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Abstract   

Descending controls of spinal nociceptive processing play a critical role in the 

development of inflammatory hyperalgesia. Acute peripheral nociceptor 

sensitisation drives spinal sensitisation, and activates spino-supraspinal-

spinal loops leading to descending inhibitory and facilitatory controls of spinal 

neuronal activity, that further modify the extent and degree of the pain state. 

The afferent inputs from hairy and glabrous skin are distinct with respect to 

both the profile of primary afferents classes and the degree of their peripheral 

sensitisation. It is not known whether these differences in afferent input 

differentially engage descending control systems to different extents or in 

different ways.  

Injection of Complete Freund’s adjuvant resulted in inflammation and swelling 

of hairy hindpaw skin in rats, a transient thermal hyperalgesia lasting <2 

hours, and long-lasting primary mechanical hyperalgesia (at least 7d). Much 

longer lasting thermal hyperalgesia was apparent in glabrous skin (1h up to 

>72h). In hairy skin, transient hyperalgesia was associated with sensitisation 

of withdrawal reflexes to thermal activation of either A- and C-nociceptors. 

The transience of the hyperalgesia was attributable to a rapidly engaged 

descending inhibitory noradrenergic mechanism, which affected withdrawal 

responses to both A- and C-nociceptor activation and this could be reversed 

by intrathecal administration of yohimbine (alpha-2-adrenoceptor antagonist). 

In glabrous skin, yohimbine had no effect on an equivalent thermal 

inflammatory hyperalgesia.   

We conclude that acute inflammation and peripheral nociceptor sensitisation 

in hind paw hairy skin, but not glabrous skin, rapidly activates a descending 
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inhibitory noradrenergic system. This may result from differences in the 

engagement of descending controls systems following sensitisation of 

different primary afferent classes that innervate glabrous and hairy skin.  
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Key Points 

• Acute inflammation engages various descending control systems in the 

brain that alter the resulting inflammatory pain, usually by inhibiting it.  

• In this study we looked at the differences in inhibition of acute (up to 

3h) inflammatory pain from the smooth (glabrous) and the hairy skin in 

the rat hind-paw. 

• In hairy skin, inflammatory pain is rapidly inhibited by descending 

systems that release noradrenaline, but not opiates, into the spinal 

cord.  

• In glabrous skin, neither descending noradrenergic nor opioidergic 

controls affect inflammatory pain.  

• These results tell us that the controls on the spinal processing of 

cutaneous inflammatory pain are different depending on the skin type 

affected.  

 

 

 

Abbreviations  

Periaqueductal grey (PAG), locus coeruleus (LC), rostroventral medulla 

(RVM), Complete Freund’s adjuvant (CFA) 
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Introduction  

Tissue damage and subsequent inflammation activates and sensitises 

peripheral nociceptors. This increases afferent input to central nociceptive 

circuits and leads to enhanced sensitivity to nociceptive stimuli (hyperalgesia), 

and sensations of pain to innocuous stimulation (allodynia) (Meyer et al., 

2005; Latremoliere & Woolf, 2009). Peripheral nociceptive inputs drive both 

the sensitisation of spinal nociceptive circuits and the activation of ascending 

and descending pathways that together modulate transmission, and ultimately 

perception, of nociceptive information (Mantyh & Hunt, 2004). The final 

perception of the intensity and quality of pain is determined by the degree of 

such modulation of information throughout the nociceptive neuraxis (Ossipov 

et al., 2010). 

It is well established that spinal nociceptive processing is modulated by both 

inhibitory and facilitatory descending pathways that originate supraspinally 

(Millan, 2002). The midbrain periaqueductal grey (PAG) forms a major 

component of the descending nociceptive system and relays via brain stem 

nuclei such as locus coeruleus (LC) and the rostroventral medulla (RVM) 

(Mantyh, 1983; Bajic & Proudfit, 1999) to exert controls on spinal nociceptive 

neurons. Descending controls from the PAG include opioidergic (Przewłocki & 

Przewłocka, 2001;Vasquez & Vanegas, 2000; Kwok et al., 2013) and 

monoaminergic inhibition (Pertovaara, 2006) as well as prostanergic 

facilitation (Oliva et al., 2006; Leith et al., 2007; Palazzo et al., 2011). 

Medullary and brain stem nuclei are major sources of spinally projecting 

monoaminergic fibres (Westlund et al 1983; Yoshimura & Furue, 2006) that 

are known to exert inhibitory influences, which modulate the development of 
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acute and persistent pain states (Vanegas & Schaible, 2004; Pertovaara, 

2006, 2013; Yoshimura & Furue, 2006). Descending noradrenergic systems 

exert these inhibitory influences largely through presynaptic inhibition, 

primarily through alpha-2-adrenoceptor activation (Pertovaara, 2006; 

Yoshimura & Furue, 2006). Alpha-2-agonists, in particular those with affinity 

for alpha 2A receptors, are antinociceptive in both animals and humans 

(Pertovaara, 2006). Descending serotonergic systems exert complex pro- and 

anti-nociceptive effects at the spinal level, primarily through 5-HT1 and 5-HT3 

autoreceptors (Yoshimura & Furue, 2006; Dogrul et al., 2009; Jeong et al., 

2012). Additionally there are peripheral sources of monoamines, such as 

sympathetic fibres within the dorsal root ganglia, that are able to impact upon 

nociception during periods of prolonged inflammation or tissue damage 

(Pertovaara, 2006). Peripheral nerve stimulation evokes spinal release of 

monoamines in the presence of ganglionic blocking agents (Tyce & Yaksht, 

1981), however, so it is widely accepted that the major sources of spinal 

noradrenaline and serotonin are projections from medullary and brain stem 

nuclei (Pertovaara, 2006; Yoshimura & Furue, 2006).  

Acute cutaneous inflammation leads to sensitisation of peripheral and central 

nociceptive neurons resulting in primary and secondary hyperalgesia. 

Descending controls of the spinal processing of input from the area of primary 

hyperalgesia is initially facilitatory from, for example PAG/RVM, but are short-

lived (up to 3h), and are then overwhelmed by local spinal and supraspinal 

inhibitory influences (Ren & Dubner, 1996; Guan et al., 2002; Miki et al., 2002; 

Vanegas & Schaible, 2004).The dampening effect of the inhibitory systems on 
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spinal dorsal horn activity effectively reduces the extent of inflammatory pain 

by limiting central sensitisation (Vanegas & Schaible, 2004). 

Current understanding of the development of inflammatory hyperalgesia and 

the influence of descending controls over spinal nociceptive processing is 

largely derived from animal models using inflammatory insults to the glabrous 

skin of the hindpaw. There is little information on the contribution of 

descending controls to the development or maintenance of primary 

hyperalgesia in hairy skin, which is a potential shortcoming given this is the 

more prevalent skin type in mammals. Glabrous cutaneous tissue found on 

the plantar surface of the paw forms a major informative surface of the body 

providing critical sensory/discriminative information about the environment. 

This is reflected by a greater density of primary afferents innervating glabrous 

tissue and its over representation in cortical somatotopic maps (Blake et al., 

2002; Provitera et al., 2007; Boada et al., 2013). There are notable 

differences in the profile of nociceptive afferent fibres that innervate glabrous 

and hairy cutaneous tissue, for instance, a threefold higher proportion of fast 

conducting to slowly conducting fibres innervating glabrous cutaneous tissue 

(Boada et al., 2013) and a large proportion of C-polymodal nociceptors 

innervating the hairy skin of the rat hind-paw (Lynn & Carpenter, 1982; Leem 

et al., 1993).  Critically, there are differences in the sensitisation of 

unmyelinated nociceptive afferents innervating the two skin types. Following 

application of conditioning stimuli or sensitising agents, a population of 

polymodal C-nociceptors found in glabrous skin fail to sensitise to thermal 

stimuli but a similar population of polymodal C-nociceptors found in hairy 

cutaneous tissue do sensitise, with a lowering of activation threshold and/or 
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increased suprathreshold response (Campbell & Meyer, 1983; Andrew & 

Greenspan, 1999; Koerber et al., 2010). We hypothesised that during 

inflammation, the differences in primary afferent input from different skin types 

might differentially drive descending control systems and hence differentially 

affect the development of inflammatory hyperalgesia in the two skin types. 
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Materials and Methods 

All experiments were performed in accordance with United Kingdom Animals 

(Scientific Procedures) Act (1986) and associated guidelines. Animals were 

housed in standard conditions with food and water provided ad libitum. 

Experiments were performed on a total of 58 male Wistar rats weighing 250-

350g. The majority of animals (n=55) received a subcutaneous (s.c.) injection 

of 50 or 100µg Complete Freund’s Adjuvant (CFA) (1mg/ml; Cat No: F5881, 

Sigma-Aldrich, UK) into either dorsal or ventral surface of the left hind-paw 

under brief halothane (3% in O2) anaesthesia. Control animals (n=3) received 

a s.c. injection of an equivalent volume of vehicle (mineral oil). CFA induces a 

dose dependent increase in swelling, in both rat and mouse, up to doses of 

250µg and 500µg respectively. This CFA dose/volume (50µg/50µl) gives a 

mild, limited inflammation that is less than the maximal achievable with CFA, 

and that does not spread to involve the sides or other surface of the hindpaw. 

Greater swelling and spread of inflammation can be seen with higher doses of 

CFA (Donaldson et al., 1993; Chillingworth et al., 2006). Although differences 

in oedema have been previously reported with higher CFA doses (Cook & 

Moore, 2006), we chose to investigate the effects of equivalent inflammatory 

stimuli in this study, rather than equivalent oedematous responses.  

Nociceptive behavioural testing. 

To assess the effect of s.c. CFA injections at different sites on nociceptive 

behaviour, some animals (n=7) underwent nociceptive testing before, three 

hours, one, three and seven days after either dorsal or plantar s.c CFA 

injection. Animals were habituated to the apparatus and experimenter 
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beginning 3 days prior to the start of the testing. Mechanical hyperalgesia: 

Serrated laboratory forceps were adapted with strain gauges for the 

measurement of the force applied across the tips (contact area 5.6mm2 per 

tip, total 11.2mm2, Supp. Figure 1).  The output signal was fed through a 

bridge amplifier and captured for subsequent offline analysis via a CED1401 

(Cambridge Electronic Design (CED), Cambridge UK) on a computer running 

Spike2 software (CED, Cambridge, UK). Grams per volt were calculated 

following calibration with standardised weights placed at the point of finger 

grip. The gram force delivered was then divided by the total contact area to 

give grams.mm-2. The tips were placed across the dorsoventral aspect of the 

hind paw and ramped pressure was applied until the foot was withdrawn or 

the animal displayed pain-related behaviours (vocalisation, biting etc.) at 

which point the force applied was immediately stopped. As the duration and 

force applied were controlled manually, and cut-off on first appearance of 

pain-related behaviours, the intensity of this stimulus could be controlled to 

ensure that it did not result in additional tissue damage. Use of this stimulator 

did not result in any observable tissue damage in naïve or inflamed animals. 

The occurrence of withdrawal/response was marked using the input from a 

foot pedal through the CED1401 into a computer running Spike2 software. 

Two consecutive recordings were made and mean threshold calculated for 

each animal at each time point.  

To test for thermal hyperalgesia a custom built Peltier heating device (contact 

area 18mm2) was used to deliver a ramped thermal stimulus to the hind paw 

of the rat from an initial contact temperature of 30oC. The maximum 

temperature was cut off at 55oC to prevent tissue damage. Surface (contact) 
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temperature was measured with a T-type thermocouple (made in-house) and 

captured for subsequent offline analysis via a CED1401 on a computer 

running Spike5 software. The extent of paw oedema was assessed by 

measuring the thickness across the midline dorsoventral aspect of the hind 

paw using callipers before, and 1 hour, 1, 3 and 7 days after CFA injection. 

Surgical preparation   

Surgical preparation for electromyograph recordings was performed under 

initial halothane anaesthesia (2-3% in O2) and consisted of; (i) external jugular 

branch cannulation for anaesthetic maintenance (constant intravenous 

infusion of alphaxalone (~40mg.kg.h; Alfaxan; Jurox Pty PLC, Australia)), (ii) 

external carotid artery branch cannulation for blood pressure measurement 

and (iii) tracheal cannulation for airway maintenance. Body temperature was 

maintained within physiological limits (37-38oC) by means of a feedback 

controlled heating blanket and rectal probe. For placement of the intrathecal 

catheter (Størkson et al., 1996), a longitudinal incision was made along the 

back midline, starting at the level of the iliac crest and advancing 2-3cm 

rostrally.  A 6cm length of 32G polyurethane catheter (OD: 0.25mm, ID: 

0.13mm ) with a manufacturer-supplied internal metal stylet for increased 

rigidity (Cat No: 0041; ReCathCo, USA) was back loaded into a 25G needle 

(Terumo Medical Corporation) so that the end of the catheter was flush with 

the needle tip. Animals were positioned with the vertebral column flexed and 

the catheter-loaded needle was inserted bevel up between L5 and L6 

vertebrae until a tail flick indicated penetration of dura. The catheter was then 

advanced ~3cm rostrally along the intrathecal space to approximately the 

level of the lumbar enlargement. The needle and stylet were then carefully 



Differential descending control of inputs from hairy vs. glabrous skin 

 

 

12

removed leaving the catheter in place, which was then fixed in position with 

cyanoacrylate glue (Superglue). A small (~2cm) length of polyethylene tubing 

(OD: 6.1mm, ID: 2.8mm) was then attached to the free end of the catheter, by 

insertion of the catheter end just into the polyethylene tubing, which was then 

secured with cyanoacrylate, to allow for connection to a Hamilton syringe for 

drug delivery.  

For the measurement of electromyographic (EMG) activity, a custom made bi-

polar electrode was made using Teflon coated stainless steel wires (0.075mm 

diameter; Advent research Materials, UK) that were stripped at both ends and 

one end inserted into the bicep femoris of the hind-leg using a 25-gauge 

hypodermic needle. The signal across the electrodes was amplified (x1K, 

Neurolog NL104 amplifier, A-B configuration; Digitimer, UK), filtered (50Hz-5 

KHz, Neurolog NL125) and raw data digitised via the CED1401, and stored 

for offline analysis using Spike2. Animals were left under a constant level of 

anaesthesia for a minimum of 1 hour after surgical preparation before further 

experiments. The level of anaesthesia was maintained by constant infusion 

such that EMG activity could be detected in response to stimulation without 

overt paw movement.  

Preferential activation of A- and C-heat nociceptors.    

A- and C-nociceptor were preferentially activated using a custom-made heat 

lamp in contact with the dorsal hind paw. A constant voltage was applied to 

the lamp to provide fast (7.5±1oC.s-1) or slow rates of heating (2.5±1oC.s-1), 

which preferentially activate A-fibre (myelinated, capsaicin-insensitive) and C-

fibre (unmyelinated, capsaicin-sensitive) heat nociceptors respectively 
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(Yeomans & Proudfit, 1996; McMullan et al., 2004; McMullan & Lumb, 2006a; 

Leith et al., 2007). Stimuli were applied with an inter-stimulus interval of at 

least 8 minutes to prevent tissue damage and sensitisation. The heat ramp 

apparatus was placed in contact with the foot for a minimum of 60 seconds 

before the start of the heat stimulation to allow for the adaptation for low 

threshold mechanoreceptors. A feedback-controlled cut-off was set at 58oC 

for fast thermal ramps and 55oC for slow thermal ramps to prevent tissue 

damage. In recordings in which thermal ramps reached the cut-off 

temperature without the occurrence of measurable EMG activity, threshold 

was recorded as cut-off + 2oC (Leith et al., 2007). For stimulation of glabrous 

skin, a slow ramp (2.5±1oC.s-1) contact heat stimulus was applied immediately 

behind the foot-pad using the same apparatus. As it has not yet been 

determined whether this stimulus is able to preferentially activate A- or C-

nociceptors in glabrous skin no attempt was made to draw conclusions with 

respects to A- or C-nociceptor activation at this site. 

Subsurface heating rate measurement   

To determine whether CFA-induced paw oedema affected the subcutaneous 

heating rates that are required for preferential activation of A- and C-

nociceptors, subcutaneous heating rates were directly measured using a T-

type thermocouple. Heating rates were recorded before, for three hours and 

on the seventh day after s.c. CFA injection. Care was taken to implant the 

thermocouple as close to the dermal/epidermal border as possible as 

nociceptive terminals are found in epidermis and superficial dermal layers. 

Two ramps were delivered at each experimental time point. 
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Drugs   

The alpha-2-adrenoreceptor antagonist yohimbine 30µg in 10µl in vehicle 

(80% saline/20%DMSO), Cat no: 1127 Tocris Biosciences, Bristol, UK) was 

delivered intrathecally via the implanted catheter 2.5h after CFA (n=9) so that 

the peak drug effect coincided with the third hour following CFA. The 

concentration of yohimbine used was based on previous reports of effective 

intrathecal alpha-2 adrenoceptor blockade (Ossipov et al., 1989; Takano & 

Yaksh, 1992; Green et al., 1998).  At the time of injection the tip of a 100µl 

Hamilton syringe was inserted in to the PE10 tubing and 10µl of the drug was 

delivered over several minutes. This was washed through with an equivalent 

volume of saline. In a separate group of animals (n=6) the non-specific opioid 

antagonist naloxone (3mg.kg-1 in 0.9%saline) (Sigma-Aldrich, UK, Cat no: 

N7758) was delivered intraperitoneally so that the peak drug effect coincided 

with the second hour following CFA. 

At the end of the experiment the position of the cannula was determined by 

injecting 20µl of Xylocaine (2%) through the cannula. If pinch-evoked EMG 

activity was abolished the cannula was deemed to be correctly positioned, if 

not the data were not included in subsequent analyses (n=1, CFA injected). 

Additionally, in some experiments the location of the distal tip of the catheter 

was determined by injection of pontamine Sky Blue (20µl of 5%) and visual 

confirmation of the location of the catheter tip. 

Statistical analyses  

Data are displayed as mean + SEM unless otherwise noted in Figure legends. 

Data were analysed using Graphpad Prism v4/5 using Mann Whitney test (2 
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group comparisons) or Kruskal-Wallis, one- or two-way ANOVA (3 or more 

groups) where appropriate and as stated in Figure legends. *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001. 
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Results 

Consequences of CFA induced inflammation of the hairy skin of the rat hind 

paw.  

Injection of 50µg CFA into the hind-paw dorsum resulted in paw oedema that 

was evident after one hour and persisted for 7 days (Figure 1A; baseline: 

4.2±0.1mm vs seven days: 6.3±0.2mm, p<0.001). CFA also produced a 

mechanical hyperalgesia to a noxious pinch (Figure 1B; baseline 87±33g.mm-

2 vs. seven days 39±5g.mm-2, p<0.05) but did not induce a thermal 

hyperalgesia in hairy skin (Figure 1C; baseline 49±1.1oC, three hours 

49±2.3oC, twenty-four hours 47±1.3oC and three days 51±1.0oC). An 

equivalent subcutaneous injection of CFA into the plantar surface of the hind-

paw resulted in thermal hyperalgesia that persisted for at least three days 

(Figure 1D, baseline 47±0.9 oC vs. three days 42±1.2oC, p<0.05).  

The ability of the thermal ramp stimuli to preferentially activate A- and C- 

nociceptors is reliant on achieving subsurface cutaneous heating rates of 

2.5oC.s-1 (fast) for A-nociceptors and 0.8oC.s-1 (slow) for C-nociceptors 

(Yeomans & Proudfit, 1996; McMullan et al., 2004; McMullan & Lumb, 2006a; 

Leith et al., 2007). As paw oedema could affect the heat transfer through the 

skin, and thus subcutaneous heating rates, we first determined the effect of 

acute inflammatory oedema on cutaneous heating rates.  Surface heating 

rates elicited by both fast and slow heating ramps were kept within limits 

previously shown to elicit correct subsurface heating rates in normal skin 

(Fast - 7.5 oC.s-1, Slow - 2.5 oC.s-1; McMullan et al., 2004) and the 

corresponding subsurface heating rates were recorded.  Subsurface heating 
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rates to both fast and slow thermal ramps were unchanged over the three 

hours of acute inflammation (Supp. Figure 2, p>0.05). However, at seven 

days following CFA, subsurface heating rates elicited by slow thermal ramps 

were significantly faster than pre-CFA values (Suppl. Figure 2B; baseline 

subsurface rate 0.6 ± 0.03oC.s-1 vs. seven day subsurface rate 1.2 ± 0.1oC.s-1; 

p<0.05). 

Effect of CFA induced inflammation on the spinal processing of thermal 

nociceptor inputs from hairy and glabrous skin.   

We sought to determine the effects of CFA induced inflammation of hairy skin 

on the spinal processing of A- and C-nociceptor inputs. Withdrawal thresholds 

to thermal A- and C-nociceptor stimulation were both significantly lower one 

hour after CFA injection (Figure 2A; baseline A-nociceptors vs. one hour A-

nociceptors, 57 ± 0.8oC vs. 45 ± 0.9oC, p<0.001) (Figure 2B; baseline C-

nociceptors vs. one hour C-nociceptors, 53 ± 0.4oC vs. 40 ± 1.8oC, p<0.001). 

After 2 hours, withdrawal threshold to C-nociceptor stimulation had returned to 

slightly above baseline levels (Figure 2B; baseline vs. two hours, 53 ± 0.4oC 

vs. 54 ± 2.0oC) whereas A nociceptor thresholds were still lowered (Fig 2A; 

baseline vs. two hour, 57 ± 0.8oC vs. 49 ± 2.0oC, p<0.001). By three hours A 

and C nociceptor thresholds had returned to baseline values (Figure 2A & B, 

p>0.05). Vehicle injection had no significant effect on A- or C-nociceptor 

thresholds (Fig 2A & B; p>0.05). It should be noted that in three of five 

animals, at two and three hours following CFA, no EMG activity to C-

nociceptor stimulation was evoked before stimulation reached the imposed 

cut-off temperature. Furthermore, in two additional animals (data not 

used/shown in further analysis) the cut-off was not imposed and in these 
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animals we found thresholds for withdrawal to C-nociceptor activation to be 

greater than 60oC. In contrast thresholds of withdrawal to A-nociceptor 

activation where always below the imposed temperature cut-off.  

Doubling the amount of injected CFA resulted in significantly less sensitisation 

of the reflex pathway over the three hour period (Figure 2C & D). Compared 

to the 50µg dose, a 100µg CFA injection caused similar reduction in A-

nociceptor withdrawal threshold at one hour, but surprisingly significantly less 

of a reduction in C-nociceptor threshold at this time (Figure 2D; 50µg at 1h vs. 

100µg at 1h, 40 ± 1.8oC vs. 51 ± 1.0oC, p<0.001). At two hours, both C- and 

A-nociceptor withdrawal threshold had return to baseline values and A-

nociceptor withdrawal thresholds were significantly higher when compared to 

threshold values for the 50µg dose at the same time point (Figure 2C; 50µl at 

two hour vs. 100µl at two hour, 49 ± 2.0oC vs 55 ± 1.4oC, p<0.05).   

Although CFA is known to produce persistent afferent sensitisation lasting 

days/weeks (Ren & Dubner, 1999), following dorsal CFA we found thermal 

nociceptive behaviour to be unchanged at 3 days (Figure 1). Additionally, 

seven days after CFA injection, withdrawal thresholds to A- and C-nociceptor 

activation were also unchanged (C-nociceptor naïve vs. C-nociceptor seven 

day CFA, 53 ± 0.6oC. vs. 55 ± 2.0oC; Mann-Whitney p>0.05, n=4; A-

nociceptor naïve vs. A-nociceptor seven day CFA, 58 ± 0.5oC vs. 58 ± 0.6oC; 

Mann-Whitney p>0.05, n=4, not shown). In contrast, although the withdrawal 

threshold did increase slightly towards baseline over three hours, injection of 

CFA into the glabrous skin of the plantar hind-paw resulted in a significant 

reduction in withdrawal thresholds to the thermal stimulus for the three hours 

studied (Figure 3 - p<0.05 at all time points). It has been previously shown 
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that s.c. CFA delivered to the plantar surface of the paw leads to thermal 

hyperalgesia lasting more than one week (Ren & Dubner, 1999). Differences 

in sensitisation might be attributable to differences in inflammatory reaction 

and/or oedema. There was significantly greater swelling in the plantar surface 

of the hindpaw 3 h after injection of CFA compared to the dorsal surface 

(Figure 4. 3h dorsal 5.9±0.2mm n=7; plantar 6.9±0.2mm, n=6, p<0.05). The 

degree of swelling of the hindpaw was not significantly different after injection 

of 100µg CFA, compared with 50µg CFA injected into the dorsal surface 

(Figure 4, 3h 100µg dorsal 6±0.2mm, n=5).  

 

Effect of spinal alpha-2-adrenoceptor receptor blockade on the processing of 

thermal nociceptor inputs during hind paw inflammation.   

Following inflammation of hairy skin the observation of sensitisation followed 

by a reversal over minutes/hours suggested that descending inhibitory 

mechanisms could be affecting spinal processing in acute inflammation. 

Intrathecal delivery of the alpha-2-adrenoceptor antagonist, yohimbine (30µg 

in 10µl) (Takano & Yaksh, 1992; Green et al., 1998; Hughes et al., 2013), 2 

hours after CFA, when thresholds had returned (C-nociceptors) or were 

returning to baseline (A-nociceptors), significantly inhibited the reversal of 

both A- and C-nociceptor withdrawal thresholds (Figure 5A; 3 hour A-

nociceptor CFA only vs. 3 hour A-nociceptor CFA+yohimbine, 55 ± 1.3oC vs. 

50 ± 0.9oC, p<0.05) (Figure 5B; 3 hour C-nociceptor CFA only vs. 3 hour C-

nociceptor CFA+yohimbine, 55 ± 1.1oC vs. 47 ± 2.3oC, p<0.05). In contrast, 

yohimbine did not affect the withdrawal to thermal stimulation applied to 
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inflamed glabrous skin (Figure 3), which was apparent at 1 hour, and 

maintained for the 3 hours studied (Figure 3; CFA only 3h threshold vs. 

CFA+yohimbine 3h withdrawal threshold, 47 ± 0.7oC vs. 47 ± 0.4oC). 

Intrathecal delivery of the same volume of vehicle did not affect withdrawal 

thresholds in either experiment (n=3 for both experiments, data not shown).   

Spinal and supraspinal opioidergic systems are known to have robust 

inhibitory effects on spinal nociceptive processing during inflammation (Stanfa 

& Dickenson, 1995; Przewłocki & Przewłocka, 2001). We therefore also 

determined the contribution of opioidergic systems to the degree of 

hyperalgesia in acute hind paw CFA inflammation. Systemic delivery of the 

pan-opioid receptor antagonist naloxone (3mg.kg-1 (Stanfa & Dickenson, 

1995)) had no effect on either A- or C-nociceptor withdrawal thresholds in 

hairy skin at either 2 or 3 hours following CFA (Figure 5C + D).  It has been 

previously shown that naloxone has no effect on withdrawal latencies to 

thermal stimuli at 4 hours following plantar inflammation (Hylden et al., 1991; 

Tsuruoka & Willis, 1996). 
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Discussion  

 

Two key observations arise from these data; (i) there is a differential 

descending noradrenergic inhibitory control on different skin types in acute 

inflammation, and (ii) there is a greater descending inhibitory control of C- 

compared to A-nociceptor evoked reflexes from hairy skin.  

Subcutaneous injection of CFA is a well characterised and widely used 

cutaneous inflammatory model, primarily used to study inflammatory 

hypersensitivity in glabrous (plantar) skin (Iadarola et al., 1988; Ren & 

Dubner, 1999). The oedema generated in glabrous or hairy skin is not 

equivalent for the same dose of CFA (data herein, (Cook & Moore, 2006)), but 

as CFA produces a dose-dependent inflammatory response (Donaldson et al., 

1993) that should be equivalent at different sites, inflammation of hairy and 

glabrous skin might be predicted to induce equivalent primary hyperalgesia. 

Literature reports that CFA injection results in a robust primary mechanical 

and, usually, following plantar injection, thermal behavioural hypersensitivity 

to stimulation from as early as one hour and reportedly lasting for weeks 

(Iadarola et al., 1988; Ren & Dubner, 1999; Terayama et al., 2002; Soignier et 

al., 2011). Plantar inflammation also results in mechanical hypersensitivity 

(data herein, (Ren & Dubner, 1999; Cook & Moore, 2006; Soignier et al., 

2011). In contrast, dorsal (hairy) hindpaw inflammation results in no change in 

thermal reflex withdrawal response, despite thermal sensitisation of single 

peripheral nociceptors in the same model (Dunham et al., 2008; Koerber et 

al., 2010). CFA induced inflammation results in robust long-lasting peripheral 

nociceptor thermal sensitisation, in rats, guinea pigs and primates, (Kocher et 
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al., 1987; Davis et al., 1993; Andrew & Greenspan, 1999; Djouhri & Lawson, 

1999; Djouhri et al., 2001; Dunham et al., 2008; Koerber et al., 2010) 

irrespective of whether hairy or glabrous skin is inflamed, which is inconsistent 

with the behavioural data. We therefore determined whether the observed 

lack of thermal behavioural responses in acute inflammation might be 

attributable to descending inhibitory control of nociceptive processing from 

inflamed hairy skin sites. The observation that plantar inflammation produces 

greater swelling, but little obvious descending inhibition, whereas dorsal 

inflammation produces less swelling but more profound inhibition with 

increasing inflammatory severity, suggest that it is the overall degree of 

inflammation, rather than just the oedema, that engages descending control 

systems. This is consistent with previous findings, where much higher CFA 

doses produced acute thermal analgesia i.e. less nociception than control, in 

hairy but not glabrous skin (Cook & Moore, 2006). Differences in inflammatory 

oedema in different sites may not therefore accurately predict nociceptive 

responses, as this aspect of inflammation may more accurately reflect local 

tissue compliance (Reed & Rubin, 2010) rather than nociceptive input.  

Processing of noxious inputs is known to be subject to both descending 

inhibitory and facilitatory controls (Millan, 2002; Vanegas & Schaible, 2004). 

Primary inflammatory hyperalgesia is widely accepted to be dominated by 

descending inhibitory controls, which are both rapidly activated and long-

lasting. These are hypothesised to protect against spinal hyperexcitabilty 

following inflammation by limiting mechanisms of central sensitisation (Ren & 

Dubner, 1996; Vanegas & Schaible, 2004). However, they are not usually 

reported to completely obliterate the nociceptive sensitivity resulting from the 
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insult (Tsuruoka & Willis, 1996; Tsuruoka et al., 2003; Vanegas & Schaible, 

2004). This is in contrast to our findings where thermal hyperalgesia in hairy 

skin was more short lived, particularly so when inflammation was more severe 

(100µg CFA dose).  

Descending fibres from areas such as LC and RVM exert profound 

modulatory influences on spinal nociceptive processing (Fields et al., 1991; 

Tsuruoka & Willis, 1996; Miki et al., 2002; Millan, 2002; Tsuruoka et al., 2003) 

through monoaminergic systems (Pertovaara, 2006; Yoshimura & Furue, 

2006). Descending monoaminergic systems, particularly noradrenaline acting 

through spinal alpha-2 receptors, are reported to modulate the development 

of inflammatory hyperalgesia (Tsuruoka & Willis, 1996; Tsuruoka et al., 2003; 

Pertovaara, 2006). Our findings confirm this for hairy cutaneous tissue, and 

additionally indicate that, at acute time points, yohimbine blockade 

differentially modulates thermal inflammatory sensitivity in hairy/glabrous skin.  

It has been proposed that the descending noradrenergic systems form a 

stimulus driven negative feedback circuit that impinges onto spinal nociceptive 

processing and so regulates the onward flow of ascending nociceptive 

information (Pertovaara, 2006, 2013). In hairy skin, our finding of a greater 

inhibition in more severe inflammation would support this. In contrast, in 

glabrous skin hypersensitivity persists (>4h) (Tsuruoka & Willis, 1996) and at 

acute time points (<3h) we find little evidence of either monoaminergic or 

opioidergic inhibition, consistent with previous findings (Hylden et al., 1991; 

Tsuruoka & Willis, 1996). 
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Although yohimbine has high affinity for alpha-2 receptors and is commonly 

used as a specific alpha-2-adrenoceptor antagonist, it has moderate affinity at 

alpha-1-adrenoceptors, 5-HT1A, 5-HT1B and dopamine D2 receptors (Ki 

determinations generously provided by the National Institute of Mental 

Health’s Psychoactive Drug Screening Program, 

(http://pdsp.med.unc.edu/pdsp.php)). As a result of the latter effects, systemic 

yohimbine can decrease 5-HT and increase dopamine and noradrenaline 

levels in rat CNS, probably through blockade of autoreceptors (Paalzow & 

Paalzow, 1983; Millan et al., 2000). In inflammation, spinal 5-HT1A receptors 

both enhance (Zhang et al., 2001; Wang et al., 2003) and inhibit (Liu et al., 

2002; Yu et al., 2011; Horiguchi et al., 2013) acute inflammatory nociception; 

known descending 5-HT3 receptor-mediated facilitatory pathways do not 

seem to contribute to inflammatory nociception (Asante & Dickenson, 2010). 

There are no published data on contributions of spinal D2 receptors to acute 

inflammatory nociception. Although this concentration of yohimbine 

administered intrathecally has been widely interpreted as exerting actions 

primarily at alpha-2 adrenoceptors (Ossipov et al., 1989; Takano & Yaksh, 

1992; Green et al., 1998; De Felice et al., 2011; Little et al., 2012; Hughes et 

al., 2013), we cannot exclude an additional contribution of modulation of 

alpha-1-adreno or 5-HT receptors at the spinal level to the observed effects of 

yohimbine. Actions of yohimbine on 5-HT1A receptors would be consistent 

with a concurrent anti-nociceptive effect of 5-HT in this model (Liu et al., 2002; 

Yu et al., 2011; Horiguchi et al., 2013).  

The nocifensive flexor reflex is thought to provide an objective measure of 

noxious threshold and is the most commonly used in pain studies in both 



Differential descending control of inputs from hairy vs. glabrous skin 

 

 

25

humans and animals (Wiesenfeld-Hallin, 1995; Sandrini et al., 2005). In 

animals the nocifensive flexor reflex typically involves recording 

electromyographic activity from the biceps femoris evoked by stimulation of 

the hind-paw (Wiesenfeld-Hallin, 1995), alpha motor neurons serving the 

biceps femoris have receptive fields on both the dorsal and plantar surface 

(Cook & Woolf, 1985), thus the effects of drugs on reflexes evoked from both 

paw surfaces can be directly compared and contrasted. Thus, whilst the 

musculotopic organisation of reflexes may have meant that recording from 

different muscular sites may have yielded slightly different results 

(Schouenborg et al., 1994; Harris & Clarke, 2002), these may not have been 

directly comparable for stimulation of different sites on the hindpaw. In 

addition, as alpha-2-adrenoceptor agonists are analgesic (Pertovaara, 2006) 

and presumably inhibit the sensory afferent arm of the withdrawal reflex, it 

could be hypothesised that the result of yohimbine blockade would affect, to a 

greater or lesser extent, all muscle groups involved in noxious withdrawal 

reflexes. This is supported by the behavioural data.  

A differential descending inhibitory control on glabrous versus hairy skin may 

relate to the functional importance of the footpad/glabrous skin. The plantar 

surface forms the main exploratory hindpaw surface in rodents, providing 

important sensory/discriminative information about the environment (Boada et 

al., 2013). Pain provides a critical protective mechanism in which nociceptive 

sensitisation, including increased reflex sensitivity, serves to protect injured 

areas that might regularly come into contact with physical stimuli 

(Schouenborg et al., 1994) and it has been shown that load bearing parts of 

the paw have special significance in generating reflex sensitisation (Clarke & 
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Harris, 2004). However, effective locomotion is essential to survival, being 

central to feeding and escape behaviours, and therefore the positive impact of 

nociceptive reflex hypersensitivity and its protective function must be traded 

off against its negative impact on locomotion. Thus peripheral domains that 

rarely come into contact with nociceptive stimuli (dorsal hind-paw) may have a 

reduced capacity to produce reflex sensitisation following inflammation.  

The differences in descending inhibition of spinal processing of afferent input 

from different peripheral domains may also represent a difference in both 

innervation and the effects of inflammation on innervating neuronal properties. 

The inflammatory sensitisation of unmyelinated afferents differs in glabrous 

versus hairy skin in both rat and primate (Campbell & Meyer, 1983; Kocher et 

al., 1987; Andrew & Greenspan, 1999; Dunham et al., 2008), in that 

peripheral thermal sensitisation occurs in C-nociceptors innervating hairy skin 

(Campbell & Meyer, 1983; Davis et al., 1993; Dunham et al., 2008; Koerber et 

al., 2010), but not in glabrous skin (Meyer & Campbell, 1981; Campbell & 

Meyer, 1983; Andrew & Greenspan, 1999; Du et al., 2006), where C-

nociceptors may become desensitised instead (Campbell & Meyer, 1983; 

Andrew & Greenspan, 1999). C-nociceptors play critical roles in driving 

mechanisms of central sensitisation and of descending controls from 

supraspinal sites (Woolf & Wall, 1986; Sivilotti et al., 1993; Suzuki et al., 2002; 

Ikeda et al., 2003; Mantyh & Hunt, 2004; You et al., 2010). Sensitisation of C-

nociceptors in inflamed hairy skin would drive ascending, and therefore also 

descending systems to a greater extent than in glabrous skin, where C-

nociceptors do not readily sensitise, leading to the differences in inhibition 

observed. This is supported by the enhanced inhibition seen in a more severe 
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inflammation where nociceptors would be sensitised more rapidly and afferent 

barrage would be greater (Figure 3 A & B).  

Previous findings from our laboratory indicate that descending inhibitory 

controls, arising from the PAG preferentially target C-nociceptive inputs to 

spinal nociceptive networks (McMullan & Lumb, 2006b). Here, during acute 

inflammation of hairy skin, we observe a fast acting and potent inhibition of C-

nociceptor evoked withdrawals; at two and three hours following CFA the 

withdrawal thresholds to C-nociceptor stimulation were greater than baseline 

values and in 3/5 animals we observed no evoked EMG activity before the 

cut-off temperature was reached. Additionally, in the two cases where the cut-

off was removed, thresholds for EMG activity were greater than 60oC (data 

not shown). In contrast, at two hours following CFA, thresholds for A-

nociceptor evoked withdrawals were still significantly lower than baseline 

values and, at three hours following CFA, all 5 animals responded to the 

thermal stimuli before the cut-off temperature was reached. It is likely that the 

effect of yohimbine on C- versus A-nociceptor evoked withdrawals failed to 

reach significance (data not shown) as a result of the inherent 

underestimation of the full effect of yohimbine on C-nociceptor withdrawal 

thresholds due to the imposed temperature cut-off (55oC). Descending 

inhibitory systems have been shown to preferentially target thermal spinal 

nociceptive processing in both normal and inflamed rats (Kauppila et al., 

1998; Howorth et al., 2009), consistent with our observations. Additionally, as 

noxious mechanical stimuli are thought to be conveyed by A-fibre nociceptors 

(Ziegler et al., 1999; Magerl et al., 2001) an alternative interpretation of these 
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findings is that there as a preferential inhibition of spinal nociceptive 

processing of C- versus A-nociceptor inputs.     

There may be a possible evolutionary advantage of greater inhibitory control 

on C- compared to A-nociceptor-evoked reflexes which could relate to the 

different functions of these afferents. In humans, rapidly conducting A-

nociceptors convey sharp, well localised painful sensations (Magerl et al., 

2001), information which is encoded with a high fidelity by spinal neurons (rat) 

(McMullan & Lumb, 2006a).  In contrast, slowly conducting C-nociceptors 

convey dull and diffuse pain (Ziegler et al., 1999; Magerl et al., 2001) encoded 

with low fidelity by spinal neurons in rats (McMullan & Lumb, 2006a). Thus A-

nociceptors are hypothesised to convey more detailed information relating to 

the protective function of pain, i.e. localisation and magnitude assessment. A 

greater acute inhibition of C-nociceptor inputs could serve to filter extraneous 

C-nociceptive information and limit saturation in the reflex pathway (Tsuruoka 

et al., 2012) while concurrently preserving A-nociceptive information which is 

essential to the protective function of reflex withdrawals. Thus differential 

inhibitory control of inputs from body areas with different functions, and from 

different nociceptor types would be hypothesised to limit central sensitisation 

and protect against spinal hyperexcitabilty following inflammation, whilst 

maintaining adequate locomotor and protective nociceptive function to enable 

healing/survival.  
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Figure legends 

Figure 1: A single subcutaneous injection of CFA into the hind-paw dorsum 

leads to a primary mechanical but not thermal hyperalgesia.  

A. Delivery of CFA (50µl) into the hind-paw dorsum produced significant oedema 

(one-way RM ANOVA; p<0.0001, F(4,3)=33.54, Bonferroni’s post-test *p<0.001 

compared to baseline, n=4).  

B. CFA-induced inflammation was associated with a primary mechanical 

hyperalgesia (one-way RM ANOVA; p<0.001, F(3,3)=7.13, Bonferroni’s post-test 

*p<0.05 compared to baseline, n=4). 

C. CFA-induced inflammation did not however result in thermal hyperalgesia (n=4). 

D. In contrast, a 50µl s.c. injection of CFA into the plantar surface of the hind-paw 

produced a persistent primary thermal hyperalgesia (one-way RM ANOVA; p<0.05, 

F(3,2)=11.88, Bonferroni’s post-test, *p<0.05 compared to baseline, n=3).  

 

 

Figure 2: A single subcutaneous injection of CFA into the hind-paw dorsum 

produces a transient sensitisation of withdrawal reflexes to A- and C-

nociceptor activation.  

A. CFA-induced inflammation of the dorsal hind-paw resulted in a transient reduction 

in the withdrawal threshold to A-nociceptor stimulation that resolved fully by 3 hours 

after CFA injection (one-way RM ANOVA, p<0.0001, F(3,4)=21.22, Bonferroni’s post-

test ***p<0.001 compared to baseline, n=5). 

B. Responses to C-nociceptor activation showed that inflammation resulted in an 

even more transient response, resolving after 2 hours (one-way RM ANOVA, 

P<0.0001, F(3,4)=20.39, Bonferroni’s post-test *p<0.001 compared to baseline, n=5). 

An equivalent injection of vehicle (mineral oil) had no significant effect on withdrawal 

thresholds to A- or C-nociceptor activation (Mineral oil group, A&B, Friedman test, 

p>0.05, n=3)  
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C. A larger dose of CFA (100µg/100µl) resulted in a more rapid resolution of 

sensitisation to A-nociceptor activation, causing a more rapid return to baseline (two-

way RM ANOVA; main dose effect: p=0.08, F(3,1)=3.98, Bonferroni’s post-test 

*p<0.05 between groups, n=5 for both groups). 

D. A larger dose of CFA (100µg) resulted in a more rapid resolution of sensitisation 

to C-nociceptor activation so that withdrawal thresholds were significantly higher 

compared to a 50µg dose at the one hour time point  (two-way RM ANOVA; Main 

dose effect: p=0.0022, F(3,1)=19.53, Bonferroni’s post-test *** p<0.001 between 

groups, n=5 for both groups).   

 

Figure 3: Sensitisation resulting from acute inflammation of the plantar 

hindpaw is unaffected by intrathecal yohimbine.  

Acute CFA-induced inflammation of the plantar hind-paw resulted in a reduction in 

thermal withdrawal threshold that persisted for the 3 hours tested (one-way RM 

ANOVA; p<0.0001, F(3,4)=19.30, Bonferroni’s post-test ***p<0.001, **p<0.01 

compared to baseline). This was unaffected by intrathecal yohimbine at 3h following 

CFA (n=5 CFA, n=4 CFA+yoh).  

  

Figure 4: Paw swelling is different following CFA injection into dorsal or 

plantar hindpaw. 

Injection of 50µg CFA resulted in greater swelling in the plantar compared to the 

dorsal surface of the hindpaw. Injection of a larger CFA concentration (100µg) in the 

dorsal surface did not increase the swelling above that caused by 50µg. (one way 

ANOVA, p<0.0001 F(12, 70)=59.13, Bonferroni post-hoc tests *p<0.05 plantar c.f. 

both other groups, data shown as mean±SD). 

 



Differential descending control of inputs from hairy vs. glabrous skin 

 

 

39

Figure 5: Blockade of spinal alpha 2 adrenoceptors reveals a rapid inhibitory 

control on withdrawal reflexes to A- and C-nociceptor activation during acute 

inflammation.  

A. The loss of acute sensitisation to A-nociceptor stimulation 3 hours after CFA 

injection was partially reversed by the intrathecal injection of the noradrenergic alpha 

2 receptor antagonist yohimbine (Mann-Whitney U, *p<0.05, n=7 CFA (3h), n=5 yoh). 

B. The loss of acute sensitisation to C-nociceptor stimulation 3 hours after CFA 

injection was reversed by yohimbine (Mann-Whitney U, *p<0.05, n=8 CFA (3h), n=5 

yoh). 

C. Systemic administration of the pan-opioid antagonist, naloxone, had no effect on 

either A-nociceptor evoked withdrawals (CFA n=5, CFA+nal n=6) or on D. C-

nociceptor evoked withdrawals (CFA n=5, CFA+nal n=6).  

 

 

 












