
1

A SIMULATION-OPTIMIZATION APPROACH FOR A SERVICE-CONSTRAINED MULTI-

ECHELON DISTRIBUTION NETWORK

Abstract

Academic research on (s,S) inventory policies for multi-echelon distribution networks with

deterministic lead times, backordering, and fill rate constraints is limited. Inspired by a real-life Dutch

food retail case we develop a simulation-optimization approach to optimize (s,S) inventory policies in

such a setting. We compare the performance of a Nested Bisection Search (NBS) and a novel Scatter

Search (SS) metaheuristic using 1280 instances from literature and we derive managerial implications

from a real-life case. Results show that the SS outperforms the NBS on solution quality. Additionally,

supply chain costs can be saved by allowing lower fill rates at upstream echelons.

Keywords: supply chain performance, multi-echelon inventory, metaheuristics, service-constrained,

simulation-optimization, scatter search

2

1. Introduction

In supply chain operations it is important to manage inventory levels correctly in order to serve

customers on time and to minimize inventory investments and ordering costs (Axsäter, 2003c). The

optimal amount of stock in a supply chain not only depends on demand, supply and lead times of an

individual supply chain entity, but also on the inventory levels of other stock-keeping entities in the

supply chain. Multi-echelon inventory models determine optimal inventory levels for all stock-keeping

entities in a supply chain by trading off order and holding costs against backorder costs, or by

minimizing order and holding costs subject to a given service level constraint (Özer and Xiong, 2008).

Since many firms typically do not know their backorder costs, they often set service level constraints

to optimize their inventory levels. While service-constrained models are practically more relevant they

are more difficult to solve from a computational and analytical standpoint.

This paper studies multi-echelon retail distribution networks with deterministic lead times,

backordering, periodic (s,S) inventory policies, and fill rate constraints. Such network configurations

and inventory policies are common in retail supply chains yet academic research on the topic remains

limited (Silver et al., 2009). Our research was inspired by the challenges faced by a Dutch food retailer

with a supply chain network consisting of several brands. Similar to other supermarket retailers this

retailer is using a periodic review with re-order and order-up-to levels. The ordering systems that are

commonplace in supermarket retail are often based on some form of (s,S) policy with periodic review

(van Donselaar et al., 2006). Determining the right inventory parameters was deemed important to

accommodate target fill rates in a supply chain consisting of a number of semi-autonomous decision-

making units while minimizing supply chain wide costs. To the best of our knowledge, only Schneider

et al. (1995) and Li et al. (2010) provide solution approaches for a similar setting and do so by

determining the (s,S) policies using respectively power approximations, or via simulation-

optimization.

Simulation-optimization models have been recently proposed as an alternative to traditional

mathematical programming or simulation approaches. In the literature, the use of mathematical

programming methods often requires oversimplifying real-life cases (Peidro et al., 2009). Simulation

is capable of modeling more realistic problem settings; however, the process of generating a sufficient

number of scenarios that all need to be evaluated before finding (near-)optimal solutions is usually

quite time-consuming (Saetta et al., 2012). Alternatively, to obtain fast and accurate solutions,

simulation has been integrated with optimization methods in an iterative process (Chu et al., 2015,

Fleischhacker et al., 2015, Almeder et al., 2008).

In this paper, we propose a Scatter Search based simulation-optimization method that allows for

modelling and solving realistic settings. To this end, Section 2 summarizes the relevant literature on

multi-echelon inventory models and specifically on service-constrained models. The problem

3

description and formulation are presented in Section 3. In Section 4, two simulation-optimization

approaches are compared. The first method is a Nested Bisection Search heuristic based on the work

of Li et al. (2010) and the second method is a novel Scatter Search metaheuristic proposed in this

paper. In Section 5, the performance of the solution approaches will be examined using 1280 synthetic

problem instances from the literature and a real-life food retail case. Finally, in Section 6 conclusions

are drawn and avenues for further research are proposed.

2.	Literature	review			

Inventory management for a single stage in a supply chain is relatively straightforward and well

covered in most supply chain management handbooks (e.g. Silver et al., 2009, Simchi-Levi et al.,

2009, Slack et al., 2010). However, if inventory is held in more than one stage of the supply chain (i.e.

in a network) then determining optimal inventory parameters becomes more difficult (Ravi Ravindran

and Warsing Jr., 2012). In case of local control, every entity (or installation) in the network controls its

own inventory, which is also known as an installation stock policy. At the same time, the entities in

this network are dependent on each other since demand at a downstream stage triggers an order at an

upstream stage. Inventory levels at different stages thus influence each other (Schneider et al., 1995).

In the case of central control, where one entity manages all inventories in a network, the echelon

inventory position is used to manage the inventory level of all echelons. The echelon inventory of a

certain location consists of the installation inventory of that location plus all downstream installation

inventories (Axsäter, 2003c). When applying echelon stock policies information on inventory levels

should be shared between the locations of the different echelons, which can be technically and

organizationally challenging to implement in industry (Tüshaus and Wahl, 1998).

Clark and Scarf (1960) introduced the first multi-echelon inventory model using a serial network

in which each stage has a single supplier and a single customer. Building on the seminal Clark and

Scarf (1960) paper, a variety of multi-echelon inventory models were developed for other network

structures, including diverging distribution networks (e.g. Rong et al., 2012) and converging assembly

networks (e.g. Cheng et al., 2002). In the literature, multi-echelon inventory models are regularly

divided into backorder-cost (also full cost) and service-constrained (also partial cost with service level

constraints) models (Chen and Krass, 2001, Özer and Xiong, 2008). Since backorder cost are difficult

to determine, service-constrained models are often more applicable to real-life settings. Furthermore,

service levels are known as the most used performance measures (Silver et al., 1998). Generally, the

objectives of papers on multi-echelon inventory networks are to minimize cost and find optimal

inventory parameters. For service-constrained models an additional requirement is added to safeguard

a given service level while minimizing costs and inventory levels. Below, we first discuss articles that

4

focus on determining service levels in a network (without minimizing costs) and then articles that

mainly focus on minimizing costs while enhancing a certain service level.

In the first stream of papers, the first paper to introduce service-constrained distribution models

was by Rosenbaum (1981), who uses simulation to test a heuristic for determining the best

combination of distribution center (DC) service levels to achieve a given external customer service

level. Desmet et al. (2010) use a similar approach by approximating the effect of a reduction in the

warehouse fill rate on the system safety stock (the total safety stock in a network). Schwarz et al.

(1985) develop approximations and heuristics to maximize the system fill rate with a constraint on the

system safety stock. Tüshaus and Wahl (1998) provide a robust and numerically inexpensive cycle-

based approximate mathematical representation for a two-echelon distribution system with service

level constraints, which can be used for determining performance measures or for use with an

optimization method. Caggiano et al. (2009) approximate and simulate system-wide optimal (echelon)

inventory levels by computing channel fill rates for time-based service levels. These papers focus on

the influence of service levels on the system, or on computing target service levels.

A second stream of papers focuses on minimizing costs while maintaining a certain service level.

van der Heijden (2000) proposes an approximate optimization procedure to find optimal base-stock

policies for a multi-echelon distribution network sequentially using target fill rates. He assumes that

perfect information is available and therefore uses an echelon stock policy with balanced stock

rationing in case of a stock-out. Balanced stock rationing does not account for differences in holding

costs of the downstream locations, which may be relevant in situations with heterogeneous

downstream locations. Van der Heijden (2000) argues that there is a trade-off between guaranteed

service levels with low costs versus minimal costs with reasonable service levels. Simchi-Levi and

Zhao (2005) obtain optimal base-stock policies for a variety of network configurations while meeting

certain service level requirements of external customers. They propose an algorithm that is based on

dynamic programming and the two-moment approximation of Graves and Willems (2000). Simchi-

Levi and Zhao (2005) assume that demand is Poisson distributed, the probability distributions of the

transportation lead times are known; their model incorporates a continuous installation stock policy.

Özer and Xiong (2008) provide an exact algorithm, heuristics, and approximations for a two-echelon

distribution system to set optimal base-stock levels by minimizing the average inventory holding costs

subject to fill rate constraints. They apply a continuous review policy without order cost, which

implies that every time demand is faced, an order is immediately placed. Their exact algorithm

assumes Poisson-distributed demand and its use requires substantial CPU time, data and advanced

modelling knowledge. As such, to gain insights on system performance the authors also provide

heuristics and closed-form approximations but these methods do not allow for determining optimal

inventory parameters. Similarly, Fleischhacker et al. (2015) propose a non-linear and a deterministic

5

linear integer optimization model to determine shipping quantities and inventory levels for a divergent

network with a fill rate constraint. They assume Poisson distributed demand, a finite time horizon, a

continuous review policy and constant lead times. Chu et al. (2015) recently described a simulation-

based optimization framework for a divergent multi-echelon network under stochastic demand and

stochastic lead times. They propose a three step procedure to optimize (r,Q) policies by minimizing

total cost while maintaining acceptable fill rates. First, they apply an agent-based system that simulates

the inventory system and returns performance measures, second they use a Monte Carlo method and

third, they developed a cutting plane algorithm to determine optimal inventory parameters. Tsai and

Liu (2015) study a multi-item, multi-echelon spare parts inventory system and minimize costs with the

expected response time as service measure. They follow a continuous review base-stock policy, which

implies that every time demand is faced an order is placed immediately. They develop two different

algorithms within a simulation-based optimization framework, a ranking and selection method and a

stochastic genetic algorithm and compare these to a sample-average-approximation. As in the models

of Chu et al. (2015) and Tsai and Liu (2015), simulation is used here to model the inventory dynamics;

using this approach demand and lead times can be modeled using any probability distribution.

In retail supply chains periodic (s,S) inventory policies are fairly common (Silver et al., 2009).

Such a periodic (s,S) policy implies a different optimization procedure than a base-stock policy, which

is widely used in the related literature (van der Heijden, 2000, Simchi-Levi and Zhao, 2005, Özer and

Xiong, 2008, Fleischhacker et al., 2015, Tsai and Liu, 2015). For an (s,S) policy, decision variables s

and S are dependent on each other as S always needs to be strictly larger than s, which makes the

optimization procedure inherently more difficult than for a base-stock policy. For example, when

using a base-stock policy every review period an order is placed by default, which may not be

desirable if high fixed order costs are involved. Of course review periods can be adapted to avoid

frequent ordering and thus high order costs, but instead (s,S) policies could be implemented. In the

past, (s,S) policies have been applied mainly to single-echelon models (e.g. Schneider and Ringuest,

1990, Bashyam and Fu, 1998, Chen and Krass, 2001, Moors and Strijbosch, 2002, Silver et al., 2009)

or to serial systems (e.g. Eltawil and Elnahar, 2007).

Service-constrained models and (s,S) inventory policies are common in retail supply chains, but

research on these topics remains limited. To the best of our knowledge only two papers discuss multi-

echelon divergent networks with an (s,S) inventory policy under service-level constraints. Schneider et

al. (1995) determine optimal safety stock placements that minimize total costs using a service level

measure as decision variable. They propose power approximations by assuming independent and

identically distributed demand, stock-out cost at the stores and excluding partial delivery.

Additionally, they model stochastic lead times and non-stock out probabilities. Their model does not

suit our problem setting as we do not look into optimal safety stock placement, but into determining

6

optimal (s,S) inventory policies for given locations. Li et al. (2010) propose a simulation-optimization

framework with a bisection search to obtain optimal (s,S) inventory policies that minimize costs for a

two-echelon distribution network. To obtain near-optimal inventory policies for thousands of products

quickly, they propose approximations and regression methods that may be used to characterize the

inventory policies for similar products. Customer demand and all lead times are assumed to be

normally distributed. Additionally, if inventory levels are insufficient, customer demand is considered

lost, but replenishment orders are backlogged.

We propose two different optimization methods to determine near-optimal values for (s,S)

inventory policies in multi-echelon distribution networks. The first method, Nested Bisection Search,

is based on an existing solution method, the bisection search of Li et al. (2010), for a similar multi-

echelon inventory problem. The second is a newly proposed evolutionary approach based on a Scatter

Search metaheuristic, which is able to intensify and diversify the solution search space systematically

(Glover et al., 2003).

3.	Problem	description	and	formulation	

Consider a single-item service-constrained inventory optimization problem in an n-echelon

distribution network (for an example of such a network see Figure 1). Each node (i.e., location) is

replenished from a designated node at the next-higher echelon (the parent location). In case the parent

location has sufficient inventory, the replenishment order will arrive at location j ∈ J after a

deterministic lead time L!. Demand from the locations in the (next) downstream echelon (the child

locations) is then fulfilled. Locations at the lowest echelon (echelon v=n) face external aggregated

(customer) demand from external customer demand points (in this paper also shortened to ‘external

demand’) and the highest echelon (echelon v=1) has infinite external supply. All locations control

their inventory levels locally using a periodic (s,S) inventory policy. Unmet demand is backordered at

all locations in the network.

 In the multi-echelon literature using echelon stock, it is common to use an allocation policy

that takes customer service levels at downstream locations into account, for example through balanced

stock rationing (e.g. Lagodimos, 1992, Diks et al., 1996, Van der Heijden et al., 1997). However, as

we do not study an echelon stock policy, this is not suitable. Studies with a similar problem setting as

we do usually have either a first-come first-served policy (e.g. Desmet et al., 2010), or do not ship

anything when there is insufficient inventory to fulfill all orders (e.g. Li et al., 2010). In this paper, we

allocate the remaining inventory of one location based on the proportion of outstanding orders of one

child location as compared to all outstanding orders of all child locations, following the proportional

allocation rule of Tüshaus and Wahl (1998). First (a part of) the backorders of the last period are

fulfilled and in case there is inventory left, (a part of) the new demand is fulfilled. The fill rate is used

7

as a service level as it is the most common service level in practice. It is defined as the fraction of

demand that can be immediately satisfied from available inventory (Muckstadt, 2006, p.48).

Shipments between locations of the same echelon (such as in Paterson et al., 2011) are not allowed.

Lead times are assumed to be deterministic. The objective is to minimize the expected total costs,

including inventory holding and ordering costs, subject to minimal fill rate requirements at the

locations of echelon v=n. The expected inventory holding cost equals the expected number of products

on inventory times the inventory holding cost. The ordering cost equals the expected number of

transport units ordered times the cost for ordering one transport unit, which consists of multiple units

of the same product.

We use the following notation:

Network parameters

J the set of locations, indexed by j

J! the subset of locations at echelon v = 1, 2,… , n,with ∪!!!! J! = J, and J!! ∩ J!! =

 ∅, v! ≠ v!

p j the parent location of location j in the distribution network, 𝑗 ∈ 𝐽\𝐽!

R(j) the child locations of location j in the distribution network, j ∈ J\J!

Y the number of products in one transport unit (e.g. a pallet)

Inventory policies

s! the re-order level of location j ∈ J

S! the order-up-to level of location j ∈ J

Figure 1: An n-echelon distribution network

8

Performance measure parameters

F! the minimal fill rate requirement of location j ∈ J!

h! the holding cost per product and per period at location j ∈ J

K! the order cost per transport unit at location j ∈ J

Performance measurements

E! s, S the expected shortage (as a percentage of the total demand) of location j ∈ J! for a

given (s,S) policy

I!(s, S) the expected inventory level of location j ∈ J for a given (s,S) policy

P!(s, S) the expected order quantity (in number of transport units) of location j ∈ J for a given

(s,S) policy

The multi-echelon inventory optimization problem with minimal fill-rate requirements (MEIO) is

formulated as follows.

(MEIO): min ℎ!!∈! 𝐼!(s, S) + 𝐾!!∈! 𝑃! s, S , (1A)

 s.t. 1 − E!(s, S) ≥ F! , ∀ j ∈ J!, (1B)

 𝑆! > 𝑠! , ∀ j ∈ J, (1C)

 𝑠!, 𝑆! ≥ 0, integers, ∀ j ∈ J. (1D)

The objective function (1A) minimizes the total expected inventory holding costs and ordering costs of

all locations. Constraints (1B) ensure that all minimal fill-rate requirements at the lowest echelon

locations are satisfied. As formulated by Constraints (1C) and (1D), we only consider (s,S) policies

that are nonnegative integer numbers and order-up-to levels always need to be higher than re-order

levels. The (s,S) policies for all locations are inter-related decisions and, ideally, simultaneously

optimized. All inventory dynamics related to the objective function and side constraints are explained

in the simulation model in Section 4.3.

4.		A	simulation	–	optimization	approach	

Many real-world problems are too complex to compute performance measurements and optimal

decision variables analytically due to nonlinearities, combinatorial relationships, and uncertainties

(Glover et al., 1999). Computer simulation can be used to evaluate complex systems; however, this

9

approach is limited because (a) it is not able to give the best or optimal solution in most cases and (b) a

large number of scenarios need to be evaluated (Tekin and Sabuncuoglu, 2004). To find a near-

optimal solution to a complex problem it can be useful to integrate simulation and optimization. Such

an approach uses an optimization method to find the best values of given decision variables to

minimize/maximize an objective function; these solutions are then evaluated using a simulation model

that incorporates uncertainty (Ólaffson and Kim, 2002, Jalali and Nieuwenhuyse, 2015).

Optimization for simulation, which is also known as optimization via simulation or simulation

optimization, consists of different techniques to optimize stochastic simulations (Amaran et al., 2016).

Simulation-optimization first evaluates an optimizer’s candidate solutions, often using discrete-event

simulation in which the system can change only when a certain event occurs (Law, 2015), and then

returns the performances measurements to the optimizer. The optimization method uses the outputs of

the simulation to decrease the search space (which consists of possible solutions) and to make

decisions regarding the next trial solution (Fu, 2002, April et al., 2003, Amaran et al., 2016).

In the next sections, we explain two optimization methods that are included in our simulation-

optimization approach. In Section 4.1, a Nested Bisection Search based on Li et al. (2010) is

explained. Afterwards, a Scatter Search metaheuristic is developed in Section 4.2. Section 4.3 explains

the simulation model that is used as an evaluative function for the optimization methods.

4.1 Determining (s,S) values: Nested Bisection Search (NBS)

Li et al. (2010) propose a simulation-based optimization framework as the best method in terms of

solution quality to obtain optimal re-order levels for a single item in a two-echelon distribution

network. By using a bisection search, first an initial re-order level is set for a location in the highest

echelon and second, the re-order levels of all downstream locations are updated using again a bisection

search. The re-order levels are updated recursively, from the highest to the lowest echelon. The

simulation model evaluates every newly obtained solution and returns performance measurements. As

Li et al. (2010) assume fixed order quantities, the order-up-to level can be obtained easily once the re-

order level has been determined.

In this paper, we adjust the Li et al. (2010) heuristic to obtain (near-) optimal (s,S) policies for

our problem setting. We model backorders instead of lost sales, we use different demand distributions,

assume deterministic lead times instead of stochastic lead times and we follow a different inventory

allocation policy (i.e. proportional rationing). However, similar to Li et al. (2010) we determine the

fixed difference between the re-order level and the order-up-to level for each location using the

standard EOQ formula with the expected demand for that location (EOQ!).

As the work of Li et al. (2010) provided insufficient detail on the exact implementation of the

Nested Bisection Search (NBS), we used the work of Benkherouf (1995) on bisection search for

10

detailing the NBS algorithm (see Algorithm 1). We determine the re-order levels for all locations that

minimize expected total cost while satisfying fill rate requirements. The NBS algorithm keeps track of

which locations have been updated already and the locations in each echelon are always processed in

the same sequence. Additionally, to speed up the search the search spaces of the (s,S) values in the

NBS and Scatter Search (SS) are restricted within lower and upper limits. For each location all lower

limits for the (s,S) values have been set to zero and all upper limits to twenty times the average

demand (of a time period). Based on preliminary testing we concluded that these upper limits are

sufficiently high. Re-order level s is initialized to the average demand of a location multiplied by the

lead time to that location. Order-up-to level S is initialized to re-order level s plus the EOQ value of

that location.

Algorithm 1: NBS

Main Procedure

Step 1: Set the initial (s,S) values.

Step 2: Calculate the Economic Order Quantity EOQ! for each location 𝑗 ∈ 𝐽.

Step 3: Set the current location to the root location (location 1 in echelon 1) and call the

bisection subroutine (step 4 to 7) recursively.

Bisection Search Subroutine

• Step 4: Let j denote the current location.

• Step 5: Set a to the lower limit 𝑙𝑙! and b to the upper limit 𝑢𝑙!.

• Step 6: Let 𝜀 = 1 be the minimal difference between 𝑎 and 𝑏.

• Step 7: While 𝑏 − 𝑎 > 𝜀

o Set the mid-point 𝑚 as

𝑚 = !!!
!

.

o Set 𝑠! = 𝑚 and 𝑆! = 𝑠! + 𝐸𝑂𝑄!.

o If location j is in echelon 2,

§ Evaluate the total expected cost and expected fill rates with MEIO given by (1) by

running the simulation model for the entire network, which will be explained in

Section 4.3.

Else,

§ For each child location in R(j), call the bisection subroutine (step 4 to 7)

recursively to evaluate the total expected cost and the expected fill rates.

11

o Update the best solution to the current (s,S) values if the current solution has a lower

expected cost and the fill rate requirements are satisfied.

o If the fill-rate requirements are satisfied, set 𝑏 = 𝑚; else set 𝑎 = 𝑚.

End while

• Step 8: Return the best (s,S) values with the expected cost and fill rates.

4.2 Determining (s,S) values: Scatter Search metaheuristic (SS)

Multiple approaches exist for optimizing decision variables in a simulation optimization approach (e.g.

stochastic approximation, response surface methodology, and sample path optimization (April et al.,

2003)). Metaheuristic algorithms are highly relevant for complex optimization problems as they

provide high quality solutions in short computing time (Juan et al., 2015, Figueira and Almada-Lobo,

2014) and they are effective in solving multi-echelon inventory optimization problems (Paul and

Rajendran, 2011). Metaheuristic approaches can guide other procedures, such as heuristics, to

overcome local optimality for complex problems (Fu et al., 2005). They are applicable to simulation

models with discrete decision variables, a large or near-infinite space of feasible solutions, and a

stochastic environment (Swisher et al., 2000, Jalali and Nieuwenhuyse, 2015). Due to their

effectiveness and general applicability, metaheuristics can be seen as one of the most practical

approaches to solve complex real-life problems (Ólafsson, 2006). Additionally, Juan et al. (2015)

argues that for complex real-life problems, it is in general preferred to obtain an approximate solution

to an accurate model of a real system using metaheuristics with simulation over obtaining an optimal

solution to an oversimplified model. Commonly, four types of metaheuristic approaches are applied in

simulation optimization: Simulated Annealing, Genetic Algorithms, Tabu Search, and Scatter Search

(Keskin et al., 2010). Fu et al (2005) state that the latter two are by far the most effective methods. The

use of Tabu Search and Scatter Search is explained in e.g. Vojvodic et al. (2016) and Goh et al.

(2017).

Both Tabu Search and Scatter Search make use of adaptive memory to store best solutions and

differ from other metaheuristic approaches by not heavily relying on randomization. However, Tabu

Search is applied from the perspective of adaptive memory and Scatter Search focuses on an

evolutionary approach which generates new trial solutions based on existing solutions(Glover, 2006).

In this paper we adopt the Scatter Search (SS) method introduced by Glover (1977) as SS uses

strategies to diversify and intensify the search which have proven to be effective in a variety of

optimization problems (Martí et al., 2006, Russell and Chiang, 2006). Based on the basic SS

framework (e.g. Laguna, 2014, Martí et al., 2006, Glover et al., 2003), which consists of five steps, a

tailor-made solution approach with regard to how the steps are implemented is proposed for

optimizing the (s,S) policies at all locations in J. The metaheuristic searches for promising inventory

policies on the following solution space:

12

X ≡ { s, S ∈ ℤ ! ×ℤ ! ∶ ll! ≤ s! < ul!, ll! < S! ≤ ul!, s! < S!,∀j ∈ J} (2)

where ll! and ul! are the lower and upper limits of the inventory parameters for location j ∈ J.

Algorithm 2, based on Laguna (2014), provides an overview of the different steps in the SS

metaheuristic. The next sections describe the major components of the SS in more detail: the

diversification generation method for generating a diverse set of initial solutions, an improvement

method including bisection search and a local search, updating the reference set from which solutions

are used to generate new solutions, and a combination method using weighted linear combinations of

solutions to obtain new solutions. Details about the specific parameter values used are reported in

Section 5.1.

Algorithm 2: Scatter Search

• Diversification generation

• Improvement method

• While stopping criteria not satisfied do

o Reference set update

o While new reference solutions do

§ Combination method

§ Improvement method

§ Reference set update

o End while

o Rebuild Reference set

• End while

4.2.1 Diversification generation

As SS aims to obtain better solutions by using combined solutions instead of original values, we start

with generating a diverse set of solutions to initialize the search (Glover et al., 2003). A population

pool is generated which can be done in multiple ways. We propose the following two heuristics

(Construction Heuristics) for starting up the SS method:

• C1: For all 𝑗 ∈ 𝐽, we set 𝑠! as an integer number (denoted as 𝑠!) that is randomly picked in [𝑙𝑙!,

𝑢𝑙!). Afterwards, we set 𝑆! to an integer number (𝑆!) randomly picked in (𝑠!, 𝑢𝑙!].

• C2: For all 𝑗 ∈ 𝐽, 𝑠! and 𝑆! are set to integer numbers (denoted as 𝑠! and 𝑆! respectively) that

are randomly picked in [𝑙𝑙!, 𝑢𝑙!]. If 𝑠! > 𝑆!, we swap the values of 𝑠! and 𝑆!; otherwise, if

𝑠! = 𝑆! and 𝑆! < 𝑢𝑙!, we increase 𝑆! by one. If 𝑙𝑙! < 𝑠! and 𝑠! = 𝑆!, we decrease 𝑠! by one.

13

4.2.2 Improvement method

In this step, the aim is to improve the initial solutions in terms of quality; in the case of non-feasible

solutions the aim is to make them feasible. Several improvement methods can be used and the usual

rule is to stop the search as soon as no improvement in the neighborhood of the current solution can be

found (Laguna, 2014). In this paper, we propose two improvement method versions (Improvement

Heuristics): a sequential and parallel bisection search for processing the locations.

• I1: Sequential version: At each iteration, one of the locations is selected and its re-order level

and order-up-to level are optimized using a bisection approach. The locations are improved

sequentially and locations in this sequence are selected randomly. If the solution cannot be

further improved, the search is perturbed with an approach reminiscent from gradient search

(Ólaffson and Kim, 2002) which we will define as the local search. By exploring the impact of

a one-unit increase or decrease on the individual (s,S) values, the direction for cost

improvement is determined. The new (s,S) values are obtained by applying a fixed step size to

the previous (s,S) values in the direction just explored. If this solution gives again an

improvement the step size increases with a predetermined amount, if the solution did not

improve compared to the previous solution, the step size decreases with the same

predetermined amount. This procedure stops when the maximum number of non-improving

iterations is reached.

• I2: Parallel version: At each iteration, first the re-order levels of all locations and then the

order-up-to levels of all locations are optimized. The same local search as in I1 is applied if no

solution can be further improved using the bisection approach. However, different from the

sequential version, at each iteration all locations are improved in parallel, instead of one

location at the time.

The improvement heuristics always terminate after reaching a maximum number of evaluated

solutions for all locations together.

4.2.3 Reference set update

The scatter search maintains a reference set of multiple solutions (the reference solutions) that are used

to generate new solutions using the Combination method (see Section 4.2.4) (Martí et al., 2006). At

each iteration of the search, the reference solutions are picked from the population pool as follows.

The first 50% of the solutions we take into account are the best solutions based on the objective

function values in the population pool. The second half of solutions are picked one-by-one based on

the minimum distance to each of the reference solutions, i.e., the set of minimum distances. The

solutions with the largest values of the minimum distances to the reference solutions are chosen. The

14

set of solutions is thusly diversified in order to avoid staying in a local optimum. The distances are

measured based on Euclidian distances, such that for any two solutions (s!, S!) and (s!!, S!!) in the

solution space X (Equation 2) the distance of the two solutions is given by:

(s!! − s!!!)!!∈! + (S!! − S!!!)!!∈! (3)

4.2.4 Combination method

To diversify the search, the reference set solutions are combined at each iteration of the scatter search

by weighted linear combinations to generate new solutions, which are then added to the solution pool.

For any two distinct solutions (s!, S!) and (s!!, S!!) in the reference set, with at least one of them being

marked as “not yet processed”, a new solution (s∗, S∗) is obtained as follows:

s!∗ = min s!!, s!!! + s!! − s!!! /2 (4A)

S!∗ = min S!!, S!!! + S!! − S!!! /2 (4B)

If (s∗, S∗) contains fractional values, they are rounded to the nearest integer values. As this new

solution is the midpoint of two other solutions, it avoids already existing solutions and thereby

diversifies the search.

 Initially, all reference solutions are marked as “not yet processed.” After the solution

combination, all the current reference solutions are marked as “processed.” New reference solutions

obtained are initialized with “not yet processed.” The SS terminates when all the reference solutions

are marked as “processed” and no new reference solution can be obtained. When the SS is terminated,

the best feasible solution is given.

4.3 Simulation model

The (s,S) solutions proposed by the optimization methods will be evaluated by a discrete-event

simulation model to determine expected fill rates and costs. Each time period starts with supplies

based on past orders (Section 4.3.1), then the locations determine how much to ship to their child

locations based on demand, backorders and available on-hand inventory (Section 4.3.2). After

products are shipped to their child locations, each location determines how much to order to replenish

their inventory (Section 4.3.3). The performance measurements for evaluating the solutions are

discussed in Section 4.3.4.

Let T be the set of time periods (indexed by t) and let T’ be the time periods for which the

performance is measured (excluding the warm-up period). For all locations j ∈ J! and time periods

15

t ∈ T, let d! ! be the demand from the external customer demand points faced at location j in time

period t. The demands follow a given probability distribution and are revealed at the beginning of each

time period. The simulation procedure iteratively updates the following variables for each of the time

periods.

A!! quantity arrived at location j at time period t from its parent location or external

supplier, j ∈ J, t ∈ T

Z!! total quantity shipped at location j to all child locations r ∈ R(j) or external customer

demand points at time period t, j ∈ J, t ∈ T

ZB!"! quantity shipped at location j to child locations r ∈ R(j) for satisfying the backorders,

j ∈ J\J!, t ∈ T

ZB!! quantity shipped at location j to satisfy the backorders of external demand,

j ∈ J!, t ∈ T

ZD!"! quantity shipped at location j to child locations r ∈ R(j) for meeting the orders of

time period t-1, j ∈ J\J!, t ∈ T

ZD!! quantity shipped at location j for meeting the external demand of time period t,

j ∈ J!, t ∈ T

I!! inventory level at location j at time period t, j ∈ J, t ∈ T

B!"! backorders between location j and child locations r ∈ R(j) at time period t, j ∈

 J\J!, t ∈ T

B!! backorders between location j and the external customer demand points at time period

t, j ∈ J!, t ∈ T

O!! outstanding orders of location j at time period t, j ∈ J, t ∈ T

IP!! inventory position at location j at time period t, j ∈ J, t ∈ T

V!! products short at location j at time period t, j ∈ J, t ∈ T

Q!! quantity ordered by location j at time period t, j ∈ J, t ∈ T

For the locations in the lowest echelon beginning inventory levels are initialized to the average

demand multiplied by the lead time. For the locations not in the lowest echelon, the beginning

inventory levels are initialized to the sum of the average demands of the children locations multiplied

by the lead time to that location. All other variables listed above are initialized to 0. The simulation

procedure updates the variables for each iteration, as described in Sections 4.3.1-4.3.4.

16

In Section 4.3.1, at the beginning of time period t, the products ordered from the external

supplier or parent location arrive at location j (denoted as A!!). Afterwards, as described in Section

4.3.2, location j has to determine how much it can ship to its child locations or external customer

demand points based on the demand faced by location j. The amount to ship (Z!!) depends on the

inventory level of the last time period of location j (I!!!!), the backorders to the child locations or

external customer demand points (B!"! or B!!) and the number of products arrived at the beginning of

the time period. If there is on-hand inventory available, first (a part of) the backorders are fulfilled

(ZB!"! or ZB!!) and then (a part of) the demand (ZD!"! or ZD!!). After all shipments are made, the

inventory level, backorders to child locations or external customer demand points and the shortage per

cycle (V!!) are updated. In Section 4.3.3, at the end of time period t, a new order (Q!!) can be placed,

depending on the inventory position (IP!!) and the (𝑠! , 𝑆!) policy of location j. Last, the number of

ordered products outstanding (O!!) is updated. In Section 4.3.4, performance measurements for

evaluating the solutions are discussed.

4.3.1 Receiving orders

All orders Q!! placed by locations in the highest echelon, take one time period to arrive as demand at

the external supplier (at t+1). This supplier has infinite supply and ships the demand to location j ∈ J!,

which takes lead time L! to arrive. As such, the arrival quantity A!! that arrives at the beginning of

time period t is equal to the order that was placed lead time L! + 1 time periods ago by location j ∈ J!:

 A!!= Q!
!!!!!! , ∀j ∈ J1, t ∈ T. (5A)

For all locations j not in the highest echelon (J\J!), the arrival quantity A!! of time period t is equal to

the total shipment quantity (for backorders and new orders) of their parent location p(j) at time period

t − L!:

 A!!= ZB! ! ,!
!!!! + ZD! ! ,!

!!!! , ∀j ∈ J\J1, t ∈ T. (5B)

4.3.2 Meeting the demand	

After the replenishment order arrives, the shipment quantity to the children nodes or external customer

demand points can be determined based on the available on-hand inventory. The shipment quantity

has two components, first the shipment quantity for the backorders ZB!"! is determined and second, for

17

the demand faced ZD!"! that period. For all locations j ∈ J \ J! , the orders of the child locations arrive

the next time period and the total shipment quantity Z!! to child locations r ∈ R j at time period t is

given by:

Z!! = ZB!"!!∈!(!) + ZD!"! ,!∈!(!) ∀j ∈ J \ J!, t ∈ T (6A)

where,

ZB!"! =
!!"
!!!

!!"
!!!

!∈! !
(I!!!! + A!!) , if B!"!!!!∈!(!) > I!!!! + A!!;

B!"!!!, otherwise,
 ∀j ∈ J \ J!, r ∈ R j , t ∈ T.

 (6B)

ZD!"! =
!!!!!

!!!!!!∈! !
 𝐼!!!! + 𝐴!! − 𝑍𝐵!"!

!∈! ! , if 𝑄!!!!!∈! ! > 𝐼!!!! + 𝐴!! − 𝑍𝐵!"!
!∈! ! ;

𝑄!!!!, otherwise,

∀j ∈ J \ J!, r ∈ R j , t ∈ T. (6C)

Note that rounding down the shipment quantities in case of a shortage may result in a small number of

requested products not being shipped. At most this amount will be equal to the number of child

locations which requested products minus one.

If the on-hand inventory is insufficient to fulfill all backorders and demand, all unshipped products

need to be backordered. The number of backorders B!"! between location j and its child locations

depends on the backorders of last period, the new order (placed at time period t-1) and the shipped

quantities of time period t:

B!"! = B!"!!! + Q!!!! − ZB!"! − ZD!"! , ∀j ∈ J \ J!, r ∈ R j , t ∈ T. (7)

To determine the fill rate of location j we have to calculate the expected shortage per cycle V!! , which

equals the amount of orders of time period t-1 that cannot immediately be shipped in time period t:

V!! = Q!!!!!∈!(!) − ZD!"! !∈!(!) , ∀j ∈ J\J!, t ∈ T. (8)

All locations j ∈ J! in the lowest echelon face external demand (instead of demand from child

locations). These locations ship products to customers that represent the external customer demand

points. Similar to the other locations, the locations in the lowest echelon first determine the shipment

quantity based on the outstanding backorders (ZB!!) and afterwards the shipment quantity of the

demand faced in time period t (ZD!!). First the shipment quantities are determined (Equation 9A-C),

18

second the number of backorders is updated (Equation 10) and third the number of products short in

time period t (Equation 11):

Z!! = ZB!! + ZD!! ∀j ∈ J!, t ∈ T. (9A)

Where,

ZB!! =
 B!
!!!, if B!

!!! ≤ I!
!!! + A!

! ;

I!!!! + A!!, otherwise,
 ∀j ∈ J!, t ∈ T. (9B)

ZD!! =
 d!!, if d!! ≤ I!!!! + A!! − ZB!! ;
I!!!! + A!! − ZB!!, otherwise,

 ∀j ∈ J!, t ∈ T. (9C)

B!! = B!!!! + d!! − Z!!, ∀j ∈ J!, t ∈ T. (10)

V!! = d!! − ZD!!, ∀j ∈ J!, t ∈ T. (11)

4.3.3 Determining order quantities

At the end of time period t, the inventory levels for all locations j ∈ J will be updated, based on the

inventory level of time period t-1, the arrival quantity at the beginning of time period t and the number

of products shipped during time period t:

I!! = I!!!! + A!! – Z!!, ∀j ∈ J, t ∈ T.	 	 	 (12)

To replenish its on-hand inventory, each location can place an order at the end of time period t. The

order quantity for each of the locations is determined based on the inventory position, the reorder point

s, and the order-up-to level S of the individual location.

For all locations j ∈ J, let IP!! be the current inventory position of location j, which consists of

the on-hand inventory level I!! plus the quantity for all products that are ordered but not yet received

(O!!!! − A!!) . In here, we calculate the number of outstanding orders of time period t-1 minus what

arrived at the beginning of time period t.

IP!! = I!! + O!!!! − A!! , ∀j ∈ J, t ∈ T. (13)

If the inventory position of location j at time period t falls below reorder point s, an order will be

placed equal to the difference between the order-up-to level S and the inventory position IP!!. In all

other situations, the inventory position is above s and therefore nothing needs to be ordered:

19

Q!! =
S! − IP!!, if IP!! ≤ s!;

 0, otherwise.
, ∀j ∈ J, t ∈ T. (14)

Last, after determining the order quantities the outstanding orders for time period t are updated by

subtracting the arrival quantity and adding the order placed in this time period:

O!! = O!!!! − A!! + Q!!, ∀j ∈ J, t ∈ T. (15)

4.3.4 Performance measurements

The simulation runs over a sufficiently large number of time periods, after which the performance can

be measured to evaluate the (s,S) policies (solutions) obtained by the different optimization methods.

In our model, fill rate requirements can be set for all locations at each echelon. For our specific

problem we set these fill rate requirements only at the locations in the lowest echelon. In our

computational experiments, however, we will report the actual fill rate for all locations j ∈ J at all

echelons and therefore calculate the expected shortage per cycle during the steady-state T! by dividing

the shortage of that cycle (or time period) through the faced demand of that cycle. For the locations

j ∈ J! in the lowest echelon, the faced demand is the demand from the external customer demand

points and the expected shortage is given by:

E! s, S =
 !!

!
!∈!!

!!
!

!∈!!
, ∀j ∈ J!. (16A)

For all other locations j ∈ J\J! that are not in the lowest echelon, the demand faced is equal to the

orders of their child locations of time period t-1. The expected shortage is calculated as follows:

E! s, S =
 !!

!
!∈!!

!!!!!!∈!(!)!!!∈!!!!
, ∀j ∈ J\J!. (16B)

The actual fill rate is given by 1-E! s, S .

Additionally, the expected inventory levels and order quantities (in number of transport units) for all

locations j ∈ J have to be determined for calculating the expected total cost:

I! s, S =
Ij
t

t∈T′

T′
, ∀j ∈ J. (17)

P!(s, S) =

!!
!

!!∈!!

!!
, ∀𝑗 ∈ 𝐽. (18)

where Y is the number of products in one transport unit.

20

The expected total cost for all locations j is the sum of the holding cost per product multiplied by the

expected inventory level and the order cost per transport unit multiplied by the expected number of

transport units ordered:

 ℎ!!∈! 𝐼!(s, S) + 𝐾!!∈! 𝑃! s, S . (19)

5. Computational	results	
In this chapter we examine the performance of our two proposed solution approaches on a benchmark

set derived from the synthetic problem instances of van der Heijden (2000) and on our real-life food

retail case. van der Heijden (2000) provides a benchmark set for divergent 2-, 3- and 4-echelon

networks, ranging from 3 up to 59 locations within the network. Two network structures consist of 2

echelons, one with 3 locations (abbreviated 2E3L) and one with 7 locations (abbreviated 2E7L). van

der Heijden (2000) furthermore provides two network structures for 3-echelon networks, one with 7

locations (3E7L) and one with 15 locations (3E15L). For the 4-echelon networks, he provides four

different network structures, with 15 locations (4E15L), 27 locations (4E27L), 31 locations (4E31L)

and 59 locations (4E59L). We adjusted the problem instances by incorporating a fixed order cost and

number of units per transport unit. Furthermore, instead of a base-stock policy, we optimize (s,S)

policies; we follow proportional rationing instead of balanced stock rationing and use installation

stock policies instead of echelon stock policies. Opposed to van der Heijden (2000), we do not use a

single parameter for describing the stock level at a location as we use simulation-optimization models

to determine stock levels.

The algorithms have been coded in C++ and all experiments have been performed on a QEMU

Virtual CPU processor (2.50 GHz) with 4 GB RAM and a 64-bit operating system. Preliminary testing

showed that the simulation model should run for at least 5000 days with a warm-up period of 200 days

to achieve steady-state results. The fixed initial step size for the local search procedure of the

improvement method (see Section 4.2.2) is set to twenty and every iteration the step size is increased

or decreased by two units. The step size is initialized every time the local search procedure starts for

refining the (s,S) values of a certain location.

The structure of the rest of the chapter is as follows. First, we will determine appropriate

parameter values for the Scatter Search metaheuristic in Section 5.1. The Nested Bisection Search

does not contain parameters and therefore does not require parameter tuning. Second, in Section 5.2

we will compare the performance of the SS and NBS on the benchmark set described above. Third, in

Section 5.3 we will report computational results on our real-life case to highlight managerial

conclusions.

21

5.1 Parameter tuning

5.1.1 Design

Before applying the proposed solution approaches, the parameters for the Scatter Search (SS)

metaheuristic have to be determined (also called off-line parameter initialization (Talbi, 2009, p.54))

to balance solution quality and computational time. The parameters are tuned by doing computational

experiments on a subset of all benchmark instances. From each of the eight different network

configurations (2 of 2-echelons, 2 of 3-echelons and 4 of 4-echelons) we choose the first instance to

test different combination of parameter values.

A full factorial analysis (Coy et al., 2001) is conducted on the subset of benchmark instances for

the population size (50, 100), the maximum number of non-improving local search iterations for

refining the solution (5, 10), the maximum number of evaluated solutions within the local search

function (50, 200, 1000), the construction heuristic (Section 4.2.1) (C1, C2) and the improvement

heuristic (Section 4.2.2) (I1, I2). In total this gives 48 different combinations of parameters for each of

the eight network configurations. There is a computation time limit of three hours for each instance for

the reference set update within the SS and we report the current best solution if the metaheuristic is not

finished within the time limit.

We analyzed the sensitivity and performance of the SS with regard to the specified parameter

values and per network configuration following the approach proposed by Bräysy et al. (2009). We set

the highest CPU time of the network configuration to 100% for comparing the CPU time and we

report the average CPU time for a given parameter value as a percentage of the highest CPU time. For

the solution quality, we compare the average expected total cost of a given parameter value to the

lowest expected total cost found for the network configuration under consideration and report the

difference. The averages and percentages for each parameter value per network configuration are

reported in Appendix A.

5.1.2 Results

The best options (lowest values) in terms of solution quality and CPU time are indicated in Tables

A.1-A.4 in Appendix A. Based on the results, we chose a population size of 50 initial solutions for all

network configurations. In terms of CPU time, a population size of 50 is faster than a population size

of 100 for 7 of the 8 network structures. For half of the networks this population size also gives the

best solution quality and for the remaining networks using a population size of 50 or 100 only results

in at most 1% cost difference. Therefore, we chose a population size of 50 initial solutions for all

network configurations. The maximum number of non-improving iterations in the local search is set to

5 as this gives a shorter CPU time than 10 non-improving iterations for 7 of the 8 network structures.

A maximum of 5 also gives a better solution quality than 10 for 3 network structures and for the

22

others, the solution quality for 5 and 10 non-improving iterations is almost equal with a maximum

difference of 2%. The maximum number of solutions to evaluate per local search has been set to 200

for all network structures, except for the largest network with four echelons and 59 locations. For the

largest network, the SS approach performs best in terms of solution quality and CPU time with a

maximum of 50 evaluated solutions. This is due to the fact that the maximum computational run time

of the reference set update has been set to three hours. Therefore, it is more favorable to do more

reference set updates with a smaller number of improvement iterations (50) instead of one reference

set update with many improvement iterations (200 or 1000). For the other network structures, we

considered 200 improvement iterations to offer the best compromise between solution quality and

CPU time. Last, we compared the combinations of the solution construction (C1/C2) and improvement

heuristics (I1/I2). As the CPU time of I2 is higher than I1 for 7 of the 8 network structures higher, with

differences up to 20% for the larger networks, we decided to use I1 as improvement heuristic. 5 of the

8 network structures favor C2 in terms of solution quality. Therefore, we chose C2-I1 for all problem

instances under consideration.

5.2 Benchmark testing

5.2.1 Introduction benchmark set

As discussed in the introductory text of Section 5, we use the synthetic problem instances of van der

Heijden (2000) to construct a benchmark set. Details on the parameter settings for the 2-, 3- and 4-

echelon networks can be found in Table B.1-B.3 of Appendix B. We have added the order cost per

transport unit to the original benchmark set and in the simulation model the number of units ordered is

rounded up to the next integer number of transportation units (one transport unit equals 100 products).

In addition, the benchmark set contains different values for the fill rate requirement, lead times,

holding cost and demand. We define echelon 1 as the most upstream echelon, which solely exist of

root location 1 supplied by an external supplier. The echelon with the highest number is the most

downstream echelon consisting of the customer locations facing external customer demand, which

follows a normal distribution.

The entire benchmark set of instances (1280) consists of 128 instances for 2-echelon networks (2

structures), 384 for 3-echelon networks (2 structures) and 64 for 4-echelon networks (4 structures). As

the Nested Bisection Search (NBS) is not capable of handling network structures with more than two

echelons, we will compare the performance of the NBS and the proposed Scatter Search (SS) only on

the 2-echelon networks (see Section 5.2.2). Afterwards, we will examine the performance of the SS on

the 3- and 4-echelon networks in Section 5.2.3.

5.2.2 Comparison NBS and SS

23

The computational results for the NBS and SS are reported in Table 1, specifying the expected average

total cost per day and CPU times for each network structure and parameter value. In this section, we

focus on the 2-echelon network structures consisting of 3 or 7 locations (2E3L and 2E7L) as the NBS

by Li et al. (2010) was designed to handle 2-echelon networks and cannot be straightforwardly

extended to handle more than two echelons efficiently.

In terms of solution quality, we can conclude that for 95% of the problem instances the SS is

performing better than the NBS. For 2E3L networks SS is performing better on all instances and for

2E7L SS is performing better for 115 of the 128 instances. However, the required CPU time is much

lower for the NBS for both network structures. For 2E3L networks the average CPU time for NBS is

0.25 seconds and for the SS 2.5 minutes. For 2E7L networks the NBS has an average CPU time of 1.4

seconds and the SS 10.4 minutes. Over all the 2-echelon experiments, the NBS leads on average to

7.7% more expensive solutions compared our implementation of the SS, with the largest difference

being 27.4%.

5.2.3 SS results for 3- and 4-echelon networks

In this section, we will examine the performance of the proposed SS metaheuristic on the 3- and 4-

echelon instances from van der Heijden (2000). The computational results for the 3-echelon instances

(3E7L and 3E15L) are reported in Table 2 and for the 4-echelon instances (4E15L, 4E27L, 4E31L and

 Network 2E3L 2E7L

Parameter NBSa SSa % Diffb # Diffc NBSa SSa % Diffb # Diffc

Fill rate
requirement

90% € 145.28 € 131.69 10% 64/64 € 391.30 € 375.91 4% 58/64
99% € 199.19 € 179.78 11% 64/64 € 542.62 € 519.62 4% 57/64

Lead time
echelon 1 [days]

1 € 167.85 € 151.63 11% 64/64 € 457.09 € 443.42 3% 56/64
3 € 176.62 € 159.83 11% 64/64 € 476.82 € 452.11 5% 59/64

Holding cost
echelon 1 [Euro]

€ 0.25 € 165.18 € 149.44 11% 32/32 € 461.23 € 434.76 6% 31/32
€ 0.50 € 170.26 € 154.64 10% 32/32 € 467.45 € 446.24 5% 30/32
€ 0.75 € 175.17 € 158.14 11% 32/32 € 469.91 € 454.02 4% 26/32
€ 1.00 € 178.33 € 160.72 11% 32/32 € 469.23 € 456.05 3% 28/32

Order cost
[Euro]

€ 25 € 119.70 € 111.38 7% 64/64 € 321.02 € 308.10 4% 54/64
€ 100 € 224.78 € 200.08 12% 64/64 € 612.90 € 587.43 4% 61/64

Demand [mean
(standard

deviation)]

10(4) € 94.85 € 83.39 14% 32/32 € 257.47 € 248.03 4% 30/32
10(8) € 116.53 € 103.66 12% 32/32 € 323.77 € 307.11 5% 29/32

30(12) € 202.70 € 181.17 12% 32/32 € 547.88 € 519.57 5% 29/32
30(24) € 274.86 € 254.71 8% 32/32 € 738.72 € 716.35 3% 27/32

 Table 1: Comparison NBS and SS on 2E3L and 2E7L networks
Note: a. In these columns we report the expected total cost per day for the solutions obtained by the NBS or SS. The cost is the average over all
instances for a parameter
b. The columns ‘% Diff’ report the percentage the NBS is, on average, more expensive than the SS.
c. The columns ‘# Diff” report the number of times the NBS is more expensive than the SS.

24

4E59L) in Table 3. The results show that the SS metaheuristic is capable of solving small and large

network problems and provides a feasible solution to all instances within acceptable CPU times.

The computational results show that the network structures of the benchmark instances can

significantly impact the CPU time. First of all, the average CPU time increases with the number of

locations in the network, as more (s,S) values need to be improved and evaluated. In addition, more

locations per echelon lead to higher upper limits for the parent location supplying these locations. In

particular, the upper limit for a location is set to twenty times the average demand (of a time period)

faced by that location (see Section 4.1). As a result, the search space is larger in a situation with more

child locations per parent location, which can increase the CPU time. Comparing the results of the SS

metaheuristic in networks of 15 locations with different network structures (3E15L vs. 4E15L), shows

that the average CPU time of the 3-echelon case is longer than the 4-echelon case (1954.44 seconds

compared to 1684.24 seconds).Additionally, the 4-echelon case has on average lower total cost per

day, but this is due to differences in the parameter values in the benchmark set proposed by van der

Heijden (2000) for the 3- and 4-echelon cases, such as the lead time and holding cost. Furthermore, it

can be noticed that the differences in the average total cost per day is small for varying lead times and

holding cost for a specific echelon. For example, if the lead time for echelon 1 for the 3E7L network is

shortened from 3 to 1 days, the difference in cost is only 1.4% (€386.64 for 1 day and €392.05 for 3

days lead time). This may be due to the fact that inventory is placed in another echelon when for

example the holding cost increase for a specific echelon.

Moreover, due to rounding the order quantities up to an integer number of transport units for

determining the order cost, an increase in holding cost may lead to slightly lower average total cost per

 Network 3E7L 3E15L
Parameter SSa SSa

Fill rate requirement 90% € 337.76 € 978.51
99% € 440.94 € 1 304.55

Lead time echelon 1 [days] 1 € 386.64 € 1 149.57
3 € 392.05 € 1 133.49

Lead time echelon 2 [days] 1 € 386.23 € 1 139.60
2 € 392.47 € 1 143.46

Holding cost echelon 1 [Euro] € 0.25 € 388.05 € 1 142.23
€ 0.50 € 390.65 € 1 140.84

Holding cost echelon 2 [Euro]
€ 0.25 € 375.68 € 1 108.75
€ 0.50 € 390.44 € 1 144.98
€ 1.00 € 401.92 € 1 170.86

Order cost [Euro] € 25 € 263.40 € 766.47
 € 100 € 515.30 € 1 516.60

Demand [mean (standard deviation)]

10(4) € 201.36 € 620.41
10(8) € 248.96 € 760.53

30(12) € 474.70 € 1 385.78
30(24) € 632.37 € 1 799.41

Average expected total cost per day [Euro]b € 389.35 € 1 141.53
Average CPU time [seconds]c 648.14 s 1954.44 s

Table 2: Results 3-echelon instances
Note: a. In these columns we report the expected total cost per day for the solutions obtained by the SS approach. The cost is the
average over all instances for a parameter.
b. The average expected total cost per day is reported over all instances for the specified network.
c. The average CPU time is reported over all instances for the specified network.

25

day. For example, for 3E15L the average total cost changes from €1142.23 to €1140.84 when

changing the holding cost of echelon 1 (see Table 2).

5.3 Real-life case

5.3.1 Introduction

To examine the managerial implications of optimizing (s,S) values in a real-life setting, we use the

proposed Scatter Search (SS) metaheuristic to find (near-) optimal inventory policies as this approach

outperforms the Nested Bisection Search (NBS) on the benchmark set. We examine the case of a

Dutch food retailer that supplies products from one central warehouse (WH) to four retailer

distribution centers (DC1-4) and that aims to determine (s,S) values that yield a 98% fill rate to the

external customer demand points while minimizing supply chain cost. The lead time between the

external supplier and the warehouse is twelve days; and between the warehouse and the retailer DCs it

is one day. The holding cost for the warehouse is €0.04 per product per day and for the retailer it is

€0.05 per product per day. The warehouse pays order costs of €76 per pallet ordered while the retailers

pay €14. The number of products ordered is rounded up to the next integer number of pallets, which

 Network 4E15L 4E27L 4E31L 4E59L
Parameter SSa SSa SSa SSa

Fill rate requirement 90% € 861.56 € 1 787.66 € 2 524.30 € 5 230.26
99% € 1 092.30 € 2 293.75 € 3 200.73 € 7 065.36

Holding cost echelon 2
[Euro]

€ 0.25 € 977.03 € 2 054.58 € 2 860.51 € 6 157.25
€ 0.50 € 976.84 € 2 026.84 € 2 864.52 € 6 138.37

Holding cost echelon 3
[Euro]

€ 0.50 € 953.66 € 1 516.22 € 2 778.08 € 6 100.07
€ 1.00 € 1 000.21 € 2 046.62 € 2 946.95 € 6 195.55

Order cost [Euro] € 25 € 632.27 € 1 389.25 € 1 939.87 € 4 330.31
 € 100 € 1 321.59 € 2 085.08 € 3 785.16 € 7 965.30

Demand [mean (standard
deviation)]

10(4) € 500.09 € 1 031.06 € 1 527.25 € 3 161.37
10(8) € 604.16 € 1 329.15 € 1 812.20 € 3 896.84

30(12) € 1 231.99 € 2 526.98 € 3 585.26 € 7 676.44
30(24) € 1 571.49 € 3 275.64 € 4 525.35 € 9 856.60

Average expected total cost per day [Euro]b € 976.93 € 2 040.71 € 2 862.51 € 6 147.81
Average CPU time [seconds]c 1684.24 s 3936.58 s 6794.35 s 7428.08 s

 Table 3: Results 4-echelon instances
Note: a. In these columns we report the expected total cost per day for the solutions obtained by the SS approach. The cost is the
average over all instances for a parameter.
b. The average expected total cost per day is reported over all instances for the specified network.
c. The average CPU time is reported over all instances for the specified network.

26

consists of 256 products (boxes). Historical demand is available and fitted to probability distributions

to simulate external customer demand (i.e., demand from the supermarket stores to the retail

distribution centers). For DC1 the demand follows a Gamma distribution with α=4.234 and β=11.877,

DC2 faces Weibull distributed demand with α=3.5332 and β=22.972, the demand of DC3 follows a

Lognormal distribution with µ=3.4837 and σ=0.54546 and for DC4 the demand follows a Gamma

distribution with α=4.5459 and β=2.8157. In Section 5.3.2, we report the results based on the data set

described. In Section 5.3.3, we report the results of a sensitivity analysis based on cost estimates of

practitioners to draw managerial conclusions.

5.3.2 Results

The results of the real-life case of the food retailer are presented in Table 4. The (s,S) inventory

policies for all locations are reported, including the accompanying fill rates per location, the expected

total cost per day for the complete network (€77.98) and the total CPU time of approximately 8.5

minutes (518.11 seconds) to solve this case. A fill rate requirement of 98% is only imposed on the

retailer distribution centers. Table 4 illustrates that it is not needed to have a similar fill rate at the

central warehouse in order to reach the target at the downstream retail distribution centers. Contrary to

current company practices, a central warehouse (WH) fill rate of 74.87% is sufficient to achieve fill

rates of 98% or higher at the retail DCs. As such, inventory and therefore supply chain costs can be

saved by lowering fill rate requirements for the distribution from a central warehouse to the locations

that supply the external customer demand points while guaranteeing the targeted product availability

for the final customers.

5.3.3 Sensitivity analysis

 In this section, we examine the managerial implications of optimizing (s,S) values in real-life settings

for different parameters, resulting in 192 instances. The chosen values for the parameters in the

DC s S Fill rate
WH 1425 1820 74.87%
DC1 152 324 98.01%
DC2 48 151 98.04%
DC3 130 268 98.03%
DC4 29 124 98.01%
Expected total cost per day [Euro] € 77.98
CPU time [seconds] 518.11 s

Table 4: Results real-life case

27

sensitivity analysis are based on alternative data values provided by the Dutch food retailer. We

conduct this analysis using the SS approach for different fill rate requirements (90%, 95%, and 98%),

different lead times between the central warehouse and retail distribution centers (1, 2, 3, and 4 days),

inventory holding costs (1, 2, 3, and 4 times the given holding cost), and order costs (0.5, 1, 1.5, and 2

times the given order cost).

The results of the sensitivity analysis are presented in Table 5. It can be noticed that although the fill

rate of the WH can be lower than the fill rate requirement, the WH fill rate increases on average when

the fill rate requirement of the DCs increases as well. This means that the inventory level of the WH

must be higher to guarantee higher fill rates at the DCs.

The results of the real-life case confirm the findings from the benchmark set that changes in

holding cost at a given echelon lead to repositioning of inventory to other echelons. In particular, when

increasing the holding cost at the central warehouse, we observed that optimal fill rates at the central

warehouse are decreased (see Table 5).

Parameter Value

Average total
expected cost per

daya
Average

Fill rate WHb

Fill rate
requirement

90% € 105.44 48.4%
95% € 115.81 58.6%
98% € 128.66 73.0%

Lead time [days]

1 € 113.26 62.1%
2 € 115.39 56.9%
3 € 117.79 59.7%
4 € 120.11 61.3%

Holding cost [Euro]

X 1 € 86.80 66.1%
X 2 € 108.05 61.3%
X 3 € 126.80 58.7%
X 4 € 144.91 54.0%

Order cost [Euro]

X 0.5 € 72.63 53.9%
X 1 € 103.59 58.7%
X 1.5 € 131.88 62.9%
X 2 € 158.45 64.5%

Average total expected cost per
day [Euro]c € 116.64

Average CPU time [seconds]d 401.25 s
Average Fill rate WHe 60.0%

 Table 5: Results sensitivity analysis real-life case
Note: a. a. In this column we report the expected total cost per day for the solutions obtained by the SS approach. The cost is the
average over all instances for a parameter.
b. In this column we report the average fill rate of the central warehouse (WH) over all instances for one specified parameter.
c. The average expected total cost per day is reported over all instances.
d. The average CPU time is reported over all instances.
e. The average fill rate of the central warehouse (WH) is reported over all instances.

28

6. Conclusions	&	further	research	

While inventory management is a widely studied topic in academia, it is still challenging due to

constraints encountered in practice. Inspired by a real-life case this paper aimed to develop a

simulation-optimization approach to optimize the (s,S) inventory policies of a multi-echelon

distribution network with deterministic lead times, backordering, and fill rate constraints. From a

practitioner’s point of view, this is a common and important problem to address and to the best of our

knowledge only two papers discuss models which fit such a setting well: Schneider et al. (1995) and

Li et al. (2010). Both derive near-optimal inventory policies based on stochastic lead times via either

power approximations or simulation-optimization. We propose a simulation-optimization approach

with two different optimization methods: a Nested Bisection Search (NBS) based on Li et al. (2010)

and a tailor-made Scatter Search (SS) metaheuristic.

 The optimization of the two methods works iteratively with a simulation model to evaluate the

obtained solutions in a simulation-optimization framework. To examine the performance of the two

solution approaches, we test them on 1280 synthetic instances of van der Heijden (2000). Before

running the experiments on the test instances, the parameters of the SS metaheuristic are determined

by trading-off solution quality and CPU time for different parameter values. We use the 2-echelon

instances to compare the NBS and SS solution approaches, as the existing NBS method is only

capable of solving 2-echelon problems. We also report the performance of the SS metaheuristic on the

3- and 4-echelon instances to examine its performance on larger supply chain networks.

 Computational results show that the proposed SS metaheuristic outperforms the existing NBS

method in 95% of the instances. The NBS is a fast solution method, which optimizes the (s,S) policies

for each location sequentially and considers a fixed difference between the s and S values. The SS

metaheuristic provides a diverse set of solutions and refines the solutions with a local search without

additional restrictions on the (s,S) values leading to better solution quality. The SS has on average

7.7% lower cost compared to the NBS, with savings up to 27.4%. The results of the experiments on

the 3- and 4-echelon instances show that the SS method is also capable of solving larger-sized

problems efficiently. It should be noted that even better results could be obtained at the expense of a

higher CPU time.

 To examine the managerial implications of finding (near-) optimal (s,S) inventory policies in

real-life settings, we apply the SS metaheuristic to the case of a Dutch food retailer. First, we examine

29

the actual parameter values and second, we conduct a sensitivity analysis based on alternative data

values provided by the Dutch food retailer. From the computational results we can conclude that it is

not necessary to impose the same fill rate requirement on all locations in the supply chain. Inventory

and supply chain costs can be saved by allowing lower fill rates at upstream echelons than the

downstream locations that experience external customer demand, contrary to current company

practices.

The proposed Scatter Search simulation-optimization approach can help in making tactical

decisions with regard to determining (near-) optimal inventory policies to save supply chain costs in a

variety of supply chains. We showed that our model that is capable of accurately modeling real-life

constraints, such as backordering, a variety of demand distributions and lead times, for small (3

locations) and large-sized (59 locations) networks. The approach has shown potential for tackling

other practical constraints that are regularly discussed in the literature but are difficult to optimize (e.g.

capacity constraints and multiple commodity problems) in future research.

30

Appendix	A	–	Results	parameter	tuning	

 Population size
 Solution quality (€) CPU time (s)

Network 50 100 50 100

2E3L Averagea 43.92 43.87 119.92 156.36
 %b 1.15% 1.02% 34.93% 45.54%
2E7L Average 133.31 132.09 646.00 781.75
 % 8.09% 7.10% 31.71% 38.38%
3E7L Average 108.35 108.82 841.59 947.56
 % 4.90% 5.35% 31.20% 35.13%
3E15L Average 326.97 325.74 2659.70 2909.69
 % 8.31% 7.91% 39.98% 43.74%
4E15L Average 267.37 264.72 2844.62 3817.42
 % 7.17% 6.11% 29.31% 39.33%
4E27L Average 559.20 563.56 6522.28 7036.13
 % 17.72% 18.64% 49.45% 53.34%
4E31L Average 830.46 859.62 8177.01 8373.76
 % 19.53% 23.73% 59.99% 61.43%
4E59L Average 2260.66 2793.31 12323.18 11683.36
 % 45.64% 79.95% 60.75% 57.60%
 Table A.1: Population size

Note: The highlighted cells give the best option in terms of either solution quality or CPU time.
a. The average value reports the average of the total expected cost per day in Euros (for the solution quality) or the average CPU time
in seconds (for the CPU time), specified per network and for population sizes 50 or 100.
b. For the solution quality the percentage shows the difference of the average compared to the lowest cost solution. For the CPU time
the percentage for the average compared to the highest CPU time is reported.

31

	

Table A.2: The maximum number of non-improving iterations in the local search
Note: The highlighted cells give the best option in terms of either solution quality or CPU time.
a. The average value reports the average of the total expected cost per day in Euros (for the solution quality) or the average CPU time
in seconds (for the CPU time), specified per network and for the maximum number of non-improving iterations (5 or 10).
b. For the solution quality the percentage shows the difference of the average compared to the lowest cost solution. For the CPU time
the percentage for the average compared to the highest CPU time is reported.

 Maximum number of Non-improving iterations
 Solution quality (€) CPU time (s)
Network 5 10 5 10
2E3L Averagea 43.89 43.90 124.28 152.00
 %b 1.07% 1.10% 36.19% 44.27%
2E7L Average 133.39 132.00 658.12 769.63
 % 8.16% 7.03% 32.31% 37.78%
3E7L Average 108.82 108.35 836.63 952.52
 % 5.35% 4.90% 31.02% 35.31%
3E15L Average 328.41 324.30 2740.18 2829.22
 % 8.79% 7.43% 41.19% 42.53%
4E15L Average 265.31 266.78 3073.78 3588.26
 % 6.34% 6.93% 31.67% 36.97%
4E27L Average 562.47 560.29 6775.60 6782.81
 % 18.41% 17.95% 51.37% 51.42%
4E31L Average 845.26 844.82 8219.00 8331.77
 % 21.66% 21.60% 60.30% 61.13%
4E59L Average 2449.03 2604.95 12023.05 11983.49
 % 57.77% 67.82% 59.27% 59.08%

32

	

 Maximum number of solutions to evaluate
 Solution quality (€) CPU time (s)
Network 50 200 1000 50 200 1000
2E3N Averagea 44.20 43.84 43.65 65.88 143.65 204.89
 %b 1.78% 0.96% 0.51% 19.19% 41.84% 59.67%
2E7N Average 134.74 134.43 128.93 328.07 638.57 1174.98
 % 9.25% 9.00% 4.54% 16.11% 31.35% 57.68%
3E7N Average 111.19 107.91 106.65 308.27 721.34 1654.12
 % 7.65% 4.47% 3.25% 11.43% 26.74% 61.32%
3E15N Average 340.17 324.97 313.93 1058.86 2627.72 4667.51
 % 12.69% 7.65% 3.99% 15.92% 39.50% 70.16%
4E15N Average 276.31 263.83 258.01 905.49 2386.76 6700.81
 % 10.75% 5.75% 3.41% 9.33% 24.59% 69.04%
4E27N Average 566.00 552.64 565.50 2266.31 6722.29 11349.02
 % 19.15% 16.34% 19.05% 17.18% 50.96% 86.04%
4E31N Average 853.05 840.56 841.51 3423.82 9101.23 12301.12
 % 22.79% 20.99% 21.12% 25.12% 66.77% 90.25%
4E59N Average 1892.27 2165.86 3522.84 8842.71 11533.11 15633.99
 % 21.90% 39.53% 126.95% 43.59% 56.86% 77.07%
 Table A.3: Maximum number of solution to evaluate
Note: The highlighted cells give the best option in terms of either solution quality or CPU time.
a. The average value reports the average of the total expected cost per day in Euros (for the solution quality) or the average CPU time
in seconds (for the CPU time), specified per network and for the maximum number of solutions to evaluate (50, 200 or 1000).
b. For the solution quality the percentage shows the difference of the average compared to the lowest cost solution. For the CPU time
the percentage for the average compared to the highest CPU time is reported.

33

	
 	

 Construction and Improvement Heuristics
 Solution quality (€) CPU time (s)
Network C1I1c C2I1 C2I2 C1I2 C1I1 C2I1 C2I2 C1I2
2E3L Averagea 43.78 43.66 44.08 44.05 185.78 134.25 110.02 122.50
 %b 0.82% 0.55% 1.51% 1.45% 54.11% 39.10% 32.04% 35.68%
2E7L Average 129.45 129.24 135.88 136.22 673.14 729.80 744.26 708.31
 % 4.96% 4.79% 10.18% 10.45% 33.05% 35.83% 36.54% 34.77%
3E7L Average 110.10 108.32 107.61 108.32 888.75 752.78 1095.66 841.11
 % 6.59% 4.87% 4.18% 4.87% 32.95% 27.91% 40.62% 31.18%
3E15L Average 322.50 319.72 330.40 332.81 2105.24 2141.81 3484.69 3407.05
 % 6.83% 5.91% 9.45% 10.25% 31.64% 32.19% 52.38% 51.21%
4E15L Average 265.06 269.65 265.87 263.61 2874.05 2904.23 3548.21 3997.59
 % 6.24% 8.08% 6.56% 5.66% 29.61% 29.92% 36.56% 41.19%
4E27L Average 530.83 554.18 572.95 587.57 5304.17 5321.88 7905.88 8584.89
 % 11.75% 16.66% 20.61% 23.69% 40.21% 40.35% 59.94% 65.08%
4E31L Average 778.08 780.15 869.03 952.90 7065.50 6961.91 9656.61 9417.53
 % 11.99% 12.29% 25.09% 37.16% 51.84% 51.08% 70.85% 69.09%
4E59L Average 2570.81 2535.55 2413.92 2587.67 10097.62 10104.64 13607.92 14202.90
 % 65.62% 63.35% 55.51% 66.70% 49.78% 49.81% 67.08% 70.02%

Table A.4: Construction and Improvement Heuristics
Note: The highlighted cells give the best option in terms of either solution quality or CPU time.
a. The average value reports the average of the total expected cost per day in Euros (for the solution quality) or the average CPU time in
seconds (for the CPU time), specified per network and for the combination of construction and improvement heuristics (C1I1, C2I1,
C2I2 or C1I2).
b. For the solution quality the percentage shows the difference of the average compared to the lowest cost solution. For the CPU time the
percentage for the average compared to the highest CPU time is reported.
c. C1/2 is Construction Heuristic 1 or 2; I1/2 is Improvement Heuristic 1 or 2.

34

Appendix	B	–Parameter	values	of	the	benchmark	set	

Parameter Description Values in experiments

𝐽! Number of child locations in echelon 2 for each
location in echelon 1

2

𝐽! Number of customer locations in echelon 3 for each
location in echelon 2

2, 6

𝐹!, ∀ 𝑗 ∈ 𝐽! Fill rate requirement at customer locations j at
echelon 3

90%, 99%

ℎ! , ∀ 𝑗 ∈ 𝐽! Holding cost per unit per time period for location j at
echelon 1

€0.25, €0.50

ℎ! , ∀ 𝑗 ∈ 𝐽! Holding cost per unit per time period for locations j
at echelon 2

€0.25, €0.50, €1.00

ℎ! , ∀ 𝑗 ∈ 𝐽! Holding cost per unit per time period for locations j
at echelon 3

€1.00

𝐾! , ∀ 𝑗 ∈ 𝐽! Order cost per transportation unit for locations j €25, €100

𝐿! , ∀ 𝑗 ∈ 𝐽! Lead time for location j in echelon 1 1, 3

𝐿! , ∀ 𝑗 ∈ 𝐽! Lead time for locations j in echelon 2 1, 2

𝐿! , ∀ 𝑗 ∈ 𝐽! Lead time for locations j in echelon 3 1

𝑑!
! , ∀ 𝑗 ∈ 𝐽! Demand faced by customer locations j at echelon 3

with mean (standard deviation)
10 (4, 8), 30 (12, 24)

Table B.2: Parameter values for 3-echelon networks

Parameter Description Values in experiments

J2	 Number of customer locations in echelon 2 for each
location in echelon 1

2, 6

𝐹! , ∀ 𝑗 ∈ 𝐽! Fill rate requirement at customer locations j at
echelon 2

90%, 99%

ℎ! , ∀ 𝑗 ∈ 𝐽! Holding cost per unit per time period for location j at
echelon 1

€0.25, €0.50, €0.75, €1.00

ℎ! , ∀ 𝑗 ∈ 𝐽! Holding cost per unit per time period for locations j
at echelon 2

€1.00

𝐾!, ∀ 𝑗 ∈ 𝐽! Order cost per transportation unit for locations j €25, €100

𝐿! , ∀ 𝑗 ∈ 𝐽! Lead time for location j in echelon 1 1, 3

𝐿! , ∀ 𝑗 ∈ 𝐽! Lead time for locations j in echelon 2 1

𝑑!
! , ∀ 𝑗 ∈ 𝐽! Demand faced by customer locations j at echelon 2

with mean (standard deviation)
10 (4, 8), 30 (12, 24)

 Table B.1: Parameter values for 2-echelon networks

35

 	

Parameter Description Values in experiment

𝐽! Number of child locations in echelon 2 for each
location in echelon 1

2

𝐽! Number of child locations in echelon 3 for each
location in echelon 2

2, 4

𝐽! Number of customer locations in echelon 4 for each
location in echelon 3

2, 6

𝐹!, ∀ 𝑗 ∈ 𝐽! Fill rate requirement at customer locations j at
echelon 4

90%, 99%

ℎ! , ∀ 𝑗 ∈ 𝐽! Holding cost per unit per time period for location j at
echelon 1

€0.25

ℎ! , ∀ 𝑗 ∈ 𝐽! Holding cost per unit per time period for locations j
at echelon 2

€0.25, €0.50

ℎ! , ∀ 𝑗 ∈ 𝐽! Holding cost per unit per time period for locations j
at echelon 3

€0.50, €1.00

ℎ! , ∀ 𝑗 ∈ 𝐽! Holding cost per unit per time period for locations j
at echelon 4

€1.00

𝐾! , ∀ 𝑗 ∈ 𝐽! Order cost per transportation unit for locations j €25, €100

𝐿! , ∀ 𝑗 ∈ 𝐽! Lead time for locations j 1

𝑑!
! , ∀ 𝑗 ∈ 𝐽! Demand faced by customer locations j at echelon 4

with mean (standard deviation)
10 (4 or 8), 30 (12 or 24)

Table B.3: Parameter values for 4-echelon networks

36

References
ALMEDER, C., PREUSSER, M. & HARTL, R. F. 2008. Simulation and optimization of supply

chains: alternative or complementary approaches? OR Spectrum, 31, 95-119.
AMARAN, S., SAHINIDIS, N. V., SHARDA, B. & BURY, S. J. 2016. Simulation optimization: a

review of algorithms and applications. Annals of Operations Research, 240, 351-380.
APRIL, J., GLOVER, F., KELLY, J. & LAGUNA, M. 2003. Practical introduction to simulation

optimization Winter Simulation Conference, 71-78.
AVIV, Y. & FEDERGRUEN, A. 2001. Design for postponement: A comprehensive characterization

of its benefits under unknown demand distributions. Operations Research, 49, 578-598.
AXSÄTER, S. 1990. Simple solution procedures for a class of two-echelon inventory problems.

Operations Research, 38, 64-69.
AXSÄTER, S. 2003a. Approximate optimization of a two-level distribution inventory system.

International Journal of Production Economics, 81, 545-553.
AXSÄTER, S. 2003b. Note: Optimal Policies for Serial Inventory Systems Under Fill Rate

Constraints. Management Science, 49, 247-253.
AXSÄTER, S. 2003c. Supply Chain Operations: Serial and Distribution Inventory Systems. 11, 525-

559.
AXSÄTER, S. & ROSLING, K. 1993. Notes: Installation vs. echelon stock policies for multilevel

inventory control. Management Science, 39, 1274-1280.
BASHYAM, S. & FU, M. C. 1998. Optimization of (s, S) Inventory Systems with Random Lead

Times and a Service Level Constraint. Management Science, 44, S243-S256.
BENKHEROUF, L. 1995. On an inventory model with deteriorating items and decreasing time-

varying demand and shortages. European Journal of Operational Research, 86, 293-299.
BOYACI, T. & GALLEGO, G. 2001. Serial Production/Distribution Systems Under Service

Constraints. Manufacturing & Service Operations Management, 3, 43-50.
BRÄYSY, O., PORKKA, P. P., DULLAERT, W., REPOUSSIS, P. P. & TARANTILIS, C. D. 2009.

A well-scalable metaheuristic for the fleet size and mix vehicle routing problem with time
windows. Expert Systems with Applications, 36, 8460-8475.

CAGGIANO, K. E., JACKSON, P. L., MUCKSTADT, J. A. & RAPPOLD, J. A. 2009. Efficient
computation of time-based customer service levels in a multi-item, multi-echelon supply
chain: A practical approach for inventory optimization. European Journal of Operational
Research, 199, 744-749.

CHEN, F. & KRASS, D. 2001. Inventory models with minimal service level constraints. European
Journal of Operational Research, 134, 120-140.

CHEN, F. & ZHENG, Y.-S. 1994. Lower bounds for multi-echelon stochastic inventory systems.
Management Science, 40, 1426-1443.

CHENG, F., ETTL, M., LIN, G. & YAO, D. D. 2002. Inventory-service optimization in configure-to-
order systems. Manufacturing & Service Operations Management, 4, 114-132.

CHU, Y., YOU, F., WASSICK, J. M. & AGARWAL, A. 2015. Simulation-based optimization
framework for multi-echelon inventory systems under uncertainty. Computers & Chemical
Engineering, 73, 1-16.

CLARK, A. & SCARF, H. 1960. Optimal policies for a multi-echelon inventory problem.
Management Science, 6, 475-490.

COHEN, M. A., KLEINDORFER, P. R. & LEE, H. L. 1989. Near-optimal service constrained
stocking policies for spare parts. Operations Research, 37, 104-117.

COY, S. P., GOLDEN, B. L., RUNGER, G. C. & WASIL, E. A. 2001. Using experimental design to
find effective parameter settings for heuristics. Journal of Heuristics, 7, 77-97.

DESMET, B., AGHEZZAF, E. H. & VANMAELE, H. 2010. A normal approximation model for
safety stock optimization in a two-echelon distribution system. Journal of the Operational
Research Society, 61, 156-163.

DIKS, E., DE KOK, A. & LAGODIMOS, A. 1996. Multi-echelon systems: A service measure
perspective. European Journal of Operational Research, 95, 241-263.

37

ELTAWIL, A. & ELNAHAR, G. 2007. Simulation optimization of an (s,S) inventory control system
with random demand sizes, demand arrivals, and lead times. 37th International Conference on
Computers and Industrial Engineering, 2420-2432.

FEDERGRUEN, A. & ZIPKIN, P. 1984. Approximations of dynamic, multilocation production and
inventory problems. Management Science, 30, 69-84.

FIGUEIRA, G. & ALMADA-LOBO, B. 2014. Hybrid simulation–optimization methods: A taxonomy
and discussion. Simulation Modelling Practice and Theory, 46, 118-134.

FLEISCHHACKER, A., NINH, A. & ZHAO, Y. 2015. Positioning Inventory in Clinical Trial Supply
Chains. Production and Operations Management, 24, 991-1011.

FU, M., GLOVER, F. & APRIL, J. 2005. Simulation optimization: a review, new developments, and
applications. Winters Simulation Conference.

FU, M. C. 2002. Feature Article: Optimization for simulation: Theory vs. Practice. INFORMS Journal
on Computing, 14, 192-215.

GALLEGO, G. & ÖZER, Ö. 2005. A new algorithm and a new heuristic for serial supply systems.
Operations Research Letters, 33, 349-362.

GALLEGO, G., ÖZER, Ö. & ZIPKIN, P. 2007. Bounds, heuristics, and approximations for
distribution systems. Operations Research, 55, 503-517.

GALLEGO, G. & ZIPKIN, P. 1999. Stock positioning and performance estimation in serial
production-transportation systems. Manufacturing & Service Operations Management, 1, 77-
88.

GLASSERMAN, P. & TAYUR, S. 1996. A simple approximation for a multistage capacitated
production-inventory system. Naval Research Logistics (NRL), 43, 41-58.

GLOVER, F. 1977. Heuristics for integer programming using surrogate constraints. Decision
Sciences, 8, 156-166.

GLOVER, F. 2006. What's all the commotion about scatter search and tabu search anyway? In:
REGO, C. & ALIDAEE, B. (eds.) Metaheuristic Optimization via Memory and Evolution:
Tabu Search and Scatter Search. Springer US.

GLOVER, F., KELLY, J. & LAGUNA, M. 1999. New advances for wedding optimization and
simulation. Winter Simulation Conference, 255-260.

GLOVER, F., LAGUNA, M. & MARTÍ, R. 2003. Scatter search. Advances in evolutionary
computing. Springer.

GOH, S. L., KENDALL, G. & SABAR, N. R. 2017. Improved local search approaches to solve the
post enrolment course timetabling problem. European Journal of Operational Research.

GRAVES, S. C. 1985. A multi-echelon inventory model for a repairable item with one-for-one
replenishment. Management science, 31, 1247-1256.

GRAVES, S. C. 1996. A multiechelon inventory model with fixed replenishment intervals.
Management Science, 42, 1-18.

GRAVES, S. C. & WILLEMS, S. P. 2000. Optimizing Strategic Safety Stock Placement in Supply
Chains. Manufacturing & Service Operations Management, 2, 68-83.

JALALI, H. & NIEUWENHUYSE, I. V. 2015. Simulation optimization in inventory replenishment:
a classification. IIE Transactions, 47, 1217-1235.

JUAN, A. A., FAULIN, J., GRASMAN, S. E., RABE, M. & FIGUEIRA, G. 2015. A review of
simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization
problems. Operations Research Perspectives, 2, 62-72.

KESKIN, B. B., MELOUK, S. H. & MEYER, I. L. 2010. A simulation-optimization approach for
integrated sourcing and inventory decisions. Computers & Operations Research, 37, 1648-
1661.

LAGODIMOS, A. 1992. Multi-echelon service models for inventory systems under different rationing
policies. International Journal of Production Research, 30, 939-958.

LAGUNA, M. 2014. Scatter Search. 119-141.
LAW, A. M. 2015. Simulation modeling and analysis, New York, NY :, McGraw-Hill Education.
LEE, H. L., BILLINGTON, C. & CARTER, B. 1993. Hewlett-Packard gains control of inventory and

service through design for localization. Interfaces, 23, 1-11.

38

LI, L., SOURIRAJAN, K. & KATIRCIOGLU, K. 2010. Empirical methods for two-echelon inventory
management with service level constraints based on simulation-regression. Proceedings of the
2010 Winter Simulation Conference, 1846-1859.

MARTÍ, R., LAGUNA, M. & GLOVER, F. 2006. Principles of scatter search. European Journal of
Operational Research, 169, 359-372.

MOORS, J. J. A. & STRIJBOSCH, L. W. G. 2002. Exact fill rates for (R, s, S) inventory control with
gamma distributed demand. Journal of the Operational Research Society, 53, 1268-1274.

MUCKSTADT, J. A. 1973. A model for a multi-item, multi-echelon, multi-indenture inventory
system. Management science, 20, 472-481.

MUCKSTADT, J. A. 2006. Analysis and Algorithms for Service Parts Supply Chains, Springer New
York.

ÓLAFFSON, S. & KIM, J. 2002. Simulation optimization. Winter Simulation Conference, 79-84.
ÓLAFSSON, S. 2006. Chapter 21 Metaheuristics. Handbook in OR & MS.
ÖZER, Ö. 2003. Replenishment strategies for distribution systems under advance demand

information. Management Science, 49, 255-272.
ÖZER, Ö. & XIONG, H. 2008. Stock positioning and performance estimation for distribution systems

with service constraints. IIE Transactions, 40, 1141-1157.
PATERSON, C., KIESMÜLLER, G., TEUNTER, R. & GLAZEBROOK, K. 2011. Inventory models

with lateral transshipments: A review. European Journal of Operational Research, 210, 125-
136.

PAUL, B. & RAJENDRAN, C. 2011. Rationing mechanisms and inventory control-policy parameters
for a divergent supply chain operating with lost sales and costs of review. Computers &
Operations Research, 38, 1117-1130.

PEIDRO, D., MULA, J., POLER, R. & LARIO, F.-C. 2009. Quantitative models for supply chain
planning under uncertainty: a review. The International Journal of Advanced Manufacturing
Technology, 43, 400-420.

RAVI RAVINDRAN, A. & WARSING JR., D. 2012. Supply chain engineering: models and
applications, Boca Raton, CRC Press.

RONG, Y., BULUT, Z. & SNYDER, L. V. 2012. Heuristics for Base-Stock Levels in Multi-Echelon
Distribution Networks. SSRN Electronic Journal, 1-20.

ROSENBAUM, B. 1981. Service level relationships in a multi-echelon inventory system.
Management Science, 27, 926-945.

RUSSELL, R. A. & CHIANG, W.-C. 2006. Scatter search for the vehicle routing problem with time
windows. European Journal of Operational Research, 169, 606-622.

SAETTA, S., PAOLINI, L., TIACCI, L. & ALTIOK, T. 2012. A decomposition approach for the
performance analysis of a serial multi-echelon supply chain. International Journal of
Production Research, 50, 2380-2395.

SCHNEIDER, H. & RINGUEST, J. 1990. Power approximation for computing (s,S) policies using
service level. Management Science, 36, 822-834.

SCHNEIDER, H., RINKS, D. & KELLE, P. 1995. Power approximations for a two-echelon inventory
system using service levels. Production and Operations Management, 4, 381-400.

SCHWARZ, L., DEUERMEYER, B. & BADINELLI, R. 1985. Fill-rate optimization in a one-
warehouse N-identical retailer distribution system. Management Science, 31, 488-498.

SHANG, K. H. & SONG, J.-S. 2003. Newsvendor bounds and heuristic for optimal policies in serial
supply chains. Management Science, 49, 618-638.

SHANG, K. H. & SONG, J.-S. 2006. A Closed-Form Approximation for Serial Inventory Systems and
Its Application to System Design. Manufacturing & Service Operations Management, 8, 394-
406.

SHERBROOKE, C. C. 1968. METRIC: A multi-echelon technique for recoverable item control.
Operations Research, 16, 122-141.

SILVER, E. A., NASERALDIN, H. & BISCHAK, D. P. 2009. Determining the reorder point and
order-up-to-level in a periodic review system so as to achieve a desired fill rate and a desired

39

average time between replenishments. Journal of the Operational Research Society, 60, 1244-
1253.

SILVER, E. A., PYKE, D. F. & PETERSON, R. 1998. Inventory management and production
planning and scheduling, Wiley New York.

SIMCHI-LEVI, D., SIMCHI-LEVI, E. & KAMINSKY, P. 2009. Designing and managing the supply
chain: Concepts, strategies, and cases, McGraw-Hill New York.

SIMCHI-LEVI, D. & ZHAO, Y. 2005. Safety Stock Positioning in Supply Chains with Stochastic
Lead Times. Manufacturing & Service Operations Management, 7, 295-318.

SLACK, N., CHAMBERS, S. & JOHNSTON, R. 2010. Operations management, Pearson education.
SNYDER, L. & SHEN, Z. 2011. Fundamentals of supply chain theory, Hoboken, John Wiley & Sons.
SOBEL, M. J. 2004. Fill rates of single-stage and multistage supply systems. Manufacturing &

Service Operations Management, 6, 41-52.
SWISHER, J. R., HYDEN, P. D., JACOBSON, S. H. & SCHRUBEN, L. W. 2000. A survey of

simulation optimization techniques and procedures. Proceedings of the 2000 Winter
Simulation Conference., 1, 119-128.

TALBI, E.-G. 2009. Metaheuristics: from design to implementation, John Wiley & Sons.
TEKIN, E. & SABUNCUOGLU, I. 2004. Simulation optimization: A comprehensive review on

theory and applications. IIE Transactions, 36, 1067-1081.
TSAI, S. C. & LIU, C. H. 2015. A simulation-based decision support system for a multi-echelon

inventory problem with service level constraints. Computers & Operations Research, 53, 118-
127.

TÜSHAUS, U. & WAHL, C. 1998. Inventory positioning in a two-stage distribution system with
service level constraints. Advances in Distribution Logistics. Springer.

VAN DER HEIJDEN, M. 2000. Near cost-optimal inventory control policies for divergent networks
under fill rate constraints. International Journal of Production Economics, 63, 161-179.

VAN DER HEIJDEN, M., DIKS, E. & DE KOK, A. 1997. Stock allocation in general multi-echelon
distribution systems with (R,S) order-up-to-policies. International Journal of Production
Economics, 49, 157-174.

VAN DONSELAAR, K., VAN WOENSEL, T., BROEKMEULEN, R. & FRANSOO, J. 2006.
Inventory control of perishables in supermarkets. International Journal of Production
Economics, 104, 462-472.

VAN HOUTUM, G.-J. & ZIJM, W. 2000. On the relationship between cost and service models for
general inventory systems. Statistica Neerlandica, 54, 127-147.

VOJVODIC, G., JARRAH, A. I. & MORTON, D. P. 2016. Forward thresholds for operation of
pumped-storage stations in the real-time energy market. European Journal of Operational
Research, 254, 253-268.

WATSON, N. & ZHENG, Y.-S. 2005. Decentralized serial supply chains subject to order delays and
information distortion: Exploiting real-time sales data. Manufacturing & Service Operations
Management, 7, 152-168.

