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Abstract. A boundary integral operator method for stochastic ray tracing in billiards was
recently proposed in [1]. In particular, a phase-space boundary integral model for propagat-
ing uncertain ray or particle flows was described and shown to interpolate between deter-
ministic and random models of the flow propagation. In this work we describe discretisation
schemes for this class of boundary integral operators using piecewise constant collocation
in the spatial variable and either the Nyström method or the collocation method in the
momentum variable. The simplicity of the spatial basis means that the corresponding spa-
tial integration can be performed analytically. Convergence properties of the discretisation
schemes and strategies for numerical implementation are presented and discussed.

4.1 Introduction

Boundary integral formulations for propagating particle or ray densities along ray trajectories
in computer graphics applications are often termed the rendering equation [2]. This equation
therefore lies at the heart of a wide variety of algorithms, both for applications in computer
graphics [2] and beyond [3, 4, 5]. The point of departure for this study stems from the obser-
vation that the rendering equation may be formulated using deterministic transfer operators of
Frobenius-Perron (FP) type [5, 6]. Replacing the deterministic transfer operator with a stochas-
tic one results in a boundary integral formulation for stochastic propagation of ray densities. The
simplest implementation of a stochastic treatment is to assume that rays propagate uniformly
with equal probability of all admissible propagated ray vectors. This formulation is known as
the radiosity method (with Lambertian reflection) in the room acoustics community [3, 4]. A
more widely applicable implementation arises if one assumes that the mapped ray vector is
normally distributed, with mean given by the associated deterministic dynamics. The resulting
stochastic evolution operator will be of Fokker-Planck type as discussed in [7, 8]. The choice of
variance in this approach allows the model to be tuned to the level of uncertainty prescribed by
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the application. Example applications arise in fluid dynamics [9], weather forecasting [10], linear
wave dynamics or in general in describing the evolution of phase-space densities of a dynamical
system.

In this work, we discuss two possible discretisation schemes for a family of boundary integral
operators for stochastic ray propagation. Our discretisation strategy is based on a piecewise con-
stant collocation method in the spatial variable, together with an exact integration procedure for
the corresponding spatial integral. For the momentum variable we apply the Nyström method,
which takes care of the integral over the momentum variable within the discretisation approach,
or the collocation method, which separates dependence of the integral over the momentum
variable from the discretisation approach. We then discuss the implementation strategies and
convergence properties of the discretisation schemes.

4.2 Boundary integral operator model for the stochastic prop-
agation of phase-space densities

Consider phase-space in two-dimensions with position vector r ∈ R2 and momentum (or slow-
ness) vector p ∈ R2. Let Ω denote a finite two-dimensional domain with an associated speed of
propagation c. The Hamiltonian Ĥ = c|p| = 1 describes the ray trajectories within Ω between
reflections at the boundary Γ = ∂Ω. We write the phase-space coordinates on the boundary
of Ω as X = (s, p), where s is an arc-length parametrisation of Γ and p = c−1 sin(θ) is the
tangential component of the momentum vector p at the point s, where θ ∈ (−π/2, π/2) is the
angle between the trajectory leaving the boundary at s and the normal vector to Γ (also at s).

The stochastic propagation of a density ρ through phase-space is described by an operator
of the form [1]

Lσρ(X) =

∫

Q
fσ(X − ϕ(X ′))ρ(X ′) dX ′. (4.1)

Here Q = Γ × (−c−1, c−1) denotes the phase-space on the boundary and ϕ : Q → Q defines
the boundary flow map, which maps a vector in Q to another vector in a subset of Q, leading
to a deterministic evolution of the form ϕ(X ′) = X, where X ′ = (s′, p′) and X = (s, p).
Geometrically, ϕ corresponds to the composition of a translation (from s′ to s) and a rotation
to the direction corresponding to a specular reflection. The kernel of the boundary integral
operator (4.1) is given by a probability density function (PDF) fσ such that

∫

Q
fσ(X) dX = 1, (4.2)

and σ is a parameter set controlling its shape.

With reference to applications in vibro-acoustics, this probabilistic behaviour could be at-
tributed to, for example, uncertain fluctuations in the wave speed c, roughness of the reflecting
surface or uncertainties in the boundary conditions/source terms. In all cases we assume that
the total energy Ĥ = c|p| = 1 remains fixed and that the total probability is conserved, that is,
condition (4.2) holds throughout. Note that in contrast to the models considered in [7, 8], the
range of integration in the domains considered here is in general bounded, which has implica-
tions for the choice of suitable PDFs fσ. The simplest case is to take fσ = const, upon which
one arrives at a model describing propagation to all admissible positions and directions with
equal probability. The system is thus by definition ergodic and independent of the underlying
classical dynamics. In general, we would like to arrive at a stochastic operator which includes
both deterministic propagation and the random propagation model described above as limiting
cases [1]. In addition, the PDF fσ needs to obey conditions on the sampling ranges due to the
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Figure 4.1: Source: Ref. [1]. Tracking ray trajectories via a noisy boundary map and truncation
limits s± for the random variable sε.

limited range of the boundary map ϕ. For simplicity, we will restrict to convex domains Ω to
avoid additional complications due to incorporating visibility functions.

For an initial boundary distribution ρ0 on Q, the final equilibrium distribution (including
contributions from arbitrarily many reflections) may be computed using the following boundary
integral equation (see for example [1] and [5]):

(I − Lσ)ρ = ρ0. (4.3)

Note that for the solution ρ to converge, energy losses must be introduced into the system, which
could take place at the boundaries themselves, or along the trajectories. In general, a weight
factor w will be added inside the integral in the definition of Lσ which contains a dissipative
term, and for the extension to multiple domains connected at interfaces w will also contain
reflection/transmission probabilities at these interfaces.

We may interpret the evolution given by the operator in Eq. (4.1) as originating from a
stochastic boundary map ϕσ with added noise, that is,

ϕσ(X ′) = X

= ϕ(X ′) +Xε, (4.4)

where Xε = (sε, pε) are random variables drawn from the PDF fσ. Note that sε is understood
as a shift in (anti-clockwise) direction. For X ∈ Q given, we have to ensure that ϕ(X ′) = X−Xε

is in the range of the deterministic map ϕ; this yields restrictions on the possible values of Xε

and thus on the domain of fσ.

We express ϕ = (ϕs, ϕp) in terms of its position and momentum components and again write
the initial coordinate as X ′ = (s′, p′). The range of admissible values for ϕs(X

′) is [0, L) \E(s′),
where E(s′) is the (closed) set of all points on the same straight edge as s′, see Fig. 4.1. Note
that for curved edges we set E(s′) = s′ as shown in the right plot of Fig. 4.1. Furthermore, we
have that ϕp(X

′) ∈ (−c−1, c−1). It is therefore necessary to truncate the ranges from which Xε

are sampled to the ranges where for fixed X, ϕ(X ′) ∈ ([0, L) \E(s′))× (−c−1, c−1) in Eq. (4.4).
Denoting these truncated ranges by (X−, X+) where X± = (s±, p±), the PDF fσ will have
support on Xε ∈ (X−, X+) only. A cut-off function χ(Xε;X

−, X+) for restricting the support
of fσ to (X−, X+) can be defined in the usual way using Heaviside step functions. Having
obtained the domain of the PDF, we can now derive a PDF from an uncorrelated bivariate
Gaussian distribution with mean 0 = (0, 0) and standard deviation σ = (σ1, σ2). A scaled PDF
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is obtained by setting

fσ(Xε;X
−, X+) =

χ(Xε;X
−, X+) exp

(
− s2

ε

2σ2
1

)
exp

(
− p2

ε

2σ2
2

)

2πσ1σ2ψσ1(s−, s+)ψσ2(p−, p+)
, (4.5)

where the scaling defined through ψσ1 and ψσ2 is given as

ψσ1(s−, s+) =
1

2

(
erf

(
s+

√
2σ1

)
− erf

(
s−√
2σ1

))
, (4.6)

and ψσ2 is defined analogously. The scaling ensures that the PDF satisfies condition (4.2) for the
truncated sampling ranges specified through χ. Note that the mean and variance of fσ differs in
general from that of the underlying Gaussian distribution, but can be computed from the PDF
(4.5) using standard formulae.

Taking the limit of (4.5) as σ → 0 then the distribution becomes increasingly sharp and
the bivariate Gaussian tends to a two-dimensional delta distribution localised around Xε =
X − ϕ(X ′) = 0, which leads to a deterministic model. Taking the limit as σ1, and σ2 go to
∞ and using the leading order asymptotic expansion of the error function about 0 returns a
uniform distribution for sε ∈ (s−, s+) and pε ∈ (p−, p+), leading to the fully stochastic regime
described above. See [1] for a more complete discussion of the behaviour of fσ in the limit of
small and large σ.

4.3 Discretisation of the boundary integral operator

In this section we detail the approximation of the boundary integral operator (4.1) and the energy
density ρ(X), where X = (s, p) as before. We begin our presentation with the discretisation
using a piecewise constant collocation method in the spatial variable s and a Nyström method
for the momentum variable p. Consider an N -sided closed convex polygon with boundary Γ and
a local subdivision of each edge into a number of boundary elements. Then the approximation
of the energy density ρ(X) on the boundary Γ may be written

ρ(X) =

n∑

j=1

bj(s)ρj(p), (4.7)

where n ≥ N is the total number of boundary elements, ρj(p) are a set of directionally dependent
expansion functions to be determined and bj(s) are piecewise constant spatial basis functions,
i.e. bj(s) = 1 if s lies on the jth element and zero elsewhere.

Substituting (4.7) into (4.1) we obtain

Lσρ(X) =

n∑

j=1

∫

Q
fσ(X − ϕ(X ′))ρj(p

′)bj(s
′) dX ′

=

n∑

j=1

∫ c−1

−c−1

ρj(p
′)

[∫

ej

fσ(X − ϕ(X ′)) ds′

]
dp′, (4.8)

where ej denotes integration over the jth boundary element. Note that the spatial integral with
respect to s′ appearing in (4.8) can be solved analytically in terms of the error function erf; this
remains tractable if we include an additional damping factor of the form exp(−µd(s, s′)), where
µ > 0 is a (viscous) damping parameter and d(s, s′) denotes the Euclidean distance between the
boundary points s′ and s. In what follows, we denote this spatial integral as Sµ, where

S0(s, p′) = − χs′

2ψσ1

erf

(
s− s′√

2σ1

)∣∣∣∣
s′=S′max(p′)

s′=S′min(p′)
(4.9)
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for the undamped case when µ = 0.
We now change the variable in the momentum integration from p = c−1 sin(θ) to the direction

angle θ and define collocation points si, i = 1, ..., n, where si is chosen as the centroid of the
ith boundary element. First, note that the PDF fσ defined in Eq. (4.5) can be separated into
spatially dependent and directionally dependent components of the form

fσ(sε, pε) =


χs

exp
(
− s2ε

2σ2
1

)

√
2πσ1ψσ1




χp

exp
(
− p2

ε

2σ2
2

)

√
2πσ2ψσ2


 = fσ1(sε)fσ2(pε).

Applying a numerical integration rule such as trapezoidal, Gaussian or Clenshaw-Curtis quadra-
ture with nodes pk and weights wk, for k = 0, ...,K, then the combined collocation and Nyström
method discretisation of equation (4.1) is given by

(Lσρ)(si, pκ) = c−1
n∑

j=1,j 6=i

K∑

k=0

wkρj(θ
′
k)fσ2(pε(θk, θ

′
k))Sµ(si, c

−1 sin(θ′k)) cos(θ′k), (4.10)

where i = 1, ..., n and κ = 0, ...,K. The discretisation (4.10) reduces the operator equation (4.3)
to a linear system. The solution of this linear system then leads to an approximation for the
final equilibrium density distribution ρ given by (4.7), at a set of momenta pκ, κ = 0, ...,K.

Notice that the specific set of direction values pκ in (4.10) are defined by the choice of
the numerical quadrature method. In addition, the size of the transfer matrix grows with the
number of quadrature nodes. In the small σ limit, that is, close to the deterministic dynamics,
special numerical quadrature methods could be employed to more efficiently handle the singular
perturbation in the PDF as σ2 → 0. In this case, it would be desirable to remove the dependence
of the quadrature scheme (for approximating the integral over the momentum variable) from the
momentum space discretisation, and hence from the size of the transfer matrix. This is directly
achievable by replacing the Nyström method with collocation method in the momentum variable
p.

To apply the collocation method in p we consider a finite basis approximation of the direc-
tionally dependent functions ρj(p) in (4.7)

ρj(p) = φT (p)ρj , (4.11)

where φ(p) ∈ RNp is an Np dimensional vector of basis functions and ρj ∈ RNp are unknown
expansion coefficients to be determined for each j = 1, ..., n.

Substituting (4.7) together with (4.11) into (4.1) we obtain

Lσρ(X) =
n∑

j=1

[∫ c−1

−c−1

φT (p′)fσ2(pε)Sµ(s, p′) dp′

]
ρj .

As above we consider spatial collocation points si, i = 1, ..., n, taken as the centroids of the cor-
responding boundary elements and introduce directional collocation points pκ for κ = 1, ..., Np.
The combined collocation method discretisation of equation (4.1) may therefore be written in
the form

(Lσρ)(si, pκ) = c−1
n∑

j=1

[∫ π/2

−π/2
φT (θ′)fσ2(pε(pκ, θ

′))Sµ(si, c
−1 sin(θ′)) cos(θ′) dθ′

]
ρj

= vT (si, pκ)ρj (4.12)

with pε(pκ, θ
′) = pκ−c−1 sin(θ′) for all i = 1, ..., n and κ = 1, ..., Np. In compact matrix notation

we may write
Φρi = V (si)ρj , ∀ i = 1, ..., n,
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Figure 4.2: Convergence of the integral of the final stationary boundary density along the left
hand edge at x = 0 for different values of σ2. Left: using a direct approximation of the integrals
over the momentum variable p. Right: using a subdivision strategy for the integral over the
momentum variable p. Parameter values: σ1 = 0, c = 1, µ = π and n = 8.

where Φ is a collocation/interpolation matrix with rows Φκ = φT (pκ) and V (si) is a matrix of
integral values with rows given by V (si)κ = vT (si, pκ).

Integrals over the direction angle θ′ in (4.12) can be approximated numerically by any de-
sirable quadrature method. Alternatively, special quadrature strategies may be considered for
simulations with small σ2 values due to the singular perturbation as σ2 → 0. In addition,
notice that the total size of the transfer matrix compared to the Nyström method above has
been changed from n(K + 1) × n(K + 1) to nNp × nNp. In the next section we discuss and
compare different implementation strategies of (4.10) and (4.12) leading to different convergence
properties for smooth densities ρ.

4.4 Implementation strategies and convergence properties

In this section, we consider a rectangular domain (x, y) ∈ (0, l) × (0, 0.25) where l = 0.75, and
apply uncertain boundary source term of the form

ρ0(s, p) =
exp

(
−p2/(2σ2

2)
)

√
2πσ2

2erf
(
1/(
√

2σ2c)
) (4.13)

along the left hand edge at x = 0. A source term (4.13) arising from an uncertain boundary
condition was originally proposed in [1]. For small σ2, this corresponds to a unit boundary
density propagating (on average) in the direction p = 0, perpendicular to the boundary. For
large σ2 it corresponds to randomly directed propagation from the boundary. Such a condition
may be applied for all s ∈ Γ, or on a subset of Γ as in [1]. As σ2 → 0, this rectangular
domain problem has an analytical ray tracing solution for the stationary interior density ρΩ(x)
as detailed in Ref. [11].

In Fig. 4.2 we study the convergence of the integral

I =

∫ c−1

−c−1

ρj(p) dp = c−1

∫ π/2

−π/2
ρj(θ) cos(θ) dθ = c−1

K∑

k=0

wkρj(θk) cos(θk), (4.14)

where ρj(p) is the directionally dependent expansion function in (4.7), which we compute along
the left hand edge at x = 0. The integral is approximated with the same quadrature rule used
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in (4.10). We fix the boundary element mesh size taking n = 8 elements in total and take
parameter values c = 1, µ = π and σ1 = 0. Note that due to the nature of the exact solution,
the spatial dependence of the solution along each edge of the rectangular domain is only slowly
varying when σ1 and σ2 are relatively small and so a relatively coarse boundary element mesh
suffices. The number of quadrature nodes is given by Km = 2m + 1, where m = 1, ..., 12 in
the left plot of Fig. 4.2 and m = 1, ..., 8 in the right plot of Fig. 4.2. In both plots we plot
the absolute error between the integral (4.14) values computed with Km and Km+1 quadrature
nodes. The plots show the absolute errors corresponding to the Km+1 node number values per
element in the left plot and node number values per subdivision in the right plot, respectively.

Note that due to the polygonal nature of the domain and the discontinuous spatial collocation
scheme, the direction dependent function Sµ is not continuous over the whole interval, but is at
least piecewise smooth. In order to achieve spectral convergence for smooth density solutions
in the discretisation schemes presented above, we must subdivide the momentum coordinate
integral in (4.8). The left plot of Fig. 4.2 shows the convergence results for different values of σ2

for a direct approximation of the integral over direction using the Nyström method (4.10) with
Gaussian quadrature. This direct approximation of the directional integral leads to the loss of
the spectral convergence, and one only obtains second order convergence for a sufficiently large
number of quadrature nodes. The right plot shows the convergence results when subdividing the
integral over direction and approximating each sub-integral separately via Gaussian quadrature.
In this case we do indeed obtain spectral convergence. Equivalent results can also be obtained
using the collocation method (4.12).

4.5 Conclusions

We have described a boundary integral model for uncertain high-frequency wave problems and
detailed two discretisation schemes for the approximation of the wave energy density. We have
discussed implementation strategies to preserve the spectral convergence properties of high order
approximation schemes. However, the number of integration subdivisions grows with the number
of spatial collocation points and this quadrature data must be saved or constantly recomputed.
Furthermore, in the singularly perturbed case σ2 → 0, it would be beneficial to be able to
adaptively refine the quadrature to resolve the increasingly sharp peak in the Gaussian PDF.
Again, the implementation of such an adaptive scheme in the Nyström method would require
a new set of fixed quadrature points for each element. These issues can be directly addressed
by instead using a (spectral) collocation method in the momentum variable, which allows for
a greater flexibility to tailor the quadrature scheme. Hence, the results presented here serve
as motivation to further develop collocation methods for the discretisation in the momentum
variable in future.
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