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Abstract:  1 

Vascular endothelial growth factor-A (VEGF-A) is best known as a key regulator of the 2 

formation of new blood vessels. Neutralization of VEGF-A with anti-VEGF therapy, such as 3 

bevacizumab, can be painful, and this is hypothesized to result from a loss of VEGF-A-4 

mediated neuroprotection. The multiple vegf-a gene products consist of two alternatively 5 

spliced families, typified by VEGF-A165a and VEGF-A165b (both contain 165 amino acids), 6 

both of which are neuroprotective. Under pathological conditions, such as in inflammation 7 

and cancer, the pro-angiogenic VEGF-A165a is upregulated and predominates over the 8 

VEGF-A165b isoform.  9 

We show here that in rats and mice VEGF-A165a and VEGF-A165b have opposing effects on 10 

pain and that blocking the kinase SRPK1, that controls the preferential pre-mRNA splicing to 11 

VEGF-A165a rather than VEGF165b, prevents pain in vivo.  VEGF-A165a sensitizes peripheral 12 

nociceptive neurons through actions on VEGFR2 and a TRPV1-dependent mechanism, thus 13 

enhancing nociceptive signaling. VEGF-A165b blocks the effect of VEGF-A165a.  14 

After nerve injury, the endogenous balance of VEGF-A isoforms switches to greater 15 

expression of VEGF-Axxxa compared to VEGF-Axxxb, through an SRPK1-dependent splicing 16 

mechanism. Pharmacological inhibition of SRPK1 after traumatic nerve injury selectively 17 

reduced VEGF-Axxxa expression and reversed associated neuropathic pain. Exogenous 18 

VEGF-A165b also ameliorated neuropathic pain.   19 

We conclude that the relative levels of alternatively spliced VEGF-A isoforms are critical for 20 

pain modulation under both normal conditions and in sensory neuropathy. Altering VEGF-21 

Axxxa/VEGF-Axxxb balance by targeting alternative RNA splicing may be a new analgesic 22 

strategy. 23 

 24 

25 
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Introduction 1 

Inhibition of VEGF-A action with anti-VEGF-A therapies, e.g. bevacizumab or VEGF-A 2 

receptor inhibitors (e.g., vandetanib) results in pain, when given alone (Burger et al., 2007; 3 

Cohen and Hochster, 2007) or in combination with chemotherapies (Cohen et al., 2007; 4 

Miller et al., 2007; Garcia et al., 2008; Langenberg et al., 2011 ). Clinical findings that VEGF-5 

A contributes to pain are supported by observations that inhibition of VEGF receptor 2 6 

(VEGFR2) exacerbates peripheral neuronal damage, which is often associated with pain 7 

(Verheyen et al., 2012; Beazley-Long et al., 2013), and enhances pain behaviors in normal, 8 

nerve-injured and diabetic animals (Hulse et al., 2010b; Verheyen et al., 2012)  9 

The vegf-a gene encodes two families of isoforms typified by VEGF-A165 a and VEGF-10 

A165b (Harper and Bates, 2008). Both families have sister isoforms of the same length so 11 

they are referred collectively as VEGF-Axxxa and VEGF-Axxxb; xxx represents the number of 12 

amino acids. The isoform families differ only in their six C terminal amino acids (Harper and 13 

Bates, 2008). They are both capable of binding to VEGFR2 with similar affinities, but the 14 

functional results of receptor activation are multivariate (Table 1) (Ballmer-Hofer et al., 15 

2011). Control of relative isoform expression occurs by alternative pre-mRNA splicing of 16 

either proximal or distal splice sites in exon 8 (Fig. 1)  17 

VEGF-Axxxa is the principal target of anti-VEGF and VEGFR therapies as these 18 

isoforms are upregulated and predominate in multiple pathologies. However, VEGF-Axxxb 19 

forms a significant proportion of total (pan-)VEGF-A protein in many normal tissues (Harper 20 

and Bates, 2008) so the therapeutic effects of VEGF-A sequestration with many current 21 

antibody therapies, or VEGFR2 inhibition are a net result of simultaneous blockade of the 22 

actions of both families. The impact of the neutralization of the VEGF-Axxxb family on 23 

treatment outcomes has only recently been exemplified, in terms of its ability to predict 24 

colorectal cancer patients that do not respond to bevacizumab (Bates et al., 2012).  25 

rhVEGF-A165a exacerbated spinal cord contusion-associated pain and damage 26 

(Benton and Whittemore, 2003; Herrera et al., 2009; Nesic et al., 2010; Sundberg et al., 27 
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2011), and referred mechanical abdominal pain (Malykhina et al., 2012), but local VEGF-A 1 

delivery (presumed VEGF-Axxxa) partially reversed diabetic neuropathic mechanical 2 

hyperalgesia (Verheyen et al., 2013). Neutralization of all endogenous VEGF-A isoforms or 3 

VEGF receptor 2 inhibition increased pain sensitivity in chemotherapy-induced neuropathy 4 

(Verheyen et al., 2012), but conversely reversed neuropathic (Lin et al., 2010), and acute 5 

inflammatory hyperalgesia (Grosios et al., 2004).  6 

These conflicting observations might be explained by different actions of the distinct 7 

isoforms, which have not been studied independently, and their differing actions on VEGFR2 8 

(Ballmer-Hofer et al., 2011). We therefore tested the hypothesis that the alternatively spliced 9 

VEGF-A isoform families have different effects on pain. We investigated: a) the effects of 10 

specific VEGF-A isoforms on pain/nociception; b) the neuronal mechanisms through which 11 

effects on pain might occur; c) whether using control of alternative RNA splicing of VEGF-A 12 

could modulate nociception/pain, and d) whether either VEGF-A proteins or alternative 13 

splicing control may be potential novel analgesic targets.  14 

15 
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Materials and Methods 1 

All procedures using animals were performed in accordance with the United Kingdom 2 

Animals (Scientific Procedures) Act 1986 and with University of Bristol and King’s College 3 

London Ethical Review Groups approval. Human embryonic and adult tissues were obtained 4 

under ethical approval by University of Leiden and adult human DRG under ethical approval 5 

by Southmead Hospital Local Research Ethics Committee, Bristol.  6 

 7 

Antibody and pharmacological inhibitors.  8 

The following pharmacological interventions were used: pan-VEGF-A neutralization 9 

with mouse anti-VEGF-A antibody (Liang et al., 2006), specific VEGF-A165b neutralization 10 

using systemic treatment with anti-VEGF-A165b antibody (clone 56/1, (Woolard et al., 2004)) 11 

systemic and local VEGF receptor inhibition with selective (PTK787; (Wood et al., 2000) 12 

and/or specific (ZM323881; (Whittles et al., 2002)). VEGFR2 tyrosine kinase inhibitors; 13 

systemic or local administration of VEGF-A165a and/or VEGF-A165b; systemic antagonism of 14 

TRPV1 with SB366791 (Varga et al., 2005); inhibition of serine-rich protein kinases with 15 

SRPIN340 (Fukuhara et al., 2006), and appropriate vehicles.  16 

Measurement of mechanical and thermal nociceptive behaviors.  17 

A total of 64 adult male mice (C57Bl6, 25-30g), 6 TRPV1 congenic knockouts and 6 18 

wild-type strain-matched controls and 24 adult male Wistar rats were used to assess 19 

nociceptive behavior. TRPV1 homozygous knockout mice breeding pairs were generated 20 

and bred as described at King’s College London, (Caterina et al., 2000; Fernandes et al., 21 

2011; Fernandes et al., 2012b) where breeding colonies were regularly backcrossed 22 

according to Jackson Laboratory guidelines to avoid sub-strain selection (Lambert).   23 

All animals were habituated to testing environments and handling prior to testing, and 24 

were allowed to habituate to the environment for at least 15 minutes at each test session. 25 

Nociceptive testing, as previously described (Hulse et al., 2008), consisted of measurement 26 
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of mechanical allodynia by determination of von Frey hair mechanical withdrawal threshold 1 

and thermal hyperalgesia using the Hargreaves test (Hargreaves et al., 1988). Behavioral 2 

testing groups were randomized, and all operators were blinded to the drug and surgical 3 

treatment (nerve injury/sham) in each animal in all experiments. 4 

Von Frey hair mechanical thresholds - mechanical allodynia. Animals were habituated 5 

to chambers with mesh floors. The plantar surface of each foot was stimulated with von Frey 6 

hairs (Linton, UK) of increasing gram force breaking points, over a range of 0.07-2g (mice), 7 

or 1-100g (rats) (Hulse et al., 2008). Each von Frey hair tested was applied a total of 5 times 8 

to each hind paw and the number of times an animal removed the paw from each stimulus 9 

was counted. The proportion of times that the animal withdrew from each stimulus was 10 

plotted against the breaking force, and the withdrawal threshold determined from the 11 

resultant stimulus response curve (the gram force at which paw removal occurred at 50% of 12 

the stimulations).  13 

Hargreaves test for thermal hyperalgesia. Thermal hyperalgesia was measured using 14 

a radiant heat source directed against the plantar surface of the hind paws, through the 15 

Perspex floor of the testing chamber (Hargreaves et al., 1988), and the latency to withdrawal 16 

was measured. The stimulus intensity was determined at the beginning of each experimental 17 

series, to give a control withdrawal latency of ~10 seconds, and this intensity was 18 

subsequently used for each subsequent testing session for that experimental group. A 19 

maximum latency duration of 30 seconds was used to prevent tissue damage/sensitization 20 

to intense sustained stimulation. The mean withdrawal latency was determined from three 21 

repeated stimulations at an inter-stimulus interval of at least 5 minutes.  22 

Model of neuropathic pain - partial saphenous nerve injury. 23 

24 mice and 18 rats underwent surgical partial saphenous nerve injury (PSNI) as 24 

previously described (Hulse et al., 2008; (Walczak et al., 2005) under isofluorane anesthesia 25 

(2-3% in O2). A ~1cm incision was made in the inguinal fossa region of the right hind leg. 26 

Approximately 50% of the saphenous nerve was tightly ligated using a size 6.0 sterile silk 27 
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suture and the wound was closed with size 4.0 sterile silk suture. Sham-operated animals 1 

(n=5) underwent anesthesia and surgery involving solely an incision in the inguinal fossa 2 

region of the right hind limb. 3 

Electrophysiological recording of identified primary afferents in the saphenous nerve.  4 

Teased fiber electrophysiology from the saphenous nerve was carried out in 44 adult 5 

male Wistar rats (250-300g). Properties of isolated afferents in terminally anaesthetized rats 6 

(sodium pentobarbital ~20mg/kg/h) and the effects of local injection of compounds into the 7 

receptive fields were determined (see section Pharmacological Treatments for further 8 

information), as previously described (Dunham et al., 2008; Hulse et al., 2010a). Fine nerve 9 

filaments were dissected from the main trunk of the nerve cut centrally and differential 10 

recordings were made using bipolar platinum wire recording electrodes. Primary afferents 11 

were identified in the filaments using mechanical and/or electrical search stimulation of 12 

identified receptive fields located in the dorsomedial region of the right hind paw, the area 13 

innervated by the saphenous nerve in the rat. Filaments usually contained a single identified 14 

afferent (unit), but up to 3 units could be studied in the same filament provided the receptive 15 

fields were distinguishable. Action potentials from each fiber could be distinguished 16 

individually by offline action potential recognition and sorting. Data capture was through a 17 

micro 1401-3 (Cambridge Electronic Design) and offline action potential sorting and analysis 18 

was carried out on Spike 2 version 7 (CED).  19 

Identified units were characterized according to their conduction velocity (CV) and 20 

response to mechanical stimulation of the receptive field. Units that could not be activated by 21 

peripheral mechanical stimulation were not studied further. Monopolar electrical stimulation 22 

was applied to the receptive field (up to 100V, 0.5ms duration) and 3 reproducible action 23 

potential latencies were required to calculate the conduction velocity (CV).  Following CV 24 

measurement, any ongoing activity (action potential firing) was recorded for 100 seconds. 25 

Note that under normal conditions, the majority of afferents in the saphenous nerve do not 26 

show significant ongoing activity, as there are no muscle spindle, and few cooling afferents 27 
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in this largely cutaneous sensory nerve. Ongoing activity was defined as firing >0.1 1 

impulses/second occurring without any obvious initiating factor. During the period of 2 

recording of ongoing activity, no further stimulation of the receptive field was applied.  3 

Mechanical thresholds were determined as the lowest von Frey hair applied that 4 

elicited a robust (>3 action potentials) reproducible response (Lynn and Carpenter, 1982; 5 

Koltzenburg et al., 1999b; Dina et al., 2004; Dunham et al., 2008). Responses to light brush 6 

with a paintbrush and to a series of von Frey hairs were then recorded. Primary afferents 7 

with a CV less than 1m.s-1 were classified as C fibers, based on compound action potentials 8 

recorded in the same preparation in animals of a similar weight, sex and age (Dunham et al., 9 

2008). Afferents that were not brush sensitive, with von Frey thresholds >1g were classified 10 

as nociceptors (Lynn and Carpenter, 1982; Dunham et al., 2008); C fiber nociceptors were 11 

those that met these criteria and had CV<1m.s-1. Ongoing activity was outlined as those 12 

units with greater than 0.1Hz (Shim et al., 2005).  13 

Methodological note.  14 

It should be noted that hand-held von Frey hairs give an approximation of the 15 

mechanical thresholds of primary afferent units as application of a range of hairs exerts 16 

incremental, discrete forces rather than a continuous force on the receptive field. As von 17 

Frey hairs were used for behavioral tests, comparable methods of single neuronal activation 18 

were used. Single afferent mechanical thresholds are typically lower than behavioral 19 

withdrawal thresholds, as withdrawal reflexes require summation of input from multiple high 20 

threshold nociceptive afferents for activation. 21 

Intracellular calcium measurements in primary dorsal root ganglion cells.  22 

DRG were dissected from adult Wistar rats, dissociated, and cultured as previously 23 

described (Wong et al., 2006).  For TRPV1 experiments, following overnight pretreatment 24 

with VEGF-A isoforms in media or media alone, primary DRG cultures were pre-incubated 25 

with 100µl of Ca2+-sensitive dye (Fluo-4 direct) at 37°C for 1 hour during which time 26 
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concentrated capsaicin agonist solutions at 6 the final concentrations used were prepared 1 

and preheated to 37°C. Fluorescence recordings were performed row by row. First the 2 

baseline fluorescence at 488nm was read, then 20µl capsaicin solution was added to the 3 

dye to achieve the final capsaicin concentration, and the fluorescence read within 45 4 

seconds and then repeatedly every 10 seconds for ~4 minutes on a Wallac 1420 Victor 3™ 5 

multi-label reader (PerkinElmer Inc.). The change in fluorescence over baseline was 6 

determined for each recorded time point. Each capsaicin concentration was tested in 7 

multiple replicates (3-7). Some cultures were fixed, and stained for VEGFR2 (Cell Signaling, 8 

rabbit mAb 55B11). 9 

Capsaicin-evoked currents in primary dorsal root ganglion cells.  10 

Primary DRG cultures were prepared as above, and grown on glass coverslips coated 11 

with poly-L-lysine and laminin. After 3-5 days coverslips were mounted into a recording 12 

chamber and visualized using Olympus BX50WI microscope (Olympus, UK) using a 60x 13 

water immersion objective. Cells were chosen for study based on cell diameter (all <30µm 14 

diameter). Cells were continually perfused 2-3 ml/min with an extracellular solution 15 

containing (mM): 145 NaCl, 5 KCl, 0.5 CaCl, 2 MgCl2, 10 HEPES, and 10 D-glucose, pH 16 

was adjusted to 7.4 at 310-320 mOsm. Low calcium solution was used to reduce any 17 

calcium dependent desensitization of the current. Cells were patch-clamped in the whole-cell 18 

configuration and held at -80mV at room temperature (18-22oC). Patch pipettes were pulled 19 

from soda glass (Harvard Apparatus, UK) to a resistance of 3-4 mΩ and the tips were coated 20 

in surf wax (Mr Zoggs) to reduce the capacitive transient.  The pipette solution contained 21 

(mM): KCl 140, NaCl 5, EGTA 5, MgCl2 2, HEPES 10, adjusted to pH 7.2 with KOH.  Puff 22 

pipettes pulled from soda glass with resistances of 3-4 M were filled with 500µM capsaicin in 23 

external solution (stock solution 10mM dissolved in 10% DMSO, 10% Tween-80, 80% saline 24 

and diluted to working concentration in external solution) and positioned between 20-30 µm 25 

from the cell. A Pneumatic Picopump PV800 (WPI, Hertfordshire, UK) was used to apply a 26 

two second puff at 10psi. Inward currents in response to the puff application were recorded 27 
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using an axon 200B amplifier and pClamp 9 software (Axon Instruments, CA, USA) with a 1 

sampling rate 20kHz  and filtering at 5kHz filter. The peak of the inward currents during puff 2 

application were measured using Clampfit 9 (Axon instruments). 3 

TRPV1 and VEGFR2 phosphorylation - immunoprecipitation and Western blotting  4 

Immortalized rat embryonic DRG cells, that represent largely nociceptive neurons 5 

expressing TRPV1 and NGF receptors (50B11) (Chen et al., 2007) were grown in 6 

Neurobasal medium (Invitrogen) supplemented with B27 (Invitrogen), 10% FBS, 0.5mM L-7 

glutamine and an additional 2.2% glucose in 6 well plates. These neurons were used as an 8 

alternative to primary culture, to generate the amounts of protein required for phospho-9 

immunoprecipitation, as required by the principles of the ‘3Rs’ (reduction, replacement, 10 

refinement) under UK and EU legislation. Upon reaching 80% confluence cells were 11 

differentiated for 24 hours with 75µg/mL forskolin and 0.1nM NGF-2.5S, and then treated 12 

overnight (~16 hours) with VEGF-A proteins (2.5nM), NGF-2.5S (4nM) or vehicle (PBS). 13 

Following treatment cell lysate protein, extracted in the presence of phenylmethylsulfonyl 14 

fluoride and proteinase inhibitors, was subjected to immunoprecipitation using a TRPV1 15 

antibody (Abcam, rabbit pAb, ab10296) and Millipore PureProteome™ Protein A Magnetic 16 

Bead System. The manufacturer’s direct immunoprecipitation method was followed using 17 

2g/mL antibody and 50g protein lysate. The eluates were separated on 10% SDS-PAGE 18 

gels. blotted on PVDF membrane by wet transfer and incubated overnight with 2g/mL 19 

phospho-serine mouse mAb (Millipore, 4A4). After secondary antibody incubation (goat pAb 20 

HRP-anti-mouse IgG) blots were developed using Pierce ECL SuperSignal Femto reagent. 21 

Blots were stripped and re-probed using the aforementioned TRPV1 rabbit pAb. Cell lysate 22 

protein not subjected to immunoprecipitation was separated and blotted as above and 23 

TRPV1 levels detected. This indicated the TRPV1 input level into the immunoprecipitation. 24 

L4 DRGs were taken from male Wistar rats (naïve and 7 day post PSNI) following 25 

terminal anesthesia (sodium pentobarbital 60mg/kg) and subsequent cardiac perfusion with 26 

saline. Protein was extracted and gels and blots run as previously described. Blots were 27 
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incubated overnight at 4oC with either anti-phospho-VEGFR2 (tyr1175) or anti-VEGFR2 1 

(rabbit monoclonal, Cell Signaling) antibodies. Anti rabbit HRP (Cell signaling) was 2 

incubated for 2h at room temperature prior to development with Pierce ECL SuperSignal 3 

Femto reagent. 4 

VEGF-A isoform and VEGFR2 expression studies – Immunofluorescence, ELISA and 5 

qRT-PCR.  6 

Total VEGF-A and VEGF-A165b were detected using validated, commercially available 7 

antibodies (Santa Cruz A-20, and AbCam MVRL56/1 respectively). The VEGF-A165b 8 

antibody detects the unique C-terminal of the alternatively spliced VEGF-Axxxb family 9 

(Woolard et al., 2004). VEGF-A165a levels were determined by subtraction of VEGF-A165b 10 

levels from total VEGF-A.  11 

For immunofluorescence in rat DRG, animals were terminally anaesthetized with 12 

sodium pentobarbital (60mg/ml) and perfuse fixed with 4% paraformaldehyde (PFA). Ipsi- 13 

and contralateral lumbar dorsal root ganglia were removed. DRG were placed into PFA for 4 14 

hours and then cryoprotected in 30% sucrose solution overnight. 8µM sections cryosections 15 

were cut from OCT embedded DRG and thaw mounted onto subbed slides. Sections were 16 

blocked in 10% fetal calf serum/5% bovine serum albumin/0.2% Triton x100 in PBS for 2 17 

hours at room temperature. Primary antibodies were used at the concentrations below 18 

diluted in the blocking solution and incubated overnight at 4oC. Prior to secondary antibody 19 

incubations sections were washed extensively with PBS. Sections were incubated in 20 

secondary antibodies diluted in 0.2%Triton x100 in PBS for 2 hours at room temperature. 21 

Streptavidin amplification was performed as per manufacturers instructions (Vector, UK). 22 

Primary antibody concentrations: TrkA, 1µg/ml; 56/1, 12 µg/ml; α-phospho-tyr1175 VEGFR2 23 

and VEGFR2 (1 in 500 dilution). Secondary antibodies: biotinylated anti-rabbit (Jackson 24 

Immune Research, diluted 1 in 500). Alexa Fluor 488 or 594 were used at 1 in 1000 dilution. 25 

α-goat Alexa Fluor 594 (Invitrogen, UK). Hoechst (Sigma Aldrich) and goat SRSF1 (2µg/ml, 26 
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Santa Cruz). Images were visualized using a fluorescent microscope and captured before 1 

quantification. 2 

Real-time qRT-PCR. 2μg of DNase-digested total RNA was reverse transcribed using 3 

oligo(dT15) and random primers (Promega, UK). Real-time PCR was performed on a ABI 4 

7000 thermocycler using ABsolute QPCR SYBR green mix (Thermo Scientific, UK) and 1 5 

µM primers specific for VEGF-A165a, (forward - exon 7/8a: 6 

5’-GTTCAGAGCGGAGAAAGCAT-3’; reverse 5’- TCACATCTGCAAGTACGTTCG-3’) and 7 

total VEGF-A (forward - exon 2/3: 5’-GGAGGGCAGAATCATCACGAAG-3’; reverse 5’-8 

CACACAGGATGGCTTGAAGATG-3’) (Woolard et al., 2004; Nowak et al., 2010), and for the 9 

housekeeping genes (18S ribosomal, GAPDH and Microglobulin) (see (Amin et al., 2011) for 10 

primer sequences). Cycling conditions were: denaturation at 95 °C for 10 min, then 95°C for 11 

15 s, and 55°C for 30 s for 40 cycles. RNA levels were estimated by (VEGF-A165a/VEGF-12 

Atotal)=E-(CtVEGF165)/E-(CtVEGFtotal) where E is the efficiency of the qPCR reaction for the primer 13 

pair used, or for expression relative to housekeeping genes, V=2-(Ct) where Ct is the 14 

difference between the cycle thresholds for VEGF-A and housekeeping gene. Values are 15 

expressed relative to saline treated tissues. 16 

Experimental note. 17 

The presence and function of endogenous VEGF-A165b has been demonstrated using 18 

specific siRNA knockdown, expression in multiple cells, tissues and pathological conditions 19 

using rigorous controlled techniques (Harper and Bates, 2008) and the importance of VEGF-20 

A165b in pathological conditions has recently been highlighted by its ability to predict 21 

response to bevacizumab in the registration trial in colorectal cancer (Bates et al., 2012). A 22 

recent study highlighted the importance of using appropriate controls to avoid artefactual 23 

detection of VEGF-Axxxb isoforms (Harris et al., 2012) in rodents. A further study (Bates et 24 

al., 2013) demonstrates clearly the importance of positive and negative controls in both PCR 25 

amplification and Western blotting, to eliminate mis-interpretation of non-specific antibody 26 

binding to mouse IgG, or mis-priming. To avoid possibilities of misinterpretation of 27 
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artefactual amplification of products we used pro-angiogenic isoform specific primers 1 

(against exon 8a) and total VEGF-A primers to determine the effect of splicing inhibitors on 2 

VEGF-A splicing. 3 

Pharmacological treatments.  4 

A) VEGF neutralization and VEGF receptor block. Mechanical and thermal nociceptive 5 

behaviors were determined in adult mice before and 2 days after intraperitoneal (i.p.) 6 

injection with 6µg/g bodyweight mouse G6-31 antibody (n=5, both hind paws used as 7 

replicates) or vehicle (saline, n=6).  8 

VEGFR2 tyrosine kinase inhibitors PTK787 and ZM323881 were given systemically to 9 

rats by a single i.p. injection (PTK787: 30mg/kg, 30µg/g) or locally into the hind paw (rats 10 

and mice: ZM323881: 10µl containing 100nM). Vehicle (PTK787, saline; ZM323881, 0.001% 11 

DMSO in saline) was injected by the same route (n=6/group). ZM323881 was given under 12 

brief isofluorane anesthesia (2-3% in O2). Nociceptive behavior was tested before and after 13 

treatment (PTK787 2 hours; ZM323881 20-40 minutes).  14 

B) Effect of exogenous VEGF-A165a and VEGF-A165b in control animals and after 15 

peripheral nerve injury:  16 

i) Nociceptive behaviors - normal. Saline (200µl), VEGF-A165a (8ng/g body weight), 17 

VEGF-A165b (8ng/g), VEGF-A165b (20ng/g), VEGF-A121a (8ng/g) and VEGF-A159 (8ng/g) were 18 

injected i.p biweekly (n=5 per group) and nociceptive behaviors assessed before and after 19 

administration for a period of 5 days (experiments performed in mice).  20 

ii) Nociceptive behaviors – PSNI. After surgery for peripheral nerve injury, groups of 21 

mice received one of the following biweekly: VEGF-A165a (n=6, 8ng/g i.p. (Zheng et al., 22 

2007)); VEGF-A165b (n=6, 20ng/g) or PBS vehicle (n=16, 200µl). Injections were given 23 

immediately after PSNI surgery, and after behavioral test sessions on days 3 and 7. Sham-24 

operated controls (n=5) received i.p. vehicle at the same times. Nociceptive testing was 25 

performed on days 1,3,5,7&10 after PSNI. 26 
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iii) Primary afferent properties.  1 

Afferents were isolated and characterized as described above. The effect of rhVEGF-2 

A165a injected locally into the receptive field (10µl; 2.5nM) on afferent activity was determined 3 

by a change in ongoing activity. In these experiments we determined that ~50% of identified 4 

nociceptive cutaneous afferents responded to VEGF-A165a with an increase in spontaneous 5 

action potential firing over a period of 1 hour (Figure 3A). In subsequent experiments, 6 

nociceptive afferents responding to VEGF-A165a were identified by this ongoing activity. 7 

Afferents were characterized by CV and mechanical threshold, and mechanical stimulus-8 

evoked responses were recorded. VEGF-A was then injected locally, and these properties 9 

were recorded at set intervals for 60 minutes. Post-hoc analysis of mechanical threshold, 10 

mechanically evoked and ongoing activity recorded at 5, 30 and 60 minutes after VEGF-A 11 

administration was then done for those units that developed ongoing firing by 60 minutes.  12 

C) Effect of SRPK1 inhibition in normal skin (mice) and after nerve injury (rats) on 13 

nociceptive behavior and VEGF-A isoform expression: SRPIN340 (10µl; 10µM), an inhibitor 14 

of SR protein kinases SRPK1 and 2 (Fukuhara et al., 2006) that are responsible for splicing 15 

control of VEGF-A isoforms (Nowak et al., 2010) or vehicle (saline) was injected into the 16 

plantar surface of one hind paw under brief isofluorane anesthesia (2-3% in O2). Nociceptive 17 

behavior was tested before and after injection (n=6/group). Animals were killed by anesthetic 18 

overdose, and the plantar skin at the site of injection removed. Total VEGF-A and VEGF-19 

A165b mRNA expression was determined at the site of SRPIN340 or saline injection by 20 

quantitative (q) PCR.  21 

To investigate the effect of inhibition of splicing in injured nerve, 8 rats underwent PSNI 22 

surgery and were treated with the SR protein kinase (SRPK1/2) inhibitor, SRPIN340 (Nowak 23 

et al., 2010) or vehicle (saline). SRPIN340 (10M) was incorporated into a sterile gel 24 

consisting of (2% hyproxymethylcellulose, 0.2% tyloxapol, 3.4% dextrose, 0.025% 25 

ethylenediaminetetraacetic acid (EDTA), 0.0006% benzalkonium chloride) and applied to the 26 

nerve in the area of the tight ligation (n=4); gel without SRPIN340 was used in control 27 
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animals (n=4). Nociceptive testing was performed on days 1 and 2 after PSNI. Animals were 1 

killed by anesthetic overdose and the saphenous nerves and L3/L4 DRGs removed. VEGF-2 

A splice variant mRNA expression was determined at the site of injury by qRT-PCR for total 3 

VEGF-A and VEGF-A165a. 4 

D) Interactions between VEGF-A and TRPV1: 5 

i) Effect of pharmacological TRPV1 receptor blockade (mice): Mechanical nociceptive 6 

behavior was determined every other day for 5 days. VEGF-A and SB366791 (500µg/kg) or 7 

vehicle were given via i.p. injection on days 1 and 3 immediately after behavioral testing 8 

(n=3/group, both hind limbs tested and treated as replicates).  9 

ii) VEGF-A-mediated TRPV1 sensitization (rats): To determine the effect of VEGF-A 10 

isoforms administered together with a non-sensitizing concentration of TRPV1 agonist in 11 

identified primary afferents, a bolus of 10µM capsaicin was injected through an intra-femoral 12 

arterial cannula inserted in the mid-thigh in the opposite hind limb to the recordings, with the 13 

tip advanced to the bifurcation of the descending aorta. This allowed close arterial delivery of 14 

capsaicin (100µl; 10µM washed in with 400µl saline) to the peripheral afferent receptors. 15 

The effects of VEGF-A165a and VEGF-A165b on TRPV1 agonist responses were investigated 16 

using close arterial injection of capsaicin combined with local (subcutaneous) injection of 17 

2.5nM VEGF-A165a, 2.5nM VEGF-A165b or both together. When VEGF-A165b was used, it 18 

was then followed by VEGF-A165a to confirm VEGF receptor responses in the afferents 19 

studied, as described above. 20 

Numbers of afferents included in the experiments were: ongoing and mechanically 21 

evoked activity - saline vehicle n=12, VEGF-A165a n=7, and VEGF-A165b n=5; mechanical 22 

activation threshold – VEGF-A165a, saline n=7, VEGF-A165b n=5; capsaicin sensitization - 23 

baseline n=16, VEGF-A165a n=8, VEGF-A165b n=8, VEGF-A165a + VEGF-A165b n=7  24 

Experimental note: This concentration of capsaicin delivered by close arterial injection 25 

does not result in sensitization or desensitization of the TRPV1 receptors to agonist 26 
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stimulation on repeated injection (Dunham, 2008; Dunham et al., 2008). Capsaicin injection 1 

resulted in a short burst of action potentials that confirmed access of the agonist to the 2 

afferent receptor terminals. It should be noted that the effective concentration of capsaicin at 3 

the primary afferent terminals when delivered by this method is approximately 1000 fold 4 

lower than that injected as a result of dilution in hind limb blood volume, and tissue 5 

penetration (Dunham, 2008).  6 

Statistical analyses 7 

The majority of data sets was Gaussian in nature and therefore met the requirements 8 

for parametric analyses; in a small number of cases, data sets were log transformed to 9 

render them Gaussian prior to analysis (e.g. withdrawal thresholds). Multiple groups were 10 

compared using one or two way ANOVA followed by post-hoc Bonferroni tests where 11 

appropriate, and where Gaussian assumptions were not met or log transformation did not 12 

render the samples Gaussian, non-parametric tests were used, in which case multiple 13 

groups were compared with Kruskal-Wallis or Friedman’s tests followed by post-hoc Dunn’s 14 

tests. Two group tests were 2 tailed Student’s t-tests with Welch’s correction where 15 

necessary for unequal variance, or Mann Whitney U tests for non-parametric data. Numbers 16 

of DRG neurons with TRPV1-activated currents were compared using Fisher’s exact test.  17 

18 
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Results 1 

VEGF-A splice isoforms differentially affect pain behaviors, through direct VEGFR2-2 

mediated effects on primary sensory nociceptive neurons. Systemic delivery of anti-mouse 3 

VEGF antibody acutely sensitized animals to mechanical (Fig. 2A) and thermal (Fig 2B) 4 

stimulation. Neutralization of VEGF-A165b (Fig. 2C), and inhibition of VEGF receptor-2 5 

(VEGFR2) by selective (ZM323881, Fig 2D) and specific (PTK787, Fig 2E) inhibitors also 6 

produced sensitization. Systemic recombinant human (rh)VEGF-A165b (up to 20ng/g 7 

bodyweight, i.p.) had no effect on mechanical (Fig 2F), or thermal (Fig 2G) nociceptive 8 

behavior, whereas rhVEGF-A165a (8ng/g bodyweight, i.p.) sensitized to mechanical (Figure 9 

2H) but not thermal stimuli (Fig. 2G). rhVEGF-A121a, which has the same C-terminal six 10 

amino acid sequence as the VEGF-Axxxa family but reduced affinity for neuropilin-1 (NP-1) 11 

also resulted in mechanical sensitization (Fig 2I). rVEGF-A159, which lacks the six C terminal 12 

amino acids (Cebe Suarez et al., 2006), had no effect on pain (Fig. 2I), showing that the 13 

mechanism through which VEGF-A165a and VEGF-A121a enhance pain is C-terminal 14 

sequence dependent (summarized in Fig. 2J) .  15 

We then determined the neuronal mechanism through which systemic rhVEGF-A165a 16 

might alter nociceptive behavior. VEGFR2 protein was detected in DRG neurons (Fig. 3B) 17 

as previously described (Sondell and Kanje, 2001; Lin et al., 2010) by immunofluorescence 18 

in proportions of both TrkA- and isolectin B4, nociceptive neurons (Fig. 3A), with increased 19 

expression post traumatic nerve injury. Inhibition of VEGFR2 (locally applied PTK787 to the 20 

receptive field) directly sensitized nociceptors to mechanical stimulation (Fig. 3C). As 21 

endogenous VEGF-A isoforms can exert potent vascular effects, we also determined 22 

whether VEGFR2 inhibitors PTK787 and ZM323881 overtly affected local blood flow. Neither 23 

receptor blocker resulted in any reduction in local blood flow as measured by laser Doppler 24 

flowmetry, or in skin temperature, in contrast to local adrenaline injection used as a positive 25 

control (data not shown). To determine the roles of VEGF-A isoforms on sensory afferents, 26 

effects on nociceptors were determined prior and after injection of vehicle, VEGF-A165a or 27 
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VEGF-A165b (Fig. 3D). Injection of rhVEGF-A165a, but not rhVEGF-A165b into individual 1 

characterized sensory neuronal receptive fields resulted in the initiation of spontaneous 2 

ongoing firing (Fig. 3E) in 56% of mechano-sensitive primary afferent nociceptors tested 3 

(Fig. 3F), indicating expression of functional VEGF receptors in a large proportion of the 4 

sampled afferents. The proportion of neurons responding to VEGF-A165a (>50%) was 5 

significantly higher than the proportion of VEGFR2 positive IB4/TrkA + ve neurons – posited 6 

to be nociceptors (Fang et al., 2005; Fang et al., 2006). There are a number of explanations 7 

for this including: unconscious bias in our search strategy for afferents (mechanosensitive, 8 

C-fiber nociceptors) leading to an over-representation of afferents expressing VEGFR2; 9 

detection of protein by immunofluorescence underestimating the degree to which functional 10 

VEGFR2 are found on sensory neurons; or a higher proportion of VEGF sensitive 11 

nociceptors in the paw than in other regions through which L4 DRG neurons receive input. 12 

As the characteristics and distribution of VEGF sensitive afferents are not fully known in any 13 

species, any bias was unavoidable, and only came to light in post-hoc analysis.  14 

Those neurons that developed ongoing firing after VEGF-A165a administration also 15 

became more sensitive to mechanical stimulation after 5 min (Fig. 3H, evoked activity at 5 16 

and 60 minutes after rhVEGF-A165a, main effect of drug p<0.0001), had lowered mechanical 17 

activation thresholds at 5 min (thresholds were saline:6(9)g (median(range)); rhVEGF-A165a: 18 

1.5(3.9)g; rhVEGF-A165b: 4(14.4)g, ANOVA p=0.08) and 60 min (Fig. 3G) and increased 19 

after discharge post-stimulus at 5 (Fig. 3D) and 60 minutes (not shown), indicating VEGF-20 

A165a mediated peripheral neuronal sensitization that would translate into increased 21 

sensitivity to painful mechanical stimulation. Conversely, VEGF-A165b does not lead to 22 

sensitization of nociceptor activity (Fig. 3E, F, G and H) and importantly, completely 23 

abolished VEGF-A165a induced nociceptor hyperexcitability in all instances (Fig. 3E, F, G 24 

and H). . Thus both VEGFR2 inhibition and VEGFR2 activation by rhVEGF-A165a enhance 25 

nociception by sensitization of peripheral mechanosensitive nociceptors.  26 
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Alternative splicing of pre-mRNA to VEGF-Axxxa rather than VEGF-Axxxb is controlled 1 

by the constitutively active serine-arginine protein kinase SRPK1 (Nowak et al., 2010) 2 

leading to activation of the splicing factor SRSF1 and selection of the proximal splice site 3 

(Fig. 1). On activation, SRSF1 translocates to the nucleus, and therefore activation of 4 

SRSF1 and subsequent splice site choice can be assessed by the degree of nuclear 5 

localization. (Ghosh and Adams, 2011). SRPK1 inhibition and block of SRSF1 function thus 6 

enhancing distal splice site selection results in the increased proportion of VEGF-Axxxb (Fig. 7 

1). Subcutaneous injection of an SRPK inhibitor (SRPIN340) in normal rat hind paw 8 

switched splicing, reducing VEGF-A165a relative to total VEGF-A to 33% of control levels in 9 

skin (Fig. 4A). This was associated with a 50% increase in mechanical threshold (Fig. 4B), 10 

but no effect on thermal withdrawal latency (Fig. 4C). We then determined whether VEGF-11 

Axxxa expression was altered in traumatic nerve injury (Hulse et al., 2008). After peripheral 12 

saphenous nerve injury (PSNI), there was a >10 fold increase in the expression of VEGF-13 

A165a mRNA (Fig. 4D) in the local environment at the site of injury. In the same animals, 14 

there was also increased nuclear localization of SRSF1 in the damaged L4 DRG (Fig. 4E, 15 

F), consistent with a switch in SRPK1 mediated splicing to VEGF-Axxxa in neurons. Staining 16 

of DRG for Y1175-phosphoVEGFR2 (Fig. 4G) demonstrated increased numbers of 17 

VEGFR2-pY1175 positive neurons (Fig. 4G, H), and immunoblotting showed increased 18 

Y1175-VEGFR2 phosphorylation as a proportion of VEGFR2 (Fig. 4I) indicative of increased 19 

VEGFR2 activation in these neurons. SRPK inhibition by SRPIN340 as a depot at the site of 20 

nerve injury blocked the change in mechanical withdrawal threshold (Fig. 4J), with no effect 21 

on thermal withdrawal latencies (data not shown). It also blocked the increased expression 22 

of VEGF-A165a mRNA (Fig. 4D) and the SRSF1 activation in DRG neurons (Fig. 4K). In 23 

SRPIN340 treated animals there were no contralateral changes in either mechanical or 24 

thermal nociceptive behavior (not shown).  25 

As nerve injury shifted the balance of VEGF-A isoforms towards VEGF-Axxxa, in both 26 

injured neurons and at the site of nerve injury, enhancing nociception, and blockade of the 27 
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SPRK1-SRSF1 mediated splicing switch with SRPIN340, reversed VEGFxxxa mediated pro-1 

nociceptive actions, we hypothesized that altering the relative balance of VEGF-A isoforms 2 

with exogenous protein would have a similar effect. In contrast to normal animals (Fig. 2F), 3 

systemic rhVEGF-A165b treatment exerted anti-nociceptive effects on both mechanical (Fig. 4 

5A) and thermal behavior (Fig. 5B) after PSNI, whereas rhVEGF-A165a was pro-nociceptive 5 

(Fig. 5B&C). Similar changes in thermal latencies but not in mechanical thresholds were also 6 

seen in the contralateral hindpaw (Fig. 5D), suggesting that central VEGF-A-dependent 7 

mechanisms may also contribute to changes in thermal nociception following nerve injury. It 8 

is possible that rhVEGF-A165b exerted little effect in uninjured animals because VEGF-A165b 9 

is the predominant VEGF-A isoform in both skin (Pritchard-Jones et al., 2007), and human 10 

and rat DRG neurons (~70% total, measured by ELISA, Fig. 6A,B), where it is expressed 11 

(Fig. 6C) in a proportion of TrkA-expressing nociceptors (Fig. 6D).  12 

VEGF-A isoforms affect pain by a TRPV1-dependent mechanism.  13 

Sensitization through phosphorylation of the TRPV1 ‘capsaicin’ receptor is a common 14 

endpoint in the sensitization of many nociceptors to both thermal and mechanical stimulation 15 

in inflammation, and nerve injury (Levine and Alessandri-Haber, 2007). TRPV1 is a thermal 16 

(Caterina et al., 1997), not a mechanotransducer, but agonists are well recognized to alter 17 

both thermal and mechanical thresholds in humans (Fluhr et al., 2009). TRPV1-expressing 18 

peripheral sensory nerves are mechanosensitive in addition to thermosensitive (Brenneis et 19 

al., 2013). There is substantial evidence of an involvement of TRPV1 in mechanical 20 

sensitization in visceral afferents (see references in (Jones et al., 2005; Ravnefjord et al., 21 

2009; Kiyatkin et al., 2013). Peripheral sensitization of afferents involving TRPV1-dependent 22 

mechanisms has also been reported in deep tissue afferents (Lam et al., 2009; Kelly et al., 23 

2013), and importantly for these data, in skin, where TRPV1 sensitization by agonist, such 24 

as capsaicin, lower mechanical thresholds and hence contributes to enhanced 25 

mechanonociception (Ren et al., 2005, 2006; Li et al., 2008). TRPV1 knockout (Fig. 7A) and 26 

pharmacological antagonism (using SB366791 Fig. 7B) both eliminated VEGF-A165a-27 
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mediated mechanical allodynia indicating that the mechanism of action of VEGF-A165a 1 

involves, at least in part, TRPV1.  2 

We then determined whether VEGF-A isoforms affected TRPV1 function in sensory 3 

neurons. Capsaicin induced a dose dependent increase in intracellular calcium in primary 4 

DRG cells (Fig. 7C). Treatment with rhVEGF-A165a enhanced TRPV1-ligand (capsaicin) 5 

stimulated calcium influx (Fig 7D, E), confirmed by patch clamping, where rhVEGF-A165a 6 

enhanced TRPV1-ligand induced currents (Fig. 7F, G) consistent with altered pain behavior. 7 

Capsaicin induced currents were found more frequently in primary DRG neurons incubated 8 

with VEGF-A165a (10/14 responders) than control (4/16, p=0.03). rhVEGF-A165a, but not  9 

rhVEGF-A165b, caused significant TRPV1 phosphorylation in DRG cells, with no increase in 10 

overall TRPV1 expression level (Figure 7H). Sensitization of TRPV1 is fundamental to the 11 

development of hyperalgesia (Ferrari et al., 2010) and dependent on PKC phosphorylation 12 

(Ristoiu et al., 2011). The VEGF-A165a-enhanced calcium response was inhibited by 13 

incubation with the PKC inhibitor bisindolylmaleiamide-1 (BIM, Fig. 7I). In vivo, low dose 14 

capsaicin evoked neuronal activity in primary afferent nociceptors, which was increased by 15 

rhVEGF-A165a (Fig. 7J) and was blocked by rhVEGF-A165b (Fig. 7J). These behavioral, 16 

cellular and in vivo physiological experiments indicate that VEGF-A165a-enhanced pain is at 17 

least partly mediated by enhanced sensory neuronal properties, through mechanisms that 18 

involve activation of PKC, and TRPV1 phosphorylation.  19 

20 
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Discussion 1 

Clinical and experimental reports of the detrimental effects of anti-VEGF agents on 2 

neuronal integrity and pain have raised concerns over the use of such therapies as their use 3 

can result in neuronal damage, often leading to pain (Verheyen et al., 2012). VEGF-A165a is 4 

reported to have both pro- (Benton and Whittemore, 2003; Herrera et al., 2009; Malykhina et 5 

al., 2012) and anti-nociceptive effects (Grosios et al., 2004; Lin et al., 2010; Verheyen et al., 6 

2013). We hypothesized that this conflict in the literature regarding findings on pain may be 7 

resolved by a more detailed understanding of the contributions of the alternatively spliced 8 

VEGF-A isoforms to nociception. We show herein that a controlled change in the repertoire 9 

of VEGF-A alternative splice variants in the environment around peripheral sensory neuronal 10 

fibers/terminals, using either exogenous protein or control of endogenous splicing in favor of 11 

VEGF-Axxxa, results in enhanced pain, and that VEGF-A165b can alleviate pain in 12 

neuropathy.  13 

Although differential expression of several alternatively spliced growth factors has 14 

been reported after peripheral nerve injury (Kerber et al., 2003; Chen et al., 2008; Amiri et 15 

al., 2009; Kerr et al., 2010), and injured peripheral neurons show altered RNA splicing 16 

(Kiryu-Seo et al., 1998), control of pain through targeting of alternative RNA splicing has not 17 

been previously reported. We have shown that peripheral axotomy activates changes in 18 

alternative RNA splicing in the area of damage, where mediators in the local environment 19 

can profoundly affect neuronal properties (Obata et al., 2004; Djouhri et al., 2012), possibly 20 

through TRPV1 activation on peripheral fibers (Hoffmann et al., 2009), as well as in the 21 

damaged neurons themselves. Use of a specific SRPK1 inhibitor has, also for the first time, 22 

allowed RNA splicing mechanisms to be considered as a potential analgesic strategy and 23 

enabled us to identify a relationship between changes in alternative RNA splicing and pain. 24 

The serine-arginine-rich protein kinases (SRPKs) are a small kinase family with principal 25 

actions on mRNA splicing and maturation (Giannakouros et al., 2011). Of the mammalian 26 
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target RNAs affected by SRPK1/2 and SRSF1-controlled splicing (Figure 8), none have 1 

been previously implicated in pain or nociception, other than VEGF-A.  2 

As pre-mRNA splicing inhibition affected the balance of endogenous VEGF-A isoforms 3 

and nociception, and exogenous VEGF-A isoforms modulated behaviors and neuronal 4 

properties in a similar fashion, we hypothesize that it is the balance of VEGF-Axxxa and 5 

VEGF-Axxxb that determines the net effect on nociception. A slight disruption in this balance 6 

can have profound effects on VEGFR2 function (Table 1) as both receptor number and 7 

intracellular signaling mechanisms are altered. VEGF-A165a and VEGF-A165b have the same 8 

binding affinities to VEGFR2. However, when the two isoforms are equimolar or VEGF-A165b 9 

is in excess (as it often is in normal tissues, data herein, (Pritchard-Jones et al., 2007; 10 

Harper and Bates, 2008)), VEGF-A165b can reduce VEGF-A165a actions by ~95% (Hua et al., 11 

2010). This is brought about by competitive antagonism at VEGFR2 (Woolard et al., 2004; 12 

Kawamura et al., 2008), and reduction in receptor number (Ballmer-Hofer et al., 2011). This 13 

complex mechanism can explain why local alteration of alternative RNA splicing, with a 14 

>60% reduction in VEGF-A165a mRNA in skin, induced hypoalgesia in normal animals 15 

whereas systemic low concentration VEGF-A165b had little effect. Conversely, increasing 16 

VEGF-A165a using systemic exogenous recombinant protein had clear pro-nociceptive 17 

effects on both behavior and neurons.  18 

Increasing local VEGF-A165a had a robust action on a sub-population of small 19 

unmyelinated somatic nociceptors that express functional VEGF receptors and TRPV1 20 

receptors, increasing spontaneous firing (Djouhri et al., 2006; Hulse et al., 2010a) and 21 

mechanically-evoked activity, and lowering activation thresholds, all changes indicative of 22 

peripheral sensitization of sensory neurons. All of these changes, particularly increased 23 

spontaneous firing, increase afferent barrage and induce central sensitization in the spinal 24 

cord and higher centers, leading to altered pain behaviors (hyperalgesia and allodynia) 25 

(Grubb, 1998). Peripheral administration of VEGF-A165a had rapid (within 5 min) effects on 26 

primary afferents in vivo, suggestive of direct VEGF-A effects on neurons. This is supported 27 
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by our data that show increased Y1175 phosphorylation of VEGFR2 after nerve injury, and 1 

by the direct modulation of TRPV1 currents in isolated neurons. Neuronal properties in intact 2 

afferent fibers can be affected by growth factor/inflammatory mediator actions at both 3 

receptor terminals, and as a result of neuroinflammation caused by degeneration of adjacent 4 

fibers (Obata et al., 2004; Djouhri et al., 2012).  5 

VEGF-A effects on neurons are unlikely to be an indirect vascular-mediated effect, as 6 

local blood flow was unaffected by the VEGFR antagonists that reduced nociceptive 7 

thresholds. PLC/PKC signaling is key in peripheral nociceptor sensitization (Joseph et al., 8 

2007; Ferrari et al., 2010), as changes in PKC activation modulate both voltage gated 9 

sodium channels (Stamboulian et al., 2010; Malykhina et al., 2012) and other key channels 10 

such as TRPV1 (Moriyama et al., 2005; Rosenbaum and Simon, 2007; Ristoiu et al., 2011). 11 

Our results show that, at least in vitro, PKC contributes to the VEGF-A165a modulation of 12 

TRPV1 sensitivity, possibly thereby also contributing to alteration of neuronal 13 

properties/excitability.  14 

VEGF-A165b has actions on nociception that involve TRPV1, a key molecule in the 15 

sensitization of neurons leading to chronic pain states (Levine and Alessandri-Haber, 2007). 16 

VEGF-A165a exerts direct effects on TRPV1 channels, TRPV1-evoked calcium signaling and 17 

TRPV1 phosphorylation in isolated DRG neurons (Fig. 7), and alters neuronal properties in 18 

neurons co-expressing functional TRPV1 receptors (Fig. 7J) resulting in peripheral 19 

mechanical sensitization (Fig. 3) suggesting direct modulation of neuronal TRPV1. It is 20 

therefore somewhat surprising that VEGF-A165a altered mechanical but not thermal 21 

thresholds in the normal animal, given that TRPV1 is well-known as a thermal transducer 22 

molecule (Caterina et al., 1997). Local capsaicin can however cause peripheral mechanical 23 

sensitization of cutaneous (Ren et al., 2005, 2006; Li et al., 2008; Wang et al., 2011), deep 24 

tissue and visceral afferents (Lam et al., 2009; Kiyatkin et al., 2013). The mechanism(s) 25 

through which TRPV1-dependent peripheral mechanical sensitization of afferents occurs are 26 

not known, but may be a consequence of altered nociceptor excitability, rather than directly 27 
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affecting mechanotransduction per se (Malykhina et al., 2012; Raouf et al., 2012). Of course, 1 

we cannot exclude the possibility of a contribution of an indirect effect, e.g. through release 2 

of a local intermediary, particularly as TRPV1 is known to be expressed in vascular and 3 

connective tissues (Fernandes et al., 2012a). In addition to a peripheral sensitizing action, 4 

VEGF-A165a could exert central effects, as both TRPV1 knockout and antagonist 5 

interventions (Fernandes et al., 2011) can also affect central TRPV1 receptor function. 6 

Indeed our results suggest that this is the case in sensitized but not normal conditions, as 7 

contralateral effects of VEGF-Axxxa and VEGF-A165b were seen in nerve injured animals but 8 

not in normals (Fig. 5) (Hulse et al., 2012). In sensitized states, such as nerve injury, 9 

exogenous VEGF-A165a together with sensitization from the local injury response, including 10 

increased local VEGF-A165a production, and increased VEGFR2 activation may contribute to 11 

enhanced thermal nociception, possibly through combined peripheral and central effects of 12 

VEGF-A.  13 

Pain is an expected consequence of neuronal damage, as the resulting local neuro-14 

inflammatory responses alter the properties of peripheral sensory neurons (Djouhri et al., 15 

2012). Neuroprotective therapeutic strategies are therefore postulated  to be effective for 16 

both functional loss and analgesia, through prevention of neuronal damage. As VEGF is 17 

known to be neuroprotective, it has been suggested that anti-VEGF therapies cause pain 18 

through blockade of the neuroprotective actions of VEGF (Verheyen et al., 2012; Verheyen 19 

et al., 2013)., However, while both VEGF-A165a (Rosenstein and Krum, 2004; Storkebaum et 20 

al., 2004) and VEGF-A165b are neuroprotective for peripheral and central neurons (Beazley-21 

Long et al., 2013) our findings show that only VEGF-A165b is anti-nociceptive. Thus the pain 22 

associated with anti-VEGF and anti-VEGFR therapies is unlikely to be entirely attributable to 23 

a loss of neuroprotective effect, but probably also involves modulation of nociception by 24 

VEGF-A isoforms. A more likely explanation for the difference in the effects of VEGF-A 25 

isoforms on pain behavior, and sensory neuronal function is a multifactorial process 26 

including alteration of the balance of isoforms present, different downstream actions on 27 
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VEGFR2, and/or effects on central processing of nociceptive inputs, as well as 1 

neuroprotection.   2 

These findings have important implications for the treatment of conditions in which 3 

VEGF-A drives pathology. VEGFR2 upregulation both ipsi- and contralateral to nerve injury 4 

in nociceptive neurons involved in the establishment of chronic pain (Ferrari et al., 2010) 5 

may imply that VEGF-A is an important molecule in the protective priming of nociceptive 6 

systems around the body that can occur as a result of peripheral nerve damage or 7 

inflammation (Donaldson, 1999; Koltzenburg et al., 1999a). Consideration will need to be 8 

given as to whether isoform-specific VEGF-A supplementation might itself be used as an 9 

analgesic therapy. Early intervention to prevent changes in VEGF-A mRNA alternative 10 

splicing in pathological conditions may contribute to the prevention of the development of 11 

pain, in addition to being valuable in the treatment of existing pain. These findings open up 12 

the possibility of developing a novel class of analgesic agents based on controlling the splice 13 

regulatory mechanisms determining the balance of VEGF-A isoforms.  14 

15 
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Figure legends 1 

 2 

Figure 1. VEGF-A gene splice variant isoforms.  3 

VEGF-A pre-mRNA is alternatively spliced to form two families of mRNAs: VEGF-Axxxa and 4 

VEGF-Axxxb. The archetypal forms VEGF-A165a and VEGF-A165b are shown for illustration. 5 

VEGF-Axxxa proteins are translated from mRNAs that use the proximal splice site (PSS) and 6 

include all of exon 8, VEGF-Axxxb proteins from mRNAs that use the distal splice site (DSS) 7 

and contain only the b part of exon 8. The neuropilin-1 (NP-1) co-receptor binding site is 8 

located at the distal end of exon 7 and proximal exon 8a.  9 

 10 

Figure 2. VEGF-A isoforms differentially affect pain depending on VEGFR2 activation. 11 

A. Intraperitoneal injection of 6µg/g anti-VEGF-A antibody induced significant mechanical 12 

allodynia in mice (n=5; vehicle n=6). B. Systemic injection of anti-pan-VEGF-A antibody 13 

(6µg/g) but not vehicle lowered thermal nociceptive withdrawal latency. C. Mechanical 14 

allodynia was reproduced by an anti-VEGF-A165b antibody (n=6), shown normalized to the 15 

data from Fig 1A). D. Local blockade of VEGFR2 with 100nM ZM323881 (specific for 16 

VEGFR2) resulted in mechanical allodynia (n=6/group). E. Systemic injection of PTK787 17 

(30µg/g) significantly reduced mechanical withdrawal threshold in naïve rats compared to 18 

vehicle (saline, n=6/group). F.  rhVEGF-A165b (8ng/g or 20ng/g) was not painful in normal 19 

animals (n=5/group). Arrowheads denote times of drug administration. G. Neither rhVEGF-20 

A165a nor rhVEGF-A165b (both 8ng/g bodyweight) affected thermal hyperalgesia in naïve 21 

mice compared to vehicle (saline, n=5/group). H. rhVEGF-A165a (8ng/g) induced mechanical 22 

allodynia. I. rhVEGF-A121a administration caused mechanical allodynia whereas rVEGF-A159 23 

did not (n=5/group). J. Comparison of the effects of different VEGF-A isoforms shows that 24 

rhVEGF-Axxxa-evoked allodynia is mediated by the C-terminal 6 amino acids. *=p<0.05, 25 

**=p<0.01, ***=p<0.001 compared with baseline measurements within the same group, 26 
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‡=p<0.05, ‡‡ = p<0.01, ‡‡‡ = p<0.001, between groups, NS=not significantly different. 1 

Mean±SEM for mouse behavior, and median±IQR for rat behavior. 2 

 3 

Figure 3. Effects of rhVEGF-A isoforms on primary afferent nociceptors.  4 

A. VEGFR2 is expressed in nociceptive sensory neurons as determined by double-labeling 5 

with the nociceptive markers TrkA (high affinity nerve growth factor receptor) and isolectin 6 

B4 (IB4). VEGFR2 expression is upregulated in TrkA+ve nociceptors ipsilateral, and in IB4-7 

binding nociceptors contralateral, to partial saphenous nerve injury (PSNI). B. Staining for 8 

colocalized TrkA and VEGFR2 in DRG neurons (scale bar 50µm). C. Endogenous VEGF-A 9 

moderates nociceptor sensitivity, as when VEGFR2 is inhibited by PTK787 mechanical 10 

activation threshold of individual nociceptors is reduced within 5 min and over the next 60 11 

minutes, indicating sensitization. D. Digitized data trace showing the effect of vehicle 12 

(saline), VEGF-A165a and VEGF-A165b on mechanically evoked activity, after discharge and 13 

ongoing activity at 5 minutes in a single afferent nociceptor. rhVEGF-A165a sensitized 14 

afferents to mechanical stimulation, enhancing after discharge and ongoing activity. Vertical 15 

lines are time-compressed action potentials. E. Increased spontaneous ongoing activity was 16 

evoked by rhVEGF-A165a but not rhVEGF-A165b in ~50% of mechanonociceptive afferents in 17 

rats. (Saline vehicle n=12, VEGF-A165a n=15, VEGF-A165b n=5). Graphs include data from all 18 

neurons, including those in which properties did not change in response to VEGF-A. F. 19 

VEGF-A165a led to increased ongoing activity (OA) in 56% of nociceptive C fiber afferents 20 

(OA>0.1Hz). VEGF-A165b did not alter the level of OA or the number of C fibers with OA 21 

ongoing activity, and additionally blocked VEGF-A165a induced ongoing activity. G. rhVEGF-22 

A165a reduced primary afferent mechanical threshold 60 minutes after rhVEGF-A165a 23 

injection. This was not seen for rhVEGF-A165b, and was blocked by its co-administration. H 24 

rhVEGF-A165a increased primary afferent activity in response to stimulation at 25 

suprathreshold force, 5 and 60 minutes after the injection of rhVEGF-A165a, whereas saline 26 
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and rhVEGF-A165b had no effect.  *=p<0.05, **=p<0.01, ***=p<0.001 compared with saline, 1 

Mean±SEM. 2 

 3 

Figure 4. Splicing inhibitors that shift the balance of endogenous VEGF-A towards an excess 4 

of VEGF-Axxxb isoforms are anti-nociceptive in normal and nerve injured rats. 5 

A. Intraplantar injection of SRPK1 inhibitor SRPIN340 reduced the amount of VEGF-A165a 6 

mRNA as a proportion of the total VEGF-A mRNA in plantar skin compared to vehicle 7 

(saline). B. SRPK inhibition raised mechanical withdrawal thresholds i.e. resulted in 8 

hypoalgesia, in mice. C. SRPIN340 did not alter thermal withdrawal latencies. D. VEGF-9 

Axxxa expression increased as a proportion of total VEGF-A after PSNI. This increase was 10 

inhibited by SRPK inhibition. E. Nuclear localization of SRSF1, indicative of SRPK1 activity, 11 

is increased in L3/4 DRG neurons following PSNI. F. SRSF1 expression (red) in the 12 

cytoplasm of naïve rat DRG sensory neurons (scale bar 50µm) and SRSF1 expression in 13 

the nucleus (stained blue with Hoechst) of rat DRG sensory neurons following PSNI. Note 14 

blue staining of nuclei in naïve rats, but purple in PSNI (inset, arrow). G. pY1175-VEGFR2 15 

(red) staining in naïve and nerve injured mice. H. The number of Y1175-phosphorylated 16 

VEGFR2 DRG neurons increased after PSNI. I. Phospho-VEGFR2 (pVEGFR2) expression 17 

was increased in DRG after PSNI (p=0.019). J. SRPIN340 prevented PSNI-induced 18 

mechanical allodynia. K. SRPIN340 reduced SRSF1 activation in DRG containing injured 19 

neurons 2 days after nerve injury. ‡, ‡‡‡, p<0.05, 0.001 respectively compared to baseline; 20 

*, ***, =p<0.05, 0.001 respectively compared to other groups.  21 

 22 

Figure 5. Exogenous VEGF-A165a exacerbates, and VEGF-A165b alleviates neuropathic pain. 23 

A. PSNI resulted in ipsilateral mechanical allodynia (NI+Vehicle) compared with sham and 24 

baseline. rhVEGF-A165b (20ng/g) was anti-allodynic on days 3 (p<0.001), 7 (p<0.01) and 10 25 

(p<0.0001). Nerve injury on day 0, arrowheads denote drug injection. B. PSNI does not 26 

normally result in thermal hyperalgesia (NI+vehicle), but rhVEGF-A165a induced hyperalgesia 27 
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(NI+VEGF-A165a) and rhVEGF-A165b hypoalgesia. C. rhVEGF-A165a (8ng/g) enhanced 1 

ipsilateral mechanical allodynia (filled squares) compared to vehicle (filled circles). D. 2 

rhVEGF-A165a  induced thermal hyperalgesia contralateral to PSNI.  rhVEGF-A165b again 3 

resulted in hypoalgesia.  ‡, ‡‡‡, p<0.05, 0.001 respectively compared to baseline (not 4 

shown for mechanical thresholds for clarity as all significant); *, ***, = p<0.05, 0.001 5 

respectively compared to vehicle. 6 

 7 

Figure 6. Expression of VEGF-A165a and VEGF-A165b in rat DRG.  8 

A. VEGF-A165b represents ~70% of total VEGF-A expression in DRG. B. In one human DRG 9 

VEGF-A165b represented a similar proportion of total VEGF-A expression to that seen in the 10 

rat. C. VEGF-A165b is expressed in neurons in embryonic human spinal cord and DRG. 11 

Higher magnification images are derived from the boxes in the top image and are left: DRG 12 

and right: spinal cord ventral horn. D. VEGF-A165b is expressed in a proportion of rat DRG 13 

neurons (Di, iii, v), with overlap (arrows) with the nociceptive markers TrkA (Dii, iv, vi) and a 14 

small colocalization with IB4 (Dii, iv, vi). Scale bar = 75µm. High power images of a single 15 

neuron showing colocalization of VEGF-A165b (green) and TrkA (red). Scale bar = 50µm.  16 

 17 

Figure 7. VEGF-A isoforms alter nociception and nociceptors through a TRPV1-dependent 18 

mechanism.  19 

A. TRPV1 antagonism with SB366791 in mice resulted in inhibition of rhVEGF-A165a-induced 20 

mechanical allodynia. Arrows denote time of drug administration. B. TRPV1 knockout mice 21 

did not develop rhVEGF-A165a-induced mechanical allodynia, in contrast to wild-type strain 22 

matched controls. C. Capsaicin stimulated a concentration-dependent increase in 23 

intracellular calcium in DRG neurons. D. This was increased by rhVEGF-A165a, and reduced 24 

by rhVEGF-A165b (mean±SEM, n=3-7). E. Treatment of rat DRG neurons with rhVEGF-A165a 25 

increased capsaicin-stimulated calcium influx (area under the curve of the calcium 26 

responses shown in Fig. 5D) compared with capsaicin alone or rhVEGF-A165b (2 way 27 
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ANOVA main effect of drug p=0.0051). The bell shaped concentration-response curve 1 

displays TRPV1 desensitization at higher capsaicin concentrations (5µM). F. Example of a 2 

digitized trace of raw capsaicin-evoked current in the presence (grey) and absence of 3 

capsaicin. G. Capsaicin-evoked currents in primary DRG neurons were significantly larger in 4 

neurons incubated in VEGF-A165a overnight compared to vehicle treated neurons (box and 5 

whisker plots showing median, range, min and max). H. rhVEGF-A165b treatment enhanced 6 

TRPV1 serine phosphorylation in 50B11 immortalized DRG cells. IP of protein with TRPV1 7 

antibody followed by IB with anti-pSer antibody showed rhVEGF-A165a, but not rhVEGF-8 

A165b-mediated phosphorylation of TRPV1. (NGF treatment = positive control). I. Whereas 9 

0.2µM capsaicin alone did not alter intracellular calcium itself, overnight treatment with 10 

rhVEGF-A165a + 0.2µM capsaicin resulted in a robust sustained increase in response to 11 

capsaicin, which was blocked by treatment with the PKC inhibitor BIM1 (2 way ANOVA main 12 

effect of drug p=0.0003). J. Low concentration capsaicin (concentration at terminals ~10nM) 13 

led to evoked activity from C fiber nociceptors. Capsaicin-evoked activity was increased by 14 

rhVEGF-A165a and blocked by rhVEGF-A165b. ‡, ‡‡, ‡‡‡, p<0.05, 0.01, 0.001 respectively 15 

compared to baseline. *, **, ***, = p<0.05, 0.01, 0.001 respectively compared to other 16 

groups.  17 

 18 

Figure 8. Downstream targets of the serine-arginine protein kinase SRPK1.  19 

The serine-arginine protein kinase is known to have three major downstream targets, the 20 

RNA splicing factors SRSF1 (Edmond et al., 2011), SRSF2 (Ngo et al., 2005; Velazquez-21 

Dones et al., 2005; Aubol and Adams, 2011), and the lamin B receptor (Papoutsopoulou et 22 

al., 1999). SRPK1 activity results in Hsp90-dependent nuclear translocation of SRSF1 (Zhou 23 

et al., 2012). SRSF1 has been reported to control alternative RNA splicing of the proto-24 

oncogene myc, BIM (BCL2L11) (Anczukow et al., 2012), the cation cotransporter SLC39A14 25 

(Thorsen et al., 2011), the tumor suppressors MKNK2 and BIN1 (Karni et al., 2007; Das et 26 

al., 2012), the angiogenesis related genes RON (Ghigna et al., 2005) and TEAD1 (Das et 27 

al., 2012), and VEGF-A (Nowak et al., 2008; Nowak et al., 2010; Amin et al., 2011). TEAD1 28 
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activates VEGF-A expression (Teng et al., 2010). None of the downstream targets of SRPK1 1 

has been implicated in nociception other than VEGF-A.  2 
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