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A SIMULATION-OPTIMIZATION APPROACH FOR A SERVICE-CONSTRAINED MULTI-

ECHELON DISTRIBUTION NETWORK  

 

Abstract 

Academic research on (s,S) inventory policies for multi-echelon distribution networks with 

deterministic lead times, backordering, and fill rate constraints is limited. Inspired by a real-life Dutch 

food retail case we develop a simulation-optimization approach to optimize (s,S) inventory policies in 

such a setting. We compare the performance of a Nested Bisection Search (NBS) and a novel Scatter 

Search (SS) metaheuristic using 1280 instances from literature and we derive managerial implications 

from a real-life case. Results show that the SS outperforms the NBS on solution quality. Additionally, 

supply chain costs can be saved by allowing lower fill rates at upstream echelons. 
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1. Introduction  

In supply chain operations it is important to manage inventory levels correctly in order to serve 

customers on time and to minimize inventory investments and ordering costs (Axsäter, 2003c). The 

optimal amount of stock in a supply chain not only depends on demand, supply and lead times of an 

individual supply chain entity, but also on the inventory levels of other stock-keeping entities in the 

supply chain. Multi-echelon inventory models determine optimal inventory levels for all stock-keeping 

entities in a supply chain by trading off order and holding costs against backorder costs, or by 

minimizing order and holding costs subject to a given service level constraint (Özer and Xiong, 2008). 

Since many firms typically do not know their backorder costs, they often set service level constraints 

to optimize their inventory levels. While service-constrained models are practically more relevant they 

are more difficult to solve from a computational and analytical standpoint. 

This paper studies multi-echelon retail distribution networks with deterministic lead times, 

backordering, periodic (s,S) inventory policies, and fill rate constraints. Such network configurations 

and inventory policies are common in retail supply chains yet academic research on the topic remains 

limited (Silver et al., 2009). Our research was inspired by the challenges faced by a Dutch food retailer 

with a supply chain network consisting of several brands. Similar to other supermarket retailers this 

retailer is using a periodic review with re-order and order-up-to levels. The ordering systems that are 

commonplace in supermarket retail are often based on some form of (s,S) policy with periodic review 

(van Donselaar et al., 2006). Determining the right inventory parameters was deemed important to 

accommodate target fill rates in a supply chain consisting of a number of semi-autonomous decision-

making units while minimizing supply chain wide costs. To the best of our knowledge, only Schneider 

et al. (1995) and Li et al. (2010) provide solution approaches for a similar setting and do so by 

determining the (s,S) policies using respectively power approximations, or via simulation-

optimization.  

Simulation-optimization models have been recently proposed as an alternative to traditional 

mathematical programming or simulation approaches. In the literature, the use of mathematical 

programming methods often requires oversimplifying real-life cases (Peidro et al., 2009). Simulation 

is capable of modeling more realistic problem settings; however, the process of generating a sufficient 

number of scenarios that all need to be evaluated before finding (near-)optimal solutions is usually 

quite time-consuming (Saetta et al., 2012). Alternatively, to obtain fast and accurate solutions, 

simulation has been integrated with optimization methods in an iterative process (Chu et al., 2015, 

Fleischhacker et al., 2015, Almeder et al., 2008).  

In this paper, we propose a Scatter Search based simulation-optimization method that allows for 

modelling and solving realistic settings. To this end, Section 2 summarizes the relevant literature on 

multi-echelon inventory models and specifically on service-constrained models. The problem 
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description and formulation are presented in Section 3. In Section 4, two simulation-optimization 

approaches are compared. The first method is a Nested Bisection Search heuristic based on the work 

of Li et al. (2010) and the second method is a novel Scatter Search metaheuristic proposed in this 

paper. In Section 5, the performance of the solution approaches will be examined using 1280 synthetic 

problem instances from the literature and a real-life food retail case. Finally, in Section 6 conclusions 

are drawn and avenues for further research are proposed.  

2.	Literature	review			

Inventory management for a single stage in a supply chain is relatively straightforward and well 

covered in most supply chain management handbooks (e.g. Silver et al., 2009, Simchi-Levi et al., 

2009, Slack et al., 2010). However, if inventory is held in more than one stage of the supply chain (i.e. 

in a network) then determining optimal inventory parameters becomes more difficult (Ravi Ravindran 

and Warsing Jr., 2012). In case of local control, every entity (or installation) in the network controls its 

own inventory, which is also known as an installation stock policy. At the same time, the entities in 

this network are dependent on each other since demand at a downstream stage triggers an order at an 

upstream stage. Inventory levels at different stages thus influence each other (Schneider et al., 1995). 

In the case of central control, where one entity manages all inventories in a network, the echelon 

inventory position is used to manage the inventory level of all echelons. The echelon inventory of a 

certain location consists of the installation inventory of that location plus all downstream installation 

inventories (Axsäter, 2003c). When applying echelon stock policies information on inventory levels 

should be shared between the locations of the different echelons, which can be technically and 

organizationally challenging to implement in industry (Tüshaus and Wahl, 1998).  

Clark and Scarf (1960) introduced the first multi-echelon inventory model using a serial network 

in which each stage has a single supplier and a single customer. Building on the seminal Clark and 

Scarf (1960) paper, a variety of multi-echelon inventory models were developed for other network 

structures, including diverging distribution networks (e.g. Rong et al., 2012) and converging assembly 

networks (e.g. Cheng et al., 2002). In the literature, multi-echelon inventory models are regularly 

divided into backorder-cost (also full cost) and service-constrained (also partial cost with service level 

constraints) models (Chen and Krass, 2001, Özer and Xiong, 2008).  Since backorder cost are difficult 

to determine, service-constrained models are often more applicable to real-life settings. Furthermore, 

service levels are known as the most used performance measures (Silver et al., 1998). Generally, the 

objectives of papers on multi-echelon inventory networks are to minimize cost and find optimal 

inventory parameters. For service-constrained models an additional requirement is added to safeguard 

a given service level while minimizing costs and inventory levels. Below, we first discuss articles that 
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focus on determining service levels in a network (without minimizing costs) and then articles that 

mainly focus on minimizing costs while enhancing a certain service level.  

In the first stream of papers, the first paper to introduce service-constrained distribution models 

was by Rosenbaum (1981), who uses simulation to test a heuristic for determining the best 

combination of distribution center (DC) service levels to achieve a given external customer service 

level. Desmet et al. (2010) use a similar approach by approximating the effect of a reduction in the 

warehouse fill rate on the system safety stock (the total safety stock in a network). Schwarz et al. 

(1985) develop approximations and heuristics to maximize the system fill rate with a constraint on the 

system safety stock. Tüshaus and Wahl (1998) provide a robust and numerically inexpensive cycle-

based approximate mathematical representation for a two-echelon distribution system with service 

level constraints, which can be used for determining performance measures or for use with an 

optimization method.  Caggiano et al. (2009) approximate and simulate system-wide optimal (echelon) 

inventory levels by computing channel fill rates for time-based service levels. These papers focus on 

the influence of service levels on the system, or on computing target service levels.  

A second stream of papers focuses on minimizing costs while maintaining a certain service level. 

van der Heijden (2000) proposes an approximate optimization procedure to find optimal base-stock 

policies for a multi-echelon distribution network sequentially using target fill rates. He assumes that 

perfect information is available and therefore uses an echelon stock policy with balanced stock 

rationing in case of a stock-out. Balanced stock rationing does not account for differences in holding 

costs of the downstream locations, which may be relevant in situations with heterogeneous 

downstream locations.  Van der Heijden (2000) argues that there is a trade-off between guaranteed 

service levels with low costs versus minimal costs with reasonable service levels. Simchi-Levi and 

Zhao (2005) obtain optimal base-stock policies for a variety of network configurations while meeting 

certain service level requirements of external customers. They propose an algorithm that is based on 

dynamic programming and the two-moment approximation of Graves and Willems (2000). Simchi-

Levi and Zhao (2005) assume that demand is Poisson distributed, the probability distributions of the 

transportation lead times are known; their model incorporates a continuous installation stock policy. 

Özer and Xiong (2008) provide an exact algorithm, heuristics, and approximations for a two-echelon 

distribution system to set optimal base-stock levels by minimizing the average inventory holding costs 

subject to fill rate constraints. They apply a continuous review policy without order cost, which 

implies that every time demand is faced, an order is immediately placed. Their exact algorithm 

assumes Poisson-distributed demand and its use requires substantial CPU time, data and advanced 

modelling knowledge. As such, to gain insights on system performance the authors also provide 

heuristics and closed-form approximations but these methods do not allow for determining optimal 

inventory parameters. Similarly, Fleischhacker et al. (2015) propose a non-linear and a deterministic 
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linear integer optimization model to determine shipping quantities and inventory levels for a divergent 

network with a fill rate constraint. They assume Poisson distributed demand, a finite time horizon, a 

continuous review policy and constant lead times. Chu et al. (2015) recently described a simulation-

based optimization framework for a divergent multi-echelon network under stochastic demand and 

stochastic lead times. They propose a three step procedure to optimize (r,Q) policies by minimizing 

total cost while maintaining acceptable fill rates. First, they apply an agent-based system that simulates 

the inventory system and returns performance measures, second they use a Monte Carlo method and 

third, they developed a cutting plane algorithm to determine optimal inventory parameters. Tsai and 

Liu (2015) study a multi-item, multi-echelon spare parts inventory system and minimize costs with the 

expected response time as service measure. They follow a continuous review base-stock policy, which 

implies that every time demand is faced an order is placed immediately. They develop two different 

algorithms within a simulation-based optimization framework, a ranking and selection method and a 

stochastic genetic algorithm and compare these to a sample-average-approximation. As in the models 

of Chu et al. (2015) and Tsai and Liu (2015), simulation is used here to model the inventory dynamics; 

using this approach demand and lead times can be modeled using any probability distribution. 

In retail supply chains periodic (s,S) inventory policies are fairly common (Silver et al., 2009).  

Such a periodic (s,S) policy implies a different optimization procedure than a base-stock policy, which 

is widely used in the related literature (van der Heijden, 2000, Simchi-Levi and Zhao, 2005, Özer and 

Xiong, 2008, Fleischhacker et al., 2015, Tsai and Liu, 2015). For an (s,S) policy, decision variables s 

and S are dependent on each other as S always needs to be strictly larger than s, which makes the 

optimization procedure inherently more difficult than for a base-stock policy. For example, when 

using a base-stock policy every review period an order is placed by default, which may not be 

desirable if high fixed order costs are involved. Of course review periods can be adapted to avoid 

frequent ordering and thus high order costs, but instead (s,S) policies could be implemented. In the 

past, (s,S) policies have been applied mainly to single-echelon models (e.g. Schneider and Ringuest, 

1990, Bashyam and Fu, 1998, Chen and Krass, 2001, Moors and Strijbosch, 2002, Silver et al., 2009) 

or to serial systems (e.g. Eltawil and Elnahar, 2007).  

Service-constrained models and (s,S) inventory policies are common in retail supply chains, but 

research on these topics remains limited. To the best of our knowledge only two papers discuss multi-

echelon divergent networks with an (s,S) inventory policy under service-level constraints. Schneider et 

al. (1995) determine optimal safety stock placements that minimize total costs using a service level 

measure as decision variable. They propose power approximations by assuming independent and 

identically distributed demand, stock-out cost at the stores and excluding partial delivery. 

Additionally, they model stochastic lead times and non-stock out probabilities. Their model does not 

suit our problem setting as we do not look into optimal safety stock placement, but into determining 
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optimal (s,S) inventory policies for given locations. Li et al. (2010) propose a simulation-optimization 

framework with a bisection search to obtain optimal (s,S) inventory policies that minimize costs for a 

two-echelon distribution network. To obtain near-optimal inventory policies for thousands of products 

quickly, they propose approximations and regression methods that may be used to characterize the 

inventory policies for similar products. Customer demand and all lead times are assumed to be 

normally distributed. Additionally, if inventory levels are insufficient, customer demand is considered 

lost, but replenishment orders are backlogged.  

We propose two different optimization methods to determine near-optimal values for (s,S) 

inventory policies in multi-echelon distribution networks. The first method, Nested Bisection Search, 

is based on an existing solution method, the bisection search of Li et al. (2010), for a similar multi-

echelon inventory problem. The second is a newly proposed evolutionary approach based on a Scatter 

Search metaheuristic, which is able to intensify and diversify the solution search space systematically 

(Glover et al., 2003). 

3.	Problem	description	and	formulation	

Consider a single-item service-constrained inventory optimization problem in an n-echelon 

distribution network (for an example of such a network see Figure 1). Each node (i.e., location) is 

replenished from a designated node at the next-higher echelon (the parent location). In case the parent 

location has sufficient inventory, the replenishment order will arrive at location j ∈ J after a 

deterministic lead time L!. Demand from the locations in the (next) downstream echelon (the child 

locations) is then fulfilled. Locations at the lowest echelon (echelon v=n) face external aggregated 

(customer) demand from external customer demand points (in this paper also shortened to ‘external 

demand’) and the highest echelon (echelon v=1) has infinite external supply. All locations control 

their inventory levels locally using a periodic (s,S) inventory policy.  Unmet demand is backordered at 

all locations in the network. 

 In the multi-echelon literature using echelon stock, it is common to use an allocation policy 

that takes customer service levels at downstream locations into account, for example through balanced 

stock rationing (e.g. Lagodimos, 1992, Diks et al., 1996, Van der Heijden et al., 1997). However, as 

we do not study an echelon stock policy, this is not suitable. Studies with a similar problem setting as 

we do usually have either a first-come first-served policy (e.g. Desmet et al., 2010), or do not ship 

anything when there is insufficient inventory to fulfill all orders (e.g. Li et al., 2010). In this paper, we 

allocate the remaining inventory of one location based on the proportion of outstanding orders of one 

child location as compared to all outstanding orders of all child locations, following the proportional 

allocation rule of  Tüshaus and Wahl (1998). First (a part of) the backorders of the last period are 

fulfilled and in case there is inventory left, (a part of) the new demand is fulfilled. The fill rate is used 
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as a service level as it is the most common service level in practice. It is defined as the fraction of 

demand that can be immediately satisfied from available inventory (Muckstadt, 2006, p.48). 

Shipments between locations of the same echelon (such as in Paterson et al., 2011) are not allowed. 

Lead times are assumed to be deterministic. The objective is to minimize the expected total costs, 

including inventory holding and ordering costs, subject to minimal fill rate requirements at the 

locations of echelon v=n. The expected inventory holding cost equals the expected number of products 

on inventory times the inventory holding cost. The ordering cost equals the expected number of 

transport units ordered times the cost for ordering one transport unit, which consists of multiple units 

of the same product. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We use the following notation: 

Network parameters 

J   the set of locations, indexed by j 

J!  the subset of locations at echelon v = 1, 2,… , n,with ∪!!!!  J! =  J, and  J!! ∩ J!! =

                             ∅, v! ≠  v! 

p j   the parent location of location j in the distribution network, 𝑗 ∈ 𝐽\𝐽! 

R(j)  the child locations of location j in the distribution network, j ∈  J\J!  

Y  the number of products in one transport unit (e.g. a pallet) 

 

Inventory policies  

s!  the re-order level of location j ∈ J 

S!  the order-up-to level of location j ∈ J 

Figure 1: An n-echelon distribution network 
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Performance measure parameters 

F!   the minimal fill rate requirement of location  j ∈ J! 

h!  the holding cost per product and per period at location j ∈ J  

K!  the order cost per transport unit at location j ∈ J 

 

Performance measurements 

E! s, S  the expected shortage (as a percentage of the total demand) of location j ∈ J! for a 

given (s,S) policy 

I!(s, S)  the expected inventory level of location j ∈ J for a given (s,S) policy 

P!(s, S)  the expected order quantity (in number of transport units) of location j ∈ J for a given 

(s,S) policy 

 

 

The multi-echelon inventory optimization problem with minimal fill-rate requirements (MEIO) is 

formulated as follows. 

(MEIO):                       min  ℎ!!∈! 𝐼!(s, S) + 𝐾!!∈! 𝑃! s, S ,      (1A) 

 s.t.        1 −  E!(s, S) ≥ F! ,             ∀ j ∈ J!,                (1B) 

 𝑆! > 𝑠! ,             ∀ j ∈ J,        (1C) 

 𝑠!, 𝑆!  ≥ 0, integers,       ∀ j ∈ J.             (1D) 

The objective function (1A) minimizes the total expected inventory holding costs and ordering costs of 

all locations. Constraints (1B) ensure that all minimal fill-rate requirements at the lowest echelon 

locations are satisfied. As formulated by Constraints (1C) and (1D), we only consider (s,S) policies 

that are nonnegative integer numbers and order-up-to levels always need to be higher than re-order 

levels. The (s,S) policies for all locations are inter-related decisions and, ideally, simultaneously 

optimized. All inventory dynamics related to the objective function and side constraints are explained 

in the simulation model in Section 4.3. 

4.		A	simulation	–	optimization	approach	

Many real-world problems are too complex to compute performance measurements and optimal 

decision variables analytically due to nonlinearities, combinatorial relationships, and uncertainties 

(Glover et al., 1999). Computer simulation can be used to evaluate complex systems; however, this 
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approach is limited because (a) it is not able to give the best or optimal solution in most cases and (b) a 

large number of scenarios need to be evaluated (Tekin and Sabuncuoglu, 2004). To find a near-

optimal solution to a complex problem it can be useful to integrate simulation and optimization. Such 

an approach uses an optimization method to find the best values of given decision variables to 

minimize/maximize an objective function; these solutions are then evaluated using a simulation model 

that incorporates uncertainty (Ólaffson and Kim, 2002, Jalali and Nieuwenhuyse, 2015). 

Optimization for simulation, which is also known as optimization via simulation or simulation 

optimization, consists of different techniques to optimize stochastic simulations (Amaran et al., 2016). 

Simulation-optimization first evaluates an optimizer’s candidate solutions, often using discrete-event 

simulation in which the system can change only when a certain event occurs (Law, 2015), and then 

returns the performances measurements to the optimizer. The optimization method uses the outputs of 

the simulation to decrease the search space (which consists of possible solutions) and to make 

decisions regarding the next trial solution (Fu, 2002, April et al., 2003, Amaran et al., 2016).   

In the next sections, we explain two optimization methods that are included in our simulation-

optimization approach. In Section 4.1, a Nested Bisection Search based on Li et al. (2010) is 

explained. Afterwards, a Scatter Search metaheuristic is developed in Section 4.2. Section 4.3 explains 

the simulation model that is used as an evaluative function for the optimization methods. 

 

4.1 Determining (s,S) values: Nested Bisection Search (NBS) 

Li et al. (2010) propose a simulation-based optimization framework as the best method in terms of 

solution quality to obtain optimal re-order levels for a single item in a two-echelon distribution 

network. By using a bisection search, first an initial re-order level is set for a location in the highest 

echelon and second, the re-order levels of all downstream locations are updated using again a bisection 

search. The re-order levels are updated recursively, from the highest to the lowest echelon. The 

simulation model evaluates every newly obtained solution and returns performance measurements. As 

Li et al. (2010) assume fixed order quantities, the order-up-to level can be obtained easily once the re-

order level has been determined.  

In this paper, we adjust the Li et al. (2010) heuristic to obtain (near-) optimal (s,S) policies for 

our problem setting. We model backorders instead of lost sales, we use different demand distributions, 

assume deterministic lead times instead of stochastic lead times and we follow a different inventory 

allocation policy (i.e. proportional rationing). However, similar to Li et al. (2010) we determine the 

fixed difference between the re-order level and the order-up-to level for each location using the 

standard EOQ formula with the expected demand for that location (EOQ!).  

As the work of  Li et al. (2010) provided insufficient detail on the exact implementation of the 

Nested Bisection Search (NBS), we used the work of Benkherouf (1995) on bisection search for 
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detailing the NBS algorithm (see Algorithm 1). We determine the re-order levels for all locations that 

minimize expected total cost while satisfying fill rate requirements. The NBS algorithm keeps track of 

which locations have been updated already and the locations in each echelon are always processed in 

the same sequence. Additionally, to speed up the search the search spaces of the (s,S) values in the 

NBS and Scatter Search (SS) are restricted within lower and upper limits. For each location all lower 

limits for the (s,S) values have been set to zero and all upper limits to twenty times the average 

demand (of a time period). Based on preliminary testing we concluded that these upper limits are 

sufficiently high. Re-order level s is initialized to the average demand of a location multiplied by the 

lead time to that location. Order-up-to level S is initialized to re-order level s plus the EOQ value of 

that location. 

  

 

Algorithm 1: NBS  

Main Procedure 

Step 1: Set the initial (s,S) values. 

Step 2: Calculate the Economic Order Quantity EOQ! for each location 𝑗 ∈ 𝐽.  

Step 3: Set the current location to the root location (location 1 in echelon 1) and call the 

bisection subroutine (step 4 to 7) recursively. 

 

Bisection Search Subroutine  

• Step 4: Let j denote the current location. 

• Step 5: Set a to the lower limit 𝑙𝑙! and b to the upper limit 𝑢𝑙!. 

• Step 6: Let 𝜀 = 1 be the minimal difference between 𝑎 and 𝑏. 

• Step 7:  While 𝑏  − 𝑎 > 𝜀 

o Set the mid-point 𝑚 as 

𝑚 = !!!
!

. 

o Set 𝑠! =  𝑚 and 𝑆! = 𝑠! + 𝐸𝑂𝑄!. 

o If location j is in echelon 2,  

§ Evaluate the total expected cost and expected fill rates with MEIO given by (1) by 

running the simulation model for the entire network, which will be explained in 

Section 4.3. 

Else, 

§ For each child location in R(j), call the bisection subroutine (step 4 to 7) 

recursively to evaluate the total expected cost and the expected fill rates. 
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o Update the best solution to the current (s,S) values if the current solution has a lower 

expected cost and the fill rate requirements are satisfied. 

o If the fill-rate requirements are satisfied, set 𝑏 =  𝑚; else set 𝑎 =  𝑚. 

End while 

• Step 8: Return the best (s,S) values with the expected cost and fill rates. 

4.2 Determining (s,S) values: Scatter Search metaheuristic (SS) 

Multiple approaches exist for optimizing decision variables in a simulation optimization approach (e.g. 

stochastic approximation, response surface methodology, and sample path optimization (April et al., 

2003)). Metaheuristic algorithms are highly relevant for complex optimization problems as they 

provide high quality solutions in short computing time (Juan et al., 2015, Figueira and Almada-Lobo, 

2014) and they are effective in solving multi-echelon inventory optimization problems (Paul and 

Rajendran, 2011). Metaheuristic approaches can guide other procedures, such as heuristics, to 

overcome local optimality for complex problems (Fu et al., 2005). They are applicable to simulation 

models with discrete decision variables, a large or near-infinite space of feasible solutions, and a 

stochastic environment (Swisher et al., 2000, Jalali and Nieuwenhuyse, 2015). Due to their 

effectiveness and general applicability, metaheuristics can be seen as one of the most practical 

approaches to solve complex real-life problems (Ólafsson, 2006). Additionally, Juan et al. (2015) 

argues that for complex real-life problems, it is in general preferred to obtain an approximate solution 

to an accurate model of a real system using metaheuristics with simulation over obtaining an optimal 

solution to an oversimplified model. Commonly, four types of metaheuristic approaches are applied in 

simulation optimization: Simulated Annealing, Genetic Algorithms, Tabu Search, and Scatter Search 

(Keskin et al., 2010). Fu et al (2005) state that the latter two are by far the most effective methods. The 

use of Tabu Search and Scatter Search is explained in e.g. Vojvodic et al. (2016) and Goh et al. 

(2017). 

Both Tabu Search and Scatter Search make use of adaptive memory to store best solutions and 

differ from other metaheuristic approaches by not heavily relying on randomization. However, Tabu 

Search is applied from the perspective of adaptive memory and Scatter Search focuses on an 

evolutionary approach which generates new trial solutions based on existing solutions(Glover, 2006).  

In this paper we adopt the Scatter Search (SS) method introduced by Glover (1977) as SS uses 

strategies to diversify and intensify the search which have proven to be effective in a variety of 

optimization problems (Martí et al., 2006, Russell and Chiang, 2006). Based on the basic SS 

framework (e.g. Laguna, 2014, Martí et al., 2006, Glover et al., 2003), which consists of five steps, a 

tailor-made solution approach with regard to how the steps are implemented is proposed for 

optimizing the (s,S) policies at all locations in J. The metaheuristic searches for promising inventory 

policies on the following solution space: 
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X ≡ { s, S ∈ ℤ ! ×ℤ ! ∶  ll!  ≤ s! <  ul!, ll!  < S! ≤  ul!, s! < S!,∀j ∈ J}  (2) 

 

where ll! and ul! are the lower and upper limits of the inventory parameters for location j ∈ J. 

Algorithm 2, based on Laguna (2014), provides an overview of the different steps in the SS 

metaheuristic. The next sections describe the major components of the SS in more detail: the 

diversification generation method for generating a diverse set of initial solutions, an improvement 

method including bisection search and a local search, updating the reference set from which solutions 

are used to generate new solutions, and a combination method using weighted linear combinations of 

solutions to obtain new solutions. Details about the specific parameter values used are reported in 

Section 5.1. 

 

Algorithm 2: Scatter Search 

• Diversification generation  

• Improvement method  

• While stopping criteria not satisfied do 

o Reference set update 

o While new reference solutions do 

§ Combination method 

§ Improvement method  

§ Reference set update  

o End while 

o Rebuild Reference set 

•  End while 

 

4.2.1 Diversification generation 

As SS aims to obtain better solutions by using combined solutions instead of original values, we start 

with generating a diverse set of solutions to initialize the search (Glover et al., 2003). A population 

pool is generated which can be done in multiple ways. We propose the following two heuristics 

(Construction Heuristics) for starting up the SS method: 

• C1: For all 𝑗 ∈ 𝐽, we set 𝑠! as an integer number (denoted as 𝑠!) that is randomly picked in [𝑙𝑙!, 

𝑢𝑙!). Afterwards, we set 𝑆! to an integer number (𝑆!) randomly picked in (𝑠!, 𝑢𝑙!]. 

• C2: For all 𝑗 ∈ 𝐽, 𝑠! and 𝑆! are set to integer numbers (denoted as 𝑠! and 𝑆!  respectively) that 

are randomly picked in [𝑙𝑙!, 𝑢𝑙!]. If 𝑠! > 𝑆!, we swap the values of 𝑠! and 𝑆!; otherwise, if 

𝑠! = 𝑆! and 𝑆! < 𝑢𝑙!, we increase 𝑆! by one. If 𝑙𝑙! < 𝑠! and 𝑠!  = 𝑆!, we decrease 𝑠! by one. 
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4.2.2 Improvement method 

In this step, the aim is to improve the initial solutions in terms of quality; in the case of non-feasible 

solutions the aim is to make them feasible. Several improvement methods can be used and the usual 

rule is to stop the search as soon as no improvement in the neighborhood of the current solution can be 

found (Laguna, 2014). In this paper, we propose two improvement method versions (Improvement 

Heuristics): a sequential and parallel bisection search for processing the locations.  

• I1: Sequential version: At each iteration, one of the locations is selected and its re-order level 

and order-up-to level are optimized using a bisection approach. The locations are improved 

sequentially and locations in this sequence are selected randomly. If the solution cannot be 

further improved, the search is perturbed with an approach reminiscent from gradient search 

(Ólaffson and Kim, 2002) which we will define as the local search. By exploring the impact of 

a one-unit increase or decrease on the individual (s,S) values, the direction for cost 

improvement is determined. The new (s,S) values are obtained by applying a fixed step size to 

the previous (s,S) values in the direction just explored. If this solution gives again an 

improvement the step size increases with a predetermined amount, if the solution did not 

improve compared to the previous solution, the step size decreases with the same 

predetermined amount. This procedure stops when the maximum number of non-improving 

iterations is reached. 

• I2: Parallel version: At each iteration, first the re-order levels of all locations and then the 

order-up-to levels of all locations are optimized. The same local search as in I1 is applied if no 

solution can be further improved using the bisection approach. However, different from the 

sequential version, at each iteration all locations are improved in parallel, instead of one 

location at the time. 

The improvement heuristics always terminate after reaching a maximum number of evaluated 

solutions for all locations together. 

 

4.2.3 Reference set update 

The scatter search maintains a reference set of multiple solutions (the reference solutions) that are used 

to generate new solutions using the Combination method (see Section 4.2.4) (Martí et al., 2006). At 

each iteration of the search, the reference solutions are picked from the population pool as follows. 

The first 50% of the solutions we take into account are the best solutions based on the objective 

function values in the population pool. The second half of solutions are picked one-by-one based on 

the minimum distance to each of the reference solutions, i.e., the set of minimum distances. The 

solutions with the largest values of the minimum distances to the reference solutions are chosen. The 
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set of solutions is thusly diversified in order to avoid staying in a local optimum. The distances are 

measured based on Euclidian distances, such that for any two solutions (s!, S!) and (s!!, S!!) in the 

solution space X  (Equation 2) the distance of the two solutions is given by: 

(s!! − s!!!)!!∈! + (S!! − S!!!)!!∈!     (3) 

 

 

 

4.2.4 Combination method 

To diversify the search, the reference set solutions are combined at each iteration of the scatter search 

by weighted linear combinations to generate new solutions, which are then added to the solution pool. 

For any two distinct solutions (s!, S!) and (s!!, S!!) in the reference set, with at least one of them being 

marked as “not yet processed”, a new solution (s∗, S∗) is obtained as follows: 

s!∗ = min s!!, s!!! + s!! − s!!! /2     (4A) 

S!∗ = min S!!, S!!! + S!! − S!!! /2    (4B) 

 

If (s∗, S∗) contains fractional values, they are rounded to the nearest integer values. As this new 

solution is the midpoint of two other solutions, it avoids already existing solutions and thereby 

diversifies the search. 

 Initially, all reference solutions are marked as “not yet processed.” After the solution 

combination, all the current reference solutions are marked as “processed.” New reference solutions 

obtained are initialized with “not yet processed.” The SS terminates when all the reference solutions 

are marked as “processed” and no new reference solution can be obtained. When the SS is terminated, 

the best feasible solution is given. 

 

4.3 Simulation model 

The (s,S) solutions proposed by the optimization methods will be evaluated by a discrete-event 

simulation model to determine expected fill rates and costs. Each time period starts with supplies 

based on past orders (Section 4.3.1), then the locations determine how much to ship to their child 

locations based on demand, backorders and available on-hand inventory (Section 4.3.2). After 

products are shipped to their child locations, each location determines how much to order to replenish 

their inventory (Section 4.3.3). The performance measurements for evaluating the solutions are 

discussed in Section 4.3.4.  

Let T be the set of time periods (indexed by t) and let T’ be the time periods for which the 

performance is measured (excluding the warm-up period). For all locations j ∈ J! and time periods 
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t ∈ T, let d! !  be the demand from the external customer demand points faced at location j in time 

period t. The demands follow a given probability distribution and are revealed at the beginning of each 

time period. The simulation procedure iteratively updates the following variables for each of the time 

periods. 

 

A!!  quantity arrived at location j at time period t from its parent location or external 

supplier,  j ∈  J, t ∈ T 

Z!! total quantity shipped at location j  to all child locations r ∈ R(j) or external customer 

demand points at time period t, j ∈  J, t ∈ T 

ZB!"!  quantity shipped at location j to child locations r ∈ R(j) for satisfying the backorders, 

j ∈  J\J!, t ∈ T 

ZB!! quantity shipped at location j  to satisfy the backorders of external demand, 

j ∈  J!, t ∈ T 

ZD!"!  quantity shipped at location j  to child locations r ∈ R(j) for meeting the orders of 

time period t-1, j ∈  J\J!, t ∈ T 

ZD!! quantity shipped at location j  for meeting the external demand of time period t, 

j ∈  J!, t ∈ T 

I!!   inventory level at location j at time period t, j ∈ J, t ∈ T  

B!"!   backorders between location j and child locations r ∈ R(j) at time period t, j ∈

 J\J!, t ∈ T 

B!!  backorders between location j and the external customer demand points at time period 

t, j ∈  J!, t ∈ T 

O!!   outstanding orders of location j at time period t, j ∈ J, t ∈ T 

IP!!  inventory position at location j at time period t, j ∈ J, t ∈ T 

V!!  products short at location j at time period t, j ∈ J, t ∈ T 

Q!!  quantity ordered by location j at time period t, j ∈ J, t ∈ T 

 

For the locations in the lowest echelon beginning inventory levels are initialized to the average 

demand multiplied by the lead time. For the locations not in the lowest echelon, the beginning 

inventory levels are initialized to the sum of the average demands of the children locations multiplied 

by the lead time to that location. All other variables listed above are initialized to 0. The simulation 

procedure updates the variables for each iteration, as described in Sections 4.3.1-4.3.4. 
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In Section 4.3.1, at the beginning of time period t, the products ordered from the external 

supplier or parent location arrive at location j (denoted as A!!). Afterwards, as described in Section 

4.3.2, location j has to determine how much it can ship to its child locations or external customer 

demand points based on the demand faced by location j. The amount to ship (Z!!) depends on the 

inventory level of the last time period of location j (I!!!!), the backorders to the child locations or 

external customer demand points (B!"!   or B!!) and the number of products arrived at the beginning of 

the time period. If there is on-hand inventory available, first (a part of) the backorders are fulfilled 

(ZB!"!  or ZB!!) and then (a part of) the demand (ZD!"!  or ZD!!). After all shipments are made, the 

inventory level, backorders to child locations or external customer demand points and the shortage per 

cycle (V!! ) are updated. In Section 4.3.3, at the end of time period t, a new order (Q!!) can be placed, 

depending on the inventory position (IP!!) and the (𝑠! , 𝑆!) policy of location j. Last, the number of 

ordered products outstanding (O!!) is updated. In Section 4.3.4, performance measurements for 

evaluating the solutions are discussed. 

 

4.3.1 Receiving orders 

All orders Q!! placed by locations in the highest echelon, take one time period to arrive as demand at 

the external supplier (at t+1). This supplier has infinite supply and ships the demand to location j ∈ J!, 

which takes lead time L! to arrive. As such, the arrival quantity  A!!  that arrives at the beginning of 

time period t is equal to the order that was placed lead time L! + 1 time periods ago by location j ∈ J!: 

 

 A!!= Q!
!!!!!! ,                  ∀j ∈ J1, t ∈ T.    (5A) 

 

For all locations j not in the highest echelon (J\J!), the arrival quantity  A!! of time period t is equal to 

the total shipment quantity (for backorders and new orders) of their parent location p(j) at time period 

t − L!:  

 

 A!!= ZB! ! ,!
!!!! + ZD! ! ,!

!!!!  ,              ∀j ∈ J\J1, t ∈ T.    (5B) 

 

 

4.3.2 Meeting the demand	

After the replenishment order arrives, the shipment quantity to the children nodes or external customer 

demand points can be determined based on the available on-hand inventory. The shipment quantity 

has two components, first the shipment quantity for the backorders ZB!"!  is determined and second, for 
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the demand faced ZD!"!  that period. For all locations j ∈ J \ J! , the orders of the child locations arrive 

the next time period and the total shipment quantity Z!! to child locations r ∈ R j   at time period t is 

given by: 

 

Z!! =  ZB!"!!∈!(!) + ZD!"! ,!∈!(!)             ∀j ∈ J \ J!, t ∈ T  (6A) 

where, 

 

ZB!"! = 
!!"
!!!

!!"
!!!

!∈! !
( I!!!! + A!!) , if B!"!!!!∈!(!) > I!!!! + A!!;

B!"!!!,   otherwise,
       ∀j ∈ J \ J!, r ∈ R j , t ∈ T. 

   (6B) 

ZD!"! = 
!!!!!

!!!!!!∈! !
 𝐼!!!! + 𝐴!! − 𝑍𝐵!"! 

!∈! ! , if 𝑄!!!!!∈! ! > 𝐼!!!! + 𝐴!! − 𝑍𝐵!"! 
!∈! ! ;

𝑄!!!!,   otherwise,
        

∀j ∈ J \ J!, r ∈ R j , t ∈ T.    (6C) 

 

Note that rounding down the shipment quantities in case of a shortage may result in a small number of 

requested products not being shipped. At most this amount will be equal to the number of child 

locations which requested products minus one.  

If the on-hand inventory is insufficient to fulfill all backorders and demand, all unshipped products 

need to be backordered. The number of backorders B!"!  between location j and its child locations 

depends on the backorders of last period, the new order (placed at time period t-1) and the shipped 

quantities of time period t: 

B!"! = B!"!!! +  Q!!!! − ZB!"! −  ZD!"!  ,           ∀j ∈ J \ J!, r ∈ R j , t ∈ T. (7) 

 

To determine the fill rate of location j we have to calculate the expected shortage per cycle V!! , which 

equals the amount of orders of time period t-1 that cannot immediately be shipped in time period t: 

V!! = Q!!!!!∈!(!) −   ZD!"! !∈!(!) ,    ∀j ∈ J\J!, t ∈ T.   (8) 

 

All locations j ∈ J! in the lowest echelon face external demand (instead of demand from child 

locations). These locations ship products to customers that represent the external customer demand 

points. Similar to the other locations, the locations in the lowest echelon first determine the shipment 

quantity based on the outstanding backorders (ZB!!) and afterwards the shipment quantity of the 

demand faced in time period t (ZD!!). First the shipment quantities are determined (Equation 9A-C), 
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second the number of backorders is updated (Equation 10) and third the number of products short in 

time period t (Equation 11): 

 

Z!! =  ZB!! + ZD!! ∀j ∈ J!, t ∈ T.          (9A) 

Where, 

ZB!! =
 B!
!!!,    if B!

!!! ≤ I!
!!! +  A!

! ;

I!!!! +   A!!, otherwise,
               ∀j ∈ J!, t ∈ T.    (9B) 

ZD!! =
 d!!,    if d!! ≤ I!!!! +  A!! − ZB!! ;
I!!!! +  A!! − ZB!!, otherwise,

           ∀j ∈ J!, t ∈ T.    (9C) 

 

B!! = B!!!! + d!! − Z!!,              ∀j ∈ J!, t ∈ T.   (10) 

 

V!! = d!! −   ZD!!,        ∀j ∈ J!, t ∈ T.   (11) 

 

4.3.3 Determining order quantities 

At the end of time period t, the inventory levels for all locations j ∈ J will be updated, based on the 

inventory level of time period t-1, the arrival quantity at the beginning of time period t and the number 

of products shipped during time period t: 

 

I!! =  I!!!! +  A!!  –  Z!!,                ∀j ∈ J, t ∈ T.	 	 	 (12) 

 

To replenish its on-hand inventory, each location can place an order at the end of time period t. The 

order quantity for each of the locations is determined based on the inventory position, the reorder point 

s, and the order-up-to level S of the individual location. 

For all locations j ∈ J, let IP!! be the current inventory position of location j, which consists of 

the on-hand inventory level I!! plus the quantity for all products that are ordered but not yet received 

(O!!!! − A!!) . In here, we calculate the number of outstanding orders of time period t-1 minus what 

arrived at the beginning of time period t. 

 

IP!! = I!! + O!!!! − A!! ,                 ∀j ∈ J, t ∈ T.   (13) 

 

If the inventory position of location j at time period t falls below reorder point s, an order will be 

placed equal to the difference between the order-up-to level S and the inventory position IP!!. In all 

other situations, the inventory position is above s and therefore nothing needs to be ordered:  
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Q!! =
S! − IP!!,  if IP!! ≤ s!;

           0,  otherwise.
,                     ∀j ∈ J, t ∈ T.   (14) 

 

Last, after determining the order quantities the outstanding orders for time period t are updated by 

subtracting the arrival quantity and adding the order placed in this time period: 

O!! =  O!!!! −  A!!  + Q!!,             ∀j ∈ J, t ∈ T.   (15) 

 

4.3.4 Performance measurements 

The simulation runs over a sufficiently large number of time periods, after which the performance can 

be measured to evaluate the (s,S) policies (solutions) obtained by the different optimization methods. 

In our model, fill rate requirements can be set for all locations at each echelon. For our specific 

problem we set these fill rate requirements only at the locations in the lowest echelon. In our 

computational experiments, however, we will report the actual fill rate for all locations j ∈ J at all 

echelons and therefore calculate the expected shortage per cycle during the steady-state T! by dividing 

the shortage of that cycle (or time period) through the faced demand of that cycle. For the locations 

j ∈ J! in the lowest echelon, the faced demand is the demand from the external customer demand 

points and the expected shortage is given by: 

E! s, S  =  
  !!

! 
!∈!!

!! 
!

!∈!!
,                ∀j ∈ J!.   (16A) 

For all other locations j ∈ J\J! that are not in the lowest echelon, the demand faced is equal to the 

orders of their child locations of time period t-1. The expected shortage is calculated as follows: 

E! s, S  =  
  !!

! 
!∈!!

!!!!!!∈!(!)!!!∈!!!!
,                          ∀j ∈ J\J!.   (16B) 

 

The actual fill rate is given by 1-E! s, S . 

 

Additionally, the expected inventory levels and order quantities (in number of transport units) for all 

locations j ∈ J have to be determined for calculating the expected total cost: 

I! s, S =  
Ij
t

t∈T′

T′
,                   ∀j ∈ J.    (17) 

P!(s, S) =

!!
!

!!∈!!

!!
,                  ∀𝑗 ∈ 𝐽.    (18) 

where Y is the number of products in one transport unit. 
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The expected total cost for all locations j is the sum of the holding cost per product multiplied by the 

expected inventory level and the order cost per transport unit multiplied by the expected number of 

transport units ordered: 

 ℎ!!∈! 𝐼!(s, S) + 𝐾!!∈! 𝑃! s, S .    (19) 

 

5. Computational	results	
In this chapter we examine the performance of our two proposed solution approaches on a benchmark 

set derived from the synthetic problem instances of van der Heijden (2000) and on our real-life food 

retail case. van der Heijden (2000) provides a benchmark set for divergent 2-, 3- and 4-echelon 

networks, ranging from 3 up to 59 locations within the network. Two network structures consist of 2 

echelons, one with 3 locations (abbreviated 2E3L) and one with 7 locations (abbreviated 2E7L). van 

der Heijden (2000) furthermore provides two network structures for 3-echelon networks, one with 7 

locations (3E7L) and one with 15 locations (3E15L). For the 4-echelon networks, he provides four 

different network structures, with 15 locations (4E15L), 27 locations (4E27L), 31 locations (4E31L) 

and 59 locations (4E59L). We adjusted the problem instances by incorporating a fixed order cost and 

number of units per transport unit. Furthermore, instead of a base-stock policy, we optimize (s,S) 

policies; we follow proportional rationing instead of balanced stock rationing and use installation 

stock policies instead of echelon stock policies. Opposed to van der Heijden (2000), we do not use a 

single parameter for describing the stock level at a location as we use simulation-optimization models 

to determine stock levels.  

The algorithms have been coded in C++ and all experiments have been performed on a QEMU 

Virtual CPU processor (2.50 GHz) with 4 GB RAM and a 64-bit operating system. Preliminary testing 

showed that the simulation model should run for at least 5000 days with a warm-up period of 200 days 

to achieve steady-state results. The fixed initial step size for the local search procedure of the 

improvement method (see Section 4.2.2) is set to twenty and every iteration the step size is increased 

or decreased by two units. The step size is initialized every time the local search procedure starts for 

refining the (s,S) values of a certain location. 

The structure of the rest of the chapter is as follows. First, we will determine appropriate 

parameter values for the Scatter Search metaheuristic in Section 5.1. The Nested Bisection Search 

does not contain parameters and therefore does not require parameter tuning. Second, in Section 5.2 

we will compare the performance of the SS and NBS on the benchmark set described above. Third, in 

Section 5.3 we will report computational results on our real-life case to highlight managerial 

conclusions. 
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5.1  Parameter tuning 

5.1.1 Design  

Before applying the proposed solution approaches, the parameters for the Scatter Search (SS) 

metaheuristic have to be determined  (also called off-line parameter initialization (Talbi, 2009, p.54)) 

to balance solution quality and computational time. The parameters are tuned by doing computational 

experiments on a subset of all benchmark instances. From each of the eight different network 

configurations (2 of 2-echelons, 2 of 3-echelons and 4 of 4-echelons) we choose the first instance to 

test different combination of parameter values.  

A full factorial analysis (Coy et al., 2001) is conducted on the subset of benchmark instances for 

the population size (50, 100), the maximum number of non-improving local search iterations for 

refining the solution (5, 10), the maximum number of evaluated solutions within the local search 

function (50, 200, 1000), the construction heuristic (Section 4.2.1) (C1, C2) and the improvement 

heuristic (Section 4.2.2) (I1, I2). In total this gives 48 different combinations of parameters for each of 

the eight network configurations. There is a computation time limit of three hours for each instance for 

the reference set update within the SS and we report the current best solution if the metaheuristic is not 

finished within the time limit.  

We analyzed the sensitivity and performance of the SS with regard to the specified parameter 

values and per network configuration following the approach proposed by Bräysy et al. (2009). We set 

the highest CPU time of the network configuration to 100% for comparing the CPU time and we 

report the average CPU time for a given parameter value as a percentage of the highest CPU time. For 

the solution quality, we compare the average expected total cost of a given parameter value to the 

lowest expected total cost found for the network configuration under consideration and report the 

difference. The averages and percentages for each parameter value per network configuration are 

reported in Appendix A. 

 

5.1.2 Results 

The best options (lowest values) in terms of solution quality and CPU time are indicated in Tables 

A.1-A.4 in Appendix A.  Based on the results, we chose a population size of 50 initial solutions for all 

network configurations. In terms of CPU time, a population size of 50 is faster than a population size 

of 100 for 7 of the 8 network structures. For half of the networks this population size also gives the 

best solution quality and for the remaining networks using a population size of 50 or 100 only results 

in at most 1% cost difference. Therefore, we chose a population size of 50 initial solutions for all 

network configurations. The maximum number of non-improving iterations in the local search is set to 

5 as this gives a shorter CPU time than 10 non-improving iterations for 7 of the 8 network structures. 

A maximum of 5 also gives a better solution quality than 10 for 3 network structures and for the 
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others, the solution quality for 5 and 10 non-improving iterations is almost equal with a maximum 

difference of 2%. The maximum number of solutions to evaluate per local search has been set to 200 

for all network structures, except for the largest network with four echelons and 59 locations. For the 

largest network, the SS approach performs best in terms of solution quality and CPU time with a 

maximum of 50 evaluated solutions. This is due to the fact that the maximum computational run time 

of the reference set update has been set to three hours. Therefore, it is more favorable to do more 

reference set updates with a smaller number of improvement iterations (50) instead of one reference 

set update with many improvement iterations (200 or 1000). For the other network structures, we 

considered 200 improvement iterations to offer the best compromise between solution quality and 

CPU time. Last, we compared the combinations of the solution construction (C1/C2) and improvement 

heuristics (I1/I2). As the CPU time of I2 is higher than I1 for 7 of the 8 network structures higher, with 

differences up to 20% for the larger networks, we decided to use I1 as improvement heuristic. 5 of the 

8 network structures favor C2 in terms of solution quality. Therefore, we chose C2-I1 for all problem 

instances under consideration. 

 

5.2 Benchmark testing 

5.2.1 Introduction benchmark set 

As discussed in the introductory text of Section 5, we use the synthetic problem instances of van der 

Heijden (2000) to construct a benchmark set. Details on the parameter settings for the 2-, 3- and 4-

echelon networks can be found in Table B.1-B.3 of Appendix B. We have added the order cost per 

transport unit to the original benchmark set and in the simulation model the number of units ordered is 

rounded up to the next integer number of transportation units (one transport unit equals 100 products). 

In addition, the benchmark set contains different values for the fill rate requirement, lead times, 

holding cost and demand. We define echelon 1 as the most upstream echelon, which solely exist of 

root location 1 supplied by an external supplier. The echelon with the highest number is the most 

downstream echelon consisting of the customer locations facing external customer demand, which 

follows a normal distribution.  

The entire benchmark set of instances (1280) consists of 128 instances for 2-echelon networks (2 

structures), 384 for 3-echelon networks (2 structures) and 64 for 4-echelon networks (4 structures). As 

the Nested Bisection Search (NBS) is not capable of handling network structures with more than two 

echelons, we will compare the performance of the NBS and the proposed Scatter Search (SS) only on 

the 2-echelon networks (see Section 5.2.2). Afterwards, we will examine the performance of the SS on 

the 3- and 4-echelon networks in Section 5.2.3. 

 

5.2.2 Comparison NBS and SS 
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The computational results for the NBS and SS are reported in Table 1, specifying the expected average 

total cost per day and CPU times for each network structure and parameter value. In this section, we 

focus on the 2-echelon network structures consisting of 3 or 7 locations (2E3L and 2E7L) as the NBS 

by Li et al. (2010) was designed to handle 2-echelon networks and cannot be straightforwardly 

extended to handle more than two echelons efficiently.  

In terms of solution quality, we can conclude that for 95% of the problem instances the SS is 

performing better than the NBS. For 2E3L networks SS is performing better on all instances and for 

2E7L SS is performing better for 115 of the 128 instances. However, the required CPU time is much 

lower for the NBS for both network structures. For 2E3L networks the average CPU time for NBS is 

0.25 seconds and for the SS 2.5 minutes. For 2E7L networks the NBS has an average CPU time of 1.4 

seconds and the SS 10.4 minutes. Over all the 2-echelon experiments, the NBS leads on average to 

7.7% more expensive solutions compared our implementation of the SS, with the largest difference 

being 27.4%.  

 

5.2.3 SS results for 3- and 4-echelon networks 

In this section, we will examine the performance of the proposed SS metaheuristic on the 3- and 4-

echelon instances from van der Heijden (2000). The computational results for the 3-echelon instances 

(3E7L and 3E15L) are reported in Table 2 and for the 4-echelon instances (4E15L, 4E27L, 4E31L and 

 
  Network 2E3L 2E7L 

Parameter   NBSa SSa % Diffb # Diffc NBSa SSa % Diffb # Diffc 

Fill rate 
requirement 

90%  €  145.28   €  131.69  10% 64/64  €  391.30   €  375.91  4% 58/64 
99%  €  199.19   €  179.78  11% 64/64  €  542.62   €  519.62  4% 57/64 

Lead time 
echelon 1 [days] 

1  €  167.85   €  151.63  11% 64/64  €  457.09   €  443.42  3% 56/64 
3  €  176.62   €  159.83  11% 64/64  €  476.82   €  452.11  5% 59/64 

Holding cost 
echelon 1 [Euro] 

€ 0.25  €  165.18   €  149.44  11% 32/32  €  461.23   €  434.76  6% 31/32 
€ 0.50  €  170.26   €  154.64  10% 32/32  €  467.45   €  446.24  5% 30/32 
€ 0.75  €  175.17   €  158.14  11% 32/32  €  469.91   €  454.02  4% 26/32 
€ 1.00  €  178.33   €  160.72  11% 32/32  €  469.23   €  456.05  3% 28/32 

Order cost 
[Euro] 

€ 25  €  119.70   €  111.38  7% 64/64  €  321.02   €  308.10  4% 54/64 
€ 100  €  224.78   €  200.08  12% 64/64  €  612.90   €  587.43  4% 61/64 

Demand [mean 
(standard 

deviation)] 

10(4)  €    94.85   €    83.39  14% 32/32  €  257.47   €  248.03  4% 30/32 
10(8)  €  116.53   €  103.66  12% 32/32  €  323.77   €  307.11  5% 29/32 

30(12)  €  202.70   €  181.17  12% 32/32  €  547.88   €  519.57  5% 29/32 
30(24)  €  274.86   €  254.71  8% 32/32  €  738.72   €  716.35  3% 27/32 

 Table 1: Comparison NBS and SS on 2E3L and 2E7L networks 
Note: a. In these columns we report the expected total cost per day for the solutions obtained by the NBS or SS. The cost is the average over all 
instances for a parameter  
b. The columns ‘% Diff’ report the percentage the NBS is, on average, more expensive than the SS. 
c. The columns ‘# Diff” report the number of times the NBS is more expensive than the SS. 
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4E59L) in Table 3. The results show that the SS metaheuristic is capable of solving small and large 

network problems and provides a feasible solution to all instances within acceptable CPU times. 

The computational results show that the network structures of the benchmark instances can 

significantly impact the CPU time. First of all, the average CPU time increases with the number of 

locations in the network, as more (s,S) values need to be improved and evaluated. In addition, more 

locations per echelon lead to higher upper limits for the parent location supplying these locations. In 

particular, the upper limit for a location is set to twenty times the average demand (of a time period) 

faced by that location (see Section 4.1). As a result, the search space is larger in a situation with more 

child locations per parent location, which can increase the CPU time. Comparing the results of the SS 

metaheuristic in networks of 15 locations with different network structures (3E15L vs. 4E15L), shows 

that the average CPU time of the 3-echelon case is longer than the 4-echelon case (1954.44 seconds 

compared to 1684.24 seconds).Additionally, the 4-echelon case has on average lower total cost per 

day, but this is due to differences in the parameter values in the benchmark set proposed by van der 

Heijden (2000) for the 3- and 4-echelon cases, such as the lead time and holding cost. Furthermore, it 

can be noticed that the differences in the average total cost per day is small for varying lead times and 

holding cost for a specific echelon. For example, if the lead time for echelon 1 for the 3E7L network is 

shortened from 3 to 1 days, the difference in cost is only 1.4% (€386.64 for 1 day and €392.05 for 3 

days lead time). This may be due to the fact that inventory is placed in another echelon when for 

example the holding cost increase for a specific echelon. 

Moreover, due to rounding the order quantities up to an integer number of transport units for 

determining the order cost, an increase in holding cost may lead to slightly lower average total cost per 

 
  Network 3E7L 3E15L 
Parameter   SSa SSa 

Fill rate requirement 90%  €        337.76   €        978.51  
99%  €        440.94   €     1 304.55  

Lead time echelon 1 [days] 1  €        386.64   €     1 149.57  
3  €        392.05   €     1 133.49  

Lead time echelon 2 [days] 1  €        386.23   €     1 139.60  
2  €        392.47   €     1 143.46  

Holding cost echelon 1 [Euro] € 0.25  €        388.05   €     1 142.23  
€ 0.50  €        390.65   €     1 140.84  

Holding cost echelon 2 [Euro] 
€ 0.25  €        375.68   €     1 108.75  
€ 0.50  €        390.44   €     1 144.98  
€ 1.00  €        401.92   €     1 170.86  

Order cost [Euro]  € 25  €        263.40   €        766.47  
 € 100   €        515.30   €     1 516.60  

Demand [mean (standard deviation)] 

10(4)  €        201.36   €        620.41  
10(8)  €        248.96   €        760.53  

30(12)  €        474.70   €     1 385.78  
30(24)  €        632.37   €     1 799.41  

Average expected total cost per day [Euro]b  €        389.35   €     1 141.53  
Average CPU time [seconds]c            648.14 s         1954.44 s 

 
Table 2: Results 3-echelon instances 
Note: a. In these columns we report the expected total cost per day for the solutions obtained by the SS approach. The cost is the 
average over all instances for a parameter. 
b. The average expected total cost per day is reported over all instances for the specified network. 
c. The average CPU time is reported over all instances for the specified network. 
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day. For example, for 3E15L the average total cost changes from €1142.23 to €1140.84 when 

changing the holding cost of echelon 1 (see Table 2). 

 

 

 

 

 

 

5.3 Real-life case 

5.3.1  Introduction  

To examine the managerial implications of optimizing (s,S) values in a real-life setting, we use the 

proposed Scatter Search (SS) metaheuristic to find (near-) optimal inventory policies as this approach 

outperforms the Nested Bisection Search (NBS) on the benchmark set. We examine the case of a 

Dutch food retailer that supplies products from one central warehouse (WH) to four retailer 

distribution centers (DC1-4) and that aims to determine (s,S) values that yield a 98% fill rate to the 

external customer demand points while minimizing supply chain cost. The lead time between the 

external supplier and the warehouse is twelve days; and between the warehouse and the retailer DCs it 

is one day. The holding cost for the warehouse is €0.04 per product per day and for the retailer it is 

€0.05 per product per day. The warehouse pays order costs of €76 per pallet ordered while the retailers 

pay €14. The number of products ordered is rounded up to the next integer number of pallets, which 

 
  Network 4E15L 4E27L 4E31L 4E59L 
Parameter   SSa SSa SSa SSa 

Fill rate requirement 90%  €        861.56   €    1 787.66   €    2 524.30   €    5 230.26  
99%  €    1 092.30   €    2 293.75   €    3 200.73   €    7 065.36  

Holding cost echelon 2 
[Euro] 

€ 0.25  €        977.03   €    2 054.58   €    2 860.51   €    6 157.25  
€ 0.50  €        976.84   €    2 026.84   €    2 864.52   €    6 138.37  

Holding cost echelon 3 
[Euro] 

€ 0.50  €        953.66   €    1 516.22   €    2 778.08   €    6 100.07  
€ 1.00  €    1 000.21   €    2 046.62   €    2 946.95   €    6 195.55  

Order cost [Euro]  € 25  €        632.27   €    1 389.25   €    1 939.87   €    4 330.31  
 € 100   €    1 321.59   €    2 085.08   €    3 785.16   €    7 965.30  

Demand [mean (standard 
deviation)] 

10(4)  €        500.09   €    1 031.06   €    1 527.25   €    3 161.37  
10(8)  €        604.16   €    1 329.15   €    1 812.20   €    3 896.84  

30(12)  €    1 231.99   €    2 526.98   €    3 585.26   €    7 676.44  
30(24)  €    1 571.49   €    3 275.64   €    4 525.35   €    9 856.60  

Average expected total cost per day [Euro]b  €        976.93   €    2 040.71   €    2 862.51   €    6 147.81  
Average CPU time [seconds]c         1684.24 s       3936.58 s       6794.35 s       7428.08 s 

 Table 3: Results 4-echelon instances 
Note: a. In these columns we report the expected total cost per day for the solutions obtained by the SS approach. The cost is the 
average over all instances for a parameter. 
b. The average expected total cost per day is reported over all instances for the specified network. 
c. The average CPU time is reported over all instances for the specified network. 
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consists of 256 products (boxes). Historical demand is available and fitted to probability distributions 

to simulate external customer demand (i.e., demand from the supermarket stores to the retail 

distribution centers). For DC1 the demand follows a Gamma distribution with α=4.234 and β=11.877, 

DC2 faces Weibull distributed demand with α=3.5332 and β=22.972, the demand of DC3 follows a 

Lognormal distribution with µ=3.4837 and σ=0.54546 and for DC4 the demand follows a Gamma 

distribution with α=4.5459 and β=2.8157.  In Section 5.3.2, we report the results based on the data set 

described. In Section 5.3.3, we report the results of a sensitivity analysis based on cost estimates of 

practitioners to draw managerial conclusions. 

 

5.3.2 Results  

The results of the real-life case of the food retailer are presented in Table 4. The (s,S) inventory 

policies for all locations are reported, including the accompanying fill rates per location, the expected 

total cost per day for the complete network (€77.98) and the total CPU time of approximately 8.5 

minutes (518.11 seconds) to solve this case. A fill rate requirement of 98% is only imposed on the 

retailer distribution centers. Table 4 illustrates that it is not needed to have a similar fill rate at the 

central warehouse in order to reach the target at the downstream retail distribution centers. Contrary to 

current company practices, a central warehouse (WH) fill rate of 74.87% is sufficient to achieve fill 

rates of 98% or higher at the retail DCs. As such, inventory and therefore supply chain costs can be 

saved by lowering fill rate requirements for the distribution from a central warehouse to the locations 

that supply the external customer demand points while guaranteeing the targeted product availability 

for the final customers.  

 

 

 

 

 

 

 

 

 

 

 

5.3.3 Sensitivity analysis 

 In this section, we examine the managerial implications of optimizing (s,S) values in real-life settings 

for different parameters, resulting in 192 instances. The chosen values for the parameters in the 

 
DC s S Fill rate 
WH 1425 1820 74.87% 
DC1 152 324 98.01% 
DC2 48 151 98.04% 
DC3 130 268 98.03% 
DC4 29 124 98.01% 
Expected total cost per day [Euro]    €    77.98  
CPU time [seconds]   518.11 s 
 

Table 4: Results real-life case 
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sensitivity analysis are based on alternative data values provided by the Dutch food retailer. We 

conduct this analysis using the SS approach for different fill rate requirements (90%, 95%, and 98%), 

different lead times between the central warehouse and retail distribution centers (1, 2, 3, and 4 days), 

inventory holding costs (1, 2, 3, and 4 times the given holding cost), and order costs (0.5, 1, 1.5, and 2 

times the given order cost). 

 

 

The results of the sensitivity analysis are presented in Table 5. It can be noticed that although the fill 

rate of the WH can be lower than the fill rate requirement, the WH fill rate increases on average when 

the fill rate requirement of the DCs increases as well. This means that the inventory level of the WH 

must be higher to guarantee higher fill rates at the DCs.  

The results of the real-life case confirm the findings from the benchmark set that changes in 

holding cost at a given echelon lead to repositioning of inventory to other echelons. In particular, when 

increasing the holding cost at the central warehouse, we observed that optimal fill rates at the central 

warehouse are decreased (see Table 5).  

 

Parameter Value 

Average total 
expected cost per 

daya 
Average  

Fill rate WHb 

Fill rate 
requirement 

 

90%  €         105.44  48.4% 
95%  €         115.81  58.6% 
98%  €         128.66  73.0% 

Lead time [days] 
 

1  €         113.26  62.1% 
2  €         115.39  56.9% 
3  €         117.79  59.7% 
4  €         120.11  61.3% 

Holding cost [Euro] 
 
 

X 1  €           86.80  66.1% 
X 2  €         108.05  61.3% 
X 3  €         126.80  58.7% 
X 4  €         144.91  54.0% 

Order cost [Euro] 

X 0.5  €           72.63  53.9% 
X 1  €         103.59  58.7% 
X 1.5  €         131.88  62.9% 
X 2  €         158.45  64.5% 

Average total expected cost per 
day [Euro]c  €         116.64    

Average CPU time [seconds]d        401.25 s   
Average Fill rate WHe       60.0%   

 Table 5: Results sensitivity analysis real-life case 
Note: a. a. In this column we report the expected total cost per day for the solutions obtained by the SS approach. The cost is the 
average over all instances for a parameter. 
b. In this column we report the average fill rate of the central warehouse (WH) over all instances for one specified parameter. 
c. The average expected total cost per day is reported over all instances. 
d. The average CPU time is reported over all instances. 
e. The average fill rate of the central warehouse (WH) is reported over all instances. 
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6. Conclusions	&	further	research	
 

While inventory management is a widely studied topic in academia, it is still challenging due to 

constraints encountered in practice. Inspired by a real-life case this paper aimed to develop a 

simulation-optimization approach to optimize the (s,S) inventory policies of a multi-echelon 

distribution network with deterministic lead times, backordering, and fill rate constraints. From a 

practitioner’s point of view, this is a common and important problem to address and to the best of our 

knowledge only two papers discuss models which fit such a setting well: Schneider et al. (1995) and 

Li et al. (2010). Both derive near-optimal inventory policies based on stochastic lead times via either 

power approximations or simulation-optimization. We propose a simulation-optimization approach 

with two different optimization methods: a Nested Bisection Search (NBS) based on Li et al. (2010) 

and a tailor-made Scatter Search (SS) metaheuristic. 

 The optimization of the two methods works iteratively with a simulation model to evaluate the 

obtained solutions in a simulation-optimization framework. To examine the performance of the two 

solution approaches, we test them on 1280 synthetic instances of van der Heijden (2000). Before 

running the experiments on the test instances, the parameters of the SS metaheuristic are determined 

by trading-off solution quality and CPU time for different parameter values. We use the 2-echelon 

instances to compare the NBS and SS solution approaches, as the existing NBS method is only 

capable of solving 2-echelon problems. We also report the performance of the SS metaheuristic on the 

3- and 4-echelon instances to examine its performance on larger supply chain networks. 

 Computational results show that the proposed SS metaheuristic outperforms the existing NBS 

method in 95% of the instances. The NBS is a fast solution method, which optimizes the (s,S) policies 

for each location sequentially and considers a fixed difference between the s and S values. The SS 

metaheuristic provides a diverse set of solutions and refines the solutions with a local search without 

additional restrictions on the (s,S) values leading to better solution quality. The SS has on average 

7.7% lower cost compared to the NBS, with savings up to 27.4%. The results of the experiments on 

the 3- and 4-echelon instances show that the SS method is also capable of solving larger-sized 

problems efficiently. It should be noted that even better results could be obtained at the expense of a 

higher CPU time. 

 To examine the managerial implications of finding (near-) optimal (s,S) inventory policies in 

real-life settings, we apply the SS metaheuristic to the case of a Dutch food retailer. First, we examine 
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the actual parameter values and second, we conduct a sensitivity analysis based on alternative data 

values provided by the Dutch food retailer. From the computational results we can conclude that it is 

not necessary to impose the same fill rate requirement on all locations in the supply chain. Inventory 

and supply chain costs can be saved by allowing lower fill rates at upstream echelons than the 

downstream locations that experience external customer demand, contrary to current company 

practices.  

The proposed Scatter Search simulation-optimization approach can help in making tactical 

decisions with regard to determining (near-) optimal inventory policies to save supply chain costs in a 

variety of supply chains. We showed that our model that is capable of accurately modeling real-life 

constraints, such as backordering, a variety of demand distributions and lead times, for small (3 

locations) and large-sized (59 locations) networks. The approach has shown potential for tackling 

other practical constraints that are regularly discussed in the literature but are difficult to optimize (e.g. 

capacity constraints and multiple commodity problems) in future research. 

  



30 
 

Appendix	A	–	Results	parameter	tuning	

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
    Population size 
    Solution quality (€) CPU time (s) 

Network   50 100 50 100 

2E3L Averagea 43.92 43.87 119.92 156.36 
  %b 1.15% 1.02% 34.93% 45.54% 
2E7L Average 133.31 132.09 646.00 781.75 
  % 8.09% 7.10% 31.71% 38.38% 
3E7L Average 108.35 108.82 841.59 947.56 
  % 4.90% 5.35% 31.20% 35.13% 
3E15L Average 326.97 325.74 2659.70 2909.69 
  % 8.31% 7.91% 39.98% 43.74% 
4E15L Average 267.37 264.72 2844.62 3817.42 
  % 7.17% 6.11% 29.31% 39.33% 
4E27L Average 559.20 563.56 6522.28 7036.13 
  % 17.72% 18.64% 49.45% 53.34% 
4E31L Average 830.46 859.62 8177.01 8373.76 
  % 19.53% 23.73% 59.99% 61.43% 
4E59L Average 2260.66 2793.31 12323.18 11683.36 
  % 45.64% 79.95% 60.75% 57.60% 
 Table A.1: Population size 

Note: The highlighted cells give the best option in terms of either solution quality or CPU time. 
a. The average value reports the average of the total expected cost per day in Euros (for the solution quality) or the average CPU time 
in seconds (for the CPU time), specified per network and for population sizes 50 or 100. 
b. For the solution quality the percentage shows the difference of the average compared to the lowest cost solution. For the CPU time 
the percentage for the average compared to the highest CPU time is reported. 
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Table A.2: The maximum number of non-improving iterations in the local search 
Note: The highlighted cells give the best option in terms of either solution quality or CPU time. 
a. The average value reports the average of the total expected cost per day in Euros (for the solution quality) or the average CPU time 
in seconds (for the CPU time), specified per network and for the maximum number of non-improving iterations (5 or 10). 
b. For the solution quality the percentage shows the difference of the average compared to the lowest cost solution. For the CPU time 
the percentage for the average compared to the highest CPU time is reported. 

 

    Maximum number of Non-improving iterations 
    Solution quality (€) CPU time (s) 
Network   5 10 5 10 
2E3L Averagea 43.89 43.90 124.28 152.00 
  %b 1.07% 1.10% 36.19% 44.27% 
2E7L Average 133.39 132.00 658.12 769.63 
  % 8.16% 7.03% 32.31% 37.78% 
3E7L Average 108.82 108.35 836.63 952.52 
  % 5.35% 4.90% 31.02% 35.31% 
3E15L Average 328.41 324.30 2740.18 2829.22 
  % 8.79% 7.43% 41.19% 42.53% 
4E15L Average 265.31 266.78 3073.78 3588.26 
  % 6.34% 6.93% 31.67% 36.97% 
4E27L Average 562.47 560.29 6775.60 6782.81 
  % 18.41% 17.95% 51.37% 51.42% 
4E31L Average 845.26 844.82 8219.00 8331.77 
  % 21.66% 21.60% 60.30% 61.13% 
4E59L Average 2449.03 2604.95 12023.05 11983.49 
  % 57.77% 67.82% 59.27% 59.08% 
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     Maximum number of solutions to evaluate 
    Solution quality (€) CPU time (s) 
Network   50 200 1000 50 200 1000 
2E3N Averagea 44.20 43.84 43.65 65.88 143.65 204.89 
  %b 1.78% 0.96% 0.51% 19.19% 41.84% 59.67% 
2E7N Average 134.74 134.43 128.93 328.07 638.57 1174.98 
  % 9.25% 9.00% 4.54% 16.11% 31.35% 57.68% 
3E7N Average 111.19 107.91 106.65 308.27 721.34 1654.12 
  % 7.65% 4.47% 3.25% 11.43% 26.74% 61.32% 
3E15N Average 340.17 324.97 313.93 1058.86 2627.72 4667.51 
  % 12.69% 7.65% 3.99% 15.92% 39.50% 70.16% 
4E15N Average 276.31 263.83 258.01 905.49 2386.76 6700.81 
  % 10.75% 5.75% 3.41% 9.33% 24.59% 69.04% 
4E27N Average 566.00 552.64 565.50 2266.31 6722.29 11349.02 
  % 19.15% 16.34% 19.05% 17.18% 50.96% 86.04% 
4E31N Average 853.05 840.56 841.51 3423.82 9101.23 12301.12 
  % 22.79% 20.99% 21.12% 25.12% 66.77% 90.25% 
4E59N Average 1892.27 2165.86 3522.84 8842.71 11533.11 15633.99 
  % 21.90% 39.53% 126.95% 43.59% 56.86% 77.07% 
 Table A.3: Maximum number of solution to evaluate 
Note: The highlighted cells give the best option in terms of either solution quality or CPU time. 
a. The average value reports the average of the total expected cost per day in Euros (for the solution quality) or the average CPU time 
in seconds (for the CPU time), specified per network and for the maximum number of solutions to evaluate (50, 200 or 1000). 
b. For the solution quality the percentage shows the difference of the average compared to the lowest cost solution. For the CPU time 
the percentage for the average compared to the highest CPU time is reported. 
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    Construction and Improvement Heuristics 
    Solution quality (€) CPU time (s) 
Network   C1I1c C2I1 C2I2 C1I2 C1I1 C2I1 C2I2 C1I2 
2E3L Averagea 43.78 43.66 44.08 44.05 185.78 134.25 110.02 122.50 
  %b 0.82% 0.55% 1.51% 1.45% 54.11% 39.10% 32.04% 35.68% 
2E7L Average 129.45 129.24 135.88 136.22 673.14 729.80 744.26 708.31 
  % 4.96% 4.79% 10.18% 10.45% 33.05% 35.83% 36.54% 34.77% 
3E7L Average 110.10 108.32 107.61 108.32 888.75 752.78 1095.66 841.11 
  % 6.59% 4.87% 4.18% 4.87% 32.95% 27.91% 40.62% 31.18% 
3E15L Average 322.50 319.72 330.40 332.81 2105.24 2141.81 3484.69 3407.05 
  % 6.83% 5.91% 9.45% 10.25% 31.64% 32.19% 52.38% 51.21% 
4E15L Average 265.06 269.65 265.87 263.61 2874.05 2904.23 3548.21 3997.59 
  % 6.24% 8.08% 6.56% 5.66% 29.61% 29.92% 36.56% 41.19% 
4E27L Average 530.83 554.18 572.95 587.57 5304.17 5321.88 7905.88 8584.89 
  % 11.75% 16.66% 20.61% 23.69% 40.21% 40.35% 59.94% 65.08% 
4E31L Average 778.08 780.15 869.03 952.90 7065.50 6961.91 9656.61 9417.53 
  % 11.99% 12.29% 25.09% 37.16% 51.84% 51.08% 70.85% 69.09% 
4E59L Average 2570.81 2535.55 2413.92 2587.67 10097.62 10104.64 13607.92 14202.90 
  % 65.62% 63.35% 55.51% 66.70% 49.78% 49.81% 67.08% 70.02% 
 
Table A.4: Construction and Improvement Heuristics 
Note: The highlighted cells give the best option in terms of either solution quality or CPU time. 
a. The average value reports the average of the total expected cost per day in Euros (for the solution quality) or the average CPU time in 
seconds (for the CPU time), specified per network and for the combination of construction and improvement heuristics (C1I1, C2I1, 
C2I2 or C1I2). 
b. For the solution quality the percentage shows the difference of the average compared to the lowest cost solution. For the CPU time the 
percentage for the average compared to the highest CPU time is reported. 
c. C1/2 is Construction Heuristic 1 or 2; I1/2 is Improvement Heuristic 1 or 2. 
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Appendix	B	–Parameter	values	of	the	benchmark	set	
 

 
 
 

Parameter Description Values in experiments 

𝐽! Number of child locations in echelon 2 for each 
location in echelon 1 

2 

𝐽! Number of customer locations in echelon 3 for each 
location in echelon 2 

2, 6 

𝐹!, ∀ 𝑗 ∈ 𝐽! Fill rate requirement at customer locations j at 
echelon 3 

90%, 99% 

ℎ! , ∀ 𝑗 ∈ 𝐽! Holding cost per unit per time period for location j at 
echelon 1 

€0.25, €0.50 

ℎ! , ∀ 𝑗 ∈ 𝐽! Holding cost per unit per time period for locations j 
at echelon 2 

€0.25, €0.50, €1.00 

ℎ! , ∀ 𝑗 ∈ 𝐽! Holding cost per unit per time period for locations j 
at echelon 3 

€1.00 

𝐾! , ∀ 𝑗 ∈ 𝐽! Order cost per transportation unit for locations j €25, €100 

𝐿! , ∀ 𝑗 ∈ 𝐽! Lead time for location j in echelon 1 1, 3  

𝐿! , ∀ 𝑗 ∈ 𝐽! Lead time for locations j in echelon 2 1, 2 

𝐿! , ∀ 𝑗 ∈ 𝐽! Lead time for locations j in echelon 3 1 

𝑑! 
! , ∀ 𝑗 ∈ 𝐽! Demand faced by customer locations j at echelon 3 

with mean (standard deviation) 
10 (4, 8), 30 (12, 24) 

Table B.2: Parameter values for 3-echelon networks 

Parameter Description Values in experiments 

J2	 Number of customer locations in echelon 2 for each 
location in echelon 1 

2, 6 

𝐹! , ∀ 𝑗 ∈ 𝐽! Fill rate requirement at customer locations j at 
echelon 2 

90%, 99% 

ℎ! , ∀ 𝑗 ∈ 𝐽! Holding cost per unit per time period for location j at 
echelon 1 

€0.25, €0.50, €0.75, €1.00 

ℎ! , ∀ 𝑗 ∈ 𝐽! Holding cost per unit per time period for locations j 
at echelon 2 

€1.00 

𝐾!, ∀ 𝑗 ∈ 𝐽!  Order cost per transportation unit for locations j €25, €100 

𝐿! , ∀ 𝑗 ∈ 𝐽! Lead time for location j in echelon 1 1, 3  

𝐿! , ∀ 𝑗 ∈ 𝐽! Lead time for locations j in echelon 2 1 

𝑑! 
! , ∀ 𝑗 ∈ 𝐽! Demand faced by customer locations j at echelon 2 

with mean (standard deviation) 
10 (4, 8), 30 (12, 24) 

 Table B.1: Parameter values for 2-echelon networks 
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Parameter Description Values in experiment 

𝐽! Number of child locations in echelon 2 for each 
location in echelon 1 

2 

𝐽! Number of child locations in echelon 3 for each 
location in echelon 2 

2, 4 

𝐽! Number of customer locations in echelon 4 for each 
location in echelon 3 

2, 6 

𝐹!, ∀ 𝑗 ∈ 𝐽! Fill rate requirement at customer locations j at 
echelon 4 

90%, 99% 

ℎ! , ∀ 𝑗 ∈ 𝐽! Holding cost per unit per time period for location j at 
echelon 1 

€0.25 

ℎ! , ∀ 𝑗 ∈ 𝐽! Holding cost per unit per time period for locations j 
at echelon 2 

€0.25, €0.50 

ℎ! , ∀ 𝑗 ∈ 𝐽! Holding cost per unit per time period for locations j 
at echelon 3 

€0.50, €1.00 

ℎ! , ∀ 𝑗 ∈ 𝐽! Holding cost per unit per time period for locations j 
at echelon 4 

€1.00 

𝐾! , ∀ 𝑗 ∈ 𝐽! Order cost per transportation unit for locations j €25, €100 

𝐿! , ∀ 𝑗 ∈ 𝐽! Lead time for locations j 1 

𝑑! 
! , ∀ 𝑗 ∈ 𝐽! Demand faced by customer locations j at echelon 4 

with mean (standard deviation) 
10 (4 or 8), 30 (12 or 24) 

 
Table B.3: Parameter values for 4-echelon networks 
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