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Abstract 

NGF (nerve growth factor) and tissue transglutaminase (TG2) play important roles in 

neurite outgrowth and modulation of neuronal cell survival. In this study, we 

investigated the regulation of TG2 transamidase activity by NGF in retinoic acid-induced 

differentiating mouse N2a and human SH-SY5Y neuroblastoma cells. TG2 transamidase 

activity was determined using an amine incorporation and a peptide cross linking assay. 

In situ TG2 activity was assessed by visualising the incorporation of biotin-X-cadaverine 

using confocal microscopy. The role of TG2 in NGF-induced cytoprotection and neurite 

outgrowth was investigated by monitoring hypoxia-induced cell death and appearance of 

axonal-like processes, respectively. The amine incorporation and protein crosslinking 

activity of TG2 increased in a time and concentration-dependent manner following 

stimulation with NGF in N2a and SH-SY5Y cells. NGF mediated increases in TG2 activity 

were abolished by the TG2 inhibitors Z-DON (Z-ZON-Val-Pro-Leu-OMe; 

Benzyloxycarbonyl-(6-Diazo-5-oxonorleucinyl)-L-valinyl-L-prolinyl-L-leucinmethylester) 

and R283 (1,3,dimethyl-2[2-oxo-propyl]thio)imidazole chloride) and by pharmacological 

inhibition of  extracellular signal-regulated kinases 1 and 2 (ERK1/2), protein kinase B 

(PKB) and protein kinase C (PKC), and removal of extracellular Ca2+. Fluorescence 

microscopy demonstrated NGF induced in situ TG2 activity. TG2 inhibition blocked NGF-

induced attenuation of hypoxia-induced cell death and neurite outgrowth in both cell 

lines. Together, these results demonstrate that NGF stimulates TG2 transamidase 

activity via a ERK1/2, PKB and PKC-dependent pathway in differentiating mouse N2a and 

human SH-SY5Y neuroblastoma cells. Furthermore, NGF-induced cytoprotection and 

neurite outgrowth are dependent upon TG2. These results suggest  a novel and 

important role of TG2 in the cellular functions of NGF. 

 

Keywords: cell survival, hypoxia, neuroblastoma cells, neurite outgrowth, NGF, 

transglutaminase 2. 
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1. Introduction 

    Transglutaminases (TGs) are a family of Ca2+)-dependent enzymes that catalyse the 

post-translational modification of proteins (Nurminskaya and Belkin 2012; Eckert et al., 

2014). There are eight distinct catalytically active members of the TG family which 

exhibit differential expression (Factor XIIIa and TGs 1-7).  

    The ubiquitously expressed TG2, which is the most widely studied member of the TG 

family, is involved in the regulation of numerous cellular processes, including cell 

adhesion, migration, growth, survival, apoptosis, differentiation, and extracellular matrix 

organization (Nurminskaya and Belkin 2012; Eckert et al., 2014).  In neuronal cells, TG2 

is involved in neurite outgrowth during differentiation and in neuroprotection following 

cerebral ischaemia (Tucholski et al., 2001; Filiano et al., 2010; Vanella et al., 2015).  

    Transglutaminase 2 possesses multiple enzymic functions that include transamidation, 

protein disulphide isomerase and protein kinase activity (Gundemir et al.,  2012). 

Furthermore, TG2 also has non-enzymatic functions which can modulate signal 

transduction pathways (Nurminskaya and Belkin, 2012).  

    Receptor tyrosine kinases represent a large family of receptors whose prominent 

members include receptors for epidermal growth factor (EGF), platelet-derived growth 

factor (PDGF) and vascular endothelial growth factor (VEGF). It is notable that 

cytoplasmic TG2-mediated transamidase activity participates in EGF receptor signalling, 

whereas the interaction of extracellular TG2 with PDGF and VEGF receptors promotes 

their activation (Dardik and Inbal 2006; Zemskov et al., 2009; Li et al., 2010). These 

observations suggest a major role for TG2 in the modulation of receptor tyrosine kinases. 

However, at present, it is not known if receptor tyrosine kinase activation promotes 

intracellular TG2 activation. A study has shown that prolonged exposure (3-6 days) of 

mouse N2a neuroblastoma cells to nerve growth factor (NGF) promoted increased TG2 

protein expression and TG2-mediated transamidase activity (Condello et al., 2008). 

However, it is conceivable that the increased levels of transamidase activity may reflect 

increased levels of TG2 expression rather than direct activation of the enzyme itself by 

NGF-induced signalling. NGF triggers its biological effects via the tyrosine kinase 
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receptor TrkA (Wang et al., 2014), which when activated stimulates a multitude of 

signalling pathways including ERK1/2 (extracellular signal-regulated kinases 1 and 2), 

PI-3K (phosphatidylinositol 3-kinase)/PKB (protein kinase B) and PLC- (phospholipase 

C-)/PKC (protein kinase C) cascades (Wang et al., 2014). As some of these pathways 

are associated with modulation of intracellular TG2 activity (PKC, ERK1/2 and Ca2+) it is 

conceivable that NGF directly regulates TG2 activity. Since mouse N2a and human SH-

SY5Y neuroblastoma cells are responsive to NGF (Price et al., 2003; Condello et al., 

2008; Dwane et al., 2013), the primary aims of this study were (i) to determine whether 

short term treatment with NGF (<4 h) could modulate TG2-mediated transamidase 

activity in these cells and (ii) to assess the role of TG2 in NGF-induced neuroprotection 

and neurite outgrowth. The results obtained indicate that NGF triggers robust TG2-

mediated amine incorporation and protein cross-linking activity in mouse N2a and 

human SH-SY5Y cells. Furthermore, inhibition of TG2 attenuated NGF-induced 

cytoprotection and neurite outgrowth. Overall, these results suggest a novel and 

prominent role for TG2 in NGF function and signalling. 
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2. Materials and methods 

2.1. Materials 

Nerve growth factor (NGF) was obtained from Merck Millipore (Watford, UK). Akt 

inhibitor XI was purchased from Calbiochem (San Diego, CA). BAPTA/AM (1,2-Bis(2-

aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester), PD 

98059 (2’-amino-3’-methoxyflavone) and Ro 31-8220 (3-[3-[2,5-Dihydro-4-(1-methyl-1H-

indol-3-yl)-2,5-dioxo-1H-pyrrol-3-yl]-1H-indol-1-yl]propyl carbamimidothioic acid ester 

mesylate) were obtained from Tocris Bioscience (Bristol, UK). All-trans retinoic acid, 

casein, Protease Inhibitor Cocktail (for use with mammalian cell and tissue extracts), 

Phosphatase Inhibitor Cocktail 2 and 3, hordereadish peroxidase conjugated-ExtrAvidin®
 

(ExtrAvidin®-HRP) and fluorescein isothiocyanate conjugated ExtrAvidin® (ExtrAvidin®-

FITC) were obtained from Sigma-Aldrich Co. Ltd. (Gillingham, UK). The TG2 inhibitors Z-

DON (Z-ZON-Val-Pro-Leu-OMe; Benzyloxycarbonyl-(6-Diazo-5-oxonorleucinyl)-L-valinyl-

L-prolinyl-L-leucinmethylester) and R283 (1,3,dimethyl-2[2-oxo-propyl]thio)imidazole 

chloride), together with purified guinea-pig liver TG2 were obtained from Zedira GmbH 

(Darmstadt, Germany). DAPI (4',6-diamidino-2-phenylindole) was from Vector 

Laboratories Inc (Peterborough, UK). Biotin-TVQQEL was purchased from Pepceuticals 

(Enderby, UK). Biotin cadaverine (N-(5-aminopentyl)biotinamide) and biotin-X-

cadaverine (5-([(N-(biotinoyl)amino)hexanoyl]amino)pentylamine) were purchased from 

Invitrogen (Loughborough, UK). Dulbecco’s modified Eagle’s medium (DMEM), foetal 

bovine serum, trypsin (10×), L-glutamine (200 mM), penicillin (10,000 

U/ml)/streptomycin (10,000 g/ml) were purchased from Scientific Laboaratory Supplies 

(Nottingham, UK. All other reagents were purchased from Sigma-Aldrich Co. Ltd. 

(Gillingham, UK) and were of analytical grade.  

   Antibodies were obtained from the following suppliers: monoclonal anti-phospho 

ERK1/2 (Thr202/Tyr204) from Sigma-Aldrich Co. Ltd. (Gillingham, UK); polyclonal anti-

phospho PKB (Ser473), polyclonal anti-total PKB, monoclonal anti-total ERK1/2, and 

polyclonal anti-cleaved caspase 3 from New England Biolabs Ltd (Hitchin, UK); 

monoclonal anti-TG2 (CUB 7402) from Thermo Scientific (Loughborough, UK); polyclonal 
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anti-human keratinocyte TG1 and polyclonal anti-human epidermal TG3 from Zedira 

GmbH (Darmstadt, Germany); monoclonal anti-GAPDH from Santa Cruz Biotechnology 

Inc (Heidelberg, Germany); Alexa Fluor®488 goat  anti-mouse IgG labelled secondary 

antibody from Thermo Scientific (Loughborough, UK).   

 

2.2. Cell Culture 

Murine N2a and human SH-SY5Y neuroblastoma cells were obtained from the European 

Collection of Animal Cell Cultures (Porton Down, Salisbury, UK). Cells were cultured in 

DMEM supplemented with 2 mM L-glutamine, 10% (v/v) foetal bovine serum, penicillin 

(100 U/ml) and streptomycin (100 g/ml). Cells were maintained in a humidified incubator 

(95% air/5% CO2 at 37°C) until 70-80% confluent and sub-cultured (1:5 split ratio) every 

3-4 days. SH-SY5Y cells were sub-cultured using trypsin (0.05% w/v)/EDTA (0.02% w/v). 

Differentiation of N2a cells was induced by culturing cells in serum-free DMEM containing 1 

µM all-trans retinoic acid for 48 h, unless otherwise specified. Differentiation of SH-SY5Y 

cells was induced by culturing cells in serum-free DMEM containing 10 µM all-trans retinoic 

acid for 5 days. Experiments were performed on passage numbers 8-20 for N2a and 18-25 

for SH-SY5Y. 

 

2.3. Cell extraction for measurement of TG2 activity   

Following prior differentiation with retinoic acid as described above time course profiles 

and concentration-response curves were obtained for NGF. Where appropriate, cells 

were also pre-incubated for 30 min in medium with or without the protein kinase 

inhibitors Akt inhibitor XI (PKB/Akt, 100 nM; Barve et al., 2006), PD 98059 (MEK1/2, 50 

µM; Dudley et al., 1995), and Ro 31-8220 (PKC, 10 µM; Davis et al., 1989) prior to 

treatment with 100 ng/ml NGF. The concentrations of protein kinase inhibitors employed 

in this study were in the range of values in the literature that are used to inhibit the 

cellular activity of these kinases: PD 98059 (10-50 µM; Sutter et al., 2004; Kim et al., 

2008), Akt inhibitor XI (1 µM; Frampton et al., 2012; Rybchyn et al., 2011) and Ro 31-
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8220 (1-10 µM; Lee et al., 2013; Montejo-López et al., 2016). In the case of less well 

known Akt inhibitor XI, effects on PKB inhibition were verified by Western blot analysis. 

   Following stimulation with NGF, N2a and SH-SY5Y cells were rinsed twice with 2.0 ml 

of chilled PBS, lysed with 500 μl of ice-cold lysis buffer ((50 mM Tris-HCl pH 8.0, 0.5% 

(w/v) sodium deoxycholate, 0.1% (v/v) Protease Inhibitor Cocktail, and 1% (v/v) 

Phosphatase Inhibitor Cocktail 2)). Cell lysates were clarified by centrifugation at 4°C for 

10 min at 14000 x g prior to being assayed for TG transamidase activity. Supernatants 

were collected and stored at -80°C. 

   Protein levels were determined by the bicinchoninic acid (BCA) protein assay, based on 

the method of Smith et al. (1985), which was performed using a commercially available 

kit (Sigma-Aldrich Co. Ltd, UK) using bovine serum albumin (BSA) as the standard. 

Transglutaminase activity was subsequently monitored by two different transamidase 

assays; amine incorporation and protein cross-linking.  

 

2.4. Biotin-labeled cadaverine incorporation assay  

The assay was performed as per the method described by Slaughter et al.,(1992) with 

the modifications of Lilley et al. (1998). Briefly, 96-well microtitre plates were coated 

overnight at 4°C with 250 μl of N′,N′-dimethylcasein (10 mg/ml in 100 mM Tris-HCl, pH 

8.0). The plate was washed twice with distilled water and blocked with 250 μl of 3% 

(w/v) BSA in 100 mM Tris-HCl, pH 8.0 and incubated for 1 h at room temperature. The 

plate was washed twice before the application of 150 µl of either 6.67 mM calcium 

chloride and or 13.3 mM EDTA (used to deplete calcium and suppress TG activity) assay 

buffer containing 225 µM biotin cadaverine (a widely used substrate to monitor TG amine 

incorporating activity) and 2 mM 2-mercaptoethanol. The reaction was started by the 

addition of 50 μl of samples or positive control (50 ng/well of guinea-pig liver TG2) and 

negative control (100 mM Tris-HCl, pH 8.0). After incubation for 1 h at 37°C plates were 

washed as before. Then, 200 μl of 100 mM Tris-HCl pH 8.0 containing 1% (w/v) BSA and 

ExtrAvidin®-HRP (1:5000 dilution) were added to each well and the  plate incubated at 

37°C for 45 min then washed as before. The plate was developed with 200 μl of freshly 
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made developing buffer (7.5 µg/ml 3,3’,5,5’-tetramethylbenzidine (TMB) and 0.0005% 

(v/v) H2O2 in 100 mM sodium acetate, pH 6.0) and incubated at room temperature for 

15 min. The reaction was terminated by adding 50 μl of 5 M sulphuric acid and the 

absorbance read at 450 nm. One unit of transglutaminase activity was defined as a 

change in A450 of 1.0 per h. Each experiment was performed in triplicate. 

 

2.5. Biotin-labeled peptide cross-linking assay   

The assay was performed according to the method of Trigwell et al. (2004) with minor 

modifications. Microtitre plates (96-well) were coated and incubated overnight at 4°C 

with casein at 1.0 mg/ml in 100 mM Tris-HCl pH 8.0 (250 μl per well). The wells were 

washed twice with distilled water, before incubation at room temperature for 1 h with 

250 μl of blocking solution (100 mM Tris-HCl pH 8.0 containing 3% (w/v) BSA). The 

plate was washed twice before the application of 150 µl of either 6.67 mM calcium 

chloride and or 13.3 mM EDTA assay buffer containing 5 μM biotin-TVQQEL and 2mM 2-

mercaptoethanol. The reaction was started by the addition of 50 μl of samples or 

positive control (50 ng/well of guinea-pig liver TG2) and negative control (100 mM Tris-

HCl, pH 8.0) and allowed to proceed for 1 h at 37°C. Reaction development and 

termination were performed as described for biotin-cadaverine assays. One unit of 

transglutaminase activity was defined as a change in A450 of 1.0 per h. Each experiment 

was performed in triplicate. 

 

2.6. Hypoxia-induced cell death 

Differentiating N2a and SH-SY5Y cells in glucose-free and serum-free DMEM (Gibco™, 

Life Technologies Ltd, Paisley, UK) were exposed to 8 h hypoxia using a hypoxic 

incubator (5% CO2/1% O2 at 37°C) in which O2 was replaced by N2.  

 

2.7. Cell viability assays 

N2a (25,000 cells/well) and SH-SY5Y (50,000 cells/well) cells were plated in 24-well flat 

bottomed plates and differentiated for 48 h using retinoic acid,  as described above, before 
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cell viability was determined by measuring the reduction of MTT (Mosmann et al.,  1983). 

The amount of DMSO-solubilised reduced formazan product was determined by 

measurement of absorbance at a wavelength 570 nm. Alternatively, N2a (5,000 cells/well) 

and SH-SY5Y (10,000 cells/well) cells were plated in 96-well flat bottomed plates and 

differentiated for 48 h. Following normoxia/hypoxia exposure, the activity of lactate 

dehydrogenase (LDH) released into the culture medium was detected using the CytoTox 

96®non-radioactive cytotoxicity assay (Promega, Southampton, UK) with measurement 

of absorbance at 490 nm. 

 

2.8. High-throughput analysis of NGF-induced neurite outgrowth  

Cells were seeded on 8-well Ibidi μ-slides: 15,000 cells/well for N2a and 30,000 

cells/well for SH-SY5Y and cultured for 24 h in fully supplemented DMEM. Where 

appropriate, cells were treated for 1 h with TG2 inhibitors Z-DON (150 μM) or R283 (200 

μM). The medium containing the TG2 inhibitors was removed and replaced with fresh 

medium before the addition of 100 ng/ml NGF for 48 h. Following stimulation, cells were 

fixed with 3.7 % (w/v) paraformaldehyde  and permeabilised with 0.1% (v/v) Triton-

X100 (both in PBS) for 15 min at room temperature. After washing, cells were blocked 

with 3% (w/v) BSA in PBS for 1 h at room temperature. They were then stained 

overnight at 4˚C with monoclonal antibodies to total α-tubulin (B512), followed by Alexa 

Fluor®488 goat  anti-mouse IgG labelled secondary antibody for 2 h at room 

temperature. The slides were subsequently washed three times for 5 min with PBS and 

incubated for 1 min with Vectashield medium (Vector Laboratories Ltd, Peterborough, 

UK) containing DAPI counterstain for nuclei visualisation.  Slides were preserved in PBS 

containing 0.01% (w/v) sodium azide as a preservative and stored at 4˚C prior to image 

acquisition and analysis. Neurite outgrowth was monitored using an ImageXpress® 

Micro Widefield High Content Screening (HCS) System (Molecular Devices, Wokingham, 

UK). Fluorescence images were acquired using a 10× objective lens and analysed by 

MetaXpress software, using Neurite Outgrowth analysis settings to measure a number of 

morphological parameters including average neurite length per cell and maximum 
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neurite length per cell. Analysis was performed on a total of four fields and at least 200 

cells per well from four independent experiments.  

 

2.9. Western blot analysis  

Protein extracts (15-20 μg per lane) were separated by SDS-PAGE (10% w/v 

polyacrylamide gel) using a Bio-Rad Mini-Protean III system. Proteins were transferred 

to nitrocellulose membranes in a Bio-Rad Trans-Blot system using transfer buffer 

comprising 25 mM Tris, 192 mM glycine pH 8.3 and 20% (v/v) MeOH). Following transfer, 

the membranes were washed with Tris-buffered saline (TBS) and blocked for 1 h at room 

temperature with 3% (w/v) skimmed milk powder in TBS containing 0.1% (v/v) Tween-

20. Blots were then incubated overnight at 4oC in blocking buffer with primary antibodies 

to the following targets (1:1000 dilutions unless otherwise indicated): phospho-specific 

ERK1/2, phospho-specific PKB (1:500), cleaved active caspase-3 (1:500), GAPDH, TG1, 

TG2 or TG3. The primary antibodies were removed and blots washed three times for 5 

min in TBS/Tween 20. Blots were then incubated for 2 h at room temperature with the 

appropriate secondary antibody (1:1000) coupled to horseradish peroxidase (New 

England Biolabs Ltd; UK) in blocking buffer. Following removal of the secondary antibody, 

blots were extensively washed as above and developed using the Enhanced 

Chemiluminescence Detection System (Uptima, Interchim, France) and quantified by 

densitometry using Advanced Image Data Analysis Software (Fuji; version 3.52). The 

uniform transfer of proteins to the nitrocellulose membrane was routinely monitored by 

transiently staining the membranes with Ponceau S stain prior to application of the 

primary antibody. When assessing protein kinase phosphorylation samples from each 

experiment were also analysed on separate blots using primary antibodies that recognise 

total ERK1/2 and PKB, (both at 1:1000 dilution) in order to confirm the uniformity of 

protein loading. 
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2.11. Visualisation of in situ TG2 activity  

N2a (15,000 cells/well) and SH-SY5Y (30,000 cells/well) cells were seeded on 8-well 

chamber slides and differentiated using retinoic acid as described above. For the 

visualisation of in situ TG2 activity, the medium was then removed, monolayer gently 

washed with PBS and slides incubated for 6 h with 1 mM biotin-X-cadaverine (a cell 

permeable TG2 substrate; Perry et al., 1995) in serum-free DMEM before 

experimentation. Where appropriate, cells were treated for 1 h with TG2 inhibitors Z-

DON (150 µM) or R283 (200 µM) before the addition of NGF (100 ng/ml). Following 

stimulation with NGF, cells were fixed with 3.7 % (w/v) paraformaldehyde and 

permeabilised with 0.1% (v/v) Triton-X100 both in PBS for 15 min at room temperature. 

After washing, cells were blocked with 3% (w/v) BSA for 1 h at room temperature and 

the transglutaminase mediated biotin-X-cadaverine labeled protein substrates detected 

by (1:200 v/v) FITC-conjugated ExtrAvidin® (Sigma-Aldrich Co. Ltd, UK).  The chamber 

slide was subsequently washed three times for 5 min with PBS, air-dried and mounted 

with Vectashield medium (Vector Laboratories Ltd, Peterborough, UK) containing DAPI 

counterstain for nuclei visualisation. Finally slides were sealed using clear, colourless nail 

varnish and stained cells visualised using a Leica TCS SP5 II confocal microscope (Leica 

Microsystems, GmbH, Manheim, Germany) equipped with a 20x air objective. Optical 

sections were typically 1-2 µm and the highest fluorescence intensity values were 

acquired and fluorescence intensity relative to DAPI stain quantified for each field of view. 

Saturation was avoided using the look-up Table overlay provided by the software.  

Image analysis and quantification were carried out using Leica LAS AF software.   

 

2.12. Statistical analysis 

All graphs and statistics (one-way ANOVA followed by Dunnet's multiple comparison test 

and two-way ANOVA for group comparison) were performed using GraphPad Prism® 

software (GraphPad Software, Inc., USA). Results represent mean ± S.E.M. and P values 

<0.05 were considered statistically significant. 
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3. Results 

 

3.1. Effect of NGF on TG2 activity  

   We have recently reported that TG1, TG2 and TG3 protein expression increased 

significantly in N2a cells induced to differentiate with retinoic acid (Algarni et al., 2017). 

In this study, Western blot analysis revealed that mitotic SH-SY5Y cells expressed 

comparable levels of TG1, TG2 and TG3, and only TG2 expression significantly increased 

following retinoic acid induced differentiation (Fig. 1).   

   TG2 catalyses two types of transamidation, namely (i) intra-, and/or inter-molecular 

covalent cross-links between protein-bound glutamine and protein-bound lysine residues, 

and (ii) cross-links between primary amines and protein-bound glutamine (Nurminskaya 

and Belkin, 2012). NGF treatment of differentiating N2a cells produced transient 

increases in TG2-catalysed biotin-cadaverine incorporation and protein cross-linking 

activity, peaking at 1 h (Fig. 2A and B). Furthermore, NGF also stimulated concentration-

dependent increases in biotin-amine incorporation activity (Fig. 2C) and protein cross-

linking activity (Fig. 2D). It is important to demonstrate in vitro changes in more than 

one cell model, because in cell culture studies there is always a risk that recorded effects 

may be unique to a specific cell line or due to genetic drift or clonal/species related 

effects. In order to confirm these observations in another cell model, the ability of NGF 

to stimulate TG2 activation in differentiating human SH-SY5Y neuroblastoma cells was 

also investigated. NGF treatment of SH-SY5Y cells produced transient increases in TG2 

catalysed biotin-cadaverine incorporation and protein cross-linking activity, peaking at 1 

h (Fig. 3A and B). Furthermore, NGF also stimulated concentration-dependent increases 

in biotin-amine incorporation activity (Fig. 3C) and protein cross-linking activity (Fig. 3D) 

in SH-SY5Y cells. To confirm that the observed increase in NGF-induced TG2 activation is 

not simply a consequence of increased levels of TG2 protein expression, the level of TG2 

protein was monitored by Western blotting. The data obtained indicate no significant 

change in the level of TG2 protein expression during the time course (up to 4 h) of NGF 

treatment in N2a and SH-SY5Y cells (Fig. 4). Overall, these data indicate that NGF 
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stimulates robust TG2-mediated transamidase activity in differentiating N2a and SH-

SY5Y cells. 

 

3.2. Effect of TG2 inhibitors on NGF induced TG2 activity 

To confirm that TG2 was responsible for NGF-mediated transglutaminase activity, two 

structurally different cell permeable TG2 specific inhibitors were tested; R283 (a small 

molecule; Freund et al.,  1994) and Z-DON (peptide-based; Schaertl et al.,  2010). Cells 

were pre-treated for 1 h with Z-DON (150 µM) or R283 (200 µM) prior to stimulation 

with NGF (100 ng/ml) for 1 h. Both inhibitors completely blocked NGF-induced TG-

mediated amine incorporation (Fig. 5A and C) and protein cross-linking activity (Fig. 5B 

and D). It is important to note that despite these TG2 inhibitors being cell-permeable, 

inhibition of cellular TG2 is only achieved at concentrations significantly above their IC50 

value versus purified enzyme (Schaertl et al., 2010; Freund et al., 1994).  

 

3.3. The effect of ERK1/2, PKB and PKC inhibitors on NGF-induced TG2 activity 

NGF triggers the activation of multiple signalling pathways including PI-3K/PKB, ERK1/2, 

and PKC (Wang et al., 2014). In this study, NGF-induced ERK1/2 and PKB activation was 

assessed by Western blotting using phospho-specific antibodies that recognise 

phosphorylated motifs within activated ERK1/2 (pTEpY) and PKB (S473).  As expected, NGF 

(100 ng/ml) stimulated robust increases in ERK1/2 and PKB phosphorylation in 

differentiating N2a (Fig. 6A and B) and SH-SY5Y cells (Fig. 6C and D). NGF-mediated 

increases in ERK1/2 and PKB were inhibited by PD 98059 (50 µM; MEK1/2 inhibitor) and 

Akt Inhibitor XI (100 nM; PKB inhibitor) respectively (Fig. 6). Furthermore, NGF-induced 

increases in ERK1/2 and PKB were insensitive to Akt Inhibitor XI (Fig. 7A and C) and PD 

98059 (Fig. 7B and D), respectively suggesting inhibitor selectivity and lack of “cross-talk” 

between the two kinase pathways. Previous studies have reported an up-stream role of 

PKC isozymes in NGF-induced ERK1/2 activation (Lloyd and Wooten, 1992; Wooten et al., 

2000). Hence in this study we determined if pharmacological inhibition of PKC with Ro 

31-8220 modulates NGF-induced ERK1/2 activation in N2a and SH-SY5Y cells. Treatment 
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with Ro 31-8220 (10 µM) attenuated NGF-induced ERK1/2 activation in both cell lines 

(Fig. 8A and C) suggesting that NGF activates PKC in N2a and SH-SY5Y cells. Finally, Ro 

31-8220 did not block NGF-induced PKB activation (Fig. 8B and D). 

  The role of ERK1/2, PKB and PKC in NGF-induced TG2 activation was determined using 

pharmacological inhibitors of these protein kinases. NGF-induced transglutaminase-

mediated amine incorporation activity and protein cross-linking activity were inhibited by 

PD 98950 (MEK1 inhibitor; 50 µM; Fig. 9), Akt inhibitor XI (100 nM; Fig. 9), and PKC 

inhibitor Ro 31-8220 (10 µM; Fig. 10A-D) suggesting the involvement of ERK1/2, PKB and 

PKC, respectively. Overall, these data suggest that NGF stimulates TG2 activity in 

differentiating N2a and SH-SY5Y cells via a multi protein kinase-dependent pathway.  

 

3.4. The role of Ca2+ in NGF-induced TG2 activation 

The transamidating activity of TG2 is a Ca2+-dependent (Nurminskaya and Belkin 2012; 

Eckert et al., 2014). Hence we examined the role of Ca2+ in NGF-induced TG2 activation. 

The involvement of extracellular Ca2+ was determined by measuring TG2 stimulation in 

the absence of extracellular Ca2+ using Ca2+-free Hanks/HEPES buffer containing 0.1 mM 

EGTA. Removal of extracellular Ca2+ moderately inhibited NGF-induced TG2 

transamidation activity in N2a and SH-SY5Y cells (Fig. 10E-H). To ascertain the role of 

intracellular Ca2+, measurements of TG2 activation were also implemented using cells 

loaded with the Ca2+ chelator BAPTA-AM (50 µM for 30 min) in the absence of 

extracellular Ca2+. Loading cells with BAPTA, in the continued absence of extracellular 

Ca2+, did not lead to further attenuation of NGF-induced TG2 activation (Fig. 10E-H).  

These data indicate that NGF-induced TG2 activation is partially dependent upon 

extracellular Ca2+. Finally, we assessed whether NGF triggers changes in intracellular 

Ca2+ using the fluorescent Ca2+ indicator Fluo-8. NGF did not trigger measurable 

increases in intracellular Ca2+ in N2a and SH-SY5Y cells loaded with Fluo-8 AM (data not 

shown).  
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3.5. Visualisation of in situ TG2 activity following NGF treatment 

Biotin-X-cadaverine, is a cell penetrating primary amine, which enables the in situ 

visualisation of endogenous protein substrates of TG2, when combined with FITC-

ExtrAvidin® (Lee et al.,  1993). In N2a and SH-SY5Y cells, NGF (100 ng/ml) stimulated  

the incorporation of biotin-X-cadaverine into endogenous protein substrates of TG2 (Fig. 

11 and Fig. 12). Furthermore, the in situ responses to NGF in both cell lines were 

attenuated by the TG2 inhibitors Z-DON and R283, the protein kinase inhibitors PD 

98059, Akt Inhibitor XI and Ro 31-8220 and following removal of extracellular Ca2+ (Fig. 

11 and Fig. 12). Overall, these data indicate a similar pattern of TG2 activation in live 

cells. 

 

3.6. Role of TG2 in NGF-induced cell survival and neurite outgrowth 

The role of TG2 in NGF-induced cell survival was determined in retinoic acid induced 

differentiating N2a cells and SH-SY5Y cells following exposure of cells to 8 h simulated 

hypoxia (1% O2 in glucose-free and serum-free medium; Algarni et al., 2017). Pre-

treatment with NGF (100 ng/ml; 1 h) significantly attenuated hypoxia-induced decrease 

in MTT reduction, release of LDH and activation of caspase-3 in N2a (Fig. 13) and SH-

SY5Y (Fig. 14) cells.  Furthermore, the TG2 inhibitors R283 and Z-DON attenuated NGF 

induced cell survival in both cell lines (Fig. 13 and 14).  

  The role of TG2 in NGF-induced neurite outgrowth was assessed by high-throughput 

monitoring of neurite outgrowth following 48 h treatment with NGF (100 ng/ml) in N2a 

and SH-SY5Y cells. The TG2 inhibitors Z-DON (150 µM) and R283 (200 µM) attenuated 

maximum neurite outgrowth per cell and average neurite length per cell following 

treatment with NGF, confirming the involvement of TG2 in N2a (Fig. 15) and SH-SY5Y 

(Fig. 16) cells. Overall, these data indicate a prominent role for TG2 in NGF-mediated 

neurite outgrowth.  
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4. Discussion 

 

The data in this report reveal for the first time that NGF-mediated cell survival and 

neurite outgrowth are dependent on TG2-mediated transamidase activity. 

  

4.1. In vitro and in situ modulation of TG2 transamidation activity by NGF 

    NGF mediates neurite outgrowth and neuroprotection; however, it is not known if 

these events involve NGF-induced TG2 activation (Sofroniew et al., 2001; Huang and 

Reichardt 2001; Oe et al., 2005; Condello et al., 2008; Tang et al., 2005). In this study 

we have shown that short term treatment with NGF (<4 h) triggered time- and 

concentration-dependent increases in TG2-mediated biotin-cadaverine incorporation and 

protein cross-linking activity in differentiating N2a and SH-SY5Y cells. These 

observations suggest a direct stimulation of TG2 following activation of the TrkA receptor 

with NGF. It is important to note that levels of TG2 protein expression did not change 

during this time period (<4 h). Furthermore, although differentiating N2a and SH-SY5Y 

cells also express TG1 and TG3 isoforms, NGF-induced increases in TG activity were 

inhibited by R283 and Z-DON, confirming that the observed increases in TG activity were 

via TG2. Finally, fluorescence microscopy revealed in situ intracellular TG2 activity 

following NGF stimulation. The results were comparable to NGF-induced amine 

incorporation activity observed in vitro. Since the cross-linking activity TG1 is regulated 

via ERK1/2 and PKC it is conceivable that NGF may modulate the activity of multiple TG 

isoforms (Bollag et al., 2005).  

As detailed in the Introduction, very little is known regarding the regulation of TG2 

enzymic activity following receptor tyrosine kinase activation. However, since TG2 

transamidase activity modulates protein function by cross-linking and incorporation of 

small molecule mono- and polyamines into protein substrates, it is likely that activation 

of TG2 by tyrosine kinase receptors (and in particular other members of the 

neurotrophin family) plays a major role in the regulation of neuronal cell function 

(Nurminskaya and Belkin, 2012; Eckert et al., 2014). 
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4.2. Role of protein kinases in NGF-mediated TG2 activation 

Increasing evidence suggests that TG2 is regulated by phosphorylation. For example, 

phosphorylation of TG2 by PKA inhibits its transamidating activity but augments its 

kinase activity (Mishra et al., 2007), whereas PTEN-induced putative kinase 1 (PINK1) 

phosphorylation of TG2 inhibits its proteasomal degradation (Min et al., 2015). 

Furthermore, we have recently shown that stimulation of intracellular TG2 transamidase 

activity by the A1 adenosine receptor and PAC1 receptor is dependent upon ERK1/2, PKC 

and TG2 phosphorylation (Vyas et al., 2016; Algarni et al., 2017). Since the TrkA 

receptor stimulates protein kinase cascades involving ERK1/2, PKB and PKC (Wang et al., 

2014) we explored the roles of these kinases in NGF-induced TG2 activation. The 

observation that pharmacological inhibition of ERK1/2, PKB and PKC attenuated NGF-

induced TG2 transamidase activity in N2a and SH-SY5Y cells, suggests prominent roles 

for these protein kinases. These observations are in agreement with our previous studies 

which have revealed roles for ERK1/2, PKB and PKC in TG2 activation triggered by 

members of the GPCR family (Vyas et al., 2016; Vyas et al., 2017; Algarni et al., 2017). 

At present it is not known if ERK1/2, PKB and PKC directly phosphorylate TG2, leading to 

direct enhancement of enzymic activity or whether TG2 phoshorylation promotes its 

association with interacting proteins. For example, TG2 phosphorylation by PKA 

promotes its interaction with the scaffolding protein 14-3-3 which leads to the 

attenuation of TG2 kinase activity (Mishra and Murphy, 2006). Alternatively, these 

kinases may phosphorylate downstream targets that subsequently interact with TG2, 

resulting in enhanced activity. Finally, it is important to note that the attenuation of 

NGF-induced TG2 activation by inhibition of PKC reflects the reported up-stream role of 

PKC isozymes in NGF-induced ERK1/2 activation (Lloyd and Wooten, 1992; Wooten et al., 

2000). Clearly, further studies are required, to establish if NGF activation promotes TG2 

phosphorylation and, if so, to subsequently identify the specific site(s).  
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4.3. Role of Ca2+ in NGF-induced TG2 activation 

Previous studies have shown that NGF triggers intracellular Ca2+ release in C6-2B glioma 

cells (De Bernardi et al., 1996) and extracellular Ca2+ influx in PC12 and bovine 

chromaffin cells (Pandiella-Alonso et al., 1986). Since TG2 transamidase activity is Ca2+ 

dependent, we investigated the potential involvement of extracellular and intracellular 

Ca2+ in NGF-induced TG2 activation. The data presented indicate that NGF-induced TG2-

mediated transamidase activity is partially dependent upon extracellular Ca2+, suggesting 

that NGF triggers Ca2+ influx in N2a and SH-SY5Y cells.  However, no measureable 

increases in intracellular Ca2+ were observed following stimulation of these cells with 

NGF. The reason(s) for this abnomally are not currently known but it may reflect 

localized NGF-induced increases in [Ca2+]i that were not detectable using the technique 

employed. Whilst levels of Ca2+ required for TG2 activation are typically in the order 3-

100 µM, there is evidence that [Ca2+]i can reach levels sufficient to activate intracellular 

TG2 (Király et al., 2011). Alternatively, the participation of Ca2+ in NGF-induced TG2 

activation may necessitate the sensitization of TG2 to low levels of [Ca2+]i. It has been 

suggested that the interaction of TG2 with protein binding partners and/or membrane 

lipids promotes a conformational change that enables activation at low levels of 

intracellular [Ca2+] (Király et al., 2011). Clearly, further studies are required to 

determine how NGF-induced TG2 activation occurs in the absence of detectable increases 

in [Ca2+]i, but the kinase-dependent pathways outlined in the present study could be 

central to these novel aspects of TG2 regulation.   

 

4.4. Role of TG2 in NGF-induced cytoprotection 

The role of TG2 in neuronal cell death is controversial with both anti-apoptotic and pro-

apoptoric roles reported (Tatsukawa et al., 2016). These opposing roles appear to be 

dependent upon cell type, trigger mechanism of cell death, intracellular location of TG2 

and specific TG2 enzymic activity (Tatsukawa et al., 2016). Examples of TG2-mediated 

neuronal cell survival include; protection against heat shock–induced cell death in SH-

SY5Y cells (Tucholski et al., 2001), protection of rat primary cortical neurons against 
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hypoxia and oxygen/glucose deprivation–induced cell death (Filiano et al., 2008) and in 

vivo protection against ischaemic stroke (Filiano et al., 2010). TG2 is believed to mediate 

protection againist hypoxia by attenuating HIF-induced activation of pro-apoptotic genes 

(Filiano et al., 2008; Filiano et al., 2010). Furthermore, transamidating activity of TG2 

does appear to play a role in protection against oxygen/glucose deprivation–induced cell 

death (Filiano et al., 2008). Likewise, NGF is widely recognized as a neuroprotective 

agent and potential therapeutic agent for the treatment of neurodegenerative disorders 

(Allen et al., 2013). The mechanisms of NGF-induced neuroprotection are complex and 

involve activation of PI-3K/PKB mediated cell survival signalling (Nguyen et al., 2010). 

In this study we have shown for the first time a role for TG2 in NGF-induced 

cytoprotection in differentiating mouse N2a and human SH-SY5Y neuroblastoma cells. 

However, whilst it is not clear how NGF-induced TG2 activation mediates cell survival, 

TG2 is known to regulate pathways associated with NGF neuroprotection. For example, 

TG2 mediates 5-HT induced (serotonylation) of PKB in vascular smooth muscle cells 

(Penumatsa et al., 2014). However, although the data presented suggest that PKB is up-

stream of TG2 (i.e. NGF-induced TG2 activation is blocked by PKB inhibition) it is 

conceivable that NGF-induced TG2 activation functions to augment and sustain PKB 

activity. Finally, TG2 inhibition blocked NGF-mediated reduction in  hypoxia-induced 

activation of caspase-3, which is indicative of an anti-apoptotic role. Recent studies have 

shown that under conditions of Ca2+ overload, TG2 inhibits apoptosis via the down-

regulation of Bax expression and inhibition of caspase 3 and 9 (Cho et al., 2010).  

Further work is required to determine the role and mechanisms of TG2 in NGF-induced 

cell survival.  

 

4.5. Role of TG2 in NGF-induced neurite outgrowth 

Previous studies have shown that TG2 is essential for differentiation/neurite outgrowth in 

human neuroblastoma SH-SY5Y cells (Tucholski et al., 2001; Singh et al., 2003). 

Furthermore, TG2-mediated neurite outgrowth is dependent upon the transamidating 

role of TG2 (Tocholski et al., 2001). Postulated mechanisms include the following; 
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transamidation of RhoA and subsequent activation of ERK1/2, p38 MAPK and JNK (Singh 

et al., 2003), activation of adenylyl cyclase activity and enhanced phosphorylation of 

cyclic AMP-response element (CRE) binding protein (CREB; Tucholski and Johnson, 

2003), and polyamination of tubulin (Song et al., 2013). Although it is well established 

that NGF triggers neurite outgrowth in N2a and SH-SY5Y cells, it is not known whether 

TG2 plays a role in NGF-induced neuronal differentiation (Condello et al., 2008; Oe et al., 

2005). In the current study we have shown that pharmacological inhibition of TG2 

attenuates NGF-induced neurite outgrowth, suggesting the participation of TG2 in NGF-

induced neurite outgrowth. At present it is not known how NGF-mediated TG2 activation 

promotes neurite outgrowth, but it is conceivable that it may involve modulation of one 

or more of the pathways described above e.g. TG2-induced modulation of adenylyl 

cyclase/CREB signaling. Indeed, studies have shown that  NGF can modulate cAMP levels 

in neuronal cells (Nikodijevic et al., 1975; Berg et al., 1995). However, further studies 

are required to identify the downstream substrates of TG2 and signalling pathways 

associated with the role of TG2 in NGF-induced neuronal differentiation.    

 

   In conclusion, our data show for the first time that TG2 transamidase activity is 

regulated by NGF in differentiating N2a and SH-SY5Y  cells via a ERK1/2, PKB and PKC-

dependent pathway  (summarised in Fig. 17). Work is currently underway to understand 

more fully the role of TG2 in NGF signalling and modulation of neuronal cell function.  
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Figure legends 

 

Fig. 1. Protein expression of TG isoforms in mitotic and differentiating SH-SY5Y cells. (A) 

Cell lysates (20 µg protein) from mitotic (M) and differentiating (D) SH-SY5Y cells (10 

µM retinoic acid; for 5 days) were analysed for TG1, TG2 and TG3 expression by Western 

blotting using TG isoform specific antibodies. Purified TG1, TG2 and TG3 were used as 

positive controls. Levels of GAPDH are included for comparison.  (B) Quantified data are 

expressed as the ratio of TG isoform to GAPDH and represent the mean  S.E.M. from 

four independent experiments.  ****P<0.0001 versus mitotic cells. 

 

Fig. 2. Effect of NGF on transglutaminase activity in differentiating mouse N2a cells. 

Cells were either incubated with 100 ng/ml NGF for the indicated time periods or for 1 h 

with the indicated concentrations of NGF. Cell lysates were then subjected to the biotin-

cadaverine incorporation (A and C) or protein cross-linking assay (B and D). Data points 

represent the mean TG specific activity ± S.E.M. from four independent experiments. 

*P0.05, **P<0.01, ***P<0.001, and ****P<0.0001 versus control response. 

 

Fig. 3. Effect of NGF on transglutaminase activity in differentiating human SH-SY5Y cells. 

Cells were either incubated with 100 ng/ml NGF for the indicated time periods or for 1 h 

with the indicated concentrations of NGF. Cell lysates were then subjected to the biotin-

cadaverine incorporation (A and C) or protein cross-linking assay (B and D). Data points 

represent the mean TG specific activity ± S.E.M. from four independent experiments. 

*P0.05, **P<0.01, and ***P<0.001 versus control response. 

 

Fig. 4. Effect of acute NGF-treatment on TG2 protein expression in differentiating N2a 

and SH-SY5Y cells. (A) N2a and (B) SH-SY5Y cells were incubated with 100 ng/ml NGF 

for the indicated time periods. Cell lysates (20 µg protein) were analysed for TG2 

expression by Western blotting using anti TG2 antibody. Levels of GAPDH are included 
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for comparison.  Quantified data are expressed as the percentage of TG2 expression in 

control cells (100%) and represent the mean  S.E.M. of four independent experiments. 

 

Fig. 5. Effect of TG2 inhibitors on NGF-induced TG2 activity. N2a (A and B) and SH-SY5Y 

(C and D) cells were pretreated for 1 h with the TG2 inhibitors Z-DON (150 µM) and 

R283 (200 µM) prior to 1 h stimulation with NGF (100 ng/ml). Cell lysates were then 

subjected to the biotin-cadaverine  incorporation (A and C) or protein cross-linking assay 

(B and D). Data points represent the mean TG specific activity ± S.E.M. from four 

independent experiments. **P<0.01, ***P<0.001, and****P<0.0001, (a) versus 

control and (b) versus NGF alone.   

 

Fig. 6. Effect of PD 98959 and Akt inhibitor XI on NGF-induced ERK1/2 and PKB 

activation in differentiating  N2a and SH-SY5Y cells. Where indicated, cells were pre-

treated for 30 min with (A,C) PD 98059 (50 µM) or (B,D) Akt Inhibitor XI (100 nM) prior 

to stimulation with NGF (100 ng/ml) for 1 h. Cell lysates were analysed by Western 

blotting for activation of ERK1/2 and PKB using phospho-specific antibodies. Samples 

were subsequently analysed on separate blots using an antibodies that recognize total 

ERK1/2 and PKB. Quantified data are expressed as the percentage of the value for 

control cells (=100%) in the absence of protein kinase inhibitor and represent the mean 

 S.E.M. of four independent experiments. *P<0.05, **P<0.01,  *** P0.001 and 

****P<0.0001, (a) versus control and (b) versus NGF. 

 

 

Fig. 7. Effect of Akt inhibitor XI and PD 98959 on NGF-induced ERK1/2 and PKB 

activation in differentiating  N2a and SH-SY5Y cells. Where indicated, cells were pre-

treated for 30 min with (A,C) Akt Inhibitor XI (100 nM) or (B,D) PD 98059 (50 µM) prior 

to stimulation with NGF (100 ng/ml) for 1 h. Cell lysates were analysed by Western 

blotting for activation of ERK1/2 and PKB using phospho-specific antibodies. Samples 

were subsequently analysed on separate blots using an antibodies that recognize total 
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ERK1/2 and PKB. Quantified data are expressed as the percentage of the value for 

control cells (=100%) in the absence of protein kinase inhibitor and represent the mean 

 S.E.M. of four independent experiments. *** P0.001 and ****P<0.0001, (a) versus 

control. NS = not significant. 

 

Fig. 8. Effect of the protein kinase C inhibitor Ro 31-8220 on NGF-induced ERK1/2 and 

PKB activation in differentiating  N2a and SH-SY5Y cells. Where indicated, cells were pre-

treated for 30 min Ro 31-8220 (10 µM) prior to stimulation with NGF (100 ng/ml) for 1 h. 

Cell lysates were analysed by Western blotting for activation of ERK1/2 (panels A and C) 

and PKB (panels B and D) using phospho-specific antibodies. Samples were subsequently 

analysed on separate blots using an antibodies that recognize total ERK1/2 and PKB. 

Quantified data are expressed as the percentage of the value for control cells (=100%) 

in the absence of protein kinase inhibitor and represent the mean  S.E.M. of four 

independent experiments. *P<0.05, **P<0.01, *** P0.001 and ****P<0.0001, (a) 

versus control and (b) versus NGF. NS = not significant.  

 

 

Fig. 9. Effect of ERK1/2 and PKB inhibition on NGF-induced TG activity. Differentiating 

N2a and SH-SY5Y cells were pretreated for 30 min with PD 98059 (50 µM) or Akt 

inhibitor XI (100 nM) prior to 1 h stimulation with NGF (100 ng/ml). Cell lysates 

subjected to biotin-cadaverine incorporation (A,C,E) or protein cross-linking assay 

(B,D,F). Data points represent the mean TG specific activity ± S.E.M. from four 

independent experiments. *P<0.05, ** P0.01, *** P0.001 and **** P0.0001, (a) 

versus control and (b) versus NGF alone. 

 

Fig. 10. Effect of PKC inhibition and role of Ca2+ in NGF-induced TG2 activation in 

differentiating  N2a and SH-SY5Y cells. In panels (A)-(D) cells were pretreated for 30 

min with Ro 31-8220 (10 µM) prior to 1 h stimulation with NGF (100 ng/ml). In panels 

(E)-(H) cells were  stimulated for 1 h with NGF (100 ng/nml) either in the presence (1.8 
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mM CaCl2) or absence of extracellular Ca2+ (nominally Ca2+-free Hanks/HEPES buffer 

containing 0.1 mM EGTA). Experiments were also performed using cells pre-incubated 

for 30 min with 50 µM BAPTA/AM and in the absence of extracellular Ca2+  (nominally 

Ca2+-free Hanks/HEPES buffer containing 0.1 mM EGTA) to chelate intracellular Ca2+.  

Cell lysates were subjected to biotin-cadaverine incorporation assay (A,C,E,G) or protein 

cross-linking assay (B,D,F,H). Data points represent the mean TG specific activity ± 

S.E.M. from four independent experiments. *P<0.05, ** P0.01, *** P0.001 and **** 

P0.0001, (a) versus control, (b) versus NGF alone and in the presence of extracellular 

Ca2+. Not significant (NS) versus NGF in the absence of extracellular Ca2+ 

  

Fig.11. NGF-induced in situ TG activity in differentiating N2a cells. Cells were incubated 

with 1 mM biotin-X-cadaverine (BTC) for 6 h, after which they were incubated with (A) 

TG2 inhibitors Z-DON (150 µM) and R283 (200 µM) for 1 h, (B) PD 98059 (50 µM) and 

Akt Inhibitor XI (100 nM) for 30 min, or (C) Ro 31-8220 (10 µM) for 30 min or the 

absence of extracellular Ca2+ (nominally Ca2+-free Hanks/HEPES buffer containing 0.1 

mM EGTA) prior to stimulation with NGF (100 ng/ml) for 1 h. TG2-mediated biotin-X-

cadaverine incorporation into intracellular proteins was visualized using FITC-conjugated 

ExtrAvidin® (green). Nuclei were stained with DAPI (blue) and viewed using a Leica TCS 

SP5 II confocal microscope (20x objective magnification). Scale bar = 20 µm. Images 

presented are from one experiment and representative of three. Quantified data 

represent the mean ± S.E.M. of fluorescence intensity relative to DAPI stain for five 

fields of view each from at least three independent experiments. *P<0.05, ** P0.01, 

*** P0.001 and ****P0.0001 versus control response. 

 

 

Fig. 12. NGF-induced in situ TG activity in differentiating SH-SY5Y cells. Cells were 

incubated with 1 mM biotin-X-cadaverine (BTC) for 6 h, after which they were incubated 

with (A) TG2 inhibitors Z-DON (150 µM) and R283 (200 µM) for 1 h, (B) PD 98059 (50 

µM) and Akt Inhibitor XI (100 nM) for 30 min, or (C) Ro 31-8220 (10 µM) for 30 min or 
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the absence of extracellular Ca2+ (nominally Ca2+-free Hanks/HEPES buffer containing 

0.1 mM EGTA) prior to stimulation with NGF (100 ng/ml) for 1 h. TG2-mediated biotin-X-

cadaverine incorporation into intracellular proteins was visualized using FITC-conjugated 

ExtrAvidin® (green). Nuclei were stained with DAPI (blue) and viewed using a Leica TCS 

SP5 II confocal microscope (20x objective magnification). Scale bar = 20 µm. Images 

presented are from one experiment and representative of three. Quantified data 

represent the mean ± S.E.M. of fluorescence intensity relative to DAPI stain for five 

fields of view each from at least three independent experiments. *P<0.05, ** P0.01, 

*** P0.001 and ****P0.0001 versus control response. 

 

Fig. 13. The effects of the TG2 inhibitors Z-DON and R283 on NGF-induced cell survival 

against hypoxia-induced cell death in N2a cells. Differentiating N2a cells were pre-

treated with NGF (100 ng/ml) for 1 h prior to 8 h hypoxia (1% O2) or 8 h normoxia. 

Where indicated cells were pretreated for 1 h with the TG2 inhibitors Z-DON (150 µM) 

and R283 (200 µM) prior to stimulation with NGF. Cell viability was assessed by 

measuring (A) the metabolic reduction of MTT by cellular dehydrogenases, (B) release of 

LDH into the culture medium and (C and D) caspase-3 activity via Western blot analysis 

using anti-active caspase 3 antibody. Representative Western blots for caspase 

activation are shown in panels (E) and (F). Levels of GAPDH are shown for comparison. 

Data are expressed as a percentage of normoxia control cell values (=100%) and 

represent the mean  S.E.M. from four independent experiments, each performed in (a) 

quadruplicate or (b) sextuplicate. *P<0.05, ** P0.01, *** P0.001 and ****P0.0001, 

(a) versus normoxia control, (b) versus hypoxia control (c) versus NGF in the presence 

of hypoxia. 

 

Fig. 14. The effects of the TG2 inhibitors Z-DON and R283 on NGF-induced cell survival 

against hypoxia-induced cell death in SH-SY5Y cells. Differentiating SH-SY5Y cells were 

pre-treated with NGF (100 ng/ml) for 1 h prior to 8 h hypoxia (1% O2) or 8 h normoxia. 

Where indicated cells were pretreated for 1 h with the TG2 inhibitors Z-DON (150 µM) 
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and R283 (200 µM) prior to stimulation with NGF. Cell viability was assessed by 

measuring (A) the metabolic reduction of MTT by cellular dehydrogenases, (B) release of 

LDH into the culture medium and (C and D) caspase-3 activity via Western blot analysis 

using anti-active caspase 3 antibody. Representative Western blots for caspase 

activation are shown in panels (E) and (F). Levels of GAPDH are shown for comparison. 

Data are expressed as a percentage of normoxia control cell values (=100%) and 

represent the mean  S.E.M. from four independent experiments, each performed in (a) 

quadruplicate or (b) sextuplicate. *P<0.05, ** P0.01, *** P0.001 and ****P0.0001, 

(a) versus normoxia control, (b) versus hypoxia control (c) versus NGF in the presence 

of hypoxia. 

 

Fig. 15. The effect of TG2 inhibitors on NGF-induced neurite outgrowth in differentiating 

N2a cells. Cells were incubated for 1 h with the TG2 inhibitors Z-DON (150 µM) or R283 

(200 µM) before  treatment with NGF (100 ng/ml) in serum-free DMEM for 48 h. (A) 

Following stimulation high-throughput immunocytochemistry was performed  using anti-

tubulin antibody and visualised using Alexa Fluor®488 labelled goat anti-mouse IgG 

secondary antibody (green). Nuclei were visualised using DAPI counterstain (blue). 

Images presented are from one experiment and representative of four. High-throughout 

quantification of (B) the maximum neurite length per cell and (C) the average neurite 

length per cell as described in Materials and Methods. White arrows indicate typical 

neurite outgrowths. Data points represent the mean ± S.E.M. from four independent 

experiments. *P<0.05, **P<0.01 and *** P<0.001  (a) versus mitotic control and (b) 

versus NGF alone.  

 

Fig.16. The effect of TG2 inhibitors on NGF-induced neurite outgrowth in differentiating 

SH-SY5Y cells. Cells were incubated for 1 h with the TG2 inhibitors Z-DON (150 µM) or 

R283 (200 µM) before  treatment with NGF (100 ng/ml) in serum-free DMEM for 48 h. (A) 

Following stimulation high-throughput immunocytochemistry was performed  using anti-

tubulin antibody and visualised using Alexa Fluor®488 labelled goat anti-mouse IgG 
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secondary antibody (green). Nuclei were visualised using DAPI counterstain (blue). 

Images presented are from one experiment and representative of four. High-throughout 

quantification of (B) the maximum neurite length per cell and (C) the average neurite 

length per cell as described in Materials and Methods. White arrows indicate typical 

neurite outgrowths. Data points represent the mean ± S.E.M.  from four independent 

experiments. *P<0.05, **P<0.01, and *** P<0.001  (a) versus mitotic control and (b) 

versus NGF alone.  

 

Fig. 17. Schematic representation of  the signalling pathways involved in NGF-induced 

TG2 activation in N2a and SH-SY5Y cells. NGF via the TrkA receptor promotes TG2 

transamidase activity in mouse N2a and human SH-SY5Y neuroblastoma cells via a 

signalling pathway dependent upon PKC, ERK1/2 and PKB. The role of PKC reflects the 

up-stream involvement of PKC in NGF-induced ERK1/2 activation. TG2 is involved in 

NGF-induced cell survival and neuronal differentiation (neurite outgrowth).     
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