
 Available online at www.sciencedirect.com

Procedia Computer Science 00 (2013) 000–000
www.elsevier.com/locate/procedia

2013 International Conference on Computational Science

Dynamic Data-Driven Architecture for Adaptive QoS
Optimization in the Cloud

Tao Chena1, Rami Bahsoona, Georgios Theodoropoulosb

aSchool of Computer Science, University of Birmingham, B15 2TT, United Kingdom
bIBM, Research Lab, Dublin, Ireland

Abstract

Cloud computing urges the need for novel on-demand approaches, where the Quality of Service (QoS) requirements of
cloud-based services can dynamically and adaptively evolve at runtime as Service Level Agreement (SLA) and
environment changes. Given the unpredictable, dynamic and on-demand nature of the cloud, it would be unrealistic to
assume that optimal QoS can be achieved at design time. As a result, there is an increasing need for dynamic and self-
adaptive QoS optimization solutions to respond to dynamic changes in SLA and the environment. In this context, we posit
that the challenge of self-adaptive QoS optimization encompasses two dynamics, which are related to QoS sensitivity and
conflicting objectives at runtime. We propose novel design of a dynamic data-driven architecture for optimizing QoS
influenced by those dynamics. The architecture leverages on DDDAS primitives by employing distributed simulations and
symbiotic feedback loops, to dynamically adapt decision making metaheuristics, which optimizes for QoS tradeoffs in
cloud-based systems. We use a scenario to exemplify and evaluate the approach.

Keywords: Cloud Computing; QoS Optimization; QoS Sensitivity; Multi-objective Optimization; Distributed Simulation

1. Introduction

Cloud computing enables dynamic scalability and on demand provision of software and hardware resources,
which can be bought or leased. Software-as-a service (SaaS) may support different concrete services with
varying QoS requirements. Examples of these QoS may include: response time, throughput, availability,
security, and so forth. In such context, QoS tend to be sensitive to two types of primitives: these are
Environmental Primitive (EP) and Control Primitive (CP). We posit that CP can be either software or
hardware, which could be managed by cloud provider to support QoS provisioning. In particular, software CPs
are software tactics; such as the number of threads in thread pool and its life time, the number of connections in
database connection pool, security and load balancing policies etc. Whereas, hardware CPs are computational
resources, such as CPU, memory and bandwidth. These software and hardware CPs are offered at the Platform-
as-a Service (PaaS) [9] and Infrastructure-as-a Service (IaaS) [10] fonts respectively, each with varying prices.
On the other hand, we relate EP to highly dynamic scenarios, which can significantly influence the QoS but the

1* Corresponding author.
E-mail address: txc919@cs.bham.ac.uk (Tao Chen), r.bahsoon@cs.bham.ac.uk (Rami Bahsoon)

mailto:txc919@cs.bham.ac.uk
http://www.sciencedirect.com/science/journal/18770509
mailto:r.bahsoon@cs.bham.ac.uk

Author name/ Procedia Computer Science 00 (2013) 000–000

provider can not manage and control their behavior. Examples include unbounded workload and unpredictable
bound received data etc. If the provider would be able to control the presence of these scenarios, such
primitives can be then considered as CPs. The promises of maintaining and achieving QoS are reflected in
Service Level Agreement (SLA). A SLA is a binding contract between cloud end users and cloud-based
applications providers. For a given QoS with its budget and capacity constraints, CPs can be allocated
accordingly to improve QoS. The improvement is said to be optimal if we reach the best possible value of the
QoS using the allocated primitives, while not leaving any of these primitives idle. However, cloud-based
applications and services involve the case of over-provision (SLA is satisfied, but provisions are left as idle)
and under-provision (provisions are insufficient for guarantee the agreed QoS in SLA) of CPs. For consumers,
these could result in operational, legal, and financial hazards. For providers, these may drive consumers to
switch to other competitive providers. To this end, the dynamic nature of cloud and the serious consequences of
over-/under-provision lead to the highly, and timely demand for self-adaptive QoS optimization solutions.

Existing research [4,5,6,7,14,18,20] has been focusing on QoS driven hardware CPs management in the IaaS
font. However, little attention has been devoted for managing software CPs at the PaaS layer. Such layer will
facilitate the development and the deployment of cloud-based services by delivering a computing platform and
Software Solution Stack, which includes middleware (e.g. Tomcat [11], JBoss [12], and JOnAS [13]),
programming APIs or SDKs (Software Development Kit) [9], and even development environment. Both the
computing platform and Software Solution Stack can be configured or influenced by various software CPs. In
addition, those primitives tend to be heterogeneous as they can be customized by the PaaS provider. For
instance, they are adjustable in either per-application or per-service basis; or they can be interpreted in different
forms based on underlying middleware. The software CPs and their heterogeneity have been shown to
influence QoSs significantly [14,15]. Therefore we argue that the QoS optimization process should cater for
both the software and hardware CPs.

Because the cloud tends to be highly dynamic and elastic in nature, adaptively optimizing QoS in relation to
its primitives is a complex and challenging problem. In particular, we posit that the challenge of self-adaptive
QoS optimization encompasses the following dynamics:

Dynamic QoS sensitivity: Given a set of primitives, it is imperative to have a QoS model that capable to
predict the achieved QoS with respect to its sensitivity to both EPs and CPs. By sensitivity, we are specifically
interested in answering these related questions: (i) Which primitives can influence the QoS provision? (ii)
When do these primitives influence QoS? (iii) How the uncertainty of QoS provision can be apportioned and be
sensitive to these primitives? The QoS model and analysis of its sensitivity can assist in determining the
sufficient provisions of CPs to achieve certain QoS objectives. However, current QoS modeling approaches
[4,5,6,7,14,18,20] have failed to consider some dynamic concerns of sensitivity: 1) QoS granularity. These
QoS models tend to focus on the mean and aggregate QoS for the entire application. Such coarser granularity
suffers from limited sensitivity to change and to the fluctuation in individual QoS in relation to their
primitives. 2) QoS interference. By interference, we refer to scenarios where fluctuation of the primitives can
directly (or indirectly) interfere with related services and consequently the correlated QoS. For instance, as the
workload of a given service increases, it will trigger a demand for more threads of a service. This implies that
the throughput of the said service would be improved because more requests can be processed concurrently.
However, such change of workload and demand on thread could interfere with other services running on the
same Virtual Machine (VM). This is because the said service tends to consume more of the shared allocated
computational resource. 3) Cloud dynamics. Cloud-based applications tend to be dynamic: service composition
and deployment strategies can dynamically change at runtime as the requirements and environment change.
Such changes can introduce new primitives, phase out some primitives and affect the demand on CPs etc. All
the above concerns tend to be dynamic, which drives constant changes of which, when and how primitives can
influence the uncertainty of QoS and thereby, result in dynamic QoS sensitivity.

Dynamic conflicting objectives: QoSs may be sensitive to the same CP and thus create chance for
conflicting. In particular, QoS optimization involves multiple non-combinable and possibly conflicting

Author name/ Procedia Computer Science 00 (2013) 000–000

objectives (e.g, throughput versus cost, replica consistency versus performance and security versus
performance etc). Such conflict requires dynamic resolution for the involved tradeoffs on the fly, especially
when the related SLA/QoS requirements could subject to change in runtime. In addition, conflicts can be inter
services (i.e. tradeoffs between QoS of multiple services) and intra service (i.e. conflicts and tradeoffs for a
specific service). As a result, the decision making during optimization involves various constraints and
significant trade-offs, which need to be handled at runtime. Existing approaches are either based on single
objective [4,5,6] or assume static and limited number of objectives and constraints [7,8]; henceforth, they tend
to have limited adaptivity and online dynamics for finding the best trade-offs in the cloud.

By interlinking the aforementioned concerns, we argue that dynamic and self-adaptive QoS optimization
problem can be formulated and resolved as a Dynamic Multi-objectives Optimization Problem (DMOP). The
process incorporates dynamic tradeoffs decision making, where the dynamics are attributed to continuous
changes in the objective function, their degree of conflict and constraints. To the best of our knowledge, we are
the first to propose a single solution that simultaneously considers the aforementioned dynamics and concerns
for the problem of dynamic and self-adaptive QoS optimization in cloud. Addressing those concerns and
dynamics urges the need for an architecture that continuously make decisions towards better QoS, while
adaptively learning about the most up-to-dated QoS sensitivity and constraints from the physical system for
optimizing QoS in a proactive manner. Dynamic Data-Driven Applications Systems (DDDAS) [2] are known
as particularly suitable for implementing such adaptive and symbiotic systems. The key concept of DDDAS
paradigm is to combine a simulation system and a physical system synergistically in a closed feedback loop. In
doing so, the physical system can be influenced or controlled by the simulation system whereas the simulation
system can consolidate itself by monitoring the state of physical system. Consequently, such bidirectional
model is a promising approach to fulfill the requirements for self-adaptive QoS optimization in the cloud.

In this paper, we describe the architecture of a DDDAS-based solution. In this architecture, simulators are
attached to each replica of services, those simulators are designed to optimize for QoS per-service and
consolidate themselves with the most up-to-dated QoS sensitivity model. Each simulator collects data from
multiple services and interacts with others in a peer-to-peer manner, but the continuous modeling of QoS
sensitivity and QoS optimization decision making are done locally. By separating the intensive modeling and
optimization processes, it is possible to prevent bottleneck of centralized decision making. As a result, we are
able to adopt sophisticated metaheuristic decision makers towards optimal trade-off decision for QoS
optimization. We report on the design of this solution and its basic elements. We empirically evaluate our
solution via a case study.

In the rest of the paper, section 2 presents our assumptions and model of the problem. The architecture and
details of its components are proposed in Section 3. Section 4 presents a case study of using our approach while
Section 5 reviews the related works. Section 6 concludes the paper with future research directions.

2. Modeling the Problem

We start off by presenting our assumptions and how the QoS optimization problem can be formulated as a
DMOP. We assume that cloud-based application is formed of one or more independent or composable services.
Applications are hosted on the cloud infrastructure where resources are shared via Virtual Machines (VMs). It
is possible to host multiple applications on the same VM. However, in this work we assume one-to-one
relationship between an application instance and a VM instance.

An application, composed of concrete services {S1, S2, … Si} may have multiple replicas deployed to
different VMs. A replica of an application running on a VM is assumed to have its services replicas running on
the same VM. In this work, we refer the replicas of concrete service as service-instances; the jth service-
instance of the ith concrete service is denoted by Sij. The primitives, which a QoS is sensitive to are called
sensitive primitives. Different service-instances may reside on different VM instances, therefore their QoSs
could have heterogeneous sensitive primitives and Physical Machine (PM) capacity. In this context, we
consider fine-grained, per-service QoS optimization. More precisely, we tend to dynamically optimize for QoS

Author name/ Procedia Computer Science 00 (2013) 000–000

in relation to the service-instances, through considering the possible conflicts and various fluctuation in given
scenarios. As the application is composed of one or more concrete service and their associated instances, QoS
optimization on each concrete service (and their instances) would result in emergent optimization on the whole
application. SLA negotiation is an important but out of scope topic for this paper, thus as SLA evolves, we
assume that changes are reflected, negotiated and approved.

We argue that engineering a self-adaptive QoS optimization solution for the cloud should be holistic and
should cover the objectives from three clouds layers: SaaS, PaaS, and IaaS. Optimization across the three layers
do crosscut and influence the global objective. In this context, for each service-instance Sij, we consider
different objectives in QoS optimization with respect to cloud layers: 1) for SaaS, the objectives are the
optimizations of different QoSs for every service (in relation to their instances) that contracted in the SLA. 2) at
PaaS and IaaS, the objective is to minimize the total cost of software and hardware CPs provisions.
 To model the QoS optimization problem, we first define that the QoS and primitive for each service-instance
should be associated with three properties:

1. Measurement: Measurement property defines how a QoS and primitive can be measured at runtime.
2. Objective: Objective represents the hypothetical value of achieved QoS or the expected cost of CP. The
objective is not applicable for the unmanageable EP.
3. Constraint: Constraint consists of the threshold of QoS, budget or the CP capacity, as specified in SLA.
Note that these constraints may need to be translated for each service-instance. For instance, the budget may
be specified for a concrete service, therefore it needs to be equivalently partitioned to all the related service-
instances. However, constraint like response time should be identically applied for each instance. Constraint
is not applicable for the unmanageable EP.

Formally, the QoS sensitivity model of the kth QoS of a service-instance Sij can be formulated as:

QoS k
ij= f (CP1

11 ,...CPa
xy , EP1

11 , ... EPb
mn) s.t. CPa

xy , EPb
mn∈SP k

ij (1)

where QoS k
ij (t) is the kth QoS of Sij, f is the QoS objective function, which subjects to change dynamically.

The objective of formula (1) is to minimize or maximize the achieved QoS. To cope with QoS interference and
cloud dynamics, we denote SP k

ij as the set of sensitive primitives of QoS k
ij . CPa

xy and EPb
mn denote the ath CP

of service-instance Sxy and the bth EP of service- instance Smn respectively. The entries in SP k
ij are selected from

the primitives that associated with Sij and other related services. In particular, a primitive of a service-instance
is considered as an entry if fluctuation of the said primitive positively or negatively interfere QoS k

ij . Certain CP
provisions can be partitioned to each service-instance (e.g. per-service database connection), whereas others
(i.e. CPU, memory) are subject to be used in a sharing way. By sharing we refer to the amount of provision is
accessed by multiple service-instances in a competitive manner. When SP k

ij involves sharing CPs, the
redundant column entries should be merged as they are referring to the same CP.
 The kth CP of service-instance Sij may be provisioned with certain cost, therefore the total costs model for Sij

with n CPs is represented as:

Cost ij=∑
k=1

n

g (CPk
ij ,P k

ij) (2)

where g is the predefined, unify cost function for each type of CP and n is the total number of CP type that used
by service-instance Sij. Pk

ij
 denotes the corresponding price of the kth CP for service-instance Sij, in this work,

we assume that the price of each CP type is fixed for all consumers and their service-instances. The objective of
formula (2) is to minimize the cost. As mentioned, if multiple service-instances are sharing the same CP
provision, the cost of such CP is equally proportioned to each of those instances.

To this end, any group of QoS or cost models that are sensitive to the same CPs (regardless if such CP is
shared) implies that their objectives could be potentially conflicting to certain degree, thereby at this stage, our
goal is to continuously optimize every group of possible non-combinable and conflicting objectives by

Author name/ Procedia Computer Science 00 (2013) 000–000

determining the best combination of CP provisions. More formally, for every group of conflicting objectives,
the problem can be formulated as the following multi-objectives optimization problem:

Max / Min(o11, o12. .. oij) (3)

The oij denotes the vector of objectives for a service-instance Sij, formally expressed as:

oij=〈QoS 1,
ij QoS 2

ij ...QoS k
ij ,Cost ij ⟩ (4)

whether an objective in formula (4) is to maximize or minimize depends on the nature of that objective. In
particular, these objectives are subject to:

(∀QoS k
ij∈oij)≥SLAk

ij (5)

Cost ij≤Budget ij (6)

(∀CPa
ij∈QoS k

ij)≤Capacity a (7)

where formula (5) states that any QoSs should meet its minimum requirement in SLA. (6) denotes the total cost
of each service-instance should not exceed its budget. Finally, (7) represents any provision of CP that
influences the QoS or total cost objectives should not exceed the capacity of underlying hardware or software.

3. Data-Driven Architecture for Adaptive QoS Optimization in Cloud

In this section, we describe the DDDAS-inspired architecture to solve the problem. We also describe the
techniques that were designed to support the components in our DDDAS-inspired architecture.

3.1. DDDAS based architecture

As shown in Figure 1, service-instances in the cloud are running with symbiotic, distributed and
decentralized simulators. More precisely, to prevent bottleneck of centralized control, each service-instance is
attached with a dedicated simulator instance, which is linked to the VM where the service-instance is deployed.
Those simulators collect online data from the monitors and analyze the state of service-instances; they aim at
providing more accurate predictions of the QoS in relation to its primitives and optimizing QoS tradeoffs. To
achieve these goals, our DDDAS based architecture consists of two independent inner loops within the global
feedback control. The first inner loop periodically updates QoS models by dynamically capturing QoS
sensitivity of the attached service-instance and detecting changes in constraints based on sensing data (step 1-
4.1). The second inner loop applies iterative, metahueristic-based optimization to search the best combination
of CP provisions, and simultaneously take into consideration all objectives that potentially conflicted with those
of the attached service-instance (step 5). Specifically, our architecture optimizes QoS via the following steps:

Step 1: Data sensor collects data from the underlying service, platform and infrastructure managers. This
data includes the currently achieved QoS, EP of service and demand of CP (both software and hardware
CPs), as well as the agreed constraints in SLA. In particular, data sensors should sense all the likely
sensitive primitives, from the attached service-instance and even other related service-instances (see section
3.3 for details).
Step 2: Primitives selector analyses all historical data from data sensors; its goal is to determine which and
when primitives can influence a QoS.
Step 3: Once the sensitive primitives for a QoS are selected, the QoS objective function trainer applies
machine learning techniques to determine how primitives influence QoS, by training the objective functions
for each QoS of the corresponding service-instance.
Step 4.1: The steps from 1-3 are run periodically to ensure dynamic QoS sensitivity can be fully captured.

Author name/ Procedia Computer Science 00 (2013) 000–000

Step 4.2: At a given sampling interval, data is sensed to determine under or over provision states. The QoS
objective function trainer could then triggers the optimization process with the trained QoS model. Due to
the dynamic nature of the DMOP, this step may be repeated when the optimization is running for evaluating
solutions with the most up-to-dated QoS model and SLA constraints. Such process can be achieved without
restarting the entire optimization because of the nature of the used metahueristic techniques.
Step 5: Based on the QoS sensitivity model, it is possible to optimize QoS by proactively preventing under-
or over-provision states. In particular, the QoS optimizer iteratively search for better combination of CP
provision by looking ahead the predicted QoS for next interval, while considering the conflicting objective
and constraints. The process terminates when it reaches its maximum number of iterations.
Step 6: The QoS optimizer feedbacks to the PaaS and IaaS cloud provider for provisioning the decided CP.
Hence, the service and application can be scaled up/down or in/out accordingly.

 Fig. 1. Cloud Architecture incorporating DDDAS

To this end, it is clear that the info-symbiotic DDDAS paradigm is able to adaptively optimize QoS of
cloud-based service-instances via the simulators. On the other hand, DDDAS can further consolidate the
simulators in terms of modeling QoS sensitivity and detecting the changes of SLA constraints through
continuous sensing the service-instances. In the next sections, we describe the components of Figure 1.

3.2. Data sensor

 The Data sensors are designed to collect QoS values for a given service-instance, and they are also
responsible for collecting data related to the likely sensitive primitives (see section 3.3 for details), SLA and
capacity constraints from the said service-instance and other related service-instances. In this work, we assume
that the measurement features are offered by the PaaS facilities and IaaS hypervisors.

3.3. Primitives selector

 To provide a solution for formula (3), we must have QoS sensitivity models in formula (1) that are capable
to dynamically determine how QoS objectives can be achieved and their degree of conflict. In such context,
identifying the SP k

ij for certain QoS k
ij is difficult, especially SP k

ij may be continuously changing due to the
dynamic nature of cloud. Primitives selector is responsible for determining which and when certain primitives

Author name/ Procedia Computer Science 00 (2013) 000–000

can influence the QoS at runtime. More precisely, this can be achieved by applying techniques like symmetric
uncertainty [1], which represents mutual dependency between two random variables. A symmetric uncertainty
value of 1 means two variable are closely correlated whereas a value of 0 implies that they are independent.

 For each QoS of a service-instance Sij, the likely sensitive primitives could be selected from two sets of
services: firstly, the service-instances on the same VM that Sij belongs to (include itself) and secondly, service-
instances that functionally required by Sij. We observe that the primitives from those service-instances are most
likely to result in non-zero symmetric uncertainty value with Sij's QoS. The selection of primitives should be
run continuously, henceforth any changes of the sensitive primitives can be known and then updated.

3.4. QoS objective function trainer

 Recall from formula (1), once the SP k
ij is defined by the primitives selector, our next goal is to determine

how those primitives influence QoS k
ij , taking all sensitive primitives as inputs. QoS objective function trainer

is responsible for training QoS objective function for its corresponding service-instance. In particular, we
promote the use of machine learning techniques, for example, Artificial Neural Network (ANN) [16] and Auto-
Regressive Moving Average with eXogenous inputs model (ARMAX) [17] to model such objective function. It
has been proven that they are capable to produce accurate model without knowing internal structure of the
service and underlying infrastructure [18,20]. As a result, those modeling techniques are superior to closed-
form models (e.g. queuing network) as they do not rely on fixed assumptions of QoS sensitivity. In particular,
the data that feed into those models should be normalized values, which can be calculated as the ratio between
current value at interval t and the biggest ever value through the entire time series. We conduct the training with
normalized values because the original measurements have arbitrary magnitude, which obfuscates the
sensitivity of output to inputs and consequently the accuracy of model. To cope with dynamics, the function f
shall be continuously trained with the newly-measured values. For improving prediction accuracy, i t is possible
to apply multiple machine learning techniques simultaneously, in which case the resulting model with the least
percentage error would be used for certain point in time.

QoS objective function trainer is also responsible for determining whether to trigger the optimization
process based on the sensed data of its corresponding service-instance. More concretely, once the attached
service-instance is under/over provision, the trained QoS sensitivity models are then passed to the QoS
optimizer.

3.5. QoS optimizer

 Objectives are said as potentially conflicted if their models are sensitive to the same CPs. For each attached
service-instance, QoS optimizer locally identifies the potential intra service conflicting objectives. However as
mentioned, conflicting objectives could occur inter services. To cope with this problem, simulators need to
continuously interact with each others in a peer-to-peer manner. More precisely, each QoS optimizer acquires
the constraints, QoS sensitivity and cost models from the service-instances, which are 1) functionally required
by the attached service-instance; 2) deployed on the same VM as the attached service-instance and its
dependent service-instances; 3) from other VMs but sharing the same CP with the attached service-instance
(i.e. a global control of load balancing policy for all instances of a service). In doing so, we can identify all the
potential conflicting objectives and they can be optimized on one simulator. To prevent duplicate optimization,
the QoS optimizer also needs to continuously make sure that an objective is not currently being optimized
within another optimization process; if this is not the case then the current optimization should be aborted. This
solution is potentially scalable since different simulators could trigger numbers of optimizations in parallel, as
long as their objectives do not lead to any conflicts.

 Due to the dynamic QoS sensitivity and conflicting objectives involved in cloud based QoS optimization,
greedily optimize QoS is usually very time and resource consuming, therefore it is generally acceptable to

Author name/ Procedia Computer Science 00 (2013) 000–000

optimize QoS to a “good enough” level. In our QoS optimizer, we endorse the use of metaheuristic techniques
like Ant Colony Optimization (ACO) [19] to solve the DMOP in formula (3) as such approach could efficiently
reach sub-optimal solutions under multiple potentially conflicting objectives [7,8]. In addition, they are capable
to cope with dynamic changes of objectives' constraints and their degree of conflict even during the search
process [8]. For each group of potential conflicting objectives, the metaheuristic approach consists of many
iterations for constructing the final pareto set, each iteration is a heuristic searching process based on the given
models and what-if scenario to predict if the objectives can be achieved. These models could be based on (2)
and (1) where (2) is a predefined cost model whereas (1) is the dynamically learned QoS sensitivity model. As
a result, the goal of our QoS optimizer is to determine the pareto optimality that consists of the best
combination of CP provisions for optimizing objectives in (3), considering constraints in formula (5)-(7).

 To cope with dynamics, all solutions are archived and they are re-evaluated when the QoS models are
updated. Because of the heuristic search, such goal can be achieved without the needs to restart the entire
search process. The metaheuristic concludes when it reaches the maximum number of iterations. At the final
stage, the entire pareto set can be sorted based on non-dominated ranking and crowding distance [3], and then
the pareto optimal solution is selected as the ultimate trade-offs decision.

4. Applicability

We describe our architecture through a scenario to demonstrate how QoS of cloud-based applications can be
optimized in a self-adaptive manner. Consider an organization, which owns an online auction application
named abay. Such application provides two important services: 1) Online biding and selling of items (S1) 2)
Tracking the nearest sellers geographically (S2), which is more intensive to resource as it requires more
computation. The QoS requirements for these two services are: security and throughput for S1; throughput for
S2. Suppose the organization wish to move to cloud by integrating their application with a PaaS provider,
named BppEngine. The infrastructure level resources are leased from the IaaS provider Bmazon. Suppose the
PaaS provider provide two software CPs: level of secure constraints and number of database connection.
Suppose again, the IaaS provider offer CPU and memory as hardware CPs. The EP involved in this scenario is
the workload of service. Note that in this case, we refer the throughput as completed request per second,
whereas workload denotes the actual incoming request per second regardless whether they are completed or
not. We assume that by default, abay is deployed as two replicas on two VMs with default provisions. More
precisely, S11 and S21 are deployed on the same VM whereas S12 and S22 are placed on another VM. In such
context, the organization would have different QoS requirements and budgets for S1 and S2 , all of the above
CPs are leased on certain prices with their own capacity, those constraints are shown in Table 1. Note that
certain constraints (i.e. budget and throughput) needs to be translated to each service-instance (e.g. if the
throughput for S1 is 100 req/sec then it would be 50 req/sec for S11). Both providers support a simple cost
function g for each type of CP as: amount of provision times supplying price. To prevent losing consumer, it is
critical for the provider to optimize QoS with just-enough provision.

Upon the initial deployment of services, the consumer or third party middleware provides the measurement
function and information regarding the required services of abay to our data sensors. In this case, all the
services in abay are standalone services.

The first close loop (steps 1-4.1) formed by data sensor, primitives selector and QoS objective function
trainer periodically produces QoS sensitivity model for each service-instance at each interval, even when no
optimization is needed. Such QoS model is a simulation of the most up-to-dated state of the service;
henceforth, it is possible to look ahead to the next interval and predict if it is likely to cause any over or under
provision during the optimization process. Suppose at the ith interval, QoS sensitivity modeling learns that
security of S11 is sensitive to the level of secure constraints for S11 only. Because S2 tends to consume large
amount of resources, the throughput of S11 could be sensitive to CPU, memory of the VM as well as numbers of
database connection and workload for both S11 and S21. In the mean time, the throughput of S21 could be
sensitive to CPU, memory of the VM as well as numbers of database connection and workload of itself only.

Author name/ Procedia Computer Science 00 (2013) 000–000

Now, suppose the actual throughput of S11 drop below 50 req/s, the QoS objective function trainer of S11 then
triggers the QoS optimizer for optimization using metaheuristic (step 5). Objectives that do not lead to conflict
are separated into different optimization processes, each requiring its own metaheuristic. This case would lead
to two groups of process: Firstly, objectives which are related to S11 and S21; and secondly, objectives which
are associated with S12 and S22. The objectives for S11 and S21 are potentially conflicting in an inter and intra
manner since their QoSs are sensitive to the same CPs (throughput of S11 and S21 versus their total cost, security
of S11 versus its total cost and throughput of S11 versus throughput of S21). As a result, the optimization objectives
that should be considered in formula (3) are: security, throughput and total cost of S11 as well as the throughput
and total cost of S12. The QoS optimizer of S11 leverages the trade-off estimated by the QoS and cost model, and
eventually concludes with an optimal trade-off solution.

An example of the final CP provisions and the optimized QoSs for S11 and S21 are shown in Table 1. To this
end, our DDDAS based solution is able to adaptively assist the organization to make good leverage among the
objectives of security and throughput with reasonable cost for each of abay's service (and their instances).

Table 1. Example of provisioned CPs and QoSs after optimization (p/h = per hour)

QoS Provisions of CPs SLA for
(5)

Budget
for (6)

CP capacity for
(7)

Price for (2) Total
Cost

S11 security=0.82
unit

Level of secure constraints for
S11=3

0.7 unit

$3.5 p/h

CPU= 2.88GHz

memory=2GB

level of secure
constraints=5

database
connection=100

CPU=$0.32 per GHz p/h

memory=$0.11 per GB p/h

level of secure constraints
=$0.52 per level p/h

database connection=$0.07
per 20 connection p/h

$2.302
p/h

S11 throughput=63
req/sec

CPU=1.33GHz, memory=1.22GB,
database connection for S11=82,
database connection for S21 =51

50 req/sec

S21 throughput=42
req/sec

CPU=1.33GHz, memory=1.22GB,
database connection for S21=51

40 req/sec
$1.5 p/h $0.459

p/h

5. Related Work

Approaches proposed for QoS optimization have been using static rule-based mathematical model, which
relies on assumptions that a single, optimal solution would be always discovered. In particular, [5] argues that
the problem of finding the optimal VM allocation for QoS optimization can be formulated as the mixed integer
linear optimization problem, which is solved by a heuristic approach. [4] views the QoS driven resource
provisioning in cloud as the mixed integer non-linear programming problem and proposes solution based on
force-directed search algorithm. [14] identifies the importance of software CPs when managing QoS and
proposes a nested double feedback loop for realizing the management process; one for software CPs and one
for hardware CPs. However, unlike the applied DDDAS in this paper, those approaches rely on single
directional model, which means the adaptive controller has limited sensitivity to the changed state of systems.
In addition, they assume fixed and closed-form QoS model. In the truly dynamic cloud, assumptions on fixed
QoS sensitivity and closed-form QoS models are infeasible. Similar to the concept of DDDAS, [6] also
proposes a bidirectional control loop, in which the state of the system is retrieved and stored along with the
action that enables the system to reach such state in a knowledge database, and the system can be influenced by
selecting the proper action in future iteration. Nevertheless, their architecture is centralized, which tends to
cause high latency when the number of service increases. Machine learning techniques have been studied for
managing QoS [18,20], however their consideration of which and when primitives can influence QoS have
been static. In addition, they do not consider software CPs. Our approach resolve all those concerns and we
assume fine-grained QoS with simulators to dynamically model QoS sensitivity based on DDDAS concept [2].

Author name/ Procedia Computer Science 00 (2013) 000–000

 Another broad of approaches take conflicting objective into account and they look at evolutionary heuristic
techniques. Particularly, [7] posits that QoS optimization should be done upon service deployment, and they
propose genetic algorithm based solution for searching the optimal resource plan with consideration of four
objectives. [8] describes a successful use of ACO for finding optimal service workflow for optimizing QoSs to
meet their requirements. However, their approaches rely on fixed assumptions of objective and degree of
conflict. Our approach considers more than four objectives and adopts online metaheuristic using DDDAS,
which adaptively cope with those dynamics and making good trade-offs among numbers of objectives.

6. Conclusion

In this work, we have motivated the need of self-adaptive QoS optimization solution in the cloud. In
particular, we have described the importance of adaptive QoS optimization solution to cope with the dynamics
of conflicting objectives and QoS sensitivity. We have also formulated the QoS optimization problem as a
DMOP and demonstrated the principles and design of our architectural solution using DDDAS concept. The
proposed architecture is exemplified via a case study. In future work, we intend to simulate the behaviors of
more sophisticated composite services in real setting, and report on how our QoS optimization solution caters
for dynamicity and adaptivity, when searching for the optimal objectives trade-off. We will also report on
scalability and elasticity of the approach in terms of execution time.

References

[1] I.H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann: Los Altos, CA, 2005.
[2] Darema, F., C. Douglas, and A. Patra. 2010. The Power of Dynamic Data Driven Applications Systems, Multi-Agency Workshop on
 Info-Symbiotics/DDDAS, Air Force Office of Scientific Research and National Science Foundation, Washington DC, 2011.
[3] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan, A fast elitist nondominated sorting genetic algorithm for multi-objective
 optimization: NSGA-II. In Proc. Parallel Problem Solving From Nature VI Conf. 2000, pp. 849–858.
[4] H. Goudarzi and M. Pedram. Multi-dimensional SLA-based resource allocation for multi-tier cloud computing systems. In Proc. of
 the IEEE Cloud. 2011.
[5] V. Cardellini et al. SLA-aware Resource Management for Application Service Providers in the Cloud. In Proceedings of the 1st
 International Symposium on Network Cloud Computing and Applications, 2011.
[6] V. C. Emeakaroha, M. A. Netto, R. N. Calheiros, I. Brandic, R. Buyya, and C. A. D. Rose. Towards autonomic detection of sla
 violations in cloud infrastructures. Future Generation Computer Systems, 2011.
[7] H. Wada, J. Suzuki, Y. Yamano, and K. Oba. Evolutionary Deployment Optimization for Service-Oriented Clouds. Software: Practice
 and Experience, 2011, 41(5), pp.469-493.
[8] H. Liu, D. Xu and H. Miao. Ant Colony Optimization Based Service flow Scheduling with Various QoS Requirements in Cloud
 Computing. In Proceedings of the 1st International Symposium on Software and Network Engineering, 2011.
[9] Google App Engine, http://code.google.com/appengine/
[10] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/
[11] Tomcat, http://tomcat.apache.org/
[12] JBoss, http://www.jboss.org/
[13] JOnAS, http://jonas.ow2.org/
[14] Y. Zhang, G. Huang, X. Liu, and H. Mei. Integrating Resource Consumption and Allocation for Infrastructure Resources on-Demand.
 In Proceedings of 3rd IEEE International Conference on Cloud Computing, 2010.
[15] J. Li et al. Profit-Based Experimental Analysis of IaaS Cloud Performance: Impact of Software Resource Allocation. In Proceedings
 of the 9th International Conference on Service Computing, 2012.
[16] W. S. Sarle. Neural networks and statistical models, 1994.
[17] G.Box, G.M. Jenkins and G.C. Reinsel. Time Series Analysis: Forecasting and Control, third edition. Prentice-Hall, 1994.
[18] S. Kundu, R. Rangaswami, A. Gulati, M. Zhao and K. Dutta, Modeling Virtualized Applications using Machine Learning Techniques,
 in Proceedings of the 8th International Conference on Virtual Execution Environments, London, UK, 2011, pp. 3-14.
[19] M. Dorigo et al. The ant system: Optimization by a colony of cooperating agents. IEEE Trans. on Systems, Man, and Cybernetics Part
 B: Cybernetics, 26(1), 1996.
[20] Q. Zhu and G. Agrawal, Resource provisioning with budget constraints for adaptive applications in cloud environments, in
 Proceedings of the19th ACM International Symposium on High Performance Distributed Computing (HPDC’10), 2010.

