
ACM on Reconfigurable Technology and Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

Network on Chip Architecture for Multi-agent Systems in FPGA

EDUARDO A. GERLEIN, Departamento de Electrónica, Pontificia Universidad Javeriana;

T.M. MCGINNITY, Intelligent Systems Research Centre, University of Ulster; School of

Science and Technology, Nottingham Trent University

AMAR BELATRECHE, Faculty of Engineering and Environment, Northumbria University

SONYA COLEMAN, Intelligent Systems Research Centre, Ulster University

A system of interacting agents is, by definition, very demanding in terms of computational resources.
Although multi-agent systems have been used to solve complex problems in many areas, it is usually very
difficult to perform large-scale simulations in their targeted serial computing platforms. Reconfigurable
hardware, in particular Field Programmable Gate Arrays (FPGA) devices, have been successfully used in
High Performance Computing applications due to their inherent flexibility, data parallelism and algorithm
acceleration capabilities. Indeed, reconfigurable hardware seems to be the next logical step in the agency
paradigm, but only a few attempts have been successful in implementing multi-agent systems in these
platforms. This paper discusses the problem of inter-agent communications in Field Programmable Gate
Arrays. It proposes a Network-on-Chip in a hierarchical star topology to enable agents’ transactions
through message broadcasting using the Open Core Protocol, as an interface between hardware modules.
A customizable router microarchitecture is described and a multi-agent system is created to simulate and
analyse message exchanges in a generic heavy traffic load agent-based application. Experiments have
shown a throughput of 1.6Gbps per port at 100 MHz without packet loss and seamless scalability
characteristics.

Categories and Subject Descriptors: C.1.4 [Computer Systems Organization]: Reconfigurable computing; B.3.6
[Hardware]: Reconfigurable Logic and Fpgas

Additional Key Words and Phrases: Multi-agent systems, Network-on-Chip, Open Core Protocol, agent-based
simulation1

ACM Reference Format:

Eduardo A. Gerlein, T.M.. McGinnity, Ammar Belatreche, and Sonya Coleman. 2015. Network on Chip
Architecture for Multiagent Systems in FPGA. ACM Trans. on Reconfigurable Technology and Systems
(TRETS). X, X, Article XX (Xxxxx 2017), 24 pages. 

DOI:http://dx.doi.org/10.1145/0000000.0000000

1 INTRODUCTION

A multi-agent system (MAS) is formed by a set of agents that coordinate and conjugate
their abilities and resources to solve complex problems through concurrent interactions
that lead to emergent effects at system level [Ferber 1999]. Numerous commercial and
open-source - generally java-based - packages are available for the implementation of a
software-bas MAS. Even though platforms such as JADE [Bellifemine et al. 2007],

Eduardo Gerlein is supported by a Vice-Chancellor Research Scholarship (VCRS) from the University of Ulster,
as part of the Capital Markets Engineering project.

Author’s addresses: Eduardo Gerlein, Departamento de Electrónica, Pontificia Universidad Javeriana, Bogotá,
Colombia. e-mail: egerlein@javeriana.edu.co. T.M. MCGINNITY, College of Science and Technology, Nottingham
Trent University, Nottingham, U.K., e-mail: martin.mcginnity@ntu.ac.uk; Ammar Belatreche, Faculty of
Engineering and Environment, Northumbria University, Newcastle, U.K., e-mail:
ammar.belatreche@northumbria.ac.uk; Sonya Coleman, Intelligent Systems Research Centre, Ulster University,
Londonderry, U.K., e-mails: sa.coleman@ulster.ac.uk

Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credits permitted. To
copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in
other works requires prior specific permission and/or a fee. Permissions may be requested from Publications
Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or
permissions@acm.org.

© 2010 ACM 1539-9087/2010/03-ART39 $15.00

DOI:http://dx.doi.org/10.1145/0000000.0000000

XX:2 E.A. Gerlein et al.

 ACM Trans. on Reconfigurable Technology and Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

Cougaar [Anon 2012], MASON [Luke et al. 2005], SWARM [Minar et al. 1996] and BESA
[González et al. 2003] are well engineered in terms of software design, the target
computing architectures, i.e. serial processors, in which they are expected to be deployed
limit their parallel computing. A high impact on performance is observed when a platform
host a large scale MAS that includes several thousands of agents [Allan 2010], or scaling
up to large simulations [Pawlaszczyk and Strassburger 2009].

Field Programmable Gate Arrays (FPGA) are a very promising technology for high
performance computing with a highly parallel and flexible architecture [Gokhale et al.
2008]. However, although FPGA technology seems to be the next logical step in the
development of multi-agent technology, only a very limited number of projects have
reported multi-agent implementations in reconfigurable hardware. The current agent
oriented programming (AOP) methodologies are not entirely appropriate to design and
deploy MAS at microchip level [Bosse 2014]. Agents in hardware are difficult to engineer
since there is no clear methodology for their design that incorporates a similar level of
conceptualization to software implementations, while at the same time takes into account
the specific requirements for FPGAs [O’Sullivan and Studdert 2005], i.e. limited memory
resources, availability of special purpose hardware blocks and general purpose logic
elements, routing and fitting inside the target device.

In this paper, agents deployed in a FPGA will be referred to as hardware agents as opposed
to the traditional software agents that reside in a processor’s program memory. There is a
small number of reports exploring design techniques in order to deploy a hybrid system,
where agents can be immersed in both software and embedded environments. Even fewer
works report successful implementations on FPGA. The architecture and methodology
presented in this paper are entirely agent-based, extending the agency concepts to
generate a feasible communication model based on Network on Chip (NoC). The main
objective is to merge naturally an agent oriented methodology and the hardware design
flow to model and deploy MAS in FPGA. NoCs borrow concepts from large scale computer
networks, providing a modular, flexible and scalable communication infrastructure for
cores’ interconnection at microchip level. A NoC is conformed by a set of interconnected
routers and network interfaces, which allow to separate the problem of core´s functionality
from the communications.

The proposed concept discussed in this paper is the result of a combination of a Star-NoC
topology, scaling in a hierarchical fashion by means of the integration of lower level
clusters, in conjunction with a message broadcast mechanism through standardized
module interfaces. These interfaces implement the Open Core Protocol (OCP) [(OCP
International Partnership) 2009]. The OCP is a socket-based interface that attempts to
define point-to-point links between processing elements, giving freedom for choice and
implementation of the final communication architecture. The OCP defines a configurable
set of I/O signals and the handshaking protocol between two communicating entities using
master/slave interfaces. Those interfaces are configured through a set of OCP parameters,
most of them optional, to form different OCP profiles defined in the document compliant.
While other projects have shown the feasibility of interconnecting agents using customized
NoCs [Ebrahimi et al. 2011], to the best of the authors’ knowledge, this paper is the first
attempt to discuss a generic systematic approach as a general solution to address the
particular problem of agent communications in FPGA using the NoC paradigm while at
the same time taking into account both agency requirements and digital design practices.
Large-scale NoCs have been used to enable bio-inspired neuro-computing platforms
[Carrillo et al. 2013][Merolla et al. 2014], nevertheless the nature of such applications does
not allow effective comparison of the achieved performance and the NoC metrics used to

Network on Chip Architecture for Multi-agent Systems in FPGA XX:3

 ACM Trans. on Reconfigurable Technology and Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

describe them with the results discussed in this paper. To validate the proposed concept,
a MAS comprised successively of 5, 30, 150 and 375 agents has been deployed in an Altera’s
Stratix IV FPGA to simulate intensive interactions in a generic agent-based application.
For the experiments, a router microarchitecture is designed, as well as the OCP interfaces
at the nodes to integrate the Event Driven Reactive Architecture (EDRA) [Gerlein et al.
2014a] [Gerlein et al. 2014b] with the NoC’s interconnection fabric. Results have shown a
zero load latency of seven clock cycles per hop and a high throughput of 1.6 Gbps
represented by the injection of messages to the nodes every three clock cycles at full-load
capacity. The NoC simulation traffic was run at a frequency of 100 MHz.

The remainder of the paper is organized as follows: Section 2 discusses earlier research
into implementing agents in FPGA and the lessons learned in this endeavor. In Section 3,
the EDRA model used to design agents in hardware is discussed. Section 4 presents the
proposed hierarchical Star-NoC for MAS in FPGA and detailed design of the routers,
network interfaces and their implementation results. Section 5 presents the
implementation of heavy load communication simulation using a generic agent-based
model. Section 6 concludes the paper.

2 RELATED WORK

The design of MAS for hardware and/or software/hardware hybrid platforms cannot be
driven by a pure Agent Oriented Methodology because these methods address the problem
from a purely software perspective rather than taking into account key hardware aspects.
These aspects includes the amount of memory resources, special purpose hardware blocks,
routing and fitting limitations, low level abstraction of hardware design, and major
physical constraints at the deployment stage [Bosse 2014]. Chen et al. [2011] have
indicated that regardless of FPGAs benefits, design of MAS in reconfigurable hardware
requires the addressing of certain issues such as system control complexity, degree of

modifiability and universal communication abstractions. System control complexity

attempts to arbitrate opposing resource requests in a true concurrent context. Degree of

modifiability addresses the changes in the design, that may be reflected in partially or
even totally different hardware implementations that may lead to the appearance of new
placement, fitting or timing issues in the newer version. In addition, universal
communication abstractions are also desirable, since software implementations have been
using them for many years. FPGA-based MAS must include structures to enable inter-
agent communication. This communication modules must implement custom standard
interfaces depending on the application and the particular requirements. The authors
proposed a general architecture for hardware agents which includes wrapping circuits for
internal control and communication management and a user logic area that encapsulates
the agent functionality, isolating it from the communication infrastructure. The
communications between the agents are proposed using standardized network-on-chip
techniques.

Meng [Meng 2005] proposed a reconfigurable agent-based architecture taking advantage
of FPGA technology to instantiate processors and logic units, which leads to the
implementation of a reconfigurable multi-core system-on-chip (RMCSoC). A co-design
approach is used, in which structured agents with repetitive and time consuming tasks
are deployed using hardware modules. The agents that present more complex and
irregular structure, are programmed in software using an embedded soft-processor. To
evaluate the proposed model, an agent-based navigation system for a Pioneer 3DX robot
is designed, where a set of concurrent agents in charge of sensor management and

XX:4 E.A. Gerlein et al.

 ACM Trans. on Reconfigurable Technology and Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

acquisition of information are deployed on hardware. An approximate decrease of 50% in
navigation time is observed in a dynamic environment with the FPGA-based MAS
compared with the software approach.

An important application of hardware agents is fault tolerance for large scale computing
systems as seen in [Lukovic and Christianos 2010] where the authors addressed the
problem of multi-agent communication architecture with the development of a NoC. The
particular application is a security agent-based network called the secure-NoC, to monitor
and ensure the integrity of communications in a Multi-Processor System-on-Chip (MPSoC)
composed of processing cores and communication elements (routers and network
interfaces) interconnected through what the authors call a data-NoC. The security agents
are organized in a hierarchical fat-tree architecture. A similar approach was proposed in
[Ebrahimi et al. 2011], where a MAS is in charge of monitoring the congestion and status
of the routers of a main data-NoC. The monitoring agents collect the congestion
information from their attached routers and distribute it to all the agents in a broadcast
fashion to optimize adaptive routing based on the local and global congestion to balance
work load across the network. This work discusses an interesting approach which
implements broadcasting the information to every agent in the system through a NoC
using a mesh topology. Although the application fulfills the purpose of reducing the data-
NoC congestion, a mesh topology requires the incorporation of a routing scheme which
impacts the overall latency in a router. In addition, as discussed in [Carrillo et al. 2013], a
single mesh architecture is no naturally scalable, and a hierarchical approach is needed to
reach scalability. The approach used in this paper, scales through a hierarchical Star-NoC
and avoids routing stages inside the network switches using message broadcasting to
reduce router latency.

In [Bosse 2014], the author attempts to integrate the agents’ behavior , interaction, and
mobility with what is called an Agent-On-Chip processing architecture (AoC). This
approach uses a reconfigurable pipelined communicating architecture implemented with
finite-state machines. Bosse develops an intelligent sensor network to monitor the
structural fitness of the actuators and joints in a robotic manipulator. A set of autonomous
nodes are connected to nine gauge sensors and interconnected to each other in a 10 by 10
mesh network. The nodes are synthetized in a Xilinx XC3S1000 FPGA. This project
presents an interesting insight into the importance of selecting simplified architectures
such as finite state machines (FSM) to design agents at hardware level and the
implementation of communication modules separated from the agent functionality to
provide social interactions. Furthermore, in [Bosse 2015], the author extends the Agent-
orientated Programming Language (AAPL) to construct an activity-based model for the
agent behavior at programming level, which results appropriate for hardware
implementations. In the activity-based model the agent´s behavior is determined by the
internal state, which in turn is modified by activities. The activity-based model can be
mapped to hardware structures through FSM, as well as software implementations, and
simulation using a unified methodology which in turn favors a seamless integration of a
MAS hosted by a hybrid platform. Nevertheless, specific issues regarding a scalable
integration of agents are not addressed directly. The approach presented in this paper goes
further in that direction, discussing NoC considerations from an agency perspective
suitable for deployment in FPGA devices. A router implementation is discussed for a
hierarchical Star-NoC, using standard interfaces that enable the interconnection of agents
to the network regardless the selected architecture to implement the agents´
functionalities.

Network on Chip Architecture for Multi-agent Systems in FPGA XX:5

 ACM Trans. on Reconfigurable Technology and Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

Naji, Wells and Etzkorn in [Naji, Wells, et al. 2004] directly address the problem of
transferring multi-agent paradigms over reconfigurable hardware, proposing an
architecture at agent-level that takes as a basis the traditional Believe-Desire-Intention
model. The authors propose a general architecture defining a set of ports and signals to
enable data flow. The agents are connected in a peer-to-peer fashion, providing high-speed
interactions but also limiting scalability as the agents in the system must be modified if
new entities are included in later versions or if new functionalities are added.

Communications in the agency paradigm considers every agent as a master in a
master/slave scheme, who is capable of engaging in communicative acts as necessary. This
capability may generate an overload in bus arbitration modules present in bus-based
communications. Bus-based systems usually follow a master/slave approach where the
channel is stalled during any transaction. While bus-based communication strategies were
sufficient for years to fulfil the communication requirements in complex chips, the current
size, level of integration scale and speed of modern systems have required the design of
innovative solutions to manage data exchange between the cores. Therefore the use of
buses as a primary communication mechanism for MAS in FPGA should be discarded if
large scale multi-agent applications are intended. NoCs appeared early in the 21st century
[Benini and De Micheli 2002], using analogous concepts taken from large scale
communications networks, and applying them to the embedded SoC domain. In contrast
to bus-based architectures, NoCs route packets of data from the source to the destination
components, via a network fabric that consists of switches (routers) and interconnection
links (wires). The model proposed in this paper uses the Event Driven Reactive
Architecture (EDRA) introduced in [Gerlein et al. 2014a] and posteriorly in [Gerlein et al.
2014b], to design and implement the agents at individual level, while also implementing a
hierarchical Star-NoC at social level to enable agents to communicate, cooperate and scale.

3 EVENT DRIVEN REACTIVE ARCHITECTURE (EDRA)

The EDRA model is based on the assumption that intelligence in agents can be achieved
by the aggregation of interacting reactive modules called behaviors as discussed by Brooks
in his subsumption architecture [Brooks 1986]. A reactive approach naturally
encompasses the agency paradigm with a digital design implementation. EDRA describes
the internal agent’s micro-architecture using the Organizational Approach for Agent
Oriented Programming (AOPOA) methodology introduced in [González and Torres 2006],
establishing a structured fine-grained task decomposition inside agents to generate
reactive behaviors which are triggered by events. The behaviors are linked with consistent
hardware interfaces to enable internal flow of information.

Figure 1. (a) Architecture of an EDRA Behavior extended from the model proposed in [Naji, Etzkorn, et al.
2004]. (b) EDRA agent with 3 behaviors.

XX:6 E.A. Gerlein et al.

 ACM Trans. on Reconfigurable Technology and Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

To define the agents, the AOPOA methodology describes a system as an iterative tree of
goals, in which the root represents the system’s main goals and the child nodes represent
the agent’s sub-goals named roles. The final leaf nodes represent the agents that will be
deployed in the system. To complete the EDRA model, the task decomposition must
continue inside the agents seeking the simpler of these roles or tasks, until reaching the
lowest level of complexity. The complexity of such simple tasks must be evaluated by a
heuristic assessment, due to the fact that they must be implemented in hardware modules.
These basic task structures are called behaviors. Inside an agent, the behaviors will
interact using events that represent a set of predefined signals in a hardware
communication interface. The defined behaviors are modelled and implemented as
independent hardware modules. These hardware modules are further instantiated in a
single hardware description file to construct each individual agent. At conceptual level,
the events are grouped into two types: informative and flag events. Informative events

involve the passing of information, i.e., processed results or information from and to the
environment. Flag events are used to make announcements, requests, or
acknowledgements. At implementation level, the events are modelled as set of signals in
a port interface. Figure 1-a presents a generic architecture of a behavior, in which flag

events are modelled as bit-related signals and informative events are represented as vector-
related signals depending on the needs and characteristics of the information. Figure 1-b
represents an EDRA agent conformed by three interacting behaviors. More than one
interface port is possible as shown in the number of strobe ports present in the Behaviour
C in the Figure 1-b.

The ports used for managing flag events are: (a) Clock – mandatory signal in digital

systems to synchronize general execution; (b) Strobe – listening port used for activation of

a particular behavior to execute the programmed task or to indicate that particular

information is available to be processed; (c) Ready – signal used to indicate its programmed

task is finished; (d) Request/Ack – used to call for the execution of a desired task or

associated to a request-data-acknowledge protocol. For informative events, four types of

ports are defined: (a) Communication Reception Port (ComRx) –handles incoming

information from inside the system; (b) External input – handles incoming information

from an external source; (c) Communication Transmission Port (ComTx) –handles

outgoing information inside the system; (d) External output –used to send data or

information to an external destination. For a more detailed description of the EDRA we

reffer the autor to [Gerlein et al. 2014a] and [Gerlein et al. 2014b].

4 HIERARCHICAL STAR-NOC FOR MAS COMMUNICATIONS

The following sections will discuss a novel approach intended to address the problem of
large scale multi-agent interactions in FPGA using a hierarchical Star-NoC model. The
basic star topology connects several nodes in a point-to-point basis, with a central node or
switch in charge of distributing messages. One switch and its associated nodes will be
called a cluster. The communication strategy followed by the NoC will be broadcasting.
Every message generated by a node will be concentrated and retransmitted to all the nodes
in the cluster. Despite the fact that a broadcast strategy might increment the network
traffic, it benefits the implementation of MAS cooperation strategies such as bid/ask
auctions, partial global planning and blackboard-based cooperation where messages are
intended for more than one agent at a time. The discrimination of messages will occur at
the node network interfaces, programmed to receive certain type or types of messages
(inserted in the message header) instead of using subscription-based communications that
tend to serialize the transmission of multicast and broadcast messages. The use of
broadcasting with filtering at nodes also simplifies the design of the routers since no

Network on Chip Architecture for Multi-agent Systems in FPGA XX:7

 ACM Trans. on Reconfigurable Technology and Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

routing schemes are required, though the challenge in this case is the implementation of
virtual channels to guarantee message preservation and quality of service.

Other NoC topologies, such as mesh-based, present a one-to-one correspondence between
nodes and routers, which proportionally increments the use of resources and increases the
power consumption. A star architecture uses a lower number of routers than other
topologies which is advantageous in the sense that the majority of power consumption in
a SoC is due to the interconnection fabric. Unlike other topologies, the star structure
presents the lowest hop count as well as the lowest diameter (equal to 1). The degree of the
nodes is 1 (connected to just one switch) and the degree of the switch will be n+1 (connected
to n nodes plus one switch in a higher hierarchy). Latency associated with each hop is
reduced by the avoidance of routing algorithms since the broadcast scheme is selected by
default, although one-to-many and one-to-one routing strategies can be also implemented.
Additionally, in general a 2D topological layout, such as the one given by the Star topology,
can be easily mapped using standard fabrication architectures, which include FPGAs,
therefore reducing synthesis time [Jerger and Peh 2009].

Figure 2. Hierarchical Star Topology

4.1 Hierarchical Scalability

Several benefits have been identified for hierarchical NoCs [Das et al. 2009]: a hierarchical
approach allows a modular implementation providing a low-cost topology framework
which presents short physical paths between interconnecting nodes which in turn favors
low power consumption and enhanced signal integrity. At the same time, a hierarchical
approach offers the possibility of optimizing traffic locality, favoring in turn, the creation
of micro-societies in multi-agent applications. The Star-NoC scalability will be achieved
using a hierarchical structure extending to deeper levels of clusters as needed according
to the number of agents required in a particular application. A top-level hierarchy switch
interconnects individual clusters that in turn are attached to nodes-agents as depicted in
Figure 2. The clusters will be connected to a higher hierarchical switch connected in turn
only to other switches. A lower level hierarchy is possible by replacing a node by a switch
as shown in Figure 2, where the Switch 4 is the core of the lowest hierarchy cluster. The
routers implement standard interfaces, therefore the inclusion of lower level cluster

XX:8 E.A. Gerlein et al.

 ACM Trans. on Reconfigurable Technology and Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

hierarchies is performed in a seamless fashion. The degree of each of the cluster’s switches
shown in Figure 2 is d=6 (five ports used for nodes, one port used for a higher hierarchy
switch) and d=3 for the top-level switch (Switch 0), although similar architecture for all
the routers can be used leaving open the remaining ports.

4.2 Latency

Latency is given by the number of hops that a message has to travel to reach a target
destination node. This number of hops increments with the inclusion of lower clusters.
Therefore the total latency is a function of the individual hop latency plus the delays
produced by the traffic at each switch. The network traffic might degrade the bandwidth
if the number of generated messages is close to the saturation threshold. The worst case
scenario is reached when all the nodes inject messages at the same time and a particular
message is the latest in the queue to be attended by the scheduler module within the
router. In Figure 2, if a communication from the agent placed in Node A is targeted at an
agent located in Node B, the corresponding message will be routed using only one hop

through their respective cluster switch (Switch 1-Node B), since both are placed in the
same cluster; therefore latency will be determined by one hop assuming zero traffic load.
Additional latency must be taken into account if more than one agent in Cluster 1 injects
messages at the same time, and the message sent by Node A is not the first one in the
channel assignment. If the same message is targeted at the agent located at Node C in
Cluster 2, three more hops must be taken into account, i.e. Switch 1-Switch 0, Switch 0-

Switch 2, Switch 0-Node C. If the message is targeted to Node D at Cluster 4, the route
will be given by Switch 1-Switch 0, Switch 0-Switch 3, Switch 3-Switch 4, Switch 4-Node

D, with a total of 4 hops. Therefore, the network presents a deterministic number of hops

given by the level of depth in the hierarchy, hence there is a fixed path delay between a
pair of nodes as opposed to the situation observed in a bus-shared scheme where adding
processing elements decreases the communication capacity of the system.

Figure 3. Router Microarchitecture for a Star NoC. Input and Output buffers communicate using OCP
interfaces. The use of broadcast avoids a routing engine, only a scheduler module that executes a round robin

assignment policy only between those ports that required transmission. Input and output buffers are controlled
by FSMs

Network on Chip Architecture for Multi-agent Systems in FPGA XX:9

 ACM Trans. on Reconfigurable Technology and Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

4.3 Router Microarchitecture

This section describes the design of the router microarchitecture implementing the
necessary hardware modules to transfer and receive packets to/from any of the attached
nodes in a broadcast manner. The router also provides communication through the
different NoC levels when the NoC grows hierarchically. The router microarchitecture is
depicted in Figure 3. The following sections will discuss the particular implementation for
each one of the constitutive modules in the router.

4.3.1 Input and Output Buffers.

The main components inside the switches are the input and output buffers. The buffers
are implemented as a FSM and a FIFO data structure. The FSM is in charge of reading
and issuing OCP signals and controlling the writing and reading cycles of the FIFO, which
in turn is in charge of buffering incoming packets. For the input buffers the FSM
implements an OCP simplified slave peripheral profile with a subset of three basic signals:
MCmd, MData and SCmdAccept. For the output buffers (also called pushback buffers), the
FSM implements a master peripheral profile issuing the same three signals as in the input
buffers. Timing of the signals follow the OCP´s specification. The FSMs in both input and
output buffers, define three states: idle, reading and running. The idle state is the default
state and will be triggered by the presence of data in the FIFO. The reading state is a
temporary transition that allows the module to fetch data from the output port of the FIFO
and register the content for transmission. The running state will issue the corresponding
data at the output of the buffer module. This action will be coordinated by the scheduler
module in the case of the input buffers, or the signal SCmdAccept issued by an OCP slave
interface located at the nodes for the output buffers.

4.3.2 Scheduler Module and Crossbar Switch

The scheduler module is in charge of allocating the router resources coming from
multiple incoming requests from the input ports. Typically, multi-agent communications
present irregular traffic patterns that must be attended as soon as possible, ensuring
packet preservation and avoiding starvation of ports. This characteristic was exploited in
[Carrillo et al. 2013] and a similar approach was implemented in this case. The scheduler
module ignores those ports that do not require attention and performs a round robin
assignation only on those ports that indicated the presence of packets to be transmitted.
The functionality is implemented using a sequential circuit and takes one clock cycle to
generate the corresponding assignment of the channel to the winning port. This approach
is well suited for a scenario where the agents exhibit a high communication rate, allocating
equal priorities to all incoming ports that require the transmission of data while avoiding
the spending time attending to idle ports.

The crossbar switch is implemented using a multiplexer/demultiplexer architecture
that simultaneously places the data coming from the particular port that has granted the
use of the channel into the output buffers for its corresponding packet broadcast to the
related nodes in the NoC, as depicted in Figure 4. The delay in the crossbar switch is
determined by the technology used in the FPGA, since its implementation is entirely
combinational driven strictly by the transition time of the gates.

XX:10 E.A. Gerlein et al.

 ACM Trans. on Reconfigurable Technology and Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

Figure 4. Crossbar Switch implementation. Multiplexer/demultiplexer architecture that places simultaneously

the winner port data into the output ports

4.3.3 Network Interface

The network interface enables the transfers of information between the EDRA-agents and
the NoC switches using OCP master and slave interfaces. As shown in Figure 5, a NoC
node is composed by the agent and the network interface. In this case, the agents are
constructed using the EDRA model, which provides a set of signals to trigger the agent’s
internal behaviors. The network interface is composed of a pair of master and slave OCP
interfaces, similar to the input and output buffers in the NoC switches.

Figure 5. NoC Node Architecture. The network interface bridges the agents with the NoC switches using OCP

master and slave interfaces and generate the signals in the EDRA model required by the agents

4.4 Router Implementation Results

This section discusses an analysis of resource utilization, latency and throughput obtained
for the router implementation. The router was implemented in Very High Speed
Integrated Circuits Hardware Description Language (VHDL) using Quartus II. The
system was deployed in the Altera’s Stratix IV FPGA running at 100 MHz. The buffers at
the input and output ports were implemented using memory blocks in the FPGA. For the
traffic simulation application discussed in this paper each buffer has a word length of 48-
bits and a depth of 32, 64 and 128 words, although those parameters are customizable.
The routers are implemented with six input ports and six output ports which allow
connection of six nodes, or five nodes and a higher level router. The number of ports is also
a parameter that can be modified according to the requirements of a particular application.
For this set of parameters, the compilation process reported the results shown in Table 1.
The resource utilization in all cases represents less than 1% of the resources available in
the FPGA, which in turn benefits the scalability of the NoC given the lower area footprint
achieved by a single router. It is important to note that the information presented in Table
1 only takes into account the router logic, and does not include the resource utilization
incurred by the network interfaces at the nodes. The FIFOs are implemented using the
memory blocks of the FPGA, therefore only the registers that are part of the OCP finite
state machines and the scheduler module are part of the reported memory logic elements
in Table 1.

Network on Chip Architecture for Multi-agent Systems in FPGA XX:11

 ACM Trans. on Reconfigurable Technology and Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

Table 1. Router implementation results in an Altera’s Stratix IV FPGA

Table 2 presents the memory utilization incurred by a single router attributed to the input
and output OCP interfaces which include FIFOs. The total memory requirements for a
system depends on the FIFO size at the routers and the number of levels implemented in
the network. The network depth in turn determines the maximum number of routers for
a particular configuration and therefore the maximum number of agents. For instance, a
one level NoC only requires one switch and can accommodate as many agents as ports in
the router. For the experiments discussed in this paper, a six-port router was
implemented, therefore five agents at the nodes of the NoC. For six-port switches in a two-
level hierarchical NoC, seven switches are required and it can accommodate a maximum
of 30 agents. A three-level NoC requires a maximum of 37 switches and can implement up
to 150 agents, and so on. The size of the FIFOs depends on the attempted traffic load for
an application and trade-offs between the size of buffers, word length and NoC’s operating
frequency can be reached to optimize the use of resources.

Table 2. Memory requirements for a single router with respect to the FIFO’s size.

The latency obtained for the router is constrained by the state transitions in the OCP
interfaces in both the input and output ports. Each interface contributes a latency of three
clock cycles, plus one more clock cycle used by the scheduler module to grant the use of the
channel. Therefore, the latency at zero traffic load for a single router is 7 clock cycles,
which represents 70ns at an operating frequency of 100 MHz. In contrast, at full traffic
load, when more than one message is injected into the switch, the output ports are able to
inject messages to the nodes every three clock cycles, i.e. 30ns at 100 Mhz. Table 3 presents
different values of throughput at different operating frequencies observed for a router
measured in a single output channel when the clock frequency and packet width are
varied. Generally, the design of routers for NoCs implies fixing internal parameters such
as the number of ports, FIFO size and packet size. For a specific application the packet
size is determined by the availability of resources but mainly by the communication
protocol and routing schemes. In packet-switched networks, large pieces of information
are divided in smaller units in a process called packetization. Such smaller pieces of
information are routed through the network based on the destination address contained
within each packet’s header. Breaking down information into packets allows the use
smaller port sizes and even different routes. This strategy also implies extra latency in the
network interfaces that must spend time in the packetization process, and also the
implementation of techniques to re-build messages that are received out-of-order when
multiples routes are used. The broadcasting mechanism proposed in this paper avoids the

32 words-depth 64 words-depth 128 words-depth

Combinational LE 1670 1790 2611

Memory LE 684 684 1368

Dedicated logic registers 2077 2692 3433

Total Thermal Power Dissipation 1573.38 mW 1580.37 mW 1593.46 mW

Dynamic Thermal Power Dissipation 35.49 mW 43.07 mW 53.64 mW

Fifo

Size

Word

Size

(bits)

Memory

Required

(bits)

Memory

Required

(KBytes)

Fifo

Size

Word

Size

(bits)

Memory

Required

(bits)

Memory

Required

(KBytes)

Fifo

Size

Word

Size

(bits)

Memory

Required

(bits)

Memory

Required

(KBytes)

32 6,144 0.75 32 12,288 1.5 32 24,576 3

64 12,288 1.5 64 24,576 3 64 49,152 6

128 24,576 3 128 49,152 6 128 98,304 12

256 49,152 6 256 98,304 12 256 196,608 24

512 98,304 12 512 196,608 24 512 393,216 48

16 6432

XX:12 E.A. Gerlein et al.

 ACM Trans. on Reconfigurable Technology and Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

implementation of techniques to re-build messages that are received out-of-order when
multiples routes are used. The broadcasting mechanism proposed in this paper avoids the
routing schemes, and therefore overhead bits that must be included in the packets’ headers
are not necessary, allowing a full payload in the messages.

Table 3. Throughput observed by a single router measured in one output channel

The synthetic traffic example discussed in further sections assumes a packet size of 48-
bits which is enough to encode the information attempted (see Section 6.2). Table 4
presents the impact of increasing the port size in the router implementation in terms of
logic elements used, necessary memory in each OCP interface at the input and output
ports and power consumption. The FIFO depth for the OCP interfaces is fixed at 64-words.
The columns labeled as “Increment” represent the relative incremental growth with the
previous step.

Table 4. Impact of Port-Size in the Router implementation with a FIFO depth of 64-words

As seen in Table 4, the effect in power consumption is the lowest as the port size
increments. As expected, regardless the fixed FIFO depth, incrementing the word length
in the packets will impact greatly in the memory usage. Resource utilization is affected
proportionally as the word-length increases, since internal paths and registers are also
proportionally increased.

For these experiments, a six-port router was implemented, therefore six agents at the
nodes of the NoC for single cluster. A hierarchal Star-NoC implies that lower level cluster
routers will be attached to five agents and an upper level router. The reason for
implementing six ports obeys mainly to take advantage of the architecture inside the
Stratix IV family used for these experiments. The Stratix IV internal Logic Elements or
Adaptive Logic Modules are the basic building blocks of logic, which are able to implement
any logic function with up to six inputs. Logic functions inside the routers such as the
scheduler module and the crossbar switch will relate six control signals. Implementing

Clock

Freq

(MHz)

Packet Width

(Bits)

Router

Troughput

/channel (Gbps)

32 0.107

64 0.213

128 0.427

256 0.853

32 1.067

64 2.133

128 4.267

256 8.533

32 2.133

64 4.267

128 8.533

256 17.067

10

100

200

Port

Size

(bits)

Resources

(LEs)

Resources

Increment

Memory

per Port

(bits)

Memory

Increment

Power

Consumption

(mW)

Power

Consumption

Increment

32 1241 -- 2048 -- 1545.43 --

48 1589 28.04% 3072 50.00% 1580.37 2.3%

64 1886 18.69% 4096 33.33% 1604.19 1.5%

128 3074 63.00% 8192 100.00% 1699.47 5.9%

256 8475 175.66% 16384 100.00% 1890.03 11.2%

Network on Chip Architecture for Multi-agent Systems in FPGA XX:13

 ACM Trans. on Reconfigurable Technology and Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

more than six or less ports might result in a waste of resources leaving partial LEs
available for construction of the arbitrage functions.

Table 5. Maximum number of nodes and routers according to the number of ports in a full populated four-level

hierarchical Star-NoC

On the other hand, using more ports allow to accommodate more nodes in the network,
but that is not necessarily the most efficient solution. Table 5 presents the maximum
number of ports and routers needed to populate a four-level hierarchical Star-NoC. In
addition, the Nodes-Router ratio is included. The node-router ratio in a 2D-mesh topology
corresponds to 1, due to the correspondence between nodes and routers in the NoC. The
advantage of using a Star-NoC is that this 1-to-1 correspondence decreases, favoring the
use of resources and decreasing the total power consumption of the network since less
switches are needed to accommodate the same number of nodes. Figure 6 presents the
node-router ratio for a four-level hierarchical Star-NoC. As it can be seen, the exponential
trend reaches the flatten area around six ports, which means that even though it is
possible to accommodate a higher number of nodes with a 10-port switch, increasing the
number of ports in the routers does not represent a significant gain given by the node-
router ratio after reaching 6 ports.

Figure 6. Nodes-Router ratio vs. number of ports in a full populated four-level Star-NoC

No. Ports No. Nodes No. Routers
Nodes-

Router Ratio

3 24 16 0.667

4 108 41 0.380

5 320 86 0.269

6 750 157 0.209

7 1512 260 0.172

8 2744 401 0.146

9 4608 586 0.127

10 7290 821 0.113

XX:14 E.A. Gerlein et al.

 ACM Trans. on Reconfigurable Technology and Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

The queuing theory described in [Kiasari et al. 2013] is used to evaluate the router
performance. The queuing theory allows to model the switch as a queuing system similar
to a population of customers that request attention from a determined service facility. In
this case only one server is present although the queuing theory allows the presence of
more than one server. When a new customer arrives to the facility, it waits in a queue until
the server is available to address the service request. The queuing theory requires to
characterize the arrival of requests and the internal process of the router, in the form
A/B/m/K-S, where A describes the distribution of the arrival time, B represents the
distribution of the service time, m is the number of available servers and K the maximum
depth of the queue. S is optional and it describes the service policy, which in this case is a
round robin (RR) with priority (PR) as described in section 4.3.2. The arrival time in this
experiment was a deterministic (D) synchronized process where all the agents in the nodes
issue messages at the same time. The service time is also deterministic (D). The router
implementation exhibits seven clock cycles of latency at zero load which corresponds to the
first issuing round of messages. Subsequently, the router presents a message issuing
latency of three clock cycles which correspond to the full load latency when more than one
input port request attention simultaneously. In this manner, according to the queuing
theory, the router is modelled as a D/D/1/32-RR-PR process. The scenario depicted in the
Figure 7-a is used in a set of experiments where the agents´ issuing time is varied at every
round. The communication rate started with one clock cycle until saturation and
subsequently increasing the issuing intervals until finding the saturation threshold when
the router is able to operate without saturating the input buffers. The minimum injection
rate obtained for each one of the nodes is one message every 18 clock cycles, with an
average latency of 14.49 clock cycles. The hop latency is measured observed for each
message starting at the input buffer of a certain port and observing the time needed to be
issued by the output port. Injecting messages at lower rate will cause input buffer
saturation that in turn, can be mitigated by augmenting the size of the FIFOs.

Figure 7. NoC Scenarios. (a) Single Cluster; (b) Two-level 6 cluster; (c) Three-level 30 cluster; (d) Four-Level 75

clusters

Network on Chip Architecture for Multi-agent Systems in FPGA XX:15

 ACM Trans. on Reconfigurable Technology and Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

5 MULTI-AGENT NOC TRAFFIC SIMULATION

A synthetic MAS was created with the purpose of analyzing communication traffic using
the hierarchical Star-NoC while at the same time verifying the performance of the
proposed model using common metrics. Four scenarios were constructed as depicted in
Figure 7: (a) single cluster with a total of 5 agents, (b) two-level NoC with a total of 30
agents, (c) three-level NoC with a total of 150 agents, and (d) four-level NoC with 375
agents. The size of the MAS in Figure 7-d is limited by the FPGA device, which is unable
to accommodate more clusters. The generated traffic in the NoC does not correspond to a
specific multi-agent application. The traffic simulation among a set of communicating
agents allows the verification of the requirements in the routers and network interfaces.
A broadcasting approach was used to obtain a hierarchal distribution of messages. The
traffic simulation represents a generic heavy traffic load application where any message
issued by an agent in a lower level of the NoC can reach any other node in the system.

5.1 Agent Description

Three types of agents were created using VHDL to run a network traffic simulation
following the generic architecture EDRA/OCP (see Figure 5). The different agents’ roles
are:

• Traffic Generator Agent (Figure 8-a): plays the role of communication initiator
programmed to issue a certain number of messages at a predefined time intervals.
The traffic generator agent is composed by one EDRA behavior in charge of the
message generation implemented using a FSM and a network interface module.

• Delay Agent (Figure 8-b): simulates a generic information processing core,
receiving a particular input message type and issuing different output types after
a predefined time delay, adding the agent’s ID to the message route. The delay
agent is composed by the network interface and two EDRA behaviors, one in
charge of the input message filtering and one in charge of the simulated processing
core.

• Output Agent (Figure 8-c): receives as input a particular message type and stores
it in a data structure to be sent to a host PC using a serial protocol. The output
agent is composed of the network interface, the input filter behavior and the serial
communication behavior to interface with the host PC.

5.2 Network Messages

Each message issued and transmitted is composed of 48-bits. The message is distributed
in the following fields:

• Message ID: 4-bit field issued by the traffic generator agent with the purpose of
being used for message tracking analysis.

• Message Type: identifies the type of message issued by the agents, and used to
filter the incoming messages. Three types of messages were used labelled with the
identifiers: “01” (MsgType1), “10” (MsgType2) and “11” (MsgType 3). The traffic
generator agent always issues messages MsgType1. The delays agents are
configured in two versions: [input: MsgType1 / output:MsgType2] and [input:
MsgType2 / output:MsgType3]. The output agent only receives messages
MsgType3 as presented in Table 6.

XX:16 E.A. Gerlein et al.

 ACM Trans. on Reconfigurable Technology and Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

Figure 8. Block Diagram of the agents in the communication traffic experiments. (a) Traffic Generator Agent;

(b) Delay Agent; (c) Output Agent

• Node Count: 2-bit field used to keep track of how many nodes a particular packet
has reached. The node count is updated by every agent.

• Route: this field is incrementally constructed at each node agent which adds its
agent ID (9 bits) once a message is received and the incoming message type is
verified. In this manner, the messages are labelled with the route that they have
travelled to arrive at the target destination. Hence, each message can only be
processed by four agents, i.e. the traffic generator agent, one delay agent type 1,
one delay agent type 2 and the output agent.

The traffic simulation terminates when the output agent receives the exact number of
expected messages determined by the number of messages issued by the traffic generator
agent, and the number of agents of each type deployed in the system. A text file is
generated at the end of the simulation including the message log to verify the different
routes that messages have followed.

5.3 Experimental Results

Figure 9 depicts the traffic observed at a single output port of the central router when
operating at full capacity, showing the issuing of commands and data every three clock
cycles, which corroborates the router throughput values in Table 3.

Table 6. Type of agents according the input and output type of messages

The signals in Figure 9 correspond to the OCP master interface, clock and reset for an
output port in a single router respectively. The routers have shown a consistent

Agent Type Input Messages Output Messages

Traffic Generator Agent --- MsgType1

Delay Agent type1 MsgType1 MsgType 2

Delay Agent type2 MsgType1 MsgType 2

Output Agent MsgType 3 Serial Port to PC

Network on Chip Architecture for Multi-agent Systems in FPGA XX:17

 ACM Trans. on Reconfigurable Technology and Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

throughput per channel of 1.6 Gbps with 48-bit messages running at 100 MHz. It is
important to highlight that the performance here reported corresponds an experimental
observation while running the network at full capacity, i.e. all Delay agents injecting
messages in a concurrent fashion. It is worth noting that in the case of using a clock
frequency of 156.25 MHz such as in 10 Gigabit Ethernet applications, this particular
router implementation is capable of managing a throughput of 3.33 Gbps using packets of
64-bits and 13.33 Gbps using packets of 256 bits. Given the real payload present in each
packet for 10 Gigabit Ethernet, which appears after filtering the network stack protocols,
the implementation of the Star-Router theoretically would be able to be used in these kind
of applications.

Injecting messages at lower rate than 18 clock cycles will lead to reach the saturation
threshold, making the network to enter in deadlock states. Deadlocks imply that the
buffers become rapidly saturated with undelivered messages in both the network
interfaces and the routers. Due to the fact that the routers work in a pipelined fashion,
they are able to inject messages every 3 clock cycles, and therefore not being saturated by
the injection rate of nodes if this rate does not exceed 18 clock cycles. For the larger
scenario (Figure 7-d) of 4-level hierarchy, the average delay for a message is 28 clock cycles
at zero traffic load, which is represented for seven clock cycles for agents in the same
cluster, and 49 clock cycles for a pair of agents that must complete the longest path to
communicate. Table 7 presents the agent distribution for each scenario, showing the
expected number of messages by the output agent when the traffic generator agent issues
only one message. The message log shows the completion of all possible routes without
packet loss for every one of the scenarios implemented (see Figure 7), which shows that
the approach of broadcasting messages through a hierarchical Star NoC is a feasible
solution to enable inter-agent communication in FPGA. Table 7 also presents the
maximum number of hops that a message should traverse to reach any other agent in the
system for each scenario which allows a deterministic analysis of message latency
depending on the number of hierarchy levels implemented. The message filtering at the
nodes has also shown advantages in reducing the latency in the switches by avoiding
routing mechanisms without incurring timing penalties for the agents thanks to the
combinational circuit implemented for this task.

In this application the buffers will be saturated stalling the traffic in the network before
completing the expected number of messages producing deadlock effect if the FIFO depth
at the routers and network adapters at the nodes is not enough to handle the generated
traffic. A heuristic approach was followed in these experiments to determine the FIFO
depth required for each scenario to avoid deadlock, incrementing to the power of two the
number of registers until the traffic simulation was able to be successfully completed. For
these experiments, a large amount of storage space in the FIFOs is needed to ensure the
packet preservation and to avoid the network saturation, given the low latency selected
for the delay agents and the fact that the simulation is designed to reach almost full
capacity since each agent is generating packets in a concurrent fashion. Each FIFO at the
OCP interfaces are set to 128-words depth. Nevertheless, if the processing agents present
a latency large enough compared to the router latency, the amount of registers utilized by
the buffers can be reduced in size to optimize of the use of resources.

XX:18 E.A. Gerlein et al.

 ACM Trans. on Reconfigurable Technology and Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

Figure 9. Traffic observed at single output port in the router with the router operating at full capacity. As

observed, messages are sent by an output port every three clock cycles.

As seen in the Table 7, the total amount of expected messages is 33,522 in the four-level
simulation. Once the first message is issued, it reaches its targeted agents (Delay Agent

type1) in the worst scenario in 49 clock cycles, i.e. latency of seven cycles per hop at zero
traffic load for the first message and seven maximum hops for the longest possible path.
The first message is processed by 151 of those Delay Agent type1, which in turn will re-
issue the message after a random delay varying from two clock cycles and a 50 clock cycles.
The maximum interval programmed a Delay Agent is comparable with the router latency,
and therefore the traffic generated by the Delay Agents will grow rapidly along the
network. Increasing the operation frequency of the routers is an alternative approach to
increasing FIFO depth used to avoid deadlock and network saturation. According to the
synthesis report, the routers can operate at a theoretical frequency of 192.23 MHz, which
represents a latency of 36.4 ns (7 clock cycles), almost half of the latency obtained at 100
MHz. Increasing the operating frequency represents additional challenges for the designer
while working with multiple clock domains which is far from a trivial task. Nevertheless
the overclocked network would be able to handle a heavy traffic load without the necessity
of using large FIFOs. A trade-off between frequency of operation and use of resources must
be found for a particular application if there is a strong limitation in the use of resources.

Table 7. Agent distribution by type and number of messages expected by the output agent.

The use of a hierarchical Star-NoC presents some advantages when compared with a mesh
network in a similar application as discussed in this paper. Table 8 presents a comparison
between the proposed hierarchical Star-NoC and a mesh network. In this case, a 20-by-20
network is required in order to include the 375 agents implemented in the four-level model
which represents the larger scenario discussed in this paper. A mesh network presents a
one-to-one correspondence between routers and processing elements, therefore a total of
400 routers must be instantiated to populate the entire network. Assuming that a
broadcast scheme is implemented, which means that no routing modules need to be
included in the router, and thus no increment in the router area footprint, the resource
increment needed to implement a mesh network will corresponds to 330%. The network
diameter which corresponds to the maximum hop count is also increased from seven in the
Star-NoC to 38 in a 20-by-20 mesh network. The average hop count in a k-by-k mesh
network operating in a broadcast scheme corresponds to (3k-1)/2 (for k even) [Park et al.
2012]. Consequently, at zero traffic load the average hop count will be increased to 29.5,

Single Cluster Two-level Three-level Four-level

Number of Agents 5 30 150 375
Number of clusters 1 6 30 75

Number of Switches 1 7 37 93
Max Hop Count 1 3 5 7

Number of Traffic Generator Agent 1 1 1 1

Number of Delay Agent type1 2 13 61 151
Number of Delay Agent type2 1 15 87 222

Number of Output Agent 1 1 1 1
Number of output msgs 2 195 5307 33522

Network on Chip Architecture for Multi-agent Systems in FPGA XX:19

 ACM Trans. on Reconfigurable Technology and Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

which in turn corresponds to 206.5 clock cycles assuming the same latency of 7 clock cycles
in the router. Finally, a software benchmark was implemented in a Xeon quad-core CPU
running a 2.8GHz with 12 GB of RAM, using the java-based multi-agent platform called
BESA [González et al. 2003], which manages the agent communication concurrence using
a multithreading scheme. The Star-NoC implementation discussed in this paper has
achieved an acceleration factor of 275x when deployed in an Altera Stratix IV running at
100 MHz.

Table 8. Star-NoC and Mesh Network comparison

6 DISCUSSION

This paper has discussed a solution for agent communications in FPGA. The proposed
approach consists of a hierarchical Star-NoC topology that exhibits modularity, data
parallelism, scalability, low latency and high throughput. The communication protocol
selected is broadcasting, which reduces latency at the network nodes by eliminating the
routing mechanism. The messages are filtered at the nodes by a low latency combinational
circuit using the message type field located in the packet header, enabling the messages
to be targeted to one or several agents in the system. The OCP interface, a standardized
socket-based communication architecture, was used to enable the transactions between
ports in the routers and the nodes in the NoC, which allows seamless integration with
different agents or processing elements through a well-defined set of signals and timing
rules. The proposed NoC for the MAS concept was verified by the construction of an agent-
based traffic simulation and deployed in an Altera Stratix IV FPGA to assess the main
NoC metrics and performance according to the degree of scalability implemented. The OCP
master-slave interfaces are able to handle effectively the packet load in a broadcasting
increased traffic scenario. In addition, a broadcasting mechanism privileges the
implementation of agent strategies for cooperation such as blackboard, partial global
planning and market-oriented bid/ask auctions in which messages are generally intended
for more than one agent in the system. Local communications to create agent micro-
societies can be achieved using the OCP command signal to limit the transmission of
messages to local clusters enabling multicasting. Although the implementation in this
paper assumes the use of large data ports to enable the transactions of larger messages in
one cycle, further resource optimizations can be reached using smaller port sizes and
implementing burst approaches, also supported by the OCP interface. Additionally, it is
possible to improve latency in the routers by the elimination of the pushback FIFOs at the
output ports which contributes to the overall latency.

The total number of message types will be determined by the specific application. A large
number of types will be required if the quantity of point-to-point messages increases. Even
though the size of the field within the packet used by the message type can be customized,
the increase of the point-to-point messages will produce unnecessary traffic all over the
network. To overcome this drawback, hierarchical star networks can take advantage of
locality, in the sense that agents that must share larger amount of point-to-point messages

 Metric

fgfdgfdfdgdfgdfgfdgdfgdf

gdfgfdgfdgfdgdfgdfgfdgdf

dfTopology

Number

of

Agents

Number

of

Routers

Resource

Increment

Max Hop

Count

(Diameter)

Average

latency @zero

traffic load

(clock cycles

Hirarchical

Star
375 93 0% 7 28

20-by-20

Mesh
375 400 330% 38 206.5

XX:20 E.A. Gerlein et al.

 ACM Trans. on Reconfigurable Technology and Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

can be physically connected within the same cluster or across low level nodes that share a
common higher level switch. A similar circuit such as the one implemented at the agents
to filter incoming messages, can be added to the input buffers inside the routers to manage
local traffic. In this manner it is possible to limit messages to pass through regions of the
network outside the local clusters where the communication is intended. The
communication strategy for hardware agents proposed in this paper, opens a door to
develop agent-based applications in many fields that requires the speed-up capabilities of
hardware implementations. Large-scale agent-based simulations such as market
behavior, disease spreading and natural disaster simulations, can be achieved
investigating the connection capabilities between FPGA boards to create large clusters.
The current FPGA boards present different connectivity interfaces such as PCI, Ethernet,
proprietary interconnection modules, etc., that provide high level of versatility in this
regard. Efficient interfaces must be created between the particular communication ports
in the boards with EDRA and the Star-NoC. Additional research must be conducted to
generate hardware-oriented agent-based strategies to manage diverse clock-domains,
synchronization, and resource management and information consistency. Additionally, the
use of the common agent-based communication protocols in software such as the FIPA-
compliant [IEEE 2012] can also be explored to generate hybrid solutions that include PC
and HPC platforms. The use of higher level communication protocols can be incorporated
be means of constructing the messages in a way that they fulfill the particular protocol
complaint. This includes larger package payloads in some cases. The selected OCP
interfaces, provide burst modes to send a serialized set of packages to build larger
messages if the use or large sized ports is not an option due to limited resources. This
particular capability must be addressed at design time for a particular application if a
hybrid MAS is designed. Additionally, in cases where heterogeneous platforms are
attempted to be integrated, generally a single circuitry module is designed to serve as a
bridge among the platforms that adjust timing, packet headers and packet size: PCI or
Ethernet controllers, WI-FI modules, USARTs, etc. In those cases, the interfaces can also
play the role of incorporating the required packet headers for higher-lever interpretation
to those simpler messages intended for communication only between hardware agents,
preserving in this way the small area footprint incurred by the routers in the Star-NoC.
The total amount of agents that can be accommodated within an FPGA device is
determined mainly by the area footprint used to implement the agent´s functionality. In
addition, the traffic load for a particular application determines the size of the buffers in
both the routers and the network interfaces which also determines the size of the system.
Large scale agent-based simulations such as market behavior [Chen 2003], disease
spreading [Stroud et al. 2007] and genome searching using reduction algorithms [Varghese
et al. 2014], can be achieved taking advantage of the connection capabilities between FPGA
boards such as PCI, Ethernet, proprietary interconnection modules, etc., to create large
clusters [Markettos et al. 2014] in addition to the inherent parallel processing and
accelerated results that reconfigurable hardware offers. Efficient interfaces must be
created in such case between the particular communication ports in the boards with the
Star-NoC.

Mobile agents that are implemented as pieces of code able to move across different
platforms are not easily achieved in hardware. FPGAs are able to instantiate soft-core
processors that can act as agents with adequate programming and more importantly,
maintaining consistent interfaces with the proposed NoC as discussed in [Baklouti and
Abid 2014], which in turn can facilitate the agent´s payload mobility. The main limitation
in the model discussed in this paper lies in a scenario where the dynamic change in the
number of agents is required at run-time. Some recent FPGA devices offer dynamic partial
reconfiguration, in which an FPGA can be “reprogrammed” at run time. These

Network on Chip Architecture for Multi-agent Systems in FPGA XX:21

 ACM Trans. on Reconfigurable Technology and Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

characteristics need to be explored under certain restrictions, since the reconfigurable
partitions require large times for reprogramming compared with the frequencies achieved
in high performance applications, which in turn implies that the remaining static regions
should not depend on the outputs from any partial reconfigurable regions while the
procedure is been executed. In addition, partial reconfiguration assumes that different
portions of the FPGA can implement different logic, swapping from one to another when
required, with the restriction that the new logic should be pre-synthesized and stored in
the form of bitstreams in the configuration memory blocks (CRAM) that controls the
functionality of the different regions in the FPGA. As opposed to software implementations
where dynamic memory allocation at run-time is possible to create and destroy agents,
FPGAs must remain relatively static after compilation. Agents can implement flag
mechanisms to determine their active state without being physically erased from the
system. The use of EDRA modelling and the hierarchical Star-NoC provides a complete
model to implement MAS in FPGAs and opens the door for future agent implementations
to reach acceleration in large scale agent-based simulations and real life applications.
Future work will include the validation and refinement of the model on real life large-scale
applications.

REFERENCES

(OCP International Partnership). 2009. Open Core Protocol Specification 3.0. (2009), 494.
Rob Allan. 2010. Survey of Agent Based Modelling and Simulation Tools - Technical ReportsDL-TR-2010-007,
Anon. 2012. Cognitive Agent Architecture (Cougaar) Open Source Project site. (2012). http://cougaar.org
Mouna Baklouti and Mohamed Abid. 2014. Multi-Softcore Architecture on FPGA. Int. J. Reconfigurable

Comput. 2014 (2014), 13.
Fabio Bellifemine, Giovanni Caire, and Dominic Greenwood. 2007. Developing Multi-Agent Systems with JADE,

West Sussex, England: John Wiley & Sons Ltd.
Luca Benini and G. De Micheli. 2002. Networks on chips: a new SoC paradigm. Computer (Long. Beach. Calif).

35, 1 (2002), 70–78. DOI:http://dx.doi.org/10.1109/2.976921
Stefan Bosse. 2015. Design and simulation of material-integrated distributed sensor processing with a code-

based agent platform and mobile multi-agent systems. Sensors 15, 2 (2015), 4513–4549.
DOI:http://dx.doi.org/10.3390/s150204513

Stefan Bosse. 2014. Distributed Agent-Based Computing in Material-Embedded Sensor Network Systems With
the Agent-on-Chip Architecture. IEEE Sens. J. 14, 7 (July 2014), 2159–2170.
DOI:http://dx.doi.org/10.1109/JSEN.2014.2301938

R.A. Brooks. 1986. A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2, 1 (1986), 14–
23. DOI:http://dx.doi.org/10.1109/JRA.1986.1087032

Snaider Carrillo et al. 2013. Scalable Hierarchical Network-on-Chip Architecture for Spiking Neural Network
Hardware Implementations. IEEE Trans. Parallel Distrib. Syst. 24, 12 (December 2013), 2451–2461.
DOI:http://dx.doi.org/10.1109/TPDS.2012.289

Edward Chen, Victor Gusev, Dorian Sabaz, Lesley Shannon, and William A. Gruver. 2011. Holonic and Multi-
Agent Systems for Manufacturing Vladimír Mařík, Pavel Vrba, & Paulo Leitão, eds. Holonic Multi-Agent

Syst. 6867 (2011), 94–102. DOI:http://dx.doi.org/10.1007/978-3-642-23181-0
Xiaorong Chen. 2003. Co-evolutionary multi-agent-based modeling of artificial stock market by using the GP

approach. In Proc. IEEE Int. Conf. on Computational Intelligence for Financial Engineering (CIFEr’03).
Hong Kong, China: IEEE, 159–165. DOI:http://dx.doi.org/10.1109/CIFER.2003.1196256

Reetuparna Das, Soumya Eachempati, Asit K. Mishra, Vijaykrishnan Narayanan, and Chita R. Das. 2009.
Design and evaluation of a hierarchical on-chip interconnect for next-generation CMPs. In IEEE 15th

Int’l Symp. on High Performance Computer Architecture (HPCA’09). Raleigh, NC, USA: IEEE, 175–186.
DOI:http://dx.doi.org/10.1109/HPCA.2009.4798252

Masoumeh Ebrahimi, Masoud Daneshtalab, Pasi Liljeberg, Juha Plosila, and Hannu Tenhunen. 2011. Agent-
based On-Chip Network Using Efficient Selection Method. In 19th Int.Conf. on VLSI and System-on-

Chip (VLSI-SoC), IEEE/IFIP2011. Hong Kong, China: IEEE, 284–289.
DOI:http://dx.doi.org/10.1109/VLSISoC.2011.6081593

Jacques Ferber. 1999. Multiagent Systems: An Introduction to Distributed AI, Addison-Wesley.
Eduardo A. Gerlein, T.M. McGinnity, Ammar Belatreche, Sonya Coleman, and Yuhua Li. 2014a. Hardware-

based Agent Modelling : Event-Driven Reactive Architecture (EDRA). In 13th Int.Conf. on Autonomous

Agents and Multiagent Systems - AAMAS14. Paris, France: International Foundation for Autonomous

XX:22 E.A. Gerlein et al.

 ACM Trans. on Reconfigurable Technology and Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

Agents and Multiagent Systems (IFAAMAS), 1497–1498.
Eduardo A. Gerlein, T.M. McGinnity, Ammar Belatreche, Sonya Coleman, and Yuhua Li. 2014b. Multi-agent

Pre-trade Analysis Acceleration in FPGA. In Int’l Conf. on Computational Intelligence for Financial

Engineering and Economics - CIFEr2014. London, U.K.: IEEE.
Maya Gokhale et al. 2008. Hardware Technologies for High-Performance Data-Intensive Computing. Computer

(Long. Beach. Calif). 41, 4 (April 2008), 60–68. DOI:http://dx.doi.org/10.1109/MC.2008.125
Enrique González, Jamir Avila, and César Bustacara. 2003. BESA: Behavior-oriented, Event-driven and Social-

based Agent Framework. In Parallel and Distributed Processing Techniques and Applications -

PDPTA’03. Las Vegas, Nevada, USA: CSREA Press.
Enrique González and Miguel Torres. 2006. Organizational Approach for Agent Oriented Programming. In 8th

Int. Conf. on Enterprise Information Systems - ICEIS. Paphos - Cyprus, 75–80.
IEEE. 2012. The Foundation of Intelligent Physical Agents (FIPA). (2012). http://fipa.org/
Natalie Enright Jerger and Li-Shiuan Peh. 2009. On-Chip Networks Madison Mark Hill, University

ofWisconsin, ed., Morgan & Claypool Publishers.
Abbas Eslami Kiasari, Axel Jantsch, and Zhonghai Lu. 2013. Mathematical formalisms for performance

evaluation of networks-on-chip. ACM Comput. Surv. 45, 3 (2013), 1–41.
DOI:http://dx.doi.org/10.1145/2480741.2480755

Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel Balan. 2005. MASON: A
Multiagent Simulation Environment. Simulation 81, 7 (July 2005), 517–527.
DOI:http://dx.doi.org/10.1177/0037549705058073

Slobodan Lukovic and Nikolaos Christianos. 2010. Hierarchical multi-agent protection system for NoC based
MPSoCs. In Proc. of the Int. Workshop on Security and Dependability for Resource Constrained

Embedded Systems - S&D4RCES ’10. New York, New York, USA: ACM Press, 1.
DOI:http://dx.doi.org/10.1145/1868433.1868441

A. Theodore Markettos, Paul J. Fox, Simon W. Moore, and Andrew W. Moore. 2014. Interconnect for commodity
FPGA clusters : standardized or customized ? In Field Programmable Logic and Applications, FPL´14. 1–
8.

Yan Meng. 2005. An Agent-based Reconfigurable System-on-Chip Architecture for Real-time Systems. In
Laurence T. Yang, Evi Syukur, & Seng W. Loke, eds. 2nd. Int. Conf. on Embedded Software and Systems

(ICESS’05). Xian, China: IEEE, 166–173. DOI:http://dx.doi.org/10.1109/ICESS.2005.21
Paul A. Merolla et al. 2014. A million spiking-neuron integrated circuit with a scalable communication network

and interface. Science (80-.). 345, 6197 (2014), 668–673. DOI:http://dx.doi.org/10.1126/science.1254642
Nelson Minar, Roger Burkhart, Chris Langton, and Manor Askenazi. 1996. The swarm simulation system: A

toolkit for building multi-agent simulations - Working Paper 96-06-042, Santa Fe, USA.
Hamid Reza Naji, Letha Etzkorn, and B. Ear. Wells. 2004. Applying multi agent techniques to reconfigurable

systems. Adv. Eng. Softw. 35, 7 (July 2004), 401–413.
DOI:http://dx.doi.org/10.1016/j.advengsoft.2004.05.008

Hamid Reza Naji, B. Ear. Wells, and Letha Etzkorn. 2004. Creating an adaptive embedded system by applying
multi-agent techniques to reconfigurable hardware. Futur. Gener. Comput. Syst. 20, 6 (August 2004),
1055–1081. DOI:http://dx.doi.org/10.1016/j.future.2004.02.002

Timothy O’Sullivan and Richard Studdert. 2005. Agent technology and reconfigurable computing for mobile
devices. In Proceedings of the ACM Symposium on Applied computing - SAC ’05. Santa Fe, New Mexico,
USA: ACM Press, 963. DOI:http://dx.doi.org/10.1145/1066677.1066901

Sunghyun Park, Tushar Krishna, Chia-Hsin Chen, Bhavya Daya, Anantha Chandrakasan, and Li-Shiuan Peh.
2012. Approaching the theoretical limits of a mesh NoC with a 16-node chip prototype in 45nm SOI. In
Proc. 49th Annual Confe. on Design Automation - DAC ’12. New York, New York, USA: ACM Press, 398.
DOI:http://dx.doi.org/10.1145/2228360.2228431

Dirk Pawlaszczyk and Steffen Strassburger. 2009. Scalability in distributed simulations of agent-based models.
In Proc. of the 2009 Winter Simulation Conference (WSC). Austin, USA: IEEE, 1189–1200.
DOI:http://dx.doi.org/10.1109/WSC.2009.5429429

Phillip Stroud, Sara Del Valle, Stephen Sydoriak, Jane Riese, and Susan Mniszewski. 2007. Spatial Dynamics
of Pandemic Influenza in a Massive Artificial Society. J. Artif. Soc. Soc. Simul. 10, 4 (2007), 3.
DOI:http://dx.doi.org/Article

Blesson Varghese, Gerard McKee, and Vassil Alexandrov. 2014. Automating fault tolerance in high-
performance computational biological jobs using multi-agent approaches. Comput. Biol. Med. 48, 1
(2014), 28–41. DOI:http://dx.doi.org/10.1016/j.compbiomed.2014.02.005

