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 

Abstract—The development and testing of a robotic system to 

play billiards is described in this paper. The last two decades 

have seen a number of developments in creating robots to play 

billiards. Although the designed systems have successfully 

incorporated the kinematics required for gameplay, a system 

level approach needed for accurate shot-making has not been 

realized. The current work considers the different aspects, like 

machine vision, dynamics, robot design and computational 

intelligence, and proposes, for the first time, a method based on 

robotic non-prehensile manipulation.  High-speed video tracking 

is employed to determine the parameters of balls dynamics. 

Furthermore, three-dimensional impact models, involving ball 

spin and friction, are developed for different collisions. a three 

degree of freedom manipulator is designed and fabricated to 

execute shots. The design enables the manipulator to position the 

cue on the ball accurately and strike with controlled speeds. The 

manipulator is controlled from a PC via a microcontroller board. 

For a given table scenario, optimization is used to  search the 

inverse dynamics space to find best parameters for the robotic 

shot maker. Experimental results show that a 90% potting 

accuracy and a 100–200 mm post-shot cue ball positioning 

accuracy has been achieved by the autonomous system.  

 
Index Terms—Intelligent systems, game-playing robots, non-

prehensile manipulation, object tracking, computer vision, 

manipulators, impact dynamics, intelligent robots, educational 

robots 

 

I. INTRODUCTION 

HE NEED FOR autonomous systems designed to play both 

strategy-based and physical games comes from the quest 

to model human behavior under tough and competitive 

environments that require human skill at its best. In the last 

two decades, and especially after the 1996 defeat of the world 

chess champion by a chess-playing computer, physical games 

have been receiving greater attention. Robocup
TM

, i.e. robotic 

football, is a well-known example, with the participation of 

thousands of researchers all over the world. The robots created 

to play the billiards family of games  are placed in this context 

[1]-[2]. The billiards family has a number of variants of which 

snooker and pool are the most common. The former is quite 

popular in Europe and has spread to the Far East, hailing TV 
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audiences of hundreds of millions for major tournaments in 

the last few years [3], while the latter is widely played 

throughout North America. Although both the games have 

different rules for pocketing the balls and slightly varied table 

and ball sizes, from an autonomous game playing robot’s 

point of view, the challenges in terms of ball manipulation, 

vision, and strategy are entirely similar. Hence, snooker, to 

play which a robot is considered presently, is frequently 

referred to as billiards, in a general sense, in this paper.  

Snooker, as well as being a game of strategy, also requires 

accurate physical manipulation skills from the player, and 

these two aspects qualify it as a potential game for 

autonomous system development research. Although research 

into playing strategy in billiards has made considerable 

progress by using various artificial intelligence methods [4, 5], 

the physical manipulation part of the game is not fully 

addressed by the robots created so far. This work looks at the 

different ball manipulation options snooker players use, like 

the shots that impart spin to the ball in order to accurately 

position the balls on the table. In this regard, predicting the 

ball trajectories under the action of various dynamic 

phenomena, such as impacts and friction, is a key 

consideration of this paper. 

The paper continues as follows. In Section II, a critical 

review of the current systems available to play billiards is 

provided. Then, some machine vision-based experiments on 

ball tracking to determine the dynamics of billiards are 

described in Section III. This is followed by Section IV, which 

outlines the various dynamics of balls on the table, also 

incorporating the effects of 3-dimensional ball spin. Section V 

treats the design, fabrication and integration of the proposed 

manipulator. Afterwards, in Section VI, a new approach to 

strategic shot selection is proposed by integrating the key 

aspects described in the previous sections. Section VIII 

concludes the paper by providing the results from experiments 

with the robot manipulator.    

II. A REVIEW OF BILLIARD ROBOTS 

In the mid-late 90s, Bristol University developed a robotic 

snooker player called the Snooker Machine [1]. The robot 

consists of a PUMA 560 manipulator arm suspended from an 

SKF Linear Drive System   that is mounted as a gantry system 

above the table. The PUMA arm carries a cue, powered by 

pneumatics. The vision system consists of an overhead camera 

to determine the position of balls on the table and another 

camera mounted on the cue holder to accurately position the 

cue on the cue ball. Considerable attention has been on 

developing a playing strategy for the robot. The robot’s 

performance is not discussed, except for some special shots, 

like the ones where the motions of  the balls in impact are 

confined to a straight-line. The strategy subsystem treats 
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various types of impacts by using primitive collision models, 

like the principle of conservation of linear momentum [6].  In 

another work, a prismatic, XYZ overhead gantry robot has 

been used in conjunction with a revolute end effector to play 

pool [7]. When compared to that of Chang [1], the main 

difference is on shot selection based on fuzzy-based reasoning 

[7]. Other works too have had XYZ gantries attached to the 

tables themselves, e.g. Cheng et al. [8], although such 

mounting prevents humans and the robots sharing the same 

table for any competitive gameplay. Another minimalistic, 2 

DOF robot consisting of a motorized cue and its yaw control is 

developed to experiment a certain machine-learning technique 

called ‘reinforcement learning’ with it [9].  

A major R&D effort to create a pool playing robot, named 

‘Deep Green’, has been going on for the last decade at 

Queen’s University, Canada [10]. Once again, an overhead 

industrial gantry robot carries a suspended robot manipulator, 

to which a cue stick manipulator is attached (Figure 1). A 

custom-designed linear manipulator is used to drive the cue 

stick. The spatial positioning accuracy of the robot is reported 

to be 0.6 mm and a ball potting accuracy of 67% is claimed 

for the straight shots [10]. According to their later publication, 

the robot has pocketed runs of four consecutive balls [2]. 

However, ball pocketing accuracy and cue ball post-

positioning accuracy, which are crucial metrics for a 

successful and continued gameplay,  are not provided. In a 

recent work an anthropomorphic robot has been developed to 

play pool [11] The proposed kinematic solution resembles that 

of a human. However, for the modeling of billiard dynamics 

the work resorts to primitive impact models such as that of 

Wallace and Schroeder [12]. More importantly, the sidespin of 

balls has not been captured in the impact models used. 

The robots configurations found in the literature, be it the 

gantry based configurations or the humanoid, offer perfectly 

suitable kinematic solutions for shot executions. The vision 

subcomponents of the described systems appear to be apt for a 

billiard robot. However, a key aspect of the game is in striking 

the cue ball by imparting different spins and speeds on it by 

the cue. The existing billiards systems have handled straight 

and angled shots whereby the speed and the yaw angle of 

striking with the cue have been the only parameters controlled 

with the robot. Whereas, billiard players obtain the required 

spin and speed combination by choosing the right point on the 

cue ball to strike. The resulting spin and speed of the cue ball, 

while  potting the object ball, leaves the former at an 

advantageous spot on the table to maximize the chance of the 

next strike and so on. This maneuvering is explained in Fig. 2, 

where depending on the speed and spin imparted, the cue ball 

ends up in entirely different locations on the table and this 

ability is vital for any competitive billiard robot of the future.  

The reasons for other researchers having not considered the 

option of spin manipulation of balls is manifold. The spin 

dynamics of balls itself has not been discussed thoroughly in 

the physics literature that addresses spherical bodies. 

Especially, the impact dynamics of spinning spherical bodies 

is a special problem that has not be treated comprehensively in 

other literatures for the roboticists to make use of. Moreover, 

there are a few physical parameters involved in spin dynamics 

whose values must be known for a robot to work well. A 

similar situation is found in the non-prehensile robotic 

manipulation, where the exact dynamic information of the 

environment is necessary for a robot to manipulate an object 

without grasping it [13,14,15,16]. This is the background in 

which this research work is conducted.   

III. VISION AND HIGH-SPEED TRACKING OF BALLS 

A Riley Renaissance professional snooker table of size 10   

5 ft
2
 is used for all experiments described in this paper. A 

single overhead camera is sufficient to track the balls as 

trajectories are confined to the plane of the table. Snooker is 

played with a  cue ball in white and 21 object balls of 

different, but uniform colors, sans any patterns. Hence, a color 

camera is used. The chosen camera, PixeLINK PL-B776F, is 

mounted over the table, pointing perpendicularly down. The 

camera has a resolution of 3.15 megapixels and contains the 

region of interest (ROI) option with which it can capture up to 

1000 frames per second. The camera images the table area of 

approximately 5   6 ft
2
 (1.52 x 1.83 m

2
) area to a 1mm spatial 

resolution.  

 
Fig. 1.  Gantry-based pool playing system [2] 
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Fig. 2.  Geometry in cueing (a), areas to strike on the cue ball and resulting 

spins – horizontal view of the player [17] (b) and final post-shot cue ball 

locations after a ball-pot for different top and side spins imparted on the cue 
ball – top view of the table [22] (c) 
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The white cue ball is used for most of the ball tracking 

experiments. For interactions involving the cue and the cue 

ball, a part of the cue is also tracked. The cue, of bright-

colored wood, is easy to track (see Figure 3). The assumption 

made in tracking the cue is, it remains close to the horizontal 

and is at the level of the ball centers. Some of the tracking 

experiments to measure linear motion parameters are 

described, in detail, in our earlier paper [17]. The parameters 

measured were sliding and rolling coefficients of friction,  

between a ball and the table, and the coefficients of restitution 

between two snooker balls and a ball and the table side rails. 

Most of the tracking is performed at 120 frames per second. In 

addition to the results given in our earlier paper, a circular 

black pattern is put on the cue ball, as shown in the right of 

Fig. 3. The ball is spun sideways about the vertical (i.e. 

sidespin) from a stationary point and is tracked to measure the 

resistance of the table cloth to sidespin. The resistance to 

sidespin, in terms of rotational deceleration, is found to be 22 

rad/s
2
.  

IV. DYNAMICS 

A number of different dynamic phenomena is involved in 

billiards. The first one is impulse between the cue and the cue 

ball. After cueing, the cue ball starts to slide and roll on the 

table. Then it either impinges another ball or bounces off a 

cushion (i.e. side rail of the table).  

A. Cueing 

Referring to Figure 2(a), when the cue inclination ψ is 

considerable,  a significant amount of down force is generated 

at the interface, denoted by point G. This downward force 

gives rise to normal forces at C, the point representing the 

interface between the cue ball and the table.  Hence, at G and 

C, the cue ball will be subject to both normal and frictional 

impulses making the analysis complicated, as 

comprehensively worked out by [18]. In addition, there are 

other phenomena such as cue ball squirt [19], where the ball 

deviates from its ideal movement direction. This  angle is 

denoted by α in Figure 2(a).   

B. Ball motion on the table 

A sphere, such as a billiards ball, that rolls on a very hard 

surface makes a point-wise contact, as shown in Figure 4(a). 

However, when either the sphere or the rolling surface are 

deformable the contact is not through a point, but via a 

surface. In billiards, the balls are hard and the table is laid with 

a soft cloth, resulting in contact scenario shown in Figure 4(b). 

Here, no consideration is given to the sidespin of the ball as it 

is assumed not to affect the forward ball motion. This is 

known as decoupled motion, where sidespin is considered to 

be independent of the linear velocity, V or the topspin, ω, of 

the ball.  

A ball is said to be rolling when     , where R is the 

radius of the snooker balls (Figure 4a). If the ball and the 

surface are non-deformable, as in Figure 4(a), the ball will be 

in perpetual rolling motion, as the friction forces between the 

surfaces in contact are zero for the condition     . 

However, when one of the surfaces is deformable - an 

example is shown in Figure 4(b) - the ball speeds, V and  , 

are gradually reduced in the rolling phase. In billiards, the 

table cloth that makes up the top surface of the table is 

deformable. Referring to Figure 4(b), the normal force FN, 

from the surface does not go through the center of the ball 

[20]. The horizontal component of the force FN, FNsinβ, acts 

against the motion, similar to friction force, reducing the linear 

speed, V. Moreover, the action of FN  also introduces a torque 

in a direction opposite to that of the direction of rotation of the 

ball, introducing an angular deceleration. Although the 

decelerations are not due to friction, an equivalent friction 

coefficient of μr can be defined for the rolling condition of the 

ball. The linear and rotational decelerations are given by     

and      , respectively, where   denotes gravitational 

acceleration.   

Rolling usually takes place towards the latter part of ball 

motion, before it comes to a stop. At the start, the ball slides 

on the table, in general, and referring to Figure 4,     . 

Here, the regular friction coefficient,   , affects the ball 

motion. In snooker and billiards,    is 10 times larger than     

[17]. Therefore, to analyze the sliding phase, one can 

disregard the effects of rolling. In sliding, the rate of change of 

speeds are given by     and 
    

  
 , for the linear and angular 

motions respectively. When     , the ball has linear 

deceleration and angular acceleration. Conversely, when 

    , the ball is under linearly acceleration and rotational 

deceleration in its rolling motion, and this phenomenon is 

called the ‘overspinning’ of the ball.  

Given initial conditions, the above expressions for linear 

and angular accelerations of balls allow the determination of 

the instantaneous values of the linear ball speed and top (or 

bottom) spins.   

The estimation of the sidespin of the ball, at any time 

instant, is equally important, mainly from the viewpoint of 

analyzing ball-ball collisions and ball-cushion impacts, where 

sidespin is a key parameter. As mentioned in Section III, the 

table resistance to the sidespin has been measured as 22 rad/s
2
. 

This resistance acts to retard the sidespin, irrespective of 
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(a)                                                 (b) 

Fig. 4.  Ball motion on non-deformable (a) and deformable (b) surfaces 

 
Fig. 3.  Tracking features (top row) and two tracked results at 120 and 150 

frames per second (bottom row) 
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whether the ball has left- or right-spin. The measured 

resistance provides a means to estimate the spin at time 

instant, given the sidespin value at    . Referring to Figure 

2(b), for balls under right-spin, the change of sidespin,   will 

be negative, and for left-spinning balls, the change will be 

positive (the right-hand notation is used here to measure 

spins). 

 

C. Collision between two balls 

Billiard collisions have been traditionally analyzed without 

incorporating the effects of ball spin [12,18]. The present 

authors reported a numerical model considering the 3-

dimensional ball spin that set up a number of additional forces 

as seen in Figure 5(a), when compared to the no-spin models 

[21]. Furthermore, the curved, sliding trajectories of the two 

balls, that happen as a consequence of the impacts, are also 

analyzed [21]. It is also shown, experimentally, that the 

proposed model performed better when compared to the 

previous models [21].  

D. Collision between a ball and the side rails 

Similar to the description in the previous section, the 

collision between a snooker ball and the side rails is a complex 

dynamic phenomenon, especially when the ball has 3-

dimensional spin impact as shown in Figure 5(b). For the first 

time, the authors of this paper presented a method to analyze 

such collisions, under the assumption of negligible cushion 

deformation during the impact [22]. Similar to collision 

between two balls, numerical methods are employed.  

V. ROBOT MANIPULATOR  

A. Robot design 

The material and the geometrical shape of the cue and other 

features such an elastic cue-tip serve a number of purposes 

including the suppression of vibration at the time of impact 

with the cue ball. In order to prevent any unwanted dynamics 

being transferred to the cue ball, a regular snooker cue is 

proposed to be used with the robot. In addition, to allow the 

regular transverse vibrations of the cue stick at impact, the 

holding conditions of the cue, which requires a firm grip with 

the back hand a guiding through the extended front hand, are 

kept unchanged. The other robots have had either a modified 

cue or some other mechanical contraption to strike the ball, 

e.g. Chang [1], Long et al. [10] and Alian et al. [7]. A rack and 

pinion system is designed for the linear manipulation of the 

cue. Based on the requirement of a maximum cue ball velocity 

of 4 m/s, required peak force, power and rotational speed 

necessary from the drive motor are estimated [23]. For these 

requirements a servo system from SureServo
TM

 called the “200 

W Low Inertia System” is selected (see Figures 7 and 8). The 

servomotor is connected to the pinion via a 3:1 reduction 

gearbox from Shimpo Drives
®

. A planar (i.e. two-axis) stepper 

drive, AEROTECH
®
 ATS302, is used so that the cue launcher 

can be mounted on it to position on the ball to impart different 

spins on the ball. The mounting detail is seen in Figure 8(b). 

Depending on the movement effected by the stepper drive the 

whole cue launcher moves in the vertical plane normal to the 

cueing direction. There is also a small tilt of 6.5° introduced in 

the cue orientation about the horizontal plane.  

B. System description 

The speed of cueing, thereby the rotational speed of the 

servo motor, is kept constant throughout the stroke. The speed 

of the servomotor, hence the cue speed, is controlled by an 

IENSYS
®
 microcontroller board, based on PIC18F458, via a 

terminal block called the ZIPLink
®
 kit.  

The IENSYS
® 

board’s four digital I/Os are programmed to 

send synchronized, phase shifted pulses to emulate the four 

output channels of a quadrature encoder thereby setting the 

speed requested from the servomotor. The rate of the pulses 

sent out  from digital I/Os is set on the microcontroller board 

from the main program running on a PC by RS-232 

communication. By changing the phase sequence of the 

pulses, the cue launcher is retracted to its original position. 

Visual Basic
®

 6.0 (VB) is used as the programming language 

for the main control program. The vision algorithms are 

written as M-files in MATLAB
®
. These M-files are then 

called from VB using a function procedure called MATLAB
® 

COM component, which is generally used to integrate 

MATLAB
®
 with other programming environments. 

When the pulse rate is at its highest, the linear striking 

velocity of the cue reaches 2.75 m/s, a typical high-end cue 

velocity found in a normal game of snooker. The rate at which 

the pulses are sent out from the microcontroller is selected by 

a string consisting of a 3 digit number appended with a ‘p’ 
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Fig. 5.  The forces acting on two balls during the impact [21] and the forces 

setup between a ball and the cushion [22] 

 
 

Fig. 6.  A SolidWorks rendering of the cue launcher design 
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from the PC through its serial port to the serial interface of the 

microcontroller. This 3-digit string, which ranges from‘001’ 

to‘200’, selects the intended pulse rate. String ‘001p’ 

corresponds to a cue velocity of 2.75 m/s and ‘200p’ achieves 

0.3 m/s. This resolution of the cue velocity can position the 

cue ball, theoretically, to a 15mm spatial accuracy on the 

table, but the repeatability characteristics of the robot, as 

described later, will also have an effect on the positioning 

accuracy.  

The stepper drive is driven from the main VB program via 

the DB-25 connector of the PC. Figure 8 shows the overall 

hardware configuration of the system. A thin-film force sensor 

Flexiforce
®
 A201-100 is also integrated in the cue, but is only 

used for some off-line experiments.    

C. Tests with the robot 

1) Human and robot shots 

In order to compare robot and human cueing performance, a 

number of high-speed video tests measuring the cue and cue 

ball speed are carried out. The results of the tests are given 

in Figure 9(a), where it can be seen that the robot is 

performing on a par with human shots. The repeatability of 

the robot for shots up to a cue speed of 2.8 m/s is found to 

be around ±50 mm, on average (snooker ball diameter is 

52.4 mm).    

2) Dynamics of cueing 

For a given cue manipulation parameters, i.e. cue speed and 

the position on the cue ball where the cue hits, initial 

motion parameters such as ball velocity and ball spin must 

be determined to predict the subsequent motion of different 

balls on the table. The theoretical cueing model proposed by 

de la Torre Juarez [18] incorporates all of the effects that 

are present during cueing. However, the cue tip, being made 

out of leather or synthetic materials, is highly elastic. 

Hence, it is very difficult to determine the frictional forces, 

and their directions, set up between the cue ball and the cue 

tip. For this reason, it is decided to pursue an experimental 

approach to determine the dynamics.  

The robot manipulator and the cue balls are initially set to 

have x’0=0 and y’0=0, where x’0 and y’0 are the coordinates 

of the point at which the line of strike of the cue intersects 

the Xo’Yo’ coordinate system, refer to Figure 2(a).  Five 

shots of different speeds at approximately 0.5 m/s intervals 

(in the range of 0.5 m/s to 2.5 m/s) are executed for the 

same ball position, by replacing the ball back to the initial 

position after each shot (a guiding structure is used for this 

purpose). For each shot, the ball is placed such that the 

black pattern, as shown in Figure 3, for spin tracking, is 

seen by the overhead camera and the ball motion is 

recorded at 180 fps. Then y’0 is varied from -12 mm to 12 

mm in increments of 2 mm and for each y’0, x’0 is varied 

                       
                        (a)                                                         (b) 

               

x’0

y’0

VC0

V0

 
                             (c)                 (d) 

Fig. 9.  Human and robot cueing comparison (a), experimental plots for the 

velocity (b) and squirt(c) of the cue ball against cue the position of cue 
impact for the velocity string ‘070p’ (cue speed ~ 2.0 m/s) and the neural 

network predicting cue ball speed (d) 
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Fig. 7.  The designed robotic manipulator, with the passive frontal cue 
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Fig. 8.  Overall hardware configuration of the system 
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from zero to 12 mm also in 2 mm increments. For each 

combination of x’0 and y’0, 5 shots were played. Only right 

spin shots are played, as the cueing dynamics have a 

symmetry about the x’0=0 line, the results obtained for right 

spins of the ball can be easily translated to left spins. Spin 

tracking in the face of linear ball movements is observed to 

be very unreliable. Hence, only the resulting ball velocities 

and cue ball squirt, plotted in Figures 9(b) and 9(c) 

respectively, are utilized for subsequent analysis. As the 

data for different cue speeds is essentially 3-dimensional in 

nature, a back-propagation feed-forward neural network 

(NN) is trained with the data to predict resulting cue ball 

speed. A 3-5-1 neuron configuration, as seen in Figure 9(d), 

is found to be suitable for the task. Another similar NN is 

designed to predict ball squirt as well.  

In the absence  of any reliable experimental data for initial 

spins of the cue ball, an alternative way has to be found to 

estimate ω
T

0 and ω
S

0, i.e. top and side spins, respectively. 

Researchers have often used the assumption of the cue tip 

gripping the cue ball during their impact [19,24]. This is 

largely owing to the fact the cue tip is well chalked before 

each shot. The tip has good frictional properties, and it is 

also flexible, hence the cue tip is assumed to grip the ball 

surface as soon as the cue and the cue ball come into 

contact. For a cue inclination angle of 6.5°, it is shown that 

the friction force setup between the cue ball and table 

during cueing is 2% of the cueing force [23], and is 

neglected in obtaining ω
T

0 and ω
S

0. Now, for an initial cue 

ball velocity of V0, the initial ball spins are,   

 

                                    
   

   
   

                                        (1a) 

                                    
   

   
   

                                        (1b) 

 

Where,   
  and   

 are the initial point of contact between the 

cue tip and the ball in the X’Y’ coordinate system shown in 

Figure 2(a). For a given   
  and   

 , the values of   
  and   

  

can estimated from the geometry given in Figure 2(a) and 

using cue tip radius of 10 mm. This concludes the 

estimation of initial ball velocities and spins immediately 

after cueing.   

VI. MANIPULATION PROBLEM 

The artificial intelligence (AI) part of the system always 

makes decisions regarding which object ball has to be played 

next, the pocket in which the object ball must to be potted and 

where to leave the cue ball in order to make the next shot 

according to the overall game plan (this is discussed in Section 

2.1). Thus, for a given initial cue ball location, CI , as depicted 

in Figure 10 (only a part of the table is shown there), the 

decision to play the ball O1 into the pocket P1 and then to 

leave the cue ball in or very close to the desired ball location 

CD has already been taken by the decision-making system. 

These results are assumed to be readily available, as the 

system described in this paper is devoid of the AI component.  

A. Problem definition 

Referring to Figure 10, for a given cue ball location (CI), 

targeted object ball (O1) and pocket (P1) combination, and to 

attain a certain desired final cue ball location (CD), the task is 

to determine the initial required parameters of the ball motion, 

given by V0, ω
T

0, ω
S
0 and θ, and thereby establish the robot’s 

manipulation parameters VC0, x’0, y’0 and θC, the last being the 

cueing direction of the cue manipulator. For the proposed 

robot, θC cannot be adjusted automatically, as no swivel DOF 

is assigned to the robot. Hence, the platform is aligned 

manually with the feedback from the overhead camera. For the 

optimal shot parameter selection, both the shot configuration 

shown in Figure 10 as well as the most basic shot, where no 

cue ball – cushion impact takes place, are considered. For a 

billiards robot, there can be other additional constraints such 

as other balls very close to the general area of trajectories that 

limit the possible ball trajectories, and hence the solution 

space, further. However, the fundamental problem, as defined 

above, is treated here and the proposed methodology can be 

easily extended to include any additional constraints.  

B. Model for forward dynamics 

For the ball trajectory shown in Figure 10, the estimation of  

forward dynamics is as presented in Figure 11.  

C. Solution methodology 

For positioning flat objects (axi-symmetric and polygonal 

ones) on a plane with the action of sliding friction, Huang et 

al. [25] and Han and Park [26] use inverse numerical 

algorithms. The flowchart representing the forward dynamics 

of the ball, given in Figure 11, shows that some of the 

90
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Fig. 10.  Typical ball trajectory in snooker  

 
 

Fig. 11.  Forward dynamics  

Page 6 of 8IEEE Transactions on Mechatronics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

7 

dynamics are not explicitly expressed by equations, but by 

numerical procedures. Furthermore, there may arise situations 

where, due to the properties inherent to the dynamics of the 

system, an inverse solution does not exist. Hence, the direct 

inverse solution based approach is ruled out. 

For a given positioning task, instead of finding a direct 

inverse solution, the manipulation space can also be searched 

by using the forward dynamics models. A possible solution 

can be found by trying to reduce the error in positioning, using 

a forward motion model of the object, whilst satisfying any 

possible constraints on the object motion. Various 

methodologies have been used in this regard. The major types 

of solutions used by various researchers are nonlinear 

optimization [13,14,15], iterative learning control [16] and 

machine learning [27]. 

An optimization-based approach is proposed here to 

position the balls on the table. The optimization function will 

have to be a composition of spatial errors between the actual 

positions where the balls will end up for a given shot 

parameters, and the desired ball locations. The conditions to 

ensure that the object ball is potted are also a part of the 

problem. This is generally known as nonlinearly constrained 

optimization, and can be defined as [28], by referring to 

Figure 10, 

For 
4q  and also subject to the conditions      2.2 

m/s, √(  
 )  (  

 )   0.5R (for no mis-cueing to occur) and 

            with      and      ensuring that cue ball 

C1 will hit the object ball O1, 

Minimize  ( )  (   
      

)
 
  (   

      
)
 
, 

subject to [ ( )]  [ ], where,   [      
    

    ]       (2) 

 

The matrix condition [ ( )]  [ ] consists of two 

elements. This constraint ensures that the object ball is potted 

by imposing conditions that the trajectory segment O1OF 

should go up to the pocket P1 (or go past it) and that the 

minimum distance between the line segment and the center of 

P1 must be less than 55 mm (for the ball to fall into the 

pocket). Since  qF  is not differentiable, a derivative-free 

optimization method must be used. Under similar conditions, a 

quasi-Newtonian method has been used by Li and Payandeh 

[14] for planar sliding objects and by Lynch and Black [15] 

for a batting manipulator. For the present problem, Genetic 

Algorithms (GAs) are used. Ball’s forward dynamics shown in 

Figure 11 is coded as a M-function in MATLAB with q, as 

defined in Equation 6, as input. The GA-based optimization is 

performed in the Matlab
®
 Optimization Toolbox.  

VII. EXPERIMENTAL RESULTS 

Using the overhead camera, the pocket locations on the part 

of the table that is in the field of view of the camera, and the 

cushion (i.e. side rail) lines are established. The initial cue ball 

location is determined using the camera. A red ball is used as 

the object ball and its position on the table is established by 

processing the R component of the RGB color image 

sequences obtained by the camera. The two initial ball 

positions are embedded in the M-function describing the 

forward dynamics. The desired final cue ball location is also 

specified. The M-file is then called from the Optimization 

Toolbox using its function handle and executed to deliver the 

best value for q . 

For the following values of θC = 0.515 rad, [xC, yC] = [698 

mm, 562 mm], [xO, yO] = [869 mm, 681 mm], and a desired 

cue ball location of [
DCx ,

DCy ] = [1250 mm, 0 mm], the 

optimization routine has predicted the following parameters 

for the robot: VC0 corresponding to string ‘073p’, x’0 = -11 mm 

and y’0 = 0 (x’0 and y’0 are approximated to the nearest 

millimeter) without any cue ball-cushion collision. The shot 

that is executed for the above results obtained from the GA 

optimization is shown in Figure 12(a) (the pocket is not seen 

in the figure as it is right next to the right side edge of the 

image). The ball is potted and the cue ball, without any 

collision with the cushion,  is positioned at 110 mm from its 

desired location.  

VIII. DISCUSSION 

Experiments on ball positioning are performed within a 

table area of 5ft x 6ft. Within this area of the table, an object 

ball potting accuracy of more than 90% is obtained. In 

addition, the cue ball is positioned to an accuracy within the 

range of 100-250mm, in general. These are the first reported 

research efforts on the post-shot positioning of the cue ball. In 

its early stages of development, the Deep Green system was 

claimed to have 67% potting accuracy [10]; Deep Green plays 

on a pool table of size 4 ft x 8ft. However, the Deep Green 

research has not reported on the issues related to the cue ball 

positioning. In their latest publication, Greenspan et al. [2] 

state that the robot has pocketed runs of four consecutive balls, 

but no quantitative figure is given for the ball potting 

accuracy. Here some facts concerning the pocket and the ball 

sizes in pool and snooker must also be considered. In snooker, 

all six pockets are 90 mm in size and the ball diameter is 52.5 

mm. If the mid-pocket entry is considered to be ideal for an 

object ball in snooker, the margin of maximum allowable error 

for a flawless entry (not touching the pockets) is around 19 

mm, on either side of the ideal line of entry. However the way 

the cushion near the pocket entrance is shaped allows up to a 

  
(a)                                                       (b) 

Fig. 12.  Positioning results  
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45 mm deviation for the corner pockets and a 55mm for the 

middle pockets, in snooker. Pool balls are 52.5 mm in 

diameter. In pool, the four corner pockets are 114-117 mm in 

size while the middle pockets measure 127-130 mm [29]. This 

leaves a robot with the margin of error of 28.5 mm for the 

corner pockets and 35 mm for the middle pockets, for a non 

contact-entry of the object ball; thus, the maximum allowable 

distance offset values can also be expected to be larger than 

those in snooker. The preceding comparison underlines the 

fact that the ball potting is difficult in snooker. Hence, if the 

same robot is employed to play both the games, it will have a 

higher potting accuracy in pool when compared to that in 

snooker.  

The performance of the current robot must be evaluated in 

light of other facts concerning the robot and the forward 

dynamics model for the ball motion. The robot’s repeatability 

in ball positioning is found to be around ±50 mm and this, in 

turn, will affect the positioning accuracy of the robot. There 

have been vibration problems with the robot and the servo 

drive system is proposed to be replaced with a linear servo 

actuator [23]. In addition, a very basic model is utilized for the 

spin estimates of the cue ball immediately after cueing, 

neglecting the friction from the table. Hence, the forward 

model itself is not perfect and more accurate spin tracking 

with a higher resolution camera will establish a better model 

for cueing dynamics.  
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