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Introduction: 

Neuropathic pain arises as a direct consequence of a lesion or disease affecting the 

somatosensory system [55] and is associated with considerable suffering, disability and 

impaired quality of life. An estimated 7-8% of the population suffer from neuropathic pain 

[8; 54] and the condition is poorly responsive to current treatment. Monoamine re-uptake 

inhibitors (e.g. tricyclic antidepressants) are one of the more commonly deployed 

treatments [2] with the most beneficial effects arising from noradrenaline (NA) reuptake 

inhibition [3; 48].  This is suggested to potentiate the actions of a descending pain control 

system mediated by pontospinal NAergic neurons which provide the sole source of NA in 

the spinal dorsal horn [36; 44]. 

These pontospinal projections release NA which acts via inhibitory α2-AR on both primary 

nociceptive afferents and second order projection neurons to suppress transmission of 

nociceptive signals [44; 66]. This descending NAergic system plays an important role in acute 

pain processing [24; 37; 61; 65] and in stress-induced analgesia [7]. Using a targeted 

retrograde viral vector approach we have shown the restraining effects these neurons have 

on acute thermal and inflammatory nociception in vivo [21].  

In contrast, the role of the NAergic system during neuropathic pain has been more difficult 

to mechanistically define.  Several models of neuropathic pain have associated plastic 

changes within the NA system [4; 16; 50] and there is some evidence to suggest a functional 

up regulation [31]. Such increased NA tone has been suggested to suppress the expression 

of neuropathic phenotypes accounting for the ‘’failure rate’’ in the induction of allodynia 

and hyperalgesia following nerve injury [12; 62]. However, conflicting evidence exists 

supporting a functional deficit in the system [45; 58]. Once neuropathic pain is established, 
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previous attempts to uncover a phenotype by blocking descending NAergic control using 

viral vector based approaches have been inconclusive [21] as have lesion studies using 

selective NAergic toxins [22] suggesting that there is little remaining NAergic tone in the 

system. This proposed functional deficit may account for the inability of the endogenous 

analgesic system to correct the neuropathic pain phenotype and also explain the clinical and 

experimental therapeutic benefit from NA re-uptake inhibitors. 

These contrasting strands of evidence have led us to examine the chronology of descending 

NAergic control following nerve injury while neuropathic pain behaviours are developing. 

Thus we used sequential intrathecal NAergic antagonist / re-uptake inhibitor administration 

to examine the longitudinal influence of the descending pontospinal NA system on the 

expression of neuropathic pain in the tibial nerve transection (TNT) variant of the spared 

nerve injury (SNI) model [28]. 
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Materials and Methods  

Animals 

Experiments were performed on male Wistar rats (n=59) (Harlan, UK). All procedures 

conformed to the UK animals (Scientific Procedures) Act 1986.  Animals were single housed, 

with an enriched environment under a standard 12 h light/dark cycle, with ad libitum access 

to food and water. 

Surgery for tibial nerve transection and chronic intrathecal cannulation  

We used the tibial nerve transection (TNT) variant of the SNI model [28]. Under ketamine 

(50mg/kg) and medetomidine (300µg/kg) anaesthesia the left hind limb was elevated and 

secured in a lateral position and an incision was made at the mid-thigh level longitudinally 

through the biceps femoris. The sciatic nerve was exposed and the sural, tibial and common 

peroneal branches were identified. The tibial nerve was then tightly ligated with 5-0 silk and 

a 2mm section was cut, avoiding damage to sural and common peroneal nerves (shown 

schematically in figure 1a). Sham surgery consisted of the same procedure without tibial 

nerve ligation/section. 

While still anaesthetised a chronic intrathecal catheter was implanted at the L5-L6 

interspace [51; 57]. A sterilised 32-gauge intrathecal catheter (CR3212; ReCathCo; Allison 

park; PA) was threaded into a 25-gauge hypodermic needle which was inserted between L5 

- L6 vertebrae until a tail flick indicated penetration of the dura. The catheter was advanced 

cranially 2-3cm so the rostral tip reached the lumbar enlargement. The needle and catheter 

stylet were removed and the catheter was joined to an 8cm length of PE-10 tubing which 

was sutured to the paraspinous muscle and tunnelled subcutaneously to the level of the 
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scapulae. The catheter system was externalised by attaching the PE-10 tubing to a 2cm 

length of PE-50 tubing which was fixed to a back mounted pedestal system with a screw cap 

(313-000BM-10-SP with 6mm side connector; Plastics One, Roanoak, USA). Animals showing 

signs of poor health or neurological dysfunction outside the nerve injury territory were 

excluded from the study (n=3). Correct cannula placement was indicated by immediate and 

reversible hindlimb paralysis following a 20μl intrathecal lidocaine injection (10mg/ml) on 

the day of surgery. 

Nociceptive testing 

Behavioural testing was carried out at baseline and at days 3, 5, 10, 12, 17, 19, 21 and 28 

post-surgery (figure 1b). The influence of descending noradrenergic control over time was 

assayed following single intrathecal doses (10μl) at sequential time points of either 

yohimbine (30μg), prazosin (30μg), reboxetine (5μg) or saline. On each study day 

nociceptive testing was carried out after dosing with saline (control) and again two hours 

later after dosing with the active drug (only one drug per day).  The nociceptive tests were 

applied between 15 and 45 minutes after dosing.  In time control experiments the effects of 

drug had completely reversed by the following day (e.g. see Figure 4D) and at least 48 hours 

were allowed to lapse between successive doses.  

Punctate mechanical allodynia 

The hindpaw withdrawal thresholds to tactile stimuli were assessed using calibrated von 

Frey filaments ranging from 0.17 to 26.0g (TouchTest, Linton instruments, UK). Briefly, rats 

were placed in Perspex chambers with a metal mesh floor and were allowed to habituate 

for 15 minutes before behavioural testing. Testing started with the 2.0g von Frey filament, 
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applied perpendicular to the plantar surface of the hindpaw for 3 seconds. Withdrawal 

thresholds were analysed using the Dixon up/down statistical method [10].   

Cold allodynia 

Hindpaw withdrawal responses to cooling stimuli were assessed using the acetone test [11]. 

Following habituation, a 1ml syringe was used to apply a drop of acetone through the metal 

mesh floor of the Perspex behavioural chambers to the plantar surface of the hindpaw and a 

hindlimb withdrawal was scored as a positive response. Acetone testing was repeated 5 

times per paw with a 2 minute interval between tests and data are represented as a 

percentage paw withdrawal frequency (PWF). 

Thermal hyperalgesia  

The plantar test was used to measure the hindpaw withdrawal latency to heating stimuli 

[15]. Rats were placed in Perspex chambers and allowed to habituate for 15 minutes. A 

radiant heat source was focused onto the plantar surface of the hindpaw and latency to 

withdrawal was recorded (Plantar test, Ugo Basile). A 30 second cut-off time was used to 

prevent tissue damage and sensitisation. 

Dynamic mechanical allodynia 

In a further series of experiments the presence of contralateral dynamic mechanical 

allodynia was sought by brushing the plantar surface of the hindpaw with a thin camel hair 

brush (continuous for 8 mins) when animals were at days 19-21 post-surgery. Testing was 

performed on 4 groups of animals: TNT (n=10) or sham (n=6) with half given yohimbine 

(30μg, i.t.) and the remainder given vehicle. The animals were sacrificed 2 hours later for 
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trans-cardiac perfuse-fixation with 4% formalin and the lumbar spinal cord removed for c-

fos immunohistochemistry (see below). 

Contact heat ramp-evoked withdrawal  

Contact heat ramp-evoked, hindpaw withdrawal experiments were conducted on TNT 

animals with established allodynia and hyperalgesia (at days 19-21 post-surgery) and sham 

animals (n=20). Anaesthesia was induced using (1-2%) isoflurane in O2 until loss of paw 

withdrawal reflex and the external jugular vein was cannulated for anaesthetic maintenance 

using continuous intravenous infusion of alphaxalone (5mg/ml, 9 - 15mg.kg-1.h-1, Alfaxan; 

Vetoquinol, UK) and the isoflurane was discontinued. Body temperature was maintained 

within physiological limits (~37.0°C) using a feedback controlled heating blanket and rectal 

probe.  

The right carotid artery was cannulated for recording of blood pressure and the trachea was 

cannulated to maintain a patent airway. A 32gauge intrathecal catheter (CR3212; ReCathCo; 

Allison park; PA) was inserted through a 25G needle at the L5-L6 interspace and fed rostrally 

to the lumbar enlargement to allow for drug injection. Bipolar intramuscular 

electromyogram (EMG) electrodes were inserted into either the ipsi- or contra-lateral biceps 

femoris (stainless steel wire - 0.075 mm, Teflon coated, Advent Research Materials, 

Eynsham, UK).  

At the end of this preparatory surgery anaesthesia was lightened by decreasing the infusion 

rate of Alfaxan (~10 mg.kg-1.h-1) to a level at which animals were moderately responsive to 

brushing of the cornea using a cotton swab. Animals were allowed to stabilise at their new 

anaesthetic level for 60 minutes after surgical preparation before recording EMG activity. 
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The EMG signal was amplified (5k) and filtered (50 Hz to 5 kHz; Neurolog; NL104 and 

NL125), before being captured for analysis (10kHz) via a 1401plus (Cambridge Electronic 

Design, UK) onto a PC running Spike2 version 5 software (CED). 

Controlled heat ramp stimuli were delivered to the dorsal surface of the hindpaw using a 

custom-made contact heating lamp assembly (as previously described [35]). The voltage 

applied to the bulb was adjusted to deliver a heat ramp with a skin surface heating rate of 

(7.5 ± 1°C.sec-1) monitored from a surface thermocouple. Heat ramps were performed at 8 

minute intervals to avoid sensitization of the hindpaw and a thermal cut off temperature of 

58°C was used to prevent tissue damage. The threshold temperature for onset of the EMG 

withdrawal response was measured for each trial before and after drug dosing. 

Drugs  

The drugs used in these experiments were yohimbine (α2-AR antagonist, 30µg in 10µl 20% 

DMSO; Tocris, UK), prazosin (α1-AR antagonist, 30µg in 10µl 30% DMSO; Tocris, UK; [12; 49; 

53], atipamezole (α2-AR antagonist, 50μg in 10μl saline; Tocris, UK; [62], clonidine (α2-AR 

agonist, 15µg in 10µl saline, Sigma, UK; [42])and reboxetine (NA re-uptake inhibitor, 5μg in 

10μl saline; Tocris, UK; [40]. All intrathecal drug injections were made using a 50µl Hamilton 

syringe at a rate of ~0.5 µl/s followed by a 17µl dead space flush with saline. Control 

experiments with intrathecal administration of excipient were without effect on any of the 

measures of nociception.  
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Immunohistochemistry  

Rats were perfuse-fixed with 4% formalin at days 19-21 post surgery and the spinal cord was 

cryoprotected in 30% sucrose. Transverse lumbar spinal cord sections (40μm) were cut from 

the lumbar enlargement into 3 series using a freezing microtome. For immunocytochemistry 

they were washed (x3) and permeabilized with 0.1% Triton-X100 in 0.01M phosphate 

buffered saline (PBS-T).  Tissues from all groups were processed together under identical 

conditions with the same reagents. Controls were routinely run by omission of either 

primary or secondary antibodies.  

To reveal c-fos immunoreactivity the sections were incubated free floating with a polyclonal 

rabbit c-fos antibody (SC-52, Santa Cruz Biotechnology; 1:5000 in 0.1M phosphate buffer 

containing 1% bovine serum albumin, 1% normal goat serum and 0.1% triton X-100) for 24 

hours at room temperature. After further washing (x3) this was followed by incubation with 

a biotinylated anti-rabbit IgG secondary antibody (Sigma; 1:500 in PBS-T) for 1-2 hours. The 

sections were then incubated in extravidin peroxidise (Sigma; 1:1000 in PBS-T) for 1-2 hours 

and the peroxidise visualised using 3,3-diamino-benzidine (0.015%; Sigma) and glucose 

oxidase (after [20; 27].  The c-fos labelled neuronal profiles were quantified by manually 

counting in the superficial laminae (I-II) of the dorsal horn (identified under darkfield 

illumination). The number of c-fos-ir profiles were tallied from 3 non-contiguous spinal cord 

sections from each segment. 

Dopamine-β-hydroxylase (DBH) immunohistochemistry was performed on transverse 

sections (L4-L6) from TNT and sham animals to a similar protocol using a mouse anti-DBH 

primary antibody (1:5000, Millipore (Chemicon), MAB308) for 24 h followed by incubation 

with a biotinylated anti-mouse IgG (Sigma; 1:500 in PBS-T) for 4 h. The labelling was 
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revealed using the DAB glucose oxidase method as described above [27]. DBH-

immunoreactivity was quantified for 3 non-contiguous spinal cord sections selected at 

random from each segment (L4-L6). The mounted sections were examined under brightfield 

illumination at x20 magnification (Axioskop 2, Zeiss). Images of the dorsal horns were 

captured using a CCD camera (Axiocam 3, Zeiss) with the same exposure and illumination 

setting for all sections. The images were analysed using ImageJ (NIH) to identify the 

percentage of DBH positive pixels in the gray matter of the dorsal horn. The background 

level of staining was determined for each section (using ROI analysis of an area without 

visible DBH fibres) and a value of 5 standard deviations above the mean background level 

was used to set a threshold level for DBH positive pixels. Each image was manually checked 

for accuracy and to avoid inclusion of artefactual staining (particularly at the margins of the 

tissue). The percentage of DBH-positive pixels for ipsi- and contra-lateral dorsal horns 

between was averaged from 6 sections per animal.  

Statistical analysis  

Data are presented as mean±SEM. Differences across groups were determined using either 

one or two-way ANOVA or paired/unpaired t-test as appropriate using GraphPad Prism 

software (GraphPad Software Inc., USA). Levels of significance were set as * - P<0.05, ** - 

P<0.01 and *** - P<0.001 (ns - not significant). 
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Results  

The TNT animals progressively developed robust mechanical and cold allodynia by day 10, 

with heat hyperalgesia developing later, by day 17 (Figure 1C-E), which is in line with 

previous findings using this model [19; 28]. 

Descending noradrenergic tone transiently suppresses ipsilateral neuropathic sensitization  

Administration of intrathecal yohimbine (30μg) revealed hindlimb sensitization at an earlier 

time point of 3 days for mechanical allodynia (control: 14.8 ± 2.5g vs yohimbine: 5.7 ± 1.3g, 

P<0.001 Figure 1C); cold allodynia (control: 28 ± 8% vs yohimbine: 72 ± 10% paw 

withdrawals, P<0.001 Figure 1D) and heat hyperalgesia (control: 13.5 ± 0.8s vs yohimbine: 

9.5 ± 0.5s, P<0.05 Fig. 1E). Similar effects were also seen with yohimbine at day 10 for heat 

hyperalgesia.  

In contrast intrathecal administration of prazosin (30μg) had no effect on the development 

of the neuropathic phenotype at any time point (Figure 2A-B). Yohimbine and prazosin were 

without effect on mechanical or thermal sensitivity in sham animals. 

Once hyperalgesia and allodynia were established yohimbine was without effect on the 

mechanical and cold allodynia (day 17). However, this established mechanical and cold 

allodynia could still be partially reversed by the NA re-uptake inhibitor reboxetine (5μg, i.t.) 

which increased paw withdrawal thresholds to mechanical stimuli (P<0.05 at day 21 Figure 

2C) and attenuated paw withdrawals to cold stimulus (P<0.05 at day 21 Figure 2D). 

Reboxetine had no effect on established heat hyperalgesia (data not shown).  
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Tibial nerve transection decreases the descending noradrenergic innervation of the 

ipsilateral lumbar dorsal horn 

After TNT when the neuropathic sensitisation was established (days 19-21) we found that 

the density of DBH-ir fibres in the lumbar dorsal horn was significantly lower on the 

ipsilateral side of TNT animals compared to sham animals (P=0.04, Figure 3A, B and C, n=3) 

whereas there was no significant difference on the contralateral side (Figure 3D). This loss of 

fibres appeared contained to the ipsilateral lumbar dorsal horn which had significantly lower 

density of DBH-ir at L4, L5 and L6 (Figure 3E, P<0.05, n=3) when compared to cervical (C7) 

and thoracic (T12) segments.  There was no significant loss of contralateral lumbar DBH-ir in 

TNT animals when comparing across the segments or between sham animals, although in 

both cases the absolute density of DBH-ir tended to be lower. 

Descending noradrenergic tone completely masks contralateral neuropathic sensitisation 

TNT animals showed no sensitization of their contralateral hindlimb responses to 

nociceptive stimuli over the test period (Figure 4). However, contralateral mechanical 

allodynia was revealed by intrathecal injection of yohimbine (30μg, i.t.) in the same animals 

from day 3 following TNT (P<0.05, n=6, Figure 4A) which became more pronounced over 

time with the lowest thresholds seen by day 17 (13.9 ± 2.2g to 3.5 ± 1.1g after yohimbine, 

P<0.01 Figure 3A). Yohimbine also unmasked robust contralateral cold allodynia with the 

proportion of acetone applications producing a paw withdrawal increasing from 8 ± 4% to 

64 ± 8% (day 3, P<0.001 Figure 4B) and contralateral heat hyperalgesia from day 3 

(withdrawal latency 13.9 ± 1.0s at baseline vs 10.4 ± 0.8s, P<0.05 Figure 4C). This yohimbine 

unmasking of sensitisation was maximal between 15 and 45 minutes after administration 

and reversed over a time course of around an hour (cold allodynia (Figure 4D, n=4) and 
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dynamic brush allodynia (Figure 5A, n=3)). This sensitising effect was mimicked by another 

α2-AR antagonist, atipamezole (50μg, i.t.) which had a shorter duration of action (figure 4D, 

n=4).  There was no sign of residual sensitisation on testing the following day (Figure 4D).  

Prazosin (30μg, i.t.) did not change the contralateral responses to nociceptive testing at any 

time point in TNT animals (see figure 4D, n=3) nor did the vehicle control (data not shown, 

n=4).  Yohimbine had no sensitising effect in naïve or sham operated animals.  

Spinal α2-AR antagonism unmasks contralateral dynamic mechanical allodynia associated 

with increased dorsal horn c-fos expression 

Previous studies using the spared nerve injury model have shown innocuous brush 

stimulation of the ipsilateral hindpaw to trigger withdrawals and evoke increased c-fos 

expression in the superficial dorsal horn - indicating the presence of dynamic allodynia [6]. 

Having noted the presence of contralateral dynamic mechanical allodynia after yohimbine 

administration in the TNT model (Figure 5A). We followed a similar protocol to Bester et al. 

and after a period of repeated brush stimulation (8 minutes) of the contralateral hindpaw 

we found a six fold increase (P=0.004, n=5, Figure 5B) in c-fos labelled profiles in the 

superficial laminae of the L5 dorsal horn in the intrathecal yohimbine group. In sham animal 

yohimbine administration did not cause an increase in L5 c-fos expression to brush stimulus 

(6±2 vs 7±3), n=3/group).  There was a similar level of L5 c-fos expression in the sham 

groups to that seen in the TNT without yohimbine group.  
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Contralateral hypersensitivity to a ramped thermal stimulus is unmasked by spinal α2-AR 

antagonism 

We further tested the influence of the descending noradrenergic system on thermal 

sensitivity by looking at changes in EMG withdrawal thresholds to a controlled ramped 

heating stimulus applied to the dorsum of the hindpaw in anaesthetised animals (at days 19-

21 post-TNT). The TNT animals showed ipsilateral heat sensitization with lower withdrawal 

thresholds (47.9 ± 1.0˚C TNT vs 52.7 ± 0.2°C in sham, P<0.05 Figure 6A). Following 

intrathecal yohimbine there was no change in the ipsilateral withdrawal threshold in either 

group.  However this sensitisation could be reversed by intrathecal clonidine (15µg, n=3, 

Figure 6B) indicating that α2-AR receptor function was preserved within these spinal 

nociceptive circuits. 

Contralateral withdrawal thresholds in TNT animals were not sensitized; however yohimbine 

administration produced a repeatable and reversible sensitization to the heat ramp 

stimulus, with a peak change from baseline (54.6 ± 0.8°C vs 47.4 ± 0.6°C, P<0.001, Figure 

6C). The timecourse of this sensitising effect of yohimbine peaked at around 40 minutes and 

reversed after approximately 1 hour (Figure 6D). 
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Discussion  

We investigated the chronology of influence of the descending NAergic system on the 

development of the neuropathic pain phenotype following tibial nerve injury. Using a 

subtractive, longitudinal, intrathecal antagonist approach we have shown that descending 

NAergic tone delays the appearance of ipsilateral mechanical allodynia, cold allodynia and 

heat hyperalgesia following nerve injury via an α2-AR mediated mechanism. Once 

neuropathic sensitisation was established there was no longer any demonstrable effect of 

α2-AR antagonism suggesting a diminution of the influence of NAergic tone which was 

echoed anatomically by a diminished density of DBH-ir positive fibres in the ipsilateral dorsal 

horn. An unexpected and notable consequence of intrathecal α2-AR blockade was the 

reversible unmasking of pronounced contralateral neuropathic sensitisation to both thermal 

and mechanical stimulation. These findings indicate that the descending NAergic system 

acts dynamically to spatially restrict and temporally delay the expression of neuropathic 

pain at the spinal level. They may also provide insight into the variability of expression of 

neuropathic sensitisation across animal models and also between patients. 

The role of the descending NAergic system in neuropathic pain has attracted considerable 

attention as NAergic re-uptake inhibitors have been found to be amongst the most effective 

treatments [2 ; 48]. However, previous investigations have yielded conflicting evidence 

regarding the functional role of the system in neuropathic pain. The role of NAergic control 

has typically been investigated once the neuropathic phenotype is established [21; 22; 31; 

45; 46; 58; 62; 63].  At this point subtractive interventions such as pharmacological blockade 

[21], genetic inhibition or toxin-mediated ablation [17; 21; 23] of the descending NAergic 

pathway have generally shown minimal or no effect upon sensitisation.  Similarly at a 

cellular level there was no change in response properties of dorsal horn neurons following 
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intrathecal delivery of NAergic antagonists [45].  This lead Jasmin to query the hypothesis 

that tricyclic antidepressants are acting via a NAergic mechanism [23] however an 

alternative explanation is that these subtractive experiments (unlike interventions to 

facilitate) will only have the power to reveal a phenotype if there is a substantial basal level 

of tone in the NAergic system in neuropathic pain. 

Here we show that the descending NAergic system acts to delay the appearance of 

neuropathic symptoms in the acute phase after nerve injury. The development of the 

neuropathic phenotype in the TNT model is slower (often taking over a week to manifest) 

than other nerve injury models (such as SNI (Decosterd and Woolf, 2000)) which may reflect 

an increased recruitment of endogenous analgesic systems in the early stages after TNT.  

This NAergic influence diminishes to become undetectable using pharmacological 

antagonists by day 10 - perhaps because of a floor effect where further sensitisation is no 

longer discernable or possibly reflecting a functional diminution in the tonic action of 

NAergic inhibition. This latter possibility is reinforced by a decrease in the density of the 

NAergic innervation of the lumbar dorsal horn. However, there is still a low level of ongoing 

NAergic influence even in established neuropathic sensitisation as the reuptake blocker 

reboxetine can partially reverse the sensitisation as has been shown previously for other 

monoamine reuptake inhibitors [25; 32; 39-41].  Additionally we demonstrate that the α2-

AR function in the spinal nociceptive circuits is still intact after TNT as the sensitisation could 

be reversed with intrathecal clonidine – in agreement with previous studies [63; 67].  These 

findings indicate that it is reduced pontospinal NAergic control ipsilaterally that is unable to 

prevent the expression of sensitisation.  
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There is a recognised variability in the expression of  neuropathic signs following apparently 

similar surgical injuries in pain models that reflects species, strain and environmental 

influences [38].  It has been proposed that one significant factor may be differences in the 

ability to recruit endogenous analgesic circuits [12; 62].  For example, a subset of animals 

that failed to exhibit neuropathic signs after spinal nerve ligation (SNL) showed clear 

evidence of allodynia after intrathecal α2-AR blockade suggesting that the NAergic system 

was acting to oppose sensitisation in this resistant group [62].  A similar observation has 

recently been made with Holtzman rats that failed to develop allodynia after SNL, where 

again sensitisation was revealed by spinal α2-receptor blockade [12].  This variation may 

mirror clinical experience where only a minority of patients with apparently similar nerve 

injuries will go on to develop neuropathic pain [5] and it has been shown that the risk of 

developing chronic pain after surgery are influenced by the ability to recruit endogenous 

analgesic systems [64]. 

There have been reports of upregulation of the NAergic innervation of the spinal cord in 

nerve injury models i.e. chronic constriction injury (CCI) [31] and SNL [16] unlike the 

segmentally restricted downregulation that we have found here to be associated with 

functional loss of descending NAergic tone in the TNT model.  This may indicate that 

different NAergic neuroplastic mechanisms are at work in these models of neuropathic pain.  

Our demonstration of a segmentally localised loss of NAergic innervation (assessed with 

DBH immuno-) with sparing of thoracic and cervical segments is consistent with our 

previous observation of a segmental topography to the LC innervation of the spinal cord 

[21].  At this point we are unable to discriminate between specific loss of local NAergic fibres 

or degenerative loss of NAergic neuronal somata or diminished DBH content in the fibres.  
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We note that identification of the underlying mechanism(s) for this NAergic 

downregulation/retraction may provide a therapeutic target to quell sensitisation in 

neuropathic pain states. 

Blockade of descending NAergic inhibition with intrathecal yohimbine unmasked, from the 

earliest stages, latent neuropathic sensitisation to all modalities in the contralateral 

hindlimb of rats with TNT. This yohimbine-induced, transient, contralateral sensitisation was 

also demonstrated in a contact heat ramp assay – an assay that is known to be subject to 

modulation by descending control [18; 34].  Similarly, brushing of the contralateral hindpaw 

after yohimbine triggered paw withdrawals and a markedly increased level of dorsal horn c-

fos expression consistent with the presence of dynamic mechanical allodynia.  None of the 

TNT animals exhibited significant sensitisation of the contralateral hindlimb without 

yohimbine blockade and yohimbine was without effect in sham animals. These findings 

indicate that the descending NAergic system is dynamically and actively recruited to oppose 

the expression of neuropathic pain and acts to spatially restrict the sensitised territory via 

an α2-mediated inhibition. 

Contralateral neuropathic sensitisation has been reported to occur in some but not all 

animal models of neuropathic pain including CCI [43], SNL [1] and partial spinal nerve 

ligation (PSNL) [67]. Variation in the development of contralateral hypersensitivity has also 

been reported in the SNI model [13; 14]. It has been proposed that such mirror-image 

sensitisation may be subject to regulation by endogenous analgesic mechanisms [59] and 

this suppression can be mimicked by the systemic administration of the α2 agonist clonidine 

[67].  We have extended these findings to show that mirror-image sensitisation can be 

uncovered by blocking descending NAergic tone indicating that these pontospinal neurons 
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are actively opposing the spread of sensitisation at a spinal level.  The engagement of such a 

mechanism to spatially restrict the spread of sensitisation may account for our previous 

observations of homotopic stimulation-evoked shrinkage of an area of allodynia in patients 

with neuropathic pain [30]. 

Clinically, extraterritorial spread of pain following a unilateral nerve injury (i.e. CRPS type II) 

is a recognised [56] but confusing and challenging feature of chronic pain states.  In 

particular, mirror pains have long been recognised [29] but within neurological diagnostic 

sieves where the importance of symptom laterality is emphasised this can be interpreted as 

indicating “supra-tentorial” psychological factors or the development of a “functional” pain 

state.  The reasons for the bilateral spread of neuropathic symptoms are still unclear but are 

thought to be partly due to maladaptive neuronal plasticity and/or glial activation at a spinal 

level [26; 60].  Additionally, there is some evidence to suggest supraspinal changes [33; 52] 

in CRPS as well as changes in the activity of the patients own endogenous analgesic systems 

[47]. A key question is why the majority of patients with a unilateral injury do not develop 

an extraterritorial spread of symptoms – we posit that this may well relate to the ability to 

recruit descending NAergic control systems that spatially restrict the spread of sensitisation.  

As such this pontospinal NAergic mechanism provides a potential link between the 

aforementioned “supra-tentorial” factors and the spinal spread of neuropathic sensitisation. 

In summary, the study presented here demonstrates the temporal profile of the 

endogenous analgesic action of pontospinal noradrenergic neurons during the development 

of neuropathic sensitisation following a unilateral nerve injury. We have shown that the 

system transiently inhibits ipsilateral and completely masks contralateral sensitisation, 

together this indicates that pontospinal NAergic neurons play an important role in shaping 
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the expression of the neuropathic phenotype. We suggest that differences in the 

susceptibility to developing both ipsilateral and contralateral neuropathic pain seen with 

nerve injuries across animal models and indeed between individual patients may be in part 

due to variation in the engagement of the endogenous NAergic analgesic system. Further it 

may provide a rationale for the early use of NA re-uptake inhibitors in patients with 

neuropathic pain to delay, ameliorate and spatially restrict the spread of neuropathic 

sensitisation - as has been reported to be effective in preventing progression of shingles to 

post-herpetic neuralgia [9].  
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Figure legends  

Figure 1. Pontospinal noradrenergic control transiently suppresses ipsilateral allodynia 

and hyperalgesia. A) Schematic showing the surgical approach with ligation and transection 

of the tibial (TNT) nerve immediately below the trifurcation of the sciatic nerve and 

insertion of the chronic intrathecal catheter at L5-6 that is exteriorised via an implanted port 

for subsequent sequential intrathecal dosing. B) Schedule of the sensory characterisation of 

the responses to ipsilateral mechanical, cold and heat stimuli in TNT and sham animals. For 

each animal the sensory profile for the ipsilateral and contralateral hindlimbs was examined 

after vehicle (control) and two hours later after active drug administration – either 

yohimbine (30μg, i.t.), prazosin (30μg, i.t.) or reboxetine (5μg, i.t.). Mechanical allodynia (C) 

and cold allodynia (D) developed by day 10 in control animals whereas after yohimbine 

administration allodynia was unmasked at an earlier stage (on day 3). In control animals, 

heat hyperalgesia was apparent on Hargreaves’ testing by day 17 (E) however yohimbine 

administration revealed latent heat hyperalgesia to be present at day 3 and day 10. 

Data are expressed as mean±SEM, n=6 in each group. Comparisons between vehicle and 

yohimbine in TNT animals by two-way ANOVA with Bonferroni post tests; * - P<0.01, ** - 

P<0.01, *** - P<0.001. Comparisons against baseline values, indicating time of onset of 

sensitization following TNT, by one-way ANOVA with Dunnett’s multiple comparison test – 

significance indicated with # - P<0.05, ## - P<0.01 and ### P<0.001. 

Figure 2. Prazosin has no effect on the development of sensitization following TNT 

whereas reboxetine ameliorates established allodynia.  

Prazosin administration (30μg, i.t.) was without significant effect on the development and 

expression of A) Mechanical allodynia or B) Cold allodynia at any time point. The selective 
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noradrenergic re-uptake inhibitor reboxetine (5μg, i.t.) ameliorated the signs of established 

neuropathic sensitization (3 weeks following nerve injury) and reduced both mechanical (C) 

and cold allodynia (D).  Data are expressed as mean±SEM, n=5 in each group. Comparisons 

between vehicle and active drug for TNT animals by two-way ANOVA with Bonferroni post 

tests; * - P<0.01, ** - P<0.01, *** - P<0.001.  Comparisons against baseline values, indicating 

time of onset of sensitization following TNT, by one-way ANOVA with Dunnett’s multiple 

comparison test – significance indicated with # - P<0.05, ## - P<0.01 and ### P<0.001. 

Figure 3. Loss of noradrenergic fibers in the ipsilateral lumbar dorsal horn after tibial 

nerve transection. (A) Fewer DBH-ir positive fibres are seen (white) in transverse spinal cord 

sections (L6) from the lumbar region in TNT animals than in sham operated controls (B). 

Inverted brightfield images shown for clarity, (inset shows DBH-ir fibres arrowed). (C) There 

was a lower density of DBH-ir ipsilaterally in the L6 lumbar dorsal horn in TNT (n=5) 

compared to sham (n=3) operated rats (unpaired t-test; * P=0.04, n=6). (D) No significant 

difference in DBH-ir density on the contralateral side in TNT compared to sham.  (E) There 

was a lower density of DBH-ir in the ipsilateral but not contralateral lumbar segments (L4, 

L5, L6) compared to cervical (C7) and thoracic (T12) dorsal horns in TNT rats (one-way 

ANOVA with Dunnet’s multiple comparison test ,* - P<0.05, n=3).  Data are expressed as 

mean±SEM. 

Figure 4. Pontospinal noradrenergic control completely masks contralateral allodynia and 

hyperalgesia. Sensory testing of the contralateral hindlimb of TNT animals (compared to 

sham) showed no significant difference in the response to mechanical, cold and heat stimuli 

at any time point (A, B, C; n=6 per group). However the same group of TNT animals tested 

thirty minutes after yohimbine (30μg, i.t.) administration developed clear contralateral 
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mechanical allodynia (A) cold allodynia (B) and heat hyperalgesia (C) at all tested time 

points. 

D)This yohimbine (30μg, i.t.) unmasking of sensitization was transient peaking between 15 

and 45 minutes after dosing and was reversible over the course of an hour (for cold 

allodynia, n = 4).  No residual sensitisation was evident after 90mins or on testing the 

following day.  This sensitisation was mimicked by administration of the α2-AR antagonist 

atipamezole (50μg, i.t., n=4) but not by prazosin (n=3) or vehicle (n=4). 

Data expressed as mean±SEM. Comparisons between vehicle and yohimbine for TNT 

animals (A, B, C) by two-way ANOVA with Bonferroni post tests..  Comparisons against 

baseline values, indicating onset of sensitization, by one-way ANOVA with Dunnett’s 

multiple comparison test (D).  (* - P<0.05, ** - P<0.01, *** - P<0.001) 

Figure 5. Yohimbine unmasks contralateral dynamic mechanical allodynia and increases 

superficial lumbar dorsal horn c-fos expression in TNT rats. A) Timecourse of contralateral 

dynamic mechanical allodynia evoked by intrathecal yohimbine (30μg). The proportion of 

brush evoked withdrawals (per 5 brush tests, n=3) was significantly and transiently 

increased for around an hour.  B) Repeated brush stimulation (for 8 minutes) after 

yohimbine administration greatly increased the expression of c-fos in the superficial dorsal 

horn at L5 compared to control TNT animals (n=5 per group, unpaired t-test; ** - P<0.01).  

Shown below in representative sections from (C) control TNT and (D) TNT + yohimbine 

animals (arrow heads mark c-fos positive nuclei).  

Figure 6. Yohimbine unmasks contralateral hypersensitivity to a ramped heat stimulus.  
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In anaesthetised TNT and sham rats (19-21 days post surgery) the thermal withdrawal 

threshold to a ramped (7.5°C/s) contact heat stimulus delivered to the ipsilateral or 

contralteral hindpaw was assayed before and after yohimbine (30μg, i.t.). (A) TNT animals 

showed ipsilateral heat hyperalgesia (lower heat withdrawal thresholds) compared to sham 

(one-way ANOVA with Bonferroni post test; * - P<0.05, ** - P<0.01). This ipsilateral 

sensitization was not altered by intrathecal yohimbine. (B) The ipsilateral heat sensitivity in 

TNT animals was completely reversed by intrathecal α2-AR agonist clonidine (15µg, n=3) and 

withdrawal responses were no longer elicited below the cut off threshold (58°C).  (C) TNT 

animals showed similar contralateral heat withdrawal thresholds to sham. Yohimbine 

unmasked contralateral heat hypersensitivity with significantly lowered thresholds (one-way 

ANOVA with Bonferroni post test; ** - P<0.01). (D) Time course of yohimbine unmasking of 

contralateral heat hypersensitivity showing onset and reversibility over 60 minutes (n=4, 

one-way ANOVA with Tukey’s multiple comparison post test; ### P<0.001).  
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