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Targeting cellular pathways in glioblastoma multiforme
Joshua RD Pearson and Tarik Regad

Glioblastoma multiforme (GBM) is a debilitating disease that is associated with poor prognosis, short median patient survival and a
very limited response to therapies. GBM has a very complex pathogenesis that involves mutations and alterations of several key
cellular pathways that are involved in cell proliferation, survival, migration and angiogenesis. Therefore, efforts that are directed
toward better understanding of GBM pathogenesis are essential to the development of efficient therapies that provide hope and
extent patient survival. In this review, we outline the alterations commonly associated with GBM pathogenesis and summarize
therapeutic strategies that are aimed at targeting aberrant cellular pathways in GBM.
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INTRODUCTION
Glioblastoma multiforme (GBM, WHO grade 4) is the most
frequently occurring malignant central nervous system tumor
with a global incidence of 0.59–3.69 per 100 000.1 It is by far the
most common and malignant of all glial tumors, and is associated
with poor prognosis with a median patient survival of 12–
15 months from diagnosis.2,3 Unfortunately, only around 3–5% of
patients survive for a period of 3 years or more.4,5 Although GBM
affect primarily the cerebral hemispheres of adult brains, they are
much less common in children, where they affect specifically the
brainstem region. GBMs are classified as either primary or
secondary, roughly 90% of cases are primary and occur de novo
in elderly patients. Secondary cases progress from lower grade
astrocytomas and are more prevalent in younger patients. Primary
and secondary GBMs have differing genetic profiles with IDH1
mutations being evident in secondary GBM and not primary.6

Common genetic alterations are associated with a loss of
heterozygosity (LOH) of the chromosome arm 10q, that occur in
60–90% of GBM cases.7,8 Other alterations and deletions that
affect the p53 gene could be as high as 85.3–87%.9,10 P53
alterations are more common in secondary GBMs than primary
GBM tumors.6 Mutations in the epidermal growth factor receptor
(EGFR) and in the platelet-derived growth factor receptor (PDGFR)
are also associated with GBM pathogenesis and account for 40–
57%(refs. 9–11) and 60%(ref. 12) subsequently. Other mutations target
the gene of the mouse double minute homolog 2 (MDM2) (10–
15%)13 and the phosphatase and tensin homolog (PTEN) gene
(20–34%).14,15 Interestingly, genomic analyses performed by the
Cancer Genome Atlas Research Network has revealed further
alterations in key signaling pathways that contribute to the
pathology of the disease. The RTK/Ras/PI3K signaling pathway was
found to be altered in 86–89.6% and the pRB signaling pathway
was found to be affected in 77–78.9% of GBM cases studied.9,10 It
is important to add, that mutations encountered in GBM may not
affect one single cellular pathway but may be the result of
alterations in several of the pathways mentioned above. This adds
further complexity to our understanding of GBM pathogenesis
and results in additional complexity for the development of GBM
therapies.

Regrettably, patients who are affected by GBM have a poor
prognosis and existing therapies do not appear to be very efficient
against GBM. The current gold standard for the treatment of GBM
is palliative and includes surgery, adjuvant radiotherapy and
temozolomide (TMZ) chemotherapy. Despite multimodal aggres-
sive therapy, GBM is uniformly fatal with survival over 3 years
being considered long-term.16 Due to the poor survival rate of
GBM patients, it is imperative that novel avenues for therapy are
explored in order to improve patient prognosis and eventually
develop a cure to this fatal disease.

RECEPTOR TYROSINE KINASE PATHWAYS
The tyrosine kinase receptors
Receptor tyrosine kinases (RTKs) are a family of cell surface
receptors, which act as receptors for growth factors, hormones,
cytokines, neurotrophic factors and other extracellular signaling
molecules. Upon activation by ligands, RTKs signal through two
major downstream pathways Ras/MAPK/ERK and Ras/PI3K/AKT 17

(Figure 1). These pathways are involved in the regulation of cell
proliferation, survival, differentiation and angiogenesis. In this
review, we focus on six tyrosine kinase receptors; the epidermal
growth factor receptor (EGFR), the vascular endothelial growth
factor receptor (VEGFR), the platelet-derived growth factor
receptor (PDGFR), the hepatocyte growth factor receptor (HGFR/
c-MET), the fibroblast growth factor receptor (FGFR) and the
insulin-like growth factor 1 receptor (IGF-1R).
Tyrosine kinase receptors share a similar structure that is

composed of an extracellular ligand-binding domain, a hydro-
phobic transmembrane domain and an intracellular tyrosine
kinase domain. They are activated by ligand binding which results
in receptor dimerization and autophosphorylation of the tyrosine
kinase domain. This event results in activation of two main
downstream signaling pathways: Ras/MAPK/ERK and Ras/PI3K/
AKT.18–24 Due to the ability of these receptors to activate
downstream signaling pathways that are involved in proliferation,
invasiveness, survival and angiogenesis, RTKs and their ligands are
promising therapeutic targets for the treatment of GBM (Figure 1).
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EGFR
EGFR belongs to a family of four tyrosine kinases that
encompasses ErbB1 (EGFR, HER1), ErbB2 (Her-2, Neu), ErbB3
(Her-3) and ErbB4 (Her-4). Amplifications and mutations in EGFR
(HER1) were detected in 45–57% of GBM cases studied9,10

indicating a causal role in the pathogenesis of GBM. EGFRs induce
proliferation and have been implied in glioblastoma pathogenesis
and resistance to treatment.25 Interestingly EGFR is not the only
member of this family that is mutated in GBM. ErbB2/HER-2
mutation was also detected in 8–41% of GBM cases.9,26

A truncated mutant EGFR variant III (EGFRvIII) is frequently
expressed in glioblastoma multiforme and is constitutively
activated in a ligand independent manner, resulting in cell
proliferation and survival. Despite the growth enhancing proper-
ties of the EGFRvIII, its expression has been linked to increased
overall survival in patients.27,28 This could be explained by the fact
that EGFRvIII is a neoantigen and this may result in the elicitation
of an immune response.

VEGFR
VEGF is a potent angiogenic protein that is known to increase
vascular permeability. Although VEGF has a role in normal tissues,
malignant transformation has been shown to induce VEGF
expression.29 Under hypoxic conditions, the hypoxia inducible
transcription factors (HIF1α and HIF1β) translocate to the nucleus
and activate the VEGF gene (Figure 1.). Activation of VEGF leads to
increased angiogenesis to counteract hypoxia.30 Glioblastoma
multiforme tumors are often hypoxic and have increased VEGF
expression that contributes to the irregular vasculature associated
with GBM. GBM tissues have been shown to have very high levels
of VEGF expression that is associated with an up-regulation of the
VGFR receptor VEGFR2.31,32

PDGFR
PDGF/PDGFR signaling is involved in the development of normal
tissues and its dysregulation contributes to oncogenesis. GBMs
regularly exhibit a PDGF autocrine loop that is absent in normal

brain tissues. This observation pinpoints to the importance of
PDGF in GBM pathology.33,34 Data analyses from TCGA research
network revealed amplification of platelet-derived growth factor
receptor alpha (PDGFRα) in 10–13% of the cases studied.9,10

PDGFRα is the second most frequently amplified RTK in GBM
behind EGFR. Glioblastoma multiforme has been shown to express
all PDGF ligands (PDGF-A, PDGF-B, PDGF-C and PDGF-D) and the
two cell surface receptors: PDGFR-α and PDGFR-β.21

HGFR/c-MET
Scatter factor (SF)/hepatocyte growth factor (HGF) is the activating
ligand for HGFR/c-MET that have been shown to be secreted by
brain tumor cells. HGFR/c-MET expression and activation in tumor
cells and vascular endothelial cells, results in cellular proliferation
and invasion.35 The association of HGFR/c-MET with proliferation
and survival indicates its suitability as a target for GBM therapy.
HGFR/c-MET amplification was detected in 1.6–4% of human
GBMs studied.9,10 Expression of HGFR/c-MET has been linked with
poor prognosis for GBM patients.36,37

FGFR
Humans have 22 FGFs (fibroblast growth factors) and four
different FGF receptors (FGFR1, 2, 3 and 4).38 FGFR amplification
was identified in 3.2% of the cases studied by TCGA.10 FGF2 has
been shown to stimulate growth of cultured GBM cell lines and
inhibition of FGFR signaling by RNA interference or by antibody
blockade reduced GBM cell proliferation.39 FGFR1 has also been
shown to be expressed at higher levels in brain tumors and when
compared to adjacent normal brain tissue, suggesting a role for
this receptor in tumorigenesis.40,41 FGF5 has also been shown to
be overexpressed in GBM and this expression was linked to
increased proliferation.41

IGF-1R
GBM cell lines and tissues have been shown to express the
IGF-1R.42,43 IGF-1R was seen to be overexpressed in GBM, and this
overexpression was linked to shorter survival and reduced

Figure 1. Schematic representation of RTK activation and the resultant downstream signaling. Black arrows indicate activation whereas red
arrows indicate inhibition.
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responsiveness to temozolomide, hinting at the role of IGF-1R
signaling in GBM pathogenesis.44

TARGETING THE TYROSINE KINASE RECEPTORS
Small-molecule kinase inhibitors
Many molecules that target the kinase domains of RTKs have been
tested in the context of GBM (Table 1). Erlotinib is an EGFR
tyrosine kinase inhibitor that prevents the autophosphorylation of
the tyrosine kinase intracellular domain of EGFR.45 It has been
tested in several phase II studies for GBM and in conjunction with
temozolomide for newly diagnosed GBM. The combination of the
two drugs was well tolerated by patients and resulted in improved
survival.45 However, treatment with Erlotinib alone was not
effective in patients with recurrent GBM.46 Gefitinib (ZD1839/
Iressa) is also an EGFR tyrosine kinase inhibitor that has been
shown to radiosensitize U251 GBM cells in vitro.47 When tested at
phase II trial, Gefitinib did not lead to an improvement in overall
and progression free survivals for patients with newly diagnosed
GBM.48

Multiple kinase inhibitors such as AEE788 and Vandetanib target
both EGFR and VEGFR tyrosine kinases (Table 1). When tested in
GBM patients, these drugs appeared to have little efficacy or
increased toxicity. AEE788 was shown to have highly toxic side
effects and very little efficacy for the treatment of recurrent GBM
at phase I clinical trial,49 whereas Vandetanib had very little effect
in vitro on GBM cell lines. However, when combined with histone
deacetylase inhibitors (HDACIs), Vandetanib reduced GBM cell
proliferation in vitro.50 The incorporation of Vandetanib to the
standard therapy regimen (surgery+chemotherapy+radiotherapy)
in phase II trial, also yielded little effect on overall survival and
resulted in early termination of trial.51 Lapatinib is another
multiple kinase inhibitor that binds both EGFR and HER2 tyrosine
kinases and prevents their activation. In a phase I/II trial for
recurrent GBM, it was shown to have little effect on patients.52

However, CUDC-101 a multi-targeted EGFR/HDAC (histone deace-
tylase) inhibitor has been shown to enhance the radiosensitivity of
GBM cell lines in vitro.53

Vatalanib (PTK787), Sorafenib and Tivozanib are VEGFR tyrosine
kinase inhibitors that have been found to have little efficacy on
GBM patients when administered individually (Table 1). Vatalanib
(PTK787) is well tolerated by patients but it does not appear to
result in tumor regression.54 Likewise, the combination of
Sorafenib with standard therapy also resulted in little effect on
the treatment efficacy for GBM at the phase II stage.55 In a phase II
study for patients with recurrent GBM, Tivozanib had apparent
anti-angiogenic effects, but failed to affect tumor volume.56

Cediranib (AZD2171), a VEGFR-2 tyrosine kinase inhibitor, has
been used as a monotherapy or in combination with Lomustine
chemotherapy for recurrent GBM in phase III trial. Cediranib failed
to improve progression free survival as a monotherapy and in
conjunction with Lomustine.57 Similarly, Vandetanib a dual
inhibitor of VEGFR-2 and EGFR that was tested in a phase II trial
for recurrent GBM also had little efficacy in patients with GBM.58

The multiple kinase inhibitor Sunitinib is an inhibitor of VEGF,
PDGFR, FLT1, FLT1/KDR, FLT3 and the RET kinases.59 In a phase II
study for recurrent glioblastoma multiforme, Sunitinib was found
to be unsuitable as a monotherapy with all patients’ disease
progressing despite treatment.60

PDGFRα, PDGFRβ, Bcr-Abl, c-FMS and c-Kit tyrosine kinases can
be targeted using the kinase inhibitor Imatinib (Gleevec/ST1571).
This molecule disrupts the ligand-receptor autocrine loops for
PDGFR.61 Likewise, this drug appeared to have little beneficial
activity for GBM patients in phase II study.62 On the other hand,
Tyrphostin (AG-1296), also a PDGFR-α, PDGFR-β, c-Kit, FMS-like
tyrosine kinase 3 and a BEK tyrosine kinase inhibitor, was shown to
reduce GBM cell viability in vitro and to have anti-tumor activity in

a murine xenograft model of GBM.63 Tandutinib which targets
PDGFR-β, FMS-like tyrosine kinase 3 and c-Kit, was tested in phase
II trial in patients with recurrent GBM however this trial was halted
due to the drug’s lack of efficacy.64 Other multi-kinase inhibitors
such as Lenvatinib (E7080) and Nintedanib that inhibit VEGFR,
FGFR and PDGFR kinases were tested in phase II studies. Although
only Lenvatinib appeared to have modest activity on recurrent
GBM patients, therapy with this inhibitor was accompanied with
high toxicity in GBM treated patients.65–67

XL-184 (BMS-907351/Cabozantinib) is an oral inhibitor of c-MET,
VEGFR-2 and RET,68 and it also has an inhibitory effect on KIT, FLT3
and TEK.69 Initial results from a phase II trial using XL-184 are
promising, but further research is required to fully test its efficacy
for GBM.68 Other molecules such as Foretinib and SGX-523 inhibit
HGFR/c-MET tyrosine kinase and have been shown to reduce
tumor growth in vitro and in vivo when using a GBM murine
xenograft model.70,71 PD173074 is another multiple tyrosine
kinase inhibitor that inhibits FGFR and VEGFR tyrosine kinases.
PD173074 showed GBM growth inhibitory effects in vitro39 and as
a result this drug might be of benefit for GBM patients. PQ401,
GSK1838705A, PPP (picropodophyllin/AXL1717) and NVP-AEW541
are IGF-1R tyrosine kinase inhibitors that have all shown promising
results pre-clinically (Table 1). PQ401 has been shown to suppress
GBM cell growth and migration in vitro.72 GSK1838705A induced
apoptosis of GBM cells in vitro, and when these cells were
implanted in nude mice GSK1838705A had similar anti-GBM
activity.73 PPP (Picropodophyllin/AXL1717) was shown to inhibit
the growth of GBM cell lines that led to in vivo regression of
intracranial xenografts.74 NVP-AEW541 induces apoptosis in GBM
cell lines in vitro when co-administered with Dasatinib (a Bcr-Abl
tyrosine kinase inhibitor).75 BMS-536924 is an ATP competitive
IGF-1R/IR (insulin receptor) inhibitor that has shown promising
anti-tumor properties in vitro and when tested on Temozolomide
(TMZ) resistant GBM cells.76

These small-molecule inhibitors have been widely studied in
many cancers, with varying degrees of success, however the
clinical trial data for GBM shows that very few of these molecules
have a significant anti-tumor response, and thus other compo-
nents of the RTK receptors are being considered as therapeutic
targets.

Antibody therapies targeted at RTKs’ extracellular domain
Whilst many therapies target the kinase domain of RTKs, the
extracellular domain is also a viable target when using antibody
therapies. These molecules are being used as antagonists of the
ligand-binding domains of RTKs with the aim of preventing
ligand-binding and subsequent activation of the kinase domains.
A monoclonal EGFR targeting antibody known as Cetuximab has
been utilized as a therapy for GBM. This antibody targets the
extracellular domain of EGFR, and acts as an antagonist that
prevents the activation of RTKs and therefore, inhibits tumor
malignancy.77 Cetuximab has been tested as a salvage therapy for
patients who have failed to respond to surgery, radiation therapy
and chemotherapy. Although this monotherapy proved to be well
tolerated, its activity for recurrent glioblastoma multiforme was
minimal at phase II clinical trial.78 Other antibodies such as
Ornartuzumab have been used to target the extracellular domain
of the HGFR/c-MET receptor and this has been shown to inhibit
orthotopic U87 GBM xenograft tumor growth.79 MK-0646 (H7C10/
F50035/Dalotuzumab) a humanized monoclonal IGF-1R antibody
that acts as an antagonist, has also been shown to reduce cell
proliferation and to induce apoptosis.80 Although these antibody
therapies are still in their relative infancy compared to the small-
molecule inhibitors of the RTK kinases, early research has been
promising in the context of GBM. It is important to note that due
to their large size antibodies do not freely cross the blood–brain
barrier, thus there is a need to engineer antibodies to enable them

Glioblastoma multiforme
JRD Pearson and T Regad

4

Signal Transduction and Targeted Therapy (2017) e17040



to cross the blood–brain barrier and access GBM tumors. Only
around 0.1–0.2% of circulating antibodies have been shown to
penetrate the blood–brain barrier.81 Bispecific antibodies consist
of two different single chain Fv fragments connected by a linker.
Directed antibodies with optimized binding to the transferrin
receptor have been used to cross the blood–brain barrier in both
murine and primate models.82 These engineered antibodies are
exciting new therapeutics that enable the crossing of the blood–
brain barrier and direct targeting of tumor cells. Alternatively
antibodies can also be delivered directly into the brain using
Ommaya reservoirs or at the time of surgery to bypass the blood–
brain barrier.

Therapies directed at RTK ligands
Antibodies have also been used to ‘trap’ the ligands that activate
RTK signaling pathways. Bevacizumab is a humanized murine
monoclonal antibody that binds VEGF and prevents its binding to
the receptor. This antibody was granted accelerated approval by
the FDA (food and drug administration) in 2009 for the treatment
of patients with progressive or recurrent GBM. Despite its
approval, Bevacizumab has been shown to have little efficacy
for newly diagnosed GBM. The addition of Bevacizumab to the
current course of therapy conveys no benefit for overall patient
survival.83 Aflibercept is another VEGF ‘trap’ that binds VEGF and
prevents its interaction with the receptor. In phase II trial
Aflibercept appeared to have little activity for recurrent GBM
patients with only 7.7% of patients experiencing progression free
survival after 6 months.84 Rilotumumab (AMG102) is an anti-HGF
monoclonal antibody that binds HGF and prevents its binding to
the HGFR/c-MET, and consequent activation of downstream
targets. When combined with temozolomide in vitro, Rilotumu-
mab has been proven to inhibit the growth of U87MG
glioblastoma multiforme cells.85 In a phase II clinical study, this
antibody showed little effect for the treatment of recurrent
glioblastoma multiforme.86 Although targeting these ligands is an
attractive avenue for GBM therapy, the efficacy of these therapies
has been limited. This may be due to factors such as RTK receptors
being mutated and constitutively active, such as mutations
encountered in EGFRvIII. The blood–brain barrier may also present
an issue for these antibody therapies, preventing their tumor
penetration, inhibiting their anti-tumor effects.

RTK DOWNSTREAM SIGNALING PATHWAYS
The PI3K/AKT/mTOR pathway
The PI3K/AKT/mTOR pathway is activated by transmembrane
tyrosine kinase growth factor receptors, transmembrane integrins
and G-protein-coupled receptors (Figure 1). Upon activation
of these receptors, functional PI3K translocates to the
plasma membrane and leads to the production of phosphatidy-
linositol 3,4,5-triphosphate (PIP3) from phosphatidylinositol
bisphosphate (PIP2).

87,88 PIP3 activates serine/threonine kinase
phosphoinositide-dependent kinase 1 (PDK1) and AKT (at
threonine 308).87,88 Phosphatase and tensin homolog (PTEN) acts
to counteract PI3K signaling by dephosphorylating PIP3 to PIP2.

89

Activated Akt phosphorylates the FOXO subfamily, which inhibits
the transcription of several pro-apoptotic proteins, it can also
inhibit apoptosis by phosphorylating and inactivating pro-
apoptotic proteins such as BAD and GSK3.88,90 Other functions
include the phosphorylation and degradation of the inhibitor of
κB (IκB), and which results in increased nuclear factor kappa B
(NF-κβ) activity and transcriptional stimulation of pro-survival
genes,91 it also modulates MDM2, which inhibits P53 (an activator
of cell-cycle arrest).92

Akt directly and indirectly leads to activation of mTOR which is
present in two distinct complexes: mTORC1 and mTORC2.
mTORC1 is composed of mTOR, Raptor, mLST8 and PRAS40.

mTORC1 activates S6K1 and subsequently S6, resulting in
increased cell proliferation and growth. It also leads to the
inhibition of eIF4E binding protein 1 (4E-BP1), which allows the
formation of eukaryotic initiation factor 4F (eIF4F) and protein
translation.93 mTORC2 is composed of mTOR, Rictor, Sin1 and
mLST8 and its role is less understood.93 It has been found that
mTORC2 activates PKC, promoting its kinase activity.94 It is also
thought that mTORC2 may take part in cell survival and
cytoskeletal organization.95 mTOR has been shown to regulate
hypoxia-inducible factor 1α (HIF1α), leading to downstream
activation of vascular endothelial growth factor (VEGF) secretion
and increased angiogenesis.96

The Ras/MAP/ERK pathway
This signaling pathway is activated by cell surface receptors and
regulates the activity of many cellular factors involved in
angiogenesis, cell proliferation, migration and survival (Figure 1).
The activation of Ras protein by the exchange of GDP with GTP,
results in the activation of MAP kinases that also activate
downstream ERK via phosphorylation.97 This pathway is often
activated in certain tumors by mutations in cytokine receptors
such as Flt-3, Kit, Fms or by overexpression of wild-type or
mutated receptors.98 Activation of the Ras/MAP/ERK pathway also
leads to activation of HIF-1α, which promotes tumorigenesis and
activation of VEGF.99

RTK signaling pathways in GBM pathogenesis
A large percentage of mutations and deletions in the RTK
signaling pathways are evident in numerous cancers including
GBM. The RTK/Ras/PI(3)K pathway was found to be altered in
86–90% of GBM cases studied.9,10 Combined activation of the Ras
and AKT pathways has been shown to induce glioblastoma tumor
formation in mice.100 The AKT signaling pathway plays a pivotal
role in the progression of grade III anaplastic astrocytoma to grade
IV glioblastoma multiforme. AKT expressing tumors appear to
grow at a faster rate than non-AKT expressing tumors.101

Furthermore, inhibition of the PI3K/AKT pathway has been shown
to inhibit the growth of GBM cells,102 further highlighting the
importance of this pathway in GBM pathogenesis.
Inhibitors of the PI3K/AKT/mTOR signaling pathway are also

affected in GBM. As an example, PTEN is mutated or deleted in
approximately 36–44% of GBM cases.9,10,103 Loss of PTEN function
has also been linked to immune evasion seen in GBM tumors, with
mutations of PTEN being linked to increased expression of the
immune suppressive checkpoint PD-L1.104 Another example is the
tumor suppressor Neurofibromin 1 (NF1) that inhibits Ras.105 NF1
has a region that is highly homologous to the catalytic domain of
Ras GTPase-activating protein (p120GAP), and consequently, it
stimulates Ras GTPase, which leads to Ras bound GTP hydrolysis
into GDP, and the inactivation of Ras activity.106 NF-1 is involved in
the development of GBM as evidenced by the correlation between
neurofibromatosis type-1 (a disease characterized by NF-1
mutation) and GBM occurrence.107

TARGETING RTK SIGNALING PATHWAYS IN GBM
PI3K
Although therapies targeting PI3K in GBM have shown promising
results in vitro and in vivo using xenograft models, their clinical
efficacy remain to be tested and/or proven. PX-866 (Sonolisib) is
an irreversible PI3K inhibiting drug that has been shown to inhibit
angiogenesis and invasion of GBM cells in vitro. Although the drug
did not induce apoptosis of GBM cells, it did cause cell cycle
arrest.108 This drug was tested in a phase II trial for recurrent
glioblastoma and was well tolerated but 73% of patients treated
had disease progression.109 Other inhibitors such as XL765
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(SAR245409) and GDC-0084, dual PI3K/mTOR inhibitors, have anti-
GBM effects in vitro and in vivo but their efficacy in clinical trials
must be tested and presented.110,111

mTOR
Several mTOR inhibitors have been trialed for GBM with differing
results. As an example, Temsirolimus (CCI-779), Sirolimus (Rapa-
mycin) and Everolimus (RAD001) are mTOR inhibitors that were
shown to have little efficacy on GBM treatment. Temsirolimus
failed to show efficacy for recurrent GBM in Phase II clinical trial.112

Sirolimus also had little efficacy for treatment of recurrent GBM
patients even when combined with the EGFR tyrosine kinase
inhibitor Erlotinib.113 Similarly, Everolimus did not convey a
significant survival benefit when combined with temozolomide
and radiotherapy in a phase II trial for newly diagnosed GBM
patients.114 On the other hand, AZD2014 (Vistusertib), CC-223
(TORKi) and Palomid 529, which are dual mTORC1/mTORC2
inhibitors, have shown therapeutic promise. AZD2014 (Vistusertib)
radiosensitized glioblastoma stem-like cells in vitro and in vivo.115

As a result of these promising preclinical results, participants are
being recruited for a phase I/II clinical trial and from previously
treated GBM patients (clinical trial ID: NCT02619864). CC-223
(TORKi) was found to exhibit anti-tumor effects in a murine
xenograft model of GBM (utilizing U87MG cells)116 and Palomid
529 hindered GBM tumor growth in an orthotopic murine tumor
model.117

RAS TARGETING BY AMINOBISPHOSPHONATES: NANOTECH-
BASED STRATEGIES
Ras is another valid therapeutic target for the treatment of GBM.
Aminobisphosphonates are promising anti-cancer therapeutics,
these drugs are thought to disrupt cancer proliferation, invasion,
survival and pro-angiogenic activity by inhibiting the synthesis of
farnesyl and geranyl lipidic residues, which in turn prevents
protein isoprenylation. Ras is a farnesylated protein that it is
inhibited by aminobisphosphonates, this inhibition prevents Ras
GTPase activity and prevents downstream signaling.118 Zoledronic
acid (ZOL) is an aminobisphosphonate that has anti-cancer effects,
however it is mainly used to treat bone metastases as it
accumulates in the bone, as a result novel methods are required
to deliver this drug extra-skeletally.119 Nanotechnology can be
utilized to help prevent bone accumulation of ZOL and ensure
blood–brain barrier penetration of the drug. Salzano G et al.
developed self-assembling nanoparticles that target transferrin
receptors via incorporation of transferrin known as Tf-PLCaPZ. Tf-
PLCaPZ encapsulates zolderonic acid and delivers it across the
blood–brain barrier. Tf-PLCaPZ showed significant in vitro LN229
cell growth inhibition, Tf-PLCaPZ also showed anti-tumor activity
in vivo in a U373MG xenograft model.120,121 These promising
preclinical results make ZOL an exciting potential therapy for GBM.

THE RAF SERINE/THREONINE KINASE
Raf is a component of the Ras/Raf/MEK/ERK signaling pathway
that can be targeted for GBM treatment (Figure 1). Sorafenib, a Raf
kinase inhibitor, has been tested in combination with Erlotinib (an
EGFR tyrosine kinase inhibitor) and in a phase II trial for patients
with recurrent GBM (Table 2). This combinational therapy did not
appear to have the desired beneficial effects, as it failed to reach
the goal of a 30% improved survival time. It was postulated that
this may be due to pharmacokinetic interaction between the
drugs which reduces their efficacy.122Ta
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PROTEIN KINASE C (PKC)
Protein kinase C (PKC) family members regulate several cellular
responses including gene expression, protein secretion, cell
proliferation, and the inflammatory response. Tamoxifen is an
inhibitor of PKC that has been tested as a therapeutic compound
for GBM. In a phase I study, Tamoxifen was well tolerated but
when combined with radiotherapy it did not appear to radio-
sensitize GBM tumors, as was observed in vitro.123 In a phase II trial
combining high-dose Tamoxifen and radiotherapy, it was found
that this molecule did not increase survival of patients.124

Worryingly, it was reported that high-dose tamoxifen treatment
was linked with multifocal glioblastoma recurrence which mainly
occurred in patients who responded to the Tamoxifen
treatment.125 Enzastaurin is an inhibitor of the PKCβ and PI3K/
AKT pathways that has been tested in phase I and phase II clinical
trials. When compared with the alkylating chemotherapeutic drug
Lomustine in a phase III trial for recurrent GBM, Enzastaurin did
not display better efficacy.126

THE TUMOR SUPPRESSOR P53
The p53 pathway is altered in a large variety of cancers, with GBM
being no exception. 87% of cases studied by the Cancer Genome
Atlas Research Network had alteration of the p53 signaling
pathway, with p53 being mutated or deleted in 28–35% of
cases.9,10 The p53 protein pathway is involved in the activation of
genes that are implicated in cell cycle arrest and apoptosis
(Figure 2).127 Stress signals, such as DNA damage, hypoxia, heat
shock and cold shock elicit a p53 response. These stress signals
also result in the activation of mouse double minute 2 homolog
(MDM2), a protein that degrades p53.128 The p53 protein activates
p21 that inhibits Cdk4/Cyclin D and Cdk2/Cyclin E complexes and
prevents their cell cycle progression.129 Upon p53 activation the
transcription of Cyclin B is also reduced, preventing cell cycle
progression.130 Due to the importance of p53 in GBM pathogen-
esis, a gene therapy approach has been used to restore p53
expression. SGT-53 is a nanocomplex that delivers wild-type p53
to tumor cells. It was shown to sensitize Temozolomide resistant
tumor cells to treatment in vitro and in vivo.131 Introduction of
wild-type p53 into Temozolomide resistant GBM cells resulted in a
reduction of MGMT protein expression and this may explain the
improved responsiveness to TMZ observed.131 In a phase I trial,

intratumoral delivery of wild-type p53 gene using an adenovirus
(Ad-p53) caused apoptosis of transfected tumor cells, indicating a
beneficial anti-tumor effect.132

THE TUMOR SUPPRESSOR PRB
The pRB pathway suppresses cell cycle entry and progression via
its interaction with the transcription factor E2F, leading to down
regulation of genes involved in cell cycle progression.133–135 The
pRB pathway was altered in 78–79% of GBM cases studied with RB
gene deletion or mutation in 7.6–11% of cases.9,10 As a result
therapies have been developed to reactivate pRb. PD0332991
(Palbocilib) is an inhibitor of Cdk4/6, that prevents the down-
stream inhibition of pRb (Figure 2). PD0332991 (Palbocilib) has
been shown to inhibit the growth of intracranial GBM xenograft
tumors.136

O6-METHYLGUANINE-DNA METHYLTRANSFERASE (MGMT)
MGMT is an enzyme that conveys a resistance to temozolomide
chemotherapy (the standard chemotherapy of choice for GBM.
MGMT acts alone to remove the methyl lesions caused by
temozolomide.137 A single MGMT molecule removes the O6-
methylation on guanine in a single step and transfers the methyl
group from the oxygen in the DNA to a cysteine residue in the
active site of MGMT.137 The binding of the methyl group
irreversibly inactivates MGMT. Once the methyl group is bound
MGMT is ubiquitinated and degraded by the proteasome.138 The
repair of O6-methylation on guanine is biphasic with an initial fast
repair phase followed by a slower phase caused by the depletion
and subsequent synthesis of MGMT.138 O6-benzylguanine blocks
the active site of MGMT, inactivating it and allowing methyl
adducts to accumulate. In a preclinical model using xenotrans-
planted nude mice, the combination of O6-benzylguanine with
temozolomide or carmustine (BCNU), amplified the anti-tumor
effects of these chemotherapeutic agents.139 These promising
preclinical results were unfortunately not replicated at the clinical
trial phase. O6-benzylguanine did not re-sensitize temozolomide
resistant patients to temozolomide chemotherapy as expected
and as a result the drug was not investigated past the phase II trial
stage.140,141

Figure 2. A schematic representation of the role of p53 and pRB signaling in response to stress signals. Black arrows indicate activation
whereas red arrows indicate inhibition.
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TGF-Β SIGNALING
TGF-β is a cytokine that exerts its effects on many cell types and is
involved in the regulation of cell growth, immunity, cell death and
cell adhesion.142 TGF-β binds to TGF-β receptor II (TGF-ΒRII)
resulting in the formation of a heterodimer with the TGF-β
receptor I (TGF-ΒRI) and leading to the phosphorylation of TGF-Β
RI.143 This event results in TGF-ΒRI the phosphorylation and
activation of SMAD proteins. Once activated, the SMADs form
complexes that in turn regulate the expression of target genes,143

it is important to note that TGF-β also signals via non-SMAD
pathways.144 TGF-β signaling has been shown to facilitate Ras/Raf/
MEK/ERK signaling via the increased GTP loading of Ras. TGF-β has
also been shown to activate the PI3K/AKT/mTOR pathway.145 In
healthy conditions TGF-β acts as a tumor suppressor, inhibiting
proliferation, as a result mutations in the TGF-β signaling pathway,
lead to an insensitivity to this cell growth prevention.143 Aberrant
TGF-β signaling results in inflammation, invasion, metastasis,
angiogenesis and immune escape. In GBM the TGF-β pathway is
dysregulated and contributes to pathogenesis and progression.143

GBM cells have been shown to secrete TGF-β2 that also
suppresses the anti-GBM immune response.146

AP12009 (Trabedersen) is a TGF-β2-specific antisense oligonu-
cleotide, that when delivered using convection enhanced delivery
(CED) resulted in a longer median overall survival (in phase I/II
trial).147 SB-431542, LY2109761 and LY364947 (HTS466284) are
inhibitors of the TGF-βR1 tyrosine kinase that have been tested in
the GBM setting. SB-431542 has been shown to inhibit GBM cell
growth, and motility in vitro.148 LY2109761 delivery in conjunction
with radiotherapy improves GBM tumor responsiveness to radio-
therapy in an orthotopic murine model.149 LY2109761 also has
been shown to delay tumor growth in murine xenografts when
used as a monotherapy and when combined with TMZ
chemotherapy.149 LY364947 (HTS466284) has also been shown
to increase the sensitivity of GBM cells to radiotherapy.150

CONCLUSIONS
Glioblastoma multiforme is an elusive disease with a dismal
prognosis, and alternative therapies are required to improve the
prognosis for patients. Genomic analyses of GBM uncovered
several dysregulations of key cellular signaling pathways that
constitute attractive targets for therapy. Targeting individual
components of these pathways using small-molecule inhibitors
and antibodies has provided varying levels of success in the
treatment of GBM. Therefore, it may be more advantageous to
target multiple elements of various signaling pathways, to
eradicate GBM. It is also important to note that tumor cells are
heterogeneous, and a targeting strategy that is aimed at multiple
pathways would constitute a more efficient therapy. Many
therapies also fail to have beneficial effects due to the blood–
brain barrier and the presence of active efflux pumps that prevent
drug entry into the brain. One such example of receptor tyrosine
kinase inhibitors that have low brain penetration rates are
Erlotinib and Gefitinib which have cerebrospinal fluid penetration
rates as low as 2.8–4.4% and 1.1–1.3% respectively.151 The drug
transporters P-glycoprotein (P-gp) and breast cancer resistance
protein (BCRP) have been shown to reduce brain penetration of
Erlotinib explaining the relatively poor results seen in the GBM
setting.152 Recent advances in nanoparticle delivery of drugs have
enabled the delivery of drugs previously incapable of crossing the
blood–brain barrier, reach the brain parenchyma and thus, enable
effective targeting of intracranial tumors.153,154 The combination
of focused ultrasound with microbubbles has also been shown to
allow drugs to penetrate the blood–brain barrier.155–157 This
technique may allow RTK inhibitors to cross the blood–brain
barrier more efficiently and therefore enhance their effects.
Immunotherapy may also be used as an alternative therapy with

targeted immune cells crossing the blood–brain barrier. Numerous
promising immunotherapies using peptide-targeted vaccines are
entering clinical trials and preliminary results are proving to be
beneficial for patients.158,159 Dendritic cell vaccines also showed
encouraging results at the clinical trial stage.160 With these novel
therapies comes hope for the future treatment of GBM.
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