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Abstract

The paper reports simulations applied on two similar congestion games: the first is the classical
minority game. The second one is an asymmetric variation of the minority game with linear payoff
functions. For each game, simulation results based on an extended reinforcement algorithm are
compared with real experimental statistics. It is shown that the extension of the reinforcement
model is essential for fitting the experimental data and estimating the player's behaviour.
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The Investigated Games

Congestion Game I (CI) — The Minority Game

1.1
The first discussed congestion game (CI) is a well known minority game Challet (1997;Challet and
Zhang 1998). The minority game is an important example of a Congestion Game. The game can be
applied on different situations with social and economic contexts. One can analyse the minority
game exemplarily as an elementary traffic scenario in which human participants had to choose
several times between a road A and a road B. In each period, the road which was chosen by the
minority of players won. This paper reports about the results of laboratory experiments of minority
games and a learning algorithm witch simulates the observed human behaviour in these games.
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1.2
The minority game is the most important example for a classic non-zero-sum-game and can be
applied on different situations with social and economic contests. Imagine two big and famous gold
fields in South Africa, near Cape Town and Johannesburg. The diggers heard that a big gold-nugget
was found in Johannesburg. From now on every digger went to Johannesburg to dig gold, the city
got overcrowded and there was not enough space for all of them, so the profit was very small. The
diggers who stayed in Cape Town on the other hand had enough space for their claims. The profit in
Cape Town was very high for everybody. This is an example of the minority game, the people who
choose the majority got no payoffs, but the people on the minority in Cape Town found enough
gold for all of them, so everybody got a payoff.

1.3
The minority game which is also called the El Farol Bar Problem (EFPB) was introduced by Arthur.
The setup of the minority game is the following: a number of agents n have to choose in several
periods whether to go in room A or B. Those agents who have chosen the less crowded room win,
the others lose.

1.4
Later on, the EFBP was put in a mathematical framework by Challet and Zhang, the so-called
Minority Game (MG). An odd number n of players has to choose between two alternatives (e.g.,
yes or no, A or B, or simply 0 or 1). In the literature are many examples where the MG is discussed
(Challet 1997;Challet and Zhang 1998;Johnson et al. 1998).

1.5
In this paper we transferred the minority problem into a route choice context. We did minority game
experiments at the Laboratory of Experimental Economics (University of Bonn). In these
experiments subjects are told that in each of 100 periods they have to make a choice between a road
A and road B for traveling from X to Y.

Figure 1. Participants had to choose between a road [A] and a road [B]

1.6
The set-up of the minority game was introduced by Arthur (1991). Newer approaches were done by
Challet (1997) and Challet and Zhang (1998). The experimental setup is the following: a number of
players n have to choose in several periods whether to go to a place A or B. Those players who have
chosen the less crowded place win, the others lose. The number of players in each simulation was 9,
the number of periods was 100. The players get a payoff tA or tB depending on the numbers nA and
nB of participants choosing A and B, respectively:

tA = 1, tB = 0, ⇔ nA < nB

tB = 1, tA = 0, ⇔ nA > nB
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The period payoff was tA if A was chosen and tB if B was chosen. There are no pure equilibria in
this game. The pareto-optimum can be reached by 4 players on one and 5 players at the other place.

Asymmetric Congestion Games (CII)

1.7
The second congestion game (CII) is a variation of the minority game: the number of agents in this
game was 18, 36, 54, 72 and 90. The number of played periods was in each game 100.

1.8
The period payoff for the 18 player setting was 40 - t with t = tA if A was chosen and t = tB if B was
chosen, where tA and tB depend on the numbers nA and nB of participants choosing A and B,
respectively:

tA = 6 + 2n and tB = 12 + 3 nB

In the route choice scenario A represents a main road and B a side road. A is faster if A and B are
chosen by the same number of people (Selten et al 2003).

1.9
All pure equilibria of the game are characterized by nA = 12 and nB = 6. The equilibrium payoff is
10 units per player and period. The pareto-optimum can be reached by

nA = 11 and nB = 7

1.10
The modified payoff functions for the experiments with 36, 54, 72 and 90 agents are

18λ, λ =2,…, 5,

where

pA = 40 λ = [6 λ + 2 nA]
pB = 40 λ = [12 λ + 3nB]

1.11
Table 1 shows all pure equilibria in the CII depending on the number of players.

Table 1: Pure equilibria in CII. The equilibria depend on the number of
participating agents

Number of Players Equilibrium
A B

18 12 6
36 24 12
54 36 18
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72 48 24
90 60 30

In the case of CII, place A and place B are understand as a road with high capacity (main road) and
a road with low capacity (side road) and tA and tB as travel times.

Experimental Set-up of CI and CII

1.12
Each of the games CI and CII with 9 and 18 persons were played 6 times with students at the
Laboratory of Experimental Economics in Bonn. Additionally CII was played 1 time with 36, 54,
72 and 90 students. Subjects are told that in each period they have to make a choice between A and
B. The subjects of the CII set-up did not know the payoff function. They were told that if A and B
are chosen by the same number of people, subjects who had chosen A get a better payoff than
subjects who had chosen B. At the end of an experiment, each participant was paid an amount in
Euro proportional to his cumulated payoff sum he had reached over the 100 periods. The
experimental data statistics are listed and compared with simulation results in section 4.

Reinforcement Learning

Reinforcement Algorithm with Pure Strategies

2.1
The reinforcement algorithm with pure strategies already described by Harley (1981) has been used
extensively by Roth and Erev (1995) in the experimental economics literature. The convergence in
games with pure strategies was analyzed by Laslier and Walliser (2005). Selten et al. (2003; 2007),
Helbing et al (2002) and Helbing (2004) used a reinforcement model in a traffic context. Figure 2
explains the original reinforcement algorithm.

2.2
We are looking at player i who has to choose among n pure strategies 1, … ,n over a number of
periods t, t=1 … T. The probability that "strategy x is chosen by player i" is proportional to its
"propensity" qt

i,x. In period 1 these propensities are exogenously determined parameters. Whenever
the strategy x is used in period t, the resulting payoff at

x is added to the propensity if this payoff is
positive. If all payoffs are positive, then the propensity is the sum of all previous payoffs for this
strategy plus its initial propensity. Therefore one can think of a propensity as a payoff sum.
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Figure 2. Reinforcement algorithm

The Empirical Foundation for an Extended Reinforcement Model

2.3
The only pure strategies in CI and CII are "place A" and "place B". These strategies do not
represent a player's belief about the other participant's behaviour. In our extended model we add two
further strategies which include the consideration of players about the others based on the last
period's payoff.

Direct: A participant who had a good (bad) payoff may stay on the last period's place (change
his last choice). We call this direct response mode. A change is more probable the worse the
payoff was. The direct response mode is the prevailing one but there is also a contrarian
response mode.
Contrarian: Under the contrarian response mode a change of the last choice is more likely
the better the payoff was. The contrarian participant expects that a high payoff will attract
many others in the next period.

In CI a "bad" payoff could obviously be defined by 0 and a "good" payoff by 1. In CII with 18λ,
λ=1,…,5 players, the pure equilibrium payoff is ε=10λ. Payoffs perceived as "bad" tend to be below
ε and payoffs perceived as "good" tend to be above ε. Accordingly we classified the strategy of a
subject as direct if there is a change (stay) after a payoff smaller (greater) than 10λ. The opposite
strategy is classified as contrarian.

Measuring Direct and Contrarian Strategies

2.4
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For each subject let c- (c+) be the number of times in which a subject changes from A to B or from
B to A when there was a bad (good) payoff in the period before. And for each subject let S- (s+) be
the number of times in which a subject stays on the same place when there was a bad (good) payoff
in the period before.

2.5
For each subject in the experiments CI and CII, a Yule coefficient Q has been computed as follows:

The Yule coefficient has a range from -1 to +1. In the rare cases that a subject never (in each period)
changes his last choice, we defined Q = 0 because the decision of such a subject does not depend on
the last period payoff. A subject with Yule coefficients below -.5 could be understood to be
classified as direct and subjects above +.5 as contrarian.

Extended Reinforcement Learning

2.6
In our simulations of CI 9 agents, respectively of CII 18, 46, 54, 72, 90, agents interact for 100
periods just like in our experiments described in section 3. In CI and CII each player has two pure
strategies:
Place APlace A: This strategy consists in taking A.
Place BPlace B: This strategy consists in taking B.
After the first period in each of the two games (CI) and (CII) the two extended
strategies direct and contrarian are available:
(CI) directdirect: If the payoff of a player is 1, then the player stays on the same

place last chosen. If his payoff is 0, the players changes (from A
to B or from B to A).

(CI)
contrariancontrarian:

If the payoff of a player is 1, then the player changes (from A to
B or from B to A). If his payoff is 0, the players will stay on the
same place.

(CII)
directdirect:

This strategy corresponds to the direct response mode. The
payoff of a player is compared to his median payoff among his
payoffs for all periods up to now. If the present payoff is lower
then this median payoff, then the place is changed. If the payoff
is greater than this median payoff, the player stays on the same
place as before. It may also happen that the current payoff is
equal to the median payoff. In this case, the place is changed if
the number of previous payoffs above the median is greater than
the number of previous payoffs below the median. In the
opposite case, the place is not changed. In the rare cases where
both numbers are equal, the place is changed with probability ½.

(CII)
contrariancontrarian:

A player who takes this strategy stays on the last chosen place if
his current payoff is smaller then the median payoff among this
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payoffs for all previous periods, and he changes the place in the
opposite case. If the current payoff is equal to this median
payoff, then he changes the place if the number of previous
payoff below the median payoff is greater then the number above
the median payoff. If the numbers of previous payoff below and
above the median payoff are equal, the place is changed with
probability ½.

The strategies direct and contrarian are necessary to be represented in the simulations for fitting the
experimental data. They appear in the simulations as the result of an endogenous learning behaviour
by which initially homogeneous subjects become differentiated over time.

Initial Propensity

2.7
The difficulty arises that the initial propensities must be estimated from the empirical data. For each
game CI and CII we did this by varying the initial propensities for the strategies place A and place
B over all integer values from 1 to 120 and the initial propensities for the strategies direct and
contrarian over all integer values from 0 to 120. For each initial propensity we tested 1000
simulations. To show the general behaviour of the simulations, Figures 4 to 6 show several selected
statistical parameters depending on the initial propensities listed in figure 3. The numbers refer to
the strategies place A, place B, direct and contrarian in this order.

Figure 3. Initial Propensities

2.8
One could see in figure 4 that, for each simulation run and each initial propensity the mean number
of agents on place A is close to 4.5. The convergence to the theoretical mixed equilibrium was
already observed in the simulation data of Roth & Erev (1995).
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Figure 4. Number of players on A

2.9
The standard deviation of the number of players on place A per period (figure 5) is correlated to the
number of changes (figure 6) per periods. It got the highest values with propensities from the set I1.
In this cases the strategy direct is present and contrarian is absent. The strategy directly forces
changes after a "bad" payoff 0, which is the most frequent in the majority game.
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Figure 5. Standard deviation of number of players on A

Figure 6. Number of changes per period
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2.10
Players with high Yule-coefficients in the experiments are assigned to the direct type; this appears
also in the figure 7. For the initial propensities, in which no contrarian change behaviour is
implemented, for example (1110), step high Yule-coefficients up. For the initial propensities, in
which the contrarian behaviour is favoured, for example (1101), all values of the Yule-coefficients
are negative.

Figure 7. Mean Yule-coefficients

Similar results could be obtained by investigations of the initial propensities for simulations of CII.

Experimental Statistics and Simulation Results

CI with 9 Players

3.1
For each propensity vector q1, …, q4 ∈ {1, …, 120}2 × {0, …, 120}2 we ran 1000 simulations
according to the experiments with 100 periods. The numbers of the propensity vector refer to the
strategies place A, place B, direct and contrarian in this order. We compared the mean values of
each of the 1000 simulations of 6 statistical variables which are listed in table 2 with minimum and
maximum values of the experimental data.
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3.2
There were three parameter combinations which satisfied the requirement of yielding means for the
six variables between the minimal and maximal experimentally observed values. This was the
parameter combination (1,1,2,1) and (2,2,1,1) and (3,3,4,2).

Table 2: CI — 9 Players - Experimental minima & maxima vs. simulation means

CI Experiment
Simulations

Experiment

Minimum {1,1,2,1} {2,2,1,1} {3,3,4,2} Maximum
Player on A [mean] 4,19 4.48 4.50 4.54 4.74
Player on A [standard deviation] 0.67 1.45 1.48 1.50 1.50
Changes [mean] 0.59 4.32 4.18 4.51 5.17
Period of last Change 54.44 96.11 97.67 97.44 98.11
Yule Q [mean] -0.01 0.10 0.04 0.14 0.87
Yule Q [standard deviation] 0.33 0.50 0.40 0.35 0.76

3.3
Additionally we could show that the vector (1,1,2,1) minimizes the sum of normalized quadratic
deviations of experimental data and simulation results of the six variables. The quadratic deviations
where normalized by division by the standard deviations of the experimental results over the
treatments. Figure 8 shows the quadratic deviations of the best initial vectors from the average
experimental data.
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Figure 8. Quadratic deviations of the best initial vectors from the average experimental data

3.4
The parameter combinations seem to be reasonable vectors of initial propensities. There is no
difference between place A and place B. It is clear to see that the vectors have the same propensities
for both places. In two of the three vectors the propensity of the direct mode is greater than the
value of the other propensities. The higher initial value for the direct strategy and the smaller value
of the contrarian strategy represent the ratio of the experimental data referring to the player types
(Chmura & Pitz 2006).

3.5
It is remarkable that no initial propensities which contain only pure strategies fit the experimental
data. We want the simulation model as easy as possible, therefore all experimental players start with
the same propensity vector combination in one simulation. As in the experiments the agents become
differentiated over time (see figure 10).

CII with 18 Players

3.6
In set-up CII with 18 players, we got only one parameter combination from the set {0, …, 120}2 ×
{0, …, 120}2which satisfied the requirement of yielding means for the six variables between the
minimal and maximal experimentally observed values. This was the parameter combination
(4,3,3,2). In table 3, we compared the mean values of each of the 1000 simulations of 6 statistical
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variables which are listed in table 3 with minimum and maximum values of the experimental data.

3.7
Additionally we could show that the vector (4,3,3,3) minimizes the sum of normalized quadratic
deviations of experimental data and simulation results of the six variables. The quadratic deviations
where normalized by division by the standard deviations of the experimental results over the
treatments.

3.8
Figure 9 shows the distribution of the mean player on B for the simulated vector (4,3,3,2) in 1000
simulations.

Table 3: CII — 18 Players: experimental minima & maxima vs. simulation means

CII Experiment Simulations Experiment
Minimum {4,3,3,2} Minimum

Player on B  B [mean] 5,85 5,95 6,17
Player on B  B [standard deviation] 1,59 1,65 1,99
Changes [mean] 4,62 5,17 5,38
Period of last Change 64,78 83,73 90,39
Yule Q [mean] 0,11 0,14 0,39
Yule Q [standard deviation] 0,53 0,61 0,75
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Figure 9. Distribution of the mean number of players on B for the simulated vector (4,3,3,2) in
1000 simulations

3.9
At the beginning of the game the players know that the capacity of A is greater than the capacity of
B. It seems to be reasonable to suppose that at least in the beginning the pure strategies A and B
have a greater propensity sum than direct and contrarian. Like in CI, no initial propensity which
contains only pure strategies fits the experimental data. Further on it seems reasonable that the
initial value for A is greater than the initial value for B. The reason for this is the game theoretical
equilibrium in the experiments with human players. The equilibrium shows a higher value for A
(equilibrium in the experiments with 18 players was A:12 B:6 ). In the experiments occur more
direct player types 40% and less contrarian player types 20% (Selten et al 2003). This ratio could be
found in the simulations, where the 3 represents the initial value for the direct strategy and 2
represents the initial value for the contrarian strategy.

Simulations of CII with 18, 36, 54, 72, and 90 Players

3.10
Finally we compared the mean of six statistical variables of 1000 simulations with 18, 36, 54, 72,
and 90 players with experiments of the same number of players. For simulations with 18λ players
we used the initial propensities λ · (4,3,3,2), λ=2, … , 5. The vector (4,3,3,2) has been determined
above.
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3.11
Additionally we could show that the vector (4,3,3,3) minimizes the sum of normalized quadratic
deviations of experimental data and simulation results of the six variables. The quadratic deviations
where normalized by division by the standard deviations of the experimental results over the
treatments.

Table 4: CII — Experimental means (E) vs. Simulation means (S)

Statistical Data CII Data Source Number of Players
18 36 54 72 90

Mean (# players on B) E 5.98 12.21 17.98 24.2 30.02
S 5.95 11.91 17.9 23.83 29.02

st. Dev. (# players on B) E 1.78 2.64 3.24 4.54 5.02
S 1.65 2.39 3.04 3.78 4.58

Mean (# of place changes) E 4.82 11.35 15.57 22.76 26.02
S 5.17 10.07 15.98 21.32 23.04

Mean (last place change E 81 82 86 89 88
S 84 89 84 88 90

Mean (Yule-coefficient) E 0.28 0.14 0.22 0.2 0.24
S 0.14 0.16 0.15 0.15 0.16

st. Dev. (Yule-coefficient) E 0.58 0.58 0.58 0.57 0.6
S 0.61 0.54 0.54 0.52 0.56

 Conclusion

4.1
We have run simulations based on a payoff sum reinforcement model. We applied this model on
two similar experimental set ups CI and CII. Simulated mean values of six variables have been
compared with the experimentally observed minimal and maximal of these variables. The simulated
means were always in this range. Only four parameters of the simulation model, the initial
propensities, were estimated from the data. In view of the simplicity of the model, it is surprising
that one obtains a quite close fit to the experimental data. With a linear transformation of the initial
propensity, the simulations fit experimental results with a higher number of players.

4.2
Two response modes can be found in the experimental data, a direct one in which changes follow
bad payoffs and a contrarian one in which changes follow good payoffs. One can understand these
response modes as due to different views of the causal structure of the situation. If one expects that
A is crowded in period t, and A is likely to be crowded in period t+1 one will be in the direct
response mode. But if one thinks that many people will change in the next period because it was
crowded today, one has reason to be in the contrarian response mode.

4.3
The strategies direct and contrarian are necessary to be represented in the simulations for fitting the
experimental data. They appear in the simulations as the result of an endogenous learning behaviour
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by which initially homogeneous subjects become differentiated over time. A sample simulation for
9 players over 1000 periods is shown in figure 9. Each player has a specific colour. The grey line
indicates the separation of the player's payoff sums at period 100.

4.4
It is surprising that a very straightforward reinforcement model reproduces the experimental data as
well as shown by table 4. Even the mean Yule coefficient is in the experimentally observed range in
spite of the fact that at the beginning of the simulation the behaviour of all simulated players is
exactly the same. It is not assumed that there are different types of players.

Figure 10. Example simulation shows the relative payoff-sum for each of the 9 players over 1000
periods

 Appendix

A.1
Figures 11-16 illustrate the experimental means in comparison to the simulated means of table 4.
Black boxes represent the simulated values and white boxes, the empirical data.
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Figure 11. Mean Number of Players on B in Experiments and Simulations

Figure 12. Standard Deviation number of Players on B in Experiments and Simulations
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Figure 13. Number of Changes in Experiments and Simulations

Figure 14. Last change in experiments and simulations
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Figure 15. Mean Yule-coefficients in experiments and simulations

Figure 16. Standard Deviation of Yule-coefficients in Experiments and Simulations
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