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Abstract 

Context: Genotype plays an important role in influencing bone phenotypes, such as bone 

mineral density, but the role of genotype in determining responses of bone to exercise has yet 

to be elucidated.      

Objective: To determine whether 10 SNPs associated with genes in the vicinity of P2X7R, 

RANK/RANKL/OPG and Wnt Signalling Pathways are associated with bone phenotypes in 

elite academy footballers (Soccer players) and to determine whether these genotypes are 

associated with training induced changes in bone. 

Design, participants, and methods: 99 elite academy footballers volunteered to participate. 

Peripheral computed tomography of the tibia (4%, 14%, 38% and 66% sites) was performed 

immediately before and 12 weeks after an increase in football training volume. Genotypes 

were determined using proprietary fluorescence-based competitive allele-specific PCR 

assays. 

Results: No significant genotype x time interactions were shown for any of the SNPs 

analysed (P > 0.05). A main effect of genotype was shown. SOST SNP rs1877632 (trabecular 

density), P2X7R SNPs rs1718119 (cortical thickness and CSA), rs3751143 (SSI, CSA, 

cortical CSA and periosteal circumference) RANK/RANKL/OPG SNPs rs9594738 

(periosteal circumference), rs1021188 (cortical thickness and CSA) and rs9594759 (cortical 

density) were associated with bone phenotypes (P < 0.05).   

Conclusions: No association was shown between P2X7R, RANK/RANKL/OPG and Wnt 

Signalling SNPs and a change in bone phenotypes following 12 weeks of increased training 

volume in elite academy footballers. However, SNPs were associated with bone phenotypes 

pre training. These data highlight the complexity of SNPs in the vicinity of the 

RANK/RANKL/OPG, P2X7R and Wnt metabolic regulatory pathways with bone phenotypes 

in elite academy footballers.   

 

 

 

 

  



Introduction  

 

Attaining a heightened bone mass in early adulthood is important for long-term bone health 

and the prevention of osteoporosis [1], which makes the adolescent population highly relevant 

for investigating how bone responds to exercise. The osteogenic effects of football are greater 

than in other sports [2;3], most likely due to the high magnitude, frequency and multi-

directional nature of the movements that football training and match play necessitate [4]. Bone 

Mineral Content (BMC) [3;5], areal Bone Mineral Density (BMD) [6] and cortical cross 

sectional area (CSA), circumference and thickness [7], as well as bone strength [8], have all 

been shown to be increased in recreational football players compared to sedentary control 

populations. Bone adaptions have also been shown in the same cohort of adolescent elite 

footballers used in the present study after only 12 weeks of increased volume of football 

training [9].   

 

Despite this, negative bone related responses to exercise have been shown in football players. 

Participation in unaccustomed exercise and rapid increases in training volume, for example, 

have been implicated in the development of stress fracture injury [10]. The reasons for exercise 

eliciting both positive and negative changes to bone structural properties are multi-faceted and 

are likely to involve the mode, intensity and volume of exercise, as well as various intrinsic 

and extrinsic factors [11]. 

          

There is a lack of information relating to the mechanisms that may regulate the individual 

adaptations that are caused by exercise participation. Genotype has been associated with 

osteoporosis [12], stress fracture injury [9;13] and bone turnover [14;15]. It has been suggested 

that genotype may mediate the bone response to exercise and may explain some of the 

variability observed in bone adaptations [16]. Despite evidence of genetic factors being 



associated with bone phenotypes, little is known about how genotype mediates the bone 

response to training volume.   

 

The aim of the present study was to investigate whether a genotype dependent change in bone 

phenotypes is evident in adolescent academy footballers following 12 weeks of increased 

football-specific training. 

 

Method 

Participants  

 

First year, full-time male academy footballers (n=117) were recruited through previously 

established relationships with Nottingham Trent University and by word of mouth from five 

full-time football academies to form the Bone Adaptation in Academy Footballers cohort. 

Participants were deemed eligible for the study if they were aged ≥16 y, not currently taking 

any medication that influenced bone metabolism and had not received a joint replacement or 

prostheses. After reading the participant information sheet and being fully briefed and having 

the opportunity to ask questions, participants signed a statement of informed consent, 

completed a pre-scan screening form and completed a health screen questionnaire, which was 

scrutinised in order to confirm that they met the inclusion/exclusion criteria. Participants 

detailed their playing position, the age at which they first played competitive football and the 

amount of hours they spent training prior to full-time academy enrolment. 

Following study completion, the respective coach and/or physiotherapist of the football club 

provided information related to each individual’s training time, which included time missed as 

a result of injury for the previous 12 weeks. Fourteen players who received an initial scan were 

lost to the follow-up scan for a variety of reasons (The cohort is described elsewhere, [17]) 



leaving a cohort of n=99 who completed both scans (Figure 1). The study conformed to 

Ionising Radiation (Medical Exposure) Regulations and was approved by the National Health 

Service Research Ethics Committee (reference 12/EM/0183). 

 

Figure 1. Academy footballers assessed and analysed.  

Experimental Design 

 

All participants were recently enrolled full-time academy football players. Participants were 

tested before an increase in training volume during the first week of pre-season training 

including height, body mass and bone phenotypes using pQCT. Participants then conducted 12 

weeks of football specific training with their respective clubs, followed by a repeat of the 

measurements.      

Procedures  

Training Intervention 

 

Academy footballers that were deemed of a suitable standard graduated through the academy 

to become first year scholars. All footballers were habitually accustomed to football training 

and match-play, as part of their representation of the academy in younger age groups. The start 



of the study was timed to coincide with their first experience of full-time training.  Football 

specific training (including, high intensity running drills, small-sided games and technique 

based drills) and match play were conducted by qualified coaches at the respective clubs.   

 

pQCT 

 

pQCT scans were conducted using an XCT 2000 (Stratec Medizintechnik, Pforzheim, 

Germany) to assess the bone phenotypes of the tibia of the dominant leg (the leg the participant 

most comfortably kicked a ball with). Before scanning commenced, the scanner was calibrated 

using a phantom of known density in accordance with manufacturer guidelines. pQCT has 

previously been shown to provide a reliable measurement of bone characteristics in humans by 

our wider research group (CV< 2% for total and Tb.Dn, and CV < 1% for Ct.Dn) [18]. The 

participant’s tibial length was measured to the nearest 1 mm; defined as the midpoint of the 

medial malleolus to the medial aspect of the tibial plateau. The participants leg was then placed 

in the scanner with their foot secured in a purpose built attachment. The leg was aligned and a 

clamp was placed to the knee to reduce the possibility of artefacts by minimising any movement 

of the limb. The participant was instructed to remain as still as possible for the duration of the 

scan. Initially, a preliminary reference point locating scout-view scan was performed in the 

frontal plane to confirm the location of the middle of the distal end plate, which would act as a 

positioning line. Sectional images, 2 mm thick were then obtained at the 4%, 14%, 38% and 

66% sites of the tibia from this reference line with a voxel size set at 0.5mm for all 

measurements. These sites are typically used to analyse trabecular and cortical phenotypes of 

the tibia. A contour mode, with a threshold of 180mg·cm-3, was used to separate soft tissue and 

bone. To analyse trabecular bone, a constant default threshold of 711mg·cm-3 was used to 



identify and remove cortical bone. The integral XCT 2000 software (version 6.20A) was used 

to analyse the pQCT images. 

 

Bone Phenotypes  

 

The following measures were analysed at each site of the tibia: 

4%: total cross sectional area (Tot CSA, mm2) and trabecular mineral density (mg·cm3).14% 

and 38%: Tot CSA, (mm2), cortical CSA (mm2), cortical mineral density (mg·cm3), cortical 

thickness (mm), periosteal circumference (mm) and stress strain index (SSI, mm3). 66%: Tot 

CSA, (mm2) and cortical mineral density (mg·cm3). 

 

The same operator performed all pQCT measurements. If any movement artefacts 

(inaccuracies in the measurement caused by motion) were present following the scan the image 

was classed as invalid and a repeat measure was performed. If an artefact was present in the 

second image the participant was removed from the study in line with radiation exposure 

guidelines. 

 

Genetic Procedures  

 

 

Participants deposited saliva into a 5 mL collection tube that was subsequently mixed with 2 

mL of preservative, in accordance with manufacturer guidelines (Norgen Biotek Corp, Saliva 

DNA Collection kit Thorold, Canada). Genomic deoxyribonucleic acid (DNA) extraction and 

analysis followed procedures outlined by Varley et al. [13]. In short, DNA was extracted in 

accordance with manufacturer guidelines and genotyped using proprietary fluorescence-based 

competitive allele-specific polymerase chain reaction assay. Researchers were blinded to the 

status of the genotyped individuals. The specific genes and SNPs selected for analysis were 



based on previous findings related to genetic governance of bone phenotypes (BMD, 

osteoporosis and fragility fracture) and their locality to a bone regulatory pathway that might 

be responsible for any associations shown. SNPs in the vicinity of RANK/RANKL/OPG, NF-

κB and Wnt signalling pathway, together with SNPs located in close proximity to the P2X7R 

and IL6 genes were selected for genotyping. SNP were not selected based on them being 

representative  of a haplotype within a gene.   

 

Statistical analysis 

 

All data are presented as mean ± 1SD. Distributions of genotypes were tested for maintenance 

of Hardy-Weinberg equilibrium (HWE) using chi-squared.  Paired sample t-tests were used to 

compare participant characteristics and bone phenotypes before and after an increase in training 

volume. Repeated measures ANOVA was used to assess any bone phenotypic changes that 

occurred in relation to genotype as a result of the training period.  P values of <0.05 were 

considered statistically significant. The SNPs selected have known mechanisms for an 

association with bone adaptation, and, therefore, no adjustment was made for multiple 

comparisons. Sample size was decided upon by the use of power calculation for ANOVA 

power model using an Alpha value of 0.05 and estimated root mean square standardized effect 

of 0.35. This produced a requirement of a minimum of 80 participants within two groups to 

achieve a power of 0.8. All statistical analyses were performed with the Statistical Package for 

the Social Sciences (SPSS) version 21.0 (SPSS, Inc., Chicago, IL, USA).   

 

Results 

 

Ninety-nine participants were available for the follow-up procedure. All SNPs were in 

accordance with HWE, produced call rates ≥ 89% and had minor allele frequencies comparable 



to previous literature (Table 1). Participants were made up from a variety of ethnicities (64 

Caucasian, 19 Caucasian/black dual heritage, 11 black Caribbean, 4 black African and 1 Asian) 

and were composed of differing playing positions (42 midfielders, 29 defenders, 19 forwards 

and 9 goalkeepers).     

      

 

Table 1. SNPs for which academy footballers were genotyped, along with Hardy-Weinberg 

Equilibrium (HWE) P value and call rate %.  

  HW P-value Call Rate % 

RANK rs3018362          0.28             89 

RANKL rs9594759 0.11 92 

RANKL rs9594738 0.27 95 

RANKL rs1021188 0.43 96 

P2X7 rs3751143 0.49 92 

P2X7 rs1718119 0.83 95 

Wnt16 rs2707466 0.28 90 

SOST rs1877632 0.42 89 

MP3K rs8065345 0.88 95 

IL6 rs13447445 0.08 91 

   
 

 

Participant characteristics 

 

Body mass significantly increased after 12 weeks of increased training volume, although tibial 

length did not significantly change (Table 2). The amount of training hours per week 

significantly increased (106 %) following full-time academy induction.  

 

Table 2. Characteristics of academy footballers analysed before and after 12 wk of increased 

training volume: mean ± 1SD. * denotes a significant difference (P < 0.01).  

Characteristics (n=99) Pre Post P value 

Height (m) 1.76±0.56 1.77±0.62 0.27 

Body Mass (kg) 70.1±8.5 71.4±8.7 <0.01* 

Tibia length (mm) 387.3±21.3 387.6±20.8 0.41 

Age when first played competitively (y) 9.4±1.4 N/A N/A 

Training (h/wk) 6.2±2.7 11.9±1.6 <0.01* 

  
 



Bone Response to Increased Training 

 

Trabecular (4 % of tibial length) and cortical (14 %, 38 % of tibial length) densities, cortical 

CSA (14 %, 38 % of tibial length), total CSA (66 % of tibial length), cortical thickness (14 %, 

38 % of tibial length) and SSI (14 %, 38 % of tibial length) significantly increased after 12 

week of increased volume training (P < 0.05) (Varley et al., published in Int J Sports Med 2017; 

Table 3).  

 

Table 3. Bone phenotypes (mean±1SD) at 4%, 14%, 38% and 66% of the tibia measured before 

and after 12 weeks of increased volume football specific training in elite footballers.  

    Football n=99  

Bone Phenotype Pre Post % change 

4% site      

Trabecular Density (mg·cm3) 284.2±31.1 289.6±31.1** 1.9↑ 

Total CSA (mm2) 1338.3±149.7 1348.2±147.2 0.7↑ 

14% site       

Cortical Density (mg·cm3) 1057.2±34.5 1066.9±32.7** 0.9↑ 

Total CSA (mm2) 570.1±80.4 572.5±80.0 0.4↑ 

Cortical CSA (mm2) 212.2±21.1 215.8±24.1** 1.7↑ 

Cortical Thickness (mm) 2.85±0.32 2.88±0.34* 1.1↑ 

Periosteal Circumference (mm) 84.3±5.5 84.5±5.4 0.2↑ 

SSI  2034.4±360.2 2061±377.2* 1.3↑ 

38% site       

Cortical Density (mg·cm3) 1108.7±32.0 1115.2±29.9** 0.6↑ 

Total CSA (mm2) 488.8±60.2 489.4±60.1 0.1↑ 



Cortical CSA (mm2) 356.9±40.2 361.5±40.1** 1.3↑ 

Cortical Thickness (mm) 6.05±0.50 6.10±0.57** 0.8↑ 

Periosteal Circumference (mm) 78.0±5.1 78.3±4.6 0.4↑ 

SSI  2054.7±392.8 2101.9±396.1** 2.3↑ 

66% site       

Cortical Density (mg·cm3) 1074.7±27.4 1079.9±22.1** 0.5↑ 

Total CSA (mm2) 9778.1±1072.5 9668.9±1081.2 1.1↓ 

 

(CSA) = cross sectional area. * was used to denote significance P<0.05; ** was used to 

denote significance P<0.01. 

Bone Phenotype Genotype Associations 

RANK/RANKL/OPG 

 

No significant genotype by time interactions were shown for all RANK/RANKL/OPG analysed  

(P > 0.05). A main effect of genotype was shown for RANK/RANKL/OPG SNPs at baseline 

with periosteal circumference (rs9594738), cortical density (rs9594759), cortical CSA and 

thickness (rs1021188) (P < 0.05). Homozygotes for the variant T allele of RANKL SNP 

rs9594738 showed a smaller periosteal circumference compared to those homozygote for the 

common allele and heterozygotes at the 14% site (TT 83.5 ± 4.2 mm; CT 84.1 mm ± 5.9; CC 

84.6 ± 6.2 mm; P = 0.05). No other bone phenotypes measured showed significant associations 

with rs9594738 (P > 0.05). Cortical CSA and thickness at the 14% tibial site were significantly 

higher (10.92 mm2; 4.9 %; 0.17 mm; 6.1 %) in homozygotes for the common G allele of 

RANKL SNP rs1021188 (221.1 ± 25.4 mm2; 2.97 ± 0.38 mm; P = 0.04) in comparison to the 

heterozygotes and homozygotes for the C allele combined (210.17 ± 24.3 mm2; 2.80 ± 0.38 

mm; P = 0.04). Cortical density at the 66% site was significantly less (15.5 mg·cm3, 1.4 %) in 



homozygotes of the C allele of RANKL SNPs rs9594759 after training in comparison to 

homozygotes of the common allele (1069.0 ± 28.7 mg·cm3 compared to 1084.5 ± 24.4 

mg·cm3) (P = 0.03). No significant genotype x time interactions were shown for any 

RANK/RANKL/OPG SNPs analysed (P > 0.05). 

 

Wnt Signalling  

 

 

No time by genotype interactions were shown with SOST SNP rs1877632 or Wnt16 SNP 

rs2707466 (P > 0.05). SOST SNP rs1877632 showed a main effect of geneotype at baseline (P 

< 0.05). Carriers of at least one rare allele were shown to have a greater trabecular density at 

the 4% site when compared to homozygotes for the common allele (295.1 ± 34.4 mg·cm3 in 

comparison to 280.9 ± 28.9 mg·cm3; P = 0.05). Wnt16 SNP rs2707466 was not associated with 

any bone phenotypes  (P > 0.05).  

P2X7R 

 

No significant time by genotype interactions were shown for any of the P2X7R SNPs analysed 

(P > 0.05). A main effect of genotype was shown for P2X7R SNPs rs1718119 and rs3751143 

at basline (P < 0.05). Homozygotes for the rare, gain of function T allele of P2X7R SNPs 

rs1718119 showed a greater cortical thickness at the 38% site (6.38 ± 0.34 mm, TT; 5.91 ± 

0.59 mm CT; 6.22 ± 0.51 mm CC) compared to heterozygotes (P = 0.01). Cortical thickness at 

the 14% site of the tibia was also lower in heterozygotes (2.75 ± 0.38 mm) compared to C allele 

homozygotes (2.92 ± 0.27 mm; P = 0.03) and homozygotes for the T allele (2.97 ± 0.40 mm; 

P = 0.005). A significantly lower cortical CSA at the 14% site was also evident in heterozygotes 

(207.4 ± 25.8 mm2) when compared to homozygotes for the rare (222.1 ± 17.9 mm2; P = 0.03) 

and common allele (219.3 ± 24.4 mm2; P = 0.01). SSI at the 14 % site was greater by 9.0 % 



(187.6 mm3) in homozygotes for the common T allele (2094.9 ± 390.5 mm3) in comparison to 

those heterozygote and homozygote for the rare C allele (1907.3 ± 288.3 mm3; P = 0.02).  

 

Homozygotes of the T allele of rs3751143 had number of phenotypes that were greater when 

compared to CC and CT variations combined; SSI (14 %, 2094.9±390.5 compared to 

1907.3±288.3, P = 0.03; 38 %, 2131.8±405.7 compared to 1947.1±323.6, P = 0.04), total 

CSA (14 %, 579.7±84.3 compared to 543.8±65.5, P = 0.05) and periosteal circumference (14 

%, 85.14±6.07 compared to 82.52±4.90, P = 0.05). 

No significant associations were shown with bone phenotypes in relation to MP3K rs8065345 

and IL6 rs13447445 SNPs (P > 0.05).   

 

 

Discussion 

No time by genotype associations were shown in any of bone phenotypes assessed. It could be 

suggested that the intervention period may have been too short to show genotype dependent 

adaptations. The time scale for bone remodelling has yet to be characterised in an adolescent 

population following an increase in training volume, however, and previous studies have 

shown bone phenotypic adaptions [19] and genotype dependent adaptations [20] after a similar 

intervention period. The lack of time by genotype association may also be due to the academy 

footballers already being habituated to the type of exercise undertaken. There is a lack of 

literature investigating the influence of training and genotype and training on bone structural 

phenotypes. The research that does exist introduces an unaccustomed intervention that 

increases exercise volume, intensity and duration [20]. As the participants in the present study 

had all participated in football training and match-play for a number of years, the influence of 

genotype on change in bone phenotype could have already occurred.  



 

There were, however, some novel main effects of genotype in association with bone 

phenotypes in the current study. Herein we have shown that six SNPs within the vicinity of 

three major bone metabolic regulatory pathways, namely the RANK/RANKL/OPG, Wnt 

signalling and purinergic signalling (P2X7R) pathways were associated with tibial phenotypes 

in elite adolescent, male, academy footballers.  

 

RANK/RANKL/OPG signalling pathway  

 

The T allele of SNP rs9594738 was associated with lower cortical CSA in elite adolescent 

footballers. Although there is no current mechanistic explanation for the associations shown, it 

could be suggested that the variance in genotype may inhibit RANK - RANKL binding and, 

therefore, influence osteoclast differentiation and activation, subsequently mediating bone 

resorption [21]. It has also been suggested that allelic differences in the rs9594738 SNP may 

have a mediatory role in the process by which 1,25-(OH)2D induces RANKL expression in 

osteoblast precursor cells [22]. The key role of rs9594738 is further supported by the absence 

of linkage disequilibrium with other known functional RANK/RANKL/OPG SNPs. rs9594738 

is located in a different haplotype block and has different transcription factor binding sites to 

other previously studied RANK/RANKL/OPG SNPs, meaning it is unlikely to act as a proxy for 

these SNPs, increasing the likelihood that its effects are divergent. It has previously been 

reported that the T allele was associated with lower BMD at the femur and lumbar spine of 

adolescents and elderly Scandinavian [23] and Australian participants [16]. Guo et al., [24] 

reported beneficial effects of the T allele, however, showing it to be protective against 

osteoporotic hip fracture. The reason for the contrasting findings may be due to the ethnicity 

of the populations studied, as the positive effects of the T allele have only been shown in 



Chinese participants. Only 1% of the participants in the current study were from Asian heritage, 

thus showing an association between the variant allele of rs9594738 and adverse bone 

phenotypes in predominantly Caucasian participants.  

 

The minor allele of the RANKL SNP rs1021188 was associated with lower cortical CSA and 

cortical thickness at the 14% site of the tibia. The minor allele of rs1021188 has been associated 

with a greater cortical porosity at the tibia [25] and increased circulating free RANKL [12], 

possibly increasing osteoclastogenesis and bone resorption in carriers of the minor allele. 

Although speculative, the associations shown in the present study, could suggest an uncoupling 

of bone turnover resulting from increased bone resorption, providing a possible mechanistic 

explanation for the findings. These data are in accordance with data showing the minor allele 

to be associated with stress fracture injury in elite athletes [13] and GWAS, reporting an 

association with lower cortical BMD [12] and volumetric BMD [25].  

 

Homozygosity for the minor allele of RANKL SNP rs9594759 was associated with lower 

cortical density at the 66% site of the tibia. Recent evidence suggests that the minor allele of 

rs9594759 is related to an impairment of neuromuscular function and muscular characteristics 

[26]. Muscle is known to absorb some of the impact created by mechanical loading and also 

exerts strain upon the bone during muscular contractions [27;28]. Moreover, pleiotropic effects 

have recently been shown with BMD and lean mass [29]. A deficiency in the muscles ability 

to absorb load may have resulted in the bone undergoing a higher degree of strain and 

influenced the bone phenotypes measured in this and previous studies. These data are in 

contrast to previous research showing the minor allele to be associated with greater BMD at 

the lumbar spine, hip and calcaneus [15;23]. The reason for the difference in findings may be 

related to the differing ages of the participants across studies; with Styrkarsdottir et al. [23] and 



Roshandel et al. [15] demonstrating their positive effects of the minor allele in aged populations 

(mean age ~60 y, male and female). In addition, the training and performance status of the 

cohort might have influenced the direction of the SNP’s effect in the present study, although 

the potential gene-environment interactions are not well understood.  

Wnt Signalling  

 

The association of SOST rs1877632 with trabecular density, suggests that this SNP may 

mediate the early bone remodelling process. Expressed primarily in osteocytes, sclerostin has 

a key role in Wnt signalling as it acts as a negative regulator of bone formation [30]. Sclerostin 

null mice were shown to have increased bone formation, BMD and increased trabecular bone 

mass in comparison to their wild-type littermates [31]. In accordance with the present findings, 

carriers of the rare allele have previously been shown to display a greater BMD at the lumbar 

spine [32], albeit in elderly (mean age ~75 y) participants. That said, the similar percentage 

differences shown between the two studies (present study differences 4.8% and 5.1% compared 

to 6.0% in Yerges et al., [32]) might suggest that the SNPs affect is demonstrated in early age 

and maintained throughout the lifespan.  If confirmed in further large scale studies, this might 

have implications for the early diagnosis of individuals at a heightened risk of bone disorders. 

 

We have previously shown that homozygosity for the C allele is associated with stress fracture 

injury incidence (Varley et al., under review). This seems to oppose the present findings as 

stress fracture incidence has been associated with a decreased BMD [33]. It can be speculated 

that Homozygosity for the C allele may have augmented bone phenotypes in the short-term, 

but, if loading is sustained, a heightened long-term susceptibility to bone weakness occurs as a 

result of increased secondary mineralisation [34]. An alternative hypothesis may be that as 

stress fracture injuries do not commonly occur at the 4% site of the tibia [35], the mechanism 



by which greater trabecular density was shown and the occurrence of stress fracture injury 

could be different. Although interconnected, it is not uncommon for genotype [16], exercise 

[28;36] and pharmaceutical interventions [37] to have divergent effects on trabecular and 

cortical bone. Trabecular bone phenotypes are less of a determinant of bone strength relative 

to cortical bone [38], which may also explain the seemingly contrary findings.   

 

P2X7R  

 

Increased cortical density and thickness were associated with the rare allele of rs1718119 at 

the 14% and 38% tibial sites. These data support previous research showing that the rare A 

allele is associated with stress fracture injury in elite athletes and military personnel [9]. Stress 

fracture injuries commonly occur in the vicinity of the 38% site of the tibia [39] and low CSA 

and cortical thickness are associated with stress fracture incidence [40;41]. This suggests that 

the rare allele of rs1718119 may provide a protective mechanism against stress fracture injury 

by increasing bone structural phenotypes related to bone strength. In vivo studies have shown 

variants in rs1718119 to be related to increased BMD in middle aged (≥50y) osteoporotic men 

and women [42;43] and to reduced susceptibility to vertebral fracture in post-menopausal 

women [44] and osteoporotic men and women [43]. This is the first study, however, to show 

associations between rs1718119 and bone geometry in a young, active population. An allelic 

variation of rs1718119 results in increased receptor functioning related to monocyte activation 

and increased in interleukin-1 alpha and beta release from monocytes and macrophages [45]. 

The close proximity to a permeability gating region is demonstrated in the mediation of pore 

formation [46] and increased permeability to K+ and ethidium+ in comparison to P2X7R wild-

type mice [45]. Increased cortical thickness and CSA at the 14% site were also shown when 

comparing homozygotes of the common allele with heterozygotes. These differences are 

interesting, since the rare allele would have been expected to confer a gain of function based 



on its known mechanistic function [45]. It can be speculated that gene-gene and/or gene-

environment interactions may have occurred in which those homozygous for the common allele 

compensated for the loss of function via another SNP. It is impossible to substantiate this 

hypothesis in the present study, but data in mice have demonstrated gene-gene and gene-

environment modulation related to exercise [47].    

 

The variant C allele of SNP rs3751143 was associated with less bone strength (SSI), periosteal 

circumference, total and cortical area. The known cellular function of rs3751143 makes the 

present findings unsurprising. Homozygosity for the C allele has been shown to cause a 

complete loss of receptor function, whereas heterozygotes have half of the receptor 

functionality [48]. Our data are in line with studies conducted in vitro, showing the C allele of 

rs3751143 to be associated with osteoclast apoptosis [49], reduced pore formation [48] and a 

reduction in pro-inflammatory cytokine secretion [50]. In vivo, the C allele has been associated 

with lower hip BMD [43] and a greater risk of fracture [42;49] in elderly participants, and stress 

fracture prevalence in military personal and elite athletes [9]. Taking these findings as a whole, 

it might be suggested that P2X7R SNP rs3751143 has an influence on the bone remodelling 

cycle across a range of populations over the lifespan.   

   

The genotype dependent difference in bone phenotypes in the present study may have 

implications for bone health, and injury risk. Cortical bone size and density are important 

factors in the determination of bone strength [41;51]. Genotype dependent bone phenotypes 

could highlight an area of weakness in the bone remodelling response to loading. This would 

be symptomatic of the early stages of bone injury or reflect subtle bone weaknesses, which 

could have the same mechanisms as bone disease in later life. Gene-environment interactions 

remain a poorly understood area of investigation and warrant genome wide exploration in large, 



heterogeneous populations with the use of bioinformatics resources to examine how various 

genetic and environmental interactions combine.     

 

Despite being the largest known study to undertake such an investigation, it is not without 

limitation. Despite the participants being largely homogenous; participants were of equivalent 

age and all male, they had similar lifetime and recent training histories and environment 

variables, such as the time of year the scan took place and dietary habits (participants ate two 

meals per day together at their club), ethnicity and specific training stimulus (academy players 

were from 5 different clubs, and played in numerous positions) were not controlled. The 

impossibility of recruiting a large number of participants in the present study, due to the 

uniqueness of the population, meant that population stratification methods, such as family-

based design, genomic control and principal components analysis were not conducted. Whilst 

heterogeneity in ethnicity is acknowledged as variable factors in the present study, in order to 

gain a representative sample group from the population studied, all ethnicities were included 

in the analysis. Epiphyseal growth plate fusion and maturation status was not assessed. 

Artifacts as a result of unfused growth plates could have produced artifacts in these indiviudals 

at the distal measurement site, but maturation is unlikely to have influenced the findings due 

to the relatively short follow-up period (12 weeks) [52]. Although studies have shown changes 

in bone phenotypes [19;20] in a ~12 week period, the short follow-up time of 12 weeks in the 

present study may be the reason for no genotype by time differences being shown. A study 

with a longer follow-up time is advised, but this type of study is difficult to administer in an 

elite athlete population. No significant differences occurred in tibial length, ensuring the same 

tibial site was being scanned during both visits. Only the tibia was assessed in the present study 

and so, the bone changes shown cannot be generalised to changes in bone structure at other 

anatomical locations.  



 

Conclusions 

 

Although, no genotype dependent change in bone phenotypes related to pQCT measures were 

shown following 12 weeks of increased training, six SNPs were associated with bone 

characteristics and an increased training volume in elite male, adolescent footballers. These 

data highlight the importance of SNPs in the vicinity of the RANK/RANKL/OPG, Wnt, P2X7R 

metabolic regulatory pathways with bone phenotypes in adolescents. The associations of SNPs 

with distinct bone phenotypes at different tibial sites highlight the complexity of the genetic 

contribution to bone morphology.  
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