flat treadmill. EEE during the exercise was measured using 

an indirect calorimetry system. The experimental conditions were standardised during Visit 

1 and 2. The time of testing was controlled within participant, but not between participants. 

All participants were instructed to commit to testing at least 3 hours after their last meal. 

Food intake was recorded for Visit 1 and participants replicated it on Visit 2, in order to 

limit the variations in EEE due to differences in food intake.  For female participants, 
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eumenorrheic women were tested between Day 2 and Day 7 of their menstrual cycle (Day 1: 

first day of bleeding) and women on combined OCP were tested between Day 2 and 7 of 

their combined OCP cycle (Day 1: first day of their new pack). 

3.8.3.2.2. Experimental procedures  

3.8.3.2.2.1. Preliminary assessment  

Participants provided written and verbal informed consent (Appendix 8). They also 

completed a medical history questionnaire (please see section 3.3.1.- Appendix 1) and the 

short version of IPAQ (please see section 3.3.5.-Appendix 5).  Female participants also 

provided information about their menstrual cycles or combined OCP cycle (Apendix 3 and 

4). Upon completion of these questionnaires, anthropometric measurements were performed 

(please see section 3.4.1.-3.4.2.) followed by an incremental exercise test on a treadmill 

(please see section 3.6.) to determine their VO2max. 

3.8.3.2.2.2. EEE 

Detailed description has been provided in 3.8.2.  

3.8.3.2.2.3. DEI 

The participants weighed and recorded dietary intake on Visit 1. All participants were shown 

how to complete the dietary record to the level of detail required to adequately describe the 

food and amounts consumed as described in 3.7.1. Participants were asked to replicate their 

dietary intake (quality and quantity) for Visit 2.  

3.8.3.2.3. Statistical analysis  

All data are presented as mean (1SD). All data were checked for normality according to the 

Shapiro-Wilk test and for homoscedasticity using Pearson’s correlation coefficients (Nevill 

& Atkinson, 1998). EEE data were analysed using paired t-tests, intra-class correlations 

(ICC, 2-way fixed, repeated measures, absolute model), ratio limits of agreement (RLoA; 

Bland & Altman, 1986) and CV. The level of significance was set at P<0.05. Statistical 

analysis was performed using the SPSS 23.0 (Statsoft, USA). 

3.8.3.3. Results  

Baseline characteristics of the participants are shown in Table 3.1 
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Table 3.1. Baseline characteristics  

Age (y) 30 (5) 

Sex (female, male, %) 53, 47 

Height (m) 1.74 (0.09) 

Body mass (kg) 68.9 (9.1) 

BMI (kg ·m-2)
 

22.8 (2.3) 

VO2 peak (ml·kg-1·min-1) 50.3 (7.5) 

Values are presented as mean (1SD).  

VO2 peak: Peak oxygen uptake. 

Table 3.2. Absolute and relative reliability measures of the EEE (kcal) data. 

 EEE 

Visit 1 315 (81) 

Visit 2 311 (77) 

Visit 1 (ln) 5.71 (0.28) 

Visit 1 (ln) 5.72 (0.28) 

Ratio LoA 1.145 

CV (%) 3.14 

ICC (CI) 0.983 (0.964-0.992) 

t-test  0.40 

Values are presented as mean (1SD); LoA: Limits of Agreement, CV: Coefficient Variation, ICC: Interclass 

Correlation; CI: Confidence Interval.  

There was no significant difference between Visit 1 and 2 for EEE (315 ± 81 and 311 ± 77 

kcal; P =0.40). ICC between trials was r = 0.983 (0.964 to 0.992) for EEE. The CV (%) was 

3.14% for EEE measurements. For a typical EEA measurement of 313 kcal, there is 95% 

likelihood that a second measurement would have a value between 284 and 342 kcal. 
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Figure. 3.1. A Bland-Altman plot for EEE (kcal) for Visit 1 and 2. Systematic bias indicated 

by dotted line and 95% limits of agreement indicated by dotted lines. EEE: Exercise Energy 

expenditure 

3.8.3.4. Discussion 

EEE measurements were not significantly different between visits (P = 0.40). The 

consistency of the EEE measurements was demonstrated by narrow limits of agreement, 

excellent ICC of 0.983 and a CV of 3.14. The current data provide evidence that EEE 

measurements using a breath-by-breath system are reliable in a healthy, physically active 

population representative of the population used in the main experimental studies. Therefore, 

we suggest that this protocol can be used to produce comprehensive and consistent data and 

that the equipment used in this study provides a satisfactory measurement of EEE. As such, 

following an initial measurement of EEE, exercise sessions were completed without the 

facemask and the use of the breath-by-breath analysis system (Chapter 4-8).  

3.9. EA  

EA was defined as DEI minus EEE. EA was normalised to kilograms of LBM to consider 

metabolically active tissue and account for individual differences in body composition. 

Healthy, regularly menstruating, sedentary women achieve energy balance at an EA of 45 

kcal·kgLBM-1·min-1 (Loucks & Thuma, 2003; Ihle & Loucks, 2004). This level was used as 

the “controlled balanced” level in all studies (Study 1-4) in order to allow comparisons with 

previous literature (Loucks & Thuma, 2003; Ihle & Loucks, 2004).   
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3.10. Variables of EE 

TEE was calculated as the sum of RMR, diet-induced thermogenesis, lifestyle EE and EEE. 

RMR was estimated using Harris-Benedict revised equations, which consider age, weight, 

height and sex (Rosa & Shizgal, 1984). These are:   

Men: RMR (kcal∙d-1) = 88.362 + (13.397 x weight in kg) + (4.799 x height in cm) - (5.677 x 

age in years) 

Women: RMR (kcal∙d-1) = 447.593 + (9.247 x weight in kg) + (3.098 x height in cm) - 

(4.330 x age in years) 

Diet-induced thermogenesis can be defined as the energy required for nutrient digestion, 

absorption and storage and was calculated as 10% of DEI, according to estimations in 

healthy individuals following a mixed diet (Westerterp et al, 2004).  

3.11. Primary and secondary outcomes  

Markers of bone turnover were determined as primary outcomes of the study. β-CTX was 

chosen as a marker of bone resorption and P1NP as marker of bone formation. These 

markers have been proposed as reference standards for bone resorption and formation 

respectively by the International Osteoporosis Foundation and the International Federation 

of Clinical Chemistry and Laboratory Medicine (Vasikaran et al., 2011) and National Bone 

Health Alliance (US, Bauer et al., 2012) (please see section 2.5.4.5). Both markers have 

been shown to be specific for the procedure they represent and are widely used in clinical 

(Vasikaran et al., 2011) and research settings (Banfi et al., 2010). The ratio between P1NP 

and β-CTX was calculated in order to provide a numerical quantification of bone turnover 

(BT ratio). Similar ratios have been calculated in the existing literature (Vincent et al, 2002; 

Lombard et al, 2012b). Markers of calcium metabolism, energy regulatory hormones and 

reproductive hormones (Table 3.4.) were determined as secondary outcomes- rationale for 

these measurements has been provided in sections 2.6.1., 2.6.3. and 2.12.  
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Table 3.4. Markers of calcium metabolism, energy regulatory and reproductive hormones 

Marker  Rationale  

Markers of calcium metabolism 

 PTH   Principal hormone regulating calcium homeostasis and bone remodelling.  

 Mg Key micronutrient for bone homeostasis. Required for PTH interpretation 

 ACa Key micronutrient for bone homeostasis. Required for PTH interpretation  

PO4  Key micronutrient for bone homeostasis Required for PTH interpretation. 

Regulatory and reproductive hormones  

Insulin A peptide hormone, produced by beta cells of the pancreas; offers potential 

link between skeletal homeostasis and energy regulation. Low insulin levels 

are associated with decreased bone formation. 

 T3 A thyroid hormone that decreases in low EA. Low T3 levels are associated 

with decreased bone formation.  

IGF-1 A growth-promoting polypeptide with essential role in bone homeostasis. 

Changes in IGF-I levels may contribute to the disturbance of bone turnover 

under low EA. Low IGF-1 levels are associated with decreased bone 

formation. 

Leptin  A peptide, product of ob gene; reflects energy deficiency adaptations. 

Decreased levels are documented in models of chronic undernutrition. It 

offers potential link between skeletal homeostasis and energy regulation.  

 GLP-2 A peptide released from the intestinal mucosa in response to food intake 

Sclerostin  A measure of bone formation. Protein produced by osteocytes. It plays a 

key role in Wnt pathway, which regulates bone formation.  

Oestrogens Major sex steroid in women. Decreased levels and bioavailability of 

oestrogens under periods of energy restriction. Low levels of oestrogen are 

associated with decreased bone resorption in women. 

PTH: Parathyroid hormone; Mg: Magnesium; ACa:  Albumin adjusted Calcium; PO4: Phosphate; T3: 

Triiodothyronine; IGF-1: Insulin-like growth factor 1; GLP-2: Glucagon-like peptide 2.  

3.12. AUC  

Area under the curve (AUC) with respect to baseline (BASE) was calculated for all 

biochemical markers from the percentage change data (Zweig and Campbell, 1993). 

3.13. Blood sampling and storage 

Blood samples were obtained at the same time of day for each participant (please see details 

in each experimental chapter) after an overnight fast (from 20:00 pm in the previous 

evening). Blood was drawn from a vein in the forearm by a trained phlebotomist using 
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standardised procedures. Plasma samples were centrifuged immediately at 3000 revolutions 

per minute for 10 min at 4oC. Venous blood was also dispensed into serum tubes and 

allowed to clot at room temperature for 30 minutes before being centrifuged under the same 

conditions. Resultant plasma and serum were aliquoted into Eppendorf tubes and stored at -

80oC. β-CTX, PINP, PTH and IGF-1 were analysed in plasma. Serum was analysed for 

sclerostin (Study 1 & 2), leptin, insulin, T3, GLP-2 (Study 1 & 2), 17β-oestradiol, albumin, 

Ca, PO4 and Mg.   

3.14. Biochemical analysis   

β-CTX, P1NP, PTH, T3 and 17β-oestradiol were measured using ECLIA (Roche 

Diagnostics, Burgess Hill, UK) on a Cobas e601. Inter-assay CV for β-CTX was <3% 

between 0.2 and 1.5 µg·L-1, with sensitivity of 0.01 µg·L-1. P1NP inter-assay CV was <3% 

between 20-600 µg·L-1 and sensitivity of 8 µg·L-1.  PTH inter-assay CV of <4% between 1-

30 pmol·L-1 and sensitivity of 0.8 pmol·L-1. Sclerostin was measured using an ELISA 

supplied by Biomedica GmbH (Vienna Austria) with a sensitivity of 2.6 pmol·L-1 

established from precision profiles (22% CV of duplicates) and a CV of <15% across the 

range 25-95.0 pmol·L-1. T3 inter-essay CV of <1% between 2.0-3.1 nmol·L-1 and detection 

limit of 0.3 nmol·L-1. The inter-assay CV for 17β-oestradiol was <3% between 214.3-2156.7 

pmol·L-1 and detection limit of 18.4 pmol·L-1. Leptin was measured using ELISA 

(Biovendor, Czech Republic) and had an inter-assay CV of <7% across the range 1-50 µg·L-

1 and sensitivity 0.2 µg·L-1. IGF-1 was measured using ELISA (Immunodiagnostic Systems 

Ltd, Boldon, UK) and had an inter-assay CV of <2.2% between 24.0-306.2 ng·mL-1 and 

sensitivity of 4.4 ng·mL-1. GLP-2 was measured using ELISA (Yanaihara Institute Inc, 

Japan), with an inter-assay CV of 1.1-11.1% across the range 3.1-33.4 ng·mL-1 and a 

detection limit of 0.5 ng·mL-1. Insulin was measured using ECLIA on a Cobas e601 (Roche 

Diagnostics, Burgess Hill, UK), inter-assay CV is <6.1% across the range 44-505 pmol·L-1 

and sensitivity is 1.8 pmol·L-1. Ca, albumin and PO4 were measured using standard 

commercial assays supplied by Roche Diagnostics performed on the Roche COBAS c501. 

The range of measurement in serum was 0.05-5.00 mmol·L-1 for Ca, 10-70 g·L-1 for albumin 

and 0.10-6.46 mmol·L-1 for phosphate. Mg was measured using a commercial assays 

supplied by Roche Diagnostics and analysed on a COBAS c501. The inter-assay CV was 

0.9% across the range 0.1-2.0 mmol·L-1 and the sensitivity was 0.05 mmol·L-1.  
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Chapter 4. Bone metabolic response to 

short-term low energy availability in 

physically active women  
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4.1. Introduction  

Physically active individuals commonly follow dietary energy restriction during training, 

which can result in low EA. These practices put them at risk for sustaining a stress fracture 

injury (Bennell et al., 1996a; Warden et al., 2014) and their bone health is a topic of concern 

both during and after their careers (Nattiv et al., 2007; Mountjoy et al., 2014). 

Interrelationships between low EA, reproductive function and BMD in women have been 

described under the Female Athlete Triad (Nattiv, 2007; De Souza et al., 2014a).  A number 

of female athletes partaking in weight sensitive sports follow low EA and present with low 

BMD (Nattiv et al., 2007; Loucks et al., 2007; 2011; Melin et al., 2015).  High prevalence 

rates of stress fracture injuries have been reported in female athletes (Wentz et al., 2011), but 

also female military recruits (Wentz et al., 2011; Beck et al., 2000), who are similarly 

exposed to periods of prolonged exercise without adequate DEI (Tharion et al., 2005; Hoyt 

& Friedl, 2006). Factors associated with energy deficiency including low EA, low body 

weight/BMI, disordered eating and rapid weight loss are emerging as risk factors for 

sustaining a stress fracture injury (Barrack et al., 2014; Warden et al., 2014) and an 

osteoporotic fracture in later life (Compston et al., 2016). As such, understanding the effects 

of low EA on bone metabolism and health is important for implementing prevention and 

treatment strategies for bone related disorders in these physically active women.   

Low BMD is likely to reflect uncoupled bone turnover (decreased bone formation, increased 

bone resorption or a combination of the two) following low EA (Zanker & Swaine; 1998a; 

Villareal et al., 2016). Initial bone turnover responses to low EA in physically active women 

and their potential long-term effects are unknown. Short-term energy restriction has 

unfavourable effects on bone, with detrimental effects of short-term fasting on bone turnover 

having been shown (Grinspoon et al., 1995). Decreased bone formation, at different levels of 

low EA (30, 20 and 10 kcal·kgLBM-1·d-1), and increased bone resorption, with severely 

restricted EA (10 kcal· kg LBM-1·d-1) over 5 days, has been shown in sedentary women 

when compared to balanced EA (45 kcal· kg LBM-1·d-1) (Ilhe & Loucks, 2004). Some 

amenorrheic athletes report EA at ~16 kcal·kgLBM-1·d-1 (Thong et al. 2000), making it 

important to explore the effects of this level of reduced EA on bone turnover in physically 

active women.   

Physiological adaptations to low EA involve alterations in energy regulatory hormones; 

decreases in T3, IGF-1 and leptin; as well as elevations in ghrelin and PYY (Ihle & Loucks, 

2004; Zanker and Swaine, 2000; De Souza et al., 2008; Sheid et al., 2011). Low EA results 

in suppression of ovulatory cycles, inhibition of GnRH, reductions in LH pulsatility and 
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oestrogen levels in women (De Souza et al., 2004; Loucks & Thuma, 2003). Changes in 

energy regulatory hormones and hormones indicative of reproductive function have been 

suggested to affect bone metabolism and BMD by acting independently or synergistically in 

women with energy and/or oestrogen deficiency (De Souza et al., 2008; Ihle & Loucks, 

2004). Their individual contribution and complex interplay in mediating bone responses, 

however, remain to be elucidated.  

To address these issues, we conducted a randomised, crossover study to investigate the 

effects of short-term, low EA at 15 kcal·kgLBM-1·d-1, achieved by combined dietary energy 

restriction and exercise, on BTMs in physically active, eumenorreic women. A secondary 

goal was to investigate changes in regulatory and reproductive hormones and markers of 

calcium metabolism that may mediate potential differences in BTMs. It was hypothesised 

that bone formation would be decreased and bone resorption would be increased by low EA. 
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4.2. Methods  

4.2.1. Participants  

Eleven eumenorrheic women (Table 4.2.) volunteered to participate in this experiment 

having provided informed consent (Appendix 10-Paticipant’s Information Sheet, Appendix 

11-Informed Consent Form). Participants were included if they were Caucasian, aged 18-35 

years, non-smokers, had a BMI between 18.5 and 30 kg·m-2, had not sustained a bone 

fracture within the previous year, were currently injury free, had no history of disordered 

eating and did not use any medication or suffer from any condition affecting bone 

metabolism. These criteria were confirmed verbally and in writing via a health screen 

(please see section 3.3.1.- Appendix 1) and SCOFF questionnaire (Morgan et al., 1999) 

(please see section 3.3.3.- Appendix 4.). Exclusion criteria included breastfeeding, 

pregnancy, any type of hormonal contraception and self-reported short (<24 days), long (>35 

days) or irregular menstrual cycles (please see section 3.3.2.). Participants regularly 

performed ≥3 hours of moderate to vigorous physical activity per week and had moderate 

and high physical activity levels as determined by the IPAQ (please see section 3.3.4.).  

4.2.2. Experimental design  

This study was performed using a randomised (Standard Latin squares for 2 x 2), 

counterbalanced, crossover, design. Participants completed a 9-day experimental period 

(D1-D9) on two occasions (condition 1 and condition 2). Participants followed a controlled 

balanced (CON: 45 kcal·kg-1LBM·d-1) and a restricted EA (RES: 15 kcal·kg-1LBM·d-1). 

Both EAs were achieved by manipulating diet and exercise. Participants completed exercise 

sessions at 70% VO2 peak resulting in EEE of 15 kcal·kg-1LBM·d-1. DEI provided 60 and 30 

kcal·kg-1LBM·d-1 in CON and RES.  

During the lead-in period (D1-D3), participants recorded habitual dietary intake and lifestyle 

physical activity, having refrained from systematic exercise.  Over the following 5 days of 

the protocol (D4-D8) participants undertook either CON or RES (Figure 4.1.). Participants 

began each condition in the early follicular phase (~28 d apart), as confirmed by 17β-

oestradiol measurements on D5 (Stricker et al., 2006). Between the two conditions, 

participants were instructed to follow their habitual dietary intake and exercise routine. After 

the ~28-day gap, participants completed the second part of the study (i.e., CON RES or 

RESCON).  
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Figure 4.1. Overview of the study design. P: Preliminary assessments; D1-D8: Experimental 

Days. Shaded boxes denote laboratory visits and change into either the controlled (CON) or 

restricted (RES) period (D3-D4); adjoined boxes denote consecutive days; the thick 

black/red line denotes when CON/RES energy availability (EA) conditions are stopped. 

Arrows denote blood sampling schedule.  

4.2.3. Experimental procedures  

4.2.3.1. Preliminary assessments  

Preliminary measurements were performed to establish inclusion criteria, take baseline 

measurements and determine the fitness level of the volunteers. During their first visit, 

participants completed a medical history questionnaire (please see section 3.3.1.-Appendix 

1), SCOFF questionnaire and weight history questionnaire (please see section 3.3.3.-

Appendix 4) and IPAQ (please see section 3.3.4.-Appendix 5). Following the completion of 

these questionnaires, participants were weighed in light clothes without shoes on a weighing 

scale (Seca, UK), height was obtained barefoot using a stadiometer (SECA, UK) and BMI 

was calculated (weight (kg) divided by the height squared (m2)) (please see section 3.4.).   

A whole body DXA axial scan was performed to assess body fat (kg, %) and LBM (kg), and 

determine BASE BMD (g·m-2). All scans were performed and analysed by the same operator 

at the Clinical Suite, Derby University in order to minimise the variability between 

examiners. Positioning of the participants during the DXA scan was performed according to 

manufacturer’s guidelines, as detailed in section 3.5. Participants also performed an 

incremental exercise test on a treadmill (HP Cosmos, Germany) to determine their VO2 
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peak, for a detailed description please see section 3.6.  Accelerometers and food weighing 

scales were provided along with verbal and written instructions on how to complete the 

weighed food intake (please see section 3.7.1. and 3.8.1).  

4.2.3.2. Experimental period  

4.2.3.2.1. Lifestyle EE 

Participants wore an accelerometer (GT3X/GT3XE, Actigraph) during all waking hours on 

D1-D8, except while bathing, to estimate lifestyle EE. Outside the prescribed exercise, 

participants were instructed to perform only light activities, such as reading or working on a 

computer. 

4.2.3.2.2. Habitual DEI 

Participants weighed and recorded food intake during D1-D3 to provide information about 

their habitual dietary intake.  All participants were shown how to complete the food records. 

Written instructions and examples were also provided (please see section 3.7.1.) (Appendix 

6). Dietary analysis was performed by a registered dietitian using Microdiet™ software 

(please see section 3.7.2.).  

4.2.3.2.3. Experimental Diets 

During D4-D8, each participant was given diet plans containing the same foods and 

beverages consumed during the 3-day period of recording their habitual diet in amounts that 

provided DEI of 60 and 30 kcal·kg-1LBM·d-1 and maintained the dietary composition of 

each participant’s habitual diet. Percentages of macronutrient intake (carbohydrates, proteins 

and fat) were matched with the participants’ habitual DEI prior to the condition that each 

participant was first assigned. Three menus were designed according to the 3 records of 

habitual DEI and administered in a 3-day cyclic order with menu A on D4 and D7, menu B 

on D5 and D8 and menu C on D6. Menus included five meals in both CON and RES trials to 

limit the effects of food partition on bone turnover (Li & Muhlbauer, 1999). Participants 

were asked to consume these meals at standardised times each day; breakfast (08:30 h), mid-

morning snack (10:00 h), lunch (12:00 h), afternoon or evening snack (15:00 or 17:00 h) 

depending on the time of exercise and dinner (21:00 h). The characteristics of the 

experimental diets in CON and RES trials are presented in Table 4.2. Participants provided 

their own food, but were instructed on the amounts, preparation and timing of the meals. 

They were also allowed to drink tea and coffee (without any sugar or milk) over the main 

experimental period and water consumption was permitted ad libitum. The diet plans 
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provided to each participant contained four columns; food- list, quantity in grams, checklist 

and other quantity in grams. A multivitamin, multi-mineral supplement (A - Z Tablets, 

Boots, Nottingham, UK) was provided during the restricted experimental period in order to 

provide adequate micronutrient intake and isolate the effects of energy/macronutrient 

restriction.  

Table 4.1. Energy and macronutrient composition of prescribed experimental diets.  

 CON RES 

DEI (kcal∙ d-1) 2490.9 (292.0) 1264.8 (150.1) 

DEI (kcal·kg-1 LBM·d-1)  60.0 (0.4) 30.3 (0.2) 

Carbohydrate (%) 49 (7) 49 (7) 

Protein (%) 17 (5) 18 (5) 

Fat (%)  34 (6) 33 (6) 

Values are expressed as means (1SD). 

 DEI: Dietary Energy Intake; CON: Controlled; RES: Restricted. 

4.2.3.2.4. EEE  

During D4-D8, exercise was undertaken in order to contribute to EEE of 15 kcal·kg-

1LBM·d-1. Participants ran on a flat treadmill at 70% of VO2 peak in 15- minute sessions, 

with 5-minute rest periods between sessions. Expired gases were continuously collected and 

analysed using a breath-by-breath analyser (ZAN 600, nSpire Health) during the test on D4. 

The duration of subsequent exercise sessions (D5-D8) were calculated using the oxygen 

uptake and respiratory exchange ratio collected during this session, as described in section 

3.8.2. 

The methodological study presented in section 3.8.3. has shown that EEE during exercise of 

the same duration and intensity is similar when repeated under the same conditions for the 

same individual.  During the exercise sessions on D5-D8, gas analysis was not performed, 

given that participants were exercising under identical conditions to the first exercise day 

(D4). During the exercise protocol, participants also wore a heart rate monitoring device 

fitted around their chest, with heart rate recorded continuously throughout each run.  

4.2.3.2.5 Compliance  

Compliance with the experimental diets was confirmed verbally and/or by using a self-

recorded checklist. Participants reported any deviation from their prescribed meals plans.  
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4.2.4. Storage and analyses of blood samples 

Blood samples were obtained at the same time of day for each participant between 08:15-

09:00 h (maximum ± 15 min for the same participant) after an overnight fast (from 20:00 h 

the previous evening) on D1, D3, D5, D7 and D9.  The mean value of D1 and D3 were used 

as BASE.  Blood sample collection, processing and analysis have been previously described 

in section 3.1.3. β-CTX, PINP, PTH and IGF-1 were analysed in plasma. Serum was 

analysed for leptin, insulin, T3, GLP-2, 17β-oestradiol, ACa, PO4 and Mg.  

4.2.5. Biochemical analysis  

A detailed description of biochemical analysis is provided in section 3.14. 

4.2.6. Statistical analysis  

Based on results reported by Zanker and Swaine (2000), the study was sized to detect a 

significant change in P1NP (pre: 76.1 ± 5.8; post: 64.7± 6.0 mg·L-1, P<0.05) due to low EA. 

A priori power calculations showed that a minimum of 7 women were required to achieve 

95% power at P<0.05. All data were checked for normality according to the Shapiro-Wilk 

test, with data being log-transformed, when not normally distributed. Baseline biochemistry 

markers prior to each experimental condition were compared with paired t-tests or the 

Wilcoxon signed-rank test. A two-way ANOVA with repeated measures was used to 

determine main (condition, time) and interaction (condition x time) effects for raw data of 

BTMs, markers of bone metabolism, regulatory and reproductive hormones in response to 

CON and RES EA. Tukey’s tests were used as post hoc analyses when a significant 

interaction effect was shown. AUC with respect to BASE were calculated for all 

biochemical markers from using the percentage data from BASE (% BASE) (Zweig & 

Campbell, 1993).  A paired t-test for normally distributed data or the Wilcoxon signed-rank 

test for non-normally distributed data were used to detect differences between CON and 

RES. Data are presented as mean (1SD) and statistical significance was set at P ≤ 0.05. Data 

were analysed using Statistica 13.0 (Statsoft, USA) and SPSS 22.0 (Armonk, USA). In 

addition to summary statistics, the individual responses of the BTMs to RES were also 

examined. In order to be considered a responder, β-CTX concentrations at D9 in RES were > 

BASE (100%), > β-CTX concentrations at D9 in CON together with a difference >3% to 

account for CV of β-CTX assay. For P1NP, responders were identified if P1NP 

concentrations at D9 in RES were <BASE (100%), <P1NP levels at D9 in CON together 

with a difference >3% to account for CV for P1NP assay. 
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4.3. Results  

4.3.1. Participant characteristics  

Participant characteristics are shown in Table 4.2.  

Table 4.2. Participant characteristics (n=11) 

Demographics  

Age (y) 26 (5) 

Height (m) 1.66 (0.05) 

Body mass (kg) 59.7 (6.7) 

BMI (kg ·m-2) 21.5 (1.5) 

Body composition  

Body fat (%) 27.1 (6.2) 

LBM (kg) 41.5 (4.9) 

FFM (kg) 44.0 (5.1) 

BMD (g·cm-2) 1.14 (0.11) 

Training characteristics  

VO2 peak (ml·kg-1·min-1) 47.9 (5.5) 

VO2 peak (ml·kg LBM-1·min-1) 69.3 (5.9) 

Physical activity (MET-min·wk-1) 3928 (1651) 

Dietary and EE characteristics   

Habitual DEI (kcal·d-1)1 2143 (361) 

Lifestyle EE (kcal·d-1)1 402 (227) 

24-hour EE(kcal· d-1)1 1943 (302) 

Values are expressed as means (1SD). 
1 Mean values of D1-D3 prior to both experimental conditions. 

BMI: Body mass index; LBM: Lean body mass; FFM: Fat free mass BMD: Bone mineral density: VO2max: 

Maximum oxygen uptake; DEI: Dietary energy intake; EE: Energy expenditure; RMR: Resting metabolic rate; 

MET: Metabolic equivalents. 

 

4.3.2. Baseline Biochemistry  

Baseline β-CTX in RES was significantly lower than BASE levels in CON (P=0.012); with 

no significant differences in any other biochemical marker (Table 4.3.). Baseline BTMs 

concentrations were within, but at the higher end of the reference range (β-CTX: 0.15-0.80 

µg·L-1; P1NP: 25-90 µg·L-1, Jenkins et al., 2013), especially those of P1NP (Table 4.3.).  
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Table 4.3. Markers of energy status and BASE concentrations of BTMs, markers of calcium 

metabolism, regulatory and reproductive hormones prior to CON and RES trials (n=11). 

Mean values of D1 and D3 were used as BASE prior to each experimental condition. 

 CON  RES P-value 

Markers of energy status 

Body mass (kg) 1 59.9 (6.5) 60.2 (6.2) 0.30 

Habitual DEI (kcal·d-1)2 2082 (308) 2072 (349) 0.91 

Lifestyle EE (kcal·d-1)2 427.6 (308.9) 375.6 (203.1) 0.52 

BTMs  

β-CTX (µg·L-1) 

P1NP  (µg·L-1) 

0.49 (0.14) 0.42 (0.11) 0.012* 

71.1 (15.0) 70.6 (15.1) 0.87 

BT ratio  1.54 (0.44) 1.72 (0.42) 0.06 

Markers of calcium metabolism 

PTH (pg·mL-1) 4.0 (0.7) 3.7 (0.7) 0.22 

ACa (mmol·L-1) 2.32 (0.05) 2.32 (0.05) 1.00 

0.58 Mg (mmol·L-1) 0.84 (0.05) 0.83 (0.04) 

PO4 (mmol·L-1) 1.22 (0.12) 1.23(0.17) 0.81 

Regulatory hormones 

Sclerostin (ng·mL-1) 0.46 (0.13) 0.46 (0.11) 0.66 

IGF-1 (mmol·L-1) 223.2  (58.4) 235.0 (65.4) 0.37 

T3 (mmol·L-1) 1.66 (0.24) 1.66 (0.18) 0.86 

Leptin (ng·mL-1) 8.3 (11.0) 11.1 (16.1) 0.21 

Insulin (pmol·L-1) 36.1 (12.9) 44.2 (25.8) 0.18 

GLP-2 (ng·mL-1) 10.5 (7.7) 9.4 (5.6) 0.06 

Reproductive hormones 

17-β oestradiol (pmol.L-1)2,3 125.5 (53.2) 121.0 (46.6) 0.82 

Values are expressed as means (1SD). 
1 Baseline measurements were taken on D4 in each experimental condition.   
2 Analysis performed in 10 participants with complete data for both conditions.  
3 Baseline measurements were taken on D5 in each experimental condition.   
*denotes a significant difference between CON and RES (P<0.05). 

DEI: Dietary energy intake; EE: Energy expenditure; β-CTX: C-terminal cross-linked telopeptide of type I 

collagen; P1NP: Amino-terminal pro-peptide of type 1 procollagen; BT ratio: Bone turnover ratio; PTH: 

Parathyroid hormone; Mg: Magnesium; ACa: Albumin adjusted Calcium; PO4: Phosphate; T3: Triiodothyronine; 

IGF-1: Insulin-like growth factor 1; GLP-2: Glucagon-like peptide 2; BTM: Bone turnover markers; BASE: 

Baseline; CON: Controlled; RES: Restricted.   

4.3.3. Baseline Energy Status and Reproductive function 

There were no differences in body mass, habitual DEI or lifestyle EE prior to CON and RES 

(Table 4.3.). Women began each condition in the early follicular phase, as confirmed by 
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17β-oestradiol measurements on Day 5 in both experimental conditions (Table 4.5.) 

(Stricker et al., 2006). At D9, 17β-oestradiol measurements for all participants (Table 4.5.) 

were within the range for early (1-9 days: 5th percentile 77.99, 95th percentile: 266.08) or late 

follicular phase (10-14 days; 5th percentile 195.43, 95th percentile: 1146.91) (Stricker et al., 

2006). One participant had slightly elevated 17β-oestradiol concentrations, which could 

denote ovulation according to Stricker et al., 2006. However, as there is some overlap in 

17β-oestradiol between phases (Stricker et al., 2006), and so analyses were conducted with 

and without this participant included. When this participant was excluded, there was no 

change in any of the BTM findings and therefore, we included the data of this participant in 

final analyses.  

4.3.4. Compliance  

The analysis of dietary plans completed by participants and/or verbal confirmation of dietary 

adherence on a daily basis suggest that participants complied well with the experimental 

diets. The actual experimental CON and RES DEI and exercise characteristics (Table 4.4.) 

were not different from the prescribed experimental diets in CON and RES (Table 4.1.) (data 

not shown, all P values>0.05). Some participants had difficulty in performing the exercise 

protocol in RES, although all of them were able to complete the running sessions and 

expended the prescribed EEE (Table 4.4).  

Table 4.4. Actual experimental dietary and exercise characteristics (n=11) 

 CON RES 

Actual Experimental Dietary characteristics  

DEI (kcal∙ d-1) 2465 (299) 1261 (125) 

DEI (kcal·kg-1 LBM·d-1)  59.4 (1.4) 30.5 (0.3) 

Carbohydrate (%) 49 (8) 51 (5) 

Protein (%) 17 (5) 16 (4) 

Fat (%)  34 (7) 32 (4) 

Actual Experimental Exercise  

EEE  (kcal∙ d-1) 616 (74) 616 (74) 

EEE (kcal·kg-1 LBM·d-1)                        14.8 (0.2) 14.8 (0.2) 

Running speed (km·h-1)                          9.0 (1.6) 9.0 (1.6) 

Duration (min)    65.6 (3.9) 65.6 (3.9) 

Values are expressed as means (1SD). 

DEI: Dietary Energy Intake; EEE: exercise energy expenditure; LBM: Lean body mass; CON: Controlled; RES: 

Restricted.  
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4.3.5. Body mass 

Body mass was maintained in CON (D4: 59.9±6.5 kg, D9:59.7± 6.2 kg, P=0.15), but 

significantly decreased from D5 in RES (D4: 60.2±6.20; D9: 58.6±5.9, P<0.001).  

4.3.6. BTMs 

4.3.6.1. β-CTX 

There was a significant main effect of time for β-CTX (P=0.018), with higher mean 

concentrations at D7 and D9 compared to BASE. No main effect of condition (P=0.17) or an 

interaction effect (P=0.36) were shown (Figure 4.2.; Table 4.5.). β-CTX AUC was higher in 

RES compared to CON (P=0.033) (Figure 4.3.; Table 4.6.).  

4.3.6.2. P1NP 

There was a main effect of time for P1NP (P<0.001), with reduced mean concentrations at 

D5, D7 and D9 compared to BASE and lower concentrations at D7 compared to D5. There 

was no significant main effect of condition (P=0.20) or any condition x time interaction 

effect (P=0.21) (Figure 4.2.; Table 4.5.). P1NP AUC was lower in RES compared to CON 

(P=0.012) (Figure 4.3.; Table 4.5.). 

4.3.6.3. BT ratio  

A significant time main effect (BASE-D5; BASE-D7; BASE-D9; D5-D7; P<0.05) and a 

condition x time interaction effect (P=0.031) were shown for BT ratio. BT ratio was 

significantly reduced by 17.8% at D5, 26.2% at D7 and 25.3% at D9 relative to BASE in 

RES only (all P<0.05) (Figure 4.2.; Table 4.5.). BT Ratio AUC was significantly lower after 

RES trial (P=0.006) (Figure 4.3.; Table 4.5.).  
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Figure 4.2. Percentage change from BASE concentrations for β-CTX (A), P1NP (B) and BT 

ratio (C) on D5-D9 in CON (black squares) and RES (white squares). Values are presented 

as mean (1SD). *denotes a significant difference from BASE (P<005). β-CTX: C-terminal 

cross-linked telopeptide of type I collagen; P1NP: Amino-terminal pro-peptide of type 1 

procollagen; BT ratio: Bone turnover ratio; BASE: Baseline; CON: Controlled trial; RES: 

Restricted trial.  
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Figure 4.3. AUC analysis of β-CTX (A), P1NP (B) and BT ratio (C) in women after CON 

(black bars) and RES (white bars). Values are presented as mean (1SD). *denotes a 

significant difference from CON (P<0.05). β-CTX: C-terminal telopeptides of type I 

collagen; P1NP: Amino-terminal pro-peptide of type 1 procollagen; BT ratio: Bone turnover 

ratio; CON: Controlled trial; RES: Restricted trial; BASE: Baseline; AUC: Area under the 

curve. 
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Table 4.5. BTMs concentrations expressed as percentage change from BASE and AUC in 

CON and RES trials. Mean values of D1 and D3 were used as BASE prior to each 

experimental condition.  

Values are expressed as means (1SD). 
1AUC calculated for each experimental condition from BASE to D9.   
*denotes a significant difference from BASE in the same condition (P<0.05). 
**denotes a significant difference from CON at the same timepoint (P<0.05). 

 β-CTX: C-terminal cross-linked telopeptide of type I collagen; P1NP: Amino-terminal pro-peptide of type 1  

procollagen; BT ratio: Bone turnover ratio; CON: Controlled trial; RES: Restricted trial; D: Day; BASE: 

Baseline; AUC: Area under the curve. 

4.3.7. Markers of calcium metabolism  

4.3.7.1. PTH 

There was a significant main effect of time (P=0.009), with levels at D7 increasing from 

BASE (P=0.003). There was no significant main effect of condition (P=0.62) or any 

condition x time interaction effect (P=0.60).  PTH AUC in RES was not significantly 

different from AUC in CON (P=0.39) (Table 4.6.). 

4.3.7.2. ACa 

There was no significant main effect of time (P=0.69), condition (P=0.69) or any condition x 

time interaction effect (P=0.45) was shown for ACa levels. ACa AUC was not significantly 

different between CON and RES (P=0.42) (Table 4.6.).   

4.3.7.3. Mg 

There was no significant main effect of time (P=0.17), condition (P=0.98) or any condition x 

time interaction effect (P=0.69) was shown for Mg levels. Mg AUC was not significantly 

different between CON and RES (P=0.18) (Table 4.6.).  

 CON  RES 

 BASE D9  BASE D9 

β-CTX      

µg·L-1 0.49 (0.14) 0.51 (0.12)  0.42 (0.11) 0.49 (0.09) 

%BASE change  6.1 (12.6)   19.5 (14.8) 

AUC (%BASE x d)1  16.9 (68.1)   85.7 (60.5)** 

P1NP      

µg·L-1 71.1 (15.0) 67.5 (13.7)  70.6 (15.1) 61.6 (14.0) 

%BASE change  -4.5 (8.6)   -12.7 (7.4) 

AUC (%BASE x d)1  -23.1 (34.9)   -60.9 (31.2)** 

BT ratio      

- 1.54 (0.44) 1.39 (0.39)  1.73 (0.42) 1.27 (0.33)* 

%BASE change  -9.0 (12.9)   -25.3 (11.4) 

AUC (%BASE x d)1  -28.0 (56.9)   -113.4 (45.8)** 
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4.3.7.4. PO4 

There was no significant main effect of time (P=0.25) or condition (P=0.92). A condition x 

time interaction (P=0.02) effect was shown for PO4 concentrations, although no post-hoc 

comparisons reached significance. PO4 AUC was not significantly different between CON 

and RES (P=0.93) (Table 4.6.).  

Table 4.6. Markers of calcium metabolism expressed as concentrations, percentage change 

from BASE and AUC in CON and RES trials. Mean values of D1 and D3 were used as 

BASE prior to each experimental condition. 

Values are expressed as means (1SD).  
1AUC calculated for each experimental condition from BASE to D9.   

PTH: Parathyroid hormone; Mg: Magnesium; ACa: Albumin adjusted Calcium; PO4: Phosphate; D: Day; BASE: 

Baseline; CON, Controlled trial; RES, Restricted trial. 

4.3.8. Regulatory hormones 

4.3.8.1. Sclerostin   

There was no significant main effect of time (P=0.14), condition (P=0.97), or any condition 

x time interaction effect (P=0.67) for sclerostin concentrations. Sclerostin AUC in CON did 

not significantly differ from that in RES (P=0.48) (Table 4.7.). 

4.3.8.2. IGF-1 

There was a significant main effect of time (P<0.001), with mean IGF-1 concentrations 

decreasing progressively from BASE to D9 (BASE-D5; BASE-D7; BASE-D9; D5-D7; D5-

 CON  RES 

 BASE D9  BASE D9 

PTH      

pg·mL-1 3.98 (0.66) 4.18 (0.95)  3.68 (0.69) 4.26 (1.03) 

%BASE change  4.6 (17.6)   13.6 (17.9) 

AUC (%BASE x d)1  49.9 (59.4)   73.9 (82.9) 

ACa       

mmol·L-1 2.32 (0.05) 2.33 (0.06)  2.32 (0.05) 2.32 (0.04) 

%BASE change  0.8 (1.8)   0.0 (1.6) 

AUC (%BASE x d)1  -0.9 (5.9)   1.0 (6.8) 

Mg       

mmol·L-1 0.84(0.05) 0.84(0.04)  0.83 (0.04) 0.85 (0.05) 

%BASE change  0.8 (2.7)   2.0 (4.4) 

AUC (%BASE x d)1  2.5 (17.6)   10.1 (21.3) 

PO4       

mmol·L-1 1.22 (0.12) 1.30 (0.17)  1.23 (0.17) 1.23 (0.13) 

%BASE change  7.3 (6.7)   1.0 (8.4) 

AUC (%BASE x d)1  16.9 (36.9)   18.8 (36.1) 
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D9; all P<0.001). There was no significant main effect of condition (P=0.76) or any 

condition x time interaction effect (P=0.22). IGF-1 AUC was not significantly different 

between conditions (P=0.09) (Table 4.7.)  

4.3.8.3. T3 

There was no significant main effect of condition (P=0.08) or time (P=0.26). A time x 

condition interaction was shown (P=0.006), with mean T3 levels at D9 being significantly 

reduced by 10.7% from BASE (P=0.008) in response to RES, but not to CON. T3 AUC in 

RES was not significantly different from that in CON (P=0.054) (Table 4.7.).  

4.3.8.4. Insulin 

A significant main effect of condition (P=0.012) and time (P=0.007) and a condition x time 

interaction effect (P<0.001) were shown for insulin concentrations. Mean insulin 

concentrations at D7 were significantly reduced from BASE (P=0.005). In response to RES, 

insulin concentrations were lower at D7 (-45.3% from BASE and -24.3% from D5) and at 

D9 (-29.2% change from BASE). Insulin AUC after RES was lower than after CON 

(P=0.011) (Table 4.7.).  

4.3.8.5. Leptin  

Mean leptin levels were lower between BASE-D5, BASE-D7, BASE-D9 and D5-D7 (time 

effect; P <0.001). There was no significant main effect of condition (P=0.21) or any time x 

condition interaction effect (P=0.054). Leptin AUC was significantly lower after RES 

compared to CON (P=0.043) (Table 4.7.).  

4.3.8.6. GLP-2 

There was no significant main effect of time (P=0.30) or condition (P=0.85) or any time x 

condition interaction effect (P=0.60). GLP-2 AUC was not significantly different between 

RES and CON (P=0.14) (Table 4.7.).  

4.3.9. Reproductive hormones  

There was no significant main effect of time (P=0.053) or condition (P=0.83) or any 

condition x time interaction effect (P=0.53) for 17β-oestradiol levels. 17β-oestradiol AUC 

was not significantly different between conditions (P=0.39) (Table 4.7.). 
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Table 4.7. Regulatory and reproductive hormones expressed as concentrations, percentage 

change from BASE and AUC in CON and RES trials. Mean values of D1 and D3 were used 

as BASE prior to each experimental condition. 

Values are expressed as means (1SD). 

 1AUC calculated for each experimental condition from BASE to D9.  
2ANOVA performed in 9 participants with available data in both conditions.  

 *denotes a significant difference from BASE in the same condition (P<0.05). 
**denotes a significant difference from CON at the samepoint (P<0.05). 

T3: Triiodothyronine; IGF-1: Insulin-like growth factor 1; GLP-2: Glucagon-like peptide 2, D: Day; BASE: 

Baseline; CON, Controlled trial; RES, Restricted trial. 

4.3.10. Individual analysis  

Individual responses were considered in line with the criteria outlined in section 4.2.6. Seven 

out of 11 participants responded to RES with an increase in -CTX concentrations and 6 out 

of 11 participants responded to RES with a decrease in P1NP concentrations. Four female 

participants were responders for β-CTX (increase) only, 3 participants were responders for 

P1NP (decrease) only and 3 participants responded to RES for both. In total, 10 out 11 

 CON  RES 

 BASE D9  BASE D9 

Sclerostin      

ng·mL-1 0.45 (0.13) 0.47 (0.12)  0.46 (0.11) 0.49 (0.13) 

%BASE change  6.8 (17.3)   4.5 (8.8) 

AUC (%BASE x d)1  -78.2 (64.9)   -7.1 (39.2) 

IGF-1      

mmol·L-1 223.2(58.4) 202.0 (57.8)  235.0 (65.5) 186.1 (57.5) 

%BASE change  -8.8 (20.9)   -20.0 (9.6) 

AUC (%BASE x d)1  -48.2 (82.6)   -89.8 (47.5) 

T3      

mmol·L-1 1.65 (0.25) 1.66 (0.22)  1.66 (0.19) 1.47 (0.18)* 

%BASE change  1.9 (7.0)   10.7 (10.2) 

AUC (%BASE x d)1  -1.8 (61.3)   -31.5 (40.5) 

Leptin      

ng·mL-1 8.3 (11.0) 5.9 (5.7)  11.1 (16.1) 4.3 (5.0) 

%BASE change  -8.8 (34.9)   -39.8 (38.5) 

AUC (%BASE x d) 1  -118.3 (119.0)   -214.2 (112.2)** 

Insulin      

pmol·L-1 36.1 (12.9) 37.3 (15.1)  44.2 (25.8) 22.4 (13.0)* 

%BASE change  19.2 (57.9)   -29.2 (47.3) 

AUC (%BASE x d) 1  -16.5 (194.2)   -171.8 (121.7)** 

GLP-2      

ng·mL-1 10.5 (7.7) 9.5 (4.9)  9.4 (5.6) 9.8 (6.8) 

%BASE change  -4.0 (17.8)   3.7 (16.0) 

AUC (%BASE x d) 1  -20.2 (70.5)   11.5 (46.3) 

17-β oestradiol      

pmol.L-1 115.5(45.4) 186.4 (86.1)  126.0 (46.5) 226.9 (200.8) 

%BASE change  59.5 (54.3)   39.3 (31.5) 

AUC (%BASE x d) 1  119.0 (108.7)   78.5 (63.0) 
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women had altered bone turnover resulting from changes in bone resorption (increase), bone 

formation (decrease) or both (Table 4.8.).  

Table 4.8. Number of responders (out of total number of participants) for β-CTX, P1NP and 

bone turnover. This analysis was based on data expressed as %BASE for each participant.  

  β-CTX  P1NP Bone turnover1 Bone turnover2 

RES  7/11 6/11 10/11 3/11 
1altered bone turnover due to increase β-CTX, decreased P1NP or both. 
2altered bone turnover due to a simultaneous increase in β-CTX and decrease in P1NP. 

β-CTX: C-terminal cross-linked telopeptide of type I collagen; P1NP: Amino-terminal pro-peptide of type 1 

procollagen; BT ratio: Bone turnover ratio; BASE: Baseline; RES: Restricted. 
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4.4. Discussion  

This study is the first to investigate short-term, low EA at 15 kcal·kgLBM-1·d-1 on BTMs, 

regulatory hormones, markers of calcium metabolism and reproductive hormones in 

physically active women. The main findings were that low EA over a short-time period of 5 

days resulted in a significant increase in bone resorption (β-CTX AUC) and a significant 

decrease in bone formation (P1NP AUC). These changes were accompanied by adaptive 

changes in regulatory hormones including insulin, leptin and T3, which were indicative of 

energy conservation.  

These findings extend those of previous, short-term, laboratory studies documenting a 

decrease in bone formation, with or without an increase in bone resorption, with low EA 

(Ihle and Loucks, 2004) and acute fasting (Grinspoon et al., 1995) in sedentary women. The 

increases in bone resorption (β-CTX: +19%) shown at 15 kcal·kgLBM-1·d-1 occur in the 

same direction as the changes documented at 10 kcal·kgLBM-1·d-1 (urinary NTX: +34%) by 

Ihle & Loucks (2004). The reduction in bone formation (P1NP: 13%) was also similar to 

that induced by an EA of 30 kcal·kgLBM-1·d-1, previously shown with exercise and dietary 

manipulations (Ihle & Loucks, 2004). We cannot, however, provide a more direct 

comparison of the magnitude of these effects between the two studies since different BTMs 

were used (i.e., β-CTX vs. NTX and P1NP vs. P1CP) and in different samples (i.e., plasma 

and urine). In addition to these differences, the dietary prescriptions and training status of 

participants were not similar between these studies. The results of Ihle and Loucks (2004) 

suggest that changes occur in untrained women, under different levels of energy deficit, if 

they follow a short-term training programme. The current study was conducted in physically 

active women whose bone would be used to the demands of weight-bearing exercise, with 

the level of low EA chosen to represent the EA of amenorrheic athletes, who are at high risk 

for bone injuries (Thong et al., 2000), making the current results relevant to regular 

exercisers.  

Even slight changes in bone formation and resorption may increase the risk for impaired 

bone turnover, as suggested by a 24% reduction in BT ratio in response to RES, but not 

CON. Individual analysis showed a consistent bone turnover response, with 10 out of the 11 

participants responding to RES with changes in bone resorption (increase), bone formation 

(decrease) or both. Taken together, these bone turnover responses suggest a net bone loss, 

which if left uncontrolled, could unfavourably influence bone health and increase the risk of 

bone injury. Such alterations might manifest via changes in bone volume, mineralisation of 
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the bone matrix, collagen cross-linking and the appearance of remodelling cavities that may 

act as stress inducers (Hernadez, 2008).  

We did not show any alteration in sclerostin levels in low EA compared to controlled EA. 

Sclerostin is secreted by osteocytes and acts as a Wnt antagonist that, through the Wnt/β-

catenin pathway, regulates osteoblast activity (Robling et al., 2008) and, therefore, bone 

formation. The absence of changes in sclerostin following RES in our female participants 

suggests that the observed reduction in P1NP is not mediated by sclerostin. Sclerostin is 

highly responsive to changes in mechanical loading (Spatz et al, 2013; Belavy et al, 2016) 

and exercise during weight loss prevents the increase in sclerostin (Armamento-Villareal et 

al, 2012), which might explain the lack of any effect on sclerostin in the current study, given 

that participants completed identical running protocols (≥ 1hour) and were exposed to the 

same amount of mechanical loading in both the controlled and restricted EA.  

The precise mechanisms through which EA may elicit its effect on bone turnover have not 

been elucidated, but may involve changes in energy regulatory hormones (Ihle & Loucks., 

2004; Misra & Klibanski, 2014; Shapses & Sukumar, 2012), reproductive hormones (Misra 

& Klibanski, 2014; Fazeli & Klibanski, 2014; De Souza et al., 2008) or markers of calcium 

metabolism (Scott et al., 2012; Haakonssen et al., 2015). Women demonstrated hormonal 

changes indicative of energy conservation with decreases in leptin, insulin, and T3, which are 

in agreement with previous studies investigating energy deprived conditions (Ihle & Loucks, 

2004; De Souza et al., 2008). These results are in line with the well-established actions of 

these hormones to reverse energy deficit and preserve energy stores (Misra & Klibanski, 

2011; 2012). Leptin exerts direct and indirect actions on bone metabolism that are generally 

protective of BMD (for review see Upadhyay et al., 2015).  Insulin is a potential determinant 

of BMD (Haffner & Bauer,1993) and insulin deficiency is often accompanied by reduced 

BMD and increased fragility risk (Misra et al, 2007; Nyman et al, 2011), although this seems 

to have an effect on specific bones rather than promoting general bone loss. T3 effects on 

bone may be exerted either directly via thyroid hormone receptors in bone, or through 

indirect regulation of the GH/ IGF-I axis (Huang et al, 2000; Lakatos, 2000), although the 

latter seems unlikely in the current study given that there was no effect of RES on IGF-1. It 

is possible that a suppression of IGF-1 was masked by an increase in circulating 

concentrations of binding proteins (Fontana et al., 2016), which were not determined in the 

present study.   

In the current study, 5 days of low EA did not influence 17-β oestradiol levels. Previous 

short-term energy restriction experiments have indicated that changes in sex hormones 
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(Loucks et al., 1998) are manifested over a more prolonged period (>1 week), despite early 

reductions in LH pulsatility (Loucks & Thuma, 2003). Another possible reason for our result 

may be that the level of reduced EA was not severe enough to suppress 17-β oestradiol 

levels. Subtle reductions in oestradiol levels have been shown at 10 kcal·kgLBM-1·d-1 and 

were correlated with increased bone resorption (Ihle & Loucks, 2004). It was long believed 

that hypogonadism is a major determinant of low BMD in women with anorexia nervosa and 

amenorrheic athletes (Drinkwater, 1984; 1990). Irregular menstrual cycles (Maimoun et al., 

2014), delayed menarche (Maimoun et al., 2014) and use of OCPs (Polatti et al., 1995; 

Nappi et al., 2003) have been associated with lower-than-optimal peak bone mass 

attainment, impaired bone turnover, low BMD, altered microarchitecture and bone fragility. 

Evidence suggests that hypogonadism is important, but not the only factor responsible for 

bone loss in energy-deficient states (Fazeli & Klibanski, 2014; De Souza et al., 2008). Low 

BMDs in anorexia nervosa patients have not been fully normalised by either oestrogen 

treatment (Klibanski et al., 1995) or after menses recovery (Misra et al., 2008).   

Another possible explanation for the effects of low EA on bone metabolism is the change in 

makers of calcium metabolism. The present study did not reveal any effects of low EA on 

PTH, ACa, Mg or PO4 levels, thus, it is unlikely that the alterations on bone metabolism in 

the present study were mediated by changes in these markers. PTH is the major regulator of 

calcium homeostasis. Low levels of extracellular ionised calcium trigger an increase in PTH 

release that mobilise intracellular calcium through PTH/PTH-related peptide receptor-

dependent mechanisms which activate G protein signals (Poole & Reeve, 2005). These 

results are unsurprising, since participants were provided a multi-mineral supplement during 

the restricted trial to isolate the effects of energy restriction. It is worth noting that 

energy/macronutrient restriction is commonly accompanied by reduction in the vitamins and 

minerals necessary for bone health (Shapses & Sukumar, 2012) and future studies should 

separate the effects of macronutrient from micronutrient restriction on bone metabolism.   

To conclude, short-term low EA at 15 kcal·kgLBM-1·d-1 decreased bone formation and 

increased bone resorption in physically active, eumenorrheic women. These changes were 

accompanied by significant reductions in regulatory hormones; leptin, insulin and T3, but no 

changes in reproductive hormones or markers of calcium metabolism were shown. Our 

findings support previous studies showing that low EA underpins bone health in women 

(Nattiv et al., 2007; De Souza et al., 2014a; Mountjoy et al., 2014). Further studies are 

necessary to determine whether the observed changes are preserved over time.  
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Chapter 5. Bone metabolic response to 

short-term low energy availability in 

physically active men  
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5.1. Introduction  

Reduced EA in sport has been predominantly seen as a women’s issue (Nattiv et al., 2007; 

De Souza et al., 2014a). Emerging evidence stemming from the RED-S model suggests that 

men also adopt low EA; with those participating in weight sensitive sports being at a greater 

risk (Mountjoy et al., 2014; Tenforde et al., 2016). Similar to female athletes, male athletes 

may undertake high training volumes (Julian-Almarcegui et al., 2013; Vogt et al., 2005; 

Pontzer et al., 2015) and/or restrict their DEI unintentionally or deliberately in order to 

achieve specific weight and body composition goals (Loucks, 2007; Loucks et al., 2011). As 

a result, moderately to severely restricted EAs have been reported in male athletes, including 

Kenyan runners (approximately 35 kcal·kgLBM-1·d-1) (Loucks et al., 2011), jump jockeys 

(approximately 19 kcal·kgLBM-1·d-1) (Wilson et al., 2013; 2014) and cyclists training for the 

Tour de France (8 kcal·kgLBM-1·d-1) (Vogt et al., 2005).  

Low EA has been associated with reproductive disturbances and impaired health in women, 

which is known collectively as the Female Athlete Triad (Nattiv et al, 2007; De Souza et al., 

2014a). The RED-S models introduced by the IOC (Mountjoy et al., 2014) and other recent 

reviews (Tenforde et al., 2016) have paralleled these conditions in men, suggesting that 

some male athletes may also be prone to low EA and experience skeletal disorders. Low 

BMD including both osteopenia and osteoporosis (Hetland et al., 1993; Hind et al., 2006; 

Olmedillas et al., 2012; Fredericson et al., 2007), altered bone turnover (Dolan et al., 2012; 

Hetland et al., 1993) and a higher risk for a stress fracture injury (Kussman et al., 2015; 

Nattiv et al., 2013) have been reported in males with low EA and other risk factors 

associated with low EA (i.e., low BMI, disordered eating). Despite the identification of the 

co-existence of low EA and impaired bone health in male athletic subgroups; the 

characteristics, prevalence, clinical significance and association between these conditions 

remain to be determined.  

The effects of low EA on bone metabolic responses have been explored in sedentary women 

(Ihle & Loucks, 2004). In Study 1 (reported in Chapter 4), markers of bone formation were 

reduced, whereas markers of bone resorption were increased following EA at 15 

kcal·kgLBM-1·d-1 in physically active women. Current understanding on the effects of low 

EA on bone metabolism and health in men is limited. Zanker and Swaine (2000) examined 

the effect of exercise and/or reduced food intake on bone metabolism in trained men, 

showing a reduction in bone formation, without an effect on bone resorption (Zanker and 

Swaine, 2000). In their study, however, energy restriction was determined using energy 

balance rather than EA. The estimation of TEE required for energy balance determination 
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may introduce more sources of errors than the measurement of EEE, which is only required 

for determining EA. Additionally, energy balance formulas accept that bodily systems 

function normally, however, increases in EEE may cause suppression of bodily functions 

(Loucks, 2013). In this case, individuals may be in energy balance but experience low EA 

(Stubbs et al., 2004; Loucks 2007; 2013). As such, well-controlled experimental studies are 

needed to characterise the relationship between low EA and bone turnover in this 

population. 

As shown in the previous study, outlined in Chapter 4, low EA has been associated with 

reductions in the concentration of energy regulatory hormones such as leptin, insulin and T3 

in women. Others have also shown similar findings at EAs of less than 30 kcal·kgLBM-1·d-1 

(Loucks & Thuma, 2003; Ihle and Loucks, 2004). Low EA also results in the suppression of 

GnRH, LH pulsatility and oestrogens in women (De Souza et al., 2004; Loucks & Thuma, 

2003). The independent or synergistic action of these factors might mediate bone turnover 

responses in the affected women (De Souza et al., 2008; Ihle & Loucks, 2004). The 

contribution of hormonal changes due to low EA on bone turnover in men needs to be 

determined. Suppression of T3, leptin, IGF-1 and testosterone have been previously shown in 

male soldiers exposed to energy deficits of various magnitudes during military training 

(Kyrolainen et al., 2008; Friedl et al., 2000; Hoyt & Friedl, 2006).  

To address these issues, we conducted a randomised, crossover study to explore the effects 

of short-term low EA at 15 kcal·kgLBM-1·d-1 on BTM in physically active men. Low EA 

was achieved by dietary energy restriction and EEE. Alterations in regulatory hormones and 

markers of calcium metabolism were also explored, as possible mediating mechanisms to the 

bone metabolic outcomes. It was hypothesised that bone formation would decrease and bone 

resorption would be increase in response to low EA. 
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5.2. Methods  

5.2.1. Participants 

Eleven men volunteered to participate in the study (Table 5.1.). Before inclusion, all 

participants provided verbal and written informed consent. Inclusion and exclusion criteria 

were identical with those applied in Study 1 with the exception of those criteria regarding 

the reproductive function for women. Please see section 4.2.1. 

5.2.2. Experimental design 

The experimental design was identical to that of Study 1 (reported in Chapter 4). A 

schematic representation and a detailed description of experimental design can be found in 

section 4.2.2.  

5.2.3 Experimental procedures  

The experimental procedures were identical to those of Study 1 (reported in Chapter 4). 

Detailed description has been provided for preliminary assessment in section 4.2.3.1., 

experimental period in section 4.2.3.2., lifestyle EE in section 4.2.3.2.1., habitual DEI in 

section 4.2.3.2.2., experimental diets in section 4.2.3.2.3., EEE in section 4.2.3.2.4 and 

compliance to experimental condition in section 4.2.3.2.5.  

Identical to the study in women, during D4-D8, male participants were given diet plans 

containing the same foods and beverages consumed during the 3-days of their habitual diet 

in amounts that provided dietary energy intake of 60 and 30 kcal·kg-1LBM·d-1 and 

maintained the dietary composition of each participant’s habitual diet. Table 5.2 provides 

summary information for energy and macronutrient compositions of prescribed experimental 

diets in this study in men.  
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Table 5.2. Energy and macronutrient composition of prescribed experimental diets.  

 CON RES 

DEI (kcal∙ d-1) 3431 (348) 1722 (210) 

DEI (kcal·kg-1 LBM·d-1)  59.9 (0.2)  30.1 (0.2) 

Carbohydrate (%) 47 (9) 48 (9) 

Protein (%) 19 (4) 19 (4) 

Fat (%)  35 (7)  34 (7) 

Values are expressed as means (1SD). 

DEI: Dietary Energy Intake; LBM: Lean Body Mass; CON: Controlled; RES: Restricted. 

 

5.2.4. Storage and analyses of blood samples 

Blood samples were collected and analysed as previously described in section 4.2.4. 

5.2.5. Biochemical analysis  

Biochemical analysis has been previously described in section 3.13.; with the exception of 

17β-oestradiol concentration that was not determined in men.  

5.2.6 Statistical analysis  

Based on results reported by Zanker and Swaine (2000), the study was sized to detect a 

significant change in P1NP (pre: 76.1 ± 5.8; post: 64.7± 6.0 mg·L-1, P<0.05) due to low EA. 

A priori power calculations showed that a minimum of 7 men were required to achieve 95% 

power at P<0.05. Statistical analysis was performed as previously described in section 4.2.6. 

Individual analysis of the BTM data was performed in an identical way as in the women’s 

study (Chapter 4). Criteria for responders and non-responders to RES for β-CTX and P1NP 

have been established in section 4.2.6.  
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5.3. Results  

5.3.1. Participant characteristics  

Participant characteristics are presented in Table 5.2.  

Table 5.1. Participant characteristics (n=11) 

Demographics  

Age (y) 26 (5) 

Height (m) 1.78  (0.07) 

Body mass (kg) 73.0 (8.0) 

BMI (kg·m2) 23.0 (1.6) 

Body composition  

Body fat (%) 18.3 (3.4)  

LBM (kg) 57.2 (7.3) 

FFM (kg) 60.3 (7.6) 

BMD (g·cm-2) 1.25 (0.08) 

Training characteristics  

VO2 peak (ml·kg-1·min-1) 54.2 (5.3) 

Physical activity (min·d-1) 57.9 (29.0) 

Physical activity (MET-min·wk-1)  3443 (1006) 

Dietary and EE characteristics  

Habitual DEI (kcal·d-1)  2682  (265) 

Lifestyle EE (kcal·d-1) 449 (136) 

24-hour EE(kcal· d-1) 2398 (185) 

Values are expressed as means (1SD). 
1 Mean values of D1-D3 prior to both experimental conditions. 

BMI: Body mass index; LBM: Lean body mass; FFM: Fat free mass; BMD: Bone mineral density: VO2max: 

Maximum oxygen uptake; DEI: Dietary energy intake; EE: Energy expenditure; RMR: Resting metabolic rate; 

LBM: Lean body mass; MET: Metabolic equivalents. 

5.3.2. Baseline biochemistry  

Baseline leptin before RES was significantly higher than baseline levels in CON (P=0.01), 

but there were not any further differences in any other biochemical marker (Table 5.3.).  

Baseline concentrations for BTM were towards the higher end of the reference range (β-

CTX: 0.17-0.60 µg·L-1; P1NP: 15-80 µg·L-1; Jenkins et al., 2013) for both β-CTX and P1NP 

(Table 5.3.). 
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Table 5.3. Markers of energy status and BASE concentrations of BTMs and markers of 

calcium metabolism, regulatory prior to CON and RES trials. Mean values of D1 and D3 

were used as BASE prior to each experimental condition (n=11). 

 CON  RES  P-value 

Markers of energy status 

Body mass (kg)1 72.7 (8.1) 73.0 (8.1) 0.26 

Habitual DEI (kcal·d-1) 2697 (303)  2667 (289) 0.72 

Lifestyle EE (kcal·d-1) 451 (138)  447 (177)  0.94 

BTMs  

β-CTX (µg·L-1) 

P1NP  (µg·L-1) 

0.48 (0.16) 0.50 (0.16) 0.44 

73.6 (31.4)  74.8 (28.7) 0.75 

BT ratio  1.56 (0.46) 1.51 (0.40) 0.64 

Markers of calcium metabolism 

PTH (pg·mL-1) 2.79 (1.14) 2.93 (1.0)  0.41 

ACa (mmol·L-1) 2.39 (0.06)  2.35 (0.06) 0.06  

0.87 Mg (mmol·L-1) 0.83 (0.05)  0.83 (0.05 )            

PO4 (mmol·L-1) 1.19 (0.12)  1.25 (0.16)  0.32 

Albumin  45.1 (1.9)  44.8 (2.2)  0.42 

Regulatory hormones 

Sclerostin (ng·mL-1) 0.61 (0.15)  0.60 (0.14) 0.71 

IGF-1 (mmol·L-1) 176.6 (57.6) 184.7 (55.6) 0.54 

T3 (mmol·L-1) 1.74 (0.25)  1.83 (0.35) 0.13 

Leptin (ng·mL-1)2 2.3 (1.4)  3.4 (1.8)  0.008*  

Insulin (pmol·L-1) 33.0 (14.1)  35.1 (9.9)  0.45 

GLP-2 (ng·mL-1) 15.0 (12.5)  14.1 (12.5)  0.36  

Values are expressed as means (1SD). 
1 Baseline measurements were taken on D4 in each experimental condition.  
2 Analysis performed in 6 participants- in 5 participants, leptin levels were undetectable (<1 ng·mL-1). 
*denotes a significant difference between CON and RES (P<0.05). 

DEI: Dietary energy intake; EE: Energy expenditure; β-CTX: C-terminal cross-linked telopeptide of type I 

collagen; P1NP: Amino-terminal pro-peptide of type 1 procollagen; BT ratio: Bone turnover ratio; PTH: 

Parathyroid hormone; Mg: Magnesium; ACa:  Albumin adjusted calcium; PO4: Phosphate; T3: Triiodothyronine; 

IGF-1: Insulin-like growth factor 1; GLP-2: Glucagon-like peptide 2; CON: Controlled; RES: Restricted. 

5.3.3. Baseline energy status  

There were no differences in habitual dietary intake, lifestyle EE or body mass prior to CON 

and RES (Table 5.3.).  
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5.3.4. Compliance  

The actual experimental diets (Table 5.1.) were not different from the prescribed 

experimental diets in CON and RES (Table 5.4.) (data not shown, all P values >0.05), 

indicating that participants complied well with the experimental diets. All participants 

completed the running sessions and expended the prescribed EEE (Table 5.4).  

Table 5.4. Actual experimental dietary and exercise characteristics (n=11) 

 CON  RES  

Actual Experimental Diets  

DEI (kcal∙ d-1) 3383 (393) 1720 (235)  

DEI (kcal·kg-1 LBM·d-1)  59.2 (1.1) 30 (0.2) 

Carbohydrate (%) 47 (8) 48 (9) 

Protein (%) 18 (3) 19 (4) 

Fat (%)  35 (7)  33 (7)  

Actual Experimental Exercise  

EEE (kcal∙ d-1) 856 (110)  

15.0 (0.1) 

10.5 (1.7) 

65 (7) 

856 (110)  

15.0 (0.1) 

10.5 (1.7) 

65 (7) 

EEE (kcal·kg-1 LBM·d-1)                        

Running speed (km·h-1)                          

Duration (min)    

Values are expressed as means (1SD). 

DEI; Dietary energy Intake; EEE: Exercise Energy Expenditure; LBM: Lean Body Mass; CON: Controlled; 

RES: Restricted. 

5.3.5. Body mass 

Body mass was maintained in CON (D4: 72.7±8.1; D9: 72.9±8.1 kg, P=0.31), but 

significantly decreased from BASE in RES (D4: 73.0 ±8.1; D9: 71.2 ±7.9 kg; P<0.001). 

5.3.6. BTMs 

5.3.6.1. β-CTX 

There was no significant effect of time (P=0.14), condition (P=0.34) or any condition x time 

interaction effect (P=0.61) β-CTX concentrations (Figure 5.1.; Table 5.5.) β-CTX AUC was 

not significantly different between CON and RES (P=0.46) (Figure 5.2.; Table 5.5.).  
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5.3.6.2. P1NP 

There was a significant main effect of time (D9< BASE; P=0.02), but no significant main 

effect of condition (P=0.39) or any condition x time interaction effect (P=0.11) was shown 

for P1NP concentrations. (Figure 5.1.; Table 5.5.). P1NP AUC in CON was not significantly 

different from that in RES (P=0.12) (Figure 5.2.; Table 5.5).  

5.3.6.3. BT ratio  

There was a significant main effect of time (P=0.03) for BT ratio, with the ratio at D9 being 

significantly lower compared to BASE (P=0.02). No significant main effect of condition 

(P=0.31) or any condition x time interaction effect (P=0.18) was shown for BT ratio (Figure 

5.1.; Table 5.5.). BT ratio AUC in CON was not different from that in RES (P=0.33) (Figure 

5.2.; Table 5.5). 

Table 5.5. BTMs expressed as concentrations, percentage change from BASE and AUC in 

CON and RES trials (n=11). Mean values of D1 and D3 were used as BASE prior to each 

experimental condition. 

Values are expressed as means (1SD). 
1AUC calculated for each experimental condition from BASE to D9.   

β-CTX: C-terminal cross-linked telopeptide of type I collagen; P1NP: Amino-terminal pro-peptide of type 1 

procollagen; BT ratio: Bone turnover ratio; BTM: Bone turnover marker; D: Day; BASE: Baseline; CON, 

Controlled trial; RES, Restricted trial. 
 

 

 CON   RES  

 BASE D9  BASE D9 

β-CTX      

µg·L-1 0.48 (0.16) 0.52 (0.17)  0.50 (0.17) 0.57 (0.26) 

%BASE change  13.1 (33.3)   12.2 (16.8) 

AUC (%BASE x d)1  60.5 (126.7)   39.0 (72.3) 

P1NP      

µg·L-1 73.6 (31.4) 72.5 (36.7)  74.8 (28.7) 64.3 (25.3) 

%BASE change  -1.76 (16.2)   -14.03 (8.0) 

AUC (%BASE x d)1  -5.2 (75.1)   -46.6 (24.3) 

BT ratio      

- 1.57 (0.46) 1.39 (0.42)  1.52 (0.40) 1.16 (0.29) 

%BASE change  -6.8 (29.7)   -21.1 (16.3) 

AUC (%BASE x d)1  -24.2 (171.0)   -66.4 (70.8) 
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Figure 5.1. Percentage change from baseline (BASE) concentrations for β-CTX (A), P1NP 

(B) and BT ratio (C) on D5-D9 in CON (black squares) and RES (white squares) (n=11). 

Values are presented as means (1SD). β-CTX: C-terminal cross-linked telopeptide of type I 

collagen; P1NP: Amino-terminal pro-peptides of type 1 procollagen; BT ratio: Bone 

turnover ratio; D: Day; BASE: Baseline; CON: Controlled trial; RES: Restricted trial. 
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Figure 5.2. AUC analysis of β-CTX (A), P1NP (B) and BT ratio (C) after CON (black bars) 

and RES (white bars) (n=11). Values are presented as means (1SD). β-CTX: C-terminal 

cross-linked telopeptide of type I collagen; P1NP: Amino-terminal pro-peptides of type 1 

procollagen; BT ratio: Bone turnover ratio; D: Day; BASE: Baseline; AUC: Area under the 

curve; CON: Controlled trial; RES: Restricted trial. 



117 

 

5.3.7. Markers of calcium metabolism  

5.3.7.1. PTH 

There was no significant main effect of time (P=0.59), condition (P=0.79) or any condition x 

time interaction effect for PTH concentrations P=0.39). PTH AUCs were not significantly 

different between CON and RES (P=0.11) (Table 5.6.).  

5.3.7.2. ACa 

There was a significant main effect of time (D9<BASE, P=0.01; D9<D5, P=0.01), ACa 

levels were lower in RES than CON (P=0.046), which may be in part due to baseline 

changes prior to CON and RES (RES<CON). There was no significant time x condition 

interaction effect (P=0.14). ACa AUC was not not significantly different by condition 

(P=0.09) (Table 5.6.).  

5.3.7.3. Mg 

There were no significant main effects of time (P=0.70) or condition (P=0.46) and no 

significant condition x time interaction effect was shown for Mg levels (P=0.59). Mg AUCs 

were not significantly different between CON and RES (P=0.11) (Table 5.6.).  

5.3.7.4 PO4 

There was no significant main effect of time (P=0.24), condition (P=0.85) or any condition x 

time interaction effect (P=0.18) for PO4 levels. PO4 AUC did not significantly differ between 

RES and CON (P=0.17) (Table 5.6.).  
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Table 5.6. Markers of calcium metabolism expressed as concentrations, percentage change 

from BASE and AUC in CON and RES trials. Mean values of D1 and D3 were used as 

BASE prior to each experimental condition. 

Values are expressed as means (1SD). 
1AUC calculated for each experimental condition from BASE to D9.   

PTH: Parathyroid hormone; Mg: Magnesium; ACa:  Albumin adjusted Calcium; PO4: Phosphate; D: Day; 

BASE: Baseline; AUC: Area under the curve; CON, Controlled trial; RES, Restricted trial. 

5.3.8. Regulatory hormones 

5.3.8.1. Sclerostin   

There was no significant main effect of time (P=0.10), condition (P=0.31) or any condition x 

time interaction effect (P=0.06) for mean sclerostin levels. Sclerostin AUC was not 

significantly different between CON and RES (P=0.31) (Table 5.7.).  

5.3.8.2. IGF-1 

There was a significant main effect of time (P<0.001) for mean IGF-1 concentrations, with 

significant decreases between BASE-D7, BASE-D9, D5-D7, D5-D9 and D7-D9 (all P 

values <0.005). A significant condition x time interaction effect (P=0.017) was shown, but 

there was no main effect of condition (P=0.45).  At D9 IGF-1 concentrations were 

significantly reduced by 23.5% from BASE and by 20.3% from D5 in RES (P<0.001), but 

not in response to CON.  IGF1 AUC was not significantly different between CON and RES 

(P=0.18) (Table 5.7.).  

 CON  RES 

 BASE D9  BASE D9 

PTH      

pg·mL-1 2.80 (1.14) 3.0 (1.16)  2.93 (1.00) 2.84 (0.67) 

%BASE change  13.5 (34.7)   1.3 (26.0) 

AUC (%BASE x d)1  65.9 (121.9)   -3.2 (97.4) 

ACa       

mmol·L-1 2.39 (0.06) 2.33 (0.05)  2.35 (0.05) 2.32 (0.06) 

%BASE change  -2.2 (2.3)   -1.6 (2.7) 

AUC (%BASE x d)1  -7.87 (8.27)   -1.00 (8.09) 

Mg       

mmol·L-1 0.84(0.05) 0.84(0.06)  0.84 (0.05) 0.85 (0.05) 

%BASE change  1.3 (3.2)   1.6 (3.3) 

AUC (%BASE x d)1  6.0 (19.7)   -8.2 (63.8) 

PO4       

mmol·L-1 1.19 (0.12) 1.16 (0.17)  1.25 (0.16) 1.17 (0.14) 

%BASE change  -2.4 (14.8)   -5.5 (10.7) 

AUC (%BASE x d)1  14.5 (73.8)   -23.1(33.1) 
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5.3.8.3. T3 

There was a significant main effect of time for T3 concentrations (P=0.005), with mean 

concentrations being lower at D9 compared to BASE. No significant main effect of 

condition (P=0.30) or any condition x time interaction (P=0.17) was shown. T3 AUC in RES 

was not significantly different from AUC in CON (P=0.09) (Table 5.7.).  

5.3.8.4. Insulin 

No significant main effects of time (P=0.09), condition (P=0.53) or any condition x time 

interaction effect (P=0.09) was shown for insulin concentrations. Insulin AUC after RES 

was not significantly different from AUC after CON (P=0.40) (Table 5.7.) 

5.3.8.5. Leptin  

Leptin was undetectable in 6 men; therefore, the analysis was performed in the remaining 5 

men. There was a significant main effect of time (P=0.037) for leptin with concentrations at 

D5 being lower than at concentrations at D9. No significant main effect of condition 

(P=0.60) or any condition x time interaction effect (P=0.36) was shown. Leptin AUC after 

RES was not significantly different from AUC after CON (P=0.07) (Table 5.7.).  

5.3.8.6. GLP-2 

There was no significant main effect of time (P=0.10), condition (P=0.16) or any condition x 

time interaction effect (P=0.45) for GLP-2 concentrations. GLP-2 AUC was not significantly 

different between RES and CON (P=0.51) (Table 5.7.).  

5.3.9. Individual analysis  

The responders for β-CTX (increase) and P1NP (decrease) to RES were 3 and 6 out of 11 

men respectively. Three out of 11 participants were responders to RES for both β-CTX 

(increase) and P1NP (decrease). In total, 6 out 11 men had altered bone turnover resulting 

from changes in bone resorption (increase), bone formation (decrease) or both (Table 5.8.). 
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Table 5.7. Regulatory hormones expressed as concentrations, percentage change from 

BASE and AUC in CON and RES trials (n=11). Mean values of D1 and D3 were used as 

BASE prior to each experimental condition 

Values are expressed as means (1SD).  
1AUC calculated for each experimental condition from BASE to D9.   
2 Analysis performed in 5 participants - leptin not detected in 6 participants. 
*denotes a significant difference from BASE (P<0.05). 

T3: Triiodothyronine; IGF-1: Insulin-like growth factor 1; GLP-2: Glucagon-like peptide 2; D: Day; BASE: 

Baseline; AUC: Area under the curve; CON, Controlled trial; RES, Restricted trial. 

 

Table 5.8. Number of responders (out of total number of participants, n=11) for β-CTX, 

P1NP and bone turnover. This analysis was based on data expressed as %BASE for each 

participant.  

1altered bone turnover due to increase β-CTX, decreased P1NP or both.  
2altered bone turnover due to a simultaneous increase in β-CTX and decrease in P1NP. 

β-CTX: C-terminal cross-linked telopeptide of type I collagen; P1NP: Amino-terminal pro-peptide of type 1 

procollagen; BT ratio; RES: Restricted. 

 CON  RES 

 BASE D9  BASE D9 

Sclerostin      

ng·mL-1 0.61 (0.15) 0.60 (0.18)  0.60 (0.14) 0.67 (0.16) 

%BASE change  -1.9 (16.3)   10.4 (12.5) 

AUC (%BASE x d)1  10.0 (46.8)   28.4 (41.1) 

IGF-1      

mmol·L-1 176.6 (57.6) 172.4 (72.3)  184.7 (55.6) 140.7 (42.9)* 

%BASE change  -3.5 (20.3)   -23.5 (10.1) 

AUC (%BASE x d)1  9.4 (96.9)   -54.0 (48.1) 

T3      

mmol·L-1 1.75 (0.24) 1.66 (0.22)  1.80 (0.34) 1.56 (0.24) 

%BASE change  -4.5 (8.7)   -12.9 (9.4) 

AUC (%BASE x d)1  -6.4 (41.0)   -41.4 (47.6) 

Leptin      

ng·mL-1 2.62 (1.40) 2.54 (0.84)  3.89 (1.50) 1.93 (0.79) 

%BASE change  11.2 (44.4)   -45.0 (26.8) 

AUC (%BASE x d) 1  158.9 (219.7)   -26.7 (331.0) 

Insulin      

pmol·L-1 33.0 (14.1) 32.4 (16.6)  35.1 (9.9) 18.6 (4.9) 

%BASE change  8.7 (57.4)   -43.5 (22.2) 

AUC (%BASE x d)1  23.0 (241.3)   -40.5(239.5) 

GLP-2      

ng·mL-1 15.0 (12.5) 13.9 (11.3)  14.1 (12.5) 10.4 (4.5) 

%BASE change  -6.4 (13.6)   -8.8 (25.1) 

AUC (%BASE x d)1  -27.0 (60.2)   -6.3 (50.3) 

  β-CTX  P1NP Bone turnover1 Bone turnover2 

RES  3/11 6/11 6/11 3/11 
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5.4. Discussion  

There are two main findings arising from the present study. Firstly, low EA at 15 

kcal·kgLBM-1·d-1 over 5 days had no significant effects on either bone formation (P1NP) or 

bone resorption (β-CTX) in men. Secondly, only IGF-1 was significantly reduced following 

short-term low EA, whereas all other regulatory hormones or markers of calcium 

metabolism were not affected by short-term low EA. These findings suggest that men are not 

sensitive to this level of reduced EA.  

No previous, controlled, experimental study has examined the effects of low EA on bone 

turnover in men. In our investigation, bone formation was not significantly affected by 

reduced EA, despite the fact that P1NP decreased by 14%, which is similar to the 15% 

reduction in P1NP shown in male runners (Zanker & Swaine, 2000). The magnitude of the 

mean difference in P1NP was caused by some individuals who experienced a reduction in 

P1NP levels, compared with some others, whose P1NP concentrations did not change. This 

might explain the lack of a significant mean P1NP response in men in the present study, 

which is different from the more consistent response of P1NP to energy restriction shown by 

Zanker and Swaine (2000). Bone resorption remained unchanged in the present study, with 

this response being similar to those reported for markers of bone resorption in the earlier 

study by Zanker & Swaine (2000).  

A negative association between bone turnover and low EA, similar to that established in 

women in the previous study (Chapter 4) and by Ihle & Loucks (2004) may become evident 

over more prolonged periods of exposure to the given level of EA in men. Studies of longer 

duration (8-12 weeks) in men have shown suppression of bone formation with or without 

changes in bone resorption in response to multi-stressor military training (exercise, dietary 

restriction and/or sleep deprivation) (Lutz et al., 2012; Hughes et al., 2014), although the 

contribution of each of these stressors to the observed bone turnover changes remain 

unknown. Altered BTM concentrations in favour of bone resorption have also been reported 

in male athletes participating in weight sensitive sports including runners (Hetland et al., 

1993), jockeys (Wardon & Lynch, 2010; Dolan et al., 2012) and cyclists (Olmedillas et al., 

2012), who may have been exposed to long-term energy restriction practices. The authors of 

these studies have not, however, provided any calculations of mean EA of these athletes. 

This limitation together with the cross-sectional design of these investigations does not 

allow the extrapolation of a cause-effect relationship between low EA and bone metabolism.  
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Another explanation may be that a more severe level of reduced EA is needed to elicit a 

consistent EA-associated change in BTM in men. This is supported by observational studies 

of low EA and bone health, demonstrating lower prevalence rates of the Triad symptoms 

(Tenforde et al., 2016) and stress fracture injury (Wentz et al., 2011; Armostrong et al., 

2004; Bennell et al., 1996a) in men. Studies in male athletes suggest that low BMD is a 

finding generally confined to those partaking in weight category sports and experiencing 

multiple risk factors reflective of low EA such as low BMI, repeated bouts of rapid weight 

loss and/or disordered eating (Tenforde et al., 2016; Mountjoy et al., 2014; 2015). 

The BTM response to reduced EA was characterised by high inter-individual variability, 

which suggested that some men were responders to low EA, while others remained 

unaffected. As such, it might be premature to suggest that low EA does not influence bone 

metabolism in all men. Importantly, the 3 men who responded to RES with increases in bone 

resorption (responders for β-CTX) also had reduced bone formation (responders for P1NP). 

These results may indicate an overall imbalance in bone metabolism with alterations 

favouring resorption. Additionally, 3 male participants responded with reduced bone 

formation (P1NP levels) only. The more consistent responses for P1NP are in agreement 

with previous studies showing that bone formation may be more sensitive than bone 

resorption to alterations in energy status (Ihle & Loucks, 2004). Although the mean BTM 

responses in response to low EA do not support the RED-S model in men (Mountjoy et al., 

2014; 2015), this analysis of individual responses suggests some men experience negative 

bone consequences when exposed to low EA.   

Our study population was representative of physically active individuals and strict inclusion 

and exclusion criteria were applied to eliminate confounding factors including age (Zanker 

& Swaine, 2000), training status (Scott et al., 2010) and body composition (Nguyen et al., 

1998), making it unlikely that the variability shown in men was a result of these factors. 

Some of the observed inter-individual variability might be accounted for by genetic 

differences, which have previously been associated with bone health (Ralston & 

Uitterlinden, 2010) and injury (Varley et al., 2014), although, such speculations cannot be 

confirmed from the present study. In future research, it is necessary to understand what 

accounts for the observed variability and how this information can be used to develop 

strategies to prevent impairments in bone turnover in the affected individuals.  
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We also characterised the responses of energy regulatory hormones and markers of calcium 

metabolism in order to investigate, if these were related to BTM responses. A reduction in 

IGF-1 levels was shown after low EA, but no other change in any regulatory hormones or 

markers of calcium metabolism was seen. The significant reduction in IGF-1 concentrations 

in men in this study is similar to those reported in other laboratory (Zanker & Swaine, 2000) 

and field (Alemany et al., 2008; Hoyt & Friedl, 2006) studies involving energy restriction. 

The anabolic effects of IGF-1 on bone involve the stimulation of osteoblast differentiation, 

expression of type I collagen (Yakar & Rosen., 2003) and suppression of transcriptional 

factors that contribute to collagen breakdown (Canalis et al., 1995). Such effects were not 

supported by the BTM responses, suggesting that the suppression of IGF-1 was not 

sufficient to suppress bone turnover within the 5-day timeframe.  

T3 levels were not different between CON and RES in the present study, which is in 

agreement with a recent short-term study in men at the same level of low EA (15 

kcal·kgLBM-1·d-1) and the same EEE contribution (15 kcal·kgLBM-1·d-1) (Koehler et al., 

2016), but also with other short-term exercise-dietary restriction experiments (Hagobian et 

al., 2009). Exercise has been shown to upregulate T3 production in adult male mice (Katzeff 

et al., 1988) and to maintain T4 secretion and T3 production in female Sprague-Dawley rats 

during exercise-induced energy deficit (Katzeff et al., 1991). In line with these exercise 

effects on thyroid hormones, which may mask T3 responses in animal models, lower T3 

levels were not reduced in soccer players who followed low EA at some point during a 

competitive season (Reed et al., 2013). Leptin did not change in response to low EA. These 

results contrast those from a recent study showing decreased leptin using the same level of 

low EA (Koehler et al., 2016), but agree with other short-term interventions involving 

exercise training in overweight men (Kyriazis et al., 2007; Hagobian et al., 2009). Although 

leptin levels did not change, the mean magnitude of the response (-45%) was similar to that 

(-56%) reported by Koehler et al. (2016). A reduction in leptin levels by 36% was shown in 

non-exercising men when their DEI was restricted to 840 kcal·day−1 for 7 days (Dubuc et al., 

1998). The authors did not provide quantification of EA; but based upon reported body 

composition and DEI data it could be estimated that EA was similar to our study (~14 

kcal·kgFFM-1·d-1). The reductions (-43%) shown in insulin levels did not reach significance 

in our study. A significant 35% reduction in insulin levels was shown in exercising men at 

15 kcal·kgLBM-1·d-1 (Koehler et al., 2016), but not in overweight men after a 4-day exercise 

training and energy restriction programme (Hagobian et al., 2009).  
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We did not reveal any effects of low EA on PTH, ACa, Mg and PO4; supporting the absence 

of significant BTM results in the present study. Calicum is the most abundant mineral of 

bone tissue playing a vital structural role. Calcium has also a plethora of metabolic functions 

including nerve conduction, muscle contraction, cell adhesion and blood coagulation (Miller 

et al., 2001). The importance of these metabolic roles necessitates its tight homeostatic 

control. A reduction in circulating calcium levels activates the release of PTH, which in turn, 

stimulates calcium resorption from bone in an effort to restore serum calcium levels (Adam 

& Hewison, 2010). Participants were provided with a daily multi-mineral supplement during 

RES; therefore, these results support the theory that we were successful in controlling 

overall micronutrient restriction and its possible effect on bone (Shapses & Sukumar, 2012). 

We did not measure concentrations of reproductive hormones, and are, therefore, unable to 

conclude whether or not alterations of these factors have contributed to the observed bone-

related outcomes. Both testosterone and oestrogen have been implicated in bone metabolism 

and health in men (Manolagas et al., 2013; Vanderschueren et al., 2014). Low BMD may be 

unrelated to testosterone concentrations in male athletes (Hetland et al., 1993; MacDougall 

et al., 1992; Maimoun et al., 2003), but an important role of oestrogen for the maintenance 

of the male skeleton is emerging (Vanderschueren et al., 2014). This was elegantly 

illustrated in a pilot study conducted by Ackerman et al. (2012b) where oestrogen levels 

were a stronger predictor of BMD than free or total testosterone in male collegiate runners 

and wrestlers, who may often experience periods of low EA. Current evidence to date is 

limited and future studies could provide more information about the relationship between 

sex steroids and low BMD in physically active men under low EA.  

 

To conclude, this study has shown that low EA at 15 kcal·kgLBM-1·d-1 did not affect either 

bone formation or resorption in physically active men. IGF-1 was significantly reduced 

following low EA, but there was no effect on other regulatory hormones including T3, 

insulin and leptin or on markers of calcium metabolism. Individual differences in 

susceptibility and responsiveness of BTMs to low EA were, however, shown, which might 

indicate that some, but not all, men are affected by low EA. Collectively, these results 

suggest that, overall, physically active men are resistant to acute reductions in low EA; but it 

would be premature to suggest that men are not affected by low EA. Future research should 

focus on investigating whether low EA at more severely restricted levels or for longer 

duration has different effects on bone metabolsim.       
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Chapter 6. Bone metabolic response to 

short-term low energy availability in 

physically active men and women: a sex 

comparison  
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6.1. Introduction  

Most of the current studies on the effects of low EA on bone metabolism have been 

conducted in women. Ihle and Loucks (2004) explored the effects of low EA at 30, 20 and 

10 kcal·kgLBM-1·d-1 on bone turnover in sedentary women. We extended the results of this 

study in physically active females showing that low EA at 15 kcal·kgLBM-1·d-1 elicited a 

reduction in bone formation as assessed by P1NP and a concurrent increase in bone 

resorption as indicated by changes in β-CTX (Chapter 4). Furthermore, in a group of 

physically active men, we were the first to demonstrate that overall, EA at 15 kcal·kgLBM-

1·d-1 had no effect on either bone formation or bone resorption (Chapter 5). These findings 

suggest that low EA may have a differential impact on bone metabolism in physically active 

women and men. In addition to our analyses within women and within men, our study 

design, prescription of the same level of low EA expressed relative to LBM, means that 

direct comparisons between sexes can be made.  

Links between EA and bone health have been described in women under the Female Athlete 

Triad (Nattiv et al., 2007; De Souza et al., 2014a). Despite these interrelationships being 

more commonly seen in females (De Souza et al., 2014a); the concept of energy deficiency 

is not confined to physically active women, as suggested by more recent reports (Mountjoy 

et al., 2014; 2015; Tenforde et al., 2016). The recently introduced RED-S models highlight 

that all athletes, not just women may be affected by reduced EA (Mountjoy et al., 2014; 

2015). The RED-S models have caused some controversy within the scientific community. 

Its supporters argue that RED-S models increase awareness of the effects of energy 

deficiency in all athletes that may be at risk (Mountjoy et al., 2015); whilst others argue that 

there is not enough information available in men compared to the well-established evidence-

based Female Athlete Triad (De Souza et al., 2014a). Further studies in men and direct sex 

comparisons are needed in the area to provide more evidence and increase understanding of 

the effects of low EA on bone metabolism and health in men independently, but also relative 

to women.  

Alterations in regulatory hormones in response to energy deficiency that may be related to 

alterations in bone metabolism have been identified (Walsh and Henriksen, 2010; Ihle & 

Loucks, 2004; Zanker & Zwaine, 2000), although sex-related responses have not been 

adequately investigated. Insulin and leptin have been shown to differ between men and 

women in response to changes in energy status in some (Hagobian et al., 2009; Dubuc et al., 

1998; Hickey et al., 1997; Mittendorfer et al., 2001), but not all previous studies (Prouteau et 

al., 2006; Hagobian et al., 2013). Low EA may affect markers of reproductive function that 
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in turn, may also mediate bone responses (De Souza et al., 2008; Misra & Klibanski, 2011). 

Energy deficiency disrupts reproductive function in females (De Souza et al., 2007; 

Williams et al., 2015; Loucks & Thuma, 2003). Women with anorexia nervosa and female 

athletes under severe energy restriction typically present with amenorrhea (Miller, 2011; De 

Souza & Williams, 2005; 2010), whilst moderate levels of energy restriction also cause 

subclinical reproductive disorders in women (Williams et al., 2015; De Souza et al., 2010). 

The effects of energy deficiency on reproductive function in men are less consistent; with 

some studies demonstrating lower levels of reproductive hormones in male athletes 

participating in weight sensitive sports (Hackney et al., 1998; De Souza et al., 1994) and 

some others showing no effect (Lucia et al., 1996). Understanding sex-differences in these 

factors may improve our knowledge of the potential for different BTM responses in men and 

women and sex-dependent susceptibility for the development of bone disorders. 

In this Chapter the data from Study 1 (women-presented in Chapter 4) and Study 2 (men- 

presented in Chapter 5) were combined to provide a direct sex comparison of BTM 

responses of men and women exposed to low EA at 15 kcal·kgLBM-1·d-1. A secondary goal 

was to explore potential sex-related differences in regulatory hormones and markers of 

calcium metabolism that may explain bone turnover responses.  
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6.2. Methods  

6.2.1. Participants 

In this analysis, data from twenty-two participants, eleven men and eleven eumenorrheic 

women (Table 6.2.) were included. The inclusion and exclusion criteria have been described 

in sections 4.2.1. for women and 5.2.1. for men.  

6.2.2. Experimental design 

Detailed description of the experimental design has been provided in section 4.2.2. 

6.2.3. Experimental procedures  

Detailed description has been provided for preliminary assessment in section 4.2.3.1., 

experimental period in section 4.2.3.2., lifestyle EE in section 4.2.3.2.1., habitual DEI in 

section 4.2.3.2.2. and 5.2.3., experimental diets in section 4.2.3.2.3., EEE in section 4.2.3.2.4 

and compliance to experimental condition in section 4.2.3.2.5. 

6.2.4. Storage and analyses of blood samples 

Blood samples were collected and analysed as previously described in 4.2.4. 

6.2.5. Biochemical analysis  

Detailed description on biochemical analysis has already been provided in section 3.13. 

6.2.6. Statistical analysis  

All data were checked for normality according to the Shapiro-Wilk test and were log-

transformed when not normally distributed before ANOVAs. Participant characteristics 

between men and women were compared using independent t-tests for normally distributed 

data or Wilcoxon-rank sum tests for non-normally distributed data. Similarly, baseline 

biochemistry markers and markers of energy status prior to each experimental condition 

were averaged and compared using independent t-tests or Wilcoxon-rank sum tests for non-

normally distributed data. A three-way mixed model repeated measures ANOVA with sex 

(men, women) as a between subject factor and condition (CON, RES) and time (BASE, D5, 

D7 and D9) as within subject factors was used to assess group changes in BTM, regulatory 

hormones and markers of calcium metabolism. A two-way repeated measure ANOVA was 

used to determine differences over condition (CON and RES) between sexes for BTM, 

energy regulatory hormones and markers of calcium metabolism expressed as AUC. 
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Tukey’s tests were used as post hoc analyses when a significant interaction effect was 

shown. Data are presented as mean (1SD) and statistical significance was set at P ≤ 0.05. 

Data were analysed using Statistica 13.0 (Statsoft, USA) and SPSS 22.0 (Armonk, USA).  

For the individual analysis, criteria for responders and non-responders to RES for β-CTX 

and P1NP have been established in section 4.2.6.  
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6.3. Results  

6.3.1. Participant characteristics  

Demographic, body composition and training characteristics have been previously presented 

independently for women (please see section 4.3.1.) and men (please see section 5.3.1.) and 

sex differences are summarised in Table 6.1. Men were taller, heavier and had a greater 

BMI, LBM, FFM, BMD and VO2 peak (ml·kg-1·min-1), but a lower body fat percentage than 

women (P<0.05). There were no differences in age, physical activity levels and VO2max 

expressed relative to LBM (P>0.05). Men had a significantly higher absolute habitual DEI 

and estimated 24-h EE than women (P<0.05), but there were no significant differences in 

lifestyle EE between sexes (P>0.05) (Table 6.2.).  

Table 6.1. Participant characteristics. 

  Women (n=11) Men (n=11) p-value 

Demographics       

Age (y) 26 (5) 26 (5) 0.85 

Height (m) 1.66 (0.05) 1.78 (0.07) <0.001* 

Body mass (kg) 59.7 (6.7) 73.1 (8.0) <0.001* 

BMI (kg ·m-2) 21.5 (1.5) 23.0 (1.6) 0.040* 

Body composition    

Body fat (%) 27.1 (6.2) 18.3 (3.4) 0.001* 

LBM (kg) 41.5  (4.9) 57.2 (7.3) <0.001* 

FFM (kg) 44.0 (5.1) 60.3 (7.6) <0.001* 

BMD (g·cm-2) 1.14 (0.11) 1.25 (0.08) 0.012* 

Training characteristics    

VO2 peak (ml·kg-1·min-1) 47.9 (5.5) 54.2 (5.3) 0.012* 

VO2 peak (ml·kg LBM-1·min-1) 68.7 (4.0) 69.3(5.9) 0.76 

Physical activity (MET-min·wk-1) 3928 (1651) 3443 (1006) 0.42 

Dietary and EE characteristics 

Habitual DEI (kcal·d-1)1 2143 (361) 2682 (265) 0.001* 

Lifestyle EE (kcal·d-1)1 402 (227) 455 (136) 0.51 

24-hour EE (kcal·d-1)1 1943 (302) 2398 (185) <0.001 

Values are presented as means (1SD). 
1 Mean values of D1-D3 prior to both experimental conditions. 
*denotes a significant difference between men and women (P<0.05).  

BMI: Body Mass Index; LBM: Lean Body Mass; FFM: Fat Free Mass; BMD: Bone mineral density: VO2max: 

Maximum oxygen uptake; DEI: Dietary Energy Intake; EE: Energy expenditure; LBM: Lean Body Mass; MET: 

Metabolic equivalents.  
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6.3.2. Baseline biochemistry   

Baseline concentrations of BTMs, markers of calcium metabolism and regulatory hormones 

have been previously presented for women (please see section 4.3.2.) and men (please see 

section 5.3.2.). Sex differences for these markers are summarised in Table 6.2. Women had 

significantly higher PTH levels, but lower ACa and sclerostin levels compared to men at 

BASE. There were no other differences in any BTM or any other markers of calcium 

metabolism or regulatory hormones (Table 6.2.).   

Table 6.2. Concentrations of BTMs, markers of calcium metabolism and regulatory 

hormones at BASE in men and women. Mean values of D1 and D3 prior to both 

experimental conditions were used as BASE. 

 Women (n=11) Men (n=11) P-value 

BTMs  

β-CTX (µg·L-1) 

P1NP  (µg·L-1) 

0.45 (0.12) 0.49 (0.16) 0.53 

70.9 (13.6) 74.3 (29.4) 0.73 

BT ratio  1.63 (0.40) 1.54 (0.40) 0.60 

Markers of calcium metabolism 

PTH (pg·mL-1) 3.8 (0.6) 2.9 (1.0) 0.012* 

ACa (mmol·L-1) 2.32 (0.04) 2.37 (0.05) 0.013* 

0.92 Mg (mmol·L-1) 0.83 (0.04) 0.83 (0.05) 

PO4 (mmol·L-1) 1.23 (0.14) 1.22 (0.11) 0.90 

Regulatory hormones 

Sclerostin (ng·mL-1) 0.46 (0.12) 0.61 (0.14) 0.015* 

IGF-1 (mmol·L-1) 229.1 (54.8) 180.7 (52.4) 0.37 

T3 (mmol·L-1) 1.66 (0.20) 1.78 (0.28) 0.22 

Leptin (ng·mL-1)1 9.7 (13.5) 2.9 (1.6) 0.25 

Insulin (pmol·L-1) 40.2 (25.8) 34.0 (10.7) 0.35 

GLP-2 (ng·mL-1) 10.0 (6.7) 14.5 (12.4) 0.29 

Values are presented as means (1SD). 

1Analysis performed in 6 men and 11 women.  
*denotes a significant difference between men and women (P<0.05). 

β-CTX: C-terminal cross-linked telopeptide of type I collagen; P1NP: Amino-terminal pro-peptides of type 1 

procollagen; BT ratio: Bone turnover ratio; BTM: Bone turnover markers; PTH: Parathyroid hormone; Mg: 

Magnesium; ACa:  Albumin adjusted calcium; PO4: Phosphate; T3: Triiodothyronine; IGF-1: Insulin-like growth 

factor 1; GLP-2: Glucagon-like peptide; D: Day; BASE: Baseline. 
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6.3.3. BTMs 

6.3.3.1. β-CTX  

There was no significant condition x time x sex interaction (P=0.25), nor were there any 

condition x sex (P=0.12) or condition x time (P=0.44) interaction effects for -CTX 

concentrations. There was a significant main effect of time (P=0.002), β-CTX concentrations 

at D7 and D9 were greater than BASE, but no significant main effect of condition (P=0.91) 

or sex (P=0.67). The between sexes comparison showed a significant condition x sex 

interaction effect for β-CTX AUC (P=0.03) only, although no pairwise post hoc 

comparisons reached statistical significance (Figure 6.1., Figure 6.2., Table 6.3.).  

6.3.3.2. P1NP 

There was no significant condition x time x sex or condition x sex interactions for P1NP 

concentrations, although there was a condition x time interaction (P=0.01). P1NP 

concentrations decreased between BASE-D5 (P=0.04), BASE-D7 (P<0.001) and BASE-D9 

(P<0.001) in RES, but not in CON. P1NP concentrations at D7 (P=0.02) and D9 (P=0.002) 

in RES were also lower than in CON. A significant main effect of time (P<0.001) showed 

that P1NP concentrations reduced progressively from D5 to D9 compared to BASE 

(P<0.01). There were no significant main effects of condition (P=0.13) or sex (P=0.91). A 

significant main effect of condition was evident for P1NP AUC (RES<CON, P=0.008). 

There was no significant main effect of sex (P=0.48) or any condition x sex interaction 

effect (P=0.37) for P1NP AUCs (Figure 6.1., Figure 6.2., Table 6.3.).   

6.3.3.3. BT ratio  

There was no significant condition x time x sex (P=0.35) or condition x sex (P=0.6) 

interaction effects, although a significant condition x time interaction (P=0.01) was shown. 

The BT ratio decreased progressively from BASE to D9 in RES (BASE-D5, P=0.01; BASE-

D7, P<0.001; BASE-D9, P<0.001; D5-D9, P=0.02), but not in CON. BT ratios at D7 

(P=0.02) and D9 (P=0.002) in RES were also lower than those at the same time points in 

CON. There was a significant main effect of time for BT ratio (BASE-D5; BASE-D7; 

BASE-D9; P<0.05), but no significant main effect of condition (P=0.32) or sex (P=0.27). 

There was a significant main effect of condition (RES<CON; P=0.01), but no significant 

main effect of sex (P=0.48) or any condition x sex interaction effect (P=0.37) shown for BT 

ratio AUC (Figure 6.1., Figure 6.2., Table 6.3.).  
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Figure 6.1. Percentage change 

from BASE for β-CTX, P1NP and 

BT ratio on D5-D9 in CON (black 

squares) and RES (white squares) 

trials in (A) men and women, (B) 

women and (C) men. Mean values 

of D1 and D3 were used as BASE 

prior to each experimental 

condition. Values are presented as 

means (1SD). * denotes a 

significant difference from BASE 

(P<0.05). ). ** denotes a significant 

difference from CON at the same 

timepoint (P<0.05). β-CTX: C-

terminal cross-linked telopeptide of 

type I collagen; P1NP: Amino-

terminal pro-peptide of type 1 

procollagen; BT ratio; D: Day; 

BASE: Baseline. 
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Figure 6.2. AUC for β-CTX (A), P1NP (B) and BT ratio (C) in women and men together  

(black and white pattern), women (black bars) and men (white bars). Values are presented as 

means (1SD). * denotes a significant difference between CON and RES (P<0.05). β-CTX: C-

terminal telopeptides of type I collagen; P1NP: Amino-terminal pro-peptide of type 1 

procollagen; BT ratio: Bone turnover ratio; BASE: Baseline; AUC: Area under the curve 

CON: Controlled; RES: Restricted; BASE: Baseline. 
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Table 6.3. BTMs expressed as concentrations, percentage change from BASE and AUC in CON and RES trials in men and women combined data (total), 

women and men. Mean values of D1 and D3 were used as BASE prior to each experimental condition. 

 Total (n=22) Women (n=11) Men (n=11) 

CON RES CON RES CON RES  

BASE D9 BASE D9 BASE D9 BASE D9 BASE D9 BASE D9 

β-CTX             

µg·L-1  0.48 

(0.14) 

0.51 

(0.15) 

0.46 

(0.15) 

0.53 

(0.20) 

0.49 

(0.14) 

0.51 

(0.12) 

0.42 

(0.11) 

0.49   

(0.09) 

0.48 

(0.16) 

0.52 

(0.17) 

0.50 

(0.17) 

0.57 

(0.26) 

%BASE change  9.6 

(24.9) 

 15.8 

(15.9) 

 6.1 

(12.6) 

 19.5 

(14.8) 

 13.1 

(33.3) 

 12.2 

(16.8) 

AUC  

(%BASE x d) 1 
 38.7 

(101.7) 

 62.4 

(69.3) 

 16.9 

(68.1) 

 85.7 

(60.5) 

 60.5 

(126.7) 

 39.0 

(72.3) 

P1NP             

µg·L-1  72.4 

(24.0) 

70.0 

(27.2) 

72.7 

(22.5) 

62.9 

(20.0)*,** 

71.1 

(15.0) 

67.5 

(13.7) 

70.6 

(15.1) 

61.6 

(14.0) 

73.6 

(31.4) 

72.5 

(36.7) 

74.8 

(28.7) 

64.3 

(25.3) 

%BASE change  -3.1 

(13.2) 

 -13.4 

(7.6) 

 -4.5  

(8.6) 

 -12.7 

(7.4) 

 -1.8 

(16.2) 

 -14.0 

(8.0) 

AUC 

(%BASE x d)1 

 -14.1 

(57.9) 

 -53.8 

(28.3) ** 

 -23.1 

(34.9) 

 -60.9 

(31.2) 

 -5.2 

(75.1) 

 -46.6 

(24.3) 

BT ratio             

-  1.55 

(0.44) 

1.39 

(0.40) 

1.62 

(0.41) 

1.22 

(0.30) *,** 

1.54 

(0.44) 

1.39 

(0.39) 

1.73 

(0.42) 

1.27 

(0.33) 

1.57 

(0.46) 

1.39 

(0.42) 

1.52 

(0.40) 

1.16 

(0.29) 

%BASE change  -7.9 

(22.4) 

 -23.5 

(13.9) 

 -9.0 

(12.9) 

 -25.3 

(11.4) 

 -6.8 

(29.7) 

 -21.1 

(16.3) 

AUC 

 (%BASE x d) 1 

 -26.1 

(124.4) 

 -89.9 

(63.0) ** 

 -28.0 

(56.9) 

 -113.4 

(45.8) 

 -24.2 

(171.0) 

 -66.4 

(70.8) 

Values are expressed as means (1SD). 1AUC calculated for each experimental condition from BASE to D9. * denotes a significant difference from BASE in the same condition (P<0.05). 
**denotes a significant difference from CON at the same timepoint (P<0.05). β-CTX: C-terminal cross-linked telopeptide of type I collagen; P1NP: Amino-terminal pro-peptide of type 1 
procollagen; BT ratio: Bone turnover ratio; BTM: Bone turnover marker; D: Day; BASE: Baseline; AUC: Area under the curve CON: Controlled trial; RES: Restricted trial. 
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6.3.4. Markers of calcium metabolism  

6.3.4.1. PTH 

There was no significant condition x time x sex interaction effect (P=0.22), nor were there 

any condition x sex (P=0.76) or condition x time (P=0.81) interaction effects for PTH 

concentrations. There was a significant main effect of time, indicating greater PTH 

concentrations at D7 compared to BASE (P=0.02) and a main effect of sex (P<0.001) 

showing higher concentrations in women than in men. For PTH AUC, no significant main 

effects of condition (P=0.39), sex (P=0.32) or any condition x sex interaction effect (P=0.65) 

was shown (Table 6.4.).  

6.3.4.2. ACa 

There was no significant condition x time x sex interaction effect (P=0.85), nor was there 

any condition x sex (P=0.24) or any condition x time (P=0.06) interaction effect for ACa 

levels. A significant time x sex interaction (P=0.01) was shown; in men ACa significantly 

decreased at D9 compared to BASE (P=0.035) and D5 (P=0.048). There was no significant 

main effect of time (P=0.053), condition (P=0.67) or sex (P=0.08). For ACa AUC, no 

significant main effect of condition (P=0.052), sex (P=0.067) or any condition x sex 

interaction (P=0.25) was shown (Table 6.4.).  

6.3.4.3. Mg 

There was no significant condition x time x sex interaction effect (P=0.37), nor were there 

any condition x sex (P=0.48) or condition x time (P=0.57) interaction effects for Mg levels. 

There were no significant main effects of time (P=0.75) condition (P=0.47) or sex (P=0.67) 

for Mg levesls. For Mg AUC, no significant main effect of sex (P=0.52), condition (P=0.75) 

or any condition x time interaction effect was shown (P=0.30) (Table 6.4.).  

6.3.4.4. PO4  

There was a significant condition x time x sex interaction (P=0.02) for PO4 concentrations 

only, but post-hoc analysis did not discover any significant differences. No significant main 

effect of time (P=0.23), condition (P=0.92) or sex (P=0.32) were shown for PO4 levels. The 

between sexes comparison showed no significant main effect of sex (P=0.40), condition 

(P=0.28) or any condition x time interaction effect (P=0.11) for PO4 AUC (Table 6.4.).  
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6.3.5. Regulatory hormones 

6.3.5.1. Sclerostin   

There was no significant condition x time x sex interaction effect (P=0.39), nor were there 

any condition x sex (P=0.55) or condition x time (P=0.10) interaction effects for sclerostin 

concentrations. There was a significant main effect of time (P=0.01); increases were shown 

at D7 compared to BASE. There was a main effect of sex (P=0.01) with higher levels shown 

in men compared to those in women, but no significant main effect of condition was shown 

(P=0.52) for sclerostin concentrations. For sclerostin AUC, no main effects of sex (P=0.55), 

condition (P=0.82), or any condition x sex interaction effect (P=0.14) was shown (Table 

6.5).  

6.3.5.2. IGF-1 

In RES only, IGF-1 concentrations at D7 were reduced from BASE (P<0.001) and 

concentrations at D9 were lower than those at BASE (P<0.001) and D5 (P<0.001) (overall, a 

significant condition x time interaction effect, P=0.003). In men, IGF1 levels were lower at 

D7 compared to BASE and at D9 compared to BASE and D5 (P<0.05). In women, 

reductions of IGF-1 concentrations were shown between BASE-D7, BASE-D9, D5-D7 and 

D5-D9 (all P values <0.05) (overall, a significant time x sex interaction effect, P=0.017). 

IGF-1 concentrations were not different in any condition for any time point between men 

and women (condition x time x sex interaction effect, P=0.76). For pooled men and women 

data, there was no difference between condition for any time point (condition x sex 

interaction effect, P=0.69). For IGF-1 concentrations there was a significant main effect of 

time (P<0.001), overall, reductions were shown between BASE-D7, BASE-D9, D5-D7 and 

D5-D9 (P<0.001). There was no main effect of condition (P=0.43) or sex (P=0.15). The 

between sexes comparisons showed a main effect of sex (women<men, P=0.04) and 

condition (RES<CON, P=0.02), but no condition x sex interaction effect for IGF-1 AUC 

(Table 6.5).  

6.3.5.3. T3 

There was no significant condition x time x sex (P=0.43) or condition x sex (P=0.84) 

interaction effect, although there was a significant condition x time interaction effect 

(P=0.003). T3 at D7 was lower compared to BASE (P<0.001) and at D9 was decreased from 

D5 (P=0.001) and BASE (P<0.001) in RES only. T3 concentrations at D9 in RES were also 

lower than T3 concentrations at D9 in CON (P=0.001). A significant main effect of time 

(D7<BASE, D9<BASE; P<0.05) was shown for T3 concentrations, but there was no main 
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effect of sex (P=0.29) or condition (P=0.06). A significant main effect of condition was 

shown for T3 AUC (P=0.01), showing that T3 responses were lower in RES than in CON 

(Table 6.5), but there was no significant main effect of sex (P=0.68) or condition x sex 

interaction effect (P=0.82).  

6.3.5.4. Leptin  

There was no significant condition x time x sex (P=0.96) or condition x sex (P=0.29) 

interaction effect. There was only a significant condition x time interaction (P=0.007); leptin 

concentrations decreased significantly from BASE at D5 (P=0.02), D7 (P<0.001) and D9 

(P<0.001). Leptin at D9 in RES was lower from D9 in CON (P=0.04). There was a 

significant main effect of time (P<0.001), but no main effect of sex (P=0.28) or condition 

(P=0.83). Significant main effects of sex (Women<Men, P=0.02) and condition (RES<CON, 

P=0.003) were shown for leptin AUC (Table 6.5), but there was no significant condition x 

sex interaction effect (P=0.30).  

6.3.5.5. Insulin 

There was no condition x time x sex (P=0.32) or condition x sex (P=0.11) interaction effect 

for insulin concentrations, although there was a condition x time interaction effect 

(P<0.001). Insulin concentrations decreased significantly from BASE at D5 (P=0.007), D7 

(P<0.001) and D9 (P<0.001). Insulin concentrations at D9 in RES were lower than the 

concentration at the respective time point in CON (P<0.001). Significant main effects of 

time (D7<BASE and D9<BASE; P=0.002) and condition (RES<CON; P=0.017) were 

shown for insulin concentrations, but there was no main effect of sex (P=0.94). For insulin 

AUC, there was a significant main effect of condition (RES<CON, P=0.02), but no main 

effect of sex (P=0.25) or any sex x condition interaction effect (P=0.28) (Table 6.5.).  

6.3.5.6. GLP-2 

There was no significant condition x time x sex interaction (P=0.46), nor were there any 

condition x sex (P=0.44) or condition x time (P=0.52) interaction effects for GLP-2 

concentrations. No significant main effect of time (P=0.13), condition (P=0.08) or sex 

(P=0.29) were shown for GLP-2 levels. For GLP-2 AUC, there was no significant main 

effect of sex (P=0.53), condition (P=0.17) or any condition x time interaction (P=0.80) 

(Table 6.5.).  
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Table 6.4. Markers of calcium metabolism expressed as concentrations, percentage change from BASE and AUC in CON and RES trials in men and women 

combined data (total), women and men. Mean values of D1 and D3 were used as BASE prior to each experimental condition. 

 Total (n=22) Women (n=11) Men (n=11) 

 CON RES CON RES CON RES 

 BASE D9 BASE D9 BASE D9 BASE D9 BASE D9 BASE D9 

PTH             

pg·mL-1 3.4 

(1.1) 

3.6 

(1.2) 

3.3 

(0.9) 

3.5 

(1.1) 

4.0 

(0.7) 

4.2 

(1.0) 

3.7 (0.7) 4.3    

(1.0) 

2.80   

(1.2) 

3.0     

(1.2) 

2.9 

(1.00) 

2.8 

(0.7) 

%BASE change  9.0 

(27.2) 

 8.5 

(22.8) 

 4.6 

(17.6) 

 15.7 

(17.2) 

 13.5 

(34.7) 

 1.3 

(26.0) 

AUC  

(%BASE x d)1 

 57.9 

(93.9) 

 36.4 

(97.0) 

 49.9 

(59.4) 

 76.1 

(82.6) 

 65.9 

(121.9) 

 -3.2 

(97.4) 

ACa              

mmol·L-1 2.35 

(0.07) 

2.33 

0.06 

2.33 

(0.05) 

2.32 

0.05 

2.32 

(0.05) 

2.33 

(0.06) 

2.32 

(0.05) 

2.32 

(0.04) 

2.39 

(0.06) 

2.33 

(0.05) 

2.35 

(0.05) 

2.32 

(0.06) 

%BASE change  -0.7 

(2.5) 

 -0.8 

(2.3) 

 0.8   

(1.8) 

 0.0    

(1.6) 

 -2.2   

(2.3) 

 -1.6 

(2.7) 

AUC  

(%BASE x d)1 

 -4.4 

(7.9) 

 -0.0 

(7.4) 

 -0.9  

(5.9) 

 1.0    

(6.8) 

 -7.9   

(8.3) 

 -1.00 

(8.1) 

Mg              

mmol·L-1 0.84 

(0.05) 

0.84 

(0.05) 

0.83 

(0.05) 

0.85 

(0.05) 

0.84 

(0.05) 

0.84 

(0.04) 

0.83 

(0.04) 

0.85 

(0.05) 

0.83 

(0.05) 

0.84 

(0.06) 

0.83 

(0.05) 

0.85 

(0.05) 

%BASE change  1.1 

(2.9) 

 1.8  

(3.8) 

 0.8   

(2.7) 

 2.0    

(4.4) 

 1.3     

(3.2) 

 1.6 

(3.3) 

AUC 

 (%BASE x d)1 

 4.3 

(18.3) 

 1.0 

(47.3) 

 2.5 

(17.6) 

 10.1 

(21.3) 

 6.0    

(19.7) 

 -8.2 

(63.8) 
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Markers of calcium 

metabolism 

(continue)  

              Total (n=22)   Women (n=11)   Men (n=11)  

CON RES CON RES CON RES 

BASE D9 BASE D9 BASE D9 BASE D9 BASE D9 BASE D9 

PO4              

mmol·L-1 1.21 

(0.12) 

1.23 

(0.18) 

1.24 

(0.16) 

1.20 

(0.14) 

1.22 

(0.12) 

1.31 

(0.17) 

1.23 

(0.17) 

1.23 

(0.13) 

1.19 

(0.12) 

1.16 

(0.17) 

1.25 

(0.16) 

1.17 

(0.14) 

%BASE change  2.4 

(12.3) 

 -2.3 

(9.9) 

 7.3    

(6.7) 

 1.0 

(8.4) 

 -2.4 

(14.8) 

 -5.5 

(10.7) 

AUC  

(%BASE x d)1 

 15.7 

(57.0) 

 -2.1 

(40.0) 

 17.0 

(36.9) 

 18.9 

(36.1) 

 14.5 

(73.8) 

 -23.1 

(33.1) 

Values are expressed as means (1SD). 
1AUC calculated for each experimental condition from BASE to Day 9. 

PTH: Parathyroid hormone; Mg: Magnesium; ACa:  Albumin adjusted Calcium; PO4: Phosphate; D: Day; BASE: Baseline; AUC: Area under the curve; CON, Controlled trial; RES, Restricted 

trial. 
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Table 6.6. Regulatory hormones expressed as concentrations, percentage change from BASE and AUC in CON and RES trials in men and women combined 

data (total), women and men. Mean values of D1 and D3 were used as BASE prior to each experimental condition. 

 Total (n=22) Women (n=11) Men (n=11) 

 CON RES CON RES CON RES 

 BASE D9 BASE D9 BASE D9 BASE D9 BASE D9 BAS D9 

Sclerostin             

ng·mL-1  0.53 

(0.16) 

0.54 

(0.16) 

0.53 

(0.14) 

0.58 

(0.17) 

0.45 

(0.13) 

0.47 

(0.12) 

0.46 

(0.11) 

0.49 

(0.13) 

0.61 

(0.15) 

0.60 

(0.18) 

0.60 

(0.14) 

0.67 

(0.16) 

%BASE change  2.7 

(17.0) 

 7.6 

(10.8) 

 6.8 

(17.3) 

 4.8  

(8.5) 

 -1.9 

(16.3) 

 10.4 

(12.5) 

AUC  

(%BASE x d)1 

 23.6 

(68.4) 

 20.3 

(44.7) 

 28.8 

(81.6) 

 3.1  

(27.8) 

 18.3 

(55.6) 

 37.4  

(52.6) 

IGF-1             

mmol·L-1  199.9 

(61.4) 

187.2 

(65.7) 

209.9 

(64.6) 

163.4 

(54.7)* 

223.2 

(58.4) 

202.0 

(57.8) 

235.0 

(65.5) 

186.1 

(57.5)* 

176.6 

(57.6) 

172.4 

(72.3) 

184.7 

(55.6) 

140.7 

(42.9)* 

%BASE change  -6.1 

(20.3) 

 -22.3 

(9.6) 

 -8.8 

(20.9) 

 -21.1 

(9.3) 

 -3.5 

(20.3) 

 -23.5 

(10.1) 

AUC 

 (%BASE x d)1 

 -19.4 

(92.7) 

 -72.5 

(50.2)** 

 -48.2 

(82.6) 

 -90.9 

(47.2) 

 9.4 

(96.9) 

 -54.0 

(48.1) 

T3             

mmol·L-1 1.70 

(0.24) 

1.66 

(0.21) 

1.73 

(0.28) 

1.52 

(0.21)*,** 

1.65 

(0.25) 

1.66 

(0.22) 

1.66 

(0.19) 

1.47 

(0.18) 

1.75 

(0.24) 

1.66 

(0.22) 

1.80 

(0.34) 

1.56 

(0.24) 

%BASE change  -1.3 

(8.4) 

 -11.8 

(9.7) 

 1.9  

(7.0) 

 -10.7 

(10.1) 

 -4.5 

(8.7) 

 -12.9 

 (9.4) 

AUC  

(%BASE x d)1 

 -4.1 

(51.0) 

 -36.4 

(43.4)** 

 -1.8 

(61.3) 

 -31.5 

(40.5) 

 -6.4 

(41.0) 

 -41.4 

(47.6) 
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Values are expressed as means (1SD). 1AUC calculated for each experimental condition from BASE to Day 9. 2Analysis performed in 5 men and 11 women. 
*denotes a significant difference from BASE in the same condition (P<0.05). **denotes a significant difference for CON at the same point (P<0.05). 
T3: Triiodothyronine; IGF-1: Insulin-like growth factor 1; GLP-2: Glucagon-like peptide 2; D: Day; BASE: Baseline; AUC: Area under the curve; CON, Controlled trial; RES, Restricted trial. 

Energy regulatory 

hormones 

(continue) 

Total (n=22) Women (n=11)  Men (n=11) 

CON RES CON RES CON RES 

BASE D9 BASE D9 BASE D9 BASE D9 BASE D9 BASE D9 

Leptin              

pmol·L-1  2 6.5  

(9.4) 

4.8  

(9.4) 

8.9 

(13.6) 

3.5  

(4.3)*,** 

8.3   

(11.0) 

5.9  

(5.7) 

11.1 

(16.1) 

4.2  

(5.0) 

2.6  

(1.4) 

2.5 

(0.8) 

3.9  

(1.5) 

1.9 

(0.8) 

%BASE change2  -2.1 

(39.6) 

 -43.4 

(34.3) 

 -8.8 

(34.9) 

 -42.7 

(38.5) 

 11.2 

(44.4) 

 -45.0 

(26.8) 

AUC  

(%BASE x d)1,2 

 -31.7 

(199.8) 

 -157.6 

(24.6)** 

 -118.3 

(119.0) 

 -214.2 

(113.0) 

 158.9 

(219.7) 

 -26.7 

(331.1) 

Insulin             

pmol·L-1(1) 34.5 

(13.3) 

34.8 

(15.7) 

39.6 

(19.6) 

20.5 

(9.8) 

36.1 

(12.9) 

37.3 

(15.1) 

44.2 

(25.8) 

22.4 

(13.0) 

33.0 

(14.1) 

32.4 

(16.6) 

35.1 

(9.9) 

18.6 

(4.9) 

%BASE change  13.9 

(56.5) 

 -40.7 

(28.3)*,** 

 19.2 

(57.9) 

 -37.9 

(34.2) 

 8.7 

(57.4) 

 -43.5 

(22.2) 

AUC  

(%BASE x d)1 

 3.3 

(214.7) 

 -110.5 

(200.2)** 

 -16.5 

(194.2) 

 -180.5 

(126.6) 

 23.0 

(241.3) 

 -40.5 

(239.5) 

GLP-2             

ng·mL-1  12.8 

(10.4) 

11.7 

(8.8) 

11.7 

(9.7) 

10.1 

5.6 

10.5   

(7.7) 

9.5   

(4.9) 

9.4  

(5.6) 

9.8  

(6.8) 

15.0 

(12.5) 

13.9 

(11.3) 

14.1 

(12.5) 

10.4 

(4.5) 

%BASE change  -5.2 

(15.5) 

 -3.5 

(22.0) 

 -4.0 

(17.8) 

 1.8 

(18.2) 

 -6.4 

(13.6) 

 -8.8 

(25.1) 

AUC                  

(%BASE x d)1 

 -23.6 

(64.0) 

 -1.7 

(50.0) 

 -20.2 

(70.5) 

 9.6 

(50.8) 

 -27.0 

(60.2) 

 -6.3 

(50.3) 
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6.3.7. Individual analysis  

Three out of 11 men responded to RES with an increase in -CTX concentrations and 6 out 

of 11 men responded to RES with a decrease in P1NP concentrations. Furthermore, 3 out of 

11 male participants were responders to RES for both β-CTX (increase) and P1NP 

(decrease). In women, 7 out of 11 participants responded to RES with an increase in -CTX 

concentrations and 6 out of 11 participants responded to RES with a decrease in P1NP 

concentrations. Four female participants were responders for β-CTX only (increase), 3 

participants were responders for P1NP only (decrease) and 3 participants responded to RES 

for both. In total, 6 out of 11 men and 10 out 11 women had altered bone turnover resulting 

from changes in bone resorption (increase), bone formation (decrease) or both (Table 6.5.).   

Table 6.5. Number of responders (out of total number of women, men and total) for β-CTX, 

P1NP in physically active women and men in RES. This analysis was based on data 

expressed as %BASE for each participant.  

 β-CTX P1NP Bone turnover1 Bone turnover2 

Women (n=11) 7/11 6/11 10/11 3/11 

Men (n=11) 3/11 6/11 6/11 3/11 

Total (n=22) 10/22 12/22 16/22 6/22 

1altered bone turnover due to increase β-CTX, decreased P1NP or both. 
2altered bone turnover due to a simultaneous increase in β-CTX and decrease in P1NP. 

β-CTX: C-terminal cross-linked telopeptide of type I collagen; P1NP: Amino-terminal pro-peptide of type 1 

procollagen; BT ratio; RES: Restricted; BASE: Baseline. 
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6.4. Discussion  

There were no significant differences in bone metabolism, regulatory hormones or markers 

calcium metabolism in response to low EA (achieved by diet and exercise) at 15 

kcal·kgLBM-1·d-1 between sexes. This sex comparison provides a different insight from the 

findings of our single sex studies, which indicated significant alterations in bone formation 

and resorption in response to low EA in women, but not in men. When combining the data 

from men and women, a significant reduction in bone formation was shown in response to 

low EA, without any concomitant effect on bone resorption, suggesting that bone formation 

may be affected first in conditions of energy deficiency and may result in an uncoupling of 

bone formation from bone resorption. The changes in BTMs in response to low EA were 

accompanied by reductions in key hormones, namely IGF-1, T3, insulin and leptin.   

In this study, a direct sex comparison has been made using the same research design and 

protocols [i.e., prescription of the same level of low EA (relative to LBM) and the same 

contributions from dietary restriction and exercise] for both women and men. This 

comparison is novel in the area of bone metabolism and low EA, as no previous study has 

examined both sexes concurrently within the same analysis. No significant differences were 

shown in BTM responses following low EA in men and women. Interestingly, the 

magnitudes of the changes in BTMs were similar between sexes (Men - β-CTX: +12%, 

P1NP: -14%; BT ratio: -21%; Women - β-CTX: +19%, P1NP: -13%; BT ratio: -24%). These 

results differ from the results of the within group comparisons, which showed an increase in 

bone resorption and reductions in bone formation and the BT ratio in women (Chapter 4), 

but no effect in men (Chapter 5). Therefore, our findings in women support previous studies 

showing that low EA underpins bone health in women (De Souza et al., 2014a). However, 

our findings in men do not support the RED-S phenomenon when considered alone, but may 

suggest an analogous relationship with women when considering the similar BTM responses 

shown in this study between men and women to low EA.  

Although there is no previous study on sex-related differences in BTM responses to short-

term low EA, findings from cross-sectional studies on sex-differences in bone-related 

outcomes, that are mediated by changes in bone turnover, such as BMD and bone injuries 

are inconsistent. Studies in men and women exposed to multi-stressor environments 

including low EA have suggested that women may be more susceptible to the effects of low 

EA with higher incidence rates of stress fracture injury (Wentz et al., 2011; Armstrong et al., 



145 

 

2004; Bennell et al., 1996a) and low BMD (Tenforde et al. 2016; De Souza et al., 2014a; 

Mountjoy et al., 2015). Other studies, however, showed no sex differences in BMD (Hind et 

al., 2006) or stress fracture incidence rates (Matheson et al., 1987; Iwamoto & Takeda, 

2003). Based on these findings, firm conclusion regarding sex differences in bone related 

outcomes cannot be drawn. The results of these studies should be interpreted with caution, 

as male and females were not exposed to low EA only or to the same level of low EA. 

Furthermore, although these studies evaluated longer-term bone outcomes, the nature of 

these alterations (i.e., low BMD resulting from reduced bone formation, elevated bone 

formation or both) has not been investigated.  

In the present study, individual analysis was conducted in order to supplement conventional 

statistics. Studies typically emphasise mean responses; however, individuals may differ 

considerably in response to exercise and/or dietary restriction (King et al., 2008). Six out of 

11 men and 10 out 11 women had altered bone turnover resulting from changes in either 

bone formation, bone resorption or both. These results are suggestive of inter-individual 

variability in susceptibility/sensitivity to low EA, which may be sex-specific given the more 

consistent responses amongst our female participants. Inter-individual variability to energy 

deficiency has been reported in body composition changes (King et al., 2008), insulin 

sensitivity (King et al., 2012), and female reproductive function (Williams et al., 2015), 

which may be relevant to sex-specific bone turnover responses. Individual analysis may be 

valuable in identifying individuals or subgroups that are more susceptible to low EA and 

may benefit from securing optimal EA.  

Since there were no sex differences in BTMs, by combining data in men and women, a 

significant reduction in P1NP by 13% from BASE, together with a significant 24% 

reduction in BT ratio in response to RES were shown, with these results suggesting an 

imbalance in bone turnover. These findings are in line with the findings of a previous, short-

term experiment conducted in women suggesting that bone formation is altered first (bone 

resorption follows) in response to changes in energy status (Ihle & Loucks, 2004). In 

contrast, using an integrated sex approach (analysis of combined men and women data), 

Villareal et al. (2016) showed a marked increase in bone resorption (approximately 30% 

increase from BASE) as assessed by β-CTX and TRACP5b in 143 non-obese individuals 

(BMI: 25.1±1.7 kg·m-2) after six months and 1-year of 25% caloric restriction. For bone 

formation, there was a transient decrease (-6% form BASE) in BALP at 1-year follow-up, 

but P1NP remained unaltered (Villareal et al., 2016). The absence of mechanical loading 
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(energy restriction was achieved by food restriction only), the longer study duration and 

follow-up and the differences in study demographics do not allow direct comparison with 

the findings of the present study. However, the study by Villareal et al. (2016) also suggests 

an imbalance between bone formation and resorption, in favour of resorption. This is 

important given that altered bone turnover favouring bone resorption, if continued, can result 

in bone loss (Villareal et al., 2016), changes in bone architecture and bone injuries 

(Hernadez, 2008).  

Alterations in a number of regulatory hormones have been shown to mediate some of the 

BTM responses (Zanker & Swaine, 2000; Ihle and Loucks, 2004; Villareal et al., 2016), 

although no previous experimental study has provided a direct sex comparison of regulatory 

hormones whilst assessing bone-related outcomes. Responses of regulatory hormones to low 

EA did not vary between sexes, supporting the absence of sex differences in BTM 

responses. The direction and magnitude of regulatory hormone responses were similar 

between men and women (Men: IGF-1: -24%; T3: -13%; Leptin: -45%, Insulin: -44% and 

Women: IGF-1: -21%; T3: -10%; Leptin: -43%, Insulin: -38%), with these finding being in 

line with previous low EA studies in men (Koehler et al., 2016) and women (Ihle & loucks, 

2004; Loucks & Thuma., 2003).  A limited number of studies have directly assessed sex-

related responses to energy deficiency achieved by diet and/or exercise. Some, but not all, 

previous studies have reported sex differences in regulatory hormones. Short-term (4 days) 

exercise training in an energy-balanced or energy-deficient state resulted in lower leptin 

concentrations in women and a trend towards lower insulin concentrations in women 

compared to men (Hagobian et al., 2009). In the same experiment, there were no sex 

differences for T3 concentrations. Leptin concentrations were reduced following 12 weeks of 

exercise in women, but not in men (Hickey et al., 1997). Similarly, Dubuc et al. (1998) 

demonstrated marked sex differences in leptin, insulin, glucose and cortisol responses to 7-

day energy restriction (Dubuc et al., 1998). In contrast, body weight changes in male and 

female judoists did not result in a differential leptin response between sexes, with the authors 

attributing the absence of differences to the high LBM of their female participants, which 

may have overridden some of the effects of leptin (Prouteau et al., 2006).   

When combined the data in women and men, we demonstrated reductions in IGF-1 (-22.4% 

BASE change), leptin (-44.4% BASE change), T3 (-11.8% BASE change) and insulin (-

22.4% BASE change). These changes are in agreement with previous studies that have 

shown alterations in regulatory hormones in a direction expected to maintain energy stores 
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and have correlated regulatory hormones and bone-related changes (Ihle & Loucks, 2004; 

De Souza et al., 2004; 2010; Zanker & Swaine, 2000). This analysis did not show any 

changes for sclerostin, GLP-2 or any marker of calcium metabolism in response to low EA; 

making it unlikely that the alterations in bone turnover shown for data in men and women 

collectively were mediated by changes in these markers.  

Although a comparison of reproductive hormones was not provided in the present study, 

previous research in physically active women has indicated that low EA alters reproductive 

hormones (e.g., suppressed LH pulsatility, reduced oestrogen levels) (Loucks & Thuma, 

2003) and contributes to the development of reproductive disorders (De Souza, 2003; 

Williams et al., 2015). These changes may, in turn, influence the bone health of physically 

active women. Women with menstrual disturbances associated with energy deficiency have 

altered BTMs (De Souza et al., 2008), lower BMD (Zanker & Swaine, 1998a; De Souza et 

al., 2008), distorted bone micro-architecture (Ackerman et al., 2011; 2012a) and are at 

higher risk for stress fracture injuries (Nattiv et al., 2013). Reproductive disturbances 

including reductions in testosterone (Hackney et al., 1998, Bennell et al., 1996b; Wheeler et 

al., 1991), elevated SHBG levels, which may reduce the bioavailable testosterone (Dolan et 

al., 2012), lowered sperm motility and altered sperm quality (De Souza et al., 1994) have 

been demonstrated in men partaking in weight sensitive sports, however, it remains 

uncertain, whether reproductive dysfunction in men experiencing energy deficiency is 

correlated with unfavourable changes in bone health (Tenforde et al., 2016; De Souza et al., 

2014b) similar to those seen in physically active women (De Souza et al., 2008). Future 

studies are needed to investigate the effects of low EA on markers of reproductive function, 

particularly in men, and their impact on bone metabolism. Studies to compare the 

contribution of markers of reproductive function to bone metabolism and health in response 

to low EA in men and women are also required.   

To conclude, in this analysis, the data from Study 1 (women-reported in Chapter 4) and 

Study 2 (men- reported in Chapter 5) were combined to provide comparative insight into the 

impact of short-term, low EA at 15 kcal·kgLBM-1·d-1 on bone metabolism between men and 

women. Our findings indicated no significant differences between sexes, with the magnitude 

of BTM responses to short-term low EA (achieved by exercise and dietary energy 

restriction) being similar in men and women. From a practical perspective, these observed 

similarities may imply that men and women might benefit equally from preventing low EA. 
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Future studies are needed to investigate whether the similarities in BTM response to low EA 

between men and women persist over time.  
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Chapter 7. Bone metabolic response to 

short-term low energy availability 

achieved by diet or exercise 

individually in physically active 

eumenorrheic women 
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7.1. Introduction  

Dietary energy restriction and/or exercise are approaches to weight loss utilised by 

individuals in their attempts to enhance body mass and composition (Loucks et al, 2011; 

Loucks, 2013). When such strategies are employed, they may affect bone metabolism 

(Chapter 4; Ihle & Loucks, 2004; Villareal et al., 2016).  In our previous studies (Studies 1 

and 2, reported in Chapters 4-6), the effects of low EA achieved by combined DEI 

restriction and EEE on bone metabolism were explored. Low EA can also result from 

reductions in DEI only or increased EEE independently; however, the effects of reduced EA 

attained by these modalities on bone metabolism and health have not been previously 

investigated. We showed that 5 days of reduced EA (through diet and exercise) resulted in a 

reduction in bone formation synchronously with an increase in bone resorption, in physically 

active eumeorrheic women (Chapter 4), but not in physically active men (Chapter 5). The 

importance of EA with direct, but also indirect (through reproductive disturbances) effects 

on bone health of physically active women has been highlighted by the Female Athlete Triad 

(Nattiv et al., 2007; De Souza et al., 2014a) and the RED-S models (Mountjoy et al., 2014). 

Continued research on the effects of low EA on BTM in this population is required to 

develop effective prevention, early identification and treatment strategies. 

Previous studies have compared the effects of energy restriction and weight loss achieved by 

different methods on bone health; with some of them showing that the bone loss resulting 

from caloric restriction can be ameliorated with the addition of exercise (Villareal et al., 

2006; Ryan et al., 1998; Pritchard et al., 1996), whilst some others demonstrating no benefits 

from exercise (Svedsen et al., 1993; Nakata et al., 2008). These studies have been conducted 

in middle-aged (Villareal et al., 2006; Nakata et al., 2008; Pritchard et al., 1996; Rector et 

al., 2009) or elderly (Armamento-Villareal et al., 2012; Svedsen et al., 1993; Ryan et al., 

1998) overweight and obese populations, but no previous study has been performed in 

normal-weight women during adulthood, which constitutes a critical period for prevention of 

premature bone loss (Rizzoli et al., 2010). Most trials have compared diet to diet plus 

exercise, but not diet to exercise alone, and have utilised exercise protocols suitable for 

overweight rather than normal-weight, young individuals, making it important to explore the 

effects of energy restriction attained by diet or exercise on bone metabolism in this 

population. 
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The modest weight loss rates achieved by exercise compared to diet in long-term studies (>3 

months; Soltani et al., 2016) imply poor compliance with exercise regimens, when this is 

performed out of laboratory conditions, or compensatory eating behaviour, which may 

lessen the degree of prescribed energy deficit. These methodological limitations underpin 

the importance of tight experimental control when comparing the effects of energy 

restriction of different origin (diet- or exercise- induced) on bone metabolism and health. 

The design and implementation of an energy deficit based on EA over the traditionally used 

energy balance is advantageous in prescribing dietary and exercise regimens (Loucks, 2013). 

Exploring the acute effects of energy restriction (rather than chronic) also allows stringent 

control of exercise training and DEI prescription.  

Alterations in regulatory and reproductive hormones due to energy deprivation may 

contribute to changes in bone metabolism (De Souza et al., 2008; Ihle & Loucks, 2004). 

Responses in some regulatory hormones have been reported to differ during exercise and 

dietary restriction. Decreases in PYY and increases in ghrelin levels have been previously 

reported following severe dietary energy deprivation, but no compensatory alterations occur 

after exercise-induced energy deficit (King et al., 2011; Alajmi et al., 2016). In contrast, 

some other regulatory hormones including leptin and insulin, appear to be similarly altered 

in energy deprivation independent of modality of implementation (Koelher et al., 2016). If 

these changes following diet- or exercise-induced energy deficit are related to changes in 

bone metabolism remains unexplored. Anorexia nervosa and exercise-induced amenorrhoea 

suggest that low EA, regardless of origin, may similarly result in severe oestrogen deficiency 

with negative consequences in bone health (Misra, 2012). Observational studies suggest that 

the degree of compromised bone health may be more severe in women with amenorrhea 

resulting from endocrine disturbances or prolonged undernutrition (e.g., anorexia nervosa) 

compared to exercise–induced amenorrhea (Cann et al., 1984). However, a systematic 

approach to simultaneously determine changes in BTM and reproductive hormones in 

response to diet- and exercise-induced low EA in women with normal bone health and 

reproductive function is lacking.  

The aim of this study was to determine and compare the effects of reduced EA at 15 kcal·kg 

LBM-1·d-1 induced by diet alone or exercise alone on BTM in physically active, 

eumenorrheic women. This study explored responses of regulatory and reproductive 

hormones and markers of calcium metabolism to diet- and exercise-induced low EA that 
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may be related to BTM responses. It was hypothesised that diet-and exercise-induced low 

EA would decrease bone formation and increase bone resorption.   
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7.2. Methods 

7.2.1. Participants  

Ten eumenorrheic women (Table 7.1) volunteered to participate in this experiment after 

providing informed written consent (Appendix 12-Paticipant’s Information Sheet, Appendix 

13-Informed Consent Form). Participants were required to be aged 18-40 years, non-

smokers, currently injury free and have a BMI between 18.5 and 30 kg·m-2. Participants 

were excluded from partaking in the study if they were using any medication or suffering 

from any condition known to interfere with bone metabolism or if they had sustained a bone 

fracture within the previous year. They were also excluded if they were breastfeeding, 

pregnant, using any type of hormonal contraception or self-reported short (<24 days), long 

(>35 days) or irregular menstrual cycles (please see section 3.3.2.). These criteria were 

confirmed verbally and in writing via a health screen (please see section 3.3.1.). Participants 

regularly performed ≥3 hours of moderate to vigorous physical activity per week and had 

moderate and high physical activity levels as determined by the IPAQ (please see section 

3.3.4.).  

7.2.2. Experimental design  

The study utilised a randomised, crossover, design, in which participants completed 3 

experimental conditions, an energy-balanced, controlled EA (CON), a diet-induced 

restricted EA (D-RES) and an exercise-induced restricted EA (E-RES) in a counterbalanced 

fashion. Participants attended an initial preliminary assessment (P) and a 3-day habitual 

assessment (H1H3) prior to completing the 3 experimental conditions. Each condition 

began with the identification of the beginning of their menstrual cycle (D1) followed by a 5-

day experimental period (D2D6). The controlled EA was set at 45 kcal·kg LBM-1·d-1 and 

achieved without exercise. Both restricted EA (E-RES and D-RES) were administered as 15 

kcal·kg LBM-1·d-1, with this being achieved by diet only in D-RES and by exercise only in 

E-RES. In D-RES, participants refrained from any exercise and consumed a diet providing 

them with 15 kcal·kg LBM-1·d-1. In E-RES, participants completed exercise sessions at an 

exercise intensity of 70% of their VO2 peak that resulted in an EEE of 30 kcal·kg LBM-1·d-1. 

Their DEI was controlled at 45 kcal·kg LBM-1·d-1 in order to achieve the same EA of 15 

kcal·kg LBM-1·d-1 as in D-RES (please see Figure 7.1.). There was an approximately 28-day 

gap between the completion of one experimental period and the beginning of the next 



154 

 

experimental period, meaning that all testing was completed during the same phase of the 

menstrual cycle (early follicular).  

 

Figure 7.1. Overview of the study design. Preliminary day (P) and habitual dietary and 

exercise assessment (H1-H3) were performed only once before the controlled (CON), diet-

induced restricted EA (D-RES) or exercise-induced restricted EA (E-RES). D1: Day 1 of 

bleeding and identification for experimental protocol initiation, D2-D6: Experimental Days, 

the thick green/red/blue lines denote change of condition; 1st thick line-transition from 

identification to the experimental protocol; 2nd thick line-initiation of CON/D-RES/E-RES; 

3rd thick line- end of experimental condition.  

7.2.3. Experimental procedures  

7.2.3.1. Preliminary assessments and 3-day habitual assessment  

A preliminary visit was performed to establish inclusion criteria, take baseline 

measurements and determine the fitness level of the volunteers. These procedures have been 

previously described in section 4.2.3.1. In this study, whole body DXA scans were 

performed and analysed by the same operator at Nottingham Trent University. Positioning of 

the participants during the DXA scan was performed according to manufacturer’s 

guidelines, as detailed in section 3.5. Similar to previous studies, participants performed an 

incremental exercise test on a treadmill (HP Cosmos, Germany) to determine their VO2 peak 

(please see section 3.3.6). for a full description. All participants were provided with 
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accelerometers and food weighing scales (please see 3.7.1. and 3.8.1.) in order to record 

lifestyle EE and habitual DEI for 3 days (H1-H3; Figure 7.1.). 

7.2.3.2. Experimental period  

Participants notified the researcher at the onset of their menstrual cycle (D1), which 

indicated the first day of the experimental period. On the next morning (D2), a blood sample 

was collected and used as the baseline (BASE) sample prior to each experimental condition. 

The following three days of the protocol (D3D5) were the experimental condition days. 

Over D3-D5, participants undertook CON, E-RES and D-RES in a counterbalanced order. 

On D6, participants had a follow-up blood sample (Figure 7.1.).   

Due to scheduling constraints, such as availability of participants or laboratories, it should be 

acknowledged that D2 may reflect the second or third day of participants’ menstrual cycle, 

with subsequent small deviations (±1 day) in the main experimental period (D3-D5). For 

consistency, please consider that we will refer to D2 as BASE, D3-D5 as the main 

experimental period and D6 as the follow-up (Figure 7.1.).  

7.2.3.2.1. Lifestyle EE 

Participants wore an accelerometer (GT3X/GT3XE, Actigraph) during all waking hours, 

except while bathing, to estimate lifestyle EE. Please also see section 4.2.3.2.1. 

7.2.3.2.2. Habitual DEI 

Participants weighed and recorded food intake during H1-H3 to provide information about 

their habitual DEI. Please also see section 4.2.3.2.2.  

7.2.3.2.3. Experimental diets 

In CON, D-RES and E-RES participants consumed diets providing 45, 15 and 45 

kcal·kgLBM-1·d-1. The experimental diets consisted of the same commercial food products 

and had standardised composition (50% carbohydrates, 20% protein and 30% fat) in all 

experimental conditions. Acceptability of food items to be provided throughout the 

experimental period was tested verbally and participants had to choose up to 3 out of 4 

available menus (Appendix 14). Each menu included 5 meals in all experimental conditions 

to limit the effects of food partition on bone turnover (Li & Muhlbauer, 1999). A registered 
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dietitian designed menus 1-4 for CON trial (45 kcal·kgLBM-1·d-1) for a reference individual 

with a LBM of 45 kg using MicrodietTM software. For the same reference individual, 

quantities of all food items in CON (45 kcal·kgLBM-1·d-1) were divided by 3 in D-RES (15 

kcal·kgLBM-1·d-1), but were unchanged in E-RES condition (45 kcal·kgLBM-1·d-1). For 

participants with a different LBM than the reference individual, food quantities in all menus 

and conditions were multiplied by a scaling factor to account for the differences in LBM 

compared to the reference individual. All meals and snacks were weighed to the nearest 1g 

(Electronic Kitchen Scale, Argos, UK) and packaged by the study investigators (Figure 7.2). 

Participants were encouraged to consume only the pre-packaged meals and snacks for the 3 

days of main experimental protocol in an effort to increase compliance to the experimental 

diets. Participants were allowed to follow their habitual tea and coffee drinking without any 

sugar or milk. Adherence to these experimental conditions was verbally confirmed with the 

participants at various points throughout the protocol. A multivitamin, multi-mineral 

supplement (A - Z Tablets, Boots, Nottingham, UK) was provided during D-RES only in 

order to provide adequate micronutrient intake and isolate the effects of 

energy/macronutrient restriction.   

7.2.3.2.4. EEE 

In E-RES only, participants completed exercise sessions that resulted in EEE of 30 

kcal·kgLBM-1·d-1. Participants ran on a flat treadmill while being continuously supervised. 

Exercise intensity was controlled by setting treadmill speed to achieve 70% of VO2 peak for 

each participant. On the first day of the exercise protocol (D3, E-RES) participants wore a 

facemask throughout the exercise in order to measure EEE. The procedures of testing and 

the calculation of EEE have been described in detail (please see section 3.8.2.). In order to 

increase compliance, the total duration of the exercise per day was split up in 2 sessions of 

equal duration. EEE resulting of exercise of the same duration and intensity is consistently 

similar when repeated under the same conditions for the same individual, as shown in 

section 3.8.3.  As such, gas analysis was not performed during the remainder of the exercise 

sessions (D3 afternoon-D5). 

7.2.4. Storage and analyses of blood samples 

Blood samples were obtained at the same time of day for each participant between 07:30-

08:15 h (± 10 min for the same participant) after an overnight fast (from 20:00 h the previous 

evening) on D2 (BASE) and D6. Blood sample collection, processing and analysis have been 
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previously described in section 3.1.3. β-CTX, PINP, PTH and IGF-1 were analysed in 

plasma. Serum was analysed for leptin, insulin, T3, 17β-oestradiol, ACa, Mg and PO4. 

7.2.5. Biochemical analysis  

Detailed description on biochemical analysis has already been provided in section 3.13. 

7.2.6. Measures of cognitive function and muscle function 

Participants also undertook measures of cognitive function and muscle function. The 

cognitive function test battery was performed during the preliminary visit and on D2 and D6 

of the experimental protocol for the three experimental conditions. The cognitive test battery 

was conducted in the same order each session and included the Rey Auditory Verbal 

Learning test, Mental Rotation Test, Visual Search, Stroop Test and Rapid Visual 

Information Processing, followed by a delayed recall secondary component of the Rey 

Auditory Verbal Learning test. Muscle function tests were performed during the preliminary 

visit and on D2 and D6 of the experimental protocol for the three experimental conditions. 

Maximal voluntary isometric force was assessed for quadriceps and first dorsal interosseus 

muscle using custom built dynamometers immediately after the cognitive function tests. The 

results of these measurements are not presented here and were for another PhD thesis.  

7.2.7. Statistical analysis  

Sample size calculations indicated that testing 7 participants would allow detection of a 

significant change in P1NP (pre: 76.1 ± 5.8; post: 64.7± 6.0 mg·L-1, P<0.05) following low 

EA (Zanker and Swaine, 2000) at P=0.05 and power = 0.80. All data were checked for 

normality according to the Shapiro-Wilk test and non-parametric tests or logarithmic 

transformations were employed as necessary to ensure the validity of statistical analysis. 

Baseline biochemistry and markers of energy status prior to each experimental condition 

were compared with one-way repeated measures ANOVA. A two-way, repeated measures 

ANOVA was performed to assess differences between the experimental conditions (CON, 

D-RES and E-RES) over time (BASE, D6) for BTMs, regulatory hormones, markers of 

calcium metabolism and reproductive hormones. Area under the curve (AUC) with respect 

to baseline (BASE) was calculated for all biochemical markers from the data expressed 

as %BASE (Zweig and Campbell, 1993). One-way repeated measures ANOVA was used to 

assess differences in all outcomes expressed as AUC between the 3 experimental conditions. 

Significant main or interaction effects were followed by Tukey’s post-hoc analysis. Data are 
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presented as mean (1SD) and statistical significance was set at P ≤ 0.05. Data were analysed 

using Statistica 13.0 (Statsoft, USA).  In addition to summary statistics, the individual 

responses of the BTM to D-RES and E-RES were also examined. In order to be considered a 

responder, β-CTX concentrations at D6 in D-RES and E-RES were >BASE (100%), > β-

CTX concentrations at D6 in CON together with a difference >3% to account for CV of β-

CTX assay. For P1NP, responders were identified if P1NP concentrations at D6 in RES 

were <BASE (100%), <P1NP levels at D6 in CON together with a difference >3% to 

account for CV for P1NP assay.  
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7.3. Results  

7.3.1. Participant characteristics  

Participants were young, healthy, normal-weight and physically active (Table 7.1.).  

Table 7.1. Participant characteristics (n=10).  

Demographics  

Age (y) 24 (3) 

Height (m) 1.66 (0.05) 

Body mass (kg) 61.06 (6.97) 

BMI (kg ·m-2) 22.3 (2.4) 

Body composition  

Body fat (%) 29.3 (5.1) 

LBM (kg) 41.3 (4.1) 

FFM (kg) 44.3 (4.3) 

BMD (g·cm-2) 1.19 (0.09) 

Training characteristics  

VO2 peak (ml·kg-1·min-1) 48.1 (3.3) 

VO2 peak (ml·kg LBM-1·min-1) 70.9 (2.8) 

Physical activity (MET-min·week-1) 4634 (2382) 

Dietary and EE characteristics  

Habitual DEI (kcal·d-1)1 1999 (371) 

Lifestyle EE (kcal·d-1)1 422 (123) 

24-hour EE(kcal·d-1)1 2052 (197) 

Values are expressed as means (1SD). 
1Analysis performed in 9 partictipants with complete data. 

BMI: Body mass index; LBM: Lean body mass; FFM: Fat free mass; BMD: Bone mineral density: VO2max: 

Maximum oxygen uptake; DEI: dietary Energy Intake; EE: Energy expenditure; RMR: Resting metabolic rate; 

LBM: Lean body mass; MET: Metabolic equivalents.  

 

7.3.2. Baseline Biochemistry  

There were no significant differences in any biochemical marker prior to CON, D-RES and 

E-RES (Table 7.2.).   
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Table 7.2. Markers of energy status and BASE concentrations of BTMs, markers of calcium 

metabolism, regulatory and reproductive hormones prior to CON, D-RES and E-RES (n=10) 

 CON D-RES E-RES  

Markers of energy status 

Body mass (kg)  60.9  (7.0) 61.5 (7.0) 61.1 (6.3) 

BTMs  

β-CTX (µg·L-1) 

P1NP  (µg·L-1) 

0.50 (0.19) 0.48 (0.18) 0.47 (0.24) 

56.7  (16.9) 54.8 (12.7) 55.3 (14.4) 

BT ratio  1.19 (0.24) 1.21 (0.26) 1.30 (0.39) 

Markers of calcium metabolism 

PTH (pg·mL-1) 4.4 (1.1) 4.0 (0.9) 4.6 (1.4) 

ACa (mmol·L-1) 2.30 (0.05) 2.27 (0.03) 2.29 (0.04) 

0.81 (0.03) Mg (mmol·L-1) 0.83 (0.02) 0.81 (0.03) 

PO4 (mmol·L-1) 1.29 (0.12) 1.26 (0.14) 1.33 (0.15) 

Regulatory hormones 

IGF-1 (mmol·L-1) 205.0 (39.4) 202.5 (46.8) 220.6 (56.7) 

T3 (mmol·L-1) 1.49 (0.34) 1.53 (0.28) 1.53 (0.31) 

Leptin (ng·mL-1) 6.7 (4.1) 7.1 (4.1) 6.0 (3.3) 

Insulin (pmol·L-1) 31.6 (7.7) 33.8 (9.0) 45.6 (34.8) 

Reproductive hormones 

17-β oestradiol (pmol·L-1) 108.9  (33.6) 118.9 (29.7) 148.3 (92.9) 

Values are expressed as means (1SD). 

β-CTX: C-terminal cross-linked telopeptides of type I collagen; P1NP: Amino-terminal pro-peptides of type 1 

procollagen; BT ratio: Bone turnover ratio; PTH: Parathyroid hormone; Mg: Magnesium; ACa:  Albumin 

adjusted Calcium; PO4: Phosphate; T3: Triiodothyronine; IGF-1: Insulin-like growth factor 1; GLP-2: Glucagon-

like peptide 2; BASE: Baseline; BTM: Bone turnover marker; CON: Controlled; D-RES: Diet-induced restricted 

trial; E-RES: Exercise-induced restricted trial.  

7.3.3. Baseline energy status and reproductive function 

There were no differences in body mass prior to CON, D-RES and E-RES (Table 7.3.).  

Women began each condition in the early follicular phase, as confirmed by 17β-oestradiol at 

BASE in all experimental conditions (Stricker et al., 2006) (Table 7.2). 17β-oestradiol 

concentrations for one of the participants in the E-RES trial indicated that she was 

approaching or experiencing ovulation (please also see section 7.2.2); therefore, this 

participant was removed prior to final statistical analysis (n=10).  



161 

 

7.3.4. Body mass 

There was no significant reduction in body mass in CON (BASE: 60.9±7.0kg, D6:60.3± 6.7 

kg, P=0.053). Body mass significantly decreased from BASE in D-RES (BASE: 61.4±6.8, 

D6: 59.6±6.5, P<0.001) and E-RES (D6: 61.1±6.3- 60.1±6.0, P<0.001). Body mass at D6 in 

D-RES was also lower than body mass in CON (P<0.001) at the same time point.  

7.3.5. BTMs 

7.3.5.1. β-CTX 

There was a significant main effect of time for β-CTX (P=0.044), with higher mean 

concentrations at D6 compared to BASE. No significant main effect of condition (P=0.13) or 

any condition x time interaction effect (P=0.17) was shown for β-CTX concetrations (Figure 

7.2.; Table 7.3.). β-CTX AUC was not significantly different between CON, D-RES and E-

RES (P=0.16) (Figure 7.3.; Table 7.3.).  

7.3.5.2. P1NP 

There was a significant main effect of time for P1NP concentrations (P<0.001), with reduced 

mean concentrations at D6 compared to BASE. There was no significant condition effect 

(P=0.25) or any condition x time interaction effect (P=0.052) (Table 7.5.; Figure 7.2.). P1NP 

AUC was not significantly different between CON, D-RES and E-RES (condition effect, 

P=0.054) (Figure 7.3; Table 7.3.). 

7.3.5.3. BT ratio  

A significant effect of time (BASE< D6) was shown for BT ratio (P=0.003), but no main 

effect of condition (P=0.21) or any condition x time interaction effect (P=0.10). BT Ratio 

AUC was significantly lower after D-RES compared to CON only (condition effect; 

P=0.041) (Figure 7.4; Table 7.3.).  
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Figure 7.3. Percentage change from BASE concentrations for β-CTX, P1NP and BT ratio on D6 in CON (black squares) and D-RES (white squares) and E-

RES (grey squares) (n=10). Values are presented as means (1SD). β-CTX: C-terminal cross-linked telopeptide of type I collagen; P1NP: Amino-terminal pro-

peptides of type 1 procollagen; BT ratio: Bone turnover ratio; CON: Controlled trial; D-RES: Diet-induced E-Exercise-Induced Restricted trial; D: Day 

BASE: Baseline; CON: Controlled; D-RES: Diet-Induced Restricted Trial; E-RES: Exercise-Induced Restricted Trial.   
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Figure 7.4. AUC analysis of β-CTX (A), P1NP (B) and BT ratio (C) after CON (black bars) 

and D-RES (white bars) and E-RES (grey bars) (n=10). Values are presented as means 

(1SD). *P<0.05, denotes a significant difference from CON. β-CTX: C-terminal cross-linked 

telopeptide of type I collagen; P1N: Amino-terminal pro-peptide of type 1 procollagen; BT 

ratio: Bone turnover ratio; BASE: Baseline; AUC: Area under the curve; CON: Controlled 

trial; D-RES: Diet-induced restricted trial; E-RES: Exercise-induced trial.  
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Table 7.3. BTMs expressed as concentrations, percentage change from BASE and AUC in CON, D-RES and E-RES trials (n=10). Values of D2 were used as 

BASE prior to each experimental condition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Values are expressed as means (1SD). 
1AUC calculated for each experimental condition from BASE to Day 6.   
*denotes a significant difference from CON (P<0.05). 

β-CTX: C-terminal cross-linked telopeptide of type I collagen; P1NP: Amino-terminal pro-peptide of type 1 procollagen; BT ratio: Bone turnover ratio; BTM: Bone turnover marker; D: Day; 

BASE: Baseline; AUC: Area under the curve; CON, Controlled trial; D-RES, Diet-Induced Restricted trial; E-RES: Exercise-Induced Restricted trial. 

 CON    D-RES   E-RES  

 BASE D6  BASE D6  BASE D6 

β-CTX          

µg·L-1 0.50 (0.19) 0.51 (0.18)  0.48 (0.18) 0.55 (0.17)  0.47 (0.24) 0.49 (0.18) 

%BASE change  5.0 (8.8)   17.0 (15.5)   11.7 (25.8) 

AUC (%BASE x d)1  10.0 (17.7)   34.0 (31.0)   23.5 (51.8) 

P1NP          

µg·L-1 56.7 (16.9) 52.5 (11.9)  54.8 (12.7) 45.2 (9.3)  55.3 (14.4) 50.9 (15.8) 

%BASE change  -5.6 (8.9)   -16.8 (8.0)   -8.0 (13.0) 

AUC (%BASE x d)1  -11.1 (17.8)   -33.5 (16.0)   -16.0 (26.5) 

BT ratio          

- 1.19 (0.24) 1.06 (0.20)  1.21 (0.26) 0.85 (0.14)  1.30 (0.39) 1.06 (0.23) 

%BASE change  -9.5 (12.0)   -27.4 (11.3)   -13.1 (24.9) 

AUC (%BASE x d)1  -19.0 (23.2)   -54.9 (28.5)*   -26.2 (49.7) 
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7.3.6. Markers of calcium metabolism  

7.3.6.1. PTH 

There was a significant main effect of time for PTH (P=0.002), with lower levels at D6 

compared to BASE. There was no significant main effect of condition (P=0.21) or any 

condition x time interaction effect (P=0.90). PTH AUC in CON was not significantly 

different from AUC in either D-RES or E-RES (condition effect, P=0.95) (Table 7.4.).  

7.3.6.2. ACa 

There was no significant main effect of time (P=0.41), condition (P=0.07) or any condition x 

time interaction effect (P=0.10) for ACa levels. ACa AUC was not significantly different 

between experimental conditions (P=0.10) (Table 7.4.).  

7.3.6.3. Mg 

There was no significant main effect of time (P=0.51), condition (P=0.54) or any condition x 

time interaction effect (P=0.89) for Mg concentrations. Mg AUC was not significantly 

different between CON, D-RES and E-RES (P=0.89) (Table 7.4.).  

7.3.6.4. PO4 

There was no significant main effect of time (P=0.22) or condition (P=0.76). A condition x 

time interaction effect (P=0.01) was shown for PO4 concentrations, with PO4 concentrations 

decreasing by -9.4% from BASE in E-RES trial only. PO4 AUC was significantly lower in 

E-RES compared to D-RES only (P=0.01) (Table 7.4.).  
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Table 7.4. Markers of calcium metabolism expressed as concentrations, percentage change from BASE and AUC in CON, D-RES and E-RES trials (n=10). 

Values of D2 were used as BASE prior to each experimental condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Values are expressed as means (1SD). 
1AUC calculated for each experimental condition from BASE to Day 6.   
*denotes a significant difference from BASE in the same condition (P<0.05). 
**denotes a significant difference from D-RES (P<0.05). 

PTH: Parathyroid hormone; Mg: Magnesium; ACa: Albumin adjusted Calcium; PO4: Phosphate; D: Day; BASE: Baseline; AUC: Area under the curve; CON, Controlled trial; D-RES, Diet-

Induced Restricted trial; E-RES: Exercise-Induced Restricted trial.  

 CON    D-RES  E-RES  

 BASE D6  BASE D6  BASE D6  

PTH          

pg·mL-1 4.37 (1.13) 3.78 (0.49)  4.03 (0.92) 3.69 (0.69)  4.60 (1.44) 4.09 (0.78) 

%BASE change  -8.0 (26.4)   -4.3 (26.5)   -4.3 (31.4) 

AUC (%BASE x d)1  -15.6 (52.8)   -8.5 (52.9)   -8.6 (62.8) 

ACa           

mmol·L-1 2.30 (0.05) 2.31 (0.04)  2.27 (0.03) 2.27 (0.04)  2.29 (0.04) 2.26 (0.03) 

%BASE change  0.8 (2.1)   0.0 (2.1)   -1.4 (1.4) 

AUC (%BASE x d)1  1.5 (4.2)   -0.7 (4.2)   -2.7 (2.8) 

Mg           

mmol·L-1 0.83 (0.02) 0.82 (0.03)  0.81 (0.03) 0.81 (0.06)  0.81 (0.03) 0.82 (0.04) 

%BASE change  -0.7 (2.3)   -0.7 (7.0)   0.4 (5.4) 

AUC (%BASE x d)1  -1.5 (4.6)   -1.4 (14.0)   0.9 (10.7) 

PO4           

mmol·L-1 1.29 (0.12) 1.28 (0.12)  1.26 (0.14) 1.31 (0.08)  1.33 (0.15) 1.20 (0.10)* 

%BASE change  -0.5 (8.6)   4.6 (11.0)   -9.4 (10.3) 

AUC (%BASE x d)1  -0.9 (17.2)   9.3 (21.9)   -18.8 (20.5)** 
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7.3.7. Regulatory hormones 

7.3.7.1. IGF-1 

A significant main effect of time was shown for IGF-1 (P=0.01); concentrations at D6 

decreased from BASE. There was a significant main effect of condition (E-RES<CON; 

P=0.03) and a significant condition x time interaction effect (P<0.001). IGF-1 concentrations 

at D6 in D-RES and E-RES decreased by 13.2% (P=0.01) and 23.4% (P<0.001) from BASE 

and were both significantly lower than IGF-1 concentrations at D6 in CON (P<0.001). IGF-1 

AUC was lower in D-RES (P<0.001) and E-RES (P<0.001) compared to CON (Table 7.8.), 

but there were no significant differences between D-RES and E-RES (P=0.12) (Table 7.5.).   

7.3.7.2. T3 

There was no significant main effect of condition (P=0.11), but a significant main effect of 

time (BASE<D6; P=0.01) and a condition x time interaction (P=0.03) were shown for T3 

concentrations. T3 concentrations at D6 in D-RES were significantly decreased by 14.8% 

from BASE (P=0.002) and were lower than the concentrations in CON at the same time-

point (P=0.02). T3 AUC in D-RES was lower compared to CON (P=0.02), but not 

significantly different compared to E-RES (P=0.25) (Table 7.5.).  

7.3.7.3. Insulin 

There was a significant main effect of time (BASE<D6; P=0.03) and a significant time x 

condition interaction effect (P=0.04), with insulin concentrations at D6 in E-RES decreasing 

by 36.5% from BASE. No significant main effect of condition (P=0.31) was shown for 

insulin concentrations. Insulin AUC were not significantly different between CON, D-RES 

and E-RES (P=0.13) (Table 7.5.).  

7.3.7.4. Leptin  

There was a significant main effect of time (D6<BASE; P<0.001) and condition (P=0.004), 

with leptin concentrations in D-RES (P=0.006) and E-RES (P=0.02) being lower than CON. 

A time x condition interaction effect was also shown; leptin concentration at D6 in CON, D-

RES and E-RES were significantly decreased by 30.0% (P=0.04), 59.0% (P<0.001) and 

60.5% (P<0.001) from BASE prior to each experimental condition. Concentrations at D6 in 

D-RES (P<0.001) and E-RES (P<0.001) were also different from concentrations at D6 in 

CON. Leptin AUCs in D-RES (P=0.002) and E-RES (P=0.001) were significantly lower 
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than CON, but there were no significant differences between D-RES and E-RES (P=0.97) 

(Table 7.5.).  

7.3.8. Reproductive hormones  

There was a significant main effect of time for 17β-oestradiol levels (P=0.002) with higher 

levels at D6 compared to BASE, which is in line with the progression of the menstrual cycle. 

No main effect of condition (P=0.47) or any condition x time interaction (P=0.30) were 

shown for 17β-oestradiol levels. AUC for 17β-oestradiol was not significantly different 

between conditions (P=0.24) (Table 7.5.). 

7.3.9. Individual analysis  

Individual responses for β-CTX and P1NP, as well as altered bone turnover due to increased 

β-CTX, decreased P1NP or both, in D-RES and E-RES trials are presented in Table 7.6.  

Table 7.6. Number of responders (out of total number of participants) for β-CTX, P1NP and 

bone turnover in D-RES and E-RES. This analysis was based on data expressed as % BASE 

for each participant.  

β-CTX P1NP Bone turnover1 Bone turnover2 

D-RES E-RES D-RES E-RES D-RES E-RES D-RES E-RES 

5/10 4/10 5/10 3/10 8/10 5/10 2/10 2/10 

1altered bone turnover due to increased β-CTX, decreased P1NP or both procedures. 
2altered bone turnover due to a simultaneous increase in β-CTX and decrease in P1NP. 

β-CTX: C-terminal cross-linked telopeptide of type I collagen; P1NP: Amino-terminal pro-peptides of type 1 

procollagen; BT ratio; BASE: Baseline; AUC: Area under the curve; CON, Controlled trial; D-RES, Diet-

induced restricted trial; E-RES: Exercise-induced restricted trial. 
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Table 7.5. Regulatory and reproductive hormones expressed as concentrations, percentage change from BASE and AUC in CON, D-RES and E-RES trials 

(n=10). Values of D2 were used as BASE prior to each experimental condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Values are expressed as means (1SD). 
1AUC calculated for each experimental condition from BASE to Day 6.   
*denotes a significant difference between BASE and D6 (P<0.05).  
**denotes a significant difference from CON at the same time point (P<0.05).   

T3: Triiodothyronine; IGF-1: Insulin-like growth factor 1; D: Day; BASE: Baseline; AUC: Area under the curve; CON: Controlled trial; D-RES, Diet-induced restricted trial; E-RES: Exercise-

induced restricted trial.

 CON    D-RES  E-RES 

 BASE D6  BASE D6  BASE D6 

IGF-1          

mmol·L-1 205.0 (39.4) 225.4 (50.1)  202.5 (46.8) 173.3 (29.9)*, **  220.6 (56.7) 169.2 (49.6)*, ** 

%BASE change  10.6 (18.9)   -13.2 (9.1)   -23.4 (9.5) 

AUC (%BASE x d)1  21.3 (37.9)   -26.4 (18.2)**   -46.7 (19.1)** 

T3          

mmol·L-1 1.49 (0.34) 1.47 (0.24)  1.53 (0.28) 1.29 (0.17)*, **  1.53 (0.31) 1.40 (0.21) 

%BASE change  0.3 (11.0)   -14.8 (11.2)   -6.9 (11.0) 

AUC (%BASE x d)1  0.5 (22.6)   -29.5 (22.4)**   -13.7 (22.1) 

Leptin          

ng·mL-1 7.6 (3.7) 5.1 (3.1)*  6.7 (2.2) 2.7 (1.9)*, **  8.0 (4.9) 3.0 (2.4)*, ** 

%BASE change  -30.0 (22.7)   -59.0 (19.6)   -60.6 (16.7) 

AUC (%BASE x d)1  -60.0 (45.4)   -118.0 (39.1)**   -121.3 (33.4)** 

Insulin          

pmol·L-1 31.6 (7.7) 36.7 (20.9)  33.8 (9.0) 28.6 (15.0)  45.6 (34.8) 20.4 (11.3)*, ** 

%BASE change  13.0 (44.0)   -6.4 (62.5)   -36.5 (49.3) 

AUC (%BASE x d)1  26.0 (87.9)   -12.8 (125.0)   -73.0 (98.5)** 

17-β oestradiol         

pmol.L-1 108.9 (33.6) 157.3 (53.1)  118.9 (29.7) 157.9 (62.9)  148.3 (92.9) 167.0 (72.1) 

%BASE change  48.3 (35.2)   32.2 (39.2)   24.0 (39.9) 

AUC (%BASE x d)1  96.6 (70.4)   64.5 (78.4)   48.1 (79.8) 
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7.4. Discussion  

This study yielded 3 main findings 1) neither diet-induced nor exercise-induced low EAs 

resulted in changes in markers of bone formation or bone resorption, but a significantly 

reduced BT ratio was shown in the diet-induced low EA only, 2) there were no differences 

in BTM responses between diet- and exercise-induced low EAs and 3) both reduced EAs 

were accompanied by reductions in IGF-1 and leptin; T3 was reduced following diet-induced 

low EA only and insulin decreased in exercise-induced low EA only. These findings suggest 

that low EA attained by diet or exercise does not affect bone formation or resorption within 

the 3-day timeframe of the present study, despite changes in regulatory hormones.  

Bone formation (-17% from BASE in P1NP) and resorption (+17% from BASE in β-CTX) 

responses to a 3-day diet-induced low EA did not reach statistical significance. BT ratio was 

significantly lower (-27% from BASE) compared to the controlled condition. In a previous 

experiment, bone formation was significantly reduced after 4 days of fasting, as indicated by 

decreases in P1CP and OC by 45% and 58% (Grinspoon et al., 1995). In the same 

experiment, bone resorption assessed by urinary PYD and DPD also decreased to a similar 

extent. The authors suggested simultaneous alterations in bone formation and resorption 

(Grinspoon et al., 1995). Direct comparisons of the magnitude of the effects between the two 

studies cannot be performed due to the differences in BTMs used to measure bone metabolic 

activity. P1NP was measured, which is the reference standard for bone formation (Vasikaran 

et al., 2011) and may better reflect bone formation compared to P1CP (possibly due to 

differences in the regulation of their catabolism) and OC (reflective of overall alterations in 

bone turnover rather than bone formation alone) (Lombardi et al., 2012a). Similarly, β-CTX 

has been proposed as the reference standard for bone resorption (Vasikaran et al., 2011) and 

is superior to urine PYD and DPD measurements, which are limited by sample collection 

(i.e., second void or 24h sampling) and creatinine corrections (Vasikaran et al., 2011). In 

addition to these analytical differences, our dietary prescription represented a 67% energy 

deficit imposed over a 3-day period, which is less severe than complete food deprivation 

over 4 days.  

In Study 1 (reported in Chapter 4), low EA at 15 kcal·kgLBM-1·d-1, achieved by a 

combination of dietary energy restriction and exercise, significantly increased bone 

resorption (β-CTX AUC) and reduced bone formation (P1NP AUC) and BT ratio (AUC) 

following a 5-day experimental protocol in physically active eumenorrheic women. In the 

follow-up blood sample after 3 days of low EA, in Study 1, there was a 19% increase in β-
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CTX and a 14% and 26% reduction in P1NP and BT ratio from BASE. The direction and 

magnitude of these changes were similar with the results shown for the diet-induced reduced 

EA of the present study (β-CTX: +17%, P1NP: -17%, BT ratio: -27%), suggesting that we 

cannot exclude significant changes in BTM response to diet-induced low EA, if a longer 

protocol was used.    

Exercise-induced low EA at 15 kcal·kg LBM-1·d-1 did not alter bone formation (-8% from 

BASE in P1NP), bone resorption (+12% from BASE in β-CTX) or BT ratio (-13% from 

BASE). From a practical point of view, our exercise intervention was representative of 2-2.5 

h of running at moderate intensity (70% VO2 peak), which is a common training programme 

followed by some athletic and military populations (Tharion et al., 2005; Pontzer, 2015). 

Our study goes beyond the sedentary population used in previous short-term experimental 

studies on EA and BTM (Ihle & Loucks, 2004) by including physically active women, able 

to perform strenuous exercise. However, our participants were not accustomed to such a 

prolonged duration of daily exercise over consecutive days. The responses shown might 

reflect some osteogenic effects due to unusual, high impact mechanical loading (Robling et 

al., 2006; Bonnet & Ferrari, 2010), which may have masked some of the effects of low EA, 

especially at weight bearing sites. Notably, BTMs are systematic in the circulation and 

provide information about overall bone turnover. As such, we were unable to detect potential 

changes in specific skeletal sites (i.e., non-weight bearing sites).  

When we compared BTMs in response to diet-induced and exercise-induced low EAs, there 

were no significant differences between conditions within the 3-day experimental period. 

Individual analysis of BTM responses to diet-induced and exercise-induced low EAs showed 

a more consistent BTM response to diet-induced low EA compared to exercise-induced low 

EA; with 8 out of 10 in the diet-induced low EA trial and 5 out of 10 participants in the 

exercise-induced low EA trial having altered bone turnover due to increase β-CTX, 

decreased P1NP or both. It is uncertain if the similarities in BTM responses shown for diet-

induced and exercise-induced low EAs persist over time or whether we were unable to 

capture any differences due to the short duration of our experimental protocol. Taken 

together, these results suggest that a subset of women adversely responded to low EA 

irrespective of origin (diet or exercise), suggesting that individual factors might influence the 

susceptibility to low EA from a bone health point of view in women (Female Athlete Triad, 

Nattiv et al., 2007; De Souza et al., 2014a and RED-S models, Mountjoy et al., 2014; 2015).  

Evidence on the effects of exercise and energy restriction on bone metabolism and health are 

unclear. Some studies in overweight and obese individuals have reported bone loss 
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regardless of the weight loss method used (diet compared to either exercise or diet and 

exercise) (Svedsen et al., 1993; Nakata et al., 2008). In contrast, some others have shown a 

protective effect of exercise on BMD compared to diet-induced weight loss (Villareal et al., 

2006; Ryan et al., 1998; Pritchard et al., 1996). A recent meta-analysis concluded that 

caloric restriction results in bone loss in weight-bearing skeletal sites (hip, lumbar spine), 

whereas exercise-induced weight loss does not (Soltani et al., 2016). There are a number of 

challenges in studies of overweight and obese individuals, including difficulty in performing 

exercise of sufficient intensity to impact bone metabolism, poor compliance with exercise 

protocols, initial increased body mass and different weight loss rates in diet- and exercise- 

induced energy restriction. These factors may not apply in lean and more physically active 

populations, limiting the usefulness and transferability of existing findings in overweight 

and obese populations to physically active populations.  

In non-overweight individuals, the osteoprotective effects of exercise in energy-restricted 

conditions may be more pronounced. Observational studies have shown that bone loss 

associated with exercise–induced amenorrhea is less than that experienced by women with 

amenorrhea due to endocrine disturbances or anorexia nervosa (Cann et al., 1984). These 

findings support the notion that mechanical loading has some beneficial effects on the 

skeleton, which counteract some of the unfavourable effects of amenorrhea (Borer, 2005). 

Further evidence suggests that dancers with amenorrheea have greater BMD at weight 

bearing sites (e.g., proximal femur, lumbar spine) compared to girls with anorexia nervosa 

with similarly low body mass (Young et al., 1994). Conversely, similar bone loss occurs in 

amenorrheic athletes and individuals with anorexia nervosa at non-weight bearing skeletal 

sites (Young et al., 1994). Athletes participating in weight sensitive, non-weight bearing 

sports such cycling are at a greater risk for developing osteopenia or osteoporosis than those 

partaking in weight bearing activities (Rector et al., 2009; Dolan et al., 2011; 2012). These 

findings suggest that mechanical loading through exercise may have some bone-sparing 

effects under conditions of long-term energy deficiency, which we did not show in this 

short-term experiment.  

Changes in regulatory hormones, indicative of energy conservation; namely reductions in 

IGF-1, leptin, T3 and insulin, were shown following the low EA conditions; with these 

findings being in agreement with those of short-term energy deprivation experiments 

(Chapter 4; Ihle & Loucks, 2004; Friedl et al., 2000; Zanker & Swaine, 2000). Decreases in 

IGF-1 and leptin were shown independent of origin of energy restriction, whereas 

decrements in T3 took place in diet-induced low EA only, and decreases in insulin in 

exercise-induced low EA only. When comparing diet- and exercise-induced low EAs, there 
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were no differences in regulatory hormones, which is in line with previous findings in a 

study that used the same level of low EA (15 kcal·kg LBM-1·d-1) (Koehler et al., 2016). 

These alterations in regulatory hormones occurred despite the absence of significant 

alterations in either bone formation or resorption, therefore, our findings do not support that 

these hormones mediate BTM responses, at least within the timeframe of our study.  

No effects of either diet- or exercise induced low EA on 17β-oestradiol were shown, which 

supports the absence of significant change in bone formation and resorption in this 

investigation. These results are also in line with our 17β-oestradiol findings in Study 1 

(Chapter 4) conducted in physically active women. In contrast, Loucks and colleagues 

reported a 15% reduction in pooled 24-h mean oestrogen concentrations, which occurred in 

parallel with an increase in bone resorption (urinary NTX) following 5 days of low EA 

attained through diet and exercise at 10 kcal·kgLBM-1·d-1, but not 20 kcal·kgLBM-1·d-1 (Ihle 

& Loucks, 2004). The discrepancies between the studies may in part be due to our less 

severely reduced EA (15 vs. 10 kcal·kgLBM-1·d-1) or blood sampling schedule (single 

sample vs. 24-h frequent blood collection) (Ihle & Loucks, 2004). Other reproductive 

hormones, not determined in the current study, may also be negatively affected in response 

to EA. In the same series of experiments, LH pulsatility was suppressed at 10 and 20 

kcal·kgLBM-1·d-1, with these findings suggesting that changes in gonadotrophins secreted by 

the anterior pituitary may precede changes in ovarian production of oestrogen in states of 

energy deficiency (Loucks & Thuma, 2003). As such, future studies should measure more 

reproductive hormones in relation to bone-related outcomes.  

To conclude, 3 days of dietary-induced low EA implemented for 3 days resulted in a 

reduced BT ratio despite no significant effects of low EA on P1NP and β-CTX. The same 

level of low EA induced by exercise did not impact BTM reponses. Between diet- and 

exercise-induced low EAs there were no significant differences in BTM responses. 

However, our individual analysis revealed that more individuals experienced an increase in 

β-CTX, a decrease in P1NP or both in diet-induced low EA compared to exercise-induced 

low EA; suggesting a more consistent BTM response in diet-induced low EA compared to 

exercise-induced low EA. The present study suggests that imposing an energy deficit 

through diet or exercise does not affect bone formation or resorption within the 3-day 

timeframe of the present study, but this requires further investigation. There were no 

significant effects on BTM following reduced EAs despite a reduction in regulatory 

hormones. In future studies of longer duration, it would be interesting to investigate if 

differences in BTM responses to diet versus exercise induced reduced EA become evident.   
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Chapter 8. Bone metabolic response to 

short-term low energy availability 

achieved by diet or exercise 

individually in combined oral 

contraceptive users  
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8.1. Introduction  

In the previous chapters (Chapter 4 and 7) the focus was placed upon physically active 

eumenorrheic women and their bone metabolism in response to low EA at 15 kcal·kgLBM-

1·d-1. There is an increasing number of women using hormonal contraception for 

contraceptive and non-contraceptive purposes, with OCP and specifically combined OCP 

being the most common form prescribed by health care professionals (Lader et al., 2009). 

Given this trend in the general population, it is not surprising that the prevalence rates of 

OCP users among physically active women at least equals those of non-users (Bennell et al., 

1999a; Burrows & Peters, 2007). The use of this type of contraception exceeds 50% in 

younger women (<30 years) (Lader, 2009) during an important time for bone mass 

acquisition and consolidation (Scholes et al., 2010; Rizzoli et al., 2010). Combined OCP 

users have downregulated endogenous oestradiol levels due to the administration of 

exogenous oestrogens (Burrows & Peters, 2007). Thus, they can be used as an age-matched 

group to eumenorrheic women in order to compare consistently low levels of endogenous 

oestradiol to the cyclical effects of endogenous oestradiol (Elliott-Sale et al., 2013). 

Importantly, the low levels of oestradiol in combined OCP users are comparable to the levels 

of endogenous oestradiol of postmenopausal women (Heshmati et al., 2002), in whom 

accelerated bone turnover and bone loss are often observed (Feng & MacDonald, 2011; 

Burghardt et al., 2011; Riggs et al., 1998).   

The studies and systematic reviews that have explored the effects of OCP use on BTM 

(Hermann & Seibel, 2010; Garnero et al., 1995; de Papp et al., 2007; Elgan et al., 2003) and 

BMD (Cibula et al., 2012; Liu & Lebrun, 2006; Recker et al., 1992; Pettiti et al., 2000; Reed 

et al., 2003) in the general population have yielded mixed results. Some have demonstrated 

increases or no change (Recker et al., 1992; Pettiti et al., 2000; Reed et al., 2003) in BMD, 

with others reporting decreases in BMD (Scholes et al., 2010; 2011; Cibula et al., 2012; 

Polatti et al.,1995). Similarly, BTM levels in OCP users have been reported to be lower 

(Garnero et al., 1995; de Papp et al., 2007) or similar to those of non-users (Elgan et al., 

2003). Current literature on OCP use on BTMs and BMD is inconclusive and confounded 

mainly by the type and dose of OCPs and age, underpinning the need for future research in 

the area with rigorous experimental design and control of those parameters.  

Physically active women who take OCP may be at greater risk for impaired bone health than 

their sedentary counterparts, as suggested by studies showing detrimental effects of OCP use 

when combined with exercise (Hartard et al., 1997; Burr et al., 2000; Weaver et al., 2001). It 

is, however, unknown if these effects are further exacerbated when exercise contributes to 
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the creation of an energy deficit. This is a particular unique challenge for physically active 

women who are commonly exposed to low EA attained by exercise training and/or dietary 

energy deficits. These practices have been associated with BMD reductions and the 

development of bone injuries, with these interrelationships being described under the Female 

Athlete Triad (Nattiv et al., 2007; De Souza et al., 2014a) and the RED-S models (Mountjoy 

et al., 2014; 2015) in physically active women. Physically active, combined OCP users are a 

neglected female population with similar (if not greater) risk to attain low EA than non-users 

(Thein-Nissenbaum et al., 2014). As such, given the potential for altered bone metabolism 

and bone loss in combined OCP users, it is important to explore the bone metabolism in 

response to low EA in physically active combined OCP users independently. Moreover, the 

responses in combined OCP users need to be characterised in relation to those observed in 

their eumenorrheic (non-users) counterparts (data from Chapter 7).  

The proposed mechanisms for low EA-associated alterations in bone metabolism and health 

include alterations in regulatory and reproductive hormones (Ihle & Loucks, 2004; De Souza 

et al., 2014). Major anabolic hormones including insulin, leptin and T3 are reduced during 

periods of energy deficiency in both physically active (Chapter 4) and sedentary women 

(Ihle & Loucks, 2004). Combined OCP use is often accompanied by hormonal changes 

including decreases in IGF-1 and increases in IGFBPs and T3 levels (Blackmore et al., 2011; 

Wiegratz et al., 2003; Hansen et al., 2009). However, the effects of low EA on regulatory 

hormones in combined OCP users remain unknown. Oestrogen deficiency arising from low 

EA is one of the well-established mechanisms of bone loss in women with anorexia nervosa 

and exercise-induced amenorrhea (Misra, 2012). The impact of low EA on oestradiol levels 

in combined OCP users with an already downregulated oestradiol profile needs to be 

elucidated.  

Comparing the effects of low EA in women with endogenous control and exogenous 

hormone regulation would be particularly useful given the increasingly prevalent OCP use, 

often over long time periods and from an early age, even before peak bone mass is achieved 

(Hartard et al., 2004; 2007). The aim of this study was to determine the effects of low EA 

achieved by diet or exercise on BTM in combined OCP users. A secondary goal was to 

compare these effects between combined OCP users and eumenorrheic (EU) women (data 

previously reported in Chapter 7). It was hypothesised that bone formation will decrease and 

bone resorption will increase following restricted EA in combined OCP users and these 

responses will be more severe than those in EU women.   
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8.2. Methods  

8.2.1. Participants 

Ten participants took part in the current study. Participants were included if they were taking 

a monophasic, low-dose monophasic Combined OCP (containing less than 50 mcg of 

ethinyl-oestradiol and a synthetic progestin) for at least 3 months prior to recruitment (Table 

8.1) (Burkman et al., 2011). This type of combined OCP was chosen over others as it is the 

most common prescription of OCP (Lader et al., 2009). The rest of the inclusion and 

exclusion criteria were the same for EU women and combined OCP users and have been 

described in section 7.2.1.  

Table 8.1.  Combined OCP formulations taken by the participants 

ID Brand Synthetic oestrogens Synthetic progestins 

003 Microgynon® 30 mcg ethinyl-oestradiol 150 mcg levonorgestrel 

005 Rigevidon® 30 mcg ethinyl-oestradiol 150 mcg levonorgestrel 

007 Microgynon® 30 mcg ethinyl-oestradiol 150 mcg levonorgestrel 

009 Millinette® 30 mcg ethinyl-oestradiol 75 mcg gestodene 

011 Gederal® 30 mcg ethinyl-oestradiol 150 mcg desogestrel 

015 Yasmin® 30 mcg ethinyl-oestradiol 300 mcg drospirenone 

018 Microgynon® 30 mcg ethinyl-oestradiol 150 mcg levonorgestrel 

020 Yasmin® 30 mcg ethinyl-oestradiol 300 mcg drospirenone 

021 Microgynon® 30 mcg ethinyl-oestradiol 150 mcg levonorgestrel 

024 Lucette® 30 mcg ethinyl-oestradiol 300 mcg drospirenone 

 

8.2.2. Experimental design 

The experimental design has been described in 7.2.2. (Figure 7.1.). 

8.2.3 Experimental procedures  

All the procedures during the experimental period have been described previously in detail 

in section 7.2.3.  

8.2.4. Blood samples  

Blood samples were collected and analysed as previously described in 7.2.3.3. 
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8.2.5. Biochemical analysis  

Detailed description on biochemical analysis has been provided in section 3.13. 

8.2.6. Statistical analysis  

Statistical analysis for combined OCP users has been described in section 7.2.6. For the 

comparison between EU women and combined OCP users, all data were checked for 

normality according to the Shapiro-Wilk test. Participant characteristics between EU women 

and combined OCP users were compared using independent t-tests for normally distributed 

data or Wilcoxon-rank sum tests for non-normally distributed data. Similarly, baseline 

biochemistry markers and markers of energy status prior to each experimental condition 

were averaged and compared using independent t-tests or Wilcoxon-rank sum tests for non-

normally distributed data. Data were log-transformed before ANOVAs when not normally 

distributed. A three-way, mixed model, repeated measures ANOVA with group (EU, 

combined OCP) as a between subject factor and condition (CON, D-RES, E-RES) and time 

(BASE, D6) as within subject factors was used to assess group changes in BTMs, energy 

regulatory hormones and markers of calcium metabolism. A two-way, mixed model, 

repeated measures ANOVA was used to determine differences between EU women and 

combined OCP users over condition for BTM, energy regulatory hormones and markers of 

calcium metabolism expressed as AUC. Tukey’s tests were used as post hoc analyses when a 

significant effect was found. Data are presented as mean (1SD) and statistical significance 

was set at P ≤ 0.05. Data were analysed using Statistica 13.0 (Statsoft, USA). Criteria for 

responders and non-responders to D-RES and E-RES for β-CTX and P1NP have been 

established in section 7.2.7.   
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8.3. Results  

The results for EU women have already been reported in Chapter 7. The results for OCP 

users are presented first and the direct comparison between OCP users and EU women 

follows for each outcome. The results for the combined data for combined OCP users and 

EU women are presented in Appendix 15.  

8.3.1. Participant characteristics  

Demographics, body composition and training characteristics for combined OCP users and 

EU women are presented in Table 8.2. There were no differences in any variable, which 

indicates that EU women and OCP users did not differ in terms of key characteristics.   

Table 8.2. Participant characteristics 

  Combined OCP 

(n=10) 

EU women 

(n=10) 

p-value 

Demographics    

Age (y) 27 (4) 24 (3) 0.11 

Height (m) 1.66 (0.04) 1.66 (0.06) 0.84 

Body mass (kg) 58.1 (4.7) 61.1 (6.8) 0.28 

BMI (kg ·m2) 21.3 (1.4) 22.3 (2.4) 0.29 

Body composition    

Body fat (%) 26.4 (3.9) 29.3 (5.1) 0.17 

LBM (kg) 41.1  (3.3) 41.3 (4.1) 0.91 

FFM (kg) 43.5 (3.4) 44.3 (4.3) 0.69 

BMD (g·cm2) 1.16 (0.07) 1.19 (0.09) 0.40 

Training characteristics    

VO2 peak (ml·kg-1·min-1) 47.9 (5.5) 48.1 (3.3) 0.54 

VO2 peak (ml·kg LBM-1·min-1) 69.9 (8.4) 70.9 (2.8) 0.73 

Physical activity (MET-min·week-1) 3498 (1181) 4639 (2382) 0.19 

Dietary and EE characteristics    

Habitual DEI (kcal·d-1) 2164 (377)1 1999 (371)2 0.38 

Lifestyle EE (kcal·d-1) 382 (137)2 415 (119)2 0.57 

24-hour EE(kg ·d-1) 1972 (167)2 2053 (198)2 0.67 

Values are expressed as means (1SD). 
1Analysis performed in 8 participants with completed data.  
2Analysis performed in 9 participants with completed data. 
* denotes a significant difference between combined OCP users and EU women (P<0.05). 

BMI: Body Mass Index; BMD: Bone mineral density: VO2max: Maximum oxygen uptake; DEI: Dietary Energy 

Intake; EE: Energy Expenditure; RMR: Resting Metabolic Rate; LBM: Lean Body Mass; FFM: Fat free mass; 

MET: Metabolic equivalents; OCP: Oral Contraceptive Pill Users; EU: Eumenorrheic 
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8.3.2. Baseline characteristics  

Combined OCP users had significantly lower P1NP, Mg and 17β-oestradiol levels compared 

to EU women at BASE. (P<0.05). There were no other differences in any BTMs, marker of 

calcium metabolism or regulatory hormone (Table 8.3.).  

Table 8.3. BASE concentrations of BTMs, markers of calcium metabolism and regulatory 

hormones in EU women and combined OCP users. Data are presented as the mean BASE 

values prior to CON, D-RES and E-RES.   

 Combined OCP 

users (n=10) 

EU women 

(n=10) 

P-value 

BTMs 

β-CTX (µg·L-1) 0.40 (0.13) 0.48 (0.20) 0.31 

P1NP  (µg·L-1) 40.7 (13.1) 55.6 (13.9) 0.024* 

BT ratio  1.05 (0.26) 1.23 (0.22) 0.12 

Markers of calcium metabolism  

PTH (pg·mL-1) 3.5 (1.0) 4.3 (0.8) 0.057 

ACa (mmol·L-1) 2.32 (0.08) 2.29 (0.07) 0.20 

0.047* Mg (mmol·L-1) 0.79 (0.04) 0.82 (0.02) 

PO4 (mmol·L-1) 1.29 (0.09) 1.27 (0.11) 0.59 

Regulatory and reproductive hormones  

IGF-1 (mmol·L-1) 197.5 (54.8) 209.4 (52.4) 0.56 

T3 (mmol·L-1) 1.80 (0.31) 1.52 (0.30) 0.054 

Leptin (ng·mL-1) 6.6 (3.7) 2.9 (1.6) 0.62 

Insulin (pmol·L-1) 42.5 (18.0) 37.0 (14.8) 0.47 

17β-oestradiol 73.8 (51.5) 125.4 (42.4) 0.025* 

Values are expressed as means (1SD). 
* denotes a significant difference between COMBINED OCP users and EU women (P<0.05). 

β-CTX: C-terminal telopeptides of type I collagen; P1N: Amino-terminal pro-peptide of Type 1 Procollagen; BT 

ratio: Bone turnover ratio; BTM: Bone turnover marker; PTH: Parathyroid hormone; Mg: Magnesium; ACa:  

Albumin adjusted Calcium; PO4: Phosphate; T3: Triiodothyronine; IGF-1: Insulin-like growth factor 1; GLP-2: 

Glucagon-like peptide 2; CON: Controlled; D-RES: Diet-induced restricted trial; E-RES: Exercise-induced 

restricted trial; OCP: Oral contraceptive pill; EU: Eumenorrheic. 

8.3.3. BTMs  

8.3.3.1. β-CTX  

In combined OCP users, there was no significant main effect of time (P=0.31), condition 

(P=0.34) or any condition x time interaction effect (P=0.71) for β-CTX concentrations. β-

CTX AUC did not significantly differ by condition (P=0.86) (Figure 8.1., Table 8.4).  
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When comparing between EU women and combined OCP users, there was no significant 

condition x time x group (P=0.42), condition x group (P=0.32) or any condition x time 

(P=0.63) interaction effect for β-CTX concentrations. There was no significant main effect 

of time (P=0.48), condition (P=0.10) or group (P=0.10). For β-CTX AUC, no significant 

main effect of condition (P=0.85), group (P=0.10) or any condition x group interaction effect 

(P=0.47) effect was shown (Figure 8.1., Table 8.4).  

8.3.3.2. P1NP 

In combined OCP users, there were no significant main effects of condition (P=0.08) or time 

(P=0.80), nor was there any condition x time interaction effect (P=0.97) for P1NP 

concentrations. P1NP AUC was not significantly different between CON, D-RES and E-

RES (P=0.67) (Figure 8.1., Table 8.4). When comparing between EU women and combined 

OCP users, there was no significant condition x time x group (P=0.31), condition x group 

(P=0.71) or any condition x time (P=0.42) interaction effects for P1NP concentrations. There 

was a significant main effect of condition (E-RES<CON; P=0.046) and group (combined 

OCP users<eumenorrheic women; P=0.02), but no siginifcant effect of time (P=0.07). For 

P1NP AUC, no significant main effect of condition (P=0.78), group (P=0.13) or any 

condition x group interaction effect (P=0.25) effect was shown (Figure 8.1., Table 8.4).  

8.3.3.3 BT ratio  

In combined OCP users, no significant main effect of time (P=0.89) or any condition x time 

interaction effect (P=0.54) were shown for BT ratio but there was a significant effect of 

condition (P=0.048), although no post hoc pairwise comparisons reached statistical 

significance. BT ratio AUC did not significantly differ between CON, D-RES and E-RES 

(P=0.91) (Figure 8.1., Table 8.4).  

When comparing between EU women and combined OCP users, there was no significant 

condition x time x group (P=0.14), condition x group (P=0.71) or condition x time (P=0.42) 

interaction effect for BT ratio. There was a significant main effect of time (D6<BASE; 

P=0.027) and condition (D-RES<CON, P=0.049; D-RES<E-RES, P=0.022), but no 

significant main effect of group (P=0.45). For BT ratio AUC, there was a main effect of 

group (EU<Combined OCP, P=0.020), but no main effect of condition (P=0.30) or any 

condition x group interaction (P=0.24) (Figure 8.1., Table 8.4).  
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Figure 8.1. AUC analysis of β-CTX (A), P1NP (B) and BT ratio (C) in EU women (black) 

and combined OCP users (white) in CON (plain pattern), D-RES (diagonal hatched pattern) 

and E-RES (horizontal hatched pattern). Values are presented as mean (1SD). *denotes a 

significant difference from CON (P<0.05). β-CTX: C-terminal cross-linked telopeptide of 

type I collagen; P1NP: Amino-terminal pro-peptide of Type 1 Procollagen; BT ratio: Bone 

turnover ratio; CON: Controlled trial; D-RES: Diet-induced; E-RES: Exercise-induced 

restricted trial; BASE: Baseline; AUC: Area under the curve; OCP: Oral contraceptive pill; 

EU: Eumenorrheic. 
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Table 8.4. Markers of BTMs expressed as concentrations, percentage change from BASE and AUC in CON, D-RES and E-RES trials in combined OCP 

users and EU women. Values at D2 were used as BASE prior to each experimental condition.  

 EU women (n=10) Combined OCP users (n=10) 

CON D-RES E-RES CON D-RES E-RES 

BASE D6 BASE D6 BASE D6 BASE D6 BASE D6 BASE D6 

β-CTX             

µg·L-1  0.50 

(0.19) 

0.51 

(0.18) 

0.48 

(0.18) 

0.55 

(0.17) 

0.47 

(0.24) 

0.49 

(0.18) 

0.38 

(0.14) 

0.38 

(0.13) 

0.42 

(0.14) 

0.40 

(0.14) 

0.41 

(0.12) 

0.37 

(0.11) 

%BASE change  5.0 

(8.8) 

 17.0 

(15.5) 

 11.7 

(25.8) 

 2.8 

(21.6) 

 -2.1 

(20.1) 

 -4.1 

(41.0) 

AUC  

(%BASE x d)1 

 10.0 

(17.7) 

 34.0 

(31.0) 

 23.5 

(51.8) 

 5.6 

(43.2) 

 -4.1 

(40.1) 

 -8.1 

(81.9) 

P1NP             

µg·L-1 56.7 

(16.9) 

52.5 

(11.9) 

54.8 

(12.7) 

45.2 

(9.3) 

55.3 

(14.4) 

50.9 

(15.8) 

40.9 

(11.4) 

39.7 

(8.3) 

38.8 

(14.8) 

38.0 

(11.2) 

42.5 

(14.8) 

41.3 

(12.6) 

%BASE change  -5.6 

(8.9) 

 -16.8 

(8.0) 

 -8.0 

(13.3) 

 -0.5 

(14.5) 

 3.9 

(33.8) 

 0.0 

(28.3) 

AUC  

(%BASE x d) 1 

 -11.1 

(17.8) 

 -33.5 

(16.0) 

 -16.0 

(26.5) 

 -1.0 

(29.0) 

 7.9 

(67.6) 

 0.0 

(56.7) 

BT ratio             

- 1.19 

(0.24) 

1.06 

(0.20) 

1.21 

(0.26) 

0.85 

(0.14) 

1.30 

(0.39) 

1.06 

(0.23) 

1.15 

(0.35) 

1.09 

(0.19) 

0.94 

(0.27) 

0.95 

(0.17) 

1.06 

(0.28) 

1.14 

(0.24) 

%BASE change  -9.5 

(12.0) 

 -27.4 

(14.2) 

 -13.1 

(24.9) 

 0.5 

(23.2) 

 6.5 

(27.7) 

 15.0 

(48.1) 

AUC  

(%BASE x d) 1 

 -19.0 

(23.2) 

 -54.9*| 

(28.5) 

 -26.2 

(49.7) 

 1.0 

(46.4) 

 13.1 

(55.4) 

 30.0 

(96.3) 
Values are expressed as means (1SD). 1AUC calculated for each experimental condition from BASE to D6.   *denotes a significant difference from BASE in the same condition (P<0.05). 

β-CTX: C-terminal cross-linked telopeptide of type I collagen; P1NP: Amino-terminal pro-peptide of type 1 procollagen; BT ratio: Bone turnover ratio; BTM: Bone turnover marker; CON: 

Controlled trial; D-RES: Diet-induced E-RES: exercise-induced restricted trial; BASE: Baseline; AUC: Area under the curve; OCP: Oral contraceptive pill users; EU: Eumenorreic.  
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8.3.4. Markers of calcium metabolism  

8.3.4.1. PTH 

In combined OCP users, there was no significant main effect of time (P=0.16), condition 

(P=0.29), or any condition x time interaction effect (P=0.33) for PTH concentrations. PTH 

AUC did not differ by condition (P=0.43) (Table 8.5.). 

When comparing between EU women and combined OCP users, there was no significant 

condition x time x group (P=0.99), condition x group (P=0.24) or any condition x time 

(P=0.74) interaction effect for PTH concentrations. There were significant main effects of 

group (EU women>combined OCP users, P=0.008) and time (D6<BASE, P=0.02), but no 

significant main effect of condition (P=0.27). For PTH AUC, a significant main effect of 

group (combined OCP users <EU women, P<0.001) was shown, but there was no main 

condition effect (P=0.17) or any condition x group interaction effect (P=0.60) (Table 8.5.).  

8.3.4.2. ACa 

In combined OCP users, there was no significant effect of time (P=0.48) or condition 

(P=0.07). A condition x time interaction (P=0.03) was shown for ACa concentrations. 

Concentrations at D6 in D-RES were higher compared to BASE and concentrations at D6 in 

E-RES, with these findings being in line with the multi-mineral supplementation in D-RES 

but not E-RES. ACa AUC were significantly lower in CON (P=0.003) and E-RES (P=0.003) 

compared to D-RES (Table 8.5.).  

When comparing between EU and combined OCP users, there was a significant condition x 

time x group interaction. In combined OCP users, ACa levels were higher at D6 from BASE 

in D-RES and were also higher from concentrations at D6 in E-RES. In EU women, levels at 

D6 were higher in CON compared to E-RES. There was also a condition x time interaction 

with concentrations at D6 in E-RES being lower than in D-RES (P=0.006) and CON 

(P=0.002). There was a main condition effect (D-RES<CON (P=0.019), but there were no 

significant main effects of time (P=0.82) or group (P=0.12). For ACa AUC, there was a 

significant main effect of condition (D-RES>E-RES, P=0.006) and a condition x group 

interaction effect (P=0.025) (Table 8.5.). In combined OCP users only, ACa AUC in D-RES 

was higher than CON (P=0.040) and E-RES (P=0.036) (Table 8.5.).  
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8.3.4.3. Mg 

In combined OCP users, there was a significant effect of time (D6<BASE; P=0.028) but no 

significant main effect of condition (P=0.32) or any condition x time interaction effect 

(P=0.43) for Mg levels. Mg AUC did not significantly differ by condition (P=0.42) (Table 

8.5.).  

When comparing EU women and combined OCP users, there was no significant condition x 

time x group interaction (P=0.77), condition x group interaction (P=0.18) or any condition x 

time (P=0.65) interaction effect for Mg levels. There was no significant main effects of 

condition (P=0.99), time (P=0.15) or group (P=0.15) for Mg mean concentrations. Mg AUC 

was significantly lower in EU women than combined OCP users (group effect, P=0.031). 

There was no significant main effect of condition (P=0.61) or any condition x group 

interaction effect (P=0.78) (Table 8.5.).   

8.3.4.4. PO4  

In combined OCP users, there was a significant main effect of time (D6<BASE; P=0.007) 

but no significant condition (P=0.48) or condition x time interaction (P=0.97) for PO4 

concentrations.  PO4 AUC did not significantly differ by condition (P=0.96) (Table 8.5.).  

When comparing EU women and combined OCP users, there was no significant condition x 

time x group interaction (P=0.09) or any condition x group interaction (P=0.95). There was a 

condition x time interaction effect (P=0.043), with levels at D6 decreasing from BASE 

(P=0.001) in E-RES only. There was a significant main effect of time (P=0.002), but no 

significant main effects of condition (P=0.40) or group (P=0.15) for PO4 mean 

concentrations. There was no main effect of group (P=0.080) or any condition x group 

interaction effect (P=0.09), but a significant main effect of condition (E-RES< D-RES, 

P=0.030) was shown for PO4 AUC (Table 8.5.). 
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Table 8.5.  Markers of calcium metabolism expressed as concentrations, percentage change from BASE and AUC in CON, D-RES and E-RES trials in 

combined OCP users and EU women. Values at D2 were used as BASE prior to each experimental condition.  

 EU women (n=10) Combined OCP users (n=10)  

CON D-RES E-RES CON D-RES E-RES 

BASE D6 BASE D6 BASE D6 BASE D6 BASE D6 BASE D6 

PTH             

pg·mL-1 4.37 

(1.13) 

3.78 

(0.49) 

4.03 

(0.92) 

3.69 

(0.69) 

4.60 

(1.44) 

4.09 

(0.78) 

3.03 

(0.51) 

3.05 

(0.58) 

3.89 

(1.97) 

3.19 

(0.80) 

3.65 

(0.89) 

3.06 

(0.44) 

%BASE change  -8.0 

(26.4) 

 -4.3 

(26.5) 

 -4.3 

(31.4) 

 1.5 (18.7)  -6.8 

(31.2) 

 -11.7 

(26.0) 

AUC  

(%BASE x d)1 

 -15.6 

(52.8) 

 -8.5 

(52.9) 

 -8.6 

(62.8) 

 3.1 (37.4)  -13.7 

(62.3) 

 -23.3 

(52.0) 

ACa              

mmol·L-1 2.30 

(0.05) 

2.31 

(0.04) 

2.27 

(0.03) 

2.27 

(0.04) 

2.29 

(0.04) 

2.26 

 (0.03) ** 

2.35 

(0.09) 

2.33  

(0.9) 

2.31 

(0.08) 

2.36 

(0.09)* 

2.31 

(0.10) 

2.30 

(0.07)† 

%BASE change  0.8 

(2.1) 

 0.0 

(2.1) 

 -1.4  

(1.4) 

 -0.5  

(1.7) 

 2.2 

 (2.0) 

 -0.5 

(2.5) 

AUC  

(%BASE x d) 1 

 1.5 

(4.2) 

 -0.7 

(4.2) 

 -2.7 

 (2.8) 

 -1.0 

 (3.3)† 

 4.3  

(3.9) 

 -1.0 

(5.1)† 

Mg              

mmol·L-1 0.83 

(0.02) 

0.82 

(0.03) 

0.81 

(0.03) 

0.81 

(0.06) 

0.81 

(0.03) 

0.82 

(0.04) 

0.79 

(0.05) 

0.79 

(0.06) 

0.79 

(0.04) 

0.81 

(0.04) 

0.79 

(0.06) 

0.81 

(0.05) 

%BASE change  -0.7 

(2.3) 

 -0.7 

(7.0) 

 0.4   

(5.4) 

 0.4 

(3.4) 

 2.7 

(2.1) 

 2.4  

(5.7) 

AUC  

(%BASE x d) 1 

 -1.5 

(4.6) 

 -1.4 

(14.0) 

 0.9  

(10.7) 

 0.7  

(6.7) 

 5.3  

(4.3) 

 4.7 

(11.4) 
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Markers of 

calcium 

metabolism 

(continue) 

EU women (n=10) Combined OCP users (n=10)  

CON D-RES E-RES CON D-RES E-RES 

PO4 BASE D6 BASE D6 BASE D6 BASE D6 BASE D6 BASE D6 

mmol·L-1 1.29 

(0.12) 

1.28 

(0.12) 

1.26 

(0.14) 

1.31 

(0.08) 

1.33 

(0.15) 

1.20  

(0.10) 

1.27 

(0.12) 

1.18 

(0.13) 

1.28 

(0.12) 

1.19 

(0.12) 

1.25 

(0.09) 

1.15 

(0.07) 

%BASE change  -0.5 

(8.6) 

 4.6  

(11.0) 

 -9.4 

 (10.3) 

 -6.8 

(10.8) 

 -6.6  

(9.4) 

 -7.7 

(8.2) 

AUC  

(%BASE x d) 1 

 -0.9 

(17.2) 

 9.3 

 (21.9) 

 -18.8 

(20.5) 

 -13.7  

(21.6) 

 -13.2 

(18.7) 

 -15.5 

(16.4) 

Values are expressed as means (1SD). 
1AUC calculated for each experimental condition from BASE to D6.   
*denotes a significant difference from BASE in the same condition (P<0.05). 
** denotes a significant difference from D-RES at the same time point (P<0.05). 

†denotes a significant difference from D-RES at the same time point (P<0.05). 

PTH: Parathyroid hormone; Mg: Magnesium; ACa:  Albumin adjusted Calcium; PO4: Phosphate; D;Day; BASE: Baseline; AUC: Area under the curve;  CON, Controlled trial; D-RES, Diet-

induced restricted trial; E-Exercise-induced restricted trial; OCP: Oral contraceptive pill; EU: Eumenorrheic. 
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8.3.6. Regulatory hormones  

8.3.6.1. IGF-1 

In combined OCP users, IGF-1 concentrations were significantly reduced at D6 compared to 

BASE (main effect of time; P=0.010). IGF-1 concentrations were lower in E-RES compared 

to CON (P=0.006) and D-RES (P=0.002). There were, however, no significant differences 

between condition for any time point for IGF-1 concentrations (condition x time interaction 

effect, P=0.23).  IGF-1 AUC was not significantly different across experimental conditions 

(P=0.07) (Table 8.6.). 

When comparing between EU women and combined OCP users, there was a significant 

condition x time x group interaction effect (P=0.001). In both combined OCP users and EU 

women, concentrations at D6 in E-RES decreased from BASE (P values 0.02 and <0.001) 

and were lower than concentrations at D6 in CON (P values 0.02 and <0.001). 

Concentrations at D6 in D-RES decreased from BASE by 12.2% (P=0.02) in combined OCP 

users and by 13.2% (P=0.008) in EU women. Concentrations at D6 in D-RES were different 

from D6 levels in CON (P<0.001) in EU women only. There was a significant condition x 

group (P=0.02) interaction effect, with lower levels of IGF-1 in D-RES (P=0.015) and E-

RES (P=0.04) compared to CON in EU women. There was a significant condition x time 

interaction effect for IGF-1 concentrations (P<0.001), IGF-1 concentrations at D6 decreased 

from BASE in D-RES (P<0.001) and E-RES (P<0.001). IGF-1 concentrations at D6 in D-

RES and E-RES were lower than concentrations at D6 in CON (P<0.001). IGF-1 

concentrations at D6 in D-RES were significantly lower than those in E-RES (P=0.003). 

There was a significant main effect of time (P<0.001) and condition (E-RES<CON, 

P=0.001), but there was no significant main effect of group (P=0.51). The between 

combined OCP users and EU women comparison, showed a significant main condition (D-

RES<CON; P<0.001, E-RES<CON; P<0.001) for IGF-1 AUC, but no significant main 

effect of group (P=0.89). In EU women only, IGF-1 AUC in D-RES (P<0.001) and E-RES 

(P<0.001) were lower than CON (condition x group, P=0.002) (Table 8.6). 

8.3.6.2. T3 

In combined OCP users there was no significant main effect of time (P=0.67) or condition 

(P=0.09); but there was a condition x time interaction effect (P=0.005). T3 concentrations 

were reduced at D6 from BASE in D-RES (P=0.028) and were lower than concentrations at 

D6 in CON (P=0.005) and E-RES (P=0.014). There was a significant main effect of 
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condition for T3 AUC (P=0.005); AUC in D-RES was lower than in CON (P=0.01) and E-

RES (P=0.01) (Table 8.6.).  

When comparing between EU women and combined OCP users, no significant condition x 

time x group (P=0.40) or any condition x group (P=0.79) interaction effect was shown. 

There was, however, a condition x time interaction for T3 concentrations (P<0.001); T3 

concentrations were reduced at D6 from BASE in D-RES (P<0.001) and were also lower 

than concentrations at D6 in CON (P<0.001) and E-RES (P=0.002). There were significant 

main effects of group (combined OCP users>EU, P=0.02), time (D6<BASE, P=0.026) and 

condition (D-RES<CON, P=0.012). The between EU women and combined OCP users 

comparison showed no significant main effect of group (P=0.17) or any condition x group 

interaction (P=0.48) effect for T3 AUC. A significant main effect of condition was shown for 

T3 AUC (P<0.001) showing that T3 responses were lower in D-RES compared to CON 

(P<0.001) and E-RES (P=0.004) (Table 8.6). 

8.3.6.3. Leptin  

In combined OCP users, there was a significant effect of time (D6<BASE; P=0.010) and 

condition (E-RES<CON; P<0.001, D-RES< CON; P<0.001) and a condition x time 

interaction (P=0.23) effect for leptin concentrations.  Leptin concentrations at D6 were 

reduced by 60.6% and 46.4% compared to BASE (P<0.001) in D-RES and E-RES 

respectively and were lower than D6 in CON (P<0.001).  Leptin AUCs in D-RES (P<0.001) 

and E-RES (P=0.020) were lower than that in CON, but there was no significant difference 

between D-RES and E-RES (P=0.22) (Table 8.6.).  

When comparing between EU women and combined OCP users, there was no significant 

condition x time x group (P=0.35) or condition x group (P=0.81) interaction effects for 

leptin concentrations. There was, however, a condition x time interaction for leptin 

concentrations (P<0.001); concentrations at D6 decreased from BASE in CON (P<0.001), 

D-RES (P<0.001) and E-RES (P<0.001). Concentrations at D6 in D-RES (P<0.001) and E-

RES (P<0.001) were also lower than concentrations at D6 in CON. There were main effects 

of time (D6<BASE, P<0.001) and condition (D-RES<CON, P<0.001; E-RES<CON, 

P<0.001), but not a significant main effect of group (P=0.800). The comparison between EU 

women and combined OCP users showed no significant main effect of group (P=0.29) or 

any group x condition interaction (P=0.35) effect for leptin AUC. A main effect of condition 

was shown for leptin AUC (P<0.001) showing that leptin responses in D-RES (P<0.001) and 

E-RES (P<0.001) were lower than those in CON (Table 8.6). 
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8.3.6.4. Insulin 

In combined OCP users, there was a significant main effect of time (D6<BASE; P=0.026). 

There was no main effect of condition (P=0.12) or any condition x time interaction (P=0.83) 

effect. Insulin AUC did not significantly differ by condition (P=0.69) (Table 8.6.).  

When comparing between EU women and combined OCP users, no significant condition x 

time x group (P=0.18) or condition x group (P=0.74) interaction effects were shown. There 

was a condition x time interaction for insulin concentrations (P=0.045); concentrations at D6 

were reduced from BASE in E-RES (P=0.001) and were lower than concentrations in CON 

at D6 (P=0.015). There was a main effect of time (D6<BASE, P<0.001), but no significant 

main effect of condition (P=0.053) or group (P=0.48). There was no significant main effect 

of condition (P=0.10), group (P=0.61) or any condition x group (P=0.44) interaction effect 

for insulin AUC (Table 8.6). 

8.3.7. Reproductive hormones 

Concentrations of 17β-oestradiol were below the analytical detections levels in 5 out of 10 

combined OCP users for at least one-time point. There was a main effect of time for 17β-

oestradiol levels (P=0.001) with lower levels at D6 compared to BASE. No significant main 

effect of condition (P=0.90) or condition x time interaction (P=0.94) effect were shown for 

17β-oestradiol levels. AUCs for 17β-oestradiol did not significantly differ between 

conditions (P=0.41) (Table 8.6.). 

When comparing between EU women and combined OCP users, there was only a main 

effect of group (combined OCP users< EU women, P<0.001) and a time x group interaction 

(P<0.001) for 17β-oestradiol concentrations. Concentrations were lower in combined OCP 

users compared to EU women at BASE (P=0.002) and D6 (P<0.001). In combined OCP 

users, 17β-oestradiol concentrations were reduced at D6 from BASE (P<0.001), but were not 

different between BASE-D6 in EU women (P=0.40) (Table 8.6.). 
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Table 8.6. Regulatory and reproductive hormones expressed as concentrations, percentage change from BASE and AUC in CON, D-RES and E-RES trials in 

combined OCP users and EU women. Values at D2 were used as BASE prior to each experimental condition. 

 EU women (n=10) Combined OCP users (n=10)  

CON D-RES E-RES CON D-RES E-RES 

BASE D6 BAS

E 

D6 BASE D6 BASE D6 BASE D6 BASE D6 

T3             

mmol·L-1 1.49 

(0.34) 

1.47 

(0.24) 

1.53 

(0.28) 

0.1.29 

(0.17) 

1.53 

(0.31) 

1.40 

(0.21) 

1.80 

(0.30) 

1.87 

(0.41) 

1.82 

(0.34) 

1.61 

(0.37)*,**,† 

1.77 

(0.31) 

1.84 

(0.44) 

%BASE change  0.0 

(11.3) 

 15.0 

(11.2) 

 6.8 

(11.0) 

 3.7 

(16.7) 

 -11.7 

(8.8) 

 3.4 (13.2) 

AUC  

(%BASE x d) 1 

 0.5 

(22.6) 

 -29.5 

(22.4) 

 -13.7 

(22.0) 

 7.4 

(33.4) 

 -23.4 

(17.6) **,† 

 6.9 (26.5) 

IGF-1             

mmol·L-1 205.0 

(39.4) 

225.4 

(50.1) † 

202.5 

(46.8) 

173.3 

(29.9) *,** 

220.6 

(56.7) 

169.2 

(49.6)*,** 

196.5 

(47.9) † 

185.3 

(37.9) 

207.1 

(49.8) 

180.9 

(39.5) * 

188.8 

(51.5) 

161.7 

(33.4)* ,** 

%BASE change  10.6 

(18.9) 

 -13.2 

(9.1) 

 -23.4 

(9.5) 

 -4.8 

(8.4) 

 -12.2 

(8.5) 

 -10.9 

(21.4) 

AUC  

(%BASE x d) 1 

 21.3 

(37.9) † 

 -26.4 

(18.2)** 

 -46.7 

(19.1)** 

 -9.5 

(16.9) 

 -24.4 

(16.9) 

 -21.8 

(42.7) 

Leptin             

ng·mL-1 7.6 

(3.7) 

5.1 

(3.1) 

6.7 

(2.2) 

2.7 

(1.9) 

8.0  

(4.9) 

3.0 

(2.4) 

6.7 

(4.1) 

5.1 

(2.7) 

7.1 

(4.1) 

2.7 

(1.7) *,** 

6.0  

(3.3) 

3.4 

(2.6) *,** 

%BASE change  -30.0 

(22.7) 

 -59.0 

(19.6) 

 -60.6 

(16.7) 

 -21.9 

(19.5) 

 -60.6 

(13.7) 

 -46.4 

(25.8) 

AUC  

(%BASE x d) 1 

 -60.0 

(45.4) 

 -118.0 

(39.1) 

 -121.3 

(33.4) 

 -43.9 

(39.0) 

 -121.2 

(27.4) ** 

 -92.8 

(51.5) ** 
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Values are expressed as means (1SD) 
1AUC calculated for each experimental condition from BASE to Day 6.   
*denotes a significant difference from BASE in the same condition (P<0.05)  
**denotes a significant difference from CON at the same time point (P<0.05). 
†denotes a significant difference from E-RES at the same time point (P<0.05). 

T3: Triiodothyronine; IGF-1: Insulin-like growth factor 1; D: Day; BASE: Baseline; AUC: Area under the curve; CON: Controlled trial; D-RES, Diet-induced restricted trial; E-RES: Exercise-

induced restricted trial; OCP: Oral contraceptive pill; EU: Eumenorrheic.

Regulatory and 

reproductive 

hormones 

(Continue) 

EU women (n=10) Combined OCP users (n=10)  

CON D-RES E-RES CON D-RES E-RES 

BASE D6 BASE D6 BASE D6 BASE D6 BASE D6 BASE D6 

Insulin             

pmol·L-1 31.6 

(7.7) 

36.7 

(20.9) 

33.8 

(9.0) 

28.6 

(15.0) 

45.6 

(34.8) 

20.4 

(11.4) 

50.1 

(41.8) 

36.4 

(17.0) 

37.9 

(16.4) 

27.9 

(12.5) 

39.4 

(19.8) 

26.0 

(8.3) 

%BASE change  13.0 

(44.0) 

 -6.4 

(62.5) 

 -36.5 

(49.3) 

 -8.7 

(52.0) 

 -19.9 

(38.0) 

 -22.6 

(37.8) 

AUC 

(%BASE x d)1 

 26.0 

(87.9) 

 -12.8 

(125.0) 

 -73.0 

(98.5) 

 -17.3 

(104.0) 

 -39.9 

(76.1) 

 -45.1 

(75.7) 

17-β oestradiol             

pmol·L-1 108.9 

(33.6) 

157.3 

(53.1) 

118.9 

(29.7) 

157.9 

(62.9) 

148.3 

(92.9) 

167.0 

(72.1) 

68.8 

(63.3) 

27.5 

(9.9) 

71.9 

(52.8) 

29.1 

(11.4) 

80.7 

(89.8) 

29.0 

(13.3) 

%BASE change  48.3 

(35.2) 

 32.2 

(39.2) 

 24.0 

(39.9 

 42.1 

(25.9) 

 -41.0 

(34.8) 

 -28.0 

(42.2) 

AUC  

(%BASE x d)1 

 96.6 

(70.4) 

 64.5 

(78.4)| 

 48.1 

(79.8) 

 -84.3 

(51.9) 

 -82.0 

(69.5) 

 -56.0 

(84.3) 
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8.3.8. Individual analysis  

Individual responses for β-CTX and P1NP and altered bone turnover due to increased β-

CTX, decreased P1NP or both, in D-RES and E-RES trials, for combined OCP users and EU 

women are presented in Table 8.7.  

Table 8.7. Number of responders (out of total number of EU women and COMBINED OCP 

users) for β-CTX, P1NP in EU women and combined OCP users in D-RES and E-RES. This 

analysis was based on data expressed as %BASE for each participant.  

 β-CTX P1NP Bone turnover1 Bone turnover2 

D-RES E-RES D-RES E-RES D-RES E-RES D-RES E-RES 

Combined 

OCP users 
2/10 1/10 3/10 1/10 4/10 3/10 1/10 0/10 

EU women 5/10 4/10 5/10 3/10 8/10 5/10 2/10 2/10 

Total 7/20 5/20 8/20 4/20 12/20 8/20 3/20 2/20 

1altered bone turnover due to increased β-CTX, decreased P1NP or both. 
2altered bone turnover due to a simultaneous increase β-CTX and decrease in P1NP.  

β-CTX: C-terminal telopeptides of type I collagen; P1NP: Amino-terminal Pro-peptides of Type 1 Procollagen; 

BT ratio; BASE: Baseline; AUC: Area under the curve; CON, Controlled trial; D-RES, Diet-induced restricted 

trial; E-RES: Exercise-induced restricted trial; OCP: Oral contraceptive pill; EU: Eumenorrheic
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8.4. Discussion  

The current study showed that neither bone formation nor resorption were affected by 3 days 

of low EA in combined OCP users and that these effects were not different depending on 

whether reduced EA was diet- or exercise-induced. Direct comparison between combined 

OCP users and EU women showed no significant differences in BTM responses to either 

diet- or exercise-induced low EA. These results suggest that combined OCP use does not 

impact bone metabolism following short-term reduced EA. With respect to eumenorheic 

women, combined OCP users exhibit similar BTM responses when exposed to the same 

dietary and exercise conditions.  

We hypothesised that our combined OCP users would have suppressed BTM levels at 

baseline. Indeed, there were significantly lower baseline levels of P1NP in COC users than 

EU women, although they were within the reference range (P1NP: 25-90 µg·L-1; Jenkins et 

al., 2013), which is in line with existing literature (de Papp et al., 2007). Baseline β-CTX 

concentrations were similar between the two groups, which is in agreement with some 

(Hansen et al., 2009), but not all previous studies (Hermann & Hermann, 2004). Given that 

combined OCP users and EU women did not differ in terms of key characteristics including 

demographics, body composition, training status, dietary and EE characteristics (please also 

see section 8.3.1. and 8.3.2.), we speculate that the differences seen in P1NP levels at 

baseline may be in part mediated by differences in oestradiol levels between the two groups. 

Oestradiol levels at baseline were significantly lower in combined OCP users compared to 

those in EU women, confirming former combined OCP studies showing a downregulation of 

endogenous oestradiol production through negative feedback provided to GnRH, LH and 

FSH during the exogenous provision of oestradiol and synthetic progestin (Burrows & 

Peters, 2007).  

We did not show any effect on markers of bone formation, resorption or on the BT ratio 

following either a diet- or exercise induced low EA in the combined OCP group, despite an 

overall significant reduction in oestradiol levels (D6< BASE). BTMs provide information 

about global bone turnover but do not allow the characterisation of altered bone turnover at 

the local level (Lombardi et al., 2012a). As such, even though we did not show any change 

in BTMs, we cannot exclude alterations in combined OCP users in response to low EA at all 

skeletal sites (Cobb et al., 2007). The findings of the current investigation are in line with 

our 3-day study performed in eumeorrheic women (please refer to Chapter 7). By using 

slightly longer experimental protocols (4 or 5 days), previous studies have demonstrated 
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decrements in bone formation and increases in bone resorption following short-term reduced 

EA, achieved through diet and exercise (Chapter 4; Ihle & Loucks, 2004) or acute fasting 

(Grinspoon et al., 1995) in eumenorrheic women. However, the effects of low EA (or energy 

restriction) attained through any modality (diet and/or exercise) on BTMs in combined OCP 

users have not been previously addressed. This study is the first to demonstrate no negative 

influence on BTMs within 3 days of diet or exercise-induced low EA in physically active 

combined OCP users. As such, this study adds novel evidence to the database of the Female 

Athlete Triad (Nattiv et al., 2007; DeSouza et al., 2014a) and the RED-S models (Mountjoy 

et al., 2014) about a relevant, overlooked subset of women facing unique challenges 

regarding their bone health.  

Diet and/or exercise-driven energy deficit has been reported to negatively alter bone 

metabolism (Villareal et al., 2008; Shah et al., 2011) and result in lower BMD in some 

(Gozansky et al., 2005; Chao et al., 2000; Shah et al., 2011), but not all (Ryan et al., 1998; 

Svenden et al., 1993) studies in post-menopausal women (or mixed populations of 

postmenopausal women and older men), who may have a comparable profile of reproductive 

hormones with combined OCP users (Heshmati et al., 2002). Differences in key 

methodological aspects do not allow direct comparisons between these findings in 

postmenopausal women and our results in combined OCP users. For example, exercise 

training in our study was specifically designed for young, healthy, lean, physically active 

women and was, therefore, considerably different in duration, intensity and frequency from 

those programmes targeting older individuals including postmenopausal women (Villareal et 

al., 2008; 2011); with these differences suggesting greater osteogenic stimuli in our 

intervention (Lanyon et al., 1996). Conversely, the narrow young age range of our lean and 

physically active combined OCP users and the strict criteria applied to secure the inclusion 

of healthy individuals provide novel information about the effects of energy deficiency in 

populations with downregulated oestradiol production and go beyond the age-related (often 

accompanied by secondary comorbidities) decline in bone metabolism and health (Feng & 

MacDonald, 2011; Burghardt et al., 2011; Riggs et al., 1998).  

In both animal and human studies, reductions in oestrogen levels have been associated with 

decreases in ER-α levels on bone (Lanyon et al., 1996; 2004), reduced osteoblast sensitivity 

to mechanical loading (Armstong et al., 2007) and supressed bone formation (Lee et al., 

2004), all potentially contributing to bone loss. Although the actions of progesterone on 

bone are less researched than those of oestrogens, these may be exerted directly on bone or 

imdirectly through androgens, corticosteroids and oestrogens, with these effects being 

influenced by the dose and type of progesterone administered (Nappi et al., 2012). In the 
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present study, all participants were taking combined OCP with the same dosage of ethinyl-

oestradiol minimising the variation in this component but with different types and doses of 

progestins. Notably, we showed substantial inter-individual variability in circulating 17β- 

oestradiol (Liu & Lebrun, 2005; Bennell et al., 1999a). We did not measure progesterone 

levels, and are, therefore, unable to conclude whether or not alterations of this hormone have 

contributed to the observed variability in 17β- oestradiol and bone-related outcomes. These 

unexpected findings highlight the complex interactions between combined OCP and 

endogenous reproductive hormones, which warrant further investigation in future research. 

In addition, combined OCP use has been shown to modify the concentrations of hormones 

associated with bone metabolism including testosterone and IGF-1 (decreases), IGFBPs 

(increase) and T3 (increase) (Blackmore et al., 2011; Wiegratz et al., 2003; Hansen et al., 

2009).  In our study, reduced leptin, T3, IGF-1 levels in response to low EA were shown, 

which are typical compensatory responses to energy deprivation (Chaper 4; De Souza et al., 

2008; Ihle & Loucks 2004). However, these alterations were not supported by the BTM 

responses, suggesting that they were insufficient to suppress bone turnover at least within 

the 3-day experimental period. 

We did not show any further differences between combined OCP users and EU women in 

BTM responses to either diet- or exercise-induced low EAs, despite significant differences 

in oestradiol levels at baseline (combined OCP< EU) and distinct alterations in oestradiol 

patterns between the groups throughout the 3-day exeperimental period. Mean oestradiol 

levels remained unchanged throughout BASE-D6 in EU women, but decreased from BASE 

at D6 in combined OCP users, although these changes did not occur as a result of low EA, at 

least within the short-term timeframe of the current study. These results may indicate that 

combined OCPs, containing 30 μg ethinyl-oestradiol, provide a sufficient stimulus for bone 

sparing effects (Horsman et al., 1983; Liu & Lebrun, 2005), even under conditions of low 

EA. Future studies need to address if these similarities in BTM response to low EA between 

combined OCP users and EU women persist over more prolonged periods of low EA, or if 

the selection of a different combined OCP (i.e., <30 μg ethinyl-oestradiol) results in different 

BTM responses to low EA than those experienced by EU women.  

Despite no differences between the two groups following either diet- or exercise-induced 

low EAs, the direction and mean magnitude of BTM responses were different between 

combined OCP users and eumenorrheic women. In the diet-induced low EA trial, β-CTX, 

P1NP and BT ratio were altered by +17%, -17% and -27% from BASE in eumenorrheic 

women, whereas, in combined OCP users, the respective changes were -2%, +4% and 
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+6.5%. Similarly, in the exercise-induced low EA trial, β-CTX increased by 12%, P1NP 

decreased by 8% and BT ratio was reduced by 13% in eumenorrheic women, whereas, in 

combined OCP users, β-CTX decreased by 4%, P1NP remained unaltered and BT ratio 

increased by 15%. Individual analysis showed that more EU women had altered bone 

metabolism due to increased β-CTX, decreased P1NP or both in diet-induced low EA 

(eumenorrheic women: 8/10 and combined OCP users: 4/10) and exercise-induced low EA 

(eumenorrheic women: 4/10 and combined OCP users: 3/10).  

When the responses of regulatory hormones to low EA in eumenorrheic women and 

combined OCP users were compared directly, there were no significant differences between 

combined OCP users and eumenorrheic women. Overall, IGF-1 and leptin concentrations 

were reduced following reduced EA and T3 was reduced in response to diet-induced EA 

only; with these findings being in agreement with similar short-term experiments (Chapter 4; 

Ihle & Loucks, 2004). Insulin decreased in the exercise-induced condition only, which is 

posiibly due to glycogen depletion and the resulting hypoglycaemia occurring in prolonged 

exercise bouts (Viru et al., 1992). Unlike previous short-term experiments reporting that 

similar hormonal alterations were associated with changes in BTMs (Ihle & Loucks, 2004; 

Zanker & Swaine, 2000), the current study does not support BTM changes mediated by 

these hormones within the 3-day timeframe.  

When low EA is attained through dietary restriction, it is likely that reduced availability of 

specific nutrients may contribute to alterations in bone turnover (Shapses & Sukumar, 2012). 

Thus, we provided a multi-mineral, multi-vitamin supplement in this condition, but we did 

not provide one when reduced EA was attained through exercise. In line with the multi-

mineral supplementation in diet-induced low EA trial, but not the exercise-induced low EA 

trial, we showed higher ACa in the diet-induced low EA trial than the exercise-induced low 

EA trial. There were no further effects of either reduced EA on PTH, Mg or PO4 levels, 

supporting the absence of alterations in BTMs.  

To conclude, there were no detrimental effects of combined OCP use on bone metabolism in 

response to either diet- or exercise- induced low EA. We also provided a comparative 

approach between eumenorrheic women and combined OCP users, showing no differences 

in BTM responses to low EAs between the groups. These findings are of clinical 

significance, supporting no negative effects of combined OCP use on bone metabolism 

following low EA in the short-term. As such, the current investigation adds novel evidence 

relevant to an increasing, but under-studied sub-population of the Female Athlete Triad and 

the RED-S models. Additional research on the longer-term impact of similar exercise and 
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dietary interventions on bone-related outcomes, namely BTM, BMD and bone quality, in 

combined OCP users is warranted.  
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Chapter 9. General discussion  
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Low EA is one of the main underlying factors associated with poor bone health, as identified 

by the Female Athlete Triad (Nattiv et al., 2007; De Souza et al., 2014) and the RED-S 

models (Mountjoy et al., 2014; 2015).  To date, experimental studies on the impact of low 

EA on bone metabolism and health in relevant populations of physically active individuals 

are lacking. The overall aim of the current programme was to explore the short-term effects 

of low EA on BTM, regulatory and reproductive hormones and markers of calcium 

metabolism, which may mediate potential BTM effects in physically active individuals. This 

was accomplished through the implementation of four laboratory studies as part of the 

overall design of the programme. Studies 1 and 2 explored the effects of short-term low EA 

achieved by diet and exercise on BTMs in physically active, eumenorrheic women (reported 

in Chapter 4) and men (reported in Chapter 5). The data collected in Study 1 and 2 were 

combined to provide a direct comparison of BTM responses to short-term low EA between 

physically active women and men (reported in Chapter 6). Studies 3 and 4 investigated the 

effects of short-term low EA on BTM dependent on the way low EA was implemented, diet- 

or exercise-induced, in physically active, eumenorrheic women (reported in Chapter 7) and 

women using combined OCPs (reported in Chapter 8). The data collected in Studies 3 and 4 

were directly compared to provide differences in BTM, regulatory and reproductive 

hormones and markers of calcium metabolism between these groups (reported in Chapter 8). 

9.1. Overview of key findings  

9.1.1. Bone metabolic response to short-term low EA achieved through diet and 

exercise in physically active, eumenorrheic women  

In Study 1 (reported in Chapter 4), short-term low EA at 15 kcal·kgLBM-1·d-1, attained by a 

combination of dietary restriction and exercise, resulted in a significant increase in bone 

resorption (as evidenced by significantly higher β-CTX AUC) and a decrease in bone 

formation (as evidenced by significantly lower P1NP AUC). In the only previous 

experimental study using the concept of low EA, Ihle & Loucks (2004) demonstrated 

decreased bone formation at a threshold EA of <30 kcal·kg LBM-1·d-1, whereas bone 

resorption was increased at more severely reduced EA at 10 kcal·kg LBM-1·d-1. Bone 

metabolic activities, were measured by urinary NTX (bone resorption) and P1CP (bone 

formation), which are limited by analytical variability (please see section 2.5.4.) and thus, 

are not included in recent recommendations about reference BTMs, published by expert 

scientific bodies in the area of bone health and disease (please see section 2.5.5.) (Vasikaran 

et al., 2011; Bauer et al., 2012).  
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The findings from Ihle and Loucks (2004) have been used to support recommendations 

regarding the prevention and treatment of the Female Athlete Triad (De Souza et al., 2014a).  

These data were, however, from sedentary women who differ from their physically active 

counterparts in baseline BTM levels, body composition, training and bone adaptations 

(Nishiyama et al., 1988; Fallon et al., 2001; Mazzetti et al., 2011). The absence of any 

subsequent study (since 2004) to confirm these findings is surprising, especially given the 

growing body of evidence about the Female Athlete Triad following the ACSM position 

statement in 2007 (Nattiv et al., 2007). By extending these findings in sedentary women to 

encompass a representative population of physically active women, and by using reference 

standards BTMs (β-CTX and P1NP) (Vasikaran et al., 2011), the current study in physically 

active women is the first to demonstrate that low EA though diet and exercise may induce 

bone resorption that is not matched with a concomittent increase in bone formation (Figure 

9.1.).  

Changes in regulatory hormones including insulin, leptin and T3 accompanied the BTM 

responses in the present study (Study 1-reported in Chapter 4). Such alterations in regulatory 

hormones may have occurred in an attempt to spare the available energy for essential bodily 

processes and may indicate potential initial adaptations to a state of energy deficiency 

(Loucks & Thuma, 2003; Ihle & Loucks, 2004). The actions of these hormones on osteoblast 

and osteoclast activity have been previously described in the literature and have been 

detailed throughout this thesis (please see sections 2.11. and 4.4.). We did not show any 

changes in 17β-oestradiol concentrations, possibly due to our short-term intervention and 

single measurement of 17β-oestradiol levels. Similarly, there were no effects of low EA on 

PTH, ACa, Mg or PO4 levels, which are in line with the provision of a multi-mineral 

supplement during low EA.  

9.1.2. Bone metabolic response to short-term low EA achieved through diet and 

exercise in physically active men  

Study 2 (reported in Chapter 5) explored the effects of low EA achieved through diet and 

exercise on bone metabolic response in physically active men. This study showed that low 

EA at 15 kcal·kgLBM-1·d-1 had no effect on BTMs in physically active men. IGF-1 was 

significantly reduced following low EA, but no other regulatory hormones including T3, 

insulin and leptin or markers of calcium metabolism were changed. Individual differences in 

susceptibility and responsiveness of BTM to low EA might suggest that, despite the overall 

BTM responses, some men are susceptible to low EA. Importantly, the prescription of low 

EA in the current study (reported in Chapter 5) was based upon previous studies showing 
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negative health outcomes in women (Thong et al., 2000) and thus, low EA was characterised 

at 15 kcal·kgLBM-1·d-1
, similar to some (Koehler et al., 2016), but not all previous studies 

(<30 kcal·kgLBM-1·d-1; Viner et al., 2015). The current study (reported in Chapter 5) shows 

that BTMs are not altered due to low EA at 15 kcal·kgLBM-1·d-1 underpining the need for 

future research to determine meaningful ranges and cut-offs for optimal and low EA related 

to clinical outcomes in men. 

Studies 1 and 2 (reported in Chapters 4 and 5) were conducted under strict experimental 

conditions with numerous control measures. These include strict inclusion and exclusion 

criteria to eliminate confounding factors, careful consideration of blood sampling (baseline 

blood samples were collected prior to each experimental condition, after an overnight fast 

and at several time-points over the experimental protocol) and selection of BTMs of 

reference standards (Vasikaran et al., 2011). These critical aspects of our experimental 

design strengthen our approach to explore the effects of low EA on bone metabolism in 

physically active women and men.  

9.1.3. A sex comparison:  Bone metabolic response to short-term low EA in physically 

active women and men  

 The data from Study 1 (women-reported in Chapter 4) and Study 2 (men- reported in 

Chapter 5) were combined to directly compare BTMs, regulatory hormones or markers of 

calcium metabolism responses to low EA at 15 kcal·kgLBM-1·d-1 between physically active 

women and men (Figure 9.1.). The main findings of this analysis were that there were no 

significant differences in any of these outcome measures between sexes; with the magnitude 

of the changes in BTM to short-term low EA achieved by exercise and dietary energy 

restriction being similar in women and men. This combined analysis adds novelty in the 

research area of bone turnover and low EA and offers a number of strengths including the 

prescription of the same level of low EA, expression of energy restriction relative to LBM 

and same contributions of dietary restriction and exercise for both sexes. Additionally, men 

and women had similar characteristics including age, training status (VO2 peak relative to 

LBM rather than body mass) and lifestyle physical activity levels, but not in terms of body 

composition (LBM, % body fat) in order to retain ecological validity in line with real-world 

sex differences in these measurements. It should be noted, however, that the studies were 

conducted independently and, as such, the analysis was originally powered to detect 

differences in BTMs due to low EA in men and women independently. As such, future 

studies should confirm these findings in studies designed to detect sex differences.  



 

203 

 

The analysis of combined men and women data (provided by the ANOVA model) has some 

advantages, which include the generation of a larger sample size and the ability to determine 

an overall relationship between EA and bone metabolism in a mixed population of 

physically active individuals. We showed a significant reduction in P1NP and BT ratio, but 

not in β-CTX in response to low EA, findings that are in agreement with existing literature 

suggesting that bone formation is affected first under conditions of energy deficiency (Ilhe & 

Loucks, 2004; Zanker & Swaine 2000). The changes in BTMs in RES were accompanied by 

alterations in key regulatory hormones, namely IGF-1, T3, insulin and leptin.   

9.1.4. Bone metabolic response to short-term low EA achieved by diet or exercise 

independently in physically active, eumenorrheic women 

The effects of low EA through diet and exercise alone on BTM have not been previously 

considered. In order to fill these literature gaps, in Study 3 (reported in Chapter 7) we 

determined and compared the effects of reduced EA at 15 kcal·kg LBM-1·d-1 induced by diet 

or exercise independently on bone metabolism in physically active, eumenorrheic women 

(Figure 9.1.). The main findings of this study were that dietary-induced low EA resulted in a 

reduction in BT ratio, despite no differences in P1NP and β-CTX independently. Grinspoon 

et al. (1995) showed decreases in bone formation (OC, P1CP) and increases in bone 

resorption (PYD, DPD) following a 4-day fasting protocol (Grinspoon et al., 1995) (Figure 

9.1.). The sedentary study population, the outdated BTM selection and the unrealistic 

scenario of a 4-day fasting period limit the usefulness of this study in physically active 

individuals. An identical energy deficit induced by exercise did not impact the BTM 

responses (Study 3 reported in Chapter 7). Importantly, there were no significant differences 

in BTM responses between the diet- and exercise-induced low EA at 15 kcal·kg LBM-1·d-1. 

These findings suggest that implementing an energy deficit through diet or exercise does not 

affect markers of bone formation or resorption within at least the 3-day timeframe of the 

present study.  

Decreases in IGF-1 and leptin were shown in both low EAs; whereas decrements in T3 took 

place in the diet-induced low EA condition only, and decreases in insulin in the exercise-

induced low EA condition only. When comparing the two restricted conditions, no 

differences in markers of calcium metabolism and regulatory hormones were shown, which 

is in agreement with previous findings (Koehler et al., 2016). Alterations in the 

aforementioned regulatory hormones occurred despite the absence of significant alterations 

in either bone formation or resorption; therefore, our findings do not support that these 

hormones mediate BTM responses, at least within the short timeframe of our study. 
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Conversely, the absence of changes in 17β-oestradiol levels in either the diet- or exercise 

induced low EA are in line with no changes in markers of bone formation and resorption in 

this investigation. 

9.1.5. Bone metabolic response to short-term low EA achieved by diet or exercise 

independently in physically active combined OCP users  

Given the widespread OCP use among physically active women (Bennell et al., 1999a; 

Burrows & Peters, 2007) and the potential for negative bone outcomes arising from their use 

(Liu & Lebrun, 2005), in Study 4 (reported in Chapter 8), we determined the effects of low 

EA achieved by diet or exercise on BTM in physically active combined OCP users (Figure 

9.1). Combined OCPs were chosen over other types of hormonal contraception to allow the 

investigation of the effects of low EA in women using the most popular contraceptive (Lader 

et al., 2009).  Due to the exogenously administered oestrogens, combined OCP users have 

downregulated endogenous oestradiol levels (Burrows & Peters, 2007) that resemble those 

of postmenopausal women who are at high risk for osteoporosis (Khosla & Pacifici, 2013; 

Manolagas et al., 2013). Their unique oestradiol profile allows comparison with that of age-

matched eumenorrheic women who experience cyclical changes in endogenous oestradiol 

(Elliott-Sale et al., 2013).  

There were no effects of combined OCP use on BTMs in response to either diet- or exercise- 

induced low EA, although reduced leptin, T3, IGF-1 levels, characteristics of compensatory 

responses to energy deprivation (Chapter 4; De Souza et al., 2008; Ihle & Loucks 2004), 

were shown. These findings suggest that changes in regulatory hormones are not related to 

BTM responses, at least within the 3-day experimental period. We combined the data from 

Study 3 (eumenorrheic women-reported in Chapter 7) and Study 4 (combined OCP users- 

reported in Chapter 8) to directly compare the BTM responses to low EAs between these 

two groups and showed no differences in any BTM marker. This absence of changes 

occurred despite significant differences in oestradiol levels at baseline and follow-up 

(combined OCP users < eumenorrheic women) and distinct alterations in oestradiol patterns 

(reduction in combined OCP users, no alteration in eumenorreic women) between the groups 

throughout the 3-day experimental period. When we directly compared the responses of 

regulatory hormones and markers of calcium metabolism to low EA in EU women and 

combined OCP users, there were no significant differences for any of these variables 

between the groups. Collectively, these findings do not support unfavourable effects of 

combined OCP use on BTMs following low EA within a 3-day experimental protocol.  
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Studies 3 and 4 have a number of strengths, which include the fact that all participants 

consumed diets of the same composition in all experimental condition, limiting the 

variability in macronutrient distribution between conditions and participants. All food items 

were weighed by investigators and were provided to the participants in order to maximise 

their compliance to the experimental protocol.  The studies were also strengthened by the 

use of a crossover counterbalanced experimental design, in which each of our participants 

served as her own control and completed all three experimental conditions. In previous 

experiments, each participant has completed two (out of 4) experimental conditions to 

investigate the effects of distinct levels of EA (Loucks & Thuma, 2003; Ihle & Loucks, 

2004).  

Eumenorrheic women and combined OCP users were similar in terms of key demographic 

characteristics including age, body composition and fitness status, which limits confounding 

factors that may affect outcome variables. We purposely chose to test the eumenorrheic 

women during the early follicular phase of their menstrual cycle to limit the variability in 

BTMs due to naturally occurring cyclic changes in oestrogen and progesterone levels (Gass 

et al., 2008). Similarly, we also carefully selected the phase of combined OCP and matched 

it with the most relevant phase of the menstrual cycle in eumenorrheic women (Elliott-Sale 

et al., 2013). Previous research has highlighted that combined OCP use results in 

concentrations of endogenous oestradiol and progesterone that resemble those produced 

during the early follicular phase of menstrual cycle (Day 1-7) (Elliott-Sale et al., 2013; 

Hansen et al., 2009).  

9.2. Programme impact and conclusions  

This programme of work makes important contributions to the knowledge base on the 

impact of low EA on bone metabolism and health in physically active individuals. This has 

significant impact for the general public, athletes and military recruits.  

An interesting finding in the present studies is that the baseline BTM levels, especially for 

P1NP, in our physically active, eumeorrheic women and men were towards the higher end of 

the reference range (in line with other data from our laboratory in similar populations). 

These findings suggest that the physically active individuals in our study (reported in 

Chapter 4) had higher bone formation than non-active populations (Jenkins et al., 2013) 

possibly due to osteogenic effects associated with their habitual sports involvement. In 

contrast, lower baseline levels of P1NP were shown in combined OCP users compared to 

those in eumenorrheic women, although they were within the reference range (Jenkins et al., 
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2013). These findings are in line with existing literature (de Papp et al., 2007) and suggest 

that combined OCP users may not benefit from exercise as much as their eumeorrheic 

counterparts. It is likely that these discrepancies in BTM baseline levels are related with the 

downregulated oestradiol profile of combined OCP users, since these groups did not differ in 

terms of key parameters (e.g., demographics, body composition, training status and markers 

of energy status). The robustness of these findings is reinforced by our blood sampling 

conditions-our participants avoided exercise the previous day and were fasted overnight 

prior to the early morning baseline blood sample collection.  As such, we provide true 

baseline BTM values in physically active women (eumenorrheic and combined OCP users) 

and men.  

Recent studies have reported that physically active females may be at great risk of low EA 

(Slater et al., 2016; Torstveit & Sundgot-Borgen, 2005); however, the effects of the initiation 

of such practices on their bone metabolism have not been explored. Study 1 (reported in 

Chapter 4) suggests that suboptimal dietary and exercise practices leading to low EA at 15 

kcal·kg LBM-1·d-1 followed even for a short period of time may reduce bone formation and 

increase bone resorption, thus, compromise bone health. These findings advance and add 

novel evidence in the Female Athlete Triad (Nattiv et al., 2007; De Souza et al., 2014) and 

the RED-S models (Mountjoy et al., 2014; 2015), reinforcing the need for optimal nutrition 

and exercise practices during a critical age for bone maintenance.   

The complex interplay between energy deficiency, menstrual function and bone health in 

women (as the Female Athlete Triad) has been relatively well researched (Otis et al., 1997; 

Nattiv et al., 2007; De Souza et al., 2014) when compared with the amount of information 

available in physically active men. As such, the consequences of low EA on bone health in 

men remain poorly understood despite the recent introduction of the RED-S model 

(Mountjoy et al., 2014; 2015) and other reports (Tenforde et al., 2016). The current study 

(reported in Chapter 5)  is, therefore, an important addition to the current knowledge base 

and showed that low EA, at 15 kcal·kgLBM-1·d-1 over 5 days, had no significant effects on 

bone metabolism in men.  

The combination of these studies allowed a direct sex comparison of BTM responses to low 

EA, which revealed no significant differences between physically active women and men. 

Although this analysis suggests that relatively to women, men may experience similar 

challenges regarding their bone health, further research is needed to confirm these findings. 

The field of the Female Athlete Triad and RED-S will greatly benefit from this analysis, 

which sets the basis for integrating a direct sex comparison in future research.  
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Conversely, the combination of Studies 1 and 2 (reported in Chapters 4 and 5) also allowed 

for an integrated approach of a mixed population of men and women. This has an impact for 

the development of educational information around feeding and training practices in arduous 

occupational roles to reduce the risk of skeletal injury and adverse skeletal health 

consequences. Some relevance might also exist concerning the physical employment 

standards in these occupations (Petersen et al., 2016; Blacker et al., 2015). These standards 

reflect the physical and physiological demands of job-related tasks, but also the risk of injury 

while training. There is a consensus that physical employment standards should be non-

discriminatory on the grounds of sex in order to comply with existing legislation (i.e., 

Equality Act 2010) (Petersen et al., 2016; Blacker et al., 2015). Thus, it is important to avoid 

bias by conducting relevant research in a mixed population of men and women, 

representative of the population to whom physical employment standards will apply 

(Milligan et al., 2016; Petersen et al., 2016).  

Studies 3 and 4 (reported in Chapters 7 and 8) focused on physically active women who are 

more consistently affected (Chapter 4; Female Athlete Triad) by low EA in order to advance 

current understanding about the impact of low EA attained by exercise and diet 

independently. Athletic populations and military recruits often follow training routines of 1-

2 hours making the exercise condition relevant to their habitual exercise practices. The diet-

restricted condition, although less common among physically active populations, may occur 

in non-training periods (Viner et al., 2015). This condition is also representative of the intake 

of patients with eating disorders (e.g., anorexia nervosa) or the amount of energy digested 

during weight loss programmes by overweight/obese individuals (Saris, 2001; Hession et al., 

2009). Surprisingly, neither diet- nor exercise-induced low EA implemented for 3 days 

altered markers of bone formation or resorption in physically active eumoenorrheic women 

or combined OCP users. Our results suggest that the effects of low EA on BTMs did not 

differ by the way that low EA was attained, although further work is required to confirm 

these findings in the long-term.  

The current research advances our understanding of the bone metabolic effects of low EA in 

combined OCP users, an overlooked sub-population of the Female Athlete Triad and the 

RED-S models. In addition to providing contraception, the combined OCP may offer a 

number of advantages for physically active women, including the relief of symptoms 

associated with the menstrual cycle (e.g., heavy menstrual bleeding and anaemia, 

dysmenorrhea, menstrual migraines or acne- American College of Obstetricians and 

Gynaecologists, 2010; Sadler et al., 2010; Maguire & Westhoff, 2011) and flexibility with 

menstrual cycle around critical competitions, training or travel (Bennell et al., 1999a). These 
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potential benefits should be weighed against potential negative health effects, such as 

adverse effects of bone metabolism and health. Our results suggest that combined OCP use 

does not impact BTM following short-term, reduced EA and with respect to eumenorheic 

women, combined OCP users exhibit similar BTM responses when exposed to the same 

dietary and exercise conditions. As such, the current work has an impact on this debate, 

suggesting that combined OCP use does not compromise bone health under conditions of 

low EA within the short timeframe of the current study. Longer periods of low EA and 

recovery from exposure to low EA need to be futher investigated.  

To conclude, the current programme explored the short-term effects of low EA on bone 

metabolism, regulatory and reproductive hormones and markers of calcium metabolism in 

physically active populations. This is important since individuals, such as athletes, regular 

exercisers or those involved in arduous occupations, often complete multiple periods of low 

EA induced through diet, exercise or a combination of the two, which could have cumulative 

effects on bone metabolism and health. The findings of the current programme of work have 

implications for public health programmes that aim to raise awareness of low EA and its 

consequences. Further implications include the provision of information relating to the early 

identification of those at risk of adverse skeletal consequences resulting from low EA and 

guidance on avoiding or managing this practice. As such, this research will be of particular 

interest to health care professionals and nutritionists and exercise physiologists to inform 

their practice.  
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Figure 9.1. The contribution of the current PhD programme to the existing knowledge base 

of experimental studies in the area of EA and bone metabolism. Low EA (red box) may 

result from diet only, exercise only or combination of the two (blue boxes). Short-term 

energy restriction studies that have not been designed based on the concept of EA are 

summarised in the yellow box. Short-term studies that have used the concept of EA are 

summarised in the purple box. The green box highlights the contribution of the current PhD 

programme in the area of EA-bone metabolism and health in normal-weight physically 

active individuals. The black arrow indicates the level of low EA selected for the current 

programme, 15 kcal·kg LBM-1·d-1 based on previous research (Ihle & Loucks, 2004). The 

black elbow connector (solid line) indicates the comparison of the different ways that low 

EA can be attained. The black elbow connectors (dash line) indicate the combination of data 

to provide a sex comparison and a comparison between eumenorreic women and combined 

OCP users.  

9.3. Limitations  

There are several ways to prescribe the dietary component of low EA, with each of these 

ways accompanied by advantages and limitations. For example, Ihle and Loucks (2004) 

utilised clinical dietary products in liquid form, which provide the advantage of uniform 

dietary prescription, but may alter regulatory hormones (compared to solid habitual food) 

(Teff et al., 2010) that may in turn, affect bone metabolism. As such, in Studies 1 and 2 

(reported in Chapters 4 and 6) we chose to feed participants with diets identical in 

macronutrient dietary composition and with food/drink items being the same as their 

habitual DEI in order to limit possible initial adaptations to macronutrient intake and mimic 

their daily lives. This also means that dietary composition was the same for CON and RES 

trial within participant, but was different between participants. In Studies 3 and 4, we chose 
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to feed our participants diets with the same food items and dietary composition allowing us 

to eliminate the variability in macronutrient distribution within and between participants. 

These diets, however, deviated to some extent from the habitual dietary composition of each 

participant. We decided upon this design after careful consideration of a number of factors 

including participants’ compliance with a very low calorie diet (VLCD) (15 kcal·kgLBM·d-1 

or ~500-600 kcal· d-1), practicalities associated with (participants) preparing a VLCD and 

difficulties in modifying a VLCD based on habitual DEI of each participant. Designing a 

diet that could serve the purpose of 15 and 45 kcal· kgLBM-1·d-1 was challenging, but we 

were successful in including universally accepted food items that were not perceived either 

as too little in the diet-induced restricted condition at 15 kcal·kgLBM·d-1 or as too much in 

the controlled condition at 45 kcal· kgLBM-1·d-1. 

In Studies 7 and 8, in E-RES we chose to administer the total duration of exercise in two 

bouts of running per day in order to allow testing to take place under supervised, laboratory 

conditions and enable our participants to complete the strenuous exercise throughout the 3-

day experimental period. Performing two bouts of exercise on the same day may result in 

more pronounced metabolic responses including elevated levels of cytokines, cortisol and 

leucocyte count compared to the responses induced in a single exercise bout (Ronsen et al., 

2001; 2002). However, repeated running sessions of similar intensity and duration separated 

by different recovery periods, had no differential effect on bone resorption and formation, 

OPG, PTH, ACa, or PO4 in a previous experimental study (Scott et al., 2013). As such, it is 

unlikely that our results were affected by the way exercise was administered in terms of 

recovery.  

In Study 8, participants were included if they were on a low-dose combined OCP, but the 

brand or the types of oestradiol and progestins were not specified in order to i) be able to 

recruit participants for this study and ii) increase the ecological validity of our results by 

including a representative sample of combined OCP users. Combined OCP contain fixed 

dosages of oestradiol and progestin, which downregulate the endogenous production of the 

steroids (Burrows & Peters, 2007). All participants were taking combined OCPs with 

different types of progestins but with the same dosage of ethinyl-oestradiol minimising the 

variation in this combined OCP component. Despite this, we showed substantial inter-

individual variability in circulating 17β- oestradiol (Liu and Lebrun, 2005; Bennell et al., 

1999a). These unexpected findings highlight the complex interactions between combined 

OCP and endogenous hormones, which may have contributed to the variability in BTM 

responses in this group. This is important finding should be considered in follow up studies. 
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For the purpose of similar interventions requiring rigid control of possible confounders, 

participants on the same combined OCPs should be recruited.  

Finally, throughout the whole programme, we measured a large number of traditional (i.e., 

insulin, leptin, T3, IGF-1) and emerging (i.e., sclerostin, GLP-2) regulatory hormones to 

provide insight into factors that may mediate some BTM responses. Due to high cost and 

time constrains, we were unable to measure others such as cortisol, PYY and ghrelin, which 

we would consider in future studies, as they may mediate some bone metabolic effects in 

response to energy deprivation (Sheid et al., 2009; Shapses & Sukumar, 2012; Ihle & 

Loucks, 2004) (please also see section 2.11).  For the same reasons, we did not measure 

concentrations of reproductive hormones in our study in men, and are, therefore, unable to 

conclude whether or not alterations of these factors have contributed to the BTM outcomes. 

In women, we determined 17β-oestradiol, which is the main circulating steroid; however, 

testosterone may also play a role in bone metabolism and health (Manoloagas et al., 2013; 

Vanderschueren et al., 2014).  

9.4. Future Work  

This thesis expands the knowledge base on the effects of low EA on bone metabolism and 

health by characterising BTM responses to low EA in physically active women 

(eumenorrheic women and combined OCP users) and men depending on how EA is attained 

(diet, exercise or combination of the two) (Figure 9.1.) and provides a dataset, from which a 

fresh set of hypotheses can be generated and studies designed.  

All studies of this PhD programme focused on the short-term (≤ 5days) effects of low EA on 

BTM, regulatory and reproductive hormones and markers of calcium metabolism. Follow-up 

studies should provide further information about the effects of low EA on BTMs over a 

longer period. These follow-up studies would allow the assessment of additional bone-

related outcomes such as BMD and bone microarchitecture. Cross-sectional studies have 

demonstrated distorted bone microarchitecture in amenorrheic athletes who are oestrogen, 

and presumably energy, deficient (Ackerman et al., 2011; 2012a). These studies cannot, 

however, provide a cause-effect relationship between low EA and altered bone metabolism 

in physically active populations. Interventions designed to detect alterations in BMD and 

bone microarchitecture should be longer than 12 months in duration in order to include 3 to 

4 bone remodelling cycles (Heaney et al., 2000). Given these time requirements and 

experimental rigour, such experimental studies will be very challenging to perform due to 

their high cost and difficulties with participants’ recruitment, compliance, and retention.  
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In Study 2 (reported in Chapter 5) no significant alterations in either bone formation or 

resorption were shown in physically active men. Individual analysis, however, revealed that 

some men responded with an increase in markers of bone resorption and/or a decrease in 

markers of bone formation. Future studies should explore if the same level of low EA 

implemented over a longer duration or a more severe level of reduced EA would elicit a 

more consistent BTM response in this population.  

In Study 1, the effects of low EA (15 kcal·kgLBM-1·d-1) achieved through a combination of 

diet and exercise in physically active, eumenorrheic women were investigated. Furthermore, 

in Study 3 and 4 (reported in Chapter 7 and 8) we compared low EA through diet or exercise 

independently, but due to time and resource constraints, did not include a combined 

condition of diet and exercise. Although the direction and magnitude of BTM changes was 

similar irrespective of the way low EA was implemented, a future experiment to directly 

compare the effects of low EA achieved by dietary restriction, exercise, or combined dietary 

restriction and exercise will provide further evidence into potential differences in BTM 

responses to low EA implemented by different ways. 

In Study 4 (reported in Chapter 8), a novel insight into the effects of low EA on BTM in 

combined OCP users was provided. No negative effects of low EA on markers of either 

bone formation or resorption were revealed in this population, despite alterations in 

regulatory hormones indicative of energy conservation. We cannot rule out that different 

doses or routes of administration of hormones might have different effects on bone turnover, 

which warrants further exploration. The average length of combined OCP use in our study 

was 5.8 years, meaning that participants were long-term users.  We cannot confirm that 

individuals using the combined OCP for shorter or longer durations would have the same 

bone metabolic responses, suggesting the need for continued research.   

In all studies, conventional statistics were supplemented with individual analysis. Notably, 

we showed considerable inter-individual variability in BTM responses to low EA. Previous 

research has highlighted inter-individual variability to energy deficiency in body 

composition changes (King et al., 2008), insulin sensitivity (King et al., 2010), and female 

reproductive function (Williams et al., 2015), which may be relevant to BTM responses. 

Further exploring and understanding inter-individual differences in bone turnover responses 

to low EA could provide valuable insights into the impact of EA in bone health and disease. 

Although this programme focused on the effects of low EA on bone metabolism in 

physically active populations, the RED-S models recently acknowledged that low EA may 
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negatively affect a number of aspects of health and performance (Mountjoy et al., 2014; 

2015). Considering the complexity of these negative consequences associated with low EA, 

Studies 3 and 4 (detailed in Chapter 7 and 8) were conducted on a collaborative basis with 

another PhD student to include more health and performance related outcomes, namely, 

muscle function and cognitive function (please see section 7.2.6.). The combination of these 

outcomes will give valuable insight into how low EA affect musculoskeletal health and 

performance (i.e., risk for musculoskeletal injury, muscle strength). Future research to 

characterise the challenges associated with low EA and its interrelated effects on different 

systems will benefit the understanding of the Female Athlete Triad and the RED-S models 

and will enable the development of effective prevention and treatment strategies.  
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Appendix 1. Health Screen Questionnaire  

 

Name...............……………… 
 

Please complete this brief questionnaire to confirm fitness to 

participate: 
 

1. At present, do you have any health problem for which you are: 

(a) on medication, prescribed or otherwise Yes      No      

(b) attending your general practitioner                                Yes      No      

(c) on a hospital waiting list                                               Yes          No      
 

2. In the past two years, have you had any illness which require you to: 

(a) consult your GP                                                           Yes          No      

(b) attend a hospital outpatient department                        Yes          No      

(c) be admitted to hospital                                                Yes          No      
 

3. Have you ever had any of the following? 

(a) Convulsions/epilepsy                                                    Yes         No      

(b) Asthma                                                                       Yes         No      

(c) Eczema                                                                       Yes         No      

(d) Diabetes                                                                      Yes         No      

(e) A blood disorder                                                           Yes         No      

(f) Head injury                                                                  Yes         No      

(g) Digestive problems                                                       Yes         No      

(h) Heart problems                                                            Yes         No      

(i) Problems with bones or joints                                        Yes         No      

(j) Disturbance of balance / coordination                             Yes         No      

(k) Numbness in hands or feet                                            Yes         No      

(l) Disturbance of vision                                                     Yes         No      

(m) Ear / hearing problems                                                  Yes         No      

(n) Thyroid problems                                                          Yes         No      

(o) Kidney or liver problems                                                Yes         No      

(p) Allergy to nuts, alcohol etc                                             Yes        No      

(q) Any problems affecting your nose e.g. recurrent nose bleeds Yes     No       

(r) Any nasal fracture or deviated nasal septum                    Yes        No      
 

4. Has any, otherwise healthy, member of your family under the age of 50 

 died suddenly during or soon after exercise?                    Yes        No      

5. Are there any reasons why blood sampling may be difficult? Yes     No      

6. Have you had a blood sample taken previously?               Yes       No      

7.  Have you had a cold, flu or any flu like symptoms in the last Yes     No     

Month? 

Continued… 
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Women only   

8. Are you pregnant, trying to become pregnant or breastfeeding?Yes     No 

     

 

If YES to any question, please describe briefly if you wish (egg to 

confirm problem was/is short-lived, insignificant or well controlled.)  

................................................................................................................

................................................................................................................

................................…….……………………...………………………………………………………………

………………………………………….. 
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Appendix 2. Menstrual Cycle Details 

(All information is fully confidential) 

Please circle the answer where appropriate. 

 

Number: 

 

Age: 

 

Date of birth: 

 

1) Have you had regular periods in the last six months? YES   NO 

 

2) How long in days is your menstrual cycle, from day 1 of bleeding (period) to day 1 of the 

next period?  _________DAYS 

 

3) Is the above time the same between periods?  YES   NO 

 

If the answer was NO, please state the irregularity: 

__________________________________________________________________________ 

 

4) How many days does your menstrual (blood) flow last? __________DAYS 

 

5) Do you get pain during your period?  YES   NO 

 

If YES, please state the symptoms and the days during the cycle when you suffer: 

__________________________________________________________________________ 

 

6) Do you avoid exercise during your period?   YES   NO 

 

If YES, please state your reasons for avoiding exercise: 

__________________________________________________________________________ 

 

7) Do you take any medication or hormones to regulate your menstrual cycle? 

YES   NO 

 

If YES, please state what you take and how often? 

__________________________________________________________________________ 

 

8) Do you take any other medication?  YES   NO 

If YES, please state what you take and how often? 

__________________________________________________________________________ 

 

9) Have you previously used any form of hormonal contraception (oral contraceptive, 

implant, injection, and coil)?  YES   NO  

 

If YES, please state the type of contraception used and the date that you ceased using it? 

__________________________________________________________________________ 

 

 

10) When did you have your last period (day 1)? 

__________________________________________________________ 
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Appendix 3. Oral Contraceptive Details 

(All information is fully confidential) 

 

Please circle the answer where appropriate. 

Number: 

Age: 

Date of birth: 

 

1) What brand or oral contraceptive do you take?___________________________  

2) How long have you been using your current oral contraceptive?______________ 

3) What date did you begin taking your current pack of pills?__________________ 

4) What time of day do you usually consume the pill?________________________ 

5) Will you be continuing to take the oral contraceptive for the next 2 months? 

YES   NO 

 

6) Do you take any other medication or hormones to regulate your cycle? 

YES   NO 

If YES, please state what you take and how often? 

__________________________________________________________________________ 

 

7) Do you take any other medication?                  YES  NO 

If YES, please state what you take and how often? 

__________________________________________________________________________ 
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Appendix 4. SCOFF questionnaire and weight history 

 

Take a few minutes to answer these questions. 

 

1) Do you ever make yourself sick because you feel uncomfortably full? _____ 

 

2) Do you worry you have lost control over how much you eat? ____ 

 

3) Have you recently lost more than 5 kg in a three month period? ______ 

 

4) Do you believe yourself to be fat when others say you are too thin? _____  

 

5) Would you say that food dominates your life? _____ 

 

6) Your usual weight now_______ 

 

Highest weight________ When?_____ For how long?_____ 

Lowest weight_________ When?_____ For how long?_____ 

 

7) How many times have you gained or lost at least 5 kg in your life?_____  

 

8) How old were you when you first gained/lost weight?_________  

 

9) What do you think caused you to gain/lose weight? ______ 
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Appendix 5. International Physical Activity Questionnaire 

 

Name:  

 

We are interested in finding out about the kinds of physical activities that people do as part 

of their everyday lives. The questions will ask you about the time you spent being physically 

active in the last 7 days. Please answer each question even if you do not consider yourself to 

be an active person. Please think about the activities you do at work, as part of your house 

and yard work, to get from place to place, and in your spare time for recreation, exercise or 

sport. 

 

Think about all the vigorous activities that you did in the last 7 days. Vigorous physical 

activities refer to activities that take hard physical effort and make you breathe much harder 

than normal. Think only about those physical activities that you did for at least 10 minutes at 

a time. 

 

1. During the last 7 days, on how many days did you do vigorous physical 

activities like heavy lifting, digging, aerobics, or fast bicycling? 

_____ days per week 

No vigorous physical activities Skip to question 3 

 

2. How much time did you usually spend doing vigorous physical activities on one 

of those days? 

_____ hours per day 

_____ minutes per day 

Don’t know/Not sure 

 

Think about all the moderate activities that you did in the last 7 days. Moderate 

activities refer to activities that take moderate physical effort and make you breathe 

somewhat harder than normal. Think only about those physical activities that you did 

for at least 10 minutes at a time. 

 

3. During the last 7 days, on how many days did you do moderate physical 

activities like carrying light loads, bicycling at a regular pace, or doubles tennis? 

Do not include walking. 

_____ days per week 

No moderate physical activities Skip to question 5 

 

4. How much time did you usually spend doing moderate physical activities on one 

of those days? 

_____ hours per day 

_____ minutes per day 

Don’t know/Not sure 

 

Think about the time you spent walking in the last 7 days. This includes at work and at 

home, walking to travel from place to place, and any other walking that you might do solely 

for recreation, sport, exercise, or leisure. 

 

5. During the last 7 days, on how many days did you walk for at least 10 minutes 

at a time? 

_____ days per week 

No walking Skip to question 7 

 

6. How much time did you usually spend walking on one of those days? 
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_____ hours per day 

_____ minutes per day 

Don’t know/Not sure 

 

The last question is about the time you spent sitting on weekdays during the last 7 days. 

Include time spent at work, at home, while doing course work and during leisure time. This 

may include time spent sitting at a desk, visiting friends, reading, or sitting or lying down to 

watch television. 

 

7. During the last 7 days, how much time did you spend sitting on a week day? 

_____ hours per day 

_____ minutes per day 

Don’t know/Not sure 

 

This is the end of the questionnaire, thank you for participating 
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Appendix 6. Food Diary Instructions 

Time:  Write down the time of day you ate the food.  

Food/ drink item: Write down the type of food you ate or beverage you consumed. Be as specific as 

you can.  

 Include sauces and gravies. Don’t forget to write down “extras” such as salad dressings , 

mayonnaise, butter, sugar and ketchup.  

 Remember to include all beverages, including water.  

 Remember to include all supplements taken each day.  

Details: Describe the food accurately and give as much information as possible  

 Give brand names if possible 

 Describe the form of the food (salted, unsalted, sweetened, fat-free) 

 Describe how the food was purchased (fresh, frozen, canned) e.g. fresh pineapple vs. 

slices of pineapple canned- mainly applied for snacks (e.g. fruits)  

 State any food fortified with additional nutrients 

 Describe all the foods included in more complex dishes  

 Include food preparation (e.g. boiling, roasting, baking, broiling, frying or steaming)- 

mainly applied for main meals (e.g. meat, chicken. pasta, potatoes, vegetables)  

 Include the type and the amount of fat/ oil used  

 Cut out nutrition and ingredient labels of packaged foods and attach to diet diary.  

 If eating out, describe the food item well. Please record the name of popular fast food 

restaurants (e.g. Mac Donald’s).  

  

Amount eaten (g): Use the food weighing scale for measuring food 

 To use the food weighing scale: 

1. Make sure the scale is on a flat surface like the kitchen counter. 

2. Remember to place the bowl on scale before switching on  

3. Press and release ON/OFF button. 88888/8 appears on display.  

4. Wait until display shows 0. 

5. Weigh cooked foods after cooking, and note on your food diary that you are recording 

cooked weight. 

6. Weigh several ingredients in the bowl, press ZERO to reset the display between each 

ingredient (for every new food you add). Make sure that food is put on the centre of the 

plate when you use a large plate.  

7. When you finish, press ON/OFF button to switch-off.  

 You can weigh your food in the bowl on top of the scale, or you can use your plate. In this 

case put the plate on the scale before switching on and follow steps 3 to 7 as described 

above.  

 To weigh fluids, use a cup instead of the bowl/plate. Follow steps 2-7.  

 

Example 1: To weigh a slice of pizza on a plastic plate.  

1) Place a plate on the scale before switching on.  

2) Switch on the scale and wait until 0 is displayed.  

3) Place the pizza slice on the scale and read the weight. 

4) Record weight on the food diary. 

Example 2: To weigh a piece of steak with rice on the bowl  

1) Place the bowl on the scale before switching on.  
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2) Switch on the scale and wait until 0 is displayed.  

3) Place the piece of steak on the scale and read the weight. 

4) Record the weight of the piece of steak on the food diary. 

5) Before weighing the rice, press 0. 

6) Place the rice on the bowl and read the weight. 

7) Record the weight of rice on the food diary. 

Amount of leftovers (g): Use the scale for measuring leftovers  

Example 1: To record the weight of uneaten food (like the crust of pizza) 

1) Place the bowl on the scale before switching on.  

2) Switch on the scale and wait until 0 is displayed.  

3) Place the leftover pizza crust on the scale and read the weight. 

4) Record the weight of the leftover pizza crust on the food diary form (amount left). 

Example 2: To the record the weight of uneaten food- complex dishes (like mixed steak and rice)  

1) Place the bowl on the scale before switching on.  

2) Switch on the scale and wait until 0 is displayed.  

3) Try to separate the steak from rice if you can.  

4) Place the leftover piece of steak on the scale and read the weight. 

5) Record the weight of the steak on the food diary form (amount left). 

6) Before weighing the leftovers of rice, press 0. 

7) Place the leftovers of rice on the bowl and read the weight. 

8) Record the weight of rice left on the food diary form (amount left). 

 

When you eat out:  

1) Weigh your food if possible. 

2) If weighing your food is not possible, use alternative methods (size of your palm for meat, 

fish and poultry; tablespoon for oils; toast slices for bread; CD size or cup size for pasta and 

rice; egg size for potatoes, cup size for salads).  

3) Include the name of the restaurant.  

4) Include nutritional information of the meal you consumed, if details are provided by the 

provider.  

 

Cleaning the weighing scale: 

 Bowl can be washed in hand or in a dishwasher.  

 Clean the scale with slightly damp cloth. DO NOT immerse the scale in water or use 

chemical/abrasive cleaning agents.  

 

 

 

 

 

  

Some basic rules to remember:  

 Don’t change your eating habits while you are keeping your food diary. 

 Tell the truth. There is nothing to be gained by trying to look good on these 

forms.  

 Write everything down: Keep the scale and the form with you all day  and write 

down everything you eat drink or eat. 

 Do it now: record your eating as you go. 

 Be specific: Include details and do not generalize 
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24 hour food record- Example   

 

  

Time Food/drink item Details Amount eaten 

(g) 

Amount leftover 

(g) 

08.05 Coffee  Strong and black 314   

08.05 Frosties cereal Kelloggs 52  

08.05 Semi-skimmed milk  107  

08.10 Bread Toasted, brown 2 

slices 

56   

08.10 Margarine Lurpak 17   

08.10 Jam Raspberry 13   

10.30 2 digestive biscuits McVities 34  

10.30,14.20, 

16.15 

Coffee 3, strong and black 936   

12.30 Egg mayonnaise French 

stick (white) 

From canteen 541   

12.30 Crisps McCoys, ready 

salted 

40   

12.30 Diluted orange squash 

drink 

 250ml  

16.15 Snickers   48   

17.45 Beef curry Asda 450 34 

17.45 Chips Oven, McCain 207   

17.45 Tomato ketchup   23   

17.45 Diet Coca Cola    455   

20.45-22.30 Lager Stella 4 pints   
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Appendix 7. Food diary 

Name:   

Day:    1    2     3  (Circle one)                                 Date:  

Time  Food/ drink item Details  Amount 

eaten (g)  

Amount 

leftovers (g)  
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Appendix 8. Participant Information Sheet- Day to day Variability Study  

“Repeatability of exercise energy expenditure measurements in physically active 

individuals by indirect calorimetry “ 

Brief Introduction 

In previous research in our laboratory we have used indirect calorimetry to measure exercise 

energy expenditure (EEE). Indirect calorimetry measures oxygen consumption and carbon 

dioxide production which allows the estimation of EEE using formulas. It is a non-invasive, 

accurate and inexpensive method when the specific laboratory equipment required is 

available; characteristics that makes it one of the most commonly used method in 

determining EEE. In the proposed study, we aim to confirm that the indirect calorimetry 

system used in our laboratory is consistent in achieving identical results across multiple tests 

conducted under the same experimental conditions.   

Study Requirements 

To take part in this study you have to be 1) healthy, as determined by health history 

questionnaire, 2) aged between 18 and 40 years, 3) injury-free, 4) not on any current 

medication, 5) have a BMI= 18.5-30 kg·m-2, 6) able to follow verbal and written instructions 

and 7) in case of female participants, eumenorrheic or on oral contraceptives. Participants 

will be excluded if they are 1) breast-feeding 2) pregnant, 3) have a history of metabolic, 

heart, liver or kidney disease, diabetes, thyroid disorders or 4) have a BMI (kg·m-2)< 18.5 

or >30. 

Location 

All the testing and analyses will be conducted in the Sports and Exercise Science, 

Biochemistry and Biosciences Laboratories at Nottingham Trent University. 

Restrictions During Testing 

You will be asked to record your food intake during Day 1 and replicate it for Days 2.  

Testing Protocol 
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You will be asked to attend a preliminary session (P) and 2-day main experimental period 

(Day 1- Day 2). The preliminary assessment will be performed to establish inclusion criteria, 

take anthropometric measurements and determine your fitness level.  

During Days 1-2 you will be asked to complete a standardized protocol for data collection 

consisting of 5 min of rest, followed by 2 sessions of 15 minutes running at 70% VO2max 

separated by 5 min break on a flat treadmill. Exercise energy expenditure during the exercise 

will be measured using an indirect calorimetry system (a breath-by-breath system that 

requires wearing a facemask for expired gases collection and analysis). The experimental 

conditions will be standardised during Day 1-2. You will be asked to be tested the same day 

of the day for each of your sessions and at least 3 hours after your last meal. Food intake will 

be recorded for Day 1 and you will be asked to replicate it for Day 2, aiming at limiting the 

within participants’ variations in exercise energy expenditure due to differences in food 

intake. 

Potential Benefits to You 

By participating in this study you will gain greater knowledge of measurement and 

monitoring exercise energy expenditure. Individually, you will improve your understanding 

of your individual fitness as you will receive individual VO2 max and heart rate results. 

Finally, if you decide to participate you will receive a full report indicating the results of the 

analysis of daily dietary intake.   

Discomfort, inconveniences and risks of participating in the study  

There are some risks and/or potential side effects associated with participating in this study. 

Capillary blood sampling through finger pricks may result in discomfort including mild pain, 

a sharp sensation or possibly some slights bruising of the fingers. Although it is extremely 

unlikely, high intensity exercise has been known to reveal unsuspected heart or circulation 

problems and very rarely these have had serious or fatal. The risk of adverse cardiovascular 

events in a young health population is minimal.  However, should you feel unwell or any 

pain during the testing then please stop immediately and inform the experimenter. The 

assessments will be conducted under controlled conditions in facilities that are appropriate 

for each test in order to minimise the potential risks.   

Voluntary Participation                                                                                                                                  

Participation in this study is entirely voluntary meaning that you do not have to take part in 
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this study if you do not wish to. If at any point you decide to withdraw from the study your 

data will be destroyed. Whatever your decision, please be assured that it will not 

disadvantage you in any way.  

Confidentiality                                                                                                                                                                          

All the information collected from you for the study will be treated confidentially, and only 

the researchers named above will have access to it. The study results may be presented at a 

conference or in a scientific publication, but individual participants will not be identifiable in 

such a presentation.  

Further Information and contacts  

Please discuss the information above with others if you wish or ask us if there is anything 

that is not clear or if you would like more information. 

Miss Maria Papageorgiou, email: maria.papageorgiou2012@my.ntu.ac.uk,                                     

telephone: +44(0) 7762828659 

Dr Craig Sale, email: craig.sale@ntu.ac.uk , telephone: +44 (0)115 848 3505 

Dr Kirsty Elliott-Sale, email: kirsty.elliottsale@ntu.ac.uk, telephone: +44 (0)115 848 6338 

  

mailto:maria.papageorgiou2012@my.ntu.ac.uk
mailto:craig.sale@ntu.ac.uk
mailto:kirsty.elliottsale@ntu.ac.uk
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Appendix 9. Informed Consent- Day to day Variability Study  

 
Participant Statement of Consent to Participate in the Investigation Entitled: 

“Repeatability of exercise energy expenditure measurements in physically active 
individuals by indirect calorimetry”  

 

1)  I,                             [name] agree to partake as a participant in the above study. 
 
2)  I understand from the participant information sheet, which I have read in full, and 

from my discussion(s) with Maria Papageorgiou that this will involve me involve 
my participation in exercise sessions for 2 consecutive days.  

 

3)  It has also been explained to me by Maria Papageorgiou that the risks and side 
effects which may result from my participation are as follows: slight bruising of my 

fingers due to capillary blood samples (via fingerpick) and minor muscle injury due to 
exercise session.  

 
4)  I confirm that I have had the opportunity to ask questions about the study and, 

where I have asked questions, these have been answered to my satisfaction. 

 
5)  I undertake to abide by University regulations and the advice of researchers 

regarding safety.  
 
6)  I am aware that I can withdraw my consent to participate in the procedure at any 

time and for any reason, without having to explain my withdrawal and that my 
personal data will be destroyed. 

 
7) I understand that any personal information regarding me, gained through my 

participation in this study, will be treated as confidential and only handled by 
individuals relevant to the performance of the study and the storing of information 
thereafter.  Where information concerning myself appears within published material, 
my identity will be kept anonymous.  

 
8)  I confirm that I have had the University’s policy relating to the storage and 

subsequent destruction of sensitive information explained to me.  I understand that 
sensitive information I have provided through my participation in this study, in the 
form of questionnaires and exercise records will be handled in accordance with 
this policy. 

 

11) I confirm that I have completed the health questionnaire and know of no reason, 
medical or otherwise that would prevent me from partaking in this research. 

 
Participant signature:        Date: 

 
Independent witness signature:      Date: 
 

Primary Researcher signature:       Date: 
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Appendix 10. Participant Information Sheet-Studies 1 and 2 

Information sheet for participants  

 

 

This study has been approved by the NTU Ethics Committee (Project ID 

Number:269) 

Researchers: Maria Papageorgiou  

Supervisors: Dr Craig Sale and Dr Kirsty Elliott-Sale 

Background information 

Physically active populations including athletes and military personnel are susceptible to 

stress fracture injuries. The consequences of such injuries vary from minor pain to severe 

lifelong disabilities. Sex differences in stress fracture epidemiology have been reported, with 

women being at higher risk. Although the cause of greater incidence of stress fractures in 

women is unknown and appears to be rather multi-factorial many studies emphasise the 

contribution of nutritional factors, dietary and exercise practices. Amongst them, energy 

availability (defined as the energy intake minus the energy expenditure) gains more and 

more scientific interest.  Despite the fact that low energy availability is more common in 

women and there is evidence of negative effects of energy restriction on bone health in this 

gender there is little published information for men. The current study aims to explore the 

effects of low energy availability on bone responses in males and females. This will be 

achieved by administering controlled balanced and restricted energy availabilities through 

manipulation of both energy intake (diet) and energy expenditure (exercise).  

Inclusion criteria                                                                                                                                

To take part in this study you have to be: 1) apparently healthy, 2) aged between 18 and 35 

years, 3) injury-free, 4) not on any current medication 5) menstruate regularly (women), 6) 

participate in more than 3 hours of mild-moderate exercise per week 7) normal-weight 8) 

non-smokers 9) Caucasians and 10) have no history of major weight control problems or 

eating disorders.  In addition, you should not have any of the following exclusion criteria:1) 

breast-feeding, 2) pregnancy, 3) women on oral contraceptive therapy at least in the 

previous 6 months, 4) women with amenorrhea, short, long or irregular menstrual cycles, 5) 

history of metabolic, heart, liver or kidney disease, diabetes, thyroid disorders, 6) congenital 

or acquired orthopaedic abnormalities, 7)experience of bone fracture  in the previous 12 

month and BMI< 18 or >25 kg/m2 . 

Study procedures                                                                                                                      

You will be required to complete two days of preliminary assessments and two, 9 d 

experimental periods. During preliminary measurements you will be required to fill out 

various forms (informed consent, health screen, training history, menstrual cycle 

questionnaire), to have body composition measured, perform a physical fitness test (VO2 max 

test) and the main exercise protocol to determine your energy expenditure. The investigators 

of this study will provide your supervised transport to Derby University for a body scan to 

measure your body composition.  

Bone turnover in response to short-term energy 

restriction in men and women. 
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Over the first three days of each experimental period you will be asked to record your dietary 

intake and wear a monitor to record your physical activity. On the following 5 days you will 

be asked to perform daily approximately 1 h of exercise of 70% VO2max in smaller sessions 

with break between them . At the same time, your dietary energy intake will be controlled 

either to achieve energy balance (close to your recommended calorie intake per day) or to 

lead to energy restriction (this will be like going on a diet for 5 days). The two testing periods 

will be carried out with approximately 30 days gap between testing. Blood samples will be 

collected and analysed for markers indicative of bone metabolism and hormones reflective 

of feeding and energy intake over the experimental protocol (see Figure 1).  

Benefits 

By participating in this study you will gain greater knowledge of how energy availability 

restriction affects bone health. Individually, you will improve your understanding of your 

individual fitness as you will receive individual VO2 max and heart rate results. Furthermore, 

you will be provided the results of your individual assessment of body composition (body fat 

percentage, lean body mass) and bone mass.  Finally, if you decide to participate you will 

receive a full report indicating the results of your assessment of daily dietary intake.   

Discomfort, inconveniences and risks of participating in the study                                   

There are some risks and/or potential side effects associated with participating in this study. 

For example, you may experience slight bruising due to the blood sample and exercise can 

result in injury and illness (particularly adverse cardiovascular events). However, the 

assessments will be conducted under controlled conditions in facilities that are appropriate 

for each test in order to minimise the potential for injury.  The risk of adverse cardiovascular 

events in a young health population is minimal.  However, should you feel unwell or any pain 

during the testing then please stop immediately and inform the experimenter. You may 

experience minor side-effects of energy restriction including dizziness, headaches and 

difficulties in concentrating. You will be supervised at all times whilst in the laboratory. 

Additionally, you will be closely monitored whilst not in the laboratory when under energy 

restriction. An experimenter will call you each day and/or check your condition by email. A 

buddy system will also be developed whenever possible to ensure your safety. Detailed 

instructions to seek medical advice in case of an emergency and/or to eat something if they 

feel unwell as a side-effect of energy restriction are provided (see leaflet). Furthermore, body 

composition measurement requires minor radiation exposure; amount equivalent to about 

one seventh of a chest x-ray, or 12 hours background radiation or the amount of radiation 

you would be exposed to walking across the University car park on a sunny day.   

Voluntary Participation                                                                                                                                  

Participation in this study is entirely voluntary meaning that you do not have to take part in 

this study if you do not wish to. If you do take part, you can withdraw at any time without 

having to give a reason. Whatever your decision, please be assured that it will not 

disadvantage you in any way.  

Confidentiality                                                                                                                                    

All the information collected from you for the study will be treated confidentially, and only the 

researchers named above will have access to it. The study results may be presented at a 

conference or in a scientific publication, but individual participants will not be identifiable in 

such a presentation.  

Further Information 

Please discuss the information above with others if you wish or ask us if there is anything 

that is not clear or if you would like more information. 
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Miss Maria Papageorgiou, email: maria.papageorgiou2012@my.ntu.ac.uk ,                                     

telephone: +44(0) 7762828659 

Dr Craig Sale, email: craig.sale@ntu.ac.uk , telephone: +44 (0)115 848 3505 

Dr Kirsty Elliott-Sale, email: kirsty.elliottsale@ntu.ac.uk, telephone: +44 (0)115 848 6338 

 

 

 

  

mailto:maria.papageorgiou2012@my.ntu.ac.uk
mailto:craig.sale@ntu.ac.uk
mailto:kirsty.elliottsale@ntu.ac.uk
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Appendix 11. Informed Consent Form -Studies 1 and 2 

Subject Statement of Consent to Participate in the Investigation 

Entitled: 
 

“Bone turnover in response to short-term energy restriction in men and 
women.” 

 

1)  I,                           [your name] agree to partake as a subject in the above study. 
 

2)  I understand from the participant information sheet, which I have read in full, and 
from my discussion(s) with Maria Papageorgiou that this will involve my participation 
in exercise sessions and either maintenance or restriction of my habitual dietary 
energy intake for 5 days during the experiment. Moreover, this study will involve my 
participation in body composition measurements at NTU or University of Derby. and 

fasting blood samples (20 ml) every second day during the 9 day experimental 
protocol, completed twice.   

 

3)  It has also been explained to me by Maria Papageorgiou that the risks and side 
effects which may result from my participation are as follows: slight bruising due to 
blood samples, minor muscle injury due to exercise session and minor side-effects of 
energy restriction.  

 

4)  I confirm that I have had the opportunity to ask questions about the study and, 
where I have asked questions, these have been answered to my satisfaction. 

 

5)  I undertake to abide by University regulations and the advice of researchers 
regarding safety.  

 

6)  I am aware that I can withdraw my consent to participate in the study at any time 

and for any reason, without having to explain my withdrawal. 
 

7) I understand that any personal information regarding me, gained through my 
participation in this study, will be treated as confidential and only handled by 
individuals relevant to the performance of the study and the storing of information 
thereafter.  Where information concerning myself appears within published material, 
my identity will be kept anonymous.  

 

8)  I confirm that I have had the University’s policy relating to the storage and 
subsequent destruction of sensitive information explained to me.  I understand that 

sensitive information I have provided through my participation in this study, in the 
form of questionnaires and blood samples will be handled in accordance with this 
policy. 

 

10) I understand that as part of this study I will be consuming a multi-vitamin multi-
mineral supplement.  

 

11) I confirm that I have completed the health questionnaire and know of no reason, 
medical or otherwise that would prevent me from partaking in this research. 

 

Subject signature: …………………………………………………………………    Date:_____________ 
 
Independent witness signature: ……………………………………………    Date:_____________ 
 
Primary Researcher signature: …………………………………………….    Date:______________ 
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Appendix 12. Participant Information Sheet- Study 3 and 4  

 

Participant Information Sheet 

 

Study Title: The effects of acute energy restriction by diet or exercise on bone 

metabolism, muscle function and cognition. 

 

PART 1 

We would like to invite you to volunteer in our research study. Before you decide 

we would like you to understand why the research is being done and what it 

would involve for you. One of the study researchers will go through the 

information sheet with you and answer any questions you may have. 

Please feel free to talk to others about the study if you wish. You may take as 

much time as you require to decide whether you would like to participate. This 

information sheet tells you the purpose of this study and what you will be 

required to do if you take. Please ask if anything is not clear.  

 

Study description  

Many populations restrict their energy intake (e.g. athletes, military recruits, 

obese patients on a weight loss programme) and recent research suggests that 

this may have negative consequences for bodily functions including bone health, 

muscle function and cognition. Although the unfavourable effects of energy 

restriction are becoming clearer, it is still not known if the method by which 

energy restriction is achieved (diet, exercise, or a combination of both) affects 

the response. Therefore, this study aims to examine if there are different 

responses to energy restriction when it is achieved by dietary restriction or 

increased energy expenditure (exercise) for bone metabolism, muscle function 

and cognition.  

 

What is the purpose of the study? 

The aim of this study is to investigate the effects of three days energy restriction 

achieved by diet or exercise on bone metabolism, muscle function and cognition.  

 

Why have I been invited? 

We are looking for healthy individuals who perform moderate-to-high intensity 

exercise at least 3 times per week and who would be capable and willing to 

complete three experimental conditions: 

1. Three days controlled energy balance (~2000 kcal per day) 

2. Three days dietary restriction (~600 kcal per day) 

3. Three days increased energy expenditure (~2000 kcal per day with ~1400 

kcal worth of exercise per day) 

 

Do I have to take part? 

It is entirely up to you to decide whether or not to join the study. We will 

describe the study and go through this information sheet, please feel free to ask 
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any questions if you are unsure of anything. If you agree to take part, we will 

then ask you to sign a consent form. You are free to withdraw at any time, 

without giving a reason. 

 

What will happen to me if I take part? 

You will be asked to complete a preliminary assessment (P) to establish 

suitability for the study , take body composition measurements (Dual-energy X-

ray absorptiometry-DXA and ultrasound scan), undertake muscle and cognitive 

function tests and determine your fitness level (approximately 2 hours). 

Following this, you will be asked to record your habitual dietary intake and 

lifestyle physical activity for three days (H1-H3) before completing three 

experimental conditions. In each condition you will be asked to inform a member 

of the research team at the beginning of your next menstrual or oral 

contraceptive pill cycle (D1), undertake muscle function and cognitive function 

tests (D2 and D6), have a blood sample taken and undergo an experimental 

period (D3-5). In condition 1 you will consume an energy-balanced diet and 

perform no exercise. Condition 2 and 3 will induce the same level of energy 

restriction; condition 2 will be achieved by manipulating diet only, whereas 

condition 3 will be achieved by increasing exercise energy expenditure only. 

During condition 3 you will be required to visit the laboratory to complete 

exercise sessions lasting approximately 2.5 hours on each experimental day 

(D3-5). Blood samples will be collected twice; in the beginning (D2) and at the 

end (D6) on each condition (10 minutes procedure) and analysed for bone 

markers and endocrine factors. The three testing conditions will each be 

separated by approximately 25 days to include three menstrual cycles for 

eumenorrheic (regularly menstruating) participants and three pill taking cycles 

for oral contraceptive users. The whole testing period will take approximately 14 

weeks (see Figure 1,2).   

 

Expenses and Payments 

You won’t receive any payments for your participation in the study.  

Food will be provided for the three experimental days (D3-5) in all three 

conditions. 

 

What will I have to do? 

During the preliminary assessment (P) we will explain the study to you, provide 

you an opportunity to ask questions and ask you for your written informed 

consent. You will then be asked to fill out questionnaires, undertake cognitive 

and muscle function tests, perform a fitness test and undergo body composition 

scans (this will be in the form of Dual-energy X-ray absorptiometry (DXA), which 

is used for making measurements of body composition and bone mineral density 

and an ultrasound scan used to measure the diameter of a muscle in your 

hand). For the DXA scan you will be asked to remove your shoes and any metal 

objects and lay on your back on the bed of the scanner. An x-ray beam will then 

pass slowly over your whole body for approximately 8 minutes. You will not feel 

any sensation from this beam.  

During the habitual assessment (H1-H3) you will be asked to record your 

habitual dietary intake and lifestyle physical activity. You will then be asked to 

complete three experimental conditions. In each condition you will be asked to 

notify the experimenter at the beginning of your menstrual or oral contraceptive 

cycle (D1). On the next day (D2), you will be asked to visit the laboratory for a 

blood sample and to complete baseline muscle and cognitive function tests. The 

following three days of the protocol (D3-D5) will be the experimental period. 

Over the three experimental days you will undertake condition 1, condition 2 or 
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condition 3. In condition 1 you will consume an energy balanced diet and be 

asked to refrain from any exercise. In condition 2 you will be asked to refrain 

from any exercise and maintain a low-calorie diet for three days. During this 

condition you will be asked to consume a multi-vitamin multi-mineral 

supplement to ensure adequate micronutrient intake.  In condition 3 you will 

provided with a normal diet and be asked to complete exercise sessions at 70% 

of your maximal oxygen uptake in two sessions per day (approximately 1 hour 

in the morning- 1 hour in the afternoon; each 1 hour will be performed in 15 

minutes sessions with 5 minutes break between them) for three days. Blood 

samples will be collected and muscle and cognitive performance tests will be 

conducted at the end of the protocol (D6). All blood samples will be taken from a 

vein in the forearm by an experienced phlebotomist. 

 

What are the possible disadvantages and risks of taking part? 

During the process of being scanned you will receive a small dose of radiation 

(30 μSv), which is very small, compared to other X-ray procedures and is the 

equivalent to the additional cosmic radiation dose received from a flight from the 

UK to Spain. Blood sampling may result in discomfort including mild pain, a 

sharp sensation or possibly some bruising. However, all procedures will be 

conducted under controlled conditions in facilities that are appropriate for each 

test in order to minimise the potential for injury. However, should you feel 

unwell or any pain during the testing then please stop immediately and inform 

the experimenter. There is always a risk for exercise to result in adverse 

cardiovascular events or injury, however this is unlikely as the criteria for 

participation in this study stipulate that you must regularly exercise and will 

therefore be accustomed to exercising. You may experience minor side-effects of 

energy restriction including dizziness, headaches and difficulties in 

concentrating. You will be supervised at all times whilst in the laboratory and will 

be contacted by phone each morning and evening during the energy restriction 

conditions to confirm you are well. Detailed instructions to seek medical advice 

in case of an emergency and/or to eat something if you feel unwell as a side-

effect of energy restriction are provided (Energy restriction emergency 

instructions) . 

 
What are the possible benefits of taking part? 

We cannot promise that the study will help you, but the information we get from 

this study will contribute to the available knowledge concerning the effects of 

energy restriction on bone health, muscle function and cognitive function in 

physically active and obese/overweight populations. You will improve your 

understanding of your individual fitness, as you will receive individual VO2 max 

and heart rate results. Furthermore, you will be provided the results of your 

individual assessment of body composition (body fat percentage, lean body 

mass) and bone mineral density (BMD). Finally, if you decide to participate you 

will receive a full report indicating the results of your assessment of daily dietary 

intake.   

 

What happens when the research study stops? 

The information from the study (fitness test, body composition and bone mass 

measurement and dietary analysis) will be provided as feedback to you at the 

end of your participation.  

 

What if there is a problem? 
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Any complaint about the way you have been dealt with during the study or any 

possible harm you might suffer will be addressed. The detailed information on 

this is given in Part 2. 

 

Will my taking part in this study be kept confidential? 

Yes. We will follow ethical and legal practice and all information about you will be 

handled in confidence. The details are included in Part 2. 

 

If the information in Part 1 has interested you and you are considering 

participation, please read the additional information in Part 2 before 
making any decision. 

 

PART 2 

 

What if relevant new information becomes available? 

If new information comes available that is applicable to the safety of the study 

we will inform you of this information. If the study is stopped for any reason, 

you to be informed with regard to the reasons. 

 

What will happen if I don’t want to carry on with the study? 

You are free to withdraw from the study at any point without providing a reason 

and without consequence. If you withdraw from the study, we will ask you if you 

give us permission to use any data collected from you until that point. If you do 

not consent to this, we will delete all data pertaining to you that is stored on 

computers or hard copies and destroy any samples collected from you. 

 

What if there is a problem? 

If you have a concern about any aspect of this study, you should ask to speak to 

the researchers who will do their best to answer your questions using the 

contact details at the end of this information sheet. If you remain unhappy and 

wish to complain formally, you can do this by contacting Nottingham Trent 

University’s technical manager, Mark Cosgrove Tel: 0115 8486691, who is 

independent of the research program and will take you through the complaints 

procedure. 

 

Will my taking part in this study be kept confidential? 

Yes. We will follow ethical and legal practice and all information about you will be 

handled in confidence. All information will be coded and stored securely. Any 

information about you which leaves the University will have your name and 

address removed so that you cannot be recognised (e.g., in case of a 

publication). All data will be used for analysis in the present study. All data will 

be destroyed no later than 5 years post the award of a PhD for the research 

students involved in this study. 

 

Involvement of the General Practitioner/Family doctor (GP) 
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You may wish is seek advice from your GP, however we will not inform your GP 

about your participation in the study. 

 

 

What will happen to any samples I give? 

Your blood samples will be collected in coded tubes and stored in freezers 

housed within the Department of Sport Science laboratories. Your samples will 

only be identifiable to the research team. Your data from the body scan, dietary 

analysis, physical activity records and questionnaires will be stored in a locked 

cabinet or on a password protected university computer. Your samples will be 

stored for no later than 5 years post the award of a PhD for the research 

students involved in this study. Your samples will be analysed at Nottingham 

Trent University and at the University of East Anglia on a collaborative basis.  

 

What will happen to the results of the research study? 

The results of the study will be provided as feedback to you and also published 

in peer reviewed academic journals. Information will be provided as to the 

location of the publication when this information is known. You will not be 

identified in any report or publication.  

 

 

Who is organising and funding the research? 

The research is organised and funded by Nottingham Trent University. 

 

Who has reviewed the study?  

 

The research is looked at by an independent group of people, called a Research 

Ethics Committee, to protect your interests. This study has been reviewed and 

given favourable opinion by NRES Committee East Midlands - Derby (approval 

number: 154899) and Nottingham Trent University’s Research Ethics Committee 

(Humans).  

 

Further information 

1. General information about research: we would be happy to provide you with 

further details about this and other research projects that we are working on. 

Please contact any member of the research team using the contact details 

below. 

2. Specific information about this research project; if you would like more 

written information about this study we are happy to provide this or if you would 

like to talk about any aspects of this study then please feel free to contact any 

member of the research team using the contact details below. 

3. Advice as to whether you should participate: we would be happy to discuss 

your suitability to participate in this study or alternatively please feel free to 

seek advice from others outside of the research team and/or from a healthcare 

professional. 

4. Who you should approach if unhappy with the study: if you wish to speak with 

someone outside of the research team, please contact Mark Cosgrove Tel: 0115 



 

278 

 

8486691, who is independent of the research program and will take you through 

the complaints procedure. 

 

Contact Details: 

Investigator: 

Maria Papageorgiou, MSc                                     

Email: Maria.papageorgiou2012@my.ntu.ac.uk   

Postgraduate Researcher 

Biomedical, Life and Health Sciences Research Centre 

School of Science and Technology, 

Nottingham Trent University, 

Erasmus Darwin Building, 

Clifton Lane, 

Nottingham, UK. 

NG11 8NS.  

Tel: 0115 8483820 

 

Investigator: 

Daniel Martin, MRes                                                                    

Email: Daniel.martin@ntu.ac.uk   

Academic Associate in Sport Science 

Biomedical, Life and Health Sciences Research Centre 

School of Science and Technology, 

Nottingham Trent University, 

Erasmus Darwin Building, 

Clifton Lane, 

Nottingham, UK. 

NG11 8NS.  

Tel: 0115 8483820 

 

Academic Supervisor: 

Dr Craig Sale, MSc, PhD       

Email: Craig.Sale@ntu.ac.uk   

Reader in Applied Physiology 

Biomedical, Life and Health Sciences Research Centre 

School of Science and Technology, 

Nottingham Trent University, 

Erasmus Darwin Building, 

Clifton Lane, 

Nottingham, UK. 

NG11 8NS.  

Tel: 0115 8483505 

 

  

mailto:Maria.papageorgiou2012@my.ntu.ac.uk
mailto:Daniel.martin@ntu.ac.uk
mailto:Craig.Sale@ntu.ac.uk
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Figure 1: Outline of study design  
 
 
 

 
Figure 2: Time commitment required by each experimental condition  
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Appendix 13. Informed Consent - Studies 3 and 4  

 
Subject Statement of Consent to Participate in the Investigation 

Entitled: 
 

“Effects of short term energy restriction achieved by diet or exercise on bone 
turnover, muscle function and cognition.” 

 
1)  I,                           [your name] agree to partake as a subject in the above study. 
 

2)  I understand from the participant information sheet, which I have read in full, and 

from my discussion(s) with Maria Papageorgiou and/or Dan Martin that this will 
involve my participation in energy restriction for 3 days on two different occasions 
(exercise or diet) and energy balance for 3 days on one occasion. Moreover, this 
study will involve my participation in body composition measurements, muscle force 
production and cognitive function tests and fasting blood samples (20 ml on 6 
occasions) during the study.   

 

3)  It has also been explained to me by Maria Papageorgiou and/or Dan Martin that the 
risks and side effects which may result from my participation are as follows: slight 

bruising due to blood samples, muscle injury due to exercise sessions and side-effects 
of energy restriction.  

 

4)  I confirm that I have had the opportunity to ask questions about the study and, 
where I have asked questions, these have been answered to my satisfaction. 

 

5)  I undertake to abide by University regulations and the advice of researchers 
regarding safety.  

 

6)  I am aware that I can withdraw my consent to participate in the study at any time 
and for any reason, without having to explain my withdrawal. 

 

7) I understand that any personal information regarding me, gained through my 

participation in this study, will be treated as confidential and only handled by 
individuals relevant to the performance of the study and the storing of information 
thereafter.  Where information concerning myself appears within published material, 
my identity will be kept anonymous.  

 

8)  I confirm that I have had the University’s policy relating to the storage and 
subsequent destruction of sensitive information explained to me. I understand that 
sensitive information I have provided through my participation in this study, in the 
form of questionnaires and blood samples will be handled in accordance with this 

policy. 
 

10) I understand that as part of this study I will be consuming a multi-vitamin multi-
mineral supplement.  

 

11) I confirm that I have completed the health questionnaire and know of no reason, 
medical or otherwise that would prevent me from partaking in this research. 

 
Subject signature: …………………………………………………………………    Date:_____________ 
 

Independent witness signature: ……………………………………………    Date:_____________ 
 
Primary Researcher signature: …………………………………………….    Date:______________ 
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Appendix 14. Experimental Diets for Studies 3 & 4  

 

 

 

 

 

 

 

 

Menu 2 CON, E-RES  D-RES  

Milk 500 166 

Weetabix 80 27 

Jellypot 115 115 

Tomato soup 500 166 

Pitta bread 110 36 

Bananas 230 76 

Roast Chicken 
Breast 180 60 

Mayonnaise 40 13 

Salad 70 70 

White Pitta 90 30 

French dressing 50 16 

 

 

 

 

 

 

 

Menu 1 CON, E-RES D-RES 

Milk 570 190 

Weetabix 80 26 

Jellypot 115 115 

Potato and Leek 
Soup 495 165 

Pitta bread 110 36 

Bannanas 210 73 

Tuna 160 53 

Mayonnaise 51 17 

Salad 70 70 

White Pitta 100 33 
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Menu 3 CON, E-RES  D-RES 

Bran Flakes 90 30 

Milk 510 170 

Jellypot 115 115 

Potato and Leek 
Soup 500 166 

Pitta bread 100 33 

Bananas 220 73 

Tikka Chicken 
Breast 180 60 

Mayonnaise 48 16 

Salad 70 70 

Pitta bread 90 30 

French dressing 45 15 

 

 

 

 

 

 

 

 

  

Menu 4 CON, E-RES  D-RES  

Bran Flakes 90 30 

Milk 500 166 

Jellypot 115 115 

Tomato soup 500 166 

Pitta bread 100 33 

Bananas 220 73 

BBQ Chicken 
Breast 160 53 

Mayonnaise 39 13 

Salad 70 70 

Pitta bread  100 33 

French dressing 45 15 
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Appendix 15. Combined data for combined OCP users and EU women 

Table 1. Participant characteristics- combined data for combined OCP users and EU women 

  Total (n=20) 

Demographics  

Age (y) 25.5 (3.7) 

Height (m) 1.65 (0.05) 

Body mass (kg) 59.58 (6.0) 

BMI (kg ·m2) 21.8 (2.0) 

Body composition  

Body fat (%) 27.8 (4.7) 

Lean body mass (kg) 41.2 (3.6) 

Fat free mass (kg) 43.5 (3.4) 

BMD (g·cm2) 1.18 (0.08) 

Training characteristics  

VO2 max (ml·kg-1·min-1) 48.9 (5.3) 

VO2 max   (ml·kg LBM-1·min-1) 70.4 (6.1) 

Physical activity(MET-min·week-1)                              4068 (1921) 

Dietary and EE characteristics   

Habitual DEI (kcal·d-1)1 2076 (372) 

Lifestyle EE (kcal·d-1) 398 (126) 

24-hour EE(kcal· kg ·d-1)1 2015 (183) 

Values are expressed as means (1SD). 
1Analysis performed in 17 participants with complete data. 

BMI: Body Mass Index; BMD: Bone mineral density: VO2max: Maximum oxygen uptake; DEI: Dietary Energy 

Intake; EE: Energy Expenditure; RMR: Resting Metabolic Rate; LBM: Lean Body Mass; MET: Metabolic 

equivalents; OCP: Combine Oral Contraceptive Pill Users; EU: Eumenorrheic. 
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Table 2. Baseline concentrations of BTMs, markers of calcium metabolism and regulatory 

hormones-combined data for combined OCP users and EU women. Data are presented as the 

mean BASE values prior to CON, D-RES and E-RES in EU women and combined OCP 

users together.   

 Total (n=20) 

BTMs 

β-CTX (µg·L-1) 0.44 (0.17) 

P1NP  (µg·L-1) 48.2 (15.2) 

BT ratio  1.14 (0.25) 

Markers of calcium metabolism  

PTH (pg·mL-1) 3.9 (1.0) 

ACa (mmol·L-1) 2.31 (0.06) 

Mg (mmol·L-1) 0.80 (0.03) 

PO4 (mmol·L-1) 1.28 (0.10) 

Regulatory hormones 

IGF-1 (mmol·L-1) 203.4 (44.5) 

T3 (mmol·L-1) 1.66 (0.33) 

Leptin (ng·mL-1) 7.4 (3.3) 

Insulin (pmol·L-1) 39.7 (16.3) 

Values are expressed as means (1SD). 

β-CTX: C-terminal telopeptides of type I collagen; P1N: Amino-terminal Pro-peptides of Type 1 Procollagen; 

BT ratio: Bone turnover ratio; PTH: Parathyroid hormone; Mg: Magnesium; ACa:  Albumin adjusted Calcium; 

PO4: Phosphate; T3: Triiodothyronine; IGF-1: Insulin-like growth factor 1; GLP-2: Glucagon-like peptide 2; 

OCP: Oral contraceptive pill; EU: Eumenorrheic; CON: Controlled; D-RES: Diet-induced restricted trial; E-

RES: Exercise-induced restricted trial. 
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Table 3. BTMs expressed as concentrations, percentage change from BASE and AUC in 

CON, D-RES and E-RES trials in total sample of combined OCP users and EU women. 

Values at D2 were used as BASE prior to each experimental condition.  

 Total (n=20) 

CON D-RES E-RES 

BASE D6 BASE D6 BASE D6 

β-CTX       

µg·L-1  0.44 

(0.18) 

0.45 

(0.17) 

0.45 

(0.16) 

0.47 

(0.16) 

0.44 

(0.19) 

0.43 

(0.19) 

%BASE change  3.9 

(16.1) 

 7.5 

(20.0) 

 3.8 

(34.3) 

AUC(%BASE x d)1  7.8 

(32.2) 

 14.9 

(40.0) 

 7.7 

(68.6) 

P1NP       

µg·L-1 48.8 

(16.2) 

46.1 

(11.9) 

46.8 

(15.8) 

41.6 

(10.7) 

48.9 

(15.6) 

46.1 

(14.7) 

%BASE change  -3.0 

(12.0) 

 -6.4 

(26.2) 

 -3.9 

(21.9) 

AUC(%BASE x d)1  -6.1 

(24.0) 

 -12.8 

(52.3) 

 -7.8 

(43.9) 

BT ratio       

- 1.17 

(0.29) 

1.08 

(0.19) 

1.08 

(0.29) 

0.90 

(0.16) 

1.18 

(0.35) 

1.10 

(0.23) 

%BASE change  -4.5 

(18.6) 

 -10.5 

(27.6) 

 1.0 

(40.0) 

AUC (%BASE x d)1  -9.0 

(37.2) 

 -20.9 

(55.2) 

 1.9 

(80.0) 

Values are expressed as means (1SD);  
1AUC calculated for each experimental condition from BASE to D6.   
*denotes a significant difference from BASE at the same condition (P<0.05)  

β-CTX: C-terminal telopeptides of type I collagen; P1NP: Amino-terminal Pro-peptides of Type 1 Procollagen; 

BT ratio: Bone turnover ratio; CON: Controlled trial; AUC: Area under the curve; D-RES: Diet-induced E-

RES:Exercise-Induced Restricted trial; BASE: Baseline; OCP: Oral contraceptive pill; EU: Eumenorreic. 
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Table 4. Markers of calcium metabolism expressed as concentrations, percentage change 

from BASE and AUC in CON, D-RES and E-RES trials for total sample of combined OCP 

users and EU women. Values at D2 were used as BASE prior to each experimental 

condition. 

 Total (n=20) 

CON D-RES E-RES 

BASE D6 BASE D6 BASE D6 

PTH       

pg·mL-1 3.70 

(1.09) 

3.41 

(0.64) 

3.96 

(1.50) 

3.44 

(0.77) 

4.13 

(1.27) 

3.58  

(0.81) 

%BASE change  -3.1 

(22.8) 

 -5.5 

(28.2) 

 -8.0 

 (28.3) 

AUC (%BASE x 

d)1 

 -6.2 

(45.6) 

 -11.1 

(56.3) 

 -16.0 

(56.6) 

ACa        

mmol·L-1 2.32 

(0.07) 

2.32 

(0.07) 

2.29 

(0.06) 

2.32 

(0.09) 

2.30 

(0.07) 

2.28 

(0.06) *,**,† 

%BASE change  0.1 

(2.0) 

 1.1 

 (2.3) 

 -1.0 

(2.0) 

AUC (%BASE x 

d)1 

 0.3 

(3.9) 

 2.1  

(4.6) 

 -1.9 

(4.1)† 

Mg        

mmol·L-1 0.81 

(0.04) 

0.81 

(0.05) 

0.80 

(0.03) 

0.81 

(0.05) 

0.80 

(0.05) 

0.81 

(0.04) 

%BASE change  -0.2 

(2.9) 

 1.0 

(5.3) 

 1.4 

(5.5) 

AUC (%BASE x 

d)1 

 0.4 

(5.7) 

 2.0 

(10.7) 

 2.8 

(10.9) 

PO4       

mmol·L-1 1.28 

(0.12) 

1.23 

 (0.13) 

1.27 

(0.13) 

1.25 

(0.12) 

1.29 

(0.13) 

1.17 

(0.09)* 

%BASE change  -3.7 

 (10.0) 

 -1.0 

(11.5) 

 -8.6 

(9.1) 

AUC (%BASE x 

d)1 

 -7.3 

 (20.1) 

 2.0 

(23.0) 

 -17.1 

(18.2) 

Values are expressed as means (1SD). 
1AUC calculated for each experimental condition from BASE to D6.   
*denotes a significant difference from BASE in the same condition (P<0.05). 
**denotes a significant difference from CON at the same timepoint (P<0.05). 
†denotes a significant difference from E-RES at the same timepoint (P<0.05). 

PTH: Parathyroid hormone; Mg: Magnesium; ACa:  Albumin adjusted Calcium; PO4: Phosphate; BASE: 

Baseline; AUC: Area under the curve; CON, Controlled trial; D-RES, Diet-Induced Restricted trial; E-RES: 

Exercise-Induced Restricted trial; OCP: Oral contraceptive pill; EU: Eumenorrheic. 
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Table 5. Regulatory hormones expressed as concentrations, percentage change from BASE 

and AUC in CON, D-RES and E-RES trials for total sample of combined OCP users and EU 

women. Values at D2 were used as BASE prior to each experimental condition. 

 Total (n=20) 

CON D-RES E-RES 

BASE D6 BASE D6 BASE D6 

T3       

mmol·L-1 1.65 

(0.35) 

1.67  

(0.18) 

1.67 

(0.34) 

1.45  

(0.33) *,**,† 

1.65 

(0.33) 

1.62 

(0.40) 

%BASE change  2.0 

(14.0) 

 13.2  

(9.9) 

 1.7 

(13.0) 

AUC (%BASE x d)1  3.9 

(28.0) 

 -26.5 

(19.9) **,† 

 -3.4 

(26.0) 

IGF-1       

mmol·L-1 200.7 

(42.9) 

205.3 

(47.8) 

204.8 

(47.1) 

177.1 

(34.3) *,**,† 

204.7 

(55.2) 

165.4 

(41.3)*,** 

%BASE change  2.9 

(16.3) 

 -12.7 

(8.6) 

 -17.1 

(17.3) 

AUC (%BASE x d)1  5.9 

(32.6) 

 -25.4 

(17.1)** 

 -34.4 

(34.6)** 

Leptin1       

ng·mL-1 7.2 

(3.8) 

5.1 

(2.8)* 

6.9 

(3.2) 

2.7 

(1.7) *,** 

7.0 

(4.2) 

3.2 

(2.4) *,** 

%BASE change  -26.0 

(21.0) 

 -58.8 

(16.5) 

 -53.5 

(22.4) 

AUC (%BASE x d)1  -51.9 

(42.0) 

 -119.6 

(32.9)** 

 -107.0 

(44.7)** 

Insulin       

ng·mL-1 40.9 

(30.8) 

36.6 

(18.5) 

35.9 

(13.1) 

28.2 

(13.4) 

42.5 

(27.7) 

23.2 

(10.1)*,** 

%BASE change  2.2 

(48.2) 

 -13.2 

(50.8) 

 -29.5 

(43.3) 

AUC (%BASE x d)1  4.3 

(96.3) 

 -26.4 

(101.7) 

 -59.1 

(86.7) 

Values are expressed as means (1SD). 
1AUC calculated for each experimental condition from BASE to Day 6.   
*denotes a significant difference from BASE in the same condition (P<0.05). 
**denotes a significant difference from CON at the same timepoint (P<0.05).                                                                  
†denotes a significant difference from E-RES at the same timepoint (P<0.05). 

T3: Triiodothyronine; IGF-1: Insulin-like growth factor 1; BASE: Baseline; AUC: Area under the curve; CON: 

Controlled trial; D-RES, Diet-induced restricted trial; E-RES: Exercise-induced restricted trial; OCP: Oral 

contraceptive pill; EU: Eumenorrheic. 

 

 

 

 


