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1 Introduction

The predominance of behavioral concepts in terms of descriptive success over Nash equilibrium

is a well documented fact. Regularly, behavioral concepts describe the data gathered in

laboratory experiments much better than the Nash equilibrium does. Such behavioral

concepts are, for example, new stationary concepts (e.g., McKelvey & Palfrey, 1995, 1998;

Selten & Chmura, 2008; Goerg & Selten, 2009), models of level-k thinking (e.g., Nagel, 1995;

Ho, Camerer, & Weigelt, 1998; Crawford & Costa-Gomes, 2006), and models describing

learning processes (e.g., Erev & Roth, 1995, 1998; Ho, Camerer & Chong, 2007; Chmura,

Goerg & Selten, 2012).1

One stationary alternative that performed significantly better in previous studies than Nash

equilibrium is impulse balance equilibrium (Selten & Chmura, 2008). It is a non-parametric

concept based on the idea of learning direction theory (Selten & Buchta 1999). Probabilities

of decisions are modeled as behavioral tendencies and adjusted similar to the adjustments of

a marksman aiming at a trunk: “If he misses the trunk to the right, he will shift the position

of the bow to the left and if he misses the trunk to the left he will shift the position of the

bow to the right. The marksman looks at his experience from the last trial and adjusts his

behavior [. . . ].” (p. 86, Selten & Buchta, 1999). If there is no need for further adjustments

a stationary state is reached.

In previous studies impulse balance was first applied to auctions (Selten, Abbink, & Cox,

2005; Ockenfels & Selten, 2005) and later on to 2 ⇥ 2 games (Avrahami, Güth, & Kareev,

2005; Selten & Chmura, 2008), 2 ⇥ 2 ⇥ 2 games (Avrahami, Güth, & Kareev, 2005), as

well as, cyclic games (Goerg & Selten, 2009). In addition to out-perfoming Nash, impulse

balance equilibrium, performed at least as good as quantal response equilibrium in 2 ⇥ 2

games. Although, quantal response equilibrium is a parametric concept and impulse balance
1In Ho, Camerer & Chong (2007) self-tuning experience-weighted attraction learning competes against

quantal response equilibrium, which is a harder competitor than Nash.
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equilibrium is not (Selten & Chmura, 2008; Brunner, Camerer & Goeree, 2011; and Selten,

Chmura & Goerg, 2011).

Up to now impulse balance equilibrium was only applied to games in which players had two

decision alternatives to choose from. In this paper now, we introduce a generalized version of

impulse balance equilibrium, which can be applied to any normal form game. The predictive

power of generalized impulse balance is then tested against the one of Nash equilibrium in

experimental 3⇥ 3 games, which are based on the Bailiff and Poacher Game (Selten, 1991).

In total we gathered data on 26 games, 12 games with completely mixed Nash equilibria and

14 games with partially mixed Nash equilibria. Each game was played over 200 rounds by

12 matching groups of 8 fixed players.

Over all games, impulse balance performs significantly better than Nash equilibrium. In

both types of games – games with completely mixed Nash equilibria and games with partially

mixed Nash equilibria – generalized impulse balance yields predictions that are closer to the

data than the ones of Nash. In fact, generalized impulse balance has in all 26 games a smaller

quadratic distance to the data than Nash. This difference in predictive power is significant

in 24 out of the 26 games.

In the following we will describe the game structure of the Bailiff and Poacher Game, define

the two stationary concepts and apply them to the Bailiff and Poacher Game. Thereafter,

experimental design and procedure are presented. In the result section, we compare the

performances of generalized impulse balance and Nash over all games, within the two different

type of games and within the two player types. We conclude the paper with a short summary

and discussion.
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2 Game Structure and Stationary Concepts

In this section, we first introduce the structure of the experimentally investigated games,

which are all based on the Bailiff and Poacher Game (Selten, 1991). After that, we provide

the conditions for completely and partially mixed Nash equilibria. Subsequently, we define

the generalized impulse balance and apply the concept to the Bailiff and Poacher Game.

2.1 The Bailiff and Poacher Game

The Bailiff and Poacher Game (p. 144 in Selten, 1991) is a simple 3 ⇥ 3 games in which

a poacher tries to steal fish from three different ponds. A bailiff can secure only one of the

three ponds at a time. If the poacher is caught he gets punished; if the poacher is not caught

he can steel fish from the pond and receives a payoff for it. The ponds have different sizes

and therefore, they yield different payoffs to the poacher if he is not caught. The game is

very similar to Rock, Paper, Scissors with the difference that it is not a symmetric game.

Poacher
q1 q2 q3

B
ai

liff

p1
+1 0 0

0 V2 V3

p2
0 +1 0

V1 0 V3

p3
0 0 +1

V1 V2 0

Figure 1: The structure of the investigated Bailiff and Poacher Game

Figure 1 gives the payoff matrix of the Bailiff and Poacher Game. The bailiff receives a payoff

of 1 if he catches the poacher or a payoff of 0 if he does not. If the poacher is not caught, he

receives V

i

which is different for each pond i. The payoffs V

i

are ordered V1 > V2 > V3 > 0

and reflect the different pond sizes. If the poacher is caught he receives a payoff of zero.2

2To avoid negative payoffs in our experiment, the punishment is set to zero. Instead one could punish the
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2.2 Nash Equilibrium

0
.5

1

y=V3 ⁄ V2

0 .5 1

x=V1 ⁄ (V1+V2)

A

B

Figure 2: Payoff combinations with completely mixed equilibria (A) and partially mixed
equilibria (B). x and y are auxiliary variables with x = V1/(V1 + V2) and y = V2/V2. If the
border of an area is ruled on the outside it does not belong to this area. The border between
A and B belongs not to A, but to B for 1

2 < x < 1.

In this paper we investigate 3 ⇥ 3 games with unique equilibria that are either completely

mixed
�
p1 > p2 > p3 > 0, and q

i

= 1
3 for i = 1, 2, 3

�
or partially mixed

�
p1 > p2 > p3 =

0, q
i

= 1
2 for i = 1, 2, and q3 = 0

�
with p

i

denoting the probabilities of the row player and

q

i

the ones of the column player. In appendices A.1 and A.2 we show that the games have

exactly one equilibrium for combinations of payoffs V

i

that fulfill V1 > V2 > V3 > 0. In

appendix A.3 we determine the payoff conditions that either lead to completely or partially

mixed equilibria. The following inequality 1 gives the payoff condition for a completely mixed

poacher, which would yield negative payoffs. However, this would not affect the Nash equilibrium as long as
the punishment is the same for all ponds.
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equilibrium and inequality 2 gives the payoff condition for a partially mixed equilibrium.

V3 >
V1V2

V1 + V2
with p1 > p2 > p3 > 0, and q

i

= 1
3 for i = 1, 2, 3 (1)

V3 
V1V2

V1 + V2
with p1 > p2 > p3 = 0, q

i

= 1
2 for i = 1, 2, and q3 = 0 (2)

All combinations of payoffs leading to either completely mixed or partially mixed equilibria

are given in figure 2. Set A contains all combinations of V1, V2, V3 with V1 > V2 > V3 > 0

that result in completely mixed equilibria and set B contains all combinations that result

in partially mixed equilibria. All investigated games have combinations of payoffs V1, V2, V3

such that they are either part of set A or B. They are given in section 3.1.

Given the payoffs the resulting equilibrium probabilities for completely mixed games are

then calculated as

p

i

= 1�
2

1+Vi

1
1+V1

+ 1
1+V2

+ 1
1+V3

, and q

i

=
1

3
, for i = 1, 2, 3. (3)

and the ones in the partially mixed games with V1 + V2 + V3 = 15 as3

p

i

=
V

i

15
, for i = 1, 2, 3, q

i

=
1

2
for i = 1, 2, and p3 = 0. (4)

2.3 Generalized Impulse Balance

Generalized impulse balance assumes that a player i follows behavioral tendencies reflected

in the probabilities p
i1, .., pin for selecting the choices �⇤

i1, ...,�
⇤
in

. These probabilities are not

consciously chosen, but in line with learning direction theory (Selten & Buchta, 1999; Selten,

Abbink, & Cox, 2005), the result of an adjustment process.
3We standardized the payoffs with 15 to obtain 14 different combinations of V1,V2, and V3 (see appendix

A.5). However, the Nash equilibrium is invariant to the multiplication of all payoffs with a constant, and
therefore, other payoffs with sums different to 15 could be used.
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Consider a situation in which a player i has chosen a pure strategy �

i

in the preceding period,

but in the present period it turned out that another strategy �

⇤
i

would have been the better

choice. We call such a situation a foregone payoff situation. A player will be motivated in

such a situation to move towards the superior pure strategy �

⇤
i

. Thus, in response to the

foregone payoff situation probabilities p

i1, .., pin will change. If no more changes of these

probabilities occur impulse balance equilibrium is reached.

Selten & Chmura (2008) defined impulse balance equilibrium (Ockenfels & Selten, 2005)

for completely mixed 2 ⇥ 2 games. Payoffs of those completely mixed 2 ⇥ 2 games can be

parameterized as in figure 3. The field D,L player 1 experiences the forgone payoff c

L

and

in U,R he experiences c

R

. In U,L player 2 experiences a forgone payoff d

U

and in D,R he

experiences d
D

. Therefore, for player 1 foregone payoff situations are on the off diagonal and

for player 2 on the main diagonal in figure 3. In such forgone payoff situations impulses from

strategy �

i

to �

⇤
i

occur. If expected impulses from �

i1 to �

i2 are equal to expected impulses

from �

i2 to �

i1 then impulse balance is achieved. In this case a probability vector reflecting

the behavioral tendency of a player will reproduce itself in the long run.

Player 2

L R

P
la

ye
r

1

U

a

L

+ c

L

a

R

b

U

b

U

+ d

U

D

a

L

a

R

+ c

R

b

D

+ d

D

b

D

Figure 3: Structure of 2⇥ 2-Games with mixed equilibria

In Chmura, Goerg, & Selten (2012) we demonstrated that impulse balance leads to impulse
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proportionality in 2⇥2-games.4 In the following, we will turn our attention to the general case

of the impulse balance and define the equilibrium probabilities via impulse proportionality.

In the general case, impulses are calculated based on the impulse matrix, which is determined

from the payoff matrix. In the following a denotes the payoffs from the matrix for the column

player and b the ones of the row player. ↵

j

is the lowest payoff for the column player in

column j and �

i

is the lowest payoff for the row player in row i.

a = (↵
ij

)
n⇥m

and b = (�
ij

)
n⇥m

↵

j

= min
i=1,2,3

↵

ij

and �

i

= min
j=1,2,3

�

ij

The impulse matrixes for column and row players are then given as:

A = (a
ij

) with a

ij

= ↵

ij

� ↵

j

B = (b
ij

) with b

ij

= �

ij

� �i

Let p = (p1, ..., pn) and q = (q1, ..., qm) be the mixed strategies of the two players. In the

following T denotes the transpose operator for matrices, as well as, row and column vectors.
4In Chmura, Goerg, & Selten (2012), we introduced the concept of impulse matching learning.

According to this learning algorithm, players choose actions with probabilities that are determined by the
proportionality of impulses. Let us take a look at the example of the row player. The stationary point of
this process is reached, i.e. the row player does no longer adjust the probabilities, if the ratio of the two
probabilities for U (given as pU ) and D (given as pD) is the same as the ratio of expected impulses for U

and D: pU

pD
= qLcL

qRcR
. Impulses to U (given as cL) occur when L is played by the column player (probability

qL); impulses to D (given as cR) occur when R is played (probability qR). The equation can be rewritten
as pDqLcL = pUqRcR, which is the impulse balance equation. In impulse balance equilibrium the impulse
balance equation must be fulfilled. Thus, in 2 ⇥ 2-games impulse balance equilibrium leads to impulse
proportionality.
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Then, the expected impulses I(q) and J(p) of the two players are given as

I(q) =

0

BBB@

I1(q)

...

I

n

(q)

1

CCCA
= Aq

T and J(p) =
⇣
J1(p), ..., Jm(p)

⌘
= Bp

In the generalized impulse balance equilibrium, the two players play according to impulse

proportionality, which is given as:

p

i

=
I

i

(q)

I1(q) + ...+ I

n

(q)
for i = 1, ..., n

q

j

=
I

j

(p)

I1(p) + ...+ I

m

(p)
for i = 1, ...,m

Application to the Bailiff and Poacher Game: Recall figure 1 which gives the payoff

matrix of the investigated games. For these games, the payoff matrix and the impulse matrix

are identical. The expected impulses are then given as

I(q) =

0

BBB@

q1

q2

q3

1

CCCA
and J(p) =

⇣
(1� p1)V1, (1� p2)V2, (1� p3)V3

⌘
.

For generalized impulse balance the equilibrium p

i

= q

i

for i = 1, 2, 3 and q

i

is calculated

according to the impulse proportionality:

q

j

=
(1� p

i

)V
i

(1� p1)V1 + (1� p2)V2 + (1� p3)V3
for i = 1, 2, 3 (5)
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Uniqueness: In the following we show that the investigated games have unique impulse

matching equilibria. From equation 5 it follows that

p

i

1� p

i

=
V

i

(1� p1)V1 + (1� p2)V2 + (1� p3)V3
for i = 1, 2, 3

We introduce the auxiliary variable Z as Z = (1� p1)V1 + (1� p2)V2 + (1� p3)V3, insert it

into the previous equation, solve it, and simplify for p
i

.

p

i

1� p

i

=
V

i

Z

p

i

= (1� p

i

)
V

i

Z

1� p

i

=
1

1 + Vi
Z+Vi

p

i

=
V

i

Z + V

i

Given p

i

we can rewrite Z as

Z =
V1

1 + V1
Z

+
V2

1 + V2
Z

+
V3

1 + V3
Z

Z = Z

⇣
V1

V1 + Z

+
V2

V2 + Z

+
V3

V3 + Z

⌘

The sum of the probabilities must be p1 + p2 + p3 = 1 and thus the following equation must

be fulfilled:

V1

Z + V1
+

V2

Z + V2
+

V3

Z + V3
= 1 (6)

The left side of equation 6 is equal to three for Z = 0 and it becomes smaller with increasing
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Z. The limit for Z ! 1 is zero. Consequently, equation 6 has exactly one solution and this

solution is positive.

3 Experimental Design

We now turn to the experimental design. We first give the parameters of the investigated

games and the resulting Nash equilibria, as well as, generalized impulse balance equilibria.

Afterwards we turn to the procedural details.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

0
.5

1

V3 ⁄ V2

0 .5 1

V1 ⁄ (V1+V2)

A

B

Figure 4: Actual payoff combinations for completely mixed equilibria (A) and partially mixed
equilibria (B). Payoff combinations are labeled with game numbers. If the border of an area
is ruled on the outside it does not belong to this area. The border between A and B belongs
not to A, but to B.
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3.1 Experimental Games and Predictions

In total we gathered data on 26 games, 12 games with completely mixed equilibria and 14

games with partially mixed equilibria. The games were selected to cover a broad range of

parameter combinations fulfilling the requirements discussed in section 2.2. Figure 4 gives

the distribution of payoffs used for the completely mixed games (A) and partially mixed

games (B).

Table 1 gives the actual payoffs for each game, as well as, the resulting probabilities of Nash

equilibrium and generalized impulse balance. Games 1 to 12 are with completely mixed

equilibria and games 13-26 are with partially mixed equilibria. We tried to find combinations

(V1, V2, V3) that were integer numbers or with .5 after the decimal point. Sections A.4 and

A.5 in the Appendix give more details on the selection of payoffs (V1, V2, V3).

3.2 Procedures

The experiments were conducted in 2007 at the Smith Experimental Economics Research

Center of the Shanghai Jiao Tong University. The experiment was programmed in z-Tree

(Fischbacher, 2007) and subjects were students recruited via online announcements. In total

1,246 students participated.

The experiments were conducted by local research assistants. Upon arrival, subjects were

seated in cubicles, the printed instructions were distributed, and read to the subjects.5 After

all remaining questions were answered the experiment started. During each session two

games were played, each of the games was played for 200 rounds. Subjects were assigned

to matching groups of 8 players, 4 subjects in the role of column players and 4 subjects in

the role of row players. The roles and the matching groups were fixed for the course of the

whole experiment. Subjects knew that their roles were fixed, but did not know the size of
5An English translation of the instructions is available in Appendix B.
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the matching groups and they were not informed about the second game to come.

Games 1-13 Games 14-26

1. Game #Obs. 2. Game #Obs. # Subjects 1. Game #Obs. 2. Game #Obs. # Subjects
1 6 14 6 48 14 6 1 6 48
2 6 15 6 48 15 6 2 6 48
3 6 16 6 48 16 6 3 6 48
4 6 17 6 48 17 6 4 6 48
5 6 18 6 48 18 6 5 6 48
6 6 19 6 48 19 6 6 6 48
7 6 20 6 48 20 6 7 6 48
8 6 21 6 48 21 6 8 6 48
9 6 22 6 48 22 6 9 6 48
10 6 23 6 48 23 6 10 6 48
11 6 24 6 48 24 6 11 6 48
12 6 25 6 48 25 6 12 6 48
13 6 26 6 48 26 6 13 6 48

Table 2: Order of played games, number of gathered observations, and number of subjects

For each of the 26 games we gathered 12 observations. The first 6 observations are completely

independent as they were gathered as first games played in each session. The additional 6

observations per game were gathered with the second games in the sessions. In total we

gathered 156 completely independent observations, i.e., the games that were played first,

and additional 156 observations resulting from the games that were played second in each

session. Table 2 gives an overview of the order in which the games were played and the

number of collected observations.

4 Results

In the following we will compare the predictive success of Nash equilibrium and generalized

impulse balance equilibrium. Our measure of predictive success is the mean quadratic

distance of the corresponding concept to the data. The predictive success of a stationary

concept increases with a decreasing mean quadratic distance, i.e., the smaller the mean

quadratic distance, the closer the predictions to the experimental data. The mean quadratic

13



distance Q is the average quadratic distance over all 26 games and over all 12 matching

groups per game. It is defined as

Q =
1

26

26X

g=1

 
1

12

12X

n=1

✓ 3X

i=1

(q
i,g

� f

Poacher

i,g,n

)2 +
3X

i=1

(p
i,g

� f

Bailiff

i,g,n

)2
◆!

,

with f

i,g,n

being the observed mean frequencies for strategy i in game g and matching group

n of the poacher or the bailiff. The probabilities for the poacher and bailiff for strategy i in

game g are given as q

i,g

and p

i,g

, respectively.

4.1 Overall Comparison

Figure 5 gives the mean quadratic distances of Nash equilibrium and impulse balance equilibrium

in the completely and partially mixed games. Table 3 gives the mean quadratic distances

for each game, overall games, for the completely mixed and for the partially mixed games.

In addition, p-values of the two-sided Fisher-Pitman permutation test for paired replicates

are given.6

The quadratic distance of Nash to the data is over all games 2.2 times larger then the one

of impulse balance; 1.8 times larger in the completely mixed games and 2.6 times larger in

the partially mixed games. Thus, impulse balance performs significantly better then Nash

equilibrium over all games and, in addition, in the subsets of completely and partially mixed

games (all comparisons with p < 0.01, two-sided Fisher-Pitman permutation test). In fact,
6All tests within one game are based on all 12 observations, the tests over different games are only based

on the first 6 observations. We did this to prevent testing two observations from the same matching group
as independent observations. However, the order of games does not influence the behavior: comparing the
mean quadratic distance to Nash in the 156 games played first with the one from the 156 played second
yields no significant differences (p = 0.868, two-sided Fisher-Pitman permutation test). The same holds true
if we compare the quadratic distance of generalized impulse balance (p = 0.943).
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Figure 5: Mean quadratic distances of generalized impulse balance and Nash equilibrium in
completely and partially mixed games

impulse balance equilibrium has in all 26 games a smaller quadratic distance to the data

than the Nash equilibrium. The respective difference is for all but two games (5 and 19)

significantly smaller for impulse balance.

4.2 Comparison by Player Type

In the previous section we have tested the mean quadratic distances over both player types.

We now analyze the behavior of row and column players separately.

The mean quadratic distance of column players’ behavior to the predictions of Nash equilibrium

is 1.9 times larger than to the predictions of impulse balance; the one of the row players even

2.5 times. Thus, impulse balance yields for both player types predictions that are significantly

more accurate then the ones of Nash (both p < 0.01, two-sided Fisher-Pitman permutation

test).
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Mean Quadratic Distance
Game Nash equilibrium Impulse balance Test result

C
om

pl
et

el
y

M
ix

ed
G

am
es

1 .0081996 .0012142 p < 0.01
2 .046566 .0161672 p < 0.01
3 .3925316 .3370174 p = .024
4 .3533856 .3157302 p = .069
5 .438024 .4311328 p = .693
6 .1479702 .0436702 p < 0.01
7 .0889139 .0036896 p < 0.01
8 .1067579 .0035281 p < 0.01
9 .2257292 .1066953 p < 0.01
10 .2447339 .1094036 p < 0.01
11 .1773554 .0063303 p < 0.01
12 .2358219 .0106885 p < 0.01

Pa
rt

ia
lly

M
ix

ed
G

am
es

13 .4418155 .093474 p < 0.01
14 .102257 .0035309 p < 0.01
15 .0538412 .0057088 p < 0.01
16 .1594839 .0023688 p < 0.01
17 .5023688 .1825391 p < 0.01
18 .5692925 .33373 p < 0.01
19 .2267045 .1659287 p = .148
20 .1364765 .0043931 p < 0.01
21 .6072232 .3554866 p < 0.01
22 .6190886 .2515403 p < 0.01
23 .1364617 .0119635 p < 0.01
24 .2552776 .0126557 p < 0.01
25 .7569099 .4457908 p < 0.01
26 .2805532 .0257224 p < 0.01

Overall .2812978 .1261577 p < 0.01
1-12 .2054991 .1154389 p < 0.01
13-26 .3462682 .1353452 p < 0.01

Table 3: Mean quadratic distances for Nash equilibrium and generalized impulse balance.
The p-Values are for the two-sided Fisher-Pitman permutation test with paired replicates,
test within games are based on all 12 observations, tests over different games are based on
the first 6 independent observations

Figure 6 gives the mean quadratic distances of the two stationary concepts to each player

type in completely and partially mixed games. The figure reveals that the better performance

of impulse balance for column players is driven by the bad performance of Nash in partially

mixed games. There, Nash has a significantly larger distance to the behavior of column
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Figure 6: Mean quadratic distances of impulse balance equilibrium and Nash equilibrium in
completely and partially mixed games for the two player types

players than impulse balance (p < 0.01, two-sided Fisher-Pitman permutation test); while in

completely mixed games the difference is not significant (p = 0.25, two-sided Fisher-Pitman

permutation test). For row players the picture looks a little bit different. There, impulse

balance dominates Nash in completely, as well as, partially mixed games (both p < 0.01,

two-sided Fisher-Pitman permutation test).

5 Summary and Discussion

In this paper we derived a generalized version of impulse balance equilibrium, which is a

non-parametric stationary concept based on the idea of learning direction theory (Selten &

Buchta, 1999). The predictions of generalized impulse balance were tested against the ones

of Nash in 26 experimental 3⇥ 3 games, all based on the Bailiff and Poacher Game (Selten,

1991).
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Over all games generalized impulse balance performed significantly better than Nash equilibrium:

the quadratic distance of the Nash equilibrium to the data was 2.2 times larger then the one

of impulse balance. Generalized impulse balance did not only perform better over all games,

but in each single game of the 26 games played. In all but two games this smaller distance

to the data was statistically significant with a two-sided Fisher-Pitman permutation test.

Our 3 ⇥ 3 data, together with the evidence gathered in 2 ⇥ 2-games (Avrahami, Güth, &

Kareev, 2005, Selten & Chmura, 2008), 2⇥ 2⇥ 2-games (Avrahami, Güth, & Kareev, 2005),

as well as, cyclic games (Goerg & Selten, 2009), suggests that impulse balance is very good

predictor for human behavior in games with mixed Nash equilibria. In all of these studies

impulse balance outperformed the mixed predictions of Nash equilibrium.

With quantal response equilibrium (McKelvey and Palfrey, 1995) there already exists a well

established concept, which usually fits empirical data better than Nash does. However, it has

one free parameter to be estimated from the data, while impulse balance is parameter free.

We, therefore, believe that impulse balance is a powerful alternative to Nash equilibrium for

games with mixed strategies.
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A Equilibria and Payoffs

The games in our experiment have the following structure, with V

i

> V

j

> V

k

> 0

Poacher
i j k

B
ai

liff

i +1 0 0
0 V

j

V

k

j 0 +1 0
V

i

0 V

k

k 0 0 +1
V

i

V

j

0

Figure 7: The structure of the investigated 3⇥ 3 games

In the following sections, we first show the uniqueness of completely and partially mixed equilibria

for the investigated games. Thereafter, we will determine the conditions that lead to completely

mixed and partially mixed equilibria and, finally, we will show how we selected the payoffs of the

26 games investigated in this paper.

A.1 Uniqueness of the completely mixed equilibrium

The equilibrium probabilities for the bailiff are given as:

p

i

= 1�
2

1+Vi

1
1+V1

+ 1
1+V2

+ 1
1+V3

,

while the poacher plays with

q

i

=
1

3
, for i = 1, 2, 3.

The expected payoff of the bailiff is:

E

Bailiff

=
1

3

21



The expected payoff of the poacher is:

E

Poacher

=
1

3
[p1(V2 + V3) + p2(V1 + V3) + p3(V1 + V2)]

=
1

3
[(1� p1)V1 + (1� p2)V2 + (1� p3)V3]

=
V

1
1�p1

+ 1
1�p2

+ 1
1�p3

with V = V1 + V2 + V3.

Proposition 1. If p = (p1, p2, p3) with p1 > p3 > p3 > 0 and p1 + p3 + p3 = 1 is an equilibrium of

the game, the game has no additional equilibria.

Proof:

1. The game has no pure strategy equilibrium. This is straight forward given the game structure

in figure 7.

2. It remains to be shown that no equilibrium exists for which the pure strategy k has the

probability p

k

= 0 and the two remaining strategies i and j have positive probabilities p
i

and

p

j

.

We consider the following part of the original game:

i j

i

+1 0
0 V

j

j

0 +1
V

i

0

If player D does not use strategy k it cannot be part of W’s equilibrium strategy. Thus, an

equilibrium with p

k

= 0 must be an equilibrium of the above 2 ⇥ 2 game. The equilibrium

probabilities of this game are given as:

q

i

= q

j

=
1

2
, p

i

=
V

i

V

i

+ V

j

, and p

j

=
V

j

V

i

+ V

j

.
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Without loss of generality we assume that V

i

> V

j

, which implies 1/V
j

> 1/V
i

and thus p

i

> p

j

.

Then, the resulting equilibrium payoffs in the 2⇥ 2 game are

E

Bailiff

=
1

2
, and E

Poacher

=
1

1
Vi

+ 1
Vj

.

The equilibrium of the 2⇥ 2 game is an equilibrium point of the investigated 3⇥ 3 game if

1
1
Vi

+ 1
Vj

� V

k

holds. Otherwise, V
k

would be the only best response of D. Thus, the investigated 3⇥3 games have

a completely mixed equilibrium with p

k

> 0, if

1
1
Vi

+ 1
Vj

< V

k

.

This corresponds to
1

V

k

<

1

V

i

+
1

V

j

.

The left side reaches its maximum for i = 1 and j = 2 and the inequality holds for all triple with

1

V3
<

1

V1
+

1

V2
.

Assume that p = (p1, p2, p3) with p1 > p3 > p3 > 0 and p1 + p3 + p3 = 1 is a completely mixed

equilibrium of the game. From the inverse formula it follows that the last inequality is equivalent

to :

1� p3 < 1� p1 + 1� p2 , 0 < 1� p1 � p2 + p3 ) 0 < 2p3

Which is always true. Thus, we conclude our first result:

Result 1. Our 3 ⇥ 3 game has exactly one completely mixed equilibrium p = (p1, p2, p3) with

p1 > p3 > p3 > 0 if conditions 1
V3

<

1
V1

+ 1
V2

and V1 > V2 > V3 > 0 are fulfilled. If this is the case

no other equilibrium than the completely mixed one exists.
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A.2 Uniqueness of the partially mixed equilibrium

The game has a partially mixed equilibrium (p1, p2, p3) with p1 > 0, p2 > 0 and p

k

= 0 if

V

k

 1
1
Vi

+ 1
Vj

.

This is the case iff
1

V

k

� 1

V

i

+
1

V

j

is true. If such an equilibrium for k = 1, 2, 3 exists adding the corresponding inequalities yields

1

V1
+

1

V2
+

1

V3
� 2[

1

V1
+

1

V2
+

1

V3
],

which is obviously not true. Can two of those equilibria exist? If so, one of the equilibria must be

with p3 = 0. Therefore, it follows that:

1

V3
� 1

V1
+

1

V2
.

If the game has in addition a partially mixed equilibrium with p2 = 0 it follows that:

1

V2
� 1

V1
+

1

V3
.

Substituting V3 in the previous inequality leads to

1

V2
� 1

V1
+

1

V1
+

1

V2
.

Which corresponds to

0 � 2

V1
.

Therefore, there exists no partially mixed equilibrium with p2 = 0. Analogously, one can show that

the same must hold for p1 = 0. Thus, in a partially mixed equilibrium (p1, p2, p3) it is necessary
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that p3 = 0. Since the game must have at least one equilibrium we have the following result.

Result 2. If the game does not have a completely mixed equilibrium it follows that the equilibrium of

the part game with strategies 1 and 2 is also the equilibrium of the whole game. No further equilibria

exist for the whole 3⇥ 3 game.

A.3 Payoff conditions for the different types of Equilibria

From results 1 and 2 it follows that for V1 > V2 > V3 > 0 the following result must be true:

Result 3. The game has exactly one equilibrium. For

V3 >
V1V2

V1 + V2

it is the completely mixed equilibrium (p, q) with p1 > p2 > p3 > 0 and q

i

= 1
3 with i = 1, 2, 3. For

V3 
V1V2

V1 + V2

it is the partially mixed equilibrium (p, q) with p3 = q3 = 0, p1 > p2 > 0 and q

i

= 1
2 with i = 1, 2.

We will now investigate the implications of result 3 for the parameter triple (V1, V2, V3). Therefore,

we introduce the auxiliary variables x and y:

x =
V1

V1 + V2
and y =

V3

V2

The inequality V3 >
V1V2
V1+V2

can be rewritten as V3
V2

>

V1
V1+V2

, which means that

y > x.

Because of V1 > V2 we know that x >

1
2 and because of V3 < V2 we know that y < 1. Therefore,
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the equilibrium is completely mixed iff the inequality

1

2
< x < y < 1 (7)

holds. Likewise, the equilibrium is partially mixed iff the inequality

1

2
< x  y < 1 (8)

holds. We now determine for each given pair (x, y) with 1
2 < x < 1 and 1

2 < y < 1 and a given

V = V1 + V2 + V3 the corresponding parameters V1, V2, and V3.

The parameters V

i

as functions of x, y, and V

From x(V1 + V2) = V1 it follows that V1 =
1

1�x

V2. In addition, V3 = yV holds. Thus,

V = (
1

1� x

+ 1 + y)V2.

The inverse of the coefficient of V2 can be simplified as:

1
1

1�x

+ 1 + y

=
1� x

2� x+ y(1� x)

We now introduce a always positive auxiliary variable

z = 2� x+ y(1� x)

and get

V1 =
V

z

, V2 = (1� x)
V

z

, and V3 = y(1� x)
V

z

.

From this, one can see that V1 > V2 > V3 > 0 as well as x = V1
V1+V2

and y = V3
V2

hold for the values

of V
i

.
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Figure 8: Payoff combinations with completely mixed equilibria (A) and partially mixed
equilibria (B). x and y are auxiliary variables with x = V1/(V1 + V2) and y = V2/V2. If the
border of an area is ruled on the outside it does not belong to this area. The border between
A and B belongs not to A, but to B for 1

2 < x < 1.

Figure 8 gives the combination of parameters that lead to completely and partially mixed equilibria.

If the border of an area is ruled on the outside it does not belong to this area. The border between

A and B belongs not to A, but to B for 1
2 < x < 1.

For a given V it holds that V1 = V

z

, V2 = (1 � x)V
z

and V3 = y(1 � x)V
z

with z=2-x+y(1-x). The

set A [ B contains all (x, y) which results in the triples (V1, V2, V3) with V1 > V2 > V3 > 0. Points

(x, y) in A lead to triples (V1, V2, V3) with completely mixed equilibria (p1 > p2 > p3 > 0) and

points (x, y) in B lead to triples (V1, V2, V3) with partially mixed equilibria (p1 > p2 > p3 = 0).

A.4 Payoffs for the completely mixed games

In our experiments, we want to investigate 12 games with completely mixed equilibria. We search

for twelve parameter combinations that are relatively uniformly distributed in the space (p1, p2, p3)

with p1 > p2 > p3 > 0 and p1 + p3 + p3 = 1. Therefore, we consider all games with equilibria
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Game k1 k2 k3 m1 m2 m3 P M1 M2 M3 V1 V2 V3

1 6 5 4 9 10 11 990 110 99 90 55 49.5 45
2 7 5 3 8 10 12 960 120 96 80 60 48 40
3 7 6 2 8 9 13 936 117 104 72 58.5 52 36
4 8 4 3 7 11 12 924 132 84 77 66 42 38.5
5 8 5 2 7 10 13 910 130 91 70 65 45.5 35
6 8 6 1 7 9 14 882 126 98 63 63 49 31.5
7 9 4 2 7 11 13 858 143 78 66 71.5 39 33
8 9 5 1 6 10 14 840 140 84 60 70 42 30
9 10 3 2 5 12 13 780 156 65 60 78 32.5 30
10 10 4 1 5 11 14 770 154 70 55 77 35 27.5
11 11 3 1 4 12 14 672 168 56 48 84 28 24
12 12 2 1 3 13 14 546 182 42 39 91 21 19.5

Table 4: Parameters and payoffs for the completely mixed games

p = (p1, p2, p3) for which

p

i

=
k1

15
for i=1,2,3

with k1 > k2 > k3 and k1 + k2 + k3 = 15 apply. The payoffs are calculated with the help of

the inverse formula with a preference for small integer numbers. We now introduce the following

notations:

m

i

= 15� k

i

, for i = 1, 2, 3

P = m1m2m3

M

i

=
P

m

i

.

It follows from the inverse formula that

V1 : V2 : V3 =
1

1� p1
:

1

1� p2
:

1

1� p3

and therefore it holds that

V1 : V2 : V3 =
15

m1
:
15

m2
:
15

m3
=

1

m1
:

1

m2
:

1

m3
.
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Multiplying the right side with P yields

V1 : V2 : V3 = M1 : M2 : M3

Table 4 give the 12 combinations of k
i

, m
i

, P , and M

i

investigated in our experiment. V

i

can be

fixed as V

i

= M

i

for i = 1, 2, 3. If M1, M2, and M3 have a common divisor K one can instead fix

V

i

as V

i

= Mi
K

.

A.5 Payoffs for the partially mixed games

In our experiments, we want to investigate 14 games with partially mixed equilibria. We search for

fourteen parameter combinations that are relatively uniformly distributed in the space (p1, p2, p3)

with p1 > p3 > p3 = 0 and p1 + p3 + p3 = 1.

Game V1 V2 V3

13 8 7 3
14 8 7 2
15 8 7 1
16 9 6 3
17 9 6 2
18 9 6 1
19 10 5 3
20 10 5 2
21 10 5 1
22 11 4 2
23 11 4 1
24 12 3 2
25 12 3 1
26 13 2 1

Table 5: Payoffs for the partially mixed games

Let p = (p1, p2, p3) be a strategy of D with p1+p2 = 1 and p3 = 0. If p is together with q = (12 ,
1
2 , 0)

an equilibrium of a game with positive payoffs V1, V2, V3 and V1 > V2 > V3 > 0 then the following

holds:

p1 =
V1

V1 + V2
, p2 =

V2

V1 + V2
, and V3 

V1V2

V1 + V2
.
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Thus,

V1 = p1(V1 + V2), V2 = p2(V1 + V2), and V3 = p1p2(V1 + V2)

For every fixed V = V1+V2+V3 and every partially mixed equilibrium p = (p1, p2, 0) has the game

with the parameters V1, V2, and V3 exactly this equilibrium if

V1 = p1(V1 + V2), V2 = p2(V1 + V2), and 0 < V3 = p1p2(V1 + V2)

holds. This condition describes the combination of parameters (V1, V2, V3) with V1 > V2 > V3 > 0

that belong to games with equilibria (p1, p2, 0). In equilibrium, the probability p

i

is given as

p

i

=
k

i

15
, with V

i

= k

i

for i = 1, 2.

Table 5 gives all combinations (V1, V2, V3) with V1 > V2 > V3 > 0 for which p3 = 0 and integer k

i

and V3.
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B Instructions

Welcome to this experiment!

General information

This experiment gives you the opportunity to earn money with your decisions. The size of your

earnings depends on your own decisions and on the decisions of the other participants of the

experiment. You will receive a show-up fee irrespective of the result of the experiment. Please

read the explanations of the experiment carefully. All participants receive identical explanations.

We would like to ask you not to communicate with the other participants from now on. If you have

any questions, please feel free to ask us. All decisions are taken anonymously. You will shortly draw

a random number. This number corresponds to the number of the booth in the laboratory.

The course of the experiment

24 people in this room will participate at this experiment. The duration of this experiment will be

200 periods. Please take a look at the figures on page 2. A similar table will be shown to you during

the experiment. You will be either a row player or a column player. In each round of the experiment

you will be asked to choose a row or a column, respectively. The player type will be assigned to

you randomly. You will be this player type till the end of the experiment. In each round, you will

be matched to a different player of the other type. Neither you will know who the other player is

nor if you have been playing with him before.

The numbers shown in the table indicate the points you can earn during the experiment. The

points shown in the upper left corner of each cell are the payoffs for the row player; the points in

the lower right corner are the payoffs for the column player. To avoid confusion, in the experiment

your payoffs will be written in blue while the other player’s payoffs will be shown in red. To choose

a row or a column, you just have to press the according button.

After both players have taken their decision, the resulting cell and your payoff will be shown to you.

This procedure will be repeated for 200 periods. From round 2 on, you can see the sum of points

you earned so far in a box on your screen.
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End of the Experiment and Payments

At the end of the experiment, you will be told your Final payoff, i.e. the sum of the payoffs of each

round. Afterwards, a short questionnaire will appear on your screen. Please answer the questions

as carefully as possible. The points will be transferred to RMB by a fixed exchange rate.
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