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Abstract

Yersinia pseudotuberculosis is a Gram-negative intestinal pathogen of humans and has been responsible for several

nationwide gastrointestinal outbreaks. Large-scale population genomic studies have been performed on the other human

pathogenic species of the genus Yersinia, Yersinia pestis and Yersinia enterocolitica allowing a high-resolution understanding

of the ecology, evolution and dissemination of these pathogens. However, to date no purpose-designed large-scale global

population genomic analysis of Y. pseudotuberculosis has been performed. Here we present analyses of the genomes of 134

strains of Y. pseudotuberculosis isolated from around the world, from multiple ecosystems since the 1960s. Our data display

a phylogeographic split within the population, with an Asian ancestry and subsequent dispersal of successful clonal lineages

into Europe and the rest of the world. These lineages can be differentiated by CRISPR cluster arrays, and we show that the

lineages are limited with respect to inter-lineage genetic exchange. This restriction of genetic exchange maintains the

discrete lineage structure in the population despite co-existence of lineages for thousands of years in multiple countries. Our

data highlights how CRISPR can be informative of the evolutionary trajectory of bacterial lineages, and merits further study

across bacteria.

DATA SUMMARY

All of the raw sequence data for this project has been depos-
ited into the European Nucleotide Archive. Individual
accession numbers for each pair of fastq files are indicated
in Table S1 (available in the online Supplementary Mate-
rial). Additionally de novo assemblies of all genomes used
are available in Enterobase (https://enterobase.warwick.ac.
uk/species/index/yersinia), searchable by the strain name
allocated in Table S1.

INTRODUCTION

The genus Yersinia belongs to the Gram-negative bacterial
family Enterobacteriaceae, and is a model genus for studying
the evolution of bacterial pathogens [1]. Three species of
Yersinia are well-recognised human pathogens: the plague
bacillus Yersinia pestis, and the enteropathogenic Yersinia
pseudotuberculosis and Yersinia enterocolitica [1]. Y. pseudo-
tuberculosis, which causes infection in a broad range of
hosts, including domesticated and wild animals, has also

been associated with foodborne infection in humans –

known as yersiniosis. Transmission of the bacterium is usu-
ally through the faecal–oral route, and human infection can
result from the ingestion of contaminated food products or
water, or otherwise by direct contact with an infected ani-
mal or human [2–5]. Y. pseudotuberculosis is also found
widely in the environment, including soil [6], and in ani-
mals it causes a tuberculosis-like disease [6]. Human cases
of Y. pseudotuberculosis infections are usually sporadic,
however several large outbreaks have been reported in Fin-
land and recently in New Zealand [7, 8]. Classical identifica-
tion and typing of Y. pseudotuberculosis is based on the
lipopolysaccharide O-antigen, resulting in a total of 21
known serotypes [9]. However the efficacy of serotyping is
very limited due to a large proportion of strains belonging
to serotypes O : 1a, O : 1b and O : 3 [8, 10].

The population structure of Y. pseudotuberculosis has been
elucidated by multi-locus sequence typing (MLST) [10].
This added further granularity to the serotype
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differentiation, grouping serotype O : 3 strains into a distinct
clone designated ST19 which are characterized by a trunca-
tion in the Yersiniabactin locus resulting in the loss of the
genes encoding iron transport across the bacterial mem-
brane. Serotype O : 1 strains formed a distinct clade of
strains encompassing a large number of sequence type com-
plexes, suggesting a highly diverse population of bacteria
within the serotype O : 1 group of Y. pseudotuberculosis. In
addition to MLST genotyping, recent work has also analysed
clustered regularly interspaced short palindromic repeat
(CRISPR) loci of 335 isolates of Y. pseudotuberculosis [11].
The CRISPR-Cas system is an RNA-based immune system
that regulates invasion of plasmids and viruses in bacteria
and archaea [12]. CRISPRs are constructed from a chain of
21 to 47 bp repeated sequences called direct repeats (DR),
and in between DRs are unique spacer sequences. These
spacers represent foreign DNA originating predominantly
from bacteriophages and plasmids. In Y. pseudotuberculosis,
the CRISPR spacers are stored in three genomic loci named
YP1, YP2 and YP3, and we identified 1902 distinct spacer
sequences [11]. One central finding was that strains of Y.
pseudotuberculosis and strains of Y. pestis shared very few
spacers, and that Y. pestis carries a relatively low number of
spacers compared with Y. pseudotuberculosis.

To date the most comprehensive genome-scale analysis of
Y. pseudotuberculosis centred around a country-wide out-
break in New Zealand [8]. Incorporation of publicly avail-
able genomes into this dataset also suggested a highly
diverse species and that the New Zealand strains repre-
sented a geographically isolated clade of Y. pseudotuberculo-
sis. The paucity of a specifically designed, geographically
and temporally distributed dataset of Y. pseudotuberculosis
genomes means that our understanding of the population
structure and evolutionary events occurring within this spe-
cies is poorly informed. Global phylogenomic studies of Y.
pestis have identified evolution of a clone from Y. pseudotu-
berculosis as a result of gene loss and then global dissemina-
tion [1, 13]. In contrast, such studies in Y. enterocolitica
have pointed to an evolutionary path from a non-patho-
genic ancestor via gene gain and loss, resulting in apparently
ecologically separated clades within the species [14, 15]. By
analysing a set of geographically and temporally distributed
genomes we show that evolution within Y. pseudotuberculo-
sis differs from that seen in the other two human pathogenic
species of the genus Yersinia. We provide definitive evi-
dence for a geographic split between Asian and European
strains and the presence of discrete phylogenetic clusters
within the species which correlate with specific patterns of
CRISPR spacer cassettes. This CRISPR signature correlates
with patterns of accessory gene sharing within the species as
well as core genome recombination.

METHODS

Bacterial isolates and genome sequences

A total of 134 Y. pseudotuberculosis genomes were ana-
lysed in this study, of which 108 were newly sequenced

(Table S1). These isolates were collected over a 46-year
time-frame from a wide host range covering 19 different
countries and six continents, and represent the full spec-
trum of serotypes possible. Additionally the strains were
isolated from a wide range of hosts including human clin-
ical, livestock, wild animals, companion animals and envi-
ronmental sources. Library preparation and sequencing of
these isolates were performed using the Illumina Nextera
kit and Genome Analyzer IIx instrument to create 150 bp
paired-end reads at the FIMM Sequencing unit (Helsinki,
Finland). The sequence reads have been deposited to the
European Nucelotide Archive (ENA) under project
PRJEB14064. The accession numbers for individual strains
are listed in Table S1. De novo assemblies were performed
using Velvet [16] and annotated using Prokka [17]. A
core genome alignment of the strains was constructed
from localized co-linear blocks using the Parsnp tool
from the Harvest suite [18]. A maximum-likelihood phy-
logeny was reconstructed from the alignment using
RaxML with 100 bootstraps and the GTR-Gamma model
of substitution [19]. Metadata encompassing information
on isolation (continent, country and host), serotype, and
CRISPR motif for each strain were superimposed on the
tree as coloured bars, using the Interactive Tree of Life
web-based tool (http://itol.embl.de/) [20].

Analysis of CRISPR loci

The genomic de novo assemblies were searched for CRISPR

loci using BLASTN with the Y. pseudotuberculosis-specific

CRISPR direct repeat sequence (5¢-tttctaagctgcctgtgcggcagt-

gaac-3¢), its complementary sequence, the 5¢- and 3¢-flank-

ing sequences of the YP1, YP2 and YP3 loci and their

complementary sequences [11]. Identified sequences were

submitted to the CRISPRFinder tool at CRISPRs web server

(http://crispr.u-psud.fr/) together with the spacer dictionary

compiled earlier [11]. This analysis increased the number of

identified spacers in the Y. pseudotuberculosis spacer dictio-

nary from 1902 to 2969 (Table S2). The complete list of the

strains and spacer arrays used for CRISPR spacer clustering

is in Table S3.

IMPACT STATEMENT

By analysing a global collection of genomes of the model

bacterial species Yersinia pseudotuberculosis we provide

evidence for restricted gene flow across the species,

resulting in phylogenetic distinct lineages within the spe-

cies. Moreover these lineages are concordant with clus-

tering of isolates obtained from analysis of CRISPR

spacer array sequences. The presence of multiple line-

ages within the same geographical location provide fur-

ther evidence that this process is still active. This creates

a new window of research for microbial evolution and of

how distinct microbial ecotypes may emerge.
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Accessory genome analysis

The large-scale blast score ratio (LS-BSR) pipeline [21] was
used to create pangenomes from genome assemblies of all
strains. The included post-matrix script (filter_BSR_var-
iome.py) was run to isolate the accessory genomes from the
pangenomes. The resulting accessory genome matrix was
then transposed according to the order of the strains on the
phylogenetic tree. The output was used to visualize the pres-
ence or absence of all accessory genes in each individual
genome by generating a heat map using the ggplot2 package
of the R statistical software. Genes with >90% prevalence and
also those found in fewer than five strains were excluded
from this analysis. The included Python script compar-
e_BSR.py from LS-BSR was used to look for unique coding
sequences (CDSs) between two defined populations in the
pangenome matrix. Comparisons were made between the
‘European’ clade of strains and the ‘Asian’ clade, as well as
between each CRISPR cluster and the rest of the population.
Any unique CDSs detected were compared to the non-redun-
dant nucleotide database using nucleotide BLAST (http://blast.
ncbi.nlm.nih.gov/) to determine the genes they encode.

KPAX2 software was used to cluster the strains on the basis
of their CRISPR spacer profiles [22]. Input to the software
was a binary matrix with columns representing an absence/
presence variable for each of the 2969 spacers in each
detected CRISPR cassette. KPAX2 was used with default
prior hyperparameters and an upper bound for the number
of clusters equal to 50. Five independent runs of the infer-
ence algorithm were performed and the clustering solution
with the highest posterior probability was chosen. All esti-
mation runs converged to a number of clusters well below
the chosen upper bound, indicating that it was sufficiently
large to accommodate the region of high posterior density.
To analyse the association between CRISPR spacer patterns
and the accessory genome content, we calculated an average
accessory genome dissimilarity (Hamming distance normal-
ized by the number of CRISPR spacers) matrix for all
detected CRISPR clusters with >1 strain (18 clusters).

To assess the significance of the observed dissimilarity pat-
tern, we used a standard permutation test. Under the null
hypothesis of no association between CRISPR cluster and
the accessory genome content, the cluster label of a strain
can be permuted randomly. For each of 10 000 random per-
mutations of the labels we then re-calculated the average
dissimilarity for each cluster and recorded how often the
observed value is smaller than the observed dissimilarity in
the original data matrix. Under a global significance level of
5%, 12/18 CRISPR clusters had a significantly smaller aver-
age distance than expected under the null hypothesis.

Detection of core genome recombination events

Core genome alignments were constructed using Parsnp
[18]. Core genome recombination events were detected by
performing BratNextGen analysis on the core genome align-
ment [23]. BratNextGen was run using the default prior set-
tings, 20 iterations of the HMM estimation algorithm and

100 runs executed in parallel for the permutation test of sig-
nificance at the 5% level.

Dating analysis

To date the geographic split within the species, and the for-
mation of the distinct CRISPR clusters, we used BEAST [24].
The core genome alignment for the 73 strains for which isola-
tion dates were known was obtained using Parsnp, was
stripped of recombination detected using BratNextGen, and
the resulting alignment used as input with all known dates of
isolation to date individual taxa. By assessing ESS scores for
priors, the following parameters were chosen for the best fit-
ting model: HKY model of substitution with estimated base
frequencies and a relaxed molecular clock. The analysis was
run for a total of 50million iterations with the initial 5mil-
lion used as burn-in. From this a maximum clade credibility
tree was inferred and visualised in Figtree. For the skyline
analysis a stepwise constant variant was selected with the age
of youngest tip set to zero.

RESULTS

Phylogeographic structure of Y. pseudotuberculosis
signals an Asian ancestry

A maximum-likelihood phylogeny was reconstructed from
a core genome alignment of 134 Y. pseudotuberculosis
genome sequences (Fig. 1). The phylogeny has a clear two-
clade structure with a seemingly ancestral clade containing
high diversity and long branch lengths, and a second clade
containing much lower levels of diversity. Annotation of the
tree with geographical source of isolation identifies a very
clear geographic split in the phylogeny, with the ancestral
highly diverse clade containing primarily Asian isolates and
the second low diversity clade containing primarily Euro-
pean isolates. Between these two clades is a small transi-
tional cluster of isolates originating from South Africa, and
North and South America. Such a phylogenetic structure is
consistent with an Asian ancestry for Y. pseudotuberculosis,
with two separate migrations into Africa and the Americas,
and into Europe. A European migration is consistent with a
bottleneck event leading to successful establishment of a
small number of clones. Annotation of the phylogeny with
serotype and host species (Fig. S1) identified that the Euro-
pean clade is further split into serotype 1a and serotype 1b
clusters, and that there is no pattern of phylogenetic group-
ing associated with host.

Phylogenetic dating suggests recent geographical
divergence

Of the 134 genomes sequenced, isolation dates are available
for 73 isolates which represent the full diversity of the phy-
logeny. To date the evolutionary split of the ‘European’
clade of strains from the ‘Asian’ clade we used BEAST, analy-
sing only the 73 strains for which isolation dates were avail-
able (Fig. S2). The analysis suggests a time to most recent
common ancestor (tMRCA) for the dataset of 33 591 years
before present [95% confidence interval (CI) 49 460–
20 476], with the divergence of the European and Asian
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clades occurring approximately 12 500 years ago (95%CI
18 500–6625). This period marks the transition between the
Neolithic and Mesolithic eras at the end of the last ice age,
and the beginning of livestock domestication and wheat and
barley farming. A Bayesian skyline plot analysis of the dated
phylogeny also supports the possibility of a strong bottle-
neck occurring in the population within the European clade,
occurring in the very recent past (Fig. S2).

Phylogenetic clusters within Y. pseudotuberculosis

associate with discrete CRISPR cassette patterns

We sought to determine any obvious genotypic traits associ-
ated with the phylogeographic split in our population.
Bayesian clustering of the presence/absence of all 2969
known Y. pseudotuberculosis CRISPR spacers present in the
dataset identified a total of 33 distinct clusters of CRISPR
spacer cassettes (Table S1). Annotation of these CRISPR
clusters on the phylogenetic tree shows that the clusters
form phylogenetically distinct groups of Y. pseudotuberculo-
sis (Fig. 2). The most recent of these clusters has a tMRCA
to the rest of the population of 5222 years (95% CI 7676–
2768) before present, suggesting that this clustering is not a
recent phenomenon nor is it due to any temporal artefacts
of sampling. Indeed comparison of the CRISPR cluster

pattern to year and geographical source of isolation
(Table S1) suggests that this clustering is not a result of
strains isolated in the same short time span or localized
source. To confirm this, we mapped the geographical source
of isolation of all of the CRISPR clusters (Fig. 3). This shows
that CRISPR clusters are widely distributed across the world
with some correlation to the higher phylogeographic split
observed earlier. It also shows the highest diversity in
CRISPR clusters occurs in Asia consistent with an Asian
ancestry of Y. pseudotuberculosis.

Phylogenetic clusters are associated with patterns
of genetic recombination in Y. pseudotuberculosis

Given the role of CRISPR in generating lasting immunity to
foreign DNA, we sought to investigate if the phylogenetic
clusters within Y. pseudotuberculosis were associated with
any signature of gene sharing. We created a pangenome
matrix for all 134 genomes using LS-BSR, and then
extracted the accessory genome. This accessory genome
matrix was then used to annotate the core phylogenetic tree
alongside CRISPR clusters (Fig. 4). There are clear patterns
of accessory genome profile concordant with the pattern of
CRISPR clusters within the tree. Attempts to identify genes
unique to any given phylogenetic cluster were largely
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unsuccessful. Only one unique coding sequence was
detected in the ‘European’ clade of strains and no unique
CDSs in the ‘Asian’ clade of strains. Of CRISPR clusters that
contained more than one representative strain, CRISPR 22
contained nine unique CDSs. Other clusters include
CRISPR 28 with two unique CDSs, and CRISPRs 1, 9 and
11 each with one unique CDS, when compared to the rest of
the population. This analysis suggests that each cluster con-
tains a unique combination of accessory genes rather than
unique genes per se. To confirm this, we calculated the aver-
age accessory genome dissimilarity for all CRISPR clusters
containing more than one strain. This showed that in 12 of
18 clusters, strains have significantly more similar gene pro-
files to strains in the same cluster than to strains in other
clusters (P<0.05 based on a 10 000 random permutations
test). This suggests that gene sharing between strains in the
Y. pseudotuberculosis population is largely restricted to
within individual phylogenetic clades. Analysis of core
genome recombination identified a distribution of core
genome recombination events which is highly concordant
with the CRISPR clusters (Fig. 5). Despite very high levels of
recombination across the dataset, the recombination occur-
ring is not eroding the phylogenetic or CRISPR cluster sig-
nal, suggesting that inter-cluster horizontal transfer of
genetic material is largely inhibited or occurs at very low
frequency compared to intra-cluster recombination events.

DISCUSSION

The genus Yersinia has acted as a model for developing our
understanding of microbial pathogenesis, molecular micro-
biology and microbial evolution [1]. Yersinia was the first

bacterial genus to have all representative species sequenced
allowing fine-scale analysis of how pathogenesis evolved in
the three human pathogenic members of the genus [15].
This analysis showed a striking degree of parallelism in how
human-pathogenesis evolved in the pathogenic Yersinia
[15]. However, finer scale evolutionary genomics studies of
Y. pestis and Y. enterocolitica have shown very divergent
mechanisms of intra-species evolution. Y. pestis is a recently
evolved clone of Y. pseudotuberculosis which is globally dis-
seminated and host-restricted with very low levels of diver-
sity allowing fine-scale transmission events to be
successfully reconstructed [13]. In complete contrast to this,
pathogenic Y. enterocolitica have evolved from a non-patho-
genic ancestor and have split into ecologically distinct clades
which move rapidly across host species [14].

By sequencing the genomes of a globally and temporally
distributed set of 134 isolates of Y. pseudotuberculosis
from a wide range of hosts and environments, we show
that evolution in this species is driven by completely dif-
ferent mechanisms again. Our data show that Y. pseudo-
tuberculosis is unique between the enteropathogenic
species of the genus Yersinia in that it shows a clear phy-
logeographic split in its population. This was once postu-
lated to be the case for Y. enterocolitica [25] with Old
World and New World strains, however comprehensive
population genomics have shown this is not the case [14,
15]. The discovery of Asian ancestry in Y. pseudotubercu-
losis is in line with the postulated ancestry of Y. pestis
[13, 26], though our data appear to show the most out-
standing genetic variation occurring in Japan, not China.
Whilst this does not appear to be an artefact of sampling
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in this study it cannot be discounted that a more thor-
ough and dense genomic sampling would provide a dif-
ferent result. However, of interest is the fact that a sub-
clade of Y. pseudotuberculosis exists which causes Far East
scarlet-like fever and is associated with Japan and tropical
South-East Asia [27], suggesting larger variation in this
region and a potential focus of ancestry for the species.
Although accurate dating from a relatively small timed
sample set is difficult, our tMRCA for the entire Y.
pseudotuberculosis dataset is in the same range (10 000–
40 000 years ago) as that postulated for the emergence of
Y. pestis [26], and it is tempting to speculate that this
emergence coincided with a larger population and dis-
persal event across Y. pseudotuberculosis.

Previous work by our group analysed patterns of acces-
sory gene sharing to conclude that Y. enterocolitica was
formed of ecologically distinct phylogroups [14]. This
hypothesis was formed on the basis that the limited inter-
clade sharing of genes could not be due to stearic hin-
drance by O-antigen nor be genetic exclusion as no such
mechanisms existed. Our data on Y. pseudotuberculosis
also identify clearly distinct phylogroups within the

phylogeographic clades. These phylogroups have unique
combinations of accessory genes with little variation in
the accessory genome, and a very similar pattern of core
genome homologous recombination. Similar to Y. entero-
colitica, it is highly improbable that this might be driven
by some factor which precludes physical contact given the
limited serotypes present in Y. pseudotuberculosis [4].
Rather our analysis is strongly indicative of genetic
restriction between phylogroups, and that this can be cor-
related with patterns of acquired CRISPR cassettes. The
primary evidence for this genetic restriction is in the fact
that different phylogroups co-exist in the same geographi-
cal locations. In the absence of any active barrier to
recombination, one would expect the signal that identifies
each CRISPR cluster to be eroded relatively quickly in
time [28], resulting in a lack of clear phylogroup signa-
tures [29]. This would be especially so given the large lev-
els of recombination detected in the core genome of Y.
pseudotuberculosis. As the phylogenetic clusters have co-
existed in locations for around 5000 years or more and
continue to display a clear signal of within cluster similar-
ity, our data suggest very limited genetic exchange
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between clusters and maintenance of the distinct
phylogroups.

CRISPR has been shown to play a role in dictating the
accessory genomes of Pseudomonas aeruginosa [30], and
CRISPR analysis correlated with phylogenetic structure in a
study of Shigella genomes [31]. Previous data has shown
that CRISPR evolution in bacteria, and particularly in
the family Enterobacteriaceae is driven by vertical and not
horizontal evolution [32]. Together our data create a
hypothesis for Y. pseudotuberculosis evolution whereby
large population perturbations give rise to geographically
isolated clones. During the early formation of these clones,
exposure to geographically localized exogenous DNA cre-
ates a CRISPR array of immunity, which correlates with the
repertoire of genetic material that can be transferred and
acquired from the gene pool. As each of these clones then
globally disseminates, they find themselves in co-existence
with other clones of Y. pseudotuberculosis, but gene transfer
between clones is restricted. This restriction is such that
transfer of genetic material cannot occur at levels required

to erode the clonal phylogenetic signature in the population,
and consequently distinct phylogroups of Y. pseudotubercu-
losis persist in the population.
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