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Abstract

The metabolic health benefits of fermented milks have already been investigated using clini-

cal biomarkers but the development of transcriptomic analytics in blood offers an alternative

approach that may help to sensitively characterise such effects. We aimed to assess the

effects of probiotic yoghurt intake, compared to non-fermented, acidified milk intake, on clini-

cal biomarkers and gene expression in peripheral blood. To this end, a randomised, cross-

over study was conducted in fourteen healthy, young men to test the two dairy products.

For a subset of seven subjects, RNA sequencing was used to measure gene expression in

blood collected during postprandial tests and after two weeks daily intake. We found that

the postprandial response in insulin was different for probiotic yoghurt as compared to that

of acidified milk. Moreover changes in several clinical biomarkers were associated with

changes in the expression of genes representing six metabolic genesets. Assessment of

the postprandial effects of each dairy product on gene expression by geneset enrichment

analysis revealed significant, similar modulation of inflammatory and glycolytic genes after

both probiotic yoghurt and acidified milk intake, although distinct kinetic characteristics of

the modulation differentiated the dairy products. The aryl hydrocarbon receptor was a major

contributor to the down-regulation of the inflammatory genesets and was also positively

associated with changes in circulating insulin at 2h after yoghurt intake (p = 0.05). Daily

intake of the dairy products showed little effect on the fasting blood transcriptome. Probiotic

yoghurt and acidified milk appear to affect similar gene pathways during the postprandial

phase but differences in the timing and the extent of this modulation may lead to different

physiological consequences. The functional relevance of these differences in gene expres-

sion is supported by their associations with circulating biomarkers.
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Introduction

Fermentation is a widely used method for processing dairy milk that results in the transforma-

tion of the milk by the action of lactic acid bacteria. The changes that accompany milk fermen-

tation include nutrient, chemical and physical modifications of the milk matrix. Lactic acid

bacteria are used for milk fermentation for their capacity to metabolise lactose and galactose to

lactic acid [1], but their actions during fermentation extend beyond carbohydrate metabolism

with important consequences for the amino acid, mineral and vitamin composition of the

milk [2]. In addition, some lactic bacteria affect the microbiota of the consumer as they are

probiotics, live microorganisms that when consumed in adequate quantities, provide a health

benefit to the host [3]. Thus the many health benefits that have been described for fermented

milks may be attributed to the effects of the fermentation-specific changes of the milk on diges-

tion and metabolism, and/or the interactions of the bacterial strains with the gut microbiota

[4]. The most established effect of milk fermentation on metabolism is in the specific case of

lactose metabolism in populations that do not have the genotype for lactase persistence; the

prior hydrolysis of lactose during the fermentation process promotes the digestibility of dairy

products [5, 6]. The wider consequences of milk fermentation on host metabolism have also

been investigated; in postprandial studies differential effects of fermented compared to non-

fermented dairy milks have been observed for glycemia and insulinemia [7] as well as lipide-

mia [8] and protein flux [9]. Calcium bioavailability has been investigated in dairy products

but does not appear to depend upon milk fermentation [10, 11]. The health benefits of fer-

mented dairy intake are not limited to effects on postprandial metabolism; the daily intake of

fermented dairy foods (in particular those containing probiotic bacteria) has been associated

with lowering lipid parameters [12], regulation of glycemia [13–16] and a reduction in circu-

lating parameters of inflammation [17–21].

Whilst many studies have sought to investigate the impact of diet on individual metabolic

pathways, the emerging field of ‘nutrigenomics’ has increasingly been applied to study the

interplay between genes, diet, metabolites and dietary consequences in health and disease [22].

Due to the development of high-throughput technologies, whole blood transcriptomics can

offer a rapid, relatively non-invasive approach to study the changes in gene expression in

blood that take place in response to dietary intake. Indeed, in the recent work of Petrov et al,
the value of using whole blood to identify transcript-based biomarkers of nutritional status

and metabolic health was demonstrated [23]. Transcriptomic analysis, like other ‘-omic’

approaches, facilitates a broader analysis than classical blood biomarkers that focus on a lim-

ited selection of surrogate markers of metabolism. Of note, the blood transcriptome has been

shown to reflect gene expression in other tissues and thus may capture the wider consequences

of diet on the body [24]. Furthermore, in the recent work of Bartel et al., the fasting whole

blood transcriptome was closely associated with the fasting circulating metabolome and

implied metabolic processes [25]. The relevance of nutrient-gene interactions for dairy

research has already been identified and explored in human trials [18, 26]. Notably, Sagaya

et al. compared the acute intake of yoghurt and of a non-fermented, acidified milk on gene

expression of blood cells, and reported broadly similar effects for the two dairy products,

including the modulation of inflammatory processes [26]. Conversely, a specific role for probi-

otic bacteria added to yoghurt on gene expression of the inflammatory related gene, RAR-

related orphan receptor gamma, was suggested by Zarrati et al. [18] in a study that compared

standard yoghurt with probiotic yoghurt.

The analysis of transcriptome changes in blood to assess the acute impact of dietary intake

can be considered as a type of in vivo cellular experiment that is characterised by a change in

nutrient composition of the media (serum) in which the cell (blood cells) are active and the
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response of the cells to this change is measured. In contrast to the classical in vitro cellular

experiment, the human model reflects the true dynamics of nutrient digestion in the gastroin-

testinal tract, including the complex interactions with the gut microbiota, transport and pro-

cessing by the intestinal cells and metabolism by the liver, before the active metabolites act

upon the blood cells.

This approach could thus support understanding of how the intake of fermented dairy

foods, especially those containing probiotic strains, can affect metabolism and physiological

processes that may play a role in the health qualities associated with these foods. In this study,

we use whole blood transcriptomics together with classical circulating biomarkers to explore

in an in vivo human model the postprandial and short-term effects of probiotic yoghurt com-

pared to non-fermented, acidified milk.

Materials and methods

Ethics statement

All procedures were completed in accordance with the ethical standards of the responsible

committee on human experimentation and with the guidelines laid down in the Helsinki Dec-

laration. Ethical approval for the study was received from the regional committee for human

experimentation (approval number: 392/13, Vaud, Switzerland) and written informed consent

obtained from all participants. This trial was retrospectively registered at clinicaltrial.gov on

July 21, 2014 (registration number: NCT02230345).

Subjects

Participants in the study were healthy, young men with a mean (±SEM) age of 24.6 ± 4.7 years

and mean (±SEM) BMI of 21.8 ± 1.8 kg/m2 recruited from the Lausanne region by poster cam-

paign. Exclusion criteria included dietary intolerances, abnormal clinical biochemistry, acute

or chronic illness, use of medication, and use of antibiotics in the six months prior to start of

the study. One subject was excluded post hoc, following analysis of the microbiota samples of

the study [21], thus clinical biochemistry, inflammatory parameters and appetite sensations

were assessed for the thirteen remaining subjects. Gene expression was assessed in whole

blood samples from a subset of seven subjects as this sample size has previously been shown to

be adequate to obtain significant and physiologically meaningful postprandial results in a

study that used lower caloric doses of dairy products [26].

Study design

A randomised, double blind, crossover study design was used to evaluate effects of two dairy

products, probiotic yoghurt and acidified milk, as described previously [21] (Fig 1A). The

effect of a single intake of the assigned dairy product (800 g) was assessed by a postprandial

test (D1 and D2). Each postprandial test was completed after an overnight fast and required

participants to consume the designated dairy product within a period of 15 min. Venous blood

sampling was completed in the fasting state and during the six-hour postprandial period fol-

lowing dairy intake. No intake except ad libitum water intake was permitted during the post-

prandial test. Blood sampling was completed for assessment of clinical biochemistry and

inflammatory parameters as well as for transcriptome analysis (Fig 1B, full study design

reported in Burton et al., 2017 [21]). A visual analogue scale questionnaire (adapted from Flint

et al., 2000 [27], S1 Table) was completed by the subjects during the postprandial tests (0, 0.5,

1, 1.5, 2, 4 and 6 h) to assess hunger, satiety, prospective food consumption, appetite and sub-

jective state of ease. The questionnaire required a response to six questions that was indicated
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on a 100 mm single line scale within the Adaptive Visual Analogue Scale program [28]. The

postprandial test initiated the short-term administration phase of the study that comprised the

bi-daily intake of the assigned dairy product over two weeks (2 x 200 g/d). The effect of this

short-term intervention was assessed by fasting sampling (Fasting 1 and 2). Run-in and wash-

out phases that included dietary restrictions (as detailed previously [21]) and fixed volumes of

normal (non-acidified) milk (400 ml/d), preceded and separated the two exposures. All clinical

test days of the study were carried out at the Centre of Clinical Research, University Hospital

of Lausanne.

Fig 1. Overview of crossover study design (adapted from Burton et al., 2017 [21]). A. Probiotic yoghurt and acidified milk were consumed during two test

phases. Postprandial dairy tests (D1 and D2) were completed at the beginning of each test phase and fasting tests were completed after two weeks intake of each

product (Fasting 1 and 2). Run-in and wash-out periods respectively preceded and followed the two test phases. Three-day controlled diets were provided prior to

all test days and dairy intake was restricted during all study phases. B. Blood sampling on D1 and D2 assessed metabolic, inflammatory and gene expression

changes in the six-hour period following dairy intake. All parameters were assessed for the fasting tests. Abbreviations: HOMA, homeostatic model assessment;

NEFA, non-esterified fatty acids; hsCRP, high sensitivity C-reactive protein; LPS, lipopolysaccharide; CCL2, chemokine ligand 2; CCL5, chemokine ligand 5; IL6,

interleukin 6; TNFα, tumor necrosis factor alpha.

https://doi.org/10.1371/journal.pone.0192947.g001
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Dairy products. All dairy products used in the study were sourced from a single batch of

full fat (3.5%) provided by Emmi AG, Luzern. The two test products were a probiotic yoghurt

and a milk, acidified by the addition of D-(+)-glucono-delta-lactone (2%) to replicate the phys-

ical and chemical characteristics of the yoghurt. The probiotic yoghurt was fermented by Lac-
tobacillus delbrueckii spp. bulgaricus and Streptococcus thermophilus (Thermophilic Yoflex1

culture, CHR Hansen, Denmark), and Lactobacillus rhamnosus GG (LGG) (ATCC 53103- Cul-

ture Collection of the University of Goteborg, Sweden, ref. CCUG 34291), (full nutrient com-

position and methods have been reported previously [21]).

Sampling

Serum, plasma and whole blood Paxgene1 samples were collected for each postprandial dairy

test (fasted and postprandial) and after each chronic exposure (fasted) (Fig 1B). Postprandial

whole blood samples were collected at three selected time points per postprandial dairy test (2,

4 and 6 h), while serum and plasma were collected at nine time points postprandially [21].

Metabolic biomarkers (glucose, insulin, triglycerides, cholesterol profile, non-esterified fatty

acids) and inflammatory biomarkers (high sensitivity C-reactive protein (hsCRP), lipopolysac-

charide (LPS), chemokine ligand 2 (CCL2), chemokine ligand 5 (CCL5), interleukin 6 (IL6),

tumor necrosis factor alpha (TNFα)) were analysed in plasma and assayed as described previ-

ously [21].

RNA processing

RNA was extracted from whole blood PAXgene1 samples using the “PAXgene1 Blood

miRNA kit” (Qiagen1 EmbH, Germany) as per manufacturer’s protocol. Quantification

and quality control assessments were completed using the Nanodrop™ 1000 (Thermo Scien-

tific, USA) and the Fragment analyzer™ instrument (Advanced Analytical1 Technologies).

For downstream analyses, samples were required to meet quality criteria of A260/A280

ratio > 1.8 and RQN > 8.0. To remove detected impurities, a standard ethanol purification

protocol was applied to all samples: 10 μl 3 M sodium acetate (pH 5.2) (Millipore™, USA),

2 μl of 5 mg/ml glycogen (Ambion1, Life Technologies, USA) and 300 μl of 99% ethanol

were added to each 100 μl samples (dilution of samples with RNAse-free water) prior to vor-

tex and incubation at -80˚C for 2 h. Samples were centrifuged and the pellet washed with

70% ethanol before resuspension in 10 μl RNAse-free water. Libraries were prepared using

the TruSeq1 Stranded Total RNA Library Prep Kit with Ribo-Zero Globin Set A and B (Illu-

mina1, USA) with multiplexing of six samples per lane. Next generation sequencing was

performed on the samples using the Illumina1 HiSeq™ 2500. Base calling was completed

using Real Time Analysis software (v1.18.6) (Illumina1). Library preparation and sequenc-

ing were performed at the Lausanne Genomic Technology Facility (UNIL, Lausanne). The

raw and processed RNA data generated from this study have been deposited in NCBI’s Gene

Expression Omnibus [29] (GEO Series accession number GSE98645): https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE98645

Statistical methods

Clinical biomarkers and appetite sensations questionnaire. The postprandial response

to each dairy product was evaluated with clinical biochemistry, inflammatory and appetite

parameters by linear calculation of the incremental area under the curve (MESS package,

v0.3–2 [30]). The postprandial responses were compared using the Wilcoxon signed-rank test

(paired). Carryover effects were assessed using a pre-test as described by Welleck and Blettner
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[31]. Significant effects were considered if p� 0.05. All clinical data analysis was completed in

R (v3.2.4) [32].

Processing of gene expression data. Sequencing data quality was assessed using FastQC

(v0.11.4) [33]. Sequences were mapped to the Human Genome (version Hsapiens GRCh37)

using the bcBio-nextgen pipeline (v0.9.6a), applying cutadapt (v1.9.1) [34], aligning reads with

STAR (v2.5.0c) [35], and counting sequences per gene with featureCount (v1.4.4) [36]. Non

protein-coding genes and genes with no assigned counts were removed prior to normalisation.

The edgeR package (v3.12.1) [37] was used to calculate normalisation factors for the scaling of

raw library sizes applying the ‘TMM’ method that uses the weighted trimmed means of log-

ratios (with respect to the reference) [38]. These factors were then used to normalise the data

by the voom function [39] (Limma package, v3.26.9 [40]). This process of normalisation was

completed in two steps: firstly, for the purpose of identifying genes with low counts (all genes

with a mean expression of less than zero after normalisation were removed), secondly, the raw

counts were normalised for the dataset with these low count genes excluded. Ensembl IDs

were converted to gene symbols using BioMart (v2.26.1, Ensembl Genes 86, Dataset version

GRCh37.p13) [41, 42]. The composition of the three main white blood cell types was estimated

using CellMix package (v1.6) [43] that applies a deconvolution method using gene expression

profiles of blood cell types [44].

Gene expression analyses. All gene expression data analysis was completed in R (v3.2.5)

[32]. Data exploration was carried out using principal components analysis and hierarchical

cluster analysis. Inter-individual variation was detected in this analysis and the methods used

for the gene expression analyses were specifically chosen to account for this effect. The post-

prandial response was thus assessed by calculating, for each subject and each dairy test, the dif-

ference in the gene expression profile of the three postprandial measures (2, 4, and 6 h) and

the gene expression profile for the corresponding fasting sample, prior to completing correla-

tion or differential analyses [45]. Similarly the short-term effects were assessed by first calculat-

ing the difference in fasting gene expression profiles comparing pre- and post-dairy exposures

for each subject.

Gene expression analyses: Correlation analysis with clinical biomarkers. To assess the

relationship between postprandial gene expression in whole blood and the circulating clinical

biomarkers (metabolic and inflammatory biomarkers) Spearman’s rank correlation test was

used. For each of the three postprandial time points (2, 4, and 6 h), the delta change of the clin-

ical biomarkers (with respect to fasted time, 0 h) was correlated with the respective change in

gene expression for each gene assessed. Analyses were only completed for clinical biomarkers

that showed a significant response at the selected time point compared to fasting assessment

for both dairy products (pooled). This was evaluated by the one-sided Wilcoxon-test. For each

correlation analysis, genes were ordered by Spearman’s rank coefficient (rho) and geneset

enrichment analysis (GSEA) [46] was carried out for the ‘metabolic’ subset of genesets defined

in the Hallmark human reference geneset collection (mSigDB, Broad Institute, v5) [47]. The

GSEA method aligns a ranked list of genes to a reference geneset and then calculates an

‘enrichment score’ (ES) using a weighted Kolmogorov Smirnov test to assess the difference in

distribution of the reference geneset within the ranked gene list compared to the expected dis-

tribution of the geneset if it were uniformly distributed within the list. A ‘normalised’ enrich-

ment score (NES) is calculated to correct for differences in number of genes within each

geneset. Significance of the enrichment is assessed by comparison to the ES obtained by ran-

dom permutation of the ranked gene list, with adjustment for multiple comparisons using the

false discovery rate method (padj) [48]. In our study 100,000 iterations were carried out for

each comparison.
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Gene expression analyses: Differential analysis. Differential analysis was carried out

using Limma (v3.26.9 [40]) with empirical Bayes moderation of variance to identify genes that

showed a postprandial response during the 6 h following the intake of either dairy product and

genes that were modulated by the short-term (two weeks) daily intake of the dairy products.

The analysis was completed separately for each dairy product and was also applied to detect

differences in the effects of the two dairy products on gene expression. In addition, the stability

of gene expression was explored by completing differential analysis to compare the two fasting

measurements obtained on the dairy postprandial test (D1 and D2, Fig 1). Inter-individual

variation was further controlled for by using the blocking feature within Limma where appro-

priate. False discovery rate was applied to correct for multiple testing [48]. Further hierarchical

analysis using Euclidean distance and Ward’s criterion [49] was carried out to explore the

kinetic characteristics of genes that showed a significant postprandial response.

The results of the differential analyses were explored using the GSEA method [46] using the

full Hallmark human reference genesets (mSigDB, Broad Institute, v5 [47]) with 100,000 per-

mutations to assess the level of significance (as described for the correlation analyses). Signifi-

cant genesets were identified as those with a padj < 0.10. The genes that contributed to the

significant enrichment of genesets (i.e. the ‘leading edge’ genes) were analysed to assess geneset

redundancy and overlaps using hierarchical clustering using Euclidean distance and Ward’s

criterion [49]. On the basis of this cluster analysis and the functional grouping defined for the

Hallmark collection [47], six groups were defined to resume the genes contributing to the

enriched genesets (S2 Table). In addition, GSEA analysis was completed specifically for the

KEGG ‘Insulin Signaling Pathway’ geneset to target insulin- related genes (C2: curated geneset,

mSigDB, Broad Institute, v5 [47] derived from KEGG database [50–52]).

Gene expression analyses: Targeted AhR analysis. Metabolomics analysis of the post-

prandial samples for this study identified four indoles derivatives that were differentially regu-

lated after the intake of acidified milk or yoghurt (indole-3-lactic acid (ILA), indole-3-acetic

acid (IAA), indole-3-acetaldehyde (IAAld) and 3-indolepropionic acid (IPA)) (Pimentel et al.,
submitted). Of these derivatives, IAA, IAAld and ILA have previously been shown to act as

ligands or activate the aryl hydrocarbon receptor (AhR) [53–57]. Therefore, a targeted correla-

tion analysis was completed to explore the relationship between the expression of AhR and

these four indoles compounds (Spearman’s rank correlation test). In addition, the relationship

between the postprandial changes of the expression of AhR and the postprandial changes in

insulin and glucose were examined using Spearman’s rank correlation test, based on previous

data that linked these clinical parameters to altered AhR activation [58–60].

Results

Baseline characteristics

The baseline characteristics for the thirteen subjects that were included in the final analyses of

this study have previously been reported [21]. The clinical biomarkers and appetite sensations

questionnaire data reported here also concern the full study cohort. Gene expression was stud-

ied in a subset of seven subjects. As for the main cohort, these subjects were young, healthy

and with all fasting biochemical parameters within the normal range at baseline.

Postprandial responses to dairy intake for clinical biomarkers and appetite

sensations

Yoghurt intake induced a significantly greater postprandial insulin response (iAUC) compared

with acidified milk whilst no differences between the products were observed for the glycemic
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response (S3 Table). Analysis of the lipid parameters (triglycerides and cholesterol fractions)

showed no differences between the dairy postprandial responses. Little differences were

observed for the responses in circulating inflammatory parameters although a non-significant

trend towards a lower response after yoghurt compared to acidified milk was noted for TNFα
(p = 0.10). No significant differences were observed for the responses in hunger, satiety, pro-

spective food consumption, appetite or subjective comfort, comparing the questionnaire

responses between acidified milk and yoghurt (S4 Table). While a carryover effect was

observed for one appetite parameter, in the absence of an intervention effect this was consid-

ered an artifact of the sample size.

Gene expression data

A total of 12,038 genes were retained for analysis after data filtering. Cellmix predictions of the

proportions of the blood cell types (based on cellular signatures for whole blood) [43] showed

that the relative proportions of the three main groups of white blood cells were close to the

expected proportions for healthy adult populations for all but one sample (fasting sample,

post-acidified milk) (S1 Fig). Where appropriate, analyses were completed with and without

this data point but the most significant enrichments persisted in the absence of the data point.

The largest source of variability in the predicted cell type composition was due to inter-indi-

vidual variability. However, inter-individual variability was taken into consideration in our

analyses in several ways: by the use of a crossover study design, by calculation of changes in

gene expression with respect to baseline values, and, where necessary, by introducing subject

identity as a blocking factor within the Limma model for assessing differential expression.

Postprandial changes in the cellular composition were observed but these were similar

between the dairy products for the same subject.

Clinical biomarker and gene expression correlation analysis

Exploratory correlation analyses were completed to assess the relationship between the post-

prandial changes in gene expression and selected clinical biomarkers. The clinical biomark-

ers and time points included in this analysis were glycemia, insulin, IL6, TNFα, CCL5 and

LPS at 2h, and triglycerides, total cholesterol, LDL-cholesterol and LPS at 6 h. Enrichment

analysis completed for all filtered genes ranked by the strength of their correlation with the

target biomarker identified five metabolic genesets that were associated with the biomarkers

(Table 1).

Positive correlations between clinical parameters and gene expression were notably

observed between glycemia and genes of the glycolysis geneset, i.e. genes that were ranked by

correlation coefficient for the delta change in glycemia at 2h and change in gene expression

at the same time showed a trend towards enrichment of the Hallmark geneset for glycolysis

(p = 0.05). Glycemia at 2 h was also associated with an enrichment in genes of the fatty acid

metabolism geneset at 2 h and with an enrichment of genes in the cholesterol homeostasis

geneset at 4 h. Change in LPS levels were strongly correlated with genes of the heme metabo-

lism geneset with significant enrichments for the geneset at multiple time points assessed.

Geneset enrichments were also observed for genes that were negatively associated with clini-

cal parameters. Interestingly, oxidative phosphorylation was enriched when genes were

ranked by correlation coefficient for insulin, glycemia and CCL5 assessed at 2 h and gene

expression assessed at 4 h. Similarly, the bile acid metabolism geneset was enriched for genes

ranked by correlation between change in total cholesterol at 6 h and change in gene expres-

sion at both 2 and 6 h.
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Postprandial blood transcriptome: General trends

The most significant postprandial regulation of individual genes was observed after yoghurt

intake; eleven genes were significantly regulated after yoghurt (padj < 0.10) (S5 Table), while

no genes were regulated after acidified milk at the same level of significance. A total of 1,556

genes showed a postprandial response (for at least one time point) after either yoghurt (775

genes) or acidified milk intake (832 genes) (padj < 0.20), including 51 (3%) genes that were

modulated by both dairy products (Fig 2). The response to yoghurt intake was predominantly

observed at 2 h with 747 genes being regulated at this time. In contrast, at 4 and 6 h after

yoghurt intake respectively only 55 and 4 genes were different to fasting measurements (padj <

0.20). An inverse trend was observed for the genes that were regulated by acidified milk intake;

while no genes were significantly modulated at 2 or 4 h after acidified milk intake, at 6 h the

expression of 832 genes was different to fasting measurements (padj < 0.20). Comparison of

the postprandial response to yoghurt with that of acidified milk revealed only two genes that

were differentially regulated (padj < 0.20).

Postprandial blood transcriptome: Enriched genesets

Using GSEA, eighteen genesets were found to be significantly enriched after either ingestion

of acidified milk and/or yoghurt (padj < 0.10) while trends towards enrichment after the inter-

ventions were identified for a further eight genesets (padj < 0.20) (S6 Table). The most signifi-

cant enrichments (padj < 0.10) were characterised by six groups of genesets (grouping based

on the similarity of the genes that were regulated and Hallmark classification, as defined in S2

Table), resumed as ‘immune’, ‘cellular metabolism’, ‘development’, ‘cellular signalling’, ‘heme

Table 1. Metabolic genesets enriched when genes are ranked by the correlation coefficient for change in gene expression and change in clinical parameter.

Clinical Parameter Time clinical parameter assessed (h) Geneset Time gene expression assessed (h) ES NES p padj

LPS 2 Heme metabolism 2 0.42 1.24 0.01 0.72

LPS 2 Heme metabolism 6 0.41 1.28 0.03 1.00

LPS 6 Heme metabolism 2 0.42 1.39 0.00 0.04�

LPS 6 Heme metabolism 4 0.49 1.61 0.00 0.001�

LPS 6 Heme metabolism 6 0.38 1.22 0.04 1.00

Total cholesterol 6 Heme metabolism 2 0.51 1.67 0.00 0.001

Total cholesterol 6 Cholesterol homeostasis 2 0.45 1.33 0.04 1.00

Total cholesterol 6 Bile acid metabolism 2 -0.43 -1.30 0.05 1.00

Total cholesterol 6 Bile acid metabolism 6 -0.49 -1.45 0.00 0.30

LDL-cholesterol 6 Heme metabolism 2 0.53 1.69 0.00 0.001�

LDL- cholesterol 6 Heme metabolism 6 0.36 1.20 0.04 1.00

Insulin 2 Oxidative phosphorylation 4 -0.41 -1.30 0.01 0.50

Glycemia 2 Fatty acid metabolism 2 0.44 1.30 0.03 1.00

Glycemia 2 Heme metabolism 4 -0.42 -1.25 0.03 1.00

Glycemia 2 Oxidative phosphorylation 4 -0.39 -1.20 0.04 1.00

Glycemia 2 Cholesterol homeostasis 4 0.46 1.31 0.04 1.00

Glycemia 2 Glycolysis 2 0.41 1.23 0.05 1.00

CCL5 2 Oxidative phosphorylation 4 -0.38 -1.23 0.04 1.00

Negative associations are indicated by the minus sign for the peak enrichment score (ES) or for the normalised peak enrichment score (NES). All associations with

p� 0.05 are shown;

� indicates significant correlations (padj < 0.10).

Abbreviations: CCL5, chemokine ligand 5; ES, enrichment score; LPS, lipopolysaccharide; NES, normalised peak enrichment score.

https://doi.org/10.1371/journal.pone.0192947.t001
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Fig 2. Heatmap showing the dynamic changes in gene expression after the intake of acidified milk (left) and yoghurt

(right). Genes that show a postprandial response (padj < 0.20) for at least one time point after either dairy product are

visualised (n = 1,556), with up-regulation indicated by darker tones relative to fasting levels (0 h) and down-regulation

indicated by lighter tones. Clustering was completed using Euclidean distance and Ward’s criterion [49]. For the three times

assessed, colours in the left side panel indicate whether the observed response was greater after yoghurt or acidified milk

(assessment based on the absolute t values: red = response greater after yoghurt, blue = response greater after acidified milk;

dark colours show responses significant at a level of p< 0.01, light colours indicate responses significant at a level of

p< 0.05).

https://doi.org/10.1371/journal.pone.0192947.g002
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metabolism’ and ‘other pathways’ (S2 Fig). One of the important groups of genesets to be regu-

lated was ‘cellular metabolism’ that included the ‘glycolysis’ geneset. This geneset was neither

modulated by yoghurt nor acidified milk at 2 h, however, it was down-regulated at 4 h after

acidified milk intake (padj = 0.05) and at 6 h after yoghurt intake (padj = 0.04). It should be

noted that this geneset comprised genes of both glycolysis and gluconeogenesis metabolic

pathways (as described by the KEGG pathway database [50–52]) but the two significant nega-

tive enrichments observed after the dairy intake concerned both pathways (S3 Fig). The related

KEGG insulin signaling pathway was assessed in a targeted manner based on the significant

differences observed for postprandial change in circulating insulin between the dairy products.

The targeted GSEA revealed a positive enrichment in the pathway after yoghurt intake at 2 h

(NES = 1.3, p = 0.03) (S4A Fig) and a similar trend after acidified milk at 2 h (NES = 1.2,

p = 0.10) (S4B Fig).

The other major group of genesets that was regulated after both acidified milk and yoghurt

intake comprised the immune or inflammatory-related pathways. The significant postprandial

changes associated with the immune or inflammatory pathways were broadly characterised by

positive enrichments during the early postprandial response (2 to 4 h), however the ‘inflamma-

tory response’ geneset was dynamically regulated as illustrated in Fig 3. The postprandial

response of the geneset was characterised by an increase in gene expression at 2 h that was for

the most part common to both acidified milk and yoghurt (respectively padj = 0.02 and 0.17),

although the yoghurt response included more genes that individually showed a significant

postprandial response. Conversely, at 4 h the gene expression of the inflammatory response

pathway compared to fasting values showed a relative reduction that was more pronounced

after yoghurt intake (padj = 0.02) than after acidified milk intake (padj = 0.20). Genes that were

down-regulated at 2 h appeared to be stably expressed or even show increased down-regula-

tion during the late postprandial response, while genes that were up-regulated at 2 h showed a

marked reduction in this up-regulation by 6 h. Of note, as illustrated in Fig 4, the direction of

change (up- or down-regulation) observed for most of the genes that contributed to the

dynamics of this pathway was globally the same after yoghurt and acidified milk intake; in par-

ticular, 94% of the genes that were up-regulated after acidified milk at 2 h were also up-regu-

lated after yoghurt at 2 h. These values are notably higher than those calculated for the sum of

all postprandially regulated genes (3%).

Two genes that significantly contributed to the negative enrichments of the inflammatory

genesets after yoghurt intake were identified as AhR and epiregulin (EREG), a growth factor

regulated by AhR [61–64]. Indeed, both genes were already identified among the top eleven

most regulated genes after dairy intake (S5 Table). Independent metabolomics analysis

(LC-MS) for this study identified AhR ligands among the metabolites that discriminated the

postprandial responses of the dairy products (Pimentel et al., submitted). Correlation analysis

suggested some associations between the postprandial changes in AhR expression after dairy

intake (Fig 5A) and the postprandial changes in concentration of the AhR ligand, IAAld (Fig

5B) but the relationship did not appear to be linear (Fig 5C). In addition, a positive association

between the change in circulating insulin and the change in the expression of AhR at 2h after

yoghurt intake was observed (rho = 0.75, p = 0.05), while a similar trend was observed after

acidified milk intake (rho = 0.61, p = 0.14) (Fig 5D).

Postprandial blood transcriptome: Differentially enriched genesets

Comparison of the postprandial gene expression changes at 2 h after yoghurt intake to those

after acidified milk intake revealed a differential enrichment in the KEGG insulin signaling

geneset (NES = 1.4, p = 0.01) (Fig 6A). The genes that were differentially expressed in the
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Fig 3. Postprandial changes of genes implicated in the regulation of the inflammatory pathway after intake of yoghurt

or acidified milk. The genes contribute to up-regulation of the pathway at 2 h following both dairy products (acidified

milk padj = 0.10, yoghurt padj = 0.16), and down-regulation of the pathway at 4 h and 6 h (acidified milk 4 h padj = 0.14 and

6 h padj > 0.20, yoghurt 4 h padj = 0.04 and 6 h padj = 0.07). The median change in gene expression (with respect to fasting

levels) is illustrated for each gene by a single bar (red for yoghurt, blue for acidified milk). Lighter colours show non-

significant changes as compared to dark shades (p< 0.01). Genes are ranked by the greatest change at 2 h to observe the

evolution of the postprandial response.

https://doi.org/10.1371/journal.pone.0192947.g003
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pathway (S5 Fig) included both genes that were specifically modulated by yoghurt (S4A Fig)

and those that were regulated in a different manner after acidified milk intake (S4B Fig).

The comparison of the postprandial gene expression after acidified milk with that of

yoghurt intake did not reveal any significant enrichments for the Hallmark genesets. How-

ever, a trend towards increased enrichment of IL6 JAK STAT3 signaling (NES = 1.5, padj =

0.24), PI3K AKT MTOR signaling (NES = 1.4, padj = 0.36), and oxidative phosphorylation

(NES = 1.2, padj = 0.36) genesets was observed at 2 h after yoghurt intake compared to acidi-

fied milk intake, while the MYC targets geneset (version 1) seemed to be enriched after acidi-

fied milk intake compared to yoghurt (NES = -1.3, padj = 0.36). The enrichment in oxidative

phosphorylation was actually characterised by both a reduction in gene expression after acid-

ified milk and a concurrent increase in expression of genes from the same pathway after

yoghurt intake (Fig 6B).

Blood transcriptome after two weeks daily intake of the test products

Few changes in fasting gene expression were observed after daily intake of the dairy products.

Yoghurt intake was associated with a positive enrichment in the MYC targets geneset (version

2) (NES 1.7, padj = 0.02) and a negative enrichment of the interferon gamma response geneset

(NES -1.5, padj = 0.01). Conversely, daily intake of acidified milk was only associated with a

negative enrichment of the epithelial mesenchymal transition geneset (NES -1.6, padj = 0.02).

No differences between the effects of the daily intake of the dairy products on gene expression

were observed.

Discussion

Nutrigenomic tools such as transcriptomics can be used to support the study of the complex

consequences of diet on health and disease. In the current study, we used whole blood gene

Fig 4. Similarities and differences in the regulation of genes that contribute to enrichments of the inflammatory

response geneset after dairy intake. Each bar shows the total number of genes that contributed to the enrichment for

the indicated condition (yoghurt or acidified milk; 2, 4 or 6 h postprandially) and the bar is coloured to indicate

whether the genes in the enrichment were regulated in the same manner after the alternative dairy product.

Abbreviations: AM, acidified milk; Y, yoghurt.

https://doi.org/10.1371/journal.pone.0192947.g004
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expression together with circulating biomarkers of metabolism and inflammation to explore

the physiological effects of probiotic yoghurt compared with non-fermented, acidified milk

intake. The two dairy products could be distinguished by the postprandial insulin response

which was significantly greater after yoghurt with respect to acidified milk intake. Correspond-

ingly, the insulin signaling pathway was shown to be differently enriched when comparing the

responses to the two dairy products at 2 h in our targeted analysis of this pathway, with a posi-

tive enrichment in the insulin signaling pathway identified at 2 h after yoghurt intake. Con-

versely, for both yoghurt and acidified milk intake a similar coordinated regulation of

Fig 5. Association between expression of the aryl hydrocarbon receptor (AhR) gene in blood cells and circulating

concentrations of indole-3-acetaldehyde (IAAld) and insulin. Postprandial changes in AhR expression (A) and in circulating

concentrations of IAAld (B) (Pimentel et al.,submitted) following dairy intake. Postprandial changes of AhR correlate with IAAld

after acidified milk intake (rho = -0.43, p = 0.05) but not after yoghurt intake (rho = 0.28, p = 0.20) (C). Changes in AhR
expression at 2 h postprandially correlate with changes in insulin at 2 h after yoghurt intake (rho = 0.75, p = 0.05) with a similar

trend after acidified milk intake (rho = 0.61, p = 0.14) (D). Acidified milk, blue and yoghurt, red. Symbols represent the time of

sampling: 2 h (circles), 4 h (triangles) and 6 h (squares). Abbreviations: AhR, aryl hydrocarbon receptor; IAAld, indole

acetaldehyde.

https://doi.org/10.1371/journal.pone.0192947.g005
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Fig 6. Genes that are implicated in the differential regulation of A. KEGG insulin signaling pathway and B.

oxidative phosphorylation pathway at 2 h. The median response for each gene is illustrated by a bar (blue for

acidified milk, red for yoghurt) and ordered by the dairy condition that elicited the greatest change in gene expression.

Lighter colours show non-significant responses and dark shades show a significant change after intake of the dairy

product (p< 0.01).

https://doi.org/10.1371/journal.pone.0192947.g006
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inflammatory or immune-related genes was observed although the timing of the regulation

was different.

Our results concur with previous reports of differences in circulating insulin responses to

fermented compared to non-fermented milks [7]. In one of our previous transcriptomic stud-

ies that applied a similar experimental design [26], we did not observe differences on insulin-

related gene expression after intake of a standard yoghurt compared to an acidified milk. The

different results in this previous study, may be due to their use of linear contrasts to investigate

the direction of change in gene expression between 2 and 6 h rather than the changes at indi-

vidual time points. In addition, the use of larger volumes of dairy products and presence of the

probiotic LGG in the yoghurt used in the current study could have accentuated the different

effects of the products on insulin. The mechanisms underpinning the differences we observe

for insulin responses in our present work could in part relate to the altered nutrient composi-

tion of the yoghurt following fermentation that notably include hydrolysis of lactose by lactic

acid bacteria to galactose and glucose, as well as the liberation of insulin-stimulatory peptides

and amino acids from milk proteins [4]. Of the amino acids that are released during fermenta-

tion, several branched chain amino acids and certain bioactive peptides have known insulino-

trophic effects [65, 66]. The characteristics of the dairy matrix are also factors that contribute

to differences in the speed of gastric emptying and consequently differences in nutrient uptake

between fermented and non-fermented dairy foods [67]. This was minimised in our study by

the addition of gluconic acid to milk to mimic pH and consistency of yoghurt. While we did

not assess gastric emptying time in this study, the results of our appetite sensations question-

naire showed no differences in the perception of satiety after intake of the two products, sug-

gesting that gastric emptying was not markedly different between the products.

Several energy metabolism pathways that can be influenced by insulin were also modulated

by the dairy products. Of note, the postprandial response of genes implicated in the regulation

of oxidative phosphorylation was remarkably different at 2 h after acidified milk compared to

2 h after yoghurt intake; we observed an up-regulation of these genes after yoghurt intake and

a concurrent down-regulation of most of the same genes after acidified milk intake. As oxida-

tive phosphorylation has previously been proposed as a potential biomarker of the postpran-

dial response [45], we explored the changes in this geneset based on the p value of the

association rather than on the padj value. In contrast to the findings for oxidative phosphoryla-

tion, a similar down-regulation was observed for glycolytic genes after both dairy products

although this appeared to be earlier after acidified milk. The greater insulin response observed

after yoghurt compared to acidified milk, together with the absence of difference in glycemic

response may explain the delayed down-regulation in glycolytic genes after yoghurt compared

to acidified milk, as insulin stimulates this process [68].

Several genesets that are associated with inflammatory or immune regulation were enriched

in the early postprandial response to both acidified milk and yoghurt intake. While the magni-

tude of up-regulation in inflammatory related genes appeared to be greater after yoghurt

intake, the overall enrichment of the geneset was not different between the dairy products.

Interestingly the genes implicated in the positive enrichment of inflammatory genesets were

generally down-regulated in our study between 4 and 6 h after the dairy intake. The association

between dairy products and inflammation is controversial; a recent review suggested that

despite the pro-inflammatory effects that dairy products can induce in subjects that are allergic

to bovine milk, dairy products may otherwise have anti-inflammatory effects, in particular in

individuals with metabolic disorders [20]. The early increase in the expression of inflamma-

tory-related genes in our study is consistent with the transient, physiological postprandial

inflammation that is induced by a mixed or fat-rich meal [69, 70]. The subsequent down-regu-

lation of these genes suggests a regulatory control that limits prolonged inflammation. This
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finding is also in line with our previous work that identified a dynamic response in inflamma-

tory parameters after dairy product intake [26]. The persistent down-regulation of the inflam-

matory response geneset at 6 h after yoghurt intake in the current study raises the notion that

dairy products could impact the inflammatory state beyond the postprandial phase. However,

the absence of effects on fasting gene expression after a two-week period of daily intake of the

dairy products observed in the current study does not support this hypothesis.

AhR and EREG (a member of the epidermal growth factor family which is regulated by AhR

[61–64]), were identified in this study as genes that were significantly regulated during the

postprandial response to probiotic yoghurt and which contribute to multiple inflammatory

pathways. The AhR that has a well-defined role in the metabolism of xenobiotics, has recently

emerged as a key regulator of inflammatory pathways [71]. Notably, the receptor is described

as having a protective role in intestinal cells of the gut upon binding of pseudo-endogenous

ligands such as indole derivatives (trypotophan catabolites), which can be produced by the

enteric microbiota [54]. As described elsewhere, (Pimentel et al., submitted) four indole com-

pounds presented a different postprandial response after the intake of the probiotic yoghurt

compared to the acidified milk. Among these metabolites, IAAld, a known AhR ligand [54],

showed some association with the changes in AhR expression following the intake of the dairy

products although the relationship was not linear. IAAld was detected in our probiotic yoghurt

at higher levels than in the acidified milk and was correspondingly found at higher levels in

serum after acute intake of this product compared to acidified milk intake (Pimentel et al., sub-
mitted). The initial decreased expression of AhR in the presence of higher levels of the IAAld

ligand supports the evidence for an influence of the ligand in the regulation of AhR expression

[72, 73]. However, at higher concentrations of the metabolite, the modulation of AhR expres-

sion is less clear. In the context of the distinct differences observed for the postprandial

response in insulin together with the previously described role of insulin and glucose on AhR

functions [58–60], it was intriguing to find a positive correlation between insulin changes and

the change in AhR expression at 2 h after the dairy product intake. Conversely, glycemia

changes at 2 h were not related to the change in AhR expression although the principal glyce-

mic changes in response to the dairy product intakes were observed in the early postprandial

phase before 2 h. The effect of insulin sensitivity on AhR ligand activity [59] and the regulatory

effect of glucose on AhR activation [58] have important implications for understanding how

dietary ligands might interact with the AhR as these parameters are likely to be modulated by a

complex meal containing such ligands. It would therefore be interesting to investigate the rela-

tionship between IAAld and AhR in the presence or absence of glucose and insulin in a con-

trolled intestinal cell culture model (such as that described by Hubbard et al. [54]) in order to

better understand the interactions between the nutritional conditions, the ligand activity, and

the AhR expression.

The validity of the changes in gene expression in our study is supported by their associa-

tions with circulating biomarkers. Most notably, the enrichment of the glycolysis geneset for

genes that were correlated with glycemia at 2 h showed that genes of the glycolysis pathway

were more highly expressed in the presence of higher levels of circulating glucose. Glucose

homeostasis is tightly regulated in non-pathological states and thus the close association

between glycemia and gene expression of glycolysis, a process that leads to the rapid metabo-

lism of the nutrient, might be expected. Changes in the expression of glycolytic genes in blood

during the postprandial phase have previously been identified by Kawakami et al., [74] but

have not directly been related to glycemia. Changes in some of the circulating parameters that

we studied may have direct or indirect effects on gene expression that may not be efficiently

modeled by linear associations, however despite this limitation, the method supported the
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detection of other known associations such as heme metabolism with LPS [75–77] and bile

acid metabolism with total cholesterol [78].

The study of the whole blood transcriptome inherently implies a dynamic mixture of cells

that will change during a stimuli such as feeding with a known increase in neutrophils and leu-

kocytes postprandially [69, 70]. This was considered in our study by estimations of cellular

composition using CellMix and by verifying the consequence of removing a sample identified

as an outlier based on estimated cellular composition. While the inter-individual variation in

the cell type composition was more marked than the postprandial variation, it should be noted

that the observed effects on gene expression that we report, in particular those that are associ-

ated with inflammatory processes, may relate to the compositional changes in cell type rather

than absolute changes in gene expression. Nevertheless, this approach can still be used as a

proxy measure of global gene expression in blood.

The lack of strong effects detected on gene expression during the short-term test phases

may be due to other factors (external to diet) that influence the fasting levels of gene expression

meaning that the effect of relatively small changes in the diet is difficult to discern. Alterna-

tively, a longer exposure to the dietary intervention used in our study may be necessary to

observe an effect on the fasting state. In both cases, the rationale to use the postprandial

approach as a sensitive method for assessing diet-specific effects on the blood transcriptome is

justified.

Conclusions

We observed that while probiotic yoghurt and acidified milk elicit different responses on gene

expression, this in part relates to differences in the timing of the postprandial response. The

dairy products modulated some common pathways during the postprandial phase, notably

including various inflammatory or immune genes. The whole blood transcriptome appeared

to be a sensitive surrogate marker of metabolic processes that showed coherence with estab-

lished clinical biomarkers but also revealed subtle differences in the responses to the dairy

products that were not captured by these biomarkers. The development of nutrition-specific

genesets as well as the combined assessment of metabolomic with transcriptomic data

could help better exploit this tool in the context of nutritional interventions. This approach

nevertheless remains a promising method to complement classical biomarkers and metabo-

lome evaluation to help better discriminate the metabolic responses to dietary intake in a

healthy population.
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are coloured for each subject (F3_0XX), with symbols representing acidified milk (circles) and

yoghurt (triangles) test days. The typical values for neutrophils (green), lymphocytes (red) and
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S2 Fig. Genes that contribute to the significant enrichment of GSEA pathways after acidi-

fied milk (AM) or yoghurt intake (Y) at 2, 4 or 6 h postprandially. Grouping based on Hall-
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that were not detected in the filtered dataset are not coloured.
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S4 Fig. Gene expression changes in the insulin signaling pathway (KEGG [50–52]) 2 h after

intake of (A) yoghurt and (B) acidified milk. Gene colours correspond to the t-statistic for
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for the each test day. Genes that were not detected in the filtered dataset are not coloured.
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S5 Fig. Gene expression changes in the insulin signaling pathway (KEGG [50–52]) 2 h after

intake of yoghurt compared to acidified milk. Gene colours correspond to the t-statistic for
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compared to acidified milk. Genes that were not detected in the filtered dataset are not col-

oured.
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Wilcoxon signed-rank test to evaluate significant effects (�p< 0.05). Abbreviations: iAUC,
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yoghurt intake as assessed by GSEA for relative changes at 2, 4 and 6 h (compared to
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fasting time 0 h) for each product. � = significant change (padj� 0.10). Trends are shown for

padj� 0.20. Direction of regulation is indicated by the enrichment scores (ES): positive values

signify up-regulation of the pathway while negative values signify down-regulation of the path-

way. Abbreviations: ES, enrichment score; GSEA, geneset enrichment analysis; IL, interleukin;

JAK, Janus-family tyrosine kinase; KRAS, KRAS proto-oncogene, GTPase; mTORC1, mam-

malian target of rapamycincomplex 1; NES normalised enrichment score; NF-kB, nuclear fac-

tor kappa-light-chain-enhancer of activated B cells; STAT, signal transducer and activator of

transcription; TNFα, tumor necrosis factor alpha; UV, ultraviolet.

(PDF)
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