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ABSTRACT
Differences in eye movement patterns are often found when comparing passive
viewing paradigms to actively engaging in everyday tasks. Arguably,
investigations into visuomotor control should therefore be most useful when
conducted in settings that incorporate the intrinsic link between vision and
action. We present a study that compares oculomotor behaviour and hazard
reaction times across a simulated driving task and a comparable, but passive,
video-based hazard perception task. We found that participants scanned the
road less during the active driving task and fixated closer to the front of the
vehicle. Participants were also slower to detect the hazards in the driving task.
Our results suggest that the interactivity of simulated driving places increased
demand upon the visual and attention systems than simply viewing driving
movies. We offer insights into why these differences occur and explore the
possible implications of such findings within the wider context of driver
training and assessment.
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Driving is a complex visuomotor task, requiring not only on-line control of the
vehicle being driven, but also attention to the environment itself, and changes
within it; particularly given the possibility of encountering hazards. In this
study we will explore interactions between the dual tasks of driving and
being vigilant towards potential hazards. In particular we wish to explore
how the demands of driving affect visual behaviour and hazard detection
across two different driving related tasks, one active and one more passive.
Before we describe our study, we first review some literature on the potential
importance of investigating vision in the context of “action” and how this
relates to driving and hazard perception tasks.
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Visuomotor control during natural activity

During natural activity, foveal attention must be directed towards informative
areas, in both time and space, which aid task completion. It is therefore impor-
tant to understand the processes involved in this guidance of vision. Current
models of visual guidance in complex scenes are often derived from simple
tasks using static stimuli, such as picture viewing or visual search. Although
recent progress has been made in this area (e.g. Borji, Sihite, & Itti, 2011,
2014; Johnson, Sullivan, Hayhoe, & Ballard, 2014), there exist few frameworks,
computational or otherwise, that can successfully predict eye movements in
complex, dynamic and naturalistic environments, such as driving.

A standard method to model eye movement behaviour is by using movie
based paradigms which, by definition, allows dynamic information to be pre-
sented. However, it is often difficult to generalize the findings to real world
contexts. Hirose, Kennedy, and Tatler (2010) found that cuts in a movie
resulted in disruptions to both memory and eye movement behaviour com-
pared to normal scene perception. Dorr, Martinetz, Gegenfurtner, and Barth
(2010) showed that the eye movement behaviour exhibited by individuals
when viewing different movie types (stop motion, Hollywood movies and
natural movies) was rather variable and not representative of natural
viewing behaviour. These studies suggest that using movies may have
limited utility when investigating eye movement behaviour during everyday
tasks.

It has been argued that during natural activity incorporating visuomotor
control (typically when movements of the limbs are required), the role of
vision can most usefully be studied during the performance of action itself
(Land & Tatler, 2009). Oculomotor behaviour and associated action during
natural activity are intrinsically linked both temporally and spatially (e.g.
Ballard et al., 1992; Hayhoe, Shrivastava, Mruczec, & Pelz, 2003; Land,
Mennie, & Rusted, 1999). Specifically, during many tasks we see examples of
“do it where I’m looking” strategies where individuals fixate directly at the
objects being interacted with and “just in time strategies” where individuals’
gaze tends to precede the visuomotor action by around one second (Land
et al., 1999). This suggests that simply watching movies may not capture
the same visual behaviour that one would observe under more ecologically
valid circumstances, i.e. tasks which incorporate visuomotor control.

Indeed, the neural substrates involved in action control and passively
perceiving are thought to be at least partially separate (Milner & Goodale,
1995; Glover, 2004; Ungerleider & Pasternak, 2003 AQ1

¶
). Differences have been

found in oculomotor behaviour between tasks involving action versus percep-
tion. For example, Steinman (2003) reviewed a number of studies that inves-
tigated the oculomotor strategies used to complete a tapping search task,
compared with a search task where observers were asked to look at, but
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only think about, tapping the target object. The oculomotor behaviour (e.g.
gaze shift velocities, gaze shift durations, head movements) employed by indi-
viduals differed across the two tasks. Steinman (2003) argued that it was not
possible to predict the differences in visual behaviour that were found on the
basis of prior work done under less natural conditions where natural purpose-
ful action was largely restricted. More recently, differences have been demon-
strated in oculomotor strategies across more everyday tasks and their passive
viewing analogies, e.g. visual search (Foulsham, Chapman, Nasiopoulos, &
Kingstone, 2014), scene viewing (Foulsham, Walker, & Kingstone, 2011) and
social attention (Risko, Laidlaw, Freeth, Foulsham, & Kingstone, 2012). Thus,
there is a wide literature, drawing from a number of areas, suggesting that
movie based paradigms used to investigate oculomotor and hazard percep-
tion performance in driving may not accurately represent the specific goal
directed visual behaviour we would see in a more active driving environment.
We discuss this possibility below.

Visuomotor control during driving, hazard perception and the
current study

Hazard perception, the process by which drivers detect and respond to pot-
entially dangerous situations, is a crucial aspect of driving. There has been
considerable research into driving and driving skill, particularly of hazard
perception, with many studies involving participants either viewing pictures
of driving scenarios (e.g. Underwood, Humphrey, & van Loon, 2011) or
using movie viewing based paradigms (e.g. Borowsky, Oron-Gilad, Meir, &
Parmet, 2012; Chapman & Underwood, 1998; Savage, Potter, & Tatler, 2013;
Underwood, Phelps, Wright, van Loon, & Galpin, 2005). A typical experiment
involves participants watching video clips of a car driving from the perspec-
tive of the driver. The task is to press a button when the hazard is detected
and eye movements will often be tracked. Results of such studies demonstrate
that performance on hazard perception tasks is often a predictor for accident
involvement (Horswill & McKenna, 2004; Wallis & Horswill, 2007), where faster
hazard detection correlates with lower reported accident involvements. In
addition, these studies have allowed us to identify possible oculomotor strat-
egies employed by drivers of differing experience. For instance we see more
exaggerated horizontal eye scanning patterns in experts than in novice
drivers (e.g. Crundall, Chapman, Phelps, & Underwood, 2003; Crundall &
Underwood, 1998).

From what we have previously discussed, tasks that attempt to model ocu-
lomotor behaviour without incorporating visuomotor control of a vehicle may
measure something different from when participants actively control a car.
The interactivity of driving (be it real or in a simulated environment) is likely
to place more of a demand upon the visual system than when observers
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are faced with a passive movie-viewing environment. Certain locations which
need to be fixated by the driver in order to control the car successfully
become much more important in an active driving task. For example,
drivers tend to steer in the direction of their gaze (Robertshaw & Wilkie,
2008) and fixations are clustered near the focus of expansion (FoE) when
driving in a straight trajectory (Mourant & Rockwell, 1970, 1972). These fixation
patterns are less important in a movie based task. As a consequence, this may
limit the visual search for hazards that could otherwise be accomplished when
simply viewing videos. This highlights the idea that the need to look some-
where else may hinder the ability to spot a hazard. In addition, there will be
increased attentional demands in an active driving task compared to passively
viewing and we know that increasing cognitive demand limits visual scanning
when driving (Recarte & Nunes, 2002 AQ2

¶
; Savage et al., 2013). Thus the increased

attentional demands of an active driving task, compared to viewing movies,
may limit the visual search for hazards.

Here we test the hypothesis that passive viewing of driving may deliver
visual behaviour inconsistent with that found during active driving. This
was achieved by studying and comparing eye movement fixation patterns
and hazard detection when driving in a naturalistic setting that incorporates
active control of a vehicle, compared with passive movie viewing. Our aim was
to identify and quantify differences in oculomotor behaviour for a hazard per-
ception task, across the two conditions, with an environment as similar as
possible across conditions.

In the active driving condition, participants drove around a number of set
routes using a driving simulator programme and responded (using a button
press) to hazards. In the non-driving condition, participants watched a
series of video clips from the same driving software and responded to the
hazards using a button press. We recorded eye movements throughout,
using foveal fixation location as a measure of attentional deployment. We
measured how much each individual scans different locations along the
road. This measure is often correlated with experience, where a more exp-
erienced driver exhibits increased scanning (Crundall & Underwood, 1998;
Crundall et al., 2003; Falkmer & Gregersen, 2001; Underwood, Crundall, &
Chapman, 2011). We also recorded reaction times to detect hazards with a
button press (e.g. Shahar, Alberti, Clarke, & Crundall, 2010; Underwood
et al., 2005). Since distinctions have been drawn between processes of percep-
tual guidance and perceptual identification (see Godwin, Menneer, Riggs,
Cave, & Donnelly, 2015; Huestegge, Skottke, Anders, Müsseler, & Debus,
2010), we also broke this overall reaction time down into (1) latencies for indi-
viduals to fixate hazards (measured as the time of first fixation) and (2) the
latencies to verify the hazards as such (measured as the time between first fix-
ation and the button press). We expected that there would be distinct differ-
ences between the fixation locations and hazard perception performance
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between the driving and non-driving conditions, reflecting differences in
visual or attentional processing. Specifically, the lower levels of attentional
demands in the video task may (1) allow individuals to search more exten-
sively for hazards, resulting in a wider visual search pattern, and (2) result in
slower processing of hazards which would result in slower overall reaction
times. This work, to our knowledge, is the first study to measure absolute
behavioural comparison across video based driving tasks and simulated
driving tasks. This paper updates and extends our preliminary research pre-
sented in Mackenzie and Harris (2014).

Methods

Stimuli and apparatus

Driving simulation and hazards
The driving simulator software used was Driving Simulator 2011 (Excalibur
Publishing Limited, 2011). With this software, the driving environment could
be controlled and the locations of the hazards determined. The hazards
used here were fully developed obstructions on the roadway, involving
other vehicles which, under normal circumstances, would cause an approach-
ing car to slow down, stop or change direction. Specifically, drivers/viewers
would encounter a vehicle collision that had already occurred. The term
fully developed is used here to highlight that these hazards have occurred
prior to encountering them (see Figure 1). The hazards were created by re-

Figure 1. An example of a fully developed hazard. The collision has
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occurred prior to the
driver encountering the hazard and would require the driver to slow down, stop or
change position.
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programming the “Artificial Intelligence” of the other (virtual) road users so
that they would frequently collide with another road user and create an
obstruction. When encountered, individuals would need to slow down to
manoeuvre around the hazard. The onset of a hazard was defined as being
when it first became visible on-screen. Information about distance to the
hazard at this moment was not available from the software. We calculated
that, on average, the time each hazard was available to respond to did not
differ across driving and non-driving conditions.

A pilot study was conducted to confirm that these hazards could be
detected easily. Participants viewed four movies showing hazardous situ-
ations (six total hazards) and four movies showing non-hazardous situations.
When asked to detect the hazardous events by pressing a button, participants
correctly identified the hazardous situations significantly more than non-
hazardous driving situations (χ2(2, 36) = 41.17, p < .001, using chi squared).
This is unsurprising given the nature of the hazards, nevertheless this pilot
study provided evidence that the types of fully developed hazards used in
the main experiment are easy to detect and are suitable to measure individ-
uals’ hazard perception performance.

The physical properties of the vehicle such as the mass of the car, its overall
inertia, steering, brake torque etc. could be pre-programmed to mimic the feel
of driving a car in the real world. To control the car, a Thrustmaster 5 Axes RGT
Force feedback steering wheel (with left and right indicators) and pedal com-
bination was used. The vehicle was driven in a “driving on the right” traffic
environment. Participants indicated they had spotted a hazard via button
press as soon as it was noticed. For both conditions, the button was located
on the steering wheel where the participants’ right thumb would naturally
be when holding the wheel to minimize the motor effort required in order
to push. Thus, any difference in response times between the two conditions
is not likely to be accounted for by latencies in motor responses. The car
driven was fully automatic, controlled by gas pedal for acceleration and
brake pedal for deceleration. Each pedal possessed natural pedal resistance
for realism. The stimulus display monitor was a 22 inch CRT, set at a resolution
of 1280 × 1024. The virtual environment was viewed at a distance of 60 cm
for both driving and non-driving conditions (horizontal viewing angle of
38.50 deg).

Video and driving stimuli
Eight video clips were shown in the non-driving condition. They were pre-
recorded driving scenes from the driving simulator software. The scenes
were captured using FRAPS® video capturing software at a frame rate of 30
frames per second and a resolution of 1280 × 1024 (with a 5:4 monitor
aspect ratio). These videos took the form of a first person perspective driver
view of a vehicle driving around suburban and urban areas with varying
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amounts of traffic whilst adhering to the normal rules of the road i.e. by
staying within the speed limit, stopping at stop signs, etc. Four of the
course clips contained either one or two hazards (six in total). The other
four course clips contained no hazardous events.

For the driving condition, participants drove a total of eight courses,
which consisted of the same suburban and urban routes as the video con-
dition with either no traffic, light traffic or dense traffic. Four of the
courses contained either one or two hazards in the form of a collision (up
to six to detect across the four courses). The other four courses contained
no hazards. The courses used across the conditions were the same. Only
the four courses without hazards were used in the eye movement analyses
to minimize eye movement measurements associated with hazard specific
events. We sought to eliminate differences in eye movements being due
to differences in visual motion or duration across conditions. The number
of turns and distances driven were on average equivalent across driving
and non-driving conditions. Each course was driven on a single carriageway
to minimize differences in the number of lane changes made across con-
ditions. The consistency between driving and non-driving tasks limited
differences in steering performance. The average time for viewing the
video clips in the non-driving condition was 143.5 s (minimum, 103 s;
maximum 183 s). The average time for driving the courses was 151.8 s
(minimum, 61 s; maximum 240 s).

Eye movement recording
An SR Eyelink 1000 eye tracker, with tower mount apparatus (Figure 2) was
used to record eye movements, sampling at 1000 Hz. Fixations and saccades
were determined using a displacement threshold of 0.1 deg, a velocity
threshold of 30°/s and an acceleration threshold of 8000°/s2 (SR Research
Ltd, 2013). A 12 point calibration ensured that recordings had a mean
spatial error of less than 0.8 deg. A chin rest was used in this experiment,
which we acknowledge restricts naturalistic movement, however, given the
relatively small visual field, head movements were not necessary in order to
view the visual display.

During the driving task, each participant’s drive was recorded using the
FRAPS® video recording software. The temporal and spatial attributes of the
eye-movement coordinates were overlain onto these video recordings
using a MatLab sequence to produce an output .avi video that consisted of
the video and fixation location (in the form of a red dot). The programme
was coded so that this dot turned green when the participant had pressed
the button indicating they had detected the hazard. Similarly, for the non-
driving task, each participant’s eye-movement data was overlain onto the
pre-recorded videos where the eye-movements were represented as a red
dot, which turned green when the hazard was detected.
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Measures

Eye movement measures
Eye movement information (i.e. fixation coordinates) was recorded and col-
lated via SR Research Data Viewer software.

Fixation locations/Spread of attention: The standard deviations of eye
fixations across the horizontal and vertical axis (using x-axis and y-axis pixel
coordinates) were measured to provide an indicator of the spread of visual
attention. A larger standard deviation would suggest a larger distribution or
spread of visual attention.

Average y-axis fixation location: Themean y-axis fixationwasmeasured using
the mean y-axis coordinate as an indicator of how far, on average, along the
road participants fixate. Since this measure is converted from screen pixels, a
smaller y-axis fixation value would suggest that individuals are looking
higher up in the image and thus looking further ahead along the road.

Reaction times
As a measure of hazard detection performance, reaction time was measured,
using a button press, which allowed us to calculate the time between when

Figure 2. Apparatus set
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up of monitor (left), steering wheel, pedals and eye tracker.
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the hazard first appeared on the screen and when the participant pressed the
button. This was taken as a total reaction timemeasure. This total reaction time
measure was also split into two constituent time periods: the time it took to see
the hazard and the time it took to verify the hazard as a hazard. The “Time to
See” the hazard was measured from the time the hazard appeared on the
screen (the first frame the hazard was visible) to when a participant fixated
on the hazardous area. The “Time to Verify” was measured from the time that
the initial fixation occurred to when the button press was made—where the
eye movement dot would turn green on the video file. Reaction time analyses
and the judgements of the initial saccades were performedmanually, offline by
the experimenter by viewing the video files on a frame-by-frame basis and
recording the timestamps at which these events occur. All timings were calcu-
lated using Apple Quick TimeTM video player.

Participants

Thirty-four participants took part in the study (five males) with an age range of
19–31 years (mean age 22.3 years). All participants had normal or corrected-
to-normal vision and were recruited through the University of St. Andrews
SONA experiment participation scheme. They were paid £5 for participation.
All participants had held a drivers’ licence for at least one year and were
from countries where driving on the right side of the road is standard.
Driving experience did not significantly differ across conditions (mean years
since licence received, Driving task, 3.1 years [3.4 SD]; Non-driving task experi-
ence 2.6 years [1.5 SD]). The study was approved by the University of
St. Andrews University Teaching and Research Ethics Committee (UTREC).

Procedures

Driving task
Participants were instructed they would be performing a hazard perception
task whilst driving around a number of courses in a virtual environment. It
was explained that they would be detecting hazards that were fully devel-
oped, and that such a hazard was one that would cause (the driver) to slow
down or change direction in some way to avoid the hazard. The experimenter
gave a full explanation accompanied by a demonstration in how to use the
apparatus to control the vehicle in the virtual environment. Participants
were shown how to use the gas, brake, how to steer and how to use the
button press when they detected the hazard. They were also shown how to
navigate through the virtual environment whilst obeying all traffic laws as
they normally would if driving in the real world; such as stopping at red
lights, approaching slowly at closed junctions and use of indicator signals
etc. Each participant was given time for a test drive in order to use the set-
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up comfortably. Participants’ eye movements were calibrated before each
course. Participants then began to drive whilst their eye movements were
recorded. The order of the eight courses driven was randomized. Throughout
each course, the experimenter gave simple navigation instructions such as
“turn first right” or “follow the road”. These instructions were given at
least five seconds in advance of any visible hazardous situation in order for
the instruction to be fully processed before encountering the hazard. Partici-
pants pressed the button as soon as they saw a hazard. For the four courses
containing hazards, the experimenter stopped recording the eye movements
after the first or second hazardous event had occurred and the participant was
asked to stop the vehicle. There were six hazards across the four courses. For
the four courses that did not contain hazardous events, after a certain location
(known by the experiment) was reached in the drive, the experimenter
stopped recording eye movements and asked the participant to stop the
vehicle. The experiment lasted one hour.

Non-driving task
Participants were instructed that they would be performing a hazard percep-
tion task where they would be watching a series of video clips of driving situ-
ations and would press the button on the steering wheel when they
detected a hazardous event. The same definition of a fully developed
hazard was given as that used for the active task. Eye movements were cali-
brated before each video. Participants were instructed to watch the video as
if they were the driver. Although participants were instructed to view the
clips as if they were a driver, we were unable to measure if this was what
they did, since they were not instructed to commentate or report on the
clips. Participants viewed the eight video clips, presented in a randomized
order, whilst their eye movements were tracked. They were asked to press
the button as soon as they saw a hazard. Four of the courses contained
six hazards, each ending a short time after the first or second hazardous
event occurred. The four non-hazardous courses were terminated at the
same section of course as in the active driving condition. The experiment
lasted one hour.

Design

For the eye movement and hazard perception performance analyses, the
independent variable being manipulated was condition (Driving and Non-
driving conditions). This is a between subjects variable where participants
took part in either the Driving (n = 17) or Non-driving (n = 17) condition.
Between subjects t-tests were used to determine significant differences in
eye movement and reaction time measures.
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Results

Here we report the eyemovement measures recorded, which included the dis-
tribution of fixations and average vertical position of fixations. All eye move-
ment data were processed and coded using SR Research Data Viewer. We
also report the total hazard detection reaction times, which include both the
Time to See the hazard and Time to Verify the hazards. All reaction time
data was manually coded by viewing the recorded video files on a frame-by-
frame basis and recording the event related timestamps. Response accuracy
was also analysed. However, likely given the nature of the attention capturing
hazards, this was high in both conditions (driving mean = [87.8], SD = [16.1];
non driving mean = [94.1], SD = [11.6]) and did not differ between the two
conditions (t(32) = 1.3, p = .2). Therefore we focused on eye movement and
reaction time measures as planned.

Eye movement analyses

In our eye-movement analyses we considered eye movements from only
the four courses that did not contain hazards, to avoid hazard specific arte-
facts. Data were averaged and collapsed across the four courses. The
specific area of interest is that of the roadway (see Figure 3) which excludes
vehicle specific areas such as rear-view mirrors, wing mirrors and speed-
ometer. We compared each measure across driving and non-driving
conditions.

Figure 3. Illustration
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of the visual area of interest (roadway) highlighted in yellow. Screen
dimensions: 1280 × 1024 pixels (41.9 × 33.4 cm; 38.5 × 31.1 deg). Interest area dimen-
sions: 1280 × 266 pixels (41.9 × 8.7 cm; 38.5 × 8.3 deg).
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Allocation of visual attention
First, to investigate road scanning behaviour we measured the standard devi-
ations of the x-axis and y-axis fixation locations within the roadway field of
interest illustrated by Figure 3. A larger standard deviation of the distribution
of fixation locations would equate to a larger spread in visual attention;
suggesting increased scanning of the road. Second, to investigate how far,
on average, along the road participants fixated, we measured the mean
y-axis fixation. This was measured as an angle (degrees), from the top of
the screen (0 deg) to the bottom (31.1deg). A larger value then equates to
individuals looking lower down in the display and thus closer to the front
of the vehicle. We initially represent the distribution of fixation locations for
both driving and non-driving conditions in the form of density heatmaps
(Figures 4(a) and 4(b), respectively).

The distribution of fixations was larger for both the horizontal and vertical
directions for the non-driving condition (Figures 5(a) and 5(b), respectively)
and fixations tended to be located higher (smaller angle) in the non-driving
condition (Figure 5(c)). Between-subjects t-tests (for mean horizontal and ver-
tical standard deviations and for mean y-axis position) were conducted to
identify any significant differences across driving and non-driving conditions.
There was a significant effect of driving condition for the standard deviations
of fixations in the horizontal direction (t(32) = 4.29, p < .001) and vertical direc-
tion (t(32) = 3.19, p = .001) and for the mean y-axis position (t(32) = 7.48,
p < .001) after Bonferonni correction.

Although absolute effect sizes may be modest, it is important to note
that several metres of the simulated roadway will correspond to a relatively
small visual angle. It was not possible to accurately calculate the absolute
distances along the road because we did not have “ground truth”
information concerning the simulated depth distances and dimensions of
the road.

Figure 4. Prototypical examples of individual participant density
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heat maps showing the
distribution of fixations for the (a) Driving and (b) Non-driving conditions.
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Reaction time data

Overall reaction times
We measured the reaction times to detect the hazards using the button press.
This reaction time was taken as the latency from the first frame of the video
when the hazard appeared to when individuals pressed the button. Overall,
mean reaction time for the driving condition was 5.6 s (0.7 SEM) and was
4.0 s (0.4 SEM) for the non-driving condition. Between-subjects t-tests were
conducted to identify any significant difference between the driving and
non-driving groups. There was a significant difference in overall reaction
time (t(32) = 2.0, p = .042) demonstrating those in the driving task responded
slower than those in the non-driving task.

Breaking down the effect of the driving condition on reaction times
We propose two possible hypotheses for this increased latency for participants
to respond to hazards in the driving condition. The first is the idea that there is a
longer latency in seeing the hazard. That is, participants do not fixate as quickly
when driving. Alternatively, the latency may be the result of a processing, or ver-
ification issue, in that participants successfully fixate the hazard but it takes
longer to acknowledge the hazard. Indeed, it may be possible that both of
these factors result in the longer latencies we observe.

As described in the Methods section, we can measure the average time it
takes to see (Time to See) the hazards by calculating the time between when
the hazard first appears to when participants first fixate on or near the hazard.
And we can infer processing time (Time to Verify) from measuring the time
from the initial fixation to when participants responded using the button
press. Figure 6 shows these measures plotted for the two conditions. If
either the Time to See or Time to Verify accounts for the reaction time
latency across the tasks, we should expect to see a statistical interaction
between these two timing measures and the two driving conditions.

Figure 5. Mean standard deviations of (a) horizontal fixations, (b) vertical fixations, and
(c) mean y-axis fixation location across driving and non-driving conditions. Error bars
show standard error of the mean.
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Using driving condition (driving and non-driving) and timing measure
(Time to See and Time to Verify) as independent variables, a mixed measures
ANOVA showed that there was no significant interaction between these vari-
ables (F < 1) (see Figure 6). We can infer that both the Time to See the hazard
and the Time to Verify the hazard contribute to the increased latency to
respond to the hazard in the driving task.

Discussion

Current models of visual guidance in complex scenes are often derived from
relatively simple tasks using stimuli that do not represent a naturalistic setting.
Our primary aim was to measure, under controlled conditions, whether there
were any differences in eye movement behaviour and hazard detection times
between active driving and non-driving conditions. Underwood et al. (2011) AQ3

¶presented research comparing visual behaviours between different driving
experience groups across video-based, simulated and real-life driving. They
suggested that differences in visual behaviour between experience groups
are similar across these methods of analyses (video, simulated and real
driving). For example, inexperienced drivers may scan the roadway less
than experienced drivers across both video and active driving tasks (see
Underwood, Chapman, Bowden, & Crundall, 2002). These similarities
provide relative validity across tasks; where similar patterns of behaviour
can be observed across different testing conditions (see Godley, Triggs, &
Fildes, 2002). Relative validity is important, particularly if we are able to differ-
entiate between safe and non-safe drivers using these methods. However,
absolute measures, for example, exactly how much less inexperienced
drivers scan than experienced drivers, may differ across video and active
tasks. Such absolute comparisons of behaviour can only be made across

Figure 6. The interaction of the average time taken to see and verify the hazard. Error
bars show standard error of the means.
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driving methods if stimuli and environments are as similar as possible. In this
current experiment, we used video recordings of the driving simulator
environment for the non-driving condition, making the stimuli the same
across conditions. We therefore provide, to our knowledge, the first study
that measures absolute behavioural comparison across video based non-
driving and driving conditions. In line with our predictions, we found some
differences in the tasks measured, each of which we discuss below. We
discuss the main eye movement and reaction time findings separately and
offer possible explanations for the results before describing how these
results contribute to our current understanding of driving and more generally,
to models of eye movement behaviour during everyday tasks.

Eye movement behaviour

We found a number of visual behaviour differences across driving and non-
driving tasks. Overall, individuals searched less of the road with their eyes
(both side to side and up and down) when performing the driving task
than the non-driving task; as indicated by the smaller distribution of fixations
across both the horizontal and vertical planes (see Figure 5). We suggest that
this may be due to the increased demand placed upon on the vision and
attention systems by the interactive nature of the driving task. Certain areas
of the environment are likely more informative to an active driver than a
passive viewer in order to successfully navigate the environment, and thus
drivers may dedicate fewer resources to generally scanning the roadway in
an active task. Specific locations within the scene may be important when
driving. The focus of expansion (FoE) is the apparent point from which
motion vectors flow, and normally corresponds to the direction of heading
(Gibson, 1979; Warren, Kay, Zosh, Duchon, & Sahuc, 2001). Some research
suggests that the area on or near the FoE is typically favoured by drivers
(Mourant & Rockwell, 1972; Underwood, Chapman, Brockelhurtst, Under-
wood, & Crundall, 2003), because it provides information to the driver
about vehicle direction. More recently though, gaze has been found to be
directed towards points in space you wish to pass (Robertshaw & Wilkie,
2008; Wilkie, Kountouriotis, Merat, & Wann, 2010; Wong & Huang, 2013) typi-
cally around several seconds before the vehicle reaches the gaze point (Land,
2006; Underwood, 2007). For locomotor steering, a number of different
sources of information, as described by Kountouriotis et al. (2013), are
thought to influence control. These include visual direction (Rushton, Harris,
Lloyd, & Wann, 1998), the lane splay angle (Li & Chen, 2010) and the visual
appearance of lane markers (Wallis, Chatziastros, & Bültgoff, 2002). What is
important here is the idea that these sources of information allow successful
control and guidance through the driving environment and are therefore
useful only for an active driving task. If we are not actively controlling the
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vehicle, there is little need to fixate on or near these sources of information,
because direction information is less critical when not actively controlling
the vehicle through an environment. It is possible that observers can dedicate
eye movements to searching the environment more exhaustively for hazards
during a non-driving task. Such a hypothesis could explain the difference
between conditions for the distribution of fixation locations presented here
(Figure 5).

Other cognitive factors could also have influenced the pattern of results
here. There is likely to be a cognitive load imbalance across the driving and
non-driving tasks. Specifically, the driving task required allocation of atten-
tional resources to drive, including steering, braking and lane positioning.
We know that, for driving based tasks, increases in task demands results in
a decrease in scanning behaviour (Recarte & Nunes, 2003; Savage et al.,
2013). Thus it is likely that the increase in cognitive demand when performing
the active driving task here could reduce the range of scanning behaviour.

There is also a possibility that the observed scanning differences in eyemove-
ments was simply due to less visual motion in one condition relative to the other.
This is unlikely becauseof ourdesign. For the eyemovement analyses, eachof the
four courses driven and viewed were identical across conditions and contained
the same number of turns with no differences in the number of lane changes
across conditions. On average the activedriving conditionwas indeed completed
slower than the non-driving task,where analyses found ameandifference of 8.3 s
(refer to Methods). One could argue that driving slower in the active condition
than the driving speed in the video condition could deliver different visual
motion across the conditions. However on average, the 8.3 s difference was
around 5% of the total drive—a proportion which is likely not large enough to
induce large differences in visual motion processing.

We also found individuals tended to fixate closer to the front of the vehicle,
and thus less far ahead along the road, in the active driving condition than the
non-driving condition. This could be due to different use of information (e.g.
to maintain lane position in the driving condition) or it could reflect biases in
the non-driving condition. For example, it is well known that static scenes
framed in a display monitor typically elicit a bias to fixate the centre of the
image, regardless of content (Tatler, 2007; Vincent, Baddeley, Correani, Tros-
cianko, & Leonards, 2009). The same eye movement behaviour is also seen
in movie viewing paradigms (Cristino & Baddeley, 2009). If our data for the
non-driving condition reflects this bias, it could be argued that the interactiv-
ity of the visuomotor task allows the visual system to override this phenom-
enon and allows visual attention to be allocated towards more task relevant
information.

Together, these differences in fixation patterns provide evidence to
suggest that less naturalistic settings do not fully capture important subtleties
about where gaze is deployed during natural tasks. This could be because
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non-active tasks do not elicit the same specific goal directed visual behaviour
seen during more natural tasks where visuomotor control is incorporated. We
propose that the different fixation patterns described here provide support for
the claim that studying vision under the most naturalistic conditions delivers a
different pattern of visual behaviour than for less naturalistic conditions.

Hazard perception

From the results obtained in this experiment, it is clear that individuals are
faster at detecting hazardous situations when taking part in a non-driving
hazard perception task than when driving. We found that people are
around 1–1.5 seconds slower to respond to the hazards in the driving task
than the non-driving task. One could argue that differences in reaction
times between conditions are due to a delayed motor response in the
active task since the button must be pushed whilst also driving. Our set-up
was designed to reduce this possibility, with the response button located
where the right thumb would naturally be when holding the wheel. We
propose two explanations to explain the increased latency. First we have
identified that individuals scan the roadway less in an active driving task
and look closer to the vehicle (Figure 5). Drivers may be slower to identify
the hazards because of this more impoverished search. The second idea
relates to the problem of cognitive load. The multiple procedures in driving
are comparable to dual tasking; that is, performing two or more activities con-
currently. When dual-tasking, attentional limitations occur where cognitive
demand is high and, as a result, task performance is poorer, particularly on
a secondary task (e.g. Pashler, 1998; Moors & De Houwer, 2006; Sala, Baddeley,
Papagno, & Spinnler, 1995). We may therefore expect to observe longer pro-
cessing times in the driving task. We found that the time to first fixate the
hazards and the time to verify the hazards were both longer when driving
(Figure 6), thus providing evidence for both explanations.

In sum, we show here that the need to fixate at locations related to control-
ling the vehicle may infringe one’s ability to see a hazard. In addition, we found
that the increased attentional demands seem to influence processing time of
the hazards; where an increase in processing demand reduces the ability to
respond to the hazard as fast. These reaction time findings again provide
support for the idea that video-based methods of investigating driving behav-
iour are of limited utility, because they do not predict the slower reaction times
that we find when participants are engaged in an active driving task.

Implications of our work

We have identified not only performance differences across video and simu-
lated tasks but also possible performance deficiencies in oculomotor behaviour
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and hazard perception while participants undertake the active driving task
(i.e. less scanning, slower reaction times). This may have implications for
assessment and training methods used in driving and particularly in hazard
perception. If the scanning behaviour we see in a video-based non-driving
task over-estimates how much an individual would scan the road when
driving, then training of scanning behaviour may be more appropriate in a
setting that incorporates both the visual and driving demands of the tasks.
Encouragingly, such naturalistic approaches have been used to investigate
eye movement control and it’s relation to improved driving (e.g. Chapman,
Underwood, & Roberts, 2002; Pollatsek, Narayanaan, Pradhan, & Fisher,
2006; Rusch et al., 2013).

We have shown that when actively engaged in a driving hazard perception
task we are slower to detect hazards than if searching for them as a standa-
lone task. If we assume this is partly due to the increase in cognitive load
associated with driving the vehicle, then this may have implications for atten-
tion in real life driving. Investigations into the causes of road accidents
suggest that inattention related accidents make up a large proportion of
cases (Chan, Pradhan, Pollatsek, Knodler, & Fisher, 2010; Underwood, 2007;
Underwood et al., 2003). When investigating hazard perception, studies
which do not include driving are removing one of the aspects of driving
which relates to accident involvement—that of divided attention. Perform-
ance on complicated cognitive tasks improves with practice where actions
become more automated requiring less conscious intervention (Moors & De
Houwer, 2006; Underwood & Everatt, 1996). One may therefore argue that
when investigating hazard perception and how it can be trained, training
that includes performing the tasks of driving and hazard perception together
could be more effective.

Conclusions

Here we sought to compare driving and non-driving conditions while per-
forming a hazard perception task to make an absolute comparison between
the two kinds of task. We used videos recorded from the driving environment
for the non-driving condition, making the stimuli the same across conditions.
We have identified a number of visual and behavioural differences across
these two typical driving experimental methods and conclude that the inter-
activity of simulated driving places more of a demand upon the visual and
attentional systems than simply viewing first-person-view driving movies.
We have shown therefore, that video based methods do not always provide
a valid proxy for active driving and, thus, the generation of models of eye gui-
dance should ideally originate from more naturalistic methods (e.g. Borji,
Sihite, & Itti, 2014; Johnson et al., 2014). The differences found also potentially
highlight the need to train and assess driving behaviour under more naturally
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ecologically valid conditions where individuals are engaged in an active
driving task.
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