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Abstract-Capturing the uncertainty arising from system noise 
has been a core feature of fuzzy logic systems (FLSs) for many 
years. This paper builds on previous work and explores the 
methodological transition of type-l (Tl) to interval type-2 fuzzy 
sets (IT2 FSs) for given "levels" of uncertainty. Specifically, we 
propose to transition from Tl to IT2 FLSs through varying the 
size of the Footprint Of Uncertainty (FOU) of their respective 
FSs while maintaining the original FS shape (e.g., triangular) and 
keeping the size of the FOU over the FS as constant as possible. 
The latter is important as it enables the systematic relating of 
FOU size to levels of uncertainty and vice versa, while the former 
enables an intuitive comparison between the Tl and T2 FSs. The 
effectiveness of the proposed method is demonstrated through a 
series of experiments using the well-known Mackey-Glass (MG) 
time series prediction problem. The results are compared with 
the results of the IT2 FS creation method introduced in [1] which 
follows a similar methodology as the proposed approach but does 
not maintain the membership function (MF) shape. 

I. INTRODUCTION 

The concept of type-2 fuzzy sets (T2 FSs) was introduced 
by Zadeh in 1975 [2]. Since then, it can be seen that the 
use of T2 FSs using fuzzy logic system (FLS) to deal with 
uncertainty appeared in many applications. As more complex 
models, T2 FSs are considered to be suitable for modelling 
uncertainty as T2 FSs include Footprint of Uncertainty (FOU) 
and a third dimension, offering extra degrees of freedom to 
T2 FSs in comparison to T1 FSs [3], [4]. 

The computational complexities of using T2 FLSs such 
as investigated in [5]-[11] have led to the introduction and 
increased use of the simplified interval type-2 fuzzy logic 

systems (IT2 FLSs) which today are the most commonly used 
kind of T2 FLS. IT2 FLSs employ IT2 FSs, which are a special 
case of a general T2 FSs where all the secondary membership 
grades are equal to one. 

A number of common types of Membership Functions 
(MFs) for FSs exist in the literature, e.g., triangular, Gaussian, 
trapezoidal, sigmoidal, pi-shaped, etc. The FOU is a useful 
concept in IT2 FSs due to the fact that MFs of an IT2 FS 
are completely described by its FOU [12]. In the literature 
considering IT2 FLSs, there are many methods used to define 
an FOU. For example, [13]-[15] apply blurring to the T1 MFs 
while [16] introduces variations to the T1 MFs to generate IT2 
MF. A construction of symmetric or non-symmetric FOUs 
was proposed in [17]-[19], where each lower membership 
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Fig. 1. Different IT2 FSs around a TI principal MF (dashed). (a) Conventional 
IT2 FSs. (b) IT2 FS created using M1. (c) IT2 FS created using M2. 

function (LMF) and upper membership function (UMF) used 
is a standard T1 MF such as triangular, trapezoid, Gaussian. 
IT2 FSs have also been modelled as geometric objects [20] 
by utilizing two poly-lines, one used for the UMF of the set 
and one for the LMF of the set. Ellipsoidal IT2 MFs were 
created in [21] by introducing an additional parameter into 
triangular T1 MFs. Diamond shaped MFs [22] were proposed 
which have certain values at the endpoints while the middle 
of the MFs captures uncertainty. IT2 FS has also been created 
in [23], where the left endpoint and the right endpoint of 
the LMF and UMF are identical to the T1 FS while the 
FOU is created using c parameter of the triangular IT2 FSs. 
Finally, IT2 FSs with a uniform FOU over the "core" (support 
of the LMF) of the fuzzy set, based on a fixed parameter 
c E [0,1] which is used to create an FOU of a given size 
around a (principal) T1 MF was proposed in [1]. To illustrate 
the context and focus of this paper, we show a number of 
potential methods for the creation of an IT2 FS by expanding 
an FOU around a principal T1 MF in Fig. 1. Fig. l(a) shows 
a common blurring method which preserves the original T1 
MF, but for which the size of the FOU (i.e. the width of a 
vertical slice for a given x) does not maintain constant. This is 
unintuitive in many applications, in particular when the mound 
of uncertainty for a given variable (e.g., a sensor) is know in 
advance - we may not expect that the uncertainty varies in the 
degree of membership, in particular as strongly as shown in 
Fig. l(a). Fig. l(b) shows an alternative approach presented in 
[1] which does preserve a uniform/constant level of uncertainty 
throughout the support of the LMF of the FS, but does not 
maintain the shape of the original T1 MF. We will refer to 
this approach as Method 1 (Ml) throughout the paper. Finally, 
in Fig. l(c), the uncertainty in memberships over the LMF is 
constant and at the same time, the LMF and UMF keep their 
original T1 MF shape (dashed line). Thus, the latter approach 
enables both the adaptation of the IT2 FS for known levels 
of uncertainty (i.e. by increasing FOU size with increasing 
uncertainty) and the systematic comparison to the original (in 
this case triangular) T1 FLS to the resulting new IT2 FLS(s). 



We refer to this last method as Method 2 (M2). The paper 
focusses on detailing Method 2 and contrasting the resulting 
IT2 FSs with those resulting when Method 1 is applied in 
order to highlight potential advantages and disadvantages of 
both approaches in theoretical work and practical applications. 

In summary, in this paper, a new approach M2 is developed 
to create an FOU of IT2 FS from an original Tl FS by adding a 
bound value of uncertainty to the original Tl MFs parameters 
and scaling the LMF by a fixed parameter to ensure that the 
resulting FOU is uniform within the core (i.e. the support of 
the lower MF) of the IT2 FSs. This IT2 FS creation method is 
proposed to maintain the level of uncertainty captured in the 
primary memberships of the FS constant, while also keeping 
the IT2 FS shape (LMF and UMF) the same as the original 
Tl MF. The latter differentiates the proposed method from MI 
presented in [1], which starts for example with a triangular 
shape in Tl principal MFs and as we increase the FOU 
size, the shape of IT2 FS changes to different shape (i.e., 
trapezoidal) (see Fig. l(b» . 

The rest of the paper will cover the following. In Section II, 
a review of T2 FSs, singleton fuzzy logic system (SFLSs) and 
non-singleton fuzzy logic system (NSFLS), IT2 FS generation 
techniques and additive noise are provided. The developed 
method is explained further in Section III. Both methods 
(MI and M2) are applied to MG time series and presented 
in Section IV. The results and discussions of the study are 
presented in Section V. The conclusion and future work appear 
in Section VI. 

II. BACKGROUND 

This section provides a brief overview of the concepts used 
later in the paper. These concepts include T2 FSs, SFLS and 
NSFLSs, IT2 FS generation techniques and noise levels or 
more specifically, the Signal-to-Noise Ratio (SNR) which is 
employed throughout the paper as a measure of uncertainty. 

A. Type-2 fuzzy sets 

T2 FSs were originally proposed by Zadeh [2] and are an 
extension of Tl FSs. A T2 Fs, A, may be represented as [6]: 

A = {((x, u), It A (x, u)) I \Ix E X, \lu E Jx S;;; [0, I]}, (1) 

where J x is the primary ':lembership of x and It A (x, u) E 
[0,1] is the secondary MF. A in (1) can also be defined as: 

A=l 1 ItA(X,U)/(X,u) Jx S;;; [0,1], (2) 
xEX uEJx 

where J denotes union and is replaced by L if the universe 
of discourse is discrete. 

Whe.? all the secondary grades It A (x, u) are equal to one, 
then, A is an IT2 FS. Following (2), an IT2 FS A can be 
expressed as [3]: 

A=l 1 I/(x,u) Jx S;;; [0,1] (3) 
xEX uEJx 

The domain of the primary membership Jx defines the FOU 

of FS A [3]: 
Fou(A) = U Jx 

VxEX 
(4) 

Alternatively, the FOU of an IT2 FS A can be described by 
its LMFs and UMFs [4]: 

Fou(A) = U [�A(X),P;A(X)] (5) 
VxEX 

B. Singleton and non-singleton type-2 fuzzy logic system 

According to the type of fuzzification [3], IT2 FLSs can be 

divided into SFLS and NSFLS, which are presented below. T2 
FLSs are the extension of the Tl FLSs. The MFs of T2 FLSs 
in the antecedents and/or the consequents are T2 FSs [24]. 

An IT2 FLS consists of five components, which are fuzz i­

fier, rule base, inference engine, type reducer, and defuzzifier. 
In singleton IT2 FLS, crisp inputs are first fuzzified, usually 

into input IT2 FSs (in singleton fuzzification). These activate 

the inference engine and the rule base to produce output 
IT2 FSs which are then combined to produce an aggregated 
IT2 output FSs. They are then processed by a type-reducer 
such as the centroid type-reducer, which performs a centroid 
calculation, leading to Tl FSs known as type-reduced set(s) 
[3]. The defuzzifier finally defuzzifies the type-reduced type-

1 fuzzy outputs to produce crisp outputs. Further detail on 
SFLSs can be found for example in [3], [24]. 

A non-singleton IT2 FLS has the same structure as a 
singleton IT2 FLS, and they share the same type of rules; 
the major difference is the type of fuzzification. The majority 

of FLSs are using SFLS because the singleton fuzzification is 
simpler and faster to compute. In singleton fuzzification, inputs 

are considered to be singleton FSs, while the non-singleton 
fuzzification models the FLS inputs as FSs. For more details 

on NSFLSs can be found for example in [3], [25], [26]. 

C. Interval type-2 fuzzy set generation techniques 

IT2 FSs can have different shapes such as triangular or 
trapezoidal shapes. To make a general case for FOU creation 
techniques, we will use a common method such as Gaussian 
IT2 FS with uncertain parameters for transition (t), scaling 
(8), mean (m) and standard deviation (0") introduced in [27] 
as: 

It(X)=S* e-HX�"')2 + t, 
8 E [81,82],m E [ml,m2]'0" E [0"1,0"2],t E [tl,t2] (6) 

Here, a similar methodology applied for triangular and 
trapezoidal IT2 FSs. In case of a triangular FS with uncertain 
parameters for transition (t), scaling (8), left end point (a), 
centre (m) and right end point (b) can be defined as: 

In case of a trapezoidal FS with uncertain parameters for 
transition (t), scaling (8), left end point (a), left centre (md, 



right centre (m2) and right end point (b) can be defined as: { 0 bs:.xs:.a 
x-a a s:. x s:. ml 

{L(x) = s * 1
m} -a + t, 

ml s:. X s:. m2 
b-x m2 < X < b b-m2 - -

s E [sl, s2], a E [al, a2], b E [b1, b2], ml E [ml"ml,], 

m2 E [m2" m22], t E [tl' t2] (8) 

In (6-8), LMF and UMF {L(x) and 71(X) can be obtained 
by varying one or more parameters and fixing the other 
parameters. Also, note if the transition parameter (t) is set 
to 0 and the scaling parameter (s) is set to 1 and the other 
parameters are made fixed then the MFs become TI MFs. In 
the following subsection, we will briefly review the method 
MI initially presented in [1]. 

1) FOU creation method (Ml): As previously introduced in 
[1], this method is used to obtain an IT2 FSs with a uniform 
FOU over the core of the FS, where an FOU construction 
method based on a fixed parameter c is used to create an 
FOU of a given size around a principal (Tl) MF. In order to 
create the IT2 FSs based on the uncertainty parameter c and 
the Tl MF, we employ (9) and (10) shown below to create 
the resulting UMF and LMF respectively. 

71(X) = min ({L(x) + � , 1.0) (9) 

dx) = min (max ({L(x) - � ,O) , 1.0 - c) , (10) 

where {L( x) relates to the Tl MFs in (7) for triangular FS 
and (8) for trapezoidal FS. Note the parameter t in both (7) 
and (8) is set to � for 71(x) in (9) and -� for dx) in (10). 
The parameter s is set to 1, whereas no changes to the other 
parameters are applied. For more details on this method we 
refer the reader to [1]. A more detailed illustration of the MI 
design of the IT2 FS is depicted in Fig. 2(a) and 2(b) - for 
triangular MFs and Fig. 3(a) and 3(b) - for trapezoidal MFs. 

D. Additive noise 

In engineering applications, the level of noise is commonly 
measured by the SNR (see (11» where a high SNR refers 
to a clear signal (low noise) and a low SNR refers to a 
noisy signal (high amounts of noise). As a common and well­
defined measure of (one type of) uncertainty, we will use SNR 
throughout in this paper. In our experiments, h different levels 
of a given SNR and noise which has a uniform distribution 
with zero-mean and (J noise is injected into the training and the 
testing sets of existing samples of the MG time series. The 
formula for SNR (in dBs) [3]: 

Then, the noise value n(t) can be generated using a uniform 
random variable with zero-mean and (Jnoise at different SNR 
values and then added to the time series x(t). 

III. A NOVEL FOU CRE ATION METHOD (M2) 

As discussed in Section I, in an effort to find an alter­
native FOU creation method, addressing the shortcoming of 
MI which starts for example with a triangular shape in Tl 
principal MFs and as we increase the FOU size, the shape 
of IT2 FS changes to different shape (i.e., trapezoidal), a 
new method is proposed. This novel FOU creation method 
(M2) is used to obtain an IT2 FSs with a uniform FOU that 
captures a constant level of uncertainty over the core of the 
fuzzy set based on a bounded values of uncertainty 5 and 
a fixed parameter c E [0, 1]. The parameters are used to 
create an FOU of a given size around a (principal) Tl MF 
and maintaining the same shape of Tl MF for both (UMF 
and LMF) as the FOU increases. 

We start the design of the IT2 FSs by including the FOU 
size parameter c and the bounded values of uncertainty 5 to 
form the IT2 FSs of the system. Note that when both c and 
5 are equal to zero, then the result is the original Tl FS MF, 
while c = 1 results in an IT2 set with a very wide FOU (as 
detailed further below). 

In order to preserve the original shape of the membership 
function (Tl MF) as we add a certain value of the FOU size 
parameter c to it to create an IT2 FSs , we construct the UMF, 
71( x) and the LMF, {L( x) of the IT2 FSs by adding/subtracting 
a specific value of (;5) from the Tl MF parameters as follows: 

Q= a + 5  (13a) 

a= a-5 (13b) 

12= b-5 (13c) 

b= b + 5 (13d) 

where Q and 12 are the left and the right points of the LMFs, 
a and b are the left and the right points of the UMFs. The 
UMF, 71(X) and the LMF, {L(x) of IT2 FS for triangular case 
can then be obtained as follows: 

{ 0 
x-a 

71(x) = ,,!]-a 
b-x 
b-m 

{L(x) = (1 - c) * { :-=-� - £-x 
£-m 

bs:.xs:.a 
as:.xs:.m 
ms:.xs:.b 

12s:.xs:.Q 
Qs:.xs:.m 
ms:.xs:.12 

(14) 

(15) 

(J
2 

signal SN R = 10*loglo ( 2 ) 
a noise 

Whereas, for trapezoidal case, The UMF, 71(X) and the LMF, 
(11) d x) of IT2 FS can then be obtained as follows: 

where (J2 signal is the variance of the signal and (J
2 noise is the 

variance of the noise. To find (J noise we solve (11) for (J noise 

as 
O"noise = 

(Jsignal 

10( S�oR) 
(12) 

71(X) �{ 
0 bs:.xs:.a 

x-a a s:. x s:. ml ffil-a (16) 1 ml s:. x s:. m2 
b-x m2 s:. x s:. b b-m2 
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Fig. 2. An illustration of design methods of triangular IT2 MFs with FOU 
size parameter c = 0.5. (a) Initial Tl FS, (b) IT2 using Ml and (c) IT2 FS 
using M2. 
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Fig. 3. An illustration of design methods of trapezoidal IT2 MFs with FOU 
size parameter c = 0.5. (a) Initial Tl FS, (b) IT2 using Ml and (c) IT2 FS 
using M2. 

!!:,(x) = (1 - c) * { l::�!g 

!!.-x 
!!.-m2 

12SoXSoQ 
Q So X So ml 

ml So X So m2 

m2 So X So 12 

(17) 

The parameter (t) in both (7) and (8) has become ° in (16) 
and (17). The parameter s has become 1 for p;( x) in (16) 
and s = (1 - c) for {L(x) in (16) and no changes were made 
to the other parameters for both cases. In (15) and (17) we 
scaled the lower membership function by (1 - c) , to create 
a uniform FOU all over the IT2 FS. Parameter c E [0, 1] is 
the FOU size parameter. The <5 parameter is used to define the 

endpoints in the fuzzy MFs (see Fig. 2 and Fig. 3). Its value 
can be obtained experimentally, so that, for a given value of 
c, the uncertainty indicator, U (x) in (18) below, is constant 
(equal to c) over the support of the LMF ({L(x) > 0). A more 
detailed illustrations of design of the IT2-FS is depicted in 
Fig. 2(a) and 2(c) for triangular MFs and Fig. 3(a) and 3(c) 
for trapezoidal MFs using M2. 

U(x) = p;(x) - !!:,(x) (18) 

After considering the proposed FOU creation techniques, 
we proceed to an experimental exploration of the different 
behaviour of IT2 FSs created using either Ml or M2 when 

transitioning from a T1 to an IT2 FLS. 

IV. TR ANSITlONING FROM Tl TO ITS FLSs 

This section describes the design of the T1 FLS for a given 
application and its subsequent transformation to one or more 
IT2 FLSs. In order to study the behaviour of the proposed 
FOU creation technique presented in this paper, a systematic 
methodology for the transitioning from T1 to IT2 FLSs is 
presented. The designs of Tl/IT2 FLSs will be considered with 
respect to different noise levels and thus different desired FOU 
sizes. The complete process can be summarised in four steps 
as follows: 

A. Data Generation 

First, training and testing data from the system under study 
(e.g., a time series) is generated. The training and testing data 
is injected with different noise levels. The training data is used 
to train the system (generating rules) under two conditions: 
noise free data (NFtrain) and noisy data (Ntrain) at different 
noise levels. The testing data sets (noise free (NFtest and 
corrupted by noise) are used to test the performance of a 
designed system in the face of a given level of noise. 

B. T1 FSs design and rule-base creation 

Next, T1 FSs are created, either by an expert (as further 
detailed in Section V) or through an automatic method (e.g., 
a genetic algorithm). Second, the training data is used to 
generate the rules using for example the WM-method [28]. 

C. IT2 FSs Design (FOU Construction) 

The T1 FSs are extended to IT2 FSs using the existing Tl 
MFs as a basis. For the FOU size parameters c E [0, 1], 
l values are chosen. Also, a number h of noise/uncertainty 
levels are chosen for investigation. For Ml, the UMFs and 
LMFs will be constructed using (9) and (10) respectively. For 
M2, upper and lower triangular MFs will be constructed using 
(14) and (15) and upper and lower trapezoidal MFs will be 
constructed using (16) and (17) respectively. The <5 parameter 
is used to define the bounded values of uncertainty in the fuzzy 
MFs and its values are obtained experimentally, as discussed 
in Section III. This enables the evaluation of each one of the 
FLSs for h different noise levels (and FOU sizes) for both 
methods. For all FLSs, both SFLS and NSFLS versions are 
evaluated. 

D. FLS Perfonnance Testing and Evaluation 

After finishing the design of each of the IT2 FLS with the 

chosen FOU size parameter, we test its performance using the 
pre-generated testing data at each of the h noise/uncertainty 
levels. At each noise level, the performance testing is repeated 
a number of times (in our case: 30 times) to account for 
the random character of the noise injection. The performance 
of the design(s) is evaluated, for example using the Root 
Mean-Squared Error (RMSE). The average of the RMSEs 
is then calculated over all iterations for each FLS at each 
noise/uncertainty level in order to enable the best mapping 
between the FLSs (with different FOU sizes) and the noise 



levels. This is valuable in order to determine which FOU size 
of which design method (Ml or M2) provides the best results 
in the face of different levels of uncertainty (in our case: SNR). 

In the following section we conduct a set of experiments 
using the FLS design described to compare and contrast M1 
and M2 in the context of well-known MG time series. 

V. EXPERIMENTS 

FLSs have been successfully used in forecasting of time 
series [3], [28]-[31]. As the level of noise/uncertainty is easily 
controllable, we use time-series prediction here as a test bed 
to explore the different approaches to IT2 FLS generation. We 
use the Mackey-Glass time series which is a chaotic time series 
proposed in [32]. It is a first-order differential-delay equation 

used to model physiological systems. It is generated from the 
following non-linear differential equation: 

dx(t) 
= 

a * x(t - T ) 
_ b * x(t) 

dt 1 + xn(t _ T ) (19) 

where a, band n are constant real numbers, t is the current 
time and T is the delay time. For T :::; 17, the system is 
known to exhibit a deterministic/periodic behaviour which 
turns chaotic with T > 17. To obtain simulation data, (19) is 
used in this paper with the following parameters: a = 0.2, 
b = 0.1, T = 30 and n = 10 and solved using Euler's method 
[33] with a step size equal to 1.0 and the initial values of x(t) 
for all values of t :::; T are set to 0.9. The detail of the steps 
is given below. 

A. Data Generation 

Noise-free data are generated using (19) for the MG time­
series. To obtain training and testing input-output data pairs, 
we extract 700 input-output data pairs. In our case, four-input, 
one-output FLSs (single stage prediction) are considered. The 
training dataset is the first 500 data points used for training 

the FLSs (generating the rules). The following 200 points are 
used for testing the FLSs. In this paper, we consider different 
versions of training and testing data which are corrupted with 
zero-mean uniform noise for different SNRs. In this work we 
used 5 noise levels in training and the same number in testing 
(i.e. h = 5). The chosen noise levels are (from lower to higher 
level): 20,16,10,4 and 0 dBs. The original noise free (NF) data 
also used for training and testing the FLSs. 

B. T1 FSs design and rule-base creation 

In this paper, we choose the number of membership function 
(both triangular and trapezoidal) for each input and output of 
the FLS to be 7 MFs which are defined evenly to cover the 
input and output spaces. Then, we apply the well-known WM 
method [28] to create the rules for the given training input­
output dataset. The result is 12 rule bases for the different 
combinations as shown in Table I. The actual number of FSs 
and the rules are maintained from the Tl FLSs and used for 
all resulting IT2 FLSs. From Table I, we can see that both 
triangular and trapezoidal MFs used in Tl FSs generate the 
same number of rules at each noise level. 

TABLE I 
NUMBER OF RULES GENERATED AT EACH NOISE LEV EL USING THE 

WM-ME THOD APPLIED TO T1 TRIANGULAR AND TRAPEZOIDAL FLSs 

Noise Level triangular MF trapezoidal MF 
NF 47 47 
20 80 80 
16 91 91 
10 125 125 
4 283 283 
0 330 330 

TABLE II 
/5 VALUES FOR BOTH TRIANGULAR AND TRAPEZOIDAL FSs 

c 0 0.2 0.4 0.8 1 
/5 triangular MF 0 0.02 0.045 0.12 0.182 

/5 trapezoidal MF 0 0.015 0.033 0.088 0.127 

C. IT2 FSs Design (FOU Construction) 

Following Section IVe, we extend the Tl FLSs into a 
series of IT2 FLSs. First, we design the Tl FSs for both 
triangular and trapezoidal and create the rule bases using the 
WM approach using the training data set. Then, we start the 
design of a series of IT2 FLSs by generating IT2 FSs using the 
FOU creation methods (Ml and M2) described in Sections II 
and III to form the IT2 MFs of the systems. The actual number 
of FSs and the rules are maintained from the Tl system. All 
the common parameters between the SFLSs and NSFLSs are 
chosen to be the same. For all experiments, a x in the NSFLS 
case is set equal to the standard deviation of the additive noise. 
In a noise free situation for which ax = 0, the performance 
of the NSFLS is identical to that of the SFLS. 

To construct the upper and lower membership functions of 
the IT2 FSs, we use the following: 

• The chosen FOU parameter c values used for both meth­
ods (M1 and M2) are 0,2,4,8,and 1 (i.e. I = 5). At c = 0 
the IT2 FSs reduce to the original Tl FSs, whereas in 
case of using c = 1, the IT2 FSs reach the maximum 
amount of their width. 

• For M1, we design the IT2 FSs using (9) and (10) for 
both triangular and trapezoidal cases. 

• For M2, we design the IT2 FSs using (14) and (15) for 
triangular case and (16) and (17) for trapezoidal cases. 

• For M2, the <5 parameter is used to define the bounded 

values of MFs and its values can be obtained experimen­
tally as shown in Section III. <5 values for both triangular 
and trapezoidal FSs are shown in Table II. 

Table III shows the triangular and trapezoidal FSs at different 
c values for M1 and M2. Note how both methods maintain a 
constant level of uncertainty (FOU size) over the support of 
the LMFs, while M2 also preserves the shape of the Tl MFs. 

After creating the IT2 FSs (triangular and trapezoidal) for 
both M1 and M2, we start to design SFLS and NSFLSs using 
the rule bases generated previously in step B. Each FLS uses 
product t-norm, product inference, centroid type-reduction and 
centroid defuzzification. 

After finishing the design of the IT2 FLSs with the chosen 

FOU sizes for both methods at different configurations as 

mentioned above, the testing data sets are used to test the 



TABLE ill 
TRIANGULAR AND TRAP. FSs AT DIFFERENT C VALUES FOR Ml AND M2 

triangular trapezoidal 

c Ml M2 Ml M2 

0 A A Jl Jl 
0.2 A A 1l II 
0.4 A & a II 
0.8 n � Jd � 
1.0 D � U fl 

performance of the individual IT2 FLSs when faced with 
the different uncertainty/noise levels. Now that we have a 
total of 20 FLSs for each design method with each case 
of MF case (triangular and trapezoidal) (i.e. 5 levels of c 

* 2 training conditions (NFtrain and Ntrain) * 2 FLS types 
(NSFLS, SFLS» . The total number of constructed FLSs are 
thus 80 FLSs (20 with triangular (Ml), 20 with triangular 
(M2) 20 for trapezoidal (Ml) and 20 for trapezoidal (M2» and 
each system will be tested over 5 different noise levels and 
the NFtest case. The testing and evaluation of these systems 
will be presented next. 

D. FLSs Perfonnance Testing and Evaluation 

We test each of the IT2 FLSs described above against 6 
levels of noise in order to determine the best performance 
for each given noise level. Each test is repeated 30 times to 
account for the random generation of the uniform noise. The 
performances of all the designs were evaluated using their 
Root Mean Squared Error (RMSE) over the testing data set: 

RMSE= 
1 

1707 
- " [s (t+l)-f(s(t))]2 
200 � t=1508 

(20) 

where, s (t + 1) is the output of the noisy testing data 
and f(s(t)) is the crisp output of the FLS, and, set) = 

[s(t -3), s(t -2), s(t -1), s(t)f. The RMSE results are av­
eraged over 30 runs and are depicted in Tables IV and 
V showing the results of the average RMSE of the MG 
time series using the two different MF types (triangular and 
trapezoidal) with the two different design methods (MI and 
M2). Each column represents an IT2 FLS design with a given 
FOU size parameter c and the rows show the average RMSE 
value at the different SNR values for all FOU sizeslFLSs. The 
shaded values are the result of M2. 

VI. RESULTS AND DISCUSSION 

In order to explore the viability and effect of the novel 
method M2, in particular in relation to MI, we briefly discuss 

the results of the experiments conducted in the previous 
sections. After analysis of the RMSE results of both methods, 

we can divide the analysis into three areas. The first analysis 

covers a comparison of the FLSs based on Ml and M2 in terms 
of their performance in general. The second analysis will be 
devoted to the performance of Ml and M2 in different settings 
(i.e., training on NFtrain and Ntrain data, SFLSs and NSFLSs. 
The third analysis will include the performance analysis of 
FLSs with the two cases (triangular and trapezoidal MFs) 
on different settings. Finally, common observations will be 
presented. 

The average RMSE values for Ml and M2 are depicted 
in Table IV and V. The results are visualised in Fig. 4. 
Generally, there are no significant differences between them 

in the sense that NSFLSs provide superior outputs to SFLSs. 
Also, training the systems on noisy data produces better 
performance especially with the SFLSs cases. As we increase 
the FOU size parameter c, the performance gets better. At 
c = 0 both methods have the same result as the systems reduce 
to the original T1 FLS. By calculating the relative percentage 
between MI and M2 in the triangular MF case, we have found 
that MI achieved better performance reaching around 34% at 
c = 0.8 and 20% at c = 1.0. However, the relative percentage 
between MI and M2 in case of trapezoidal MF is smaller 
reaching around 22% at c = 0.8 and significantly less for the 

other c values. 
A comparison of Ml and M2 performance in case of 

triangular MF is shown in Fig. 5. By comparing the results 
of both methods we have found that the FLSs trained with 
noisy data performed better than those trained with NF -
as can be expected. In case of SFLSs and at low SNR 
(higher noise levels), FLSs trained with noisy data (Ntrain) 
are performing better with around 41 % than FLSs trained 
with NF data (NFtrain). From Fig. 5, it is clear that MI is 
performing better than M2 in most of the cases. Overall, as 
expected, NSFLSs perform much better than SFLSs especially 
at lower SNR values (higher noise levels). Finally, from the 
results, the following are observed: 1) All FLSs provide better 
performance when SNR increases. 2) A direct relationship 
between the FOU size of the FSs and the noise level has been 
observed showing that as the noise level increases, the FOU 
that gives the minimum RMSE value increases as well with 
better performance. This result is aligned with [1]. 3) Train­
ing the systems with noisy data improves the performance 
of FLSs. 4) NSFLSs outperform their counterparts SFLSs. 
5) Triangular and trapezoidal MFs produce the same number 
of rules at each noise levels. 6) Ml show better performance 
than M2 especially with triangular MFs. 

VII. CONCLUSION 

As part of this paper, we propose a methodological approach 
to transitioning from T1 to IT2 FSs for different levels of 
uncertainty (noise), while preserving the original T1 MF shape 
in the IT2 MFs. Thus, the objective of this work is not to 
achieve optimal performance in applications such as in time 
series prediction, but to study and present an IT2 FS creation 
method that systematically captures a specified amount of 

uncertainty (i.e., the uncertainty in memberships over the 



TABLE IV 
THE AVERAGE RMSE VALUES FOR MG TIME SERIES PREDICTION FOR TRIANGULAR MFs (SHADED VALUES ARE THE RESULTS OF M2) 

0=0 e=0.2 e=0.4 e=0.8 e=1.0 
NFtrain Nlfain NFlfain Nlfain NFtrain Nlfain NFtrain Nlfain NFtrain Nlfain 

SFLS NSFLS SFLS NSFLS SFLS NSFLS SFLS NSFLS SFLS NSFLS SFLS NSFLS SFLS NSFLS SFLS NSFLS SFLS NSFLS SFLS NSFLS 
NFtcst 0.0313 0.0313 0.0313 0.0313 0.0318 0.0318 0.0318 0.0318 0.0369 0.0369 0.0369 0.0369 0.0593 0.0593 0.0593 0.0593 0.0784 0.0784 0.0784 0.0784 

0.0313 0.0313 0.0313 0.0313 0.0321 0.0321 0.0321 0.0321 0.0400 0.0400 0.0400 0.0400 0.0679 0.0679 0.0679 0.0679 0.0914 0.0914 0.0914 0.0914 
20 0.0426 0.0425 0.0540 0.0539 0.0423 0.0424 0.0538 0.0538 0.0451 0.0451 0.0553 0.0553 0.0610 0.0621 0.0636 0.0642 0.0765 0.0752 0.0771 0.0775 

0.0426 0.0425 0.0540 0.0539 0.0424 0.0425 0.0539 0.0539 0.0468 0.0466 0.0562 0.0561 0.0741 0.0735 0.0766 0.0759 0.0897 0.0903 0.0903 0.0921 
16 0.0554 0.0551 0.0697 0.0690 0.0549 0.0548 0.0686 0.0680 0.0563 0.0558 0.0683 0.0680 0.0671 0.0669 0.0802 0.0797 0.0800 0.0783 0.(1)77 0.0960 

0.0554 0.0551 0.0697 0.0690 0.0550 0.0548 0.0685 0.0680 0.0570 0.0562 0.0690 0.0686 0.0773 0.0755 0.(1)55 0.0903 0.0877 0.090 I 0.(1)58 0.1018 
10 0.0997 0.(1)18 0.1039 0.1006 0.(1)27 0.0904 0.0996 0.0967 0.(1)17 0.0875 0.(1)14 0.0898 0.(1)23 0.0831 0.0840 0.(1)23 0.1024 0.1004 0.1087 0.1125 

0.0997 0.(1)18 0.1039 0.1006 0.(1)29 0.0904 0.0995 0.0967 0.(1)19 0.0870 0.0908 0.0894 0.(1)85 0.0867 0.1055 0.(1)88 0.1000 0.1026 0.1112 0.1175 
0.3355 0.1526 0.1971 0.1747 0.2639 0.1488 0.1832 0.1664 0.1934 0.1401 0.1603 0.1511 0.1430 0.1239 0.1454 0.1038 0.1487 0.1399 0.1498 0.1611 
0.3355 0.1526 0.1971 0.1747 0.2816 0.1494 0.1851 0.1674 0.2135 0.1405 0.1613 0.1512 0.1429 0.1234 0.1467 0.1393 0.1444 0.1359 0.1498 0.1655 
0.5150 0.2088 0.3023 0.2519 0.4418 0.2039 0.2797 0.2410 0.3714 0.1928 0.2423 0.2191 0.2632 0.1692 0.2024 0.1839 0.2275 0.1819 0.2010 0.1947 
0.5150 0.2088 0.3023 0.2519 0.4691 0.2052 0.2854 0.2429 0.4127 0.1948 0.2506 0.2212 0.2789 0.1697 0.2038 0.1835 0.2129 0.1817 0.1991 0.1968 

TABLE V 
THE AVERAGE RMSE VALUES FOR MG TIME SERIES PREDICTION FOR TRAPEZOIDAL MFs (SHADED VALUES ARE THE RESULTS OF M2) 

e=0.2 e=0.4 e=0.8 e=1.0 
NFtrain Nlfain NFtrain Nlfain NFtrain Nlfain NFtrain Nlfain NFtrain Nlfain 

SFLS NSFLS SFLS NSFLS SFLS NSFLS SFLS NSFLS SFLS NSFLS SFLS NSFLS SFLS NSFLS SFLS NSFLS SFLS NSFLS SFLS NSFLS 
NFtcst 0.0312 0.0312 0.0312 0.0312 0.0316 0.0316 0.0316 0.0316 0.0370 0.0370 0.0370 0.0370 0.0581 0.0581 0.0581 0.0581 0.0657 0.0657 0.0657 0.0657 

0.0312 0.0312 0.0312 0.0312 0.0316 0.0316 0.0316 0.0316 0.0366 0.0366 0.0366 0.0366 0.0710 0.0710 0.0710 0.0710 0.0739 0.0739 0.0739 0.0739 
20 0.0424 0.0424 0.0535 0.0534 0.0422 0.0423 0.0531 0.0530 0.0457 0.0457 0.0546 0.0545 0.0600 0.0595 0.0621 0.0623 0.0678 0.0757 0.070 I 0.0753 

0.0424 0.0424 0.0535 0.0534 0.0422 0.0423 0.0531 0.0530 0.0449 0.0449 0.0539 0.0538 0.0659 0.0662 0.0679 0.0679 0.0741 0.0771 0.0765 0.0806 
16 0.0553 0.0550 0.0715 0.0706 0.0550 0.0548 0.0703 0.0695 0.0572 0.0566 0.0696 0.0691 0.0665 0.0652 0.0762 0.0757 0.0737 0.0792 0.0875 0.0960 

0.0553 0.0550 0.0715 0.0706 0.0550 0.0548 0.0705 0.0697 0.0564 0.0559 0.0693 0.0688 0.0698 0.0686 0.0778 0.0771 0.0782 0.0829 0.0942 0.0945 
10 0.0995 0.(1)14 0.1059 0.1027 0.(1)29 0.0902 0.1026 0.0996 0.(1)23 0.0884 0.0966 0.(1)50 0.(1)36 0.0848 0.1009 0.0995 0.0990 0.(1)81 0.1(1)3 0.1167 

0.0995 0.(1)14 0.1059 0.1027 0.(1)31 0.0905 0.1034 0.1005 0.(1)21 0.0883 0.(1)73 0.(1)57 0.(1)23 0.0830 0.1004 0.0992 0.0998 0.1045 0.1153 0.1215 
0.3352 0.1513 0.2030 0.1796 0.2809 0.1481 0.1915 0.1724 0.2231 0.1409 0.1727 0.1615 0.1603 0.1264 0.1593 0.1550 0.1492 0.1431 0.1615 0.1648 
0.3352 0.1513 0.2030 0.1796 0.2922 0.1492 0.1948 0.1753 0.2486 0.1425 0.1767 0.1648 0.1541 0.1253 0.1588 0.1548 0.1468 0.1394 0.1626 0.1665 
0.5149 0.2072 0.2950 0.2373 0.4590 0.2029 0.2738 0.2257 0.4033 0.1934 0.2380 0.2072 0.3105 0.1719 0.1998 0.1814 0.2750 0.1830 0.1987 0.1898 
0.5149 0.2072 0.2950 0.2373 0.4803 0.2046 0.2807 0.2305 0.4407 0.1964 0.2492 0.2136 0.3310 0.1728 0.2013 0.1824 0.2720 0.1813 0.1984 0.1910 

support of the LMF is constant) and preserves the original 
shape of the MF (the LMF and UMF keep their original T1 
MF shape) for comparison between T1 and IT2 FLSs. The 
proposed approach (M2) enables both the adaptation of the IT2 
FS for known levels of uncertainty (i.e. by increasing FOU size 
with increasing uncertainty) and the systematic comparison to 
the original T1 FLS to the resulting new IT2 FLS(s). This 
method is compared with the IT2 FS creation method Ml 
which follows a similar creation approach as M2 but does not 
maintain the MF shape. 

In order to assess the viability and explore the behaviour 
of M2, we conducted detailed performance comparison and 
evaluation in the context of time series analysis. Both methods 
were tested under different conditions (Noise free and noisy 
training data, singleton and non-singleton fuzzification) as well 
as for triangular and trapezoidal MFs. The results indicate 
in general FLSs based on Ml outperfonn those based on 
M2. However, both methods provide expected perrormance 
increases [1] for increasing FOU sizes as uncertainty/noise 
levels increase. Based on this, it seems that in applications 
where the systematic transition and comparison from an orig­
inal T1 FLS is paramount, M2 is preferable, as it maintains the 
MF shapes. In applications where this level of comparability is 
not vital however, Ml provides superior levels of perfonnance, 
while also maintaining a systematic and parametrised increase 

in FOU size in the face of increasing uncertainty. 
As part of future work, we will explore the methodological 

generation of general type-2 FLSs based on information on 
levels and distribution of uncertainty in given applications. 
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noisy data (Ntrain). 
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