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Abstract  

Due to its attributes, characteristics and technological resources, mobile phone (MP) has become one 

of the most commonly used communication devices. Historically, ample evidence has ruled out the 

substantial short-term impact of radiofrequency electromagnetic field (RF-EMF) emitted by MP on 

human cognitive performance. However, more recent evidence suggests the potential harmful effects 

associated with MP EMF exposure. The aim of this review is to readdress the question of whether 

the effect of MP EMF exposure on brain function should be reopened. We strengthen our argument 

focusing on recent neuroimaging and electroencephalography studies, in order to present a more 

specific analysis of effects of MP EMF exposure on neurocognitive function. Several studies indicate 

an increase in cortical excitability and/or efficiency with EMF exposure, which appears to be more 

prominent in fronto-temporal regions and has been associated with faster reaction time. Cortical 

excitability might also underpin disruption to sleep. Notably however, several inconsistent findings 

exist, and conclusions regarding adverse effects of EMF exposure are currently limited. It also 

should be noted that the crucial scientific question of the effect of longer-term MP EMF exposure on 

brain function remains unanswered and essentially unaddressed. 

 

Keywords: mobile phone; radiofrequency electromagnetic field； neuroimaging；brain function；

addiction    
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Introduction  

The total number of mobile phone (MP) users is forecasted to reach 5 billion worldwide by 2019 and 

most of this growth is due to the increasing popularity of smartphones [Statista Inc, 2015]. 

Historically, concerns have been raised regarding the acute effects of radiofrequency electromagnetic 

field (RF-EMF) emitted by MP on brain function, particularly given that MPs are often used in close 

proximity to the human head. Although there are some inconsistent findings, e.g., some suggest 

impaired or facilitating cognitive effects due to mobile phone use, whereas others found no effects 

(for a review, see [Kwon and Hamalainen, 2011; Barth et al., 2012], previous reviews do not support 

short-term impact of high frequency EMF by MPs on human cognitive performance [Valentini et al., 

2010; Barth et al., 2012]. It is argued that the heterogeneity of results may be due to methodological 

differences, statistical power and interpretation criteria [Valentini et al., 2010]. 

However, more recently, several large population-based cohort studies have reported negative effects 

of RF-EMF. For example, Byun et al. [2013], examined attention deficit hyperactive disorder 

(ADHD) symptoms and MP use of 2,422 children at 27 elementary schools over 2 years. MP use 

was measured using questionnaires administered to parents or guardians in 2008 and 2011, including 

the ownership of a MP by children, age at first ownership of a MP, monthly MP bill, average time of 

daily use, etc. ADHD symptom risk was positively associated with MP use in a dose-response 

manner. In research by Guxens et al. [2016], the relationship between exposure to RF-EMF source 

and cognitive function was examined in 2354 children aged 5-6 years. They report reduced 

visuomotor coordination with exposure to RF-EMF from mobile phone base stations, but improved 

speed of information processing, inhibitory control, and visuomotor coordination with residential 

RF-EMF indoor sources [Guxens et al., 2016]. Thus the effect of RF-EMF exposure on the brain 

might vary qualitatively and quantitatively depending on the source.  
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Greater understanding of neurocognitive mechanisms associated with RF-EMF would lend support 

against such relationships being due to chance or other residual confounding variables (e.g., 

socioeconomic status, geographical position) [Guxens et al., 2016]. Neuroimaging methods such as 

Functional Magnetic Resonance Imaging (fMRI) which detects regional changes in blood oxygen 

utilisation during neuropsychological performance, positron emission tomography (PET) which 

measures the signal from a radioactive ligand and electroencephalographic (EEG) techniques that 

measure changes in the extracellular electrical potential of the cortex are useful in this respect. Brain 

imaging techniques complement behavioral measures (e.g., neuropsychological assessment) by 

providing important information about biological substrates that might be affected by RF-EMF. 

Previous review papers have examined the evidence published up to February 1, 2011 on effects of 

electromagnetic fields (EMF) from MPs on human behavioral and psychomotor performance, and 

concluded that MP EMF do not induce any effect [Valentini et al., 2010; Barth et al., 2012]. Thus the 

focus of the current review is to determine whether, based on previous reviews and more recent 

studies (from 2011-Oct 2016), the effect of MP use on brain function should be reopened. 

 

Methods 

Studies were identified using searches of MEDLINE, EMBASE, PsycINFO, and Cochrane 

CENTRAL. Search terms were a combination of free-text, and thesaurus terms (phone AND 

cognition), such as “phone”, and “mobile phone”, combined with cognition-related terms such as 

“cognition”, “cognitive function” “cognitive defect” “cognitive impairment”, “memory”, “attention”, 

“executive function”, and “perception”. Different search strings were used to maximise the relevance 

of the returned results when searching in different databases. Peer-reviewed journals, and English 

language limits were used. Studies were selected if they met the following criteria: 1) the study had 

to assess direct effects of mobile phone use on human neurological functioning; 2) neuroimaging and 
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electrophysiological techniques, including MRI, EEG, and Positron emission tomography (PET), 

were used; and, 3) information on brain function related to mobile phone was clearly presented.  

 

Results 

A total of 16 studies met the inclusion criteria, and are included in this review. Checking the 

references of the articles did not result in inclusion of further articles. Of the 16 studies, two studies 

used MRI for data acquisition [Curcio et al., 2012; Lv et al., 2014], one used PET scans [Volkow et 

al., 2011], and the rest utilised EEG. The studies primarily investigated the potential physiological 

effect induced by RF-EMFs. It should be noted that one study assessed not only the effect of phone 

use, but also the mix effect of caffeine, and simultaneous MP exposure. Typically, double/single 

blind randomised counterbalanced crossover design was used [Lowden et al., 2011; Volkow et al., 

2011; Curcio et al., 2012; Schmid et al., 2012a; Schmid et al., 2012b; Vecchio et al., 2012b; 

Loughran et al., 2013; Lv et al., 2014; Ghosn et al., 2015; Roggeveen et al., 2015b; Yang et al., 

2016], in which the participants were exposed to two different conditions. In the sham condition, the 

MP was switched “on” but without global system for mobile communication (GSM) radiofrequency 

(RF); in the real condition, the phone was switched “on” with GSM RF. EMF exposure were 

primarily defined based on exposure intensity and time, and frequency-domain characteristics. The 

participants of the included studies were healthy adults, apart from two studies. The one included 

adolescents aged from 11 to 13 [Loughran et al., 2013], and another included epileptic patients who 

typically exhibit abnormal brain activity [Vecchio et al., 2012b]. Detailed information on the 

included studies is shown in Table 1. 

 

MRI findings  
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MRI is a noninvasive technique that utilises a powerful magnetic field and radio frequency pulse to 

produce detailed images of the body. It measures multiple physiologic parameters, including blood 

oxygenation, blood flow, and volume, and has been integrated effectively into neuroscience to 

investigate brain activity, e.g., energy is required for activation of neurons. With increased demand 

for oxygen and other nutrients, there is increased cerebral blood flow (CBF). Therefore, brain 

activation can be measured using blood-oxygen-level dependent (BOLD) signals  [Logothetis and 

Wandell, 2004].  Curcio et al. [2012] were the first research team to investigate the possible effects 

induced by brain exposure to GSM emissions using functional MRI (fMRI). BOLD signals were 

recorded while performing a go/no-go task in either sham or real conditions. Participants were 

required to refrain from using MP for 12 h preceding the experimental session. The results showed 

that there was no acute effect of MP exposure to GSM mobile phone signal on either BOLD 

response or behavioral performance in a sensorimotor cognitive task. It was suggested that if MP 

emissions affect the excitability of neurons, that this would be at a relatively restricted local level 

undetectable using traditional fMRI techniques.  

In comparison, Lv et al. [2014] found decreased amplitude of low frequency fluctuations (ALFF) in 

the BOLD signal in several regions (left superior temporal gyrus, left middle temporal gyrus, right 

superior temporal gyrus, right medial frontal gyrus and right paracentral lobule) during rest after real 

exposure. ALFF was calculated as the total power within the frequency range between 0.01 and 0.1 

Hz, and thus indexes the strength or intensity of low frequency oscillations [ Lv et al., 2014]. Whilst 

the cognitive significance of these changes remains unclear, similar reductions in ALFF and fALFF 

activities in the medial prefrontal cortex and lateral prefrontal regions have also been found in 

patients with mild cognitive impairment [Han et al., 2011].  

Inconsistent findings in fMRI studies may in part be due to small sample size (e.g. n=12 in Curcio et 

al; n=18 in Lv et al) and findings therefore need to be interpreted with caution. Methodological 

differences also exist in terms of task parameters and dependent variables. Also typical basic GSM 

http://topics.sciencedirect.com/topics/page/Superior_temporal_gyrus
http://topics.sciencedirect.com/topics/page/Middle_temporal_gyrus
http://topics.sciencedirect.com/topics/page/Medial_frontal_gyrus
http://topics.sciencedirect.com/topics/page/Paracentral_lobule
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signal with a carrier frequency of 902.40 MHz was used in Curcio et al.’ s study, while Lv et al used 

the standard dipole antenna to emit a LTE signal at 2.573 GHz. Furthermore, the choice of exposure 

site differed between the two studies. The left side of brain was chosen in the study by Curcio et al. 

[2012], while the right side of brain was selected by Lv et al. [2014]. Thus, the effect of RF-EMF on 

BOLD signal remains unclear, and requires further investigation.  

 

PET findings  

PET uses nuclear imaging to detect gamma rays indirectly emitted by a radioactive trace that is 

introduced to the body to measure blood flow, metabolism, and neurotransmission [Berger, 2003]. 

Volkow et al. [2011] used PET to study brain glucose metabolism in humans over 50 min during MP 

activated, relative to MP deactivated conditions. Means of ( 18 F) fluorodeoxyglucose ( 18 FDG), a 

more proximal marker of neuronal activity compared to regional Cerebral blood flow (rCBF), was 

used to examine the cumulative effects of MP exposure on resting metabolism. Increased 

metabolism was observed in the orbitofrontal cortex and temporal pole (i.e. those regions that were 

close to the MP antenna) during acute EMF exposure. Under normal condition, metabolism is 

closely related to regional blood oxygenation and flow, reflecting current level of brain activation e.g. 

blood flow increased is associated with increases metabolic demand. However, the authors did not 

investigate whether such changes manifest in any behavioural response.  

 

EEG findings  

EEG is a non-invasive measure of the brain’s electrical activity. It records the synchronised activity 

of gross extracellular excitatory and inhibitory post-synaptic potentials from predominantly 

pyramidal cells in cerebral cortex, and displays the activity as voltage amplitude changes over time  

[Gevins, 1998]. This electrical activity is recorded as brain waves or oscillations that vary as a 
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function of arousal (e.g., sleep-wake cycle), and cognitive function (e.g., learning [Ray and Cole, 

1985], memory [Klimesch et al., 1999], and attention [Wang et al., 2015a]). The EEG recorded from 

the human scalp ranges in frequency (<1-100Hz) with typical bands including delta (0−4 Hz), theta 

(4−8 Hz), alpha (8−13 Hz), beta (15−30 Hz), and gamma (30-100Hz).  EEG can be recorded during 

sleep and awake states, and its functional significance is likely state dependent. 

 

Sleep EEG 

A study by Lowden et al. [2011] investigated the effect of 3 h of EMFs exposure on subsequent 

night sleep, and found an increased spectral power in alpha and delta frequency bands during stage 2 

sleep, within the first two hours. The presence of alpha and delta waves during stage 2 sleep is 

defined as alpha-delta sleep EEG pattern, and was first observed and reported in a study with a group 

of patients with psychiatric disorders [Hauri and Hawkins, 1973]. It has since been frequently 

observed in individuals with fibromyalgia [Olsen et al., 2013]. Although the clinical implication of 

this sleep EEG pattern remains controversial [Mahowald and Mahowald, 2000], it has been 

suggested that alpha/delta sleep interferes with sleep function, resulting in nonrestorative sleep, 

daytime fatigue, and musculoskeletal pain [Roizenblatt et al., 2001]. A positive correlation between 

alpha-delta sleep and perceived shallow sleep has been reported [Perlis et al., 1997]. The appearance 

of alpha-delta sleep is considered to be related to reduced serotonergic activity which is significantly 

involved in regulation of sleep and wakefulness [Philipsen et al., 2005], and this could potentially act 

in competition with non-rapid eye movement (NREM) sleep system, impairing the presumed 

restorative function of NREM sleep [Moldofsky et al., 1975]. An initial study by Schmid ad 

colleagues [Schmid et al., 2012a] suggested that the effect of EFM on sleep function and awake 

behaviour may depend on the emission frequency. They found that exposure to 14Hz EFM for 30 

min prior to an 8-h sleep period caused a greater increase EEG power in the spindle frequency range 

(13.75–15.25 Hz) during NREM sleep than exposure to 217 Hz [Schmid et al., 2012a]. Furthermore, 
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reaction time during various cognitive tasks, performed over the 30 min exposure period, tended to 

be faster for 14 Hz than 217 Hz pulse modulation. Accuracy was nevertheless, largely unaffected. 

However, an extension to this study revealed that specificity of the pulse modulation was not the 

most important factor in inducing effects on EEG, but limiting pulse modulation to low frequencies 

and eliminating higher harmonics were more critical [Schmid et al., 2012b]. It was suggested that  

any pulse-modulated RF EMF scheme in a frequency range that is close to biologically relevant 

rhythms, i.e. 2, 8, 12 or 217 Hz, may be sufficient to induce changes in the spindle frequency range 

of the EEG [Schmid et al., 2012b]. 

 

Wakeful EEG 

In a study by Ghosn et al  [2015], resting EEG was recorded while the participants underwent GSM 

RF exposure or a sham condition (blind to experimental condition). Each recording session lasted 61 

min 15 seconds, and included three experimental conditions:  pre-exposure (17 min 30 seconds), 

exposure (26 min 15 seconds), and post-exposure (17 min 20 seconds). Confounding factors that are 

known to affect alpha band, such as electrode impedance, salivary cortisol, and caffeine, were 

controlled for. The study found a significant decrease in alpha band power (eyes closed: lower alpha 

8-10 Hz and upper alpha 10-12 Hz) during exposure to EMF, which persisted in the post-exposure 

period. In contrast, however, Roggeveen et al. [2015b] measured resting EEG while the participants 

were exposed to a 3G dialling MP which was in mute setting with vibration off using the similar 

experimental design, and found increased power of alpha band, along with higher frequencies (beta, 

gamma) over almost all brain regions. This effect was stronger when the MP was placed on the ear 

compared to chest. It was believed that using a real phone could better reflect the reality of MP 

exposure compared to a GSM module or other method to stimulate MP radiation.  High resting alpha 

power reflects deactivation or inactivity in the underlying cortex [Hummel et al., 2002; Sauseng et 

al., 2009], while low resting alpha power correlates with greater cortical excitability [Neuper et al., 
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2006]. Increases in beta and gamma power would also suggest greater cortical excitability. Thus, 

although apparently discrepant findings with regard to alpha, together these studies indicate greater 

cortical excitability during exposure. Inconsistencies between Ghosn et al  [2015] and Roggeveen et 

al. [2015b] in alpha activity point to the importance of measuring this frequency band relative to 

other higher frequencies in addition to its absolute value. Nevertheless, neither of these studies 

examined the behavioral or health effects of changes in alpha activity. Thus interpretations of the 

functional significance of changes in alpha power are limited. 

Interestingly, exposure related effects on the resting EEG observed in healthy adults was absent in 

adolescents [Loughran et al., 2013]. Whilst it is unclear whether such findings reflect greater brain 

plasticity in adolescents or an effect on brain networks that develop later in adulthood, they 

nevertheless suggest that individual differences may exist in response to EMF exposure. A study by 

Zentai et  al. [2015] did not find any measurable effects of acute EMFs generated by wireless fidelity 

on either spectral power of EEG or sustained attention measured by psychomotor vigilance test. 

 

Event-related desynchronization (ERD) and event related potentials (ERPs) 

According to internal or external demands, EEG activity can change from a synchronized (high 

amplitude) into a desynchronized (low amplitude) mode and vice versa, whereby various frequency 

bands can show different reactivity patterns [Graimann et al., 2002; Wang et al., 2015b]. These 

changes can be either time and phase-locked or time-locked but not phase-locked alone. The former 

are represented by the ERP and the later are ERD [Graimann et al., 2002]. The voltage difference 

(amplitude) and time course of the waves are thought to reflect the dynamics of sensory and 

cognitive processing [Graimann et al., 2002]. For example, the N200 is a negative deflection 

occurring around 200-350 milliseconds (ms) after the eliciting stimulus, and the P300 is a positive 

wave occurring on average at 300 ms post-stimulus. The N200 is related to stimulus identification 
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and distinction, and reflects the efficiency of pre-conscious sensory processing. The P300, on the 

other hand, is related to the amount of attentional resources required for a given task and reflects a 

widely distributed network including frontal, parietal and temporal regions that responds to novelty, 

subjective probability, salience and task relevance [Polich, 1997; Wang et al., 2015b].  

A few studies have begun to examine the EMFs-related effects on event-related desynchronization 

(ERD) [Vecchio et al., 2012a; Vecchio et al., 2012b] and event related potentials (ERPs) [Trunk et 

al., 2013; Trunk et al., 2014]. In line with an increase in fronto-temporal blood flow reported by 

Volkow et al. [2011] in their PET study, a positive waveform over frontal and central electrode sites 

was seen time-locked to peaks in MP radiation (ERP 240-500 ms)  [Roggeveen et al., 2015a]. This 

would suggest increased cortical activity induced by the presence of an active MP, which is also in 

line with a reduction (Ghosn et al  [2015]), rather than increase (Roggeveen et al. [2015b]) in alpha 

power; and an increase in fast frequency bands (Beta, Gamma). In comparison, no measurable 

effects of EMFs exposure were observed on the ERPs elicited by either the auditory oddball task 

[Trunk et al., 2013] or the visual oddball paradigm [Trunk et al., 2014].  

According to Klimesch et al. (2007), ERD reflects the gradual release of inhibition associated with 

the emergence of complex spreading activation processes. Decreased ERD of higher alpha rhythms 

in response to go stimuli in a visual go/no-go task was reported by [Vecchio et al., 2012a]. This 

effect was more prominent at frontal and left temporal scalp regions, in line with aforementioned 

fMRI and PET studies that show fronto-temporal effects, and was accompanied by faster reaction 

times. Thus, it was suggested that short term exposure to GSM-EMFs (e.g., 45 min) may enhance 

human cortical neural efficiency and simple cognitive–motor processes in healthy adults [Vecchio et 

al., 2012a]. Following their earlier work showing modulation by short-term exposure to GSM-EMFs 

of inter-hemispheric coupling of resting fronto-temporal alpha rhythms in healthy young adults 

(Vecchio et al., 2007), Vecchio and colleagues, have further investigated this effect as a function of 

aging and in people with epilepsy. Elderly subjects showed an increment in inter-hemispheric 
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coherence of frontal and temporal alpha rhythms following GSM exposure compared to younger 

adults, which was explained hyper-excitability possibly provoked by an age-related physiological 

reduction of the cholinergic tone. Similarly an increase in inter-hemispheric coupling of resting EEG 

rhythms, predominantly in the alpha band was also found in people with epilepsy [Vecchio et al., 

2012b].  

 

Discussion  

The current review reopens the question of whether MP EMF exposure affects brain function. 

Previous reviews of studies prior to 2011 have suggested that there is no effect of short-term 

exposure to MP EMFs on human cognitive performance [Valentini et al., 2010; Barth et al., 2012]. 

Several studies in the current review point to an increase in cortical excitability and/or efficiency 

during exposure that may persist for several minutes post-exposure. Corroborating evidence for this 

idea is shown by an increase in cerebral metabolism (PET), a decrease in alpha activity, an increase 

in high frequency (Beta, Gamma) activity, increased reaction time, and disrupted sleep EEG. Based 

on several methodologies (fMRI, PET, EMF elicited ERPs, ERD and interhemispheric 

synchronisation), frontal and temporal regions appear to be more susceptible. Several factors have 

been proposed for the EMF-induced alterations in cortical excitability and efficiency, including 

modulation of dependent NA-K trans-membrane ionic channels, the alteration of cellular 

homeostasis of Ca++ ion, increased cellular excitability, and the activation of cellular response to 

stress [Vecchio et al., 2012a, b]. Whilst increased cortical excitability may have some beneficial 

effects during the waking state (e.g. faster reaction times), adverse effects may result from disruption 

to restorative sleep, which might be expected to impact on cognitive function and health. Changes in 

sleep architecture (e.g., increased alpha-delta activity during stage II; increased spindle activity) 

could reflect modulation of neurotransmission (e.g., serotonin) induced by MPs. 
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Nevertheless, apparent inconsistencies between studies exist that limit conclusive statements in this 

area. These inconsistencies may in part be due to methodological factors including differences in the 

signal type, the modulation, the exposure frequency, the exposure intensity, individual anatomy, age 

of the subjects, exposure duration and presence of rigorous experimental designs. Individual 

differences in age appear to affect vulnerability to effects of EMF exposure, as does the presence of 

epilepsy. Determination of an absorbed dose is also complex and depends on many external and 

internal factors and thus adequate dosimetry measurement tools for evaluation of exposure is critical 

for quality of study results [Thomas et al., 2008]. Differences exist across studies in pre-evaluation 

of exposure dose. Some applied standard 1528 IEEE recommended practice for determining the peak 

spatial-average specific absorption rate (SAR), i.e. [Lv et al., 2014], while others used personal 

computer to control the exposure system, i.e. Ghosn et al. [2015]. In addition, variations of signals 

both in time and space have to be taken into account. RF-EMFs have been generated by either 

commercial mobile phone, e.g., Nokia 6650 [Ghosn et al., 2015], 3G smartphone [Roggeveen et al., 

2015a] or special devices, e.g., A CMW 500 (R&S) and an RF amplifier [Lv et al., 2014]. The SAR 

distributions could be different among phones and these devices. For example, SAR distributions of 

phones of 3rd generation differ from that of 2nd generation phones [Taki and Wake, 2012].  To 

further understand inconsistent findings, future studies will need to explore these interactions (and 

other possible confounding variables e.g. sex) across neuroimaging methodologies. 

Furthermore, possible interference between radio frequencies emitted by the mobile phone and EEG 

signals recorded during exposure, and the history of EMFs prior to the study are not always 

controlled for. Clearly further work is needed to delineate the interaction between these potentially 

confounding factors and the effect of MP use on MRI and EEG signals.   

It should be noted that effects of MP EMF on brain function are primarily examined using lab-based 

studies. Although laboratory studies have good control of exposure factors as well as possible 

confounding factors, however, relevance to real life condition can be less clear. Recent evidence 
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shows that individuals with MP overuse experience several biopsychosocial symptoms and 

consequences, including stress and sleep disturbances, insomnia, anxiety, and addiction [Billieux et 

al., 2015]. Characteristic symptoms which have often been related to various forms of addictive 

behaviors (e.g., substance-related addictions and gaming addiction) have been observed in people 

with massive use of and dependence on MP. This is reflected in high economic cost, numerous calls 

and messages, a gradual increase in use to obtain the same level of satisfaction, as well as emotional 

alterations when phone use is impeded [Choliz, 2010]. Addiction is suggested to induce progressive 

changes in brain regions affecting reward, memory, learning, cognitive control and motivation 

[Gardner, 2011]; and it has been proposed that MP addiction or overuse might also affect these 

networks [Griffiths, 2000]. It is necessary to clarify whether the symptoms observed in people with 

MP use are related to MP EMF exposure. However, none of the studies included in this review have 

investigated the longer-term effects of MP EMF exposure, and further research is warranted. 

This review is limited by applying English and time limits to the initial search, and then limited to 

the published academic literature. Furthermore, given that the aim of the review is to readdress the 

question of whether the effect of MP EMF exposure on brain function should be reopened, the 

presented literature includes only those studies since the last review (i.e. in the last 6 years) which 

stated that “there is no evidence for any short term effects of EMFs emitted by MP on human 

cognitive performance” [Barth et al., 2012]. To our knowledge, there are no systematic reviews 

investigating the neurophysiological changes induced by MPs. 

 

Conclusion  

Whilst several studies suggest an effect of EMF exposure on brain function there is little evidence of 

the harmful nature of these effects and greater understanding is needed of their functional 

significance. To date, the crucial scientific question of the effect of longer-term MP EMF exposure 
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on brain function remains unanswered and essentially unaddressed. The potential health effects of 

MP EMF exposure in children and adolescents have been identified by the World Health 

Organisation (WHO) as a high priority research area since they have a longer lifetime exposure to 

MP [van Deventer et al., 2011]. Prior to establishing a clear picture of a cause-effect relationship on 

MPs, it is safer to minimise the MP use. It has been suggested to reduce the potential harm induced 

by MPs by restricting call length, or by using hands-free devices [Valentini et al., 2010]. 

Furthermore, there is an increased number of population having problems with MP use [Billieux et 

al., 2015], and presence of addictive consumption styles and problematic behavior have been 

observed. In order to minimise possible negative consequences caused by excessive usage, further 

research is required to clarify the neurophysiological changes associated with long-term MP EMF 

exposure, and the impact of different behavioral characteristics of MP use on cognitive function.   
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