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ABSTRACT

Nitric oxide (NO) production plays a central role in conferring tolerance to hypoxia. 

Tibetan highlanders, successful high-altitude dwellers for millennia, have higher 

circulating nitrate and exhaled NO (ENO) levels than native lowlanders. Since nitrate 

itself can reduce the oxygen cost of exercise in normoxia it may confer additional 

benefits at high altitude. Xtreme Alps was a double-blinded randomised placebo-

controlled trial to investigate how dietary nitrate supplementation affects physiological 

responses to hypoxia in 28 healthy adult volunteers resident at 4559m for 1 week; 14 

receiving a beetroot-based high-nitrate supplement and 14 receiving a low-nitrate 

‘placebo’ of matching appearance/taste. ENO, vital signs and acute mountain sickness 

(AMS) severity were recorded at sea level (SL) and daily at altitude. Moreover, 

standard spirometric values were recorded, and saliva and exhaled breath 

condensate (EBC) collected. There was no significant difference in resting 

cardiorespiratory variables, peripheral oxygen saturation or AMS score with nitrate 

supplementation at SL or altitude. Median ENO levels increased from 1.5/3.0mPa at 

SL, to 3.5/7.4mPa after 5 days at altitude (D5) in the low and high-nitrate groups, 

respectively (p=0.02). EBC nitrite also rose significantly with dietary nitrate (p=0.004), 

1.7 to 5.1μM at SL and 1.6 to 6.3 μM at D5, and this rise appeared to be associated 

with increased levels of ENO. However no significant changes occurred to levels of 

EBC nitrate or nitrosation products (RXNO).  Median salivary nitrite/nitrate 

concentrations increased from 56.5/786µM to 333/5,194µM at SL, to 85.6/641µM 

and 341/4,553µM on D5. Salivary RXNO rose markedly with treatment at SL from 

0.55µM to 5.70µM. At D5 placebo salivary RXNO had increased to 1.90µM whilst 

treatment RXNO decreased to 3.26µM. There was no association with changes in 

any observation variables or AMS score. In conclusion, dietary nitrate 

supplementation is well tolerated at altitude and significantly increases pulmonary 

NO availability and both salivary and EBC NO metabolite concentrations. 

Surprisingly, this is not associated with changes in hemodynamics, oxygen saturation 

or AMS development. (318 words)
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INTRODUCTION

The partial pressure of oxygen decreases on ascent to high altitude as a result of a 

decline in barometric pressure; at 5300m (the height of Everest base camp) it is 

approximately half the value at sea level.(1) This hypobaric hypoxia causes 

hypoxaemia (a lack of oxygen in the blood) resulting in significant physiological 

challenges. The respiratory system is particularly affected, and consequently 

respiratory problems make up some of the most common (e.g. high altitude cough) 

and also the most serious (e.g. high altitude pulmonary oedema or HAPE) illnesses 

encountered at high altitude.(2) Respiratory pathologies and hypoxaemia are also 

commonly encountered in critical care patients but are very difficult to study in this 

setting. High altitude environments might therefore provide a model for pathological 

hypoxaemia from which much can be learned.(3) 

Interestingly, native lowlanders appear to respond to acute hypobaric hypoxia 

differently from native highlanders (i.e. populations permanently residing above 

3000m). For example, native lowlanders seem to rely heavily on increased 

erythropoiesis to maintain oxygen content at altitude,(1) whilst this response is much 

less pronounced in native highlanders such as the Sherpas (supremely adapted after 

living at high altitude for over 500 generations).(4) Another notable difference that is 

remarkably conserved across different high altitude populations (including the 

Tibetan populations and the Bolivian Aymara) is that mountain dwellers exhale 

higher concentrations of nitric oxide (NO) compared to individuals living at sea 

level.(5,6) However, exhaled NO levels decrease significantly in lowland populations 

on acute exposure to altitude.(7) During graded exposure to altitude, however, NO 

production increases also in lowlanders suggesting that NO production and 

particularly respiratory NO availability might play an important role in offsetting the 

effect of hypoxia and improve performance.(8) 

NO is a ubiquitous signalling and effector molecule, and an important 

modulator of oxygen delivery through effects on blood pressure and blood flow as 

well as mitochondrial respiration. As well as these vasoactive properties, it also plays 

crucial roles in inflammation (including pulmonary and airway inflammation) and in 

the immune system, as a cytotoxic entity and by abating oxidative stress.(9) 

Moreover, in hypoxia it plays a key role in energy supply-demand matching.(10) 

Inhaled NO has been shown to reduce pulmonary artery pressures and increase 

arterial oxygenation in critical care patients suffering from Acute Respiratory Distress 

Syndrome by improving ventilation-perfusion matching.(11) Inhaled NO has also 

been used to treat patients suffering from HAPE, successfully reducing oedema and 

increasing arterial oxygenation.(12)
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NO is produced through two main pathways in the body, both regulated by 

oxygen. While the enzymatic formation of NO from L-arginine by nitric oxide 

synthases (NOS) is an oxygen-requiring process, production of NO through serial 

reduction of inorganic nitrate (NO3
-) to nitrite (NO2

-) and NO is inhibited by 

oxygen.(13) It is this second mechanism that is thought to underlie the significant 

increase in markers of NO metabolism observed in acclimatizing lowlanders and also 

well-adapted Sherpas at high altitude.(8) Dietary nitrate is initially reduced to nitrite 

by the oral bacterial flora in the mouth, before nitrite can be further reduced to NO in 

the acidic environment of the stomach and in vascular tissue by various nitrite 

reductase enzymes.(14–16) 

Besides its use as an ergogenic aid in sports medicine,(17–21) attempts to 

increase nitrate intake through dietary supplements have also been trialled as 

therapeutic interventions in respiratory patients suffering from chronic obstructive 

pulmonary disease (COPD), which results in a chronic hypoxaemic state, with mixed 

results.(22–26) Some studies showed beneficial effects such as increased exercise 

performance and lower resting blood pressure,(22,24) whilst other studies did not 

show any significant improvements in exercise performance.(25,26) Some studies 

only showed limited improvements (such as reduced oxygen consumption) but 

suggested that these benefits might be greatest in the most hypoxic patients.(23) 

However, all of these studies demonstrated that dietary nitrate supplementation is 

both safe and tolerable to patients. If dietary nitrate supplementation could improve 

physiological performance under other hypoxic conditions then it could potentially be 

an effective and economic treatment for hypoxaemia in critically ill patients. 

The Xtreme Alps expedition was a double-blinded randomised placebo-

controlled trial designed to investigate how dietary nitrate supplementation affects 

performance at altitude.(27) This report focuses on the findings of the study’s 

respiratory outcomes, baseline observations and acute mountain sickness (AMS) 

scores.

METHODS

Study setting and participants

Details of the Xtreme Alps expedition and protocols have been previously 

described.(27) A total of 28 healthy adult volunteers (aged 21-40 years) were 

recruited after completing a health screening process to identify those at risk of 

problems at high altitude (as detailed in(27)). Of these, 21 (75%) were male. The 

mean weight was 73.3 kg (± 11.6), mean height 1.76 m (± 0.08), and mean BMI 23.6 

(± 2.7). 3.6% were smokers and 75% had previously been to an altitude of over 
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3000m. Anyone deemed unfit to undergo a formal exercise test at high altitude (as 

previously described (28)) was excluded. Written informed consent was obtained 

from each participant and ethical approval for the study was obtained from Research 

Ethics Committees at both University College London, UK and the University of 

Turin, Italy. 

The study took place in August 2010 at the Capanna Regina Margherita 

(‘Margherita Hut’) on the summit of Monte Rosa (altitude 4559m), which contains a 

research laboratory inside, managed by the University of Turin. Baseline 

measurements were conducted in London (altitude 75m) six weeks earlier: mean 

barometric pressure 100.5 kPa, mean laboratory temperature 24.1 °C and mean 

oxygen partial pressure 19.7 kPa.  Participants were then separated into 2 groups 

(Trek 1 and 2) based on their availability, with Trek 2 starting their ascent seven days 

after Trek 1. All investigators and participants initially flew to Milan (102m) and 

remained there one night before starting to ascend the following day; by road to 

Alagna (1205m), by lift to Punta Indren (3250m), and then on foot to the Gnifetti Hut 

(3611m). Severe weather conditions meant Trek 1 only stayed at 3611m for two 

nights before ascending on foot to the Margherita Hut, whilst Trek 2 ascended on 

foot after three nights at 3611m. Subjects then remained at 4559m for the rest of the 

study duration (eight nights for Trek 1, seven for Trek 2) (see Figure 1A) before 

descending on foot again. This schedule included a planned rest day on arrival at 

4559m for each group (during which the first group could build and set up the 

laboratory), followed by 5 days of testing. In the laboratory at 4559m, the mean 

barometric pressure, temperature and partial pressure of oxygen were 78.1kPa, 

22.6°C and 15.1kPa respectively. 

Randomisation

Following enrolment, participants were randomly allocated to receive either a 

high nitrate supplement (intervention group) or low nitrate supplement (placebo 

group) in accordance with the CONSORT 2010 guidelines (http://www.consort-

statement. org/) and accounting for the need for equal numbers of individuals in both 

groups whilst maintaining gender distribution. Both participants and investigators 

were blinded to group allocations for the duration of the study, including the analysis 

of the primary data sets. 

Intervention
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The intervention juice was a custom formulated all-natural beetroot/fruit juice 

blend (produced, pasteurised and packaged into 200 mL food-grade aluminum foil 

pouches individually labelled with anonymized subject codes by Aurapa GmbH, 

Bietigheim-Bissingen, Germany). The total daily nitrate dose targeted by the high 

nitrate intervention was similar to that shown by others to be effective in improving 

exercise performance at sea level (range 0.10–0.18 mmol/kg/day),(29,30) and 

divided into three individual doses for consumption in the morning, at midday and in 

the evening. The low-nitrate (placebo) version was produced in the same manner 

using beetroot juice in which the majority of nitrate had been removed by selective 

microbial denitrification. Administration, both at sea level and high altitude, 

commenced 72 hours prior to the start of and continued throughout each testing 

period. However, as all subjects in both the placebo and treatment groups were 

taking beetroot juice for 3 days prior to each experimental period starting, we were 

unable to measure baseline (or 'treatment-free' control) measurements either at sea 

level or at altitude in either of these groups. A limited amount of data is available for 

ENO and breath condensate levels from treatment-naïve members of the laboratory 

team, who did not receive any supplement as they were not part of the main study; 

this data is presented where available on the appropriate figures. However, the error 

bars for this group are large as the n-values are small and often variable (not all 

individuals were always available and some unwell, requiring medication and/or 

experiencing respiratory inflammation on certain days) – these individuals were 

never intended to be part of the main study but presented here for comparison to the 

placebo group. All meals consumed by subjects during the study period were 

standardised in order to minimise nutritional nitrate intake. 

Daily diary, measuring observations & AMS scores

All participants completed a daily diary first thing each morning before any 

oral intake (including food, caffeine, placebo or intervention supplements). Peripheral 

oxygen saturation (SpO2), heart rate (HR), respiratory rate (RR) and blood pressure 

(BP) were measured after five minutes of rest, sitting upright. Finally, each participant 

also recorded medications taken and their symptoms according to the Lake Louise 

score – a validated score for diagnosing and grading AMS.(31,32) 

Respiratory measurements

Standard spirometric variables (FEV1, FVC, FEV1/FVC, PEF and FEF 25-75) 

were measured using an ultrasonic spirometer (Easy-One, NDD Medical 

Technologies, MA, USA). Due to a corrupted file all spirometric recordings taken at 
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high altitude were lost; therefore, only sea level data are reported. 

Breath-to-breath analysis of inhaled and exhaled NO was performed using a 

spirometric analysis device (using individual disposable Spirettes and bacterial filters) 

connected to a gas phase chemiluminescence analyser (CLD88sp with Spiroware 

software, EcoMedics, Duernten, Switzerland); two identical units were used in 

parallel throughout. In accordance with current American Thoracic Society/European 

Respiratory Society recommendations for exhaled NO measurements,(33) individual 

Denox 88 units (EcoMedics, Duernten, Switzerland) provided NO-free air and 

enabled advanced adaptive expiratory flow control. Expiratory gas flow was 

measured in real time according to the time-of-flight principle using a high resolution/ 

high frequency ultrasonic device. A fraction of inspired and expired air (~10% of the 

expired air at a nominal flow of 50 ml/s) was continually transferred from a 

sidestream opening in the handheld spirometer; here, flow was controlled using a 

fixed orifice in the sample line with a vacuum pump driven internal resistor 

arrangement, maintaining a constant flow of 300ml/min of sampled air into the 

analyzer, independent of changes in barometric pressure.

Both chemiluminescence analysers were equipped with additional stainless-

steel bulkhead fittings, which supplied their ozone generators with pure oxygen 

(instead of environmental air) from a cylinder. This hardware adjustment ensured 

adequate ozone generation to maintain optimal performance even at lower 

barometric pressures. For consistency, medical grade oxygen was also used to 

supply the ozone generators at sea level. All measurement devices were calibrated 

daily, both at sea level and at altitude, with NO (4.00 ppm) using 100% nitrogen as 

zero gas and a calibrated 3 litre volumetric syringe. The CLD88sp devices measure 

continuously ambient temperature and pressure by internal sensors. Each morning 

accurate barometric pressure and temperature were entered into the software for 

verification purposes as part of the calibration procedure. The CLD88sp takes the 

ambient pressure into account during the gas calibration and compensates 

automatically for diurnal pressure changes. Thus, displayed FeNO concentrations are 

always accurate and do not require correction for altitude. However, criticism has 

been raised in relation to other devices and measurement principles using e.g. 

electrochemical cells for NO detection where readings can vary with changes in 

partial pressure.(34,35) Moreover, the partial pressure of metabolically active gases 

within a body cavity may more accurately represent biological activity.(34) Therefore 

we here report both fractional exhaled NO (FeNO) and partial pressures of exhaled 

NO (PeNO). 

For each measurement subjects inspired to total lung capacity before slowly 
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expiring against a defined resistance to ensure proper velum closure. During 

expiration an electronic visual display helped each subject maintain a steady flow of 

50 ml/s in accordance with ATS guidelines - a smiley face against a green 

background was displayed when the ultrasonically measured flow was within limits 

(50 ml/s ±5%), with red warning signs flashing when the flow fell below the minimum 

or exceeded the maximum level. A minimum of 3 successful repeats with stable flow 

rates for at least 6 second were collected for each measurement.

Measures of nitric oxide/nitrate metabolites 

Samples of unstimulated saliva were collected using dedicated collection 

devices (Salimetrics Oral Swabs; State College, PA, USA) immediately before 

participants ate their midday meal. Swabs were placed sublingually for 2 minutes at 

sea level or 5 minutes at altitude (to enable sufficient volume to be collected for 

analysis) before collection into a sterile container and centrifugation at 3000 rpm for 

15 minutes. 1ml of saliva was aliquoted and stored in two separate cryovials at 

−40°C for later determination of nitrosation products, nitrite and nitrate. Subjects had 

not consumed their respective supplement, brushed their teeth, or had recent acute 

hypoxic or hyperoxic exposure (e.g. as part of other research protocols) before 

sample collection. 

Exhaled breath condensate (EBC), a readout of alveolar surface chemistry, 

was collected non-invasively by breathing through a mouthpiece connected to a 

sampling tube (pre-rinsed with ultrapure Millipore water (EMD MilliporeSigma, MA, 

USA) and dried before use) contained within an insulated pre-cooled aluminium 

sleeve (RTube®, Respiratory Research, Inc., Charlottesville, VA, USA) for 15 min. 

Two 1ml EBC aliquots were frozen and stored at −40 °C straight after collection and 

analysed later in the UK. 

Placebo and intervention juices were saved along with representative food 

samples served at Margherita Hut.  Food samples were collected, homogenized in 

phosphate buffer (or drinking water), frozen at −40 °C straight after homogenisation 

and analysed later in the UK.

NO metabolite concentrations were quantified using reductive gas-phase 

chemiluminescence (for determination of total nitrosation products, RXNO) and 

HPLC (for nitrite and nitrate), as described elsewhere (8).

Analysis plan

Sea level spirometry values were normally distributed when tested. Separate 

t-tests, performed in Graphpad Prism 6 software (www.graphpad.com/scientific-

http://www.graphpad.com/scientific-software/prism
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software/prism), were used to analyse these variables (FEV1, FVC, FEV1/FVC, PEF 

& FEF 25-75) as there was no requirement to model for different ascent profiles. 

Statistical analyses for ENO, breath condensate and saliva measurements 

were all performed using linear mixed modelling in STATA 11 (http://www.stata.com) 

to account for the multiple time points at which measurements were taken as well as 

the nitrate intervention. All physiological observations were normally distributed, as 

were all other measured variables after logarithmic transformation. All statistical tests 

(except those spirometry values listed above) were performed on parametric log-

transformed data. Significance was assumed when p <0.05. A sensitivity analysis 

was performed with missing values replaced by mean values to verify the model. 

Correlation between breath condensate nitrite and ENO was performed on non-

parametric untransformed data using Spearman’s Rank with a 2-tailed significance 

test. Physiological observations and AMS scores are reported as means (± standard 

deviation). For easier reading, all other values are reported in the text as median 

(interquartile range) of anti-logged/untransformed data (non-parametric) to allow 

presentation in original units.

RESULTS 

Dietary nitrate intake and supplementation

The nitrate concentration of the placebo supplement was 1.4 (±0.1) mM; 

consumption of 3 x 200mL therefore amounted to 11.5 µmol/kg bw per day (bw = 

body weight), which is less than the average UK daily intake of around 24.5 µmol/kg 

bw per person per day.(36) The intervention supplement had a nitrate concentration 

of 18.5 (±2.0) mM, translating into >10 times higher dietary nitrate supplementation 

levels in the intervention group. Nitrite concentration was below 1 µM in placebo and 

2.4 µM in the intervention group, which amount to < 0.01 and 0.02 µmol/kg bw per 

day, respectively – both well below the average UK daily intake of 0.53 µmol/kg bw 

per day. Where available, the limited measurements we have of untreated adults at 

altitude closely matched the respective values for the placebo group.

Food provided at altitude varied somewhat from day to day, therefore 

representative food samples were collected from typical meals (breakfast, lunch, 

dinner).  Average ranges per meal for nitrate were as follows: 50-217 µmoles for 

breakfast, 132-447 µmoles for lunch, and 559-1201 µmoles for dinner.  The average 

ranges per meal for nitrite were considerably smaller, amounting to 0.17-0.46 µmoles 

for breakfast, 0.64-1.40 µmoles for lunch, and 0.71-2.10 µmoles for dinner.  This 

amounted to an average intake of 18 (±11)  µmoles nitrate/kg bw per day and 0.038 

(±0.023) µmoles nitrite/kg bw per day, well within normal UK daily intakes.(36) 

http://www.graphpad.com/scientific-software/prism
http://www.stata.com
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Combined, the placebo group received an average of 29.5 µmol nitrate/kg bw per 

day, slightly (20%) above the average UK intake whilst the intervention group 

received up to 186 µmol nitrate/kg bw per day, or 6.6 times larger than the normal 

UK daily intake with minimal addition of nitrite from either placebo or intervention to 

the diet.

Baseline physiological observations

Increasing exposure to hypobaric hypoxia at high altitude produced marked changes 

in participants’ resting physiological variables (see Figure 1). Resting SpO2 initially 

decreased with each incremental rise in altitude, before stabilising as further time 

was spent at each elevation (see Figure 1B). Meanwhile, resting respiration rates 

(RR) initially increased on ascent before trending back towards baseline values (see 

Figure 1C). Mean resting SpO2 at sea level was 98.3% (±1.1) and 97.7% (±1.5) for 

Trek 1 and 2 respectively, decreasing to 77.3% (±8.0) and 81.1% (±6.84) on their 

first day at 4,559m (day 3 and day 4, respectively). Mean RRs for Trek 1 and 2 

respectively were 10.6 (±2.9) and 11.8 (±2.6) at sea level, increasing to 16.1 (±5.7) 

and 14.2 (±4.0) at arriving at 4,559m, and decreasing to 12.3 (±3.1) and 11.9 (±3.1) 

by day 10. A similar response pattern was also seen for resting heart rate and blood 

pressure (Fig. 1D & 1E). All physiological trends were similar between both ascent 

profiles; hence all other measurements were pooled for subsequent analysis. 

Acute Mountain Sickness (AMS)

There was no significant difference in the incidence of Acute Mountain Sickness 
(AMS) between the intervention and placebo groups, p = 0.29 (see 
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Figure 2). Similarly, the dietary nitrate supplement did not significantly alter the 

incidence of headache at altitude (p = 0.47). Both of these findings remained 

consistent when the different ascent rate (different trek groups) was also included in 

the linear-regression model. One subject was evacuated hours after arriving at 

4559m after developing high altitude cerebral oedema (HACE). No one developed 

HAPE.

Lung function, exhaled NO and NO metabolite levels in exhaled breath condensate

All sea level spirometry variables were normally distributed. All subjects (2 in the 

treatment group smoked) had normal lung function and there was no significant 

difference seen between the placebo and treatment groups for any sea level 

spirometry variable when tested (see Table 1).

All measured breathing and salivary variables were normally distributed after 

log transformation. As shown in Table 2, Table 4 and Figure 3 nitrate supplementation 

and hypobaric exposure both robustly increased ENO levels, and this result remained 

significant after adjusting for multiple comparisons. Nitrate supplementation also 

significantly increased nitrite concentrations in EBC.

When modeled for days spent at altitude, dietary nitrate supplementation 

significantly increased ENO levels (p=0.02), with median values from 1.5 mPA (IQR 

1.2-2.6) to 2.99 mPa (IQR 1.98 – 4.44) at sea level and from 3.4 mPa (IQR 1.8-4.6) 

to 7.4 mPA (IQR 3.9-10.4) by day 5 at altitude. In the same model, treatment with 

high nitrate supplementation also significantly increased sea level nitrite 

concentrations in EBC (p = 0.004), with median values increasing from 1.66 µM (IQR 

1.29 – 1.80) to 5.05 µM (IQR 1.22 – 9.95) at sea level, and from 1.64 µM (IQR 1.04 – 

2.09) to 6.26 µM (IQR 3.83 – 8.16) after 5 days at 4559m.  Moreover, association 

analyses unmasked moderate correlations between measured EBC breath nitrite and 

ENO levels both at sea level, (rs = 0.29, p = 0.56 & rs = 0.54, p = 0.0003 in the placebo 

and treatment groups respectively) and at altitude (rs = -0.5, p > 0.999 & rs = 0.18, p 

= 0.27 respectively). However, this analysis was limited by low n values at sea level, 

particularly in the treatment group (see Figure 3). Changes in breath RXNO levels in 

response to the dietary supplement followed similar trends, but these differences did 

not reach statistical significance (p = 0.23). No significant change was seen in EBC 

nitrate concentrations with levels remaining very similar in both treatment groups 

across the study period (p = 0.59). Median concentrations of nitrate in the low and 

high nitrate supplements were 1.84 µM (IQR 1.41 – 2.24) and 2.20 µM (IQR 1.29 – 

2.9) respectively at sea level, and 1.17 µM (IQR 0.93 – 1.31) and 1.20 µM (IQR 1.08 

– 1.39) after 5 days at altitude. 
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Oral nitrate reduction and NO metabolite levels in saliva

Similar to EBC, salivary NO metabolite levels at sea level and high altitude varied 
considerably between individuals. Dietary nitrate supplementation significantly 
increased salivary levels of nitrate (p < 0.001), nitrite (p < 0.001) and RXNO (p = 
0.04) (see Table 3 and 
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Figure 4). Median salivary nitrate concentrations increased at sea level from 0.79 mM 

(IQR 0.49 – 0.95 mM) to 5.19 mM (IQR 4.07 – 5.91 mM) upon nitrate 

supplementation, and after 5 days at altitude from 0.64 mM (IQR 0.47 – 1.29 mM) to 

4.55 mM (IQR 3.44 – 5.98 mM). Median salivary nitrite concentrations also increased 

with nitrate supplementation, from 56.5 µM (IQR 17.1 – 147.3) to 332.8 µM (IQR 

133.0 – 460.2) at sea level, and from 85.6 µM (IQR 37.28 – 155.04) to 340.9 µM 

(IQR 282.0 – 519.4) after 5 days at 4559m. 

Initially, similar increases were also seen to median salivary RXNO 

concentration with the intervention, with levels going from 547.9 nM (IQR 340.6 – 

3090.1) to 5696.4 nM (IQR 483.8 – 14897.4) at sea level after dietary nitrate 

supplementation. However the difference between the two randomisation groups was 

much smaller after 5 days at altitude. The median RXNO concentration in the 

placebo group increased from sea level to 1897.5 nM (IQR 462.2 – 4909.9) by day 5, 

whilst it fell in the supplemented group to 3258.4 nM (IQR 1084.3 – 7211.9).

A secondary sensitivity analysis did not alter the significance of any of these 

results. However, despite significant increases in all of these biochemical markers of 

NO availability, there was no identifiable difference between the intervention and 

placebo group in any resting physiological variable or score of AMS severity (see 
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Figure 2).

Discussion

The novelty of the present study is that it was performed under field conditions  

(rather than at simulated altitude in a hypobaric chamber) with mountaineer subjects 

residing at altitude over a prolonged period of time. This experimental design allowed 

us to take serial measurements in order to examine how dietary nitrate 

supplementation (ingested in three equal doses throughout each day) affects 

physiological acclimatization to altitude.

Main findings – Exhaled NO (ENO)

These results demonstrate that dietary nitrate supplementation with a beetroot/fruit 

juice mixture at altitude successfully increases nitrate availability; these increases are 

associated with markedly enhanced levels of exhaled NO (ENO), and nitrate and 

nitrite levels in saliva as well as nitrite concentrations in EBC throughout the duration 

of altitude exposure. In addition, nitrate supplementation also increased the steady-

state concentrations of nitrosation products (S-nitrosothiols and N-nitrosamines) in 

saliva and compensated for the drop in total nitroso species content in EBC observed 

following ascent to high altitude. Unexpectedly, despite these significant biochemical 

changes there was no measureable difference in SpO2, RR, BP, HR or AMS severity 

associated with dietary nitrate supplementation, either at sea level or at high altitude.

Reports on altitude-related changes in ENO of lowlanders and experimental 

animals are inconsistent. Data from one study in healthy volunteers suggested that 

ENO levels decrease on acute exposure to altitude, possibly by as much as 33% at a 

simulated altitude of 5000m.(37) This was thought to be due to the lower gas density 

at reduced barometric pressures increasing the back diffusion and alveolar uptake of 

NO.(37,38) By contrast, ENO levels increased upon acute nitrate administration in 

another study.(39) Similarly, ENO increased in rats exposed to 4 days of hypoxia, 

possibly as an adaptive response to the increased oxidative stress seen with chronic 

hypoxic exposure.(40) Our findings suggest equivalent responses might also be seen 

in humans at altitude and over comparable timescales; ascent to 4559m over at least 

3 days demonstrated similar increases in ENO levels in our cohort. 

Growing evidence supports the notion that both NO and nitrate metabolism play 

important roles in the physiological response to hypoxia, and also the benefits that 

nitrate supplementation can confer on individuals’ physiological performance.(10,41) 

However, the physiological role of ENO specifically in either of these situations is 

unclear, and clinically the measurement of FeNO has mainly been as a point-of-care 
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test for airway inflammation in patients with asthma.(42) Its association with the 

development of AMS is much less certain.

While it has been suggested that ENO may be associated with AMS, this is not 

without controversy. One of those studies that led to this conclusion was performed 

in a hypoxic chamber and subjects only experienced 6 hours of exposure to a 

normobaric hypoxic stimulus.(43) Others suggested that ENO might correlate with the 

incidence of AMS, but this was a much smaller study (n=8) where only baseline 

values for FeNO were measured and subjects did not receive any dietary 

intervention.(44) Another study demonstrating that ENO values dropped significantly 

on acute exposure to high altitude found no association between ENO values and 

reported symptoms of AMS.(7) 

The two most striking differences between these studies and the results 

presented here are our dietary intervention to boost nitrate metabolism and the 

duration of hypoxic exposure. Our study measured changes over five days at altitude 

whereas the studies of MacInnis et al and Brown et al only looked at an acute 

exposure to hypoxia, measuring changes up to six hours and three hours, 

respectively. A recent study that explored a more prolonged exposure to hypobaric 

exposure where teenage subjects received dietary nitrate supplementation on a 

graded ascent over two weeks to 5300m in Nepal also reported no change in AMS 

scores, lending further support to the unexpected findings of the current study.(45)

Conceivably, our nitrate supplement might not have induced a large enough 

increase in ENO to generate a measurable physiological change in either baseline 

observations (e.g. SpO2) or AMS score. We are not aware of any specific data that 

would have quantified the increase in ENO required to induce a change in either AMS, 

SpO2 or any other measure reported here in native lowlanders. However, our nitrate 

supplement successfully doubled median ENO values compared to control so that by 

day 5 the median ENO in the intervention arm was almost three times higher than 

levels measured earlier in healthy Tibetan highlanders.(46) Tibetans have less AMS 

than lowland trekkers even with this accepted upper limit for ENO concentrations; 

therefore, those supra-normal values in our cohort should have been sufficient to 

trigger a physiologically meaningful response.(47)

Exhaled breath condensate (EBC) results

EBC is being increasingly used to detect levels of airway inflammation, monitor 

disease progression and also assess disease severity in a number of respiratory 

conditions including adults and children with atopic asthma.(48,49) However, despite 
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offering a relatively cheap, quick, simple and non-invasive window into lung 

physiology, its usefulness in altitude-related respiratory illnesses is less explored. 

There is some evidence to suggest EBC could be useful in predicting altitude-

related illness. Results from a small study (5 subjects + 11 controls) suggested that 

EBC analysis before and after 90 minutes of normobaric hypoxic (12% oxygen) 

exposure might be able to distinguish between individuals with and without a history 

of HAPE.(50) Meanwhile, another study demonstrated that EBC measurements 

conducted at 670m and 3000m of malondialdehyde (MDA), a marker of oxidative 

stress, significantly correlated with the AMS scores of 10 soldiers at 5000m as they 

ascended a 6125m peak.(51) Other oxidative stress markers (e.g. 8-iso 

prostaglandin F2α) have also been shown to significantly increase in EBC 

measurements in small numbers of both exercising biathletes (n=10) and sedentary 

volunteers (n=5) over a six week period at 2800m, further supporting our findings 

presented here.(52) In a study similar to ours also making EBC measurements at 

4342m from seven subjects receiving dietary L-arginine supplementation – an 

intervention that should increase endogenous NO production via the classical nitric 

oxide synthase pathway - no improvement in AMS scores were seen with 

supplementation. In fact, this study found that the treatment group actually developed 

significantly worse headaches.(53)

Again, the biggest difference between all of these previous studies and the 

results we present here is the scale of the study. To the best of our knowledge, the 

Xtreme Alps expedition is currently the largest study and 4559m is also the highest 

altitude at which EBC samples have yet been collected. While no association was 

found between NO metabolite related changes in EBC and AMS in the present study, 

future well-powered studies are needed to determine whether or not this technique 

could help predict or diagnose altitude illness using other biomarkers.

A curious finding was that nitrite and nitrate concentrations in EBC measured 

in the present study were almost identical.  This is unlike any other compartment 

where nitrate levels are typically exceeding nitrite levels by at least an order of 

magnitude. Moreover, we found that dietary nitrate resulted in significant rises to 

levels of EBC nitrite - with almost identical rises seen both at sea level and at altitude 

- but almost no difference to EBC nitrate. This strongly suggests that both EBC 

nitrate and nitrite are under active regulatory control, even when the exact 

mechanisms of sensing and regulation remain unclear. We also noted moderate 

associations between levels of EBC nitrite and FeNO, even in the low nitrate/placebo 

group and particularly at altitude. We believe that, for the first time, this provides 

evidence to suggest that nitrite in airway secretions might be acting as a possible 
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source of ENO. Whether or not these observations are of further biological 

significance warrants further investigation.

Enterosalivary nitrate circulation

The physiological importance of the enterosalivary nitrate circulation has only been 

realised recently whilst the conversion of L-arginine and oxygen to NO and citrulline 

by NOS enzymes was established two decades earlier.(54,55) NOS-independent 

nitric oxide production was not discovered until the mid 1990s.(56,57) Unlike NOS 

enzymes, the bacterial nitrate-reductase enzymes that convert nitrate to nitrite in the 

oral cavity function also function in the absence of oxygen. This means that this 

enterosalivary nitrate circulation becomes particularly important under hypoxic 

conditions when NOS activity becomes limited,(58,59) and nitrite-reducing pathways 

in mammalian tissues are still inhibited by the remaining oxygen levels.(13)

Dietary nitrate supplementation initially increased the levels of salivary nitrate, 

nitrite and nitrosation products as expected – extra oral nitrate availability enables 

more bacterial nitrate to nitrite conversion, leading to enhanced systemic nitrite 

availability and formation of downstream nitrosation products.(60) However, it is 

surprising that hypoxic exposure did not significantly alter salivary nitrate or nitrite 

levels from sea level values. Moreover, we did not expect prolonged altitude 

exposure to narrow the difference in salivary RXNO concentrations between the two 

groups. The cause for this finding is not clear at present but this could be related to 

the duration of exposure as the trends suggest levels might still not have reached a 

plateau by day 5. Equally this could suggest that chronic hypoxic conditions might 

limit the maximum RXNO production rate, effectively placing a ceiling on the changes 

any dietary nitrate supplementation might induce.

Dietary nitrate and altitude illness

Our findings suggest that even though dietary nitrate supplementation at 

altitude results in increased biochemical nitrate availability, this does not improve 

acclimatization and/or reduce the incidence of AMS. Another hypobaric chamber 

study recently showed similar increases in ENO after just a single dose of sodium 

nitrate. However, despite ENO increasing by 24% at a simulated altitude of 4300m, 

there was no demonstrable benefit in isometric exercise performance, forearm blood 

flow or tissue oxygenation.(39) Meanwhile another study, which recently exposed 20 

healthy volunteers to 6 hours of 12% oxygen in a normobaric chamber, actually 

showed an increase in AMS scores (particularly headache) with dietary nitrate, 

contrasting our findings.(61) Inhaled NO has previously been shown to reduce 
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pulmonary arterial pressures both at sea level and at altitude, offering particular 

benefit to HAPE-susceptible patients who tend to have high pulmonary artery 

pressures.(11,12) One explanation of these findings perhaps is that even a mild 

vasodilatory effect on the pulmonary vasculature confers benefits at altitude, 

particularly in people with naturally high pulmonary artery pressures. Meanwhile any 

cerebrovascular dilation in patients results in increased cerebrovascular flow and 

worsening of headache symptoms, particularly in those most susceptible to AMS.

  

Strengths and limitations

The Xtreme Alps study is one of the earliest double-blinded randomised placebo 

control trials of dietary nitrate supplementation at altitude that the authors are aware 

of, and also one of the larger studies to investigate the effects of nitrate metabolism 

at altitude. Nevertheless, absolute numbers remain rather moderate in each arm of 

the trial; we also had a number of missing data points due to subjects not being able 

to participate on some test days, usually due to altitude related illness. Consequently, 

confidence intervals remained wide in all reported measures so we cannot 

completely exclude a type-2 error, although a sensitivity analysis to correct for these 

missing values did not change these outcomes. 

Since the Xtreme Alps study was conducted, other studies have emerged that 

also investigated how nitrate supplementation may affect performance at altitude, 

however most have used a simulated (chamber) altitude environment. In accordance 

with our findings, AMS incidence was shown to be similar to controls in cyclists 

taking dietary nitrate supplements exposed to short sessions of 11% oxygen in a 

normobaric chamber.(62) Similarly, short-term nitrate supplementation induced no 

significant changes in cognitive performance in healthy volunteers simulating hiking 

at altitude by walking on a treadmill in a normobaric chamber.(63) Curiously and 

contrary to our findings, all of these simulated altitude studies reported increases in 

SpO2 after nitrate supplementation.(62–66) The reason for this discrepancy is not 

clear. However, all of these results were in response to a very different physiological 

stimulus to the intervention presented here. Our subjects were exposed to hypobaric 

hypoxia gradually over a number of days; in chamber studies subjects tend to 

experience a much shorter duration and more rapidly induced period of normobaric 

hypoxia. For example, in one normobaric chamber study reporting an increase in 

cycling performance after just one dose of nitrate, subjects were decompressed to 

15% oxygen in just 5 minutes.(64) Equally, the physiological response to normobaric 

and hypobaric hypoxia may not be the same, as suggested by a recent systematic 

review.(67) Currently Xtreme Alps remains the largest field study to date to explore 



Research Article submitted to Nitric Oxide

19

the effects of dietary nitrate by taking serial measurements over a prolonged duration 

of hypobaric hypoxic exposure at high altitude.

Another study strength was the fact that the supplement we used to deliver 

nitrate (a natural beetroot/fruit juice blend) was almost identical in taste, appearance 

and composition to the placebo (the same mixture except that the beetroot/fruit juice 

was selectively reduced in nitrate). Ours is the only study we are aware of that also 

monitored nitrite and nitrate intake with the food.

 As alluded to before, ascent occurred in two successive phases but inclement 

weather conditions meant that these ascent profiles could not be identical. However, 

statistical modeling has allowed us to control for these differences in ascent profile as 

much as possible, and trends between both ascent groups were similar. With each 

subject starting their beetroot juice supplement (containing either high nitrate 

'treatment' or very low nitrate 'placebo') three days prior to each testing period, this 

meant we were unable to record baseline values at either sea level or at altitude. We 

were also unable to take a complete third 'treatment free' control group to altitude 

without reducing the power of the study due to the space available at 4559m. 

However, the few measurements that were taken on the small number of treatment 

free laboratory team members all closely matched those of the placebo group 

suggesting that the low nitrate placebo supplement taken by this group did indeed 

behave as a placebo agent.

The majority of our subjects were young, non-smoking males with previous 

altitude experience, which is unsurprising given we primarily recruited from a mailing 

list of medical scientists and healthcare workers with an interest in high-altitude travel 

and hypoxia physiology. This sample remains representative of lowlanders who visit 

high altitude regions, as >83% of patients seen at the Himalayan Rescue 

Association’s Everest Base Camp clinic over a ten-year period were male with an 

average age less than 40.(68) Larger studies with a broader sample population might 

further strengthen this area of research in the future. 

Conclusions

This study suggests that dietary nitrate supplementation is tolerable and safe at 

high altitude and robustly increases levels of ENO as well as nitrate and nitrite 

concentrations in saliva, and nitrite concentrations in EBC. The association between 

EBC nitrite and FeNO levels suggests that exhaled NO may originate, at least in part, 

from nitrite in alveolar lining fluid. However, these increases in NO and related 

metabolites were not associated with any measureable changes in AMS, peripheral 

oxygen saturation or vital physiological parameters such as heart rate and blood 
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pressure after five days of hypobaric hypoxic exposure. Future efforts should be 

directed at investigating whether dietary nitrate supplementation at altitude is 

associated with other physiological changes.
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Figure 1: Changes in resting physiological variables during the Xtreme Alps expedition. All 
values are presented as means ± SEM, displayed separately for Trek 1 and Trek 2 (solid and 
dotted lines, respectively) as Trek 1 ascended one day faster from the Gnifetti Hut (3611m) to 
the Margherita Hut (4559m) due to inclement weather conditions. Each arrow represents the 
administration of 3 x doses of either treatment or placebo supplement (1 dose before every 
meal each day), starting 3 days prior to each testing period. SL = sea level testing, D1 – D5 = 
altitude testing days 1 to 5. 

Panel 1A - ascent profile, 1B - resting oxygen saturation per expedition day, 1C – resting 
respiration rate, 1D – resting heart rate, and 1E – resting blood pressure (systolic over 
diastolic).
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Figure 2: Representative results of the daily diary morning routine recording resting vital 
signs and symptoms of Acute Mountain Sickness (AMS). No significant difference was seen 
between the low nitrate group (placebo) and the high nitrate group (intervention) in peripheral 
oxygen saturation (SpO2), respiratory rate, heart rate, systolic blood pressure, diastolic blood 
pressure or Lake Louise Score (for AMS) on testing at sea level in London (75m), on 
participants’ first day at 3611m or on the first testing day at 4559m (D1 in Figure 1).
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Table 1: Summary spirometry data for all subjects at sea level. There is no significant 
difference between the placebo and treatment groups for any variable measured.

(% pred.) Placebo Treatment P value
FEV1 103.0 ± 3.5 97.6 ± 3.1 0.19
FVC 107.0 ± 2.7 93.0 ± 7.8 0.10

FEV/FVC 99.5 ± 2.3 98.9 ± 1.6 0.83
PEF (l/min) 114.0 ± 3.4 115.0 ± 3.3 0.83
FEV 25-75 92.2 ± 6.1 70.2 ± 13.6 0.15

Table 2: Descriptive table for Exhaled NO values at sea level (SL) and 1st (D1), 3rd (D3) and 
5th (D5) testing days at 4559m, expressed as Fractional exhaled NO (FeNO, ppb), and after 
conversion to partial pressure of exhaled NO (PENO, mPa). Individual FeNO measurements 
were converted to PENO measurements using the barometric pressure measured on the 
specific testing day that each measurement was taken (sea level range: 101.8 – 102.4 kPa, 
altitude range: 77.3 – 79.5 kPa). Data are presented as median (IQR). There was a significant 
increase in Exhaled NO levels in response to dietary nitrate supplementation in a linear 
regression model.

FeNO (ppb) PeNO (mPa)
Untreated Placebo Treatment Untreated Placebo Treatment

SL 14.0 (11.2-
22.8)

14.7 (11.5-
25.1)

29.3 (21.0-
42.6)

1.43 (1.1-
2.7) 1.5 (1.2-2.6) 2.99 (1.98-

4.44)

D1 27.7 (20.7-
32.7)

36.3 (20.3-
70.7)

92.0 (79.0-
123.7)

2.2 (1.6-
3.7) 2.8 (1.5-5.7) 7.3 (6.1-9.8)

D3 29.0 (11.7-
42.6)

32.3 (15.8-
53.8)

96.7 (68.3-
129.0)

2.2 (0.9-
4.0) 2.5 (1.2-4.4) 7.6 (4.9-

11.6)

D5 22.8 (18.2-
37.0)

43.3 (24.0-
54.3)

95.0 (54.3-
133.3)

1.8 (1.2-
3.1) 3.4 (1.8-4.6) 7.4 (3.9-

10.4)
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Table 3: Descriptive table for sea level (SL) and 1st (D1), 3rd (D3) and 5th (D5) testing days at 
4559m. Data are presented as median (IQR). All variables showed significant increases in 
response to dietary nitrate supplementation in a linear regression model except for exhaled 
breath condensate (EBC) nitrate and RxNO

Placebo Treatment
Breath nitrate SL 1.84 (1.42-2.24) 2.20 (1.29-2.90)

(μM) D1 1.07 (0.87-1.74) 1.56 (1.25-2.29)
D3 1.08 (0.89-1.26) 1.00 (0.92-1.45)
D5 1.17 (0.93-1.31) 1.20 (1.08-1.39)

Breath nitrite SL 1.66 (1.29-1.80) 5.05 (1.22-9.95)
(μM) D1 1.15 (0.98-1.74) 4.87 (3.94-7.15)

D3 1.24 (0.91-2.08) 6.60 (4.06-11.35)
D5 1.64 (1.04-2.09) 6.26 (3.83-8.16)

Breath RxNO SL 12.29 (10.02-13.79) 16.15 (11.35-24.53)
(nM) D1 10.02 (8.61-12.74) 20.47 (14.85-41.89)

D3 8.29 (5.70-11.20) 26.18 (21.67-78.40)
D5 8.76 (4.69-12.68) 22.61 (18.89-32.81)

Saliva Nitrate  
(μM) SL 785.9 (487.7-954.2) 5194.3 (4066.2-

5910.6)

D1 876.1 (499.1-
1099.9)

3945.4 (2037.4-
6314.8)

D3 874.5 (516.5-
1126.0)

5478.1 (2525.5-
12206.1)

D5 641.3 (474.2-
1285.1)

4552.94 (3444.4-
5975.4)

Saliva Nitrite  
(μM) SL 56.5 (17.1-147.3) 332.8 (133.0-460.2)

D1 41.7 (17.0-76.6) 170.9 (130.5-680.5)
D3 40.2 (13.5-84.4) 186.4 (117.5-496.5)
D5 85.6 (37.3-155.0) 340.9 (282.0-519.4)

Saliva RxNO  
(nM) SL 547.9 (340.6-

3090.1)
5696.4 (483.8-

14897.4)

D1 681.8 (289.2-
1467.6)

4594.9 (632.2-
5846.3)

D3 1260.0 (281.5-
2478.8)

4126.22 (2087.3-
5448.3)

D5 1897.50 (462.2-
4909.9)

3258.41 (1084.3-
7211.9)
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Table 4: Correlation data for each log variable showing: regression coefficient (β), 95% 
confidence interval and p value calculated from a linear regression model comparing the 
effect of the dietary nitrate taking into account the repeated measures at altitude

Log variable β 95% Conf. int. P value
PENO (mPa) 0.58 0.087 – 1.07 0.02

Breath nitrate (μM) 0.21 -0.56 – 0.98 0.59
Breath nitrite (μM) 1.24 0.41 – 2.1 0.004
Breath RxNO (μM) 0.42 -0.26 – 1.10 0.23
Saliva Nitrate  (μM) 2.22 1.46 – 2.98 <0.001

Saliva Nitrite  (μM) 2.35 1.21 – 3.49 <0.001

Saliva RxNO  (nM) 1.40 0.062 – 2.73 0.04
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Figure 3: Graphs showing mean exhaled NO and breath condensate values for control (low 
nitrate placebo) and supplement (high nitrate intervention) groups at sea level (SL) and days 
1 – 5 (D1 - D5) at 4559m altitude. Where available, corresponding values for untreated 
laboratory staff members is also presented. Significant rises were seen in exhaled NO and 
breath condensate nitrite in response to dietary nitrate treatment, but not breath condensate 
nitrate or RxNO. 

A: Partial pressure of exhaled NO (PeNO) over time, B: Breath condensate nitrate 
concentration over time, C: Breath condensate nitrite concentration over time, D: Breath 
condensate nitrosation products (RxNO) concentration over time.  

There were moderate correlations between Fractional exhaled NO (FeNO) and Exhaled 
Breath Condensate nitrite concentrations at sea level and at altitude in both the placebo 
(graph E) and the treatment (graph F) groups. However, this analysis is limited by low n 
values at sea level, particularly in the treatment group. rS - correlation coefficient of Spearman 
Rank test (no adjustment for repeated measures)
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Figure 4: Graphs to values for placebo (low nitrate) and intervention (high nitrate) groups at 
sea level (day 0) and days 1, 3 & 5 at 4559m altitude. All values showed significant increases 
in response to treatment with dietary nitrate.

A: Salivary nitrate over time, B: Salivary nitrite over time, C: Salivary RxNO over time. 

 




