
  
Abstract— In recent years artificial vision research has moved 

from focusing on the use of only intensity images to include using 
depth images, or RGB-D combinations due to the recent 
development of low cost depth cameras. However, depth images 
require a lot of storage and processing requirements. In addition, 
it is challenging to extract relevant features from depth images in 
real-time. Researchers have sought inspiration from biology in 
order to overcome these challenges resulting in biologically 
inspired feature extraction methods. By taking inspiration from 
nature it may be possible to reduce redundancy, extract relevant 
features, and process an image efficiently by emulating biological 
visual processes. In this paper, we present a depth and intensity 
image feature extraction approach that has been inspired by 
biological vision systems.  Through the use of biologically 
inspired spiking neural networks we emulate functional 
computational aspects of biological visual systems. Results 
demonstrate that the proposed bio-inspired artificial vision 
system has increased performance over existing computer vision 
feature extraction approaches. 
 

Index Terms— depth image, spiking neural network, bio-
inspired imaging  

I. INTRODUCTION 
he widespread availability of low cost consumer devices 
such as the ASUS Wavi-Xtion or Microsoft Kinect has 

seen their use go beyond the original gaming application 
areas; researchers have sought to take advantage of the 
capability of the camera to capture not only depth but also 
colour (RGB) and intensity images, making them a popular 
platform for many application areas. In previous research, 
depth sensing technologies have been used in areas as diverse 
as navigation, surveillance, robotics, object recognition and 
human interaction [1, 2, 3, 4]. Depth imaging is particularity 
important in these domains as it can be effectively used to 
obtain a reliable description of a 3-dimensional scene, an 
important benefit when considering the application areas. 
Depth sensing technology is not a recent innovation. Indeed, 
the idea of creating a depth image has been experimented with 
for quite a number of years, and different technologies are 
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used to obtain a depth description of a scene or object. The 
introduction of depth sensing technology in the games 
industry has provided researchers with a low-cost depth 
sensing technology to exploit. 

Prior to the introduction of the term depth sensing 
technology, it was referred to as range imaging, as the image 
contained the distance (or range) from the camera (or imaging 
device) to the imaged point in the scene. Whilst the literature 
contains many references to both range imaging and depth 
imaging we will use the term depth imaging in line with the 
use of the modern depth image capture technologies. A depth 
image is simply a 2-D image where each pixel location 
contains a distance measurement rather that a pixel intensity. 
Distances are estimated from the imaging device to surface 
points or objects within the imaged scene [5]. The main 
advantage when using a device such as a Kinect to capture 
images, over the use of a traditional camera, is that it provides 
additional information in the form of depth measurements, 
allowing more information within the scene to be recovered 
[6]. A single depth image only contains information about the 
surfaces visible from the imaging device and is not capable of 
producing a 3-dimensional reconstruction of the scene [5].   

Existing artificial vision techniques are the result of many 
years of development, not only for depth images, but also 
intensity, colour and many other image modalities. Current 
state-of-the-art artificial vision systems are capable of 
performing complex tasks like object recognition and face 
classification [7]. The development of these systems is based 
on many years of research, from the early work on edge and 
corner detection [8, 9, 10, 11], to the detection of interest 
points [12, 13], right through to the detection and 
classification of objects or faces [7] and image retrieval from 
huge databases. While artificial vision technologies have made 
impressive advances in the 70 years they have been in 
development, when compared with the capability of biological 
vision systems in processing visual information, they are 
extremely limited. Indeed, biological vision systems are much 
better at power consumption, speed of processing, and 
detection and recognition performance than current artificial 
vision systems. Based on the performance of biological vision 
systems, researchers have started to examine and learn from 
them in order to advance conventional artificial vision systems 
to the next level [14 - 22]. Most existing biologically inspired 
approaches to artificial vision are based on second generation 
neural networks [23]. For example, the well-known 
“Neocognitron” model is a multi-layered neural network (NN) 
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with hierarchical structure that has been used for various 
image processing tasks [24]. Similarly, the bio-inspired scene 
classification [25] uses a three-layer neural network to classify 
scenes based on visual features.  

Spiking neural networks (SNN) are considered to be third 
generation (NNs) which can mimic the biological information 
processing more accurately than standard NNs within the 
human brain [26] using spiking neurons and synaptic models 
of such networks. SNNs could be used to emulate the 
processing of a biological vision system and for data intensive 
real-time processing applications [27]. Previous research has 
explored the application of SNN for artificial vision purposes. 
For example, segmentation, edge detection [28], contour 
detection [29], feature detection [14-21] and a depth from 
motion model [30] based on neuromorphic approaches. In [21] 
a hierarchical SNN is used for a visual attention system and in 
[30] for a categorisation system. In [31] image clustering, 
segmentation and edge detection applications and moving 
object recognition and EEG data recognition in [32]. A 
Spiking Deep Belief network is used for visual classification 
of handwritten digits in [33] and human gesture recognition 
for robot partners by SNN is investigated in [34]. In [14] we 
develop a SNN that can detect interest point type features for 
the purpose of describing local image patches. Other 
applications of SNN include vision based obstacle avoidance 
[35, 36], laser-based robot vision [37], robot control [38, 39], 
UAV control [40], sonar based control [41]. Although such 
techniques can be readily adapted for use with depth images, 
none make use of the complementary information available 
when depth and intensity image data are combined. 

Building on the work in [15] where we used a standard 
SNN for edge detection, we present a feature detection 
approach which is more closely correlated with the biological 
visual system through the use of biological plausible receptive 
fields. The primary objective is biologically inspired 
simultaneous processing and feature extraction from registered 
intensity and depth images. The intensity and depth image 
modalities are combined to produce a single processed output 
thereby illustrating complementary information from both 
modalities. Section II presents RGB-D intensity and depth 
image capture and pre-processing. Section III presents the 
model of the spiking neuron and Section IV describes the 
SNN structure, its implementation and the underlaying 
biological origin of the method. Extracting edges from both 
RGB and depth images, requires careful consideration 
regarding thresholding and this is described in Section IV. 
Section V presents a visual comparison and experimental 
results, while the conclusion is presented in Section VI.  

II. DEPTH PERCEPTION AND RGB-D IMAGE CAPTURE 
Biological visual perception is typically generated from 

variation in depth cues that may be defined as either 
monocular or binocular cues. Even more interestingly some 
biological systems, such as the Mantis Shrimp [42], have 
developed alternative techniques for visual acquisition of 
depth information.  

In artificial vision, RGB-D cameras are used as an effective 

method of computing depth information. In Figure 1 we  
illustrate examples of intensity images and the corresponding 
depth images  captured using an RGB-D camera. The intensity 
image is used in it’s standard grey-scale format and the depth 
image is converted to an intensity image where the darker 
regions represent measurements close to the RGB-D camera 
and the lighter regions represent those further away. Locations 
with missing measurements are visualised as black areas. 
Hence, we do not strictly use RGB-D data but instead the 
images are converted to standard greyscale intensity image 

data.  

III. SPIKING NETWORK STRUCTURE AND BIOLOGICAL BASIS 
Recent research discusses neuronal circuits which detect 

characteristics that are present in all visual system stages such 
as orientation and motion, from the retina through to the visual 
cortex [43]. This section describes how we take inspiration 
from these findings, discussing the spiking neuron model and 
the SNN design.  

A. SNN Design 
Hierarchical visual processing models are based on 

networks of different types of cells [44] and used to describe 
biological vision systems. Photoreceptors detect light within 
the biological retina and corresponding signals are further 
processed within the various retinal layers onto the lateral 
geniculate nucleus (LGN) and ultimately the visual cortex. 
Receptive fields (RF) known as centre–surround that tend to 
strongly respond to changes in contrast are formed by some 
neurons within the retina and lateral geniculate nucleus. 
Combinations of these cells, result in orientation specific cells, 
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Fig. 1.  Example (a) RGB image and (b) Depth image captured with RGB-D 
style camera (from [9]). 
  



called simple cells, which may detect features of a specific 
orientation such as orientated lines, bars or edges. These are 
subsequently inputs to more complex cells that can detect 
more complex features.  

An RF is formed where responses from a group of afferent 
neurons are integrated into one neuron. Many areas of the 
visual system have RFs including the visual cortex and retina. 
Fig. 2 illustrates and example RF where the post-synaptic 
neuron has a RF with an array of 9 neurons. Each pre-synaptic 
neuron connects to the post-synaptic neuron via both 
inhibitory and excitatory synapses. Orientation specific RFs 
were discovered by [45] in the visual cortex and described as 
simple cells as they strongly respond to a simple line or edge 
stimulus with a specific orientation. We emulate these RFs 
using four types of orientation specific RF (ON horizontal, 
OFF horizontal, ON vertical and OFF vertical) analogous to 
horizontal excitatory, horizontal inhibitory, vertical excitatory 
and vertical inhibitory respectively. In addition to emulation of 
RFs and temporal processing, the SNN here also emulates 
other biological operations involving summation of neuronal 
outputs and neuronal nonlinearities.  

B. Spiking Neuron Model 

In [46] spiking neuron model is based on experimental 
recordings using the voltage clamp method. Whilst the model 
is biologically plausible, it is difficult to simulate as there is a 
large number of differential equations. Therefore a simplified 
neuron model, for example the integrate-and-fire model (I&F), 
leaky I&F model, conductance-based I&F or Izhikevich’s 
model tend to be simulated for research proposes. In [47] the 
biological behaviour of single neurons is reviewed and in [48] 
different neuron models are compared. Here we use the 
conductance-based I&F model as it performs similarly to that 
in [46], yet is computationally more efficient. In the 
conductance-based I&F model, the membrane potential is 
defined by: 
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where mc , lE , lg , exE , ihE , exw , ihw , exA and ihA represents 
the membrane capacitance, membrane reversal potential, 

membrane conductance, inhibitory synapse reversal potential, 
excitatory synapse reversal potential, excitatory synapse 
weights, inhibitory synapse weights, excitatory membrane 
surface area, inhibitory membrane surface area respectively. 

An action potential is generated if the membrane potential 
( )tv  exceeds a given threshold thv and ( )tv  is then reset to 

resetv  for a refractory duration refτ (here set to 6.0ms). The 
conductance of inhibitory and excitatory synapses is 
represented by ( )tgih  and ( )tgex  respectively, which 
temporally vary. The spike train that is output as a result is 
defined by a series of 1s or 0s, where 1 denotes the firing of a 
neuron at time t  and 0 denotes that a neuron has not fired at 
time t , i.e. ( ) ( ) ( )[ ]Moutoutout tS,,tS,tS …21 . 

IV. SPIKING NEURAL NETWORK STRUCTURE 
We have implemented a SNN with the structure as 

presented in Fig. 3. The first network layer represents 
photoreceptors found in the retina of a biological vision 
system. Here, within the input image each photoreceptor is 
denoted by a pixel value. As we are using both intensity and  
depth images we have both an intensity-photoreceptor layer 
and a depth-photoreceptor layer. Within the intermediate 
network layer there are eight variations of neurons with 
differing RFs, four of these correspond to the intensity data 
and four correspond to the depth data. Each of the four 
neurons represents the excitatory horizontal direction RF, the 
excitatory vertical direction RF, the inhibitory horizontal 
direction RF and the inhibitory vertical direction RF.  

The photoreceptor and intermediate layers are also 
connected with weight matrices that represent the underlying 
neural connectivity and the associated synaptic weights for the 
particular RF that is under consideration. We use fixed size 
weight matrices, although the size may be increased to 
construct larger RFs by increasing the connectivity. The RF in 
Fig. 3 illustrates excitatory synapse connections with ‘Δ’ and 
inhibitory synapse connections with ‘X’. 

Based on [21] we use the function defined in equation (2) 
[20, 21] to calculate the synapse weights. In order for vertical 
edges to be detected in the intensity image we define the 
excitatory and inhibitory RFs as ON

vwi  and OFF
vwi . Similarly, 

in order for horizontal edges to be detected we define the 
excitatory and inhibitory RFs as ON

hwi  and OFF
hwi  

respectively. In a similar manner, the horizontal and vertical 
excitatory and inhibitory RFs for the depth image are defined 
as ON

hwd , OFF
hwd , ON

vwd and OFF
vwd . 

Values for the excitatory weight matrix in the RF ON
hwd  

for the horizontal direction may be calculated as:  
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Fig. 2.  RF of a spiking neuron 
  



 
where ( )cc yx ,  denotes the RF centre, the constants xd  and 

yd  define the RF shape, and excitatory and inhibitory 

synapses maximal weight is denoted as maxw . In Section V, 
1=xd , 6=yd  and 1max =w  to ensure consistency with 

previous work [20, 21]. 
When a 33´  ON

hwd RF is constructed using these 
parameters the following weight matrix is obtained,  

 

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

000
000
97.00.197.0

ON
hwd .                             (3) 

Similarly, inhibitory weights in OFF
hwd  are determined,  
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Using the parameters in (4) the following 33´  OFF
hwd RF 

weight matrix is generated:  
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The ON
vwd  and OFF

vwd  RFs can be obtained by simply 
rotating the ON

hwd  and OFF
hwd  weight matrices through 90° 

clockwise.  Similarly, intensity weight matrices ON
vwi , OFF

vwi , 
ON
hwi  and OFF

hwi  are generated using (2) and (4). The 

 

 
 

Fig. 3.  Spiking Neural Network Structure. 
  



intensity weight matrices can be considered equivalent to the 
depth weight matrices when the RF size under consideration 
and associated parameters are identical.  

The intermediate network layer contains eight parallel 
arrays of neurons, where each array has the same dimensions 
as the receptor layer. For clarity, we have only illustrated 1 
neuron, xn  for each intermediate layer array shown in Fig. 3. 
Additionally, some of the connections between the synapse 
matrices and photoreceptor layer have been omitted for visual 
clarity. Each of the parallel neuronal arrays in the intermediate 
layer correspond to a RF that can detect discontinuities in 
either edge or depth at different orientations thereby 
functioning as an orientation specific line detector. 

In the output layer the integrator neurons’ role is to 
integrate each of the individual intermediate layer’s outputs, 
thus pooling the response from the orientation specific RFs. 
The resultant output generates a feature map corresponding to 
the combination of the original intensity and depth image data. 
In areas of either intensity changes or depth discontinuities, 
pooled responses contribute to the computed edge map. The 
edge map is thresholded by setting a firing rate threshold, T 
(empirically or scientifically), that corresponds to the desired 
output. 

A. Network Implementation 
The network was implemented using the parameters: 

mv60-=thv , mv70-=resetv , mv0=exE , mv75-=ihE , 

mv70-=lE , 2mm/s0.1 µ=lg , 2mm/nF10=mc , ms6=reft

, 23mm02895.0=ihA and 2mm014103.0=exA . The parameters 
have been selected to be consistent with biological neurons 
[20, 21]. The image data (intensity and depth) are normalised 
to the range [0…1]. Missing depth data are set equal to 0 to 
denote depth discontinuities. To enforce no neuron firing in 
uniform image areas within its RF the synaptic strengths are 
adjusted. Each RF is processed in a simultaneous manner in 
order to emulate the parallel processing of the biological 
vision system. From the output neuron, the membrane 
potential is determined through pooling the response from 
each RF. 

V. EVALUATION 
For performance evaluation, we use Pratt’s Figure of Merit 

(FOM) [49] on each of the intensity and depth images. FOM 
generate maximum performance for well localised, continuous 
edges and penalises for missing edge points and noise 
classified as edge pixels.  Hence, the FOM is defined as: 

å
= +

=
AI

iIA dII
R

1
21

1
),max(

1
a

                   (6) 

 
where AI =number of actual detected edge points, II = the 
expected number of detected edge pixels, d = distance 
between detected and expected edge point, and α is a scalar 
typically chosen as 1/9. The FOM output is normalised such 
that R is in the range 0 and 1, where 1 represents an accurately 
detected and localised edge. For FOM, synthetic images are 
typically used as we require knowledge of the location of the 

edge points.  We completeness and robustness, we compare 
edge detection performance using a full range of edge 
orientations and signal-to-noise ratios (SNR), where 

2

2

s
hSNR = , and the step edge height is h with 2s  denoting 

the noise variance. 

A. FOM Evaluation using Intensity Images 
Pratt’s FOM was computed using a number synthetic 

images containing a variety of ramp edge and SNR which 
were selected as 1, 5, 10, 20, 50 and 100 analogous to [49].  
The FOM was calculate by summing the synaptic weight 
matrices (3) and (5) and then convolving with the synthetic 
ramp edge images. To provide a comparison with other well 
known techniques, we compute the FOM for the well-known 
Sobel [9] and Canny [50] gradient-based edge detectors and 
the Structured Forest (SF) machine learning approach 
proposed by [51]. The results for the horizontal ramp edge are 
shown in Fig.4 where the FOM is averaged over 5 images for 
each SNR.  

 
Results illustrate the SNN with synaptic weight matrices (3) 
and (6), performs similar to the Sobel edge detector and in 
some cases when the SNR is within the range 5-20, the SNN 
results in an improved FOM.  The Structured Forest approach 
fails to detect meaningful edges as this particular approach is 
designed to detect features in natural images rather than 
synthetic images. These FOM results are encouraging as it 
demonstrates that the novel bio-inspired approach can perform 
equally as well as these standard techniques. Whist results 
demonstrate the SNN does not perform as well as Canny, this 
method is computationally expensive and can only be applied 
to intensity images and not depth images whereas the focus of 
this work is a single biological inspired approach to processing 
both image modalities. 

B. Figure	of	Merit	Evaluation	using	Depth	Images	
Performance evaluation has also been conducted using a 

number of synthetic depth images [52]. In this approach ten 
different types of edges are considered. Each of the edge types 
are defined as two planes equations; these are then used to 
create a regularly distributed depth image representing each 
potential edge available within a depth image. The FOM was 
computed by summing the synaptic weight matrices (3) and 

 Fig. 4.  FOM results for horizontal ramp edge intensity image. 
 

 



(5) and then convolving with the synthetic depth images. For 
comparison, we also compute the FOM with the well-known 
Scan-line edge detector [53, 54] for use with depth images and 
with the Structured Forest technique [51] which has been 
trained using the RGB-D image dataset suggested by the 
proposers.  

Fig. 5 illustrates that the SNN outperforms the scan-line 
method for depth image edge detection over a range of SNR. 
In fact, it should be noted that a FOM value of 1 is never 
obtained using the scan line even when noise is not present, 
thus indicating that an edge can not be accurately localised 
under any circumstances.  The Structured Forest approach 
again fails to detect meaningful edges as this particular 
approach is designed to detect features in natural RGB-D 
images rather than synthetic images used in the FOM 
evaluation. Although results for only the 33´  synaptic 
weight matrices (3) and (5) are illustrated, weight matrices of 
any size can be calculate using the proposed novel framework 
to detect features of different scales. 

 
C. Visual Evaluation using Intensity and Depth Images 

The SNN edge detector evaluation performance is compared 
with gradient based feature extraction algorithm presented in 
[52], the scan-line feature detector [53, 54] and a Structured 
Forest machine learning approach [51]. In Fig. 6, the 
corresponding intensity and depth images are presented in Fig. 
6(a) and 6(b). As an example of the advantage provided by the 
pooling in the SNN output layer we can see although the SNN 
model has detected all the edges as illustrated in Fig. 6(d), that 
the edges from ketchup bottle are not identified using the 
Sobel edge detector in Fig. 6(c) but. The pooling of the 
information from both depth and intensity image modalities 
highlights the complementary information that can be 
obtained with this approach. Using only one image modality 
or not pooling the intermediate layer outputs would result in 
failure to detect the glass bottle. 
In Fig. 7 and Fig. 8 we present a visual comparison 
demonstrating detection of the features in each of the 
individual intensity and depth images. We have selected the 
gradient feature extraction algorithm from [52] to provide 
comparative results as it has been previously used with both 
intensity and depth images. It should also be noted that our 
proposed SNN network is a one-step approach combining the 
various inputs from the intensity and depth images with the 
pooling in the output layer. Note in Fig. 7c that some of the 

finer details of the tissues coming out of the tissue box are 
missing. This missing information is observable in the 
intensity edges in Fig. 7(d). 

 Fig. 5.  Figure of Merit results for horizontal step edge depth image. 

 
(a) Intensity image 
 

 
(b) Depth image 

 

 
(c) Sobel edge detector output 

 

 
(d) Bio-inspired edge feature output 

 
Fig. 6.  Depth and intensity images and associated edge feature output. 



(a) Depth image 
 

(b) Intensity image 

 
(c) Scanline depth image edges    

 
(d) Intensity image edges using [51] 

(e) Structured Forest Depth edges 
 

(f) Structured Forest intensity edges 

 
(g) SNN edges 
 

 
(h) Intensity image edges using [9] 

Fig. 7 Sample images comparing SNN detector with standard intensity edge 
and depth edge detectors 
 

 
(a) Depth image  

 
(b) Intensity image 

 
(c) Scanline depth image edges  

 
(d) Intensity image edges using [51] 

 
(e) Structured Forest Depth edges 

 
(f) Structured Forests intensity edges 

 
(g) SNN edges 

 
(h) Intensity image edges using [9] 

 
Fig. 8 Further sample images comparing SNN detector with standard intensity 
edge and depth edge detectors. 

Notice that when the feature detector is applied to the depth 
data the difference in depth profile along the upper edge of the 
tissue box is not detected as the change in depth values is not 
sufficiently significant. However, the feature detector applied 
to the intensity data can easily distinguish between different 
intensity values. Equally, in the intensity image, the feature 
extraction algorithm does not detect change in intensity 
between the tissue paper and wall in the background in certain 
regions.  However, when the feature extraction algorithm is 
applied to the depth data, we can clearly determine tissue box 
shape from the wall in the background as there is a significant 
depth change. This highlights the advantage of using the SNN 
with a pooled intensity and depth images, illustrating the 
complementary information available in the resulting output in 
Fig. 7(g). The SNN produces a feature map that’s does not 
require independent thresholding. An additional visual 
example is illustrated in Fig. 8.  These initial results are 
promising as increasingly researchers aim to develop image 
processing algorithms based on biological systems as it is 
accepted that traditional algorithms are unable to process with 

the effectiveness achieved by biological systems; this SNN 
model is a step closer to this goal. 

D. Detailed Parameter Analysis 
We provide detailed parameter analysis of three tuneable 
parameters in the SNN implementation; these are simulation 
time t, refractory period refτ , and RF size 𝛿". The parameters 
relating to the conductance based the neuron model in [46] are 
based on biological recordings and these standard parameters 
are maintained. Similarly, the weights of the synapse matrices 
are based on the description of biological RFs limiting any 
analysis of these parameters. In addition, in every case the 
FOM is calculated over all possible thresholds selecting the 
best performing threshold. 
In Fig. 9 we present results for the SNN network when 
varying the simulation time. In this case we have chosen to 
run the network simulation for 50ms, 100ms, 200ms, 300ms 
and 1000ms. All other network parameters remain constant 
and as described in Section IV. The best threshold is 
automatically determined based on the maximum FOM value. 
Fig 9 demonstrates that the optimal simulation time t varies 



between 200ms and 1000ms depending on the SNR of the 
image in question. In Fig 10 we present results for the SNN 
network when varying the refractory period refτ of the 
Hodgkin Huxley model. In this case it can be observed that a 
refractory period of 4ms is optimal for this implementation. 
Finally, in Fig 11 we present results for the SNN network 
using different sized RFs. In the example presented the RF 
varies in size from 3×3, 5×5 and 7×7. The analysis 
illustrates that that 7×7 is best in cases of very high noise, 
5×5 is best with median noise and 3×3 is best with low noise. 

 
Fig. 9.  FOM results for Vertical Ramp edge varying simulation time 

 

 
Fig. 10.  FOM results for Vertical Ramp edge varying refractory period 

 

 
Fig. 11.  FOM results for Vertical Ramp edge varying RF size 

VI. CONCLUSION 
We present an approach to feature extraction that is inspired 

by the biological vision system. Based on this, we have 
developed a SNN that can concurrently process depth and 
intensity images were each image is presented to the SNN in 
the input layer. We construct the SNN using a hierarchical 
layered structure composed of spiking neurons with RFs, 

similar to those found in different areas of biological visual 
systems such as the visual cortex, lateral geniculate nucleus or 
retina. We use various layers of orientated RFs in the 
intermediate layer. Each layer consists of excitatory or 
inhibitory synapses that can detect both changes in intensity or 
discontinuities in depth data at different orientations. 

We use integrator neurons in the output layer of the SNN to 
pool the responses from all the intermediate layer neurons. 
The neurons in the output layer also have an integrated 
thresholding mechanism which produces an output spike in 
conditions when the intermediate layer provides sufficient 
spiking input. The resulting firing map then corresponds to 
pooled edges from each of the input depth and intensity data. 

The proposed biologically realistic model demonstrates 
powerful functionality for integrating inputs and generating 
spikes. The SNN can perform multiple computations in 
parallel such as detecting discontinuities in depth data, 
detecting changes in intensity data, integrating neuronal 
outputs and finally thresholding with the use of inhibitory and 
excitatory synapses. 

The Figure of Merit results presented illustrate that when 
using intensity data the SNN performs similar to the Sobel 
edge detector and in some cases is slightly improved. In the 
case of edge detection on depth images the SNN clearly 
demonstrates superior performance over the scan-line method. 
FOM results also demonstrate that the Structured Forest 
machine learning method of edge detection fails on synthetic 
images due to the specific training set on which the model was 
obtained demonstrating poor generalisation, however the SNN 
technique, which is based on temporal biological processing 
and uses a visual model based on biological visual processing 
demonstrates greater generalisation across all image types 
without specific training. Visual results also highlight the 
complementary information that is available using both 
intensity and depth images; an important advantage of the 
SNN approach is that the SNN is a one-step approach, 
naturally combining multiple input images from the intensity 
and depth images to detect different edge features and 
generates a single feature map as an output. The experiments 
illustrate that depth and intensity data can be used in many 
artificial vision applications including the creation of object 
models or combining depth and intensity data where 
appropriate for specific robotic tasks. We have demonstrated 
how a SNN can be used to detect pooled features from depth 
and intensity image inputs. 

This paper presents an implementation of a hierarchical 
visual processing system that incorporates many aspects of 
biological vision systems and that is suitable for different 
image modalities. The SNN receptive layer cells respond 
strongly to edges in horizontal and vertical orientations (i.e. 
there is no isotropic response) and therefore the detector 
cannot be considered rotationally invariant. Future work will 
investigate the feasibility of embedding rotational invariance if 
the number of intermediate layer neurons is increased and 
corresponding RFs to improve network performance to 
different edge orientations. Additionally we will investigate 
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the possibility of a hardware parallel implementation as well 
as the implementation of different shapes and sizes of RFs to 
increase the feature detection performance and capabilities. 
For example, biological system’s RFs occur at various sizes. 
Fig. 14 illustrates the RF positions from the isolated retina 
from a Salamander. Here we have plotted the RF from 18 
different ganglion cells. This variation in RF size occurs in 
many biological systems. In the method appropriate parameter 
adjustments within  (2) and (4) will vary the RF sizes resulting 
in the RF being more ‘tuned’ to particular sized features. This 
technique is analogous to multi-scale processing. Our next 
step is to investigate how the SNN can be used with different 
sized RFs to detect different sized features. 
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