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ABSTRACT Today’s mobile phone users are faced with large numbers of notifications on social media,
ranging from new followers on Twitter and emails to messages received from WhatsApp and Facebook.
These digital alerts continuously disrupt activities through instant calls for attention. This paper examines
closely theway everyday users interact with notifications and their impact on users’ emotion. Fifty users were
recruited to download our application NotiMind and use it over a five-week period. Users’ phones collected
thousands of social and system notifications along with affect data collected via self-reported Positive and
Negative Affect Schedule tests three times a day. Results showed a noticeable correlation between positive
affective measures and keyboard activities. When large numbers of post and remove notifications occur,
a corresponding increase in negative affectivemeasures is detected. Our predictivemodel has achieved a good
accuracy level using three different "in the wild" classifiers (F-measure 74%–78% within-subject model,
72%–76% global model). Our findings show that it is possible to automatically predict when people are
experiencing positive, neutral, or negative affective states based on interactions with notifications. We also
show how our findings open the door to a wide range of applications in relation to emotion awareness on
social and mobile communication.

INDEX TERMS Mobile sensing, affective computing, mobile computing, mobile social media, machine
learning.

I. INTRODUCTION
A notification is generally defined as a visual cue, auditory
signal, or haptic alert generated by an application or service
to capture the user’s attention [17]. Currently, all major smart-
phone platforms (i.e., iOS and Android) offer a standardized
user interface mechanism for notifications, displaying all
notifications in the notification bar located at the top of the
screen. Given the increase of mobile applications (apps) on
smartphones, notifications are becoming ubiquitous, provid-
ing a broad range of information, from system (e. g., app
updates) to social information (e. g., a message from a friend).
More specifically, notifications on smartphones inform users
about a variety of events, such as the arrival of a text message
or emails, an incoming phone call, a new comment on one
of their social network posts, game-related status updates,
system status or the availability of an application update.
Notifications hence provide a means for app publishers and
advertisers to connect with users.

Within the HCI and Ubicomp research communities, there
has been a growing interest in studying how users respond
to notifications, with an aim to design better notification
delivery systems, which minimize disruption. For instance,
it has been found that not all notifications are treated the
sameway by the users. In response to notifications, users may
take immediate action or ignore notifications depending on
the importance of a notification as well as the user’s current
context. It is important to understand how users respond to
notifications in the context of smartphones. In contrast to
notifications on desktop computers, notifications on smart-
phones are less likely to be delivered when the users are
actively interacting with the device: despite the large amount
of time users spendwith their smartphones, the device is often
not in active use when notifications arrive. Therefore, with
smartphones, notifications have some unique characteristics
which need to be considered: i) they are delivered through
a standardized mechanism, ii) they inform about a larger
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variety of events, ranging from social messages to system
events, and iii) they are pervasive due to the omnipresent
nature of smartphones, which are always with the
user [16], [43].

While mobile phones and mobile notifications have
enhanced the convenience of our life, their obsessive use
may have an adverse impact on mental health and wellbe-
ing. This impact is still under investigation and researchers
have started to look at various techniques to understand and
diagnose problematic mobile phone use and mobile phone
addiction [6].

In this paper, we present our mobile phone application
NotiMind which aims to:
1. Monitor mobile notifications and gather interaction data

unobtrusively based on the amount of notifications
received and delivery pattern of notifications on mobile
phones.

2. Model user interaction and reaction to mobile notifi-
cations and their impact on affective states based on a
machine learning approach.

3. Examine patterns of user interaction with mobile phone
notifications, status and screen activities and their corre-
lations with affective states of the users.

Our approach is based on utilising machine learning to rec-
ognize affective states of smartphone users to assess the
users’ emotional states. We set up ‘‘in the wild’’ user stud-
ies (as opposed to lab-based studies) and gathered various
types of notifications data from participants’ smartphones.
These data were collected using a custom-built application,
called ‘‘NotiMind’’ which collects a wide range of social
and work notifications, such as screen events (e.g. Screen-
On and Screen Unlock), Time/Date, ringtone volume. Addi-
tionally, NotiMind collects self-reported affective states of
users, using a short version of the Positive and Negative
Affective States scale [38]. The ultimate aim of the study
is to unobtrusively recognize individual smartphone users’
positive and negative emotions, as well as their relationship
with type and frequency of notifications received on their
smartphones.

II. BACKGROUND
A. NOTIFICATIONS
Notifications are a feature on smartphones and other devices
to keep users informed and engaged. Notifications can alert
users to information regarding a range of subjects, includ-
ing incoming messages, engagement with their social media
posts, and availability of WIFI networks or applications
updates, curated nearby places according to their geoloca-
tions and email content preview [17], and are commonly
presented on a notification panel on top of the screen.
Figure 1 shows types of mobile notifications and their main
categories.

In the desktop and mobile environment, notifications have
been viewed as means to proactively provide awareness of
information while users are attending to a primary task.
These alerts arrive in form of a brief text and alerting sound

FIGURE 1. Types of Notifications.

(if the volume is on) or vibrating (onmobile phones and smart
watches) to catch end-users’ attention. The time taken by
users to attend to those notifications often depends on how
important the context of the notifications is (e.g., a family
emergency may require a more immediate response than a
work email), and what contexts the users find themselves in
when receiving the notification (e.g., a user is more likely to
attend to a notification when they are not currently actively
engaged in another activity). A main function of notifications
is to allow users to switch between work-related and social
apps. Such switches are often driven by the user’s own need
to forage information as required for the current task, or after
being proactively alerted about the arrival of new information.

Previous work has shown that although users are aware of
the disruptive effects of notifications, they generally appre-
ciate the awareness that notifications provide [17], [25].
Specifically in the smartphone context, users are eager to
receive notifications as they keep checking their smartphones
frequently [27]. The level of importance of notifications
varies depending on the categories of the notifying apps [27]
and [28].

Furthermore, some mobile social network users hardly
show what they feel; therefore their friends cannot
sense or react to their emotional states appropriately. This
is probably because they are unfamiliar with the expres-
sion of emotion or are not aware of their own emotions.
A possible solution for this problem is to adopt emotion
recognition technologies which are being extensively studied
by the affective computing research society to determine user
emotions.

Shirazi et al. carried out a large-scale assessment of mobile
notifications and found that participants rated notifications
from messenger applications as the most important ones,
at 4.43 out of 5 (5 being the most important). Notifications
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from the three other communication categories and from the
calendar also received high ratings with averages between
3.66 and 3.45. Notifications from the system clearly received
the lowest rating (1.6). The large scale assessment [35]
concluded that important notifications are about people and
events, specifically if they notify about communication with
other users, inform about other users’ actions, or about real
life events. Another factor why notifications are considered
unimportant is the frequency with which they are created, and
whether they provide information about the phone’s internal
processes.

Pielot et al. investigated users’ response time to various
types of notifications and found a wide range of differences.
Specifically, the median response time ranged from 3.5 min
for messengers on weekends to 27.7 min for email on week-
ends. The shortest notification responses were provided for
messengers (6.6 and 3.5 min) and social network applications
(3.8 and 7.0 min / weekday and weekend day, respectively).
It was also found that half of the notifications were viewed
within a few minutes, and that the majority were attended to
within an hour. When notifications arrived, the screen was off
in 69.2% of the cases. The speed at which people attended
to notifications indicates that notifications often triggered
interaction with the phone. Moreover, given the perceived
importance of various categories of apps, most users might
not want to disable notifications. However, this depends on
the notification, such as:
1. Frequency: some applications (e.g., social media) have

the potential to send a large number of alerts by the
minute: for chats, for new posts and tagged photos, etc.
The notification content is likely to become less impor-
tant in a situation where a large number of interruptions
occur over a short period of time.

2. Content: Many mobile applications use notifications as
nothing more than marketing vehicles to remind users
to use those respective apps. These could be potential
constant distractions if not turned off.

3. Importance: In the case of a large number of appli-
cations sending notifications to the user, the user may
begin to prioritise these in order of the most immedi-
ately important. For instance, notifications which were
previously considered important may be re-evaluated
with the introduction of new notifications which may
render the notification previously considered important
to comparatively less relevant.

4. Category/Source: Some notifications grab users’ atten-
tion more than others merely due to on the application
source which has generated the notification: e.g. email,
WhatsApp, Facebook, Udacity, etc.

B. THE DRAWBACK OF NOTIFICATIONS
Although notifications serve an important purpose for smart-
phone users, the number of apps which compete for the user’s
attention using notifications has grown significantly over
the years. Initially designed to raise information awareness,
it has been argued that notifications have now become too

frequent (Iqbal and Horvitz 2010; Shirazi, Henze et al. 2014),
and may be contributing to stress [42].

Extensive research has been conducted investigating inter-
ruption of information workers through notifications in a
desktop context [12]. Studies have shown that workers tend
to drop their current task to check the notification, and it is
difficult for them to return to their previous tasks [3], [14].
Indeed, a large body of work in HCI has looked into
the detrimental effects of digital interruptions. Experi-
ments in a controlled laboratory environment have revealed
that notifications arriving at random times are particu-
larly disruptive (Horvitz 2001; Baethge & Rigotti 2013).
In field experiments, digital interruptions at work (e.g., email
alerts) have been linked to feeling distracted, stressed, and
anxious [21].

As discussed previously (Section 2.1), people often attend
quickly, if not immediately, to notifications on their smart-
phones, which arrive at random times, making smartphones
particularly disruptive [1]. Furthermore, due to the omnipres-
ence of smartphones, users are constantly disrupted regard-
less of where they are, as they are likely to take their phones
with them. Even when their phones are set to vibration, stud-
ies have demonstrated that people still attend to notifications
quickly regardless of the alert type [8], [28].

Kushlev et al. [22] provided some evidence that interrup-
tions due to notifications can cause inattention and hyperac-
tivity in the general population. It was found that when people
switched on notifications and kept their phones within phys-
ical reach, they experienced higher levels of inattention and
hyperactivity. They found that notifications draw users’ atten-
tion away from other ongoing activities, making people more
prone to distractions, increasing cognitive load, which may
in turn make people experience inattention and hyperactivity.
Even when users choose to disable notifications, research
has suggested that for some individuals, disabling alerts may
produce anxiety over missing out [31]. Such anxiety may
lead users to self-interrupt more frequently. In one study,
information workers disabled their email notifications for one
week; it was found that some workers checked their email
even more to avoid missing important emails [17]. Hence,
simply turning the notifications off may not be the solution
to the disruptive nature of smartphone notifications. This
may lead users to compulsively check for missed notifica-
tions, for instance from social networking apps due to social
pressure [28] and the fear of missing out (FOMO; [32]).

Apart from distraction and stress, some studies have sug-
gested that extensive use of smartphones could potentially
lead to smartphone addiction [4], [6], [27]. In one study,
researchers found that their participants checked their smart-
phones 34 times a day [27], [44] investigated the way young
people make use of smartphones. It was found that they
receive an average of 400 notifications a day. It was claimed
that the usage pattern of smartphone by young people bor-
dered on addiction.

However, research on the extent to which mobile phone
notifications fare in this is currently limited. Moreover,
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the traditional clinical approach based on questionnaires
and interviews typically used in mobile phone addiction
research [6] have limitations: health professionals cannot
perform continual assessments and interventions for their
clients, and the subjectivity of assessments could be a
problem.

C. MACHINE LEARNING WORK ON NOTIFICATIONS
Despite the disruptive nature of notifications, studies have
found that users suffered no negative consequences when
they were interrupted at opportune times in between work
tasks. Therefore, various studies have been conducted by
means of machine learning to understand the factors lead-
ing to users responding to notifications, with the aim to
predict how long it will take for users to respond to
a notification, and to understand what the most oppor-
tune moments are and what are the best ways to deliver
notifications.

Avrahami and Hudson [2] used machine learning tech-
niques to predict how fast a user responds to an instant
message in a desktop computer setting with 16 co-workers
at Microsoft and a total of 90,000 messages. Using these
data, they trained models with an accuracy of 90.1% to pre-
dict if a message would get a response in 0.5, 1, 2, 5, and
10 minutes. Strong predictors of responsiveness were ‘‘the
amount of user interaction with the system’’, ‘‘the time since
the last outgoing message’’, and ‘‘the duration of the current
online-status’’.

Hudson et al. [15] collected data from four information
workers to predict when they were interrupted whilst at work.
They concluded that a single microphone, the time of the
day, the use of the phone, and the interaction with mouse
and keyboard can estimate a worker’s interruptibility with
an accuracy of 76.3%. Drawing from this, [5] developed a
prototype sensing sounds, motion, using the phone, and using
the office door to predict if a worker is potentially available
to interruptions.

Rosenthal et al. [34] developed a model to predict when a
phone should be put in silent mode using experience sampling
to collect data on user preferences for different situations.
They considered features such as time and location, reason
for the alert, and details about the alert (e.g., whether it came
from a caller listed in the user’s favorites) in their model.
An experimental study showed that thirteen out of nineteen
participants were satisfied with the accuracy of the automatic
muting.

Pielot et al. [30] identified that features extracted from
the phone, such as the user’s interaction with the notification
center, the screen activity, the proximity sensor, and the ringer
mode, can be used to predict how quickly the user will
respond to the messages. It was found that with seven high-
level features, a user’s level of attentiveness to mobile mes-
sages can be successfully estimated with an overall accuracy
of 70.6%. Taken together, these studies demonstrate the value
of machine learning for identifying user interaction trends
based on mobile device notifications.

D. RECOGNITION AND EMOTIONAL IMPACT OF
NOTIFICATIONS
Although machine learning has been used to identify user
interactions with smartphones based on notifications, there
has been little previous research using machine learning to
predict the direct emotional impact of these notifications and
interruptions. Many affective computing and HCI researchers
have suggested various methods to sense and recognize
human emotions [18]. Existing emotion recognition tech-
nologies can be divided into various categories, depending on
what kinds of data are analyzed for recognizing human emo-
tion: physiological signals, facial expressions, text or voice.
Physiological emotion recognition shows acceptable perfor-
mance but has some critical weaknesses that prevent its
widespread use: they are obtrusive to users and need spe-
cial equipment or devices (such as a skin conductance sen-
sor, blood pressure monitor, or electrocardiography (ECG)).
These devices are not only intrusive to users, but involve
additional costs. Similarly, emotion recognition using facial
expressions or speech limits their usage because the device
needs to be positioned in front of the user’s face and needs
to continuously listen to the user’s voice or record the user’s
face. This is not only not practical in the mobile context, but
it raises various issues with regards to user acceptance.

While emotional recognition using physiological signals
and facial/voice recognition has been extensively researched,
few studies have looked into the emotional responses to
smartphone notifications. Many studies have found that noti-
fications are predominantly linked to negative emotions.
Pielot et al. [28] qualitative analysis revealed that using
emails and social networks was correlated with feeling over-
whelmed, stressed, interrupted and annoyed. Furthermore,
when receiving more emails, participants were also more
likely to report experiences where notifications kept them
from doing something else or when they felt pressure to
respond faster than they were able to. On the other hand,
social notifications, despite their equally high volume, and
social networks to a certain extent, triggered more posi-
tive emotional responses. For example, it was found that
receiving more social messages is significantly correlated
with increased feelings of being connected with others. It is
likely that this relates to the personal nature of messaging
apps. Therefore, it would appear that the nature of notifica-
tions (work vs social) in this context rather than the amount of
notifications may have an impact on users’ emotional states,
and this will be assessed in the present study.

E. IMPACT ON MENTAL ACTIVITY AND AFFECTIVE STATES
Nomophobia is defined as fear of being without the mobile
phone, resulting in discomfort, anxiety, and stress, and has
been considered to be included in the most recent fifth edi-
tion of the Diagnostic and Statistical Manual for Mental
Disorders (DSM-5) [7]. Psychologists recommend cognitive-
behavioral psychotherapy combined with pharmacological
intervention for the treatment of this potential disorder [7].
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Recent research findings have also shown that young adults
who make particularly heavy use of mobile phones and
computers run a greater risk of sleep disturbances, stress
and symptoms of mental illness [6]. Thomée [37] conducted
four studies assessing how the use of computers and mobile
phones affects the mental health of young adults. Their find-
ings have highlighted the need for moderation in the use
of these technological devices. Their studies furthermore
revealed that intensive use of mobile phones and comput-
ers can be linked to stress, sleep disorders and depressive
symptoms. They also discovered that frequently using a
computer or phone without breaks also increases the risk
of stress, sleeping problems and depressive symptoms in
women, whereas men who use computers intensively are
more likely to develop sleeping problems. According to the
mental health charity Young Minds (2016), problems high-
lighted as a consequence of excessive mobile phone use
include the following: addiction, attention deficiency, atten-
tiveness/or lack of it, depression, anxiety and stress, sleep
disturbances and insomnia, as well as a lack of involvement
in family life, suggesting excessive mobile phone use can be
associated with a considerable array of difficulties.

FIGURE 2. NotiMind system architecture and android platform.

III. DATA COLLECTION SYSTEM
A. SOFTWARE
The first stage of developing the classification system was
the collection of notification data and affective state test
responses. The data collection process is visualized in
Figure 2. In this process, we gathered various notifica-
tion data using the specifically designed mobile application
‘NotiMind’, which sits in the background and collects var-
ious system, message and social media notifications (see
Figure 2). These notifications usually appear on the noti-
fication panel. NotiMind utilises the phone’s Notification

TABLE 1. Description of attributes collected from the NotiMind app.

manager API and System Manager API in order to inter-
cept notifications. These notifications are then logged and
stamped with the time and date of the notification activity.

The application also records the following attributes (see
Table 1):

1. Notification originators event name: e.g., email or social
media client, such as WhatsApp and individual
users or groups.

2. Event State in terms of what type of notification is being
sent: e.g. screen event (Screen on, Screen-off and screen
unlock), notification post (i.e. notification is received)
and Notification removed (by the user).

3. Message content.
4. Event time and data.

NotiMind records the message body without requiring root
privileges. However, users are required to manually enable
notification access for NotiMind from their phone settings.
All the data logged from the application are stored on a local
SQLite database.

The application also collects self-reported affective states
based on the Positive and Negative Affect Schedule (PANAS)
model [40]. The PANAS model is based on the idea that it is
possible to feel good and bad at the same time [23]. Thus,
PANAS tracks positive and negative affect separately. The
PANAS contains adjectives to assess affect/mood states using
differentiated terms (e.g. inspired, ashamed, and determined)
with a general positive-negative index. The PANAS scale
has good reliability, is sensitive to changes over time, and is
considered one of the best measures of current mood [40].
To perform a measurement, the PANAS model uses a check-
list to measure affect from various aspects. To reduce the
burden on participants from completing measures of all the
60 PANAS elements, we assessed only 10 items based on
a shortened PANAS version, the I-PANAS-SF ([38]; see
PANAS screenshot in Figure 2). All participants are asked
to take the short PANAS test three times every day. The
application sends a reminder every 8 hours to prompt users
to take these tests. Also, users were encouraged to take the
PANAS more often and whenever they can during the day to
report their emotions.
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Data cleaning and features extraction was performed using
Python, and our classifiers were performed using RapidMiner
software (RapidMiner, 2016).

B. PARTICIPANT RECRUITMENT OF THE PARTICIPANTS
The study was launched in April 2016 over a five week
period. The call for participation was advertised at Notting-
ham Trent University and the University of Kent’s mailing
lists, as well as on Twitter and other social media. The
NotiMind application was not made available to download
on the Google Play store for the following three reasons:
1) anyone can download the app on GooglePlay, even under-
age participants which would violate our ethical approval
agreement, 2) we cannot validate the purpose of data use;
3) no immediate benefit for the users is achieved, which
meant a poor ranking might be given to the application by
reviewers, potentially undermining our future plan to release
a consumer-facing version. Once participants have given their
consent to participate in the study, they were asked to down-
load the NotiMind app and enable Notification access on
their mobile phones. They also received an instructionmanual
and email address in order to get in touch in case of any
difficulties. The instruction manual pointed to where the log
file was stored on the participant’s Android phone (in our case
it is a Sqlite file in .db format).

Our application triggered three silent alerts a day with
popup notifications to remind the users of taking the PANAS
test and to check that NotiMind is working as intended. Those
who successfully completed the study were presented with a
voucher as incentive for volunteering their time.

Fifty participants took part in the study (30 male and
20 female). All were existing Android users with an average
age of 25. The study was approved by Nottingham Trent
University’s Ethics Committee.

During the data collection process, 832,776 notifications
were collected. Many users stopped responding to the ques-
tionnaires after a few days and some did not respond at all.
Therefore, we selected a subset of the data for the analysis and
included data of 34 users who completed the data collection
task. If no PANAS test score was recorded over 10 hours, then
the data for this period were dismissed. Therefore, our final
dataset comprises 534,346 notifications, and 3328 unique
PANAS entries.

C. RESPONSE RATE
We first calculated the response rate of the overall PANAS
affective measure input, confirming the reliability of user
input into our system.

Although we asked users to report their mood at least
three times a day, we expected some absence of self-report
entry due to the extensive nature of our study. We calcu-
lated the daily response rate of our users and found that
on average, 70% of users had three or more entries, which
demonstrates the effectiveness of our self-report application.
The affect distributions were fairly consistent during differ-
ent times, seemingly unaffected by whether the entry was

during work mornings, afternoons or evenings. The response
rate, affect persistence, and distribution of the entered moods
show NotiMind’s efficacy in collecting a wide variety of
data from the users, and provide insight into the design of
NotiMind.

IV. DATA PREPARATION
A. BASIC DEFINITIONS AND ATTRIBUTES
The NotiMind app generates five attributes, which are
described in Table 1.

Due to the unstructured nature of these data, a consid-
erable amount of cleaning, removing redundant data and
reformatting was required. This step was followed by a fea-
ture extraction step (from Event-Name, and Event- Message
columns).

Similar to prior work [17] and [35], we have derived a
specific categorisation scheme based on messages and the
applications they originated from. These new categories were
then discussed with the users and finalised through further
team discussion.

TABLE 2. List of categories derived for the affect state prediction.

Also, following a similar approach to previous
research [35], notificationswere categorised as ‘‘work’’, if the
message originated from email applications. Also we have
found that ‘‘Group’’ messages names were often tagged with
the symbol @, which made it easy to detect a ‘‘Group’’
category. Table2 shows the derived categories.

B. PANAS DATA DISTRIBUTION
We considered the PANAS as a two-dimensional vector with
20 possible values for PA (Positive Affect) and 20 possible
values for NA (Negative Affect).
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PA is the sum of PANAS items 1, 4, 5, 8, 10 (positive
metrics (PM)):

PM =
〈
Determined,Attentive,Alert, andActive

〉
PA =

t∑
i

PM

NA is the sum of PANAS items 2, 3, 6, 7, 9 (negative
metrics (NM)):

NM =
〈
Inspired,Ashamed,Nervous,Upset,AfraidHostile

〉
NA =

t∑
i

NM

In the current study, following [19] and Mukolo and Wall-
ston’s (2012 ) method, the affect balance score was computed
as overall indicator of affective well-being by subtracting the
negative affect score from the positive affect score (PA-NA).
The affect balance (wewill refer to it as the PANAS score) has
the range L, ranging from−20 to 20. We discretize this range
into 3 classes: −1 (negative), 0 (neutral), and 1 (positive).
To perform data discretization, we adopted a recursive par-
titioning based on entropy of the PANAS score distribution.
Intuitively the entropy measures the amount of randomness
of a source producing random items. Using this approach,
an interval is split at a point that results in minimum entropy.
Formally, let pi be the empirical probability of observing the
label yi on sequence.
i.e., the ratio of labels yi to all labels in the sequence I . Then

the entropy of the label distribution on I is defined as:

Entropy(Di) = −
∑m

i=1
pI (yi)Log2(1/pI (yi))

where the sum is over-all labels.
Discretization ranges are determined by selecting the cut

point for which Entropy is minimal amongst all the candidate
cut points (Fayyad & Iran, 1993).

We also analyzed the distribution of PANAS scores that
users entered into the system. As we expected, neutral affec-
tive states occupy a significant percentage of our dataset.

Users generally reported positive affective states rather
than very negative states. 68% of total PANAS affective
states reported by participants were positive, while 32% of
total reported PANAS affective states were negative. The
maximum number of positive states reported was +18, and
the minimum negative states reported was −5, with a mean
µ = 4.78 and a Standard Deviation of σ = 5.08.
13% represents the highest PANAS entry (mood state

Active), whilst 4% represents the lowest PANAS entry (mood
state Ashamed) as shown in Table 3.
In addition, Figure 3 shows the whole life cycle of data col-

lection and categorisation including the PANAS self-report
process.

Figure 4 shows the count of PANAS annotations per user.
Although all users were reminded to take the test three times a
day (at the same interval), the level of motivation to annotate
varied between users.

TABLE 3. PANAS scores frequencies.

FIGURE 3. Feature extraction dataflow.

C. DATA SEGMENTATION
In total, we utilized 534,346 valid notifications from 34 users.
Based on the derived categories above, we segmented the data
based on PANAS scores (one segment per PANAS label) and
thenwe extracted our features based on the following process:

In each segment, the rate of occurrence (frequency) for
each metric (category) was calculated as follows:
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FIGURE 4. Number of PANAS annotations per user (STD = ±63).

Let t1 be the time of PANAS test, t2 the time of the
following PANAS test. Then the sum of Post Notification P
during (ti, ti + 1):

P (ti, ti+1) =
t∑
i

Pi

Then we calculated the percentage Post Notifications P for
one segment based on the following formula:

PA = (
t∑
i

P (ti, ti+1) ∗ 100)/(
t∑
i

N (ti, ti+1))

where N (ti, ti+1) is the total number of notifications in the
segment.

Similarly, R(ti, ti+1), O(ti, ti+1), F(ti, ti+1), U(ti, ti+1),
and K(ti, ti + 1), M(ti, ti + 1) and G(ti, ti + 1), are the sums
for Removed, Screen-On, Screen-off, Unlock, Keyboard-Out,
Multiple and Group states over (ti, ti+1) period, respectively.
The corresponding percentages are RA, OA, FA, UA, and KA
and were calculated similarly.

In addition, the following percentages, Emoji count EA,
Work Notification, Rate WA, Group Notification GA, Multi
Notification MA and System Notification SA were calculated
as follows:

EA= (
t∑
i

R (ti, ti+1)∗100)/(
t∑
i

P (ti, ti+1)−
t∑
i

M (ti, ti+1))

We excluded the Multi-Notifications from the Post notifi-
cations count since these notifications do not have Emojis in
them.

WA= (
t∑
i

R (ti, ti+1)∗100)/(
t∑
i

P (ti, ti+1)−
t∑
i

S (ti, ti+1))

Similarly, we excluded the System notifications from the
total post notification count in order to calculate the work
percentage.

SA = (
t∑
i

R (ti, ti+1) ∗ 100)/
t∑
i

P (ti, ti+1)

MA = (
t∑
i

M (ti, ti+1) ∗ 100)/
t∑
i

P (ti, ti+1)

GA = (
t∑
i

G (ti, ti+1) ∗ 100)/
t∑
i

P (ti, ti+1)

TABLE 4. Main extracted features, with the overall percentage.

The segmentation process resulted in 3328 segmented
instances (rows) of labelled data. Table 4 lists all the cate-
gories along with their percentages based on the overall data.

V. CORRELATION ANALYSIS
By examining the statistical significance of our variables
(i.e., features), we determined the relation between our fea-
tures and the affective measure as well as interdependency
between these variables. The highest positive correlations
were observed between Keyboard-Out and PANAS score
(r = 0.46, p < 0.001). Figure 5 depicts the lack of nega-
tive affective states when high instances of keyboard states
were present. This suggests that users experienced positive
emotions when interacting with other users (while the user is
typing a message).

Our data showed that only 10% of Keyboard-out data
segments (when Keyboard-Out = 1) are linked to negative
PANAS.

On the other hand, the data demonstrate more negative
emotions are present when the users constantly receive and
remove messages without direct engagement with other users
as shown in Figure 6. Our data showed that 89% of the
segments with high Post and Remove Notifications rates are
associated with negative PANAS scores.

A negative correlation was found between work messages
and PANAS scores (r = −0.38, p < 0.001). This indicates
that people like to engage with social messages and family
and friends, and become stressedwhen interacting with work-
related messages.

There was a noticeable positive correlation between mul-
tiple messages notifications (e.g., five messages from What-
sApp notifications which did not reveal the identity of the
senders) and PANAS score (r = 0.22, p < 0.001).
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FIGURE 5. Shows a correlation between low rate of keyboard-out states
occurrences and negative affective measures.

FIGURE 6. Shows that high rate of Post and Remove states correlates
with high negative affective measures.

Emoji Count was noticeably correlated with high positive
affective measures (r = 0.35). A closer look identified a
statistically significant correlation between Emojis count and
positive PANAS scores (p < 0.01).

VI. PREDICTIVE MODEL
In order to develop the system for the identification of affec-
tive states from notifications and mobile usage behavior,
we developed a predictive model. For these tasks, we utilized
a popular machine learning software toolkit named Rapid-
Miner Data Mining software v7.1 [33] and also checked the
results on the Machine Learning Open Source software [41].
As mentioned above, emotional states were defined by three
classes in the classification task: −1, 0 and 1, for negative,
neutral and positive, respectively.

To build the model, we tested the levels of significance
of the features in relation to the PANAS scores and checked
the response of the PANAS scores for any interdependency
between the variables based on the correlation matrix.

We checked the pairwise correlations between features and
PANAS score on the whole dataset. Based on the result of fea-
tures evaluation, we finally selected nine features, which have
strong correlations with PANAS scores to build an inference
model (i.e., feature selection step). Selected features were:
Keyboard-Out, Emoji-Count, Remove, Work, Post, Group,
Multi, Screen-On and Unlock.

TABLE 5. Pairwise correlations between features and PANAS score.

As shown in table 5, Keyboard-Out had the highest pos-
itive correlation with PANAS score, while Work had a high
negative correlation. We kept Screen-On state and removed
Screen-off since highly correlated attributes could lead to a
multicollinearity problem.

In order to configure Rapid Miner to build the predic-
tive model, the selected features were then normalized and
converted into polynomial data as shown in Figure 7, which
represents the main building blocks of our predictive model
using RapidMiner.

Then we set a special role which identified a label (i.e. the
PANAS scale), which must be predicted for new examples
that were not yet characterized in such a manner. Setting the
label was a RapidMiner preparatory step to feed the data to
the classifier to build a predictive model of the notification
data.

The performances of three supervised machine learn-
ing algorithms were tested to classify user interaction seg-
ments into three PANAS classes. A feed-forward Neural
Network (ANNs) with a hidden layer, and radial basis
function-Support Vector Machine (rbf-SVM) [8], and a
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FIGURE 7. Rapid Miner design of ANN predictive model.

Logistic Regression (LR) analysis [11] were performed.
We chose these algorithms in order to evaluate how discrim-
inative (SVM), probabilistic (LR) and neural network [26]
algorithms work on our dataset.

A neural network system (ANN) for recognition is defined
by a set of input neurons (nodes) which can be activated
by the information of the intended object to be classified.
The input can be either raw data, or pre-processed data from
the samples. In our case, we have pre-processed our data
by building a feature vector. The feed-forward neural net-
work was trained by the BackPropagation algorithm (single
layer). An artificial neural network (ANN) is a mathematical
model or computationalmodel that is inspired by the structure
and functional aspects of biological neural networks.

Our ANN was set with one hidden layer, 500 learning
cycles and a 0.3 learning rate and a momentum of 0.2. The
momentum simply added a fraction of the previous weight
update to the current one. This prevented local maxima and
smoothed optimization directions. It indicated whether the
learning rate should be decreased during learning.

The averaged performance of each classifier was assessed
via a multiple-run k-fold (nested) stratified cross-validation.
In our study, we adopted fifteen and ten folds. The inner loop
of the cross-validation aimed to perform model selection.
To quantify the performance of the classification models,
we used the F-Measure, the harmonic mean of precision
and recall, as our primary evaluation metric. F-Measure is
calculated as follows:

F −Measure = 2 ·
Precision · Recall
Precision+ Recall

Figure 7 shows the performance of the three classifiers across
the two cross-validation methods.

We employed 15-Fold Cross-Validations to evaluate the
within-subject models, and Leave-One-Out for the global
one. F-measures were calculated to evaluate the goodness
of the classification model among the three classification
methods (ANN, SVM and LR). When a comparative study
comprises n classifiers, c = n(n−1)

2 pairwise comparisons are
possible.

FIGURE 8. F-Measure of different Classification Models: ANN, SVM
and LR.

TABLE 6. F-MEASURE of the models.

As shown in Figure 8 and Table 6, we observed that ANN
worked significantly better than SVM (p-value = 0:007)
using the within-the-subject model, and SVM was signifi-
cantly better than LR (p-value = 0:009). ANN was signifi-
cantly better than LR (p-value = 0:002).

By applying Bonferroni Adjustment, we obtained the crit-
ical value as follows: α = 0.0.5/3 = 0.016. The statistical
power was then calculated based on α. This means the null
hypothesis of equal performance was rejected for all the
comparative tests (p-value < 0.016).
Similarly, we obtained similar results when applying com-

parative pairwise tests on the Global models (p-values were
0.04, 0.012 and 0.003, respectively), and the null hypothesis
of equal performance was also rejected (p-value < 0.016).
The data from our first field studywith participants showed

that it is possible to create a machine-learning model to
automatically predict when people are experiencing positive,
neutral or negative affective states from smartphone notifi-
cation activities with F-measures between 74-78% for the
within-subject model, and between 72-76% for the global
model.

In the next section, we will demonstrate how we can
improve the accuracy level of the model performance by
conducting another experiment when the user is in a less
disruptive environment.

VII. DISCUSSION
The main focus of this work was to explore whether noti-
fication and screen interaction information extracted from
smartphones can be a good predictor of users’ affective states.
We took a systematic approach to model the dependency
of mobile notifications and screen interaction patterns and
users’ emotions. We demonstrated that our model can predict
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users’ affect state with good performance, as shown in the
previous section.

Our findings indicate that users feel positive when engaged
directly with other humans using social media applications.

One possible interpretation of this finding is that people
are more willing to share their positive emotional states,
while those experiencing negative emotions are reluctant to
broadcast how they feel or share information in general.
We discussed these results with some of the participants
after sharing our findings, and our data interpretation was
confirmed.

On the other hand, notifications of non-social messages
(e.g., WIFI availability and system updates) have the most
negative impact on users. Users usually get frustrated when
they receive a notification which is not sent by a human.

Positive affective states further correlated with multi-
messages notifications (e.g., 5 messages from WhatsApp)
which did not show the identity of the senders directly, but
created a sense of belonging and feeling more connected.
As expected, work-related notifications had a negative impact
on affective states, especially when they arrived in bulks.

The presence of Emojis in notification messages
influenced the sentimental value of the message and hence
correlated with positive affective states of users who were
receiving them. This is not surprising since we have found
recently a significant relationship between the number of
Emojis and the overall positive affective measure in a relevant
project [36]. Emoji characters may seem trivial to tradition-
alists, but they are becoming the world’s fastest growing
language in all forms of communications, text messages,
posts on social media, chatting applications and emails [20].
This may be due to a richer set of graphical representations
of facial expressions in comparison to text only, which may
lead to improved reader comprehension of the emotional
message content, and a visual representation of animals, food,
activities, etc.

A. LIMITATIONS
Our evaluation results presented in Section 5 illustrate the
promising nature of affective states sensing based on interac-
tion with messages and notifications, despite noisy labels and
variation in user input. Our future work is required to more
thoroughly evaluate our models on larger datasets.

We outline the limitations of our work subsequently so
future work can address these.

1) INCENTIVIZED PUBLIC DEPLOYMENT
Currently our NotiMind application and our call for partic-
ipation have managed to attract a reasonably high level of
user participation (mainly from within university contexts).
Although we originally recruited 50 users, only 34 users’
data have provided PANAS labels. Future work will look
at improving user participation and enhancing various user
interface features and performance to enable a robust, contin-
uous and flawless collection phase.

2) ROBUSTNESS OF SELF-REPORTS
A remaining challenge in training data from sensing systems
is the collection of accurate subjective labels from users.
Similarly, annotating affective responses can be imprecise,
since users may vary when expressing their own emotions,
hence mapping them differently on a scale.

3) ADDITIONAL AFFECTIVE STATES CUES
With the advancement of the off-the-shelf wearable devices
that can monitor health and physiological change, we can
easily combine our approach with recent work of others
exploring alternative data sources for mental health inference,
such as sensor data. This could account for other co-founding
variables that may influence mood and affective states.

Finally, we will look at new techniques to extract features
that are not limited to a specific window size. Instead, we will
explore the potential of adaptive data segmentation and recur-
rent networks which is one of the staples of deep learning
that allow to contextualize and learn the temporal dynamics
of sequential data across long periods of time.

VIII. POTENTIAL APPLICATIONS
In summary, the present research paves the foundation for
future studies looking into predicting emotions based on
smartphone user responses to notifications and activities.
In the long term, research in this direction will have a sig-
nificant impact, as outlined in the following:

1. Impact on society: Emotion detection could help
improve behavior prediction. For example, people who
discuss dangerous and violent acts, but seem to be happy
and emotionally stable, might be less of a threat to soci-
ety or themselves than people who do not discuss these
subjects in their messages, but their overall negative
emotions might make them more of a concern. This has
implications for national security and cybersecurity.

2. Intervention: The output of our predictive model could
be reflected on users’ profiles (e.g., social media appli-
cations, such as WhatsApp and Facebook) which could
prompt positive interventions, such as fewer system noti-
fications andmore messages from close friends when the
user is feeling down. This may be particularly relevant
for younger users who may be overly preoccupied with
their messages.

3. Entertainment features on the phone: Knowledge
about users’ affective states can be abstracted in a dec-
orative character (i.e. Emoji style agent) which can be
displayed on their phone. Illustrating the user’s emo-
tional state may allow the user to insert this emotion into
messages or social media posts.

In exploring these possible applications, we need to con-
sider the ethical implications of monitoring people’s smart-
phone activities as this can be seen as an intrusion of privacy.
Although this form of monitoring is physically less intrusive
than physiological signals (i.e., not requiring the users to wear
specialist equipment), people may be concerned about their
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private text messages being ‘‘read’’ by the system, and thus
may be unwilling to use it despite the potential benefits.

IX. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed an unobtrusive emotion recogni-
tion approach which exploits phone notifications as affec-
tive states sensor. The mobile application NotiMind was
developed, which logs and samples both mobile notifica-
tion interaction activities along with PANAS affective mea-
sures. Additionally, we proposed a machine learning method
to automatically infer users’ affective states from the col-
lected mobile data: mobile notification and screen interaction
(e.g., keyboard-out, Post and Remove), notification style
(e.g., work, health or social) and message context (e.g., mes-
sage length, presence of Emojis or images). In the user study,
we gathered 534,346 notifications which formed the base of
our training dataset including nine of 20 selected features.
We built three classifiers and they showed good classifica-
tion performance against three classes: positive, neutral and
negative.

We identified a direct relationship between different noti-
fication interaction states and user’s emotions. We also vali-
dated some past psychological studies which have suggested
that mobile phone use and constant notifications and inter-
ruption can impact users’ mental health [6].

The proposed technology can contribute to creating pos-
itive emotions for users through automatic recognition and
sharing of their emotions. Suggestions for future research
include improving the accuracy of classifications by employ-
ing more features associated with users’ emotions. For
instance, we will look at the sentimental contents of the
messages. In addition, we intend to work on a real-time
emotion analysis and prediction application which acts as a
background service to keep users informed of their current
mental states. This will help users to refrain from excessive
engagement with their mobile phones and with disruptive
applications by switching off unnecessary notifications. The
resultant emotive indicators can be tagged on to social media
profiles which may allow users to be aware of their friends’
current mood and wellbeing.
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