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The field of machine learning has allowed researchers to generate and analyse vast amounts of data using a wide
variety of methodologies. Artificial Neural Networks (ANN) are some of the most commonly used statistical
models and have been successful in biomarker discovery studies in multiple disease types. This review seeks
to explore and evaluate an integrated ANN pipeline for biomarker discovery and validation in Alzheimer's
disease, the most common form of dementia worldwide with no proven cause and no available cure. The pro-
posed pipeline consists of analysing public datawith a categorical and continuous stepwise algorithmand further
examination through network inference to predict gene interactions. This methodology can reliably generate
novel markers and further examine known ones and can be used to guide future research in Alzheimer's disease.
© 2018 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Keywords:
Artificial neural network
Machine learning
Supervised learning
Network inference
Alzheimer's disease
Biomarker discovery
1. Introduction

1.1. Machine Learning

One of the biggest challenges that has arisen as part of the recent
advances in the field of bioinformatics, is the vast amount of data that
is being generated at an ever-increasing pace [1–3]. Utilising techniques
such as next generation RNA and DNA sequencing, researchers have
been able to provide access to exceptionally precise information on
entire genomes [4]. This massive volume of data has created a problem
of complexity, making it impossible to interrogate the data with tradi-
tional methodologies and provide answers with the desired degree of
accuracy.

Machine learning is an interdisciplinary field of bioinformatics that
involves a data-driven class of algorithms that seek to find solutions
to a given problem by studying patterns in datasets based on factors
such as gene expression and clinical information across a multitude of
cases. These approaches have been widely and successfully used in
biology, particularly in biomarker discovery studies [5,6], due to the
versatility and power afforded by them and has resulted in a wide vari-
ety of machine learning algorithms and methodologies. This review
seeks to explore the potential of an Artificial Neural Network (ANN)
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Research Network of Computational a
based pipeline to discover, analyse and validate novel biomarkers in
diverse diseases. For this purpose, Alzheimer's disease (AD) will be
used since the cause of the condition is poorly understood and there is
no widely available cure or treatment.

1.2. Supervised Learning

Supervised learning approaches, the mechanisms of which are fur-
ther discussed in chapter 3, are widely applied and use source features
to predict a target class [7]. The supervised approach allows the
algorithm to train itself by detecting patterns in large data sets that
are predictive of the target class, such as highlighting the variance at
the genetic level between AD and cognitively normal individuals. We
can also make use of previous studies and adjust the algorithm param-
eters so that it accounts for this information, which allows the power
of this approach to increase over time and produce more accurate and
robust results. One major advantage of supervised learning is that
such approaches are tolerant of the highly complex, nonlinear and
noisy data that are often found in biological systems.

1.3. Artificial Neural Networks

ANNs are statisticalmodels that emulate the function of a network of
human neurons, for the purpose of encapsulating information in order
to analyse large, complex datasets. The learning process is based on
the mathematical interconnections between the processing elements
that constitute the network architecture [8]. This allows them to classify
cases based on data by assigning a numerical weight value to each input
nd Structural Biotechnology. This is an open access article under the CC BY license (http://

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.csbj.2018.02.001
mailto:dimitrios.kapsoulis@ntu.ac.uk
Journal logo
https://doi.org/10.1016/j.csbj.2018.02.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2018.02.001&domain=pdf
www.elsevier.com/locate/csbj


78 D. Zafeiris et al. / Computational and Structural Biotechnology Journal 16 (2018) 77–87
and adjust them as they sample the data, effectively learning the
optimal solution. The main advantages of using ANNs include their
high fault and failure tolerance, scalability and consistent generalisation
ability, which allows them to predict or classify well for new, fuzzy and
unlearned data [8,9]. This makes the ideal for biomarker studies which
resulted in their use in generating panels of biomarkers that can be
used as predictors in conjunction with each to aid prognosis in diseases
such as breast cancer [10].

ANNarchitecture is based on the perceptron, coined by Rosenblatt in
1958, which is composed of a single artificial processing neuronwith an
activation threshold, adjustableweights and bias, but only usable for the
classification of linearly separable patterns, as learning is achieved
when an error occurs during testing. This is rarely the case with com-
plex conditions such as AD, cancer or diabetes, as patients rarely fall in
a standard distribution and the variance between them is potentially
significant. Typically, ANNs make use of a Multi-Layer Perceptron
(MLP) which is made up of multiple perceptrons arranged in layers of
three or more, consisting of input, hidden and output layers, which
consider predictor variables, perform feature detection through an acti-
vation function and output the results of the algorithm respectively.

Alternative ANN architectures include Recurrent Neural Networks,
Radial Basis Function, Kohonen's self-organizing maps and Adaptive
Resonance Theory but the focus of this review will be on the MLP.

ANNs have seen widespread success in predicting and classifying
data inmultiple cancer subtypes such as early detection [11], prediction
of long term survival [12] and biomarker discovery in breast cancer
[10,13], classifying colorectal cancer tissues [14] and discriminating
between benign and malignant endothelial lesions [15]. Thus, we are
confident that they will see similar success in AD.

The main ANN disadvantage is their liability to overfit when the
parameters have not been optimised and often receive criticism for
their “black box” approach that allows for little interpretation of the
results and process.

1.4. Alzheimer's Disease

Alzheimer's disease is recognised as the most common form of
dementia worldwide. This chronic neurodegenerative disease usually
starts slowly, with the common early symptom being difficulty to re-
member short-term events and progressively getting worse, with severe
degeneration of multiple brain regions including the hippocampus,
Fig. 1. Physiological differences between a healthy and AD brain section, demo
Source: www.alz.org.
entorhinal cortex, neocortex, nucleus basalis, locus coeruleus and raphe
nuclei (Fig. 1), leading to disruption inmental functions such as compre-
hension, judgement, language and calculation. Moreover, due to slow
progression that characterises the disease as well as common miscon-
ceptions, it is common for patients and their families to assume that
this degeneration is a normal part of ageing, thus delaying early progno-
sis. It is crucial to emphasise that AD is the abnormal degeneration of
mental faculties and while age is indeed the biggest risk factor, it is far
from the only one.

In addition to the enormous emotional cost the disease exerts on
patients and their families, it has become a major public concern due
to the high healthcare costs which, in combination with the overall
rise in the elderly population has classified AD as a priority condition
[16]. According to the World Health organisation, in 2015 there were
over 40 million people with dementia in the US, 15 million of which
suffered from Alzheimer's disease. Healthcare costs have spiralled to
over USD 900 billion, whereas in Europe the costs have risen to nearly
250 billion euros, a rise of almost 40% from 2008. Moreover, it is
projected that by 2050, 22% of the world's population will be over the
age of 60, and therefore at increased risk, with patients in third world
countries accounting for 80% of the total.

1.5. Theories and Treatments

Compounding the social and economic challenges presented by the
disease is the fact that its root causes are unknown and there is no
cure or effective treatment. While there is a small percentage of the
population, 1–5% of all cases, that suffer from early onset AD, which is
caused by mutations in the amyloid precursor protein gene (APP) and
the two presenilin genes PSEN-1 and PSEN-2, the cause for themajority
of late onset Alzheimer's cases is still unknown. In the last decade,
clinically approved drugs for AD such as Cholinesterase inhibitors like
Donepezil, Galantamine and Rivastigmine as well as N-methyl-D-
aspartate antagonistMemantine [17] have not been able tomake signif-
icant progress with the disorder.

Cholinesterase inhibitors, which target the cholinergic systems in
the basal forebrain, where developed based on the theory that the loss
of acetylcholine neurons during the early development of the disease
inhibit the synthesis and degradation of acetylcholine, one of the
major neurotransmitters in the brain. Therapy was targeted at patients
with mild, moderate and severe AD but improvement of cognitive
nstrating white matter shrinkage in the hippocampus and cerebral cortex.

http://www.alz.org
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functions was noticeably better in patients that started treatment early
[18]. N-methyl-D-aspartate antagonist on the other hand, is an uncom-
petitive moderate affinity antagonist, targeted at moderate to severe
AD cases, with the purpose of protecting neurons from excitotoxicity.
Other forms of therapy have focused on combinations of these drugs
and treatment of the behavioural and psychological symptoms of the
disease.

More recently, therapeutic approaches have been based on the
amyloid hypothesis, attempting to slow, stop and reverse the develop-
ment of amyloid plaques by inhibiting production of beta amyloid, as
well as the hyperphosphorylation and deposition of tau protein.
Finally, further research has been focusing on the effects of oxidative
damage and chronic inflammation in the brain to determine their
effects in the development and progression of AD. It is evident by the
variety of approaches as well as the failure of most forms of therapy
to reverse or even significantly slow the disease progression, that a
deeper understanding of the pathogenesis of AD is urgently needed
to effectively combat it.

1.6. Physiology of Alzheimer's Disease

Historically, identification of AD could only be performed post
mortemupon examination of the brain tissue. As a result, the physiolog-
ical hallmarks of AD have been widely considered to be the presence of
amyloid plaques, extracellular deposits of insoluble beta-amyloid (Aβ)
in the parenchyma of the brain as well as neurofibrillary tangles
(NFT), intracellular deposits of hyper-phosphorylated tau protein
which fill the neuron and take its shape, preventing it from functioning
correctly (Fig. 2).

Amyloid plaques consist of a solid core of defective Aβ and are
surrounded by degenerate axons and dendrites, activated microglia
and astrocytes. This defective protein is a result of the cleaving of the
amyloid precursor protein (APP) by secretases beta (β) and gamma
(γ). The location APP is cleaved by γ-secretase determines whether
Aβ will be the long or short form. The short form is the most common
(~90%) but the long form is found as often as 40% in the brains of AD
patients [19], and while small amounts can be cleared easily, the high
rate of production leads to the system being unable to keep up.
Moreover, soluble forms of the protein have been shown to be neuro-
toxic and synaptotoxic [20].

Neurofibrillary tangles are a result of the hyperphosphorylation of
tau, a microtubule associated protein (MAP) whose role is to bind to
tubulin and stabilise the structure of neurons tomaintain their function.
When hyperphosphorylated due to excessive amounts of phosphate
Fig. 2. Amyloid plaques (pink) and neurofibrillary tangles (black) in Alzheimer's disease
brain tissue. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
Source: www.alzheimers.org.uk.
ions, it changes from its normal soluble form to oligomeric and
fibrillized forms, does not bind to tubulin, inhibitsmicrotubule structure
and assembly and has been shown to have a neurotoxic effect [21].

1.7. The Amyloid Cascade Hypothesis

The leading theory for the cause of Alzheimer's disease is the
amyloid cascade hypothesis, first proposed in 1992 and its influence
on AD research cannot be understated. The hypothesis posits that
mutations in the APP and presenilin genes PSEN1 and PSEN2 leads to
thedeposition ofΑβ in the brainwhich subsequently leads to the forma-
tion of NFTs, cell death and dementia. Experiments in animal models
have shown that chemically or damage induced lesions lead to an
increase in APP levels and accelerate the development of AD [22,23].
Unfortunately, all approaches based on the amyloid cascade have failed
at Phase III clinical trials - tramiprosate, tarenflurbil and semagacestat -
and research has not been able to conclusively link the build-up of Aβ to
the formation of NFTs (Fig. 3) [24].

While it has been made clear that the amyloid cascade hypothesis
is not enough to sufficiently explain the development of AD or aid in
its detection and consequently, is currently under heavy scrutiny, it is
also not possible to accept the null hypothesis, as autosomal dominant
mutations in the aforementioned APP, PSEN1 and PSEN2 genes along
with the apolipoprotein E4 (APOE4) allele have been proven to be the
key components in familial, or early onset, Alzheimer's disease. Instead,
the amyloid cascade hypothesis has to be modified to account for the
rate of Aβ deposition and clearance, the connection with the develop-
ment of NFTs and the effect of inflammation in the development of
AD. Karran et al. [25] have attempted to update the hypothesis for use
in therapeutics by presenting four distinct scenarios describing the
role of Aβ in AD. These scenarios are:

1. Aβ could trigger development of the disease and further accumula-
tion has little to no effect

2. development starts once Αβ reaches a certain, as yet unknown,
threshold

3. Aβ is a key driver of AD and its continued deposition accelerates the
effect

4. Aβ is irrelevant and the presence of plaques and increased levels of
Aβ are a side effect of a different cause.

It should be noted that a major limitation of this hypothesis is that it
fails to account for AD patients with little to no AD pathology [26] and
thus amyloid plaques as identified by PET scan. In recent years, mice
studies have shown that Aβ deposition is a potential driver for tau
hyperphosphorylation, fixing one the major limitations of the amyloid
hypothesis. Crossing APP transgenic mice with tau knockout mice,
resulted in offspring with significantly fewer behavioural deficits [27]
while other studies have shown that soluble oligomers of Aβ can lead
to alterations in tau, potentially cascading to AD [28] although the
mechanisms are still unclear. Strooper and Karran [29] attempted to
provide alternatives including proteostatic stress during the biochemi-
cal phase when Aβ aggregates at an abnormally fast pace, defections
in the amyloid and tau clearancemechanisms and a decrease in synaptic
plasticity. As Selkoe and Hardy [27] suggest, the amyloid hypothesis, for
all it limitations, is essential for therapeutics due to the fact that the
complexity of the disease increases drastically after initiation due to
the rise in complexity of downstream pathogenic processes, the most
likely point of the diseasewhere treatmentwill be at itsmost successful.

1.8. Inflammation in Alzheimer's Disease

Recent research has also been focused on investigating the role of
inflammation in AD in an attempt to explain the development of the
disease. The inflammation hypothesis posits that deposition of Aβ causes
chronic activation of the immune system and disrupts microglial

http://www.alzheimers.org.uk


Fig. 3. Diagram of the amyloid cascade hypothesis showing the theorised links between the aggregation of Aβ to cell death and dementia.
Source: Karran et al. [25].
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clearance functions. Microglia are immune cells located in the
parenchyma of the brain, making up 20% of the total glial population.
Their functions include phagocytosis, induction of inflammation, and
antigen presentation to lymphocytes [30]. However, their roles also in-
clude clearance of extracellular deposits of Aβ, and microglial receptors
TLR2, TLR4, TLR6 and co-receptors CD36, CD14 and CD47 activated
upon detection of the protein. These receptors can also sense pathogen-
associated molecular patterns such as bacterial lipopolysaccharides
and viral surface proteins and thus are instrumental for mediating the
immune response. Certain bacteria have similar surface amyloids, such
as curli fibers, which resemble Aβ aggregates and thus activate toll-like
receptors (TLR) and CD36, which in turn triggers the formation of a
TLR4-TLR6 heterodimer and results in signalling activation via the tran-
scription factor NF-κB. This leads to a cytokine cascade which further
attracts immune cells to the site of the perceived infection (Fig. 4).

Moreover, certain cytokines such as IL-1β, damage the synaptic
plasticity by disrupting the formation of dendritic spines, with high
cytokine expression being able to disrupt normal hippocampus func-
tion. This lead to the hypothesis that chronic activation of the immune
systems leads to chronic inflammation and microglial cell death,
resulting in increased proliferation and accelerated senescence.
2. Artificial Neural Networks and Systems Biology

2.1. Artificial Neural Networks

As explained previously, ANNs are a formofmachine learning, statis-
ticalmodels emulating the function of a neuron, able to identify patterns
and linearly separate them by assigning a numerical weight value to
each input and adjust them as they sample the data, effectively learning
the optimal solution. They can make use of parallel processing in order
to predict solutions to complex and non-linear data (Fig. 5) [31].

The ANN used for this project is a Multi-Layer Perceptron (MLP)
with a back-propagation (BP) algorithm. It is organised in several layers,
eachwith a number ofmathematical processing elements depending on
the complexity of the problem and the BP algorithm is responsible for
feeding the error back through themodel, allowing it to adjust the train-
ing weights accordingly and stop early if no gains can be made.
2.2. Stepwise Analysis

The stepwise ANN approach developed by Lancashire [33] allows for
the identification of a gene or set of genes with the best predictive
performance to classify samples based on a certain question by data
mining the complete transcriptome. The ANN model functions by
modifying the network weights and subsequently adding variables in
an iterative manner to find a model with the lowest predictive error.
The architecture consists of a single hidden layer, feed forward MLP
with a variable number of hidden nodes and a sigmoidal transfer
function, using a back-propagation algorithm incorporating supervised
learning for updating the network weights. AMonte Carlo Cross Valida-
tion (MCCV) strategywas applied to produce amore generalizedmodel
with an improved predictive ability for unseen or future cases. The
MCCV randomly divides the samples into training, test and validation
subsets in 60:20:20 proportion for 50 iterations to provide the most
consistent models. The parameters selected for this series of tests are
1 step, 10 loops with a momentum of 0.5, learning rate of 0.1 and
threshold of 0.01 [34]. These parameters have been thoroughly tested
and successfully used in other studies [10]. The dataset used for this
experiment is [dataset] E-GEOD-48350 [35].

The dataset is publicly available and has been accessed using
ArrayExpress [36] as well as the Gene Expression Omnibus (GEO)
[37]. It was selected based on the following parameters to ensure high
quality results:

• Human samples only
• Patient size of N80
• Genes in array N40,000
• A minimum of four brain region samples
• Healthy controls between 33% and 66% of the dataset
• Recent Publication
• Raw data in the form of CEL files available.

The methodology flowchart is included in the Supplemental Fig. 1.
The outcome of the stepwise analysis is a list of genes, ordered from
the most to least likely to explain the variance in the population based
on AD status.



Fig. 5.Workflow diagram of the artificial neural network algorithm developed by Lancashire et al. [31] used for this project. The parameters for the hidden and output layer nodes are in
their paper.

Fig. 4.Microglial cell diagram showing the formation of the NLRP3 inflammasome and cytokine cascade as a result of Aβ detection.
Source: Heneka et al. [32].
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2.3. Categorical and Continuous

It is worth noting that two distinct versions of the algorithm were
used – categorical and continuous. The categorical version seeks to
interrogate the dataset using two predictors 0 and 1 for two distinct
possibilities. This is based on known clinical information and a multi-
tude of questions were considered. These questions include examining
the differences between a healthy and an AD brain based on the overall
gene expression as well as the differences between different regions
in the brain, most notably the hippocampus. The continuous version
of the algorithm allows us to consider every gene as its own indepen-
dent predictor. This was used to examine the currently accepted bio-
markers for AD [38,39] APP (amyloid beta precursor protein), MAPT
(microtubule associated protein tau) and APOE (apolipoprotein E) and
compare them to biomarkers discovered by the categorical algorithm.

2.4. Network Inference

The results obtained from the stepwise ANN approach were further
analysedwith an interaction algorithm developed by Lemetre et al. [34]
to perform network inference. The interaction algorithm allows for the
iterative quantification of the influence that multiple genes might
have on the expression level of a single gene, until all the genes within
the data have been quantified this way, using the same parameter
values as those utilized for the ANN stepwise algorithm [34]. This allows
for the determination of the central role of the most influential genes
selected by the stepwise ANN within a system. The interaction algo-
rithm predicts a single probe and assigns a weighted score which is
directly proportional to the intensity of linkage between itself and the
expression values of all other gene probes [35], while the intensity
and directionality of the interaction between a source and target are
determined based on the sumof theweights from an input to an output.
The association between gene pairs can be bi- or unidirectional and be
either stimulatory or inhibitory. This process was repeated until all
gene probes were used as an output iteratively and a large matrix of in-
teraction scores was generated by averaging values across 10 iterations.
The resultswere visualised using Cytoscape. Themethodology, proposed
Fig. 6. Force directed interactome encompassing 500 gene probes and 1000 predicted interactio
effect, whereas blue edges indicate promotion. Edge thickness is directly proportional to t
downregulated. The intensity of the colour is directly proportional to the degree of up- or d
reader is referred to the web version of this article.)
by Tong et al. [40], is a novel ANN designed to infer directed gene-gene
interactions in a pairwise manner, allowing the user to observe how
changes in a given genes leads to changes in other genes and the net-
work as a whole. The flowchart is included in the Supplemental Fig. 2.

2.5. Interaction Matrix

One of the greatest problems encountered during the previous
approach when they are used to predict a single best marker is the
fact that the selection process is stochastic; there is a random probabil-
ity element andwhile the results can be statistically significant, it makes
the process imprecise. To counter that effect and increase the power of
this method, the top 500 genes selected by the stepwise process were
split into 5 datasets of 100 genes each and combined into 16 sets of
200 genes each for network inference. This specific number was
selected as the stepwise algorithm performance started to plateau
after the first 400 genes indicating that the differentiation between
the given conditions – AD and healthy – was decreasing. Once the
network inference was completed, the data was consolidated and
the top 1000 strongest interactions were selected and visualised with
Cytoscape.

The reasoning behind developing this technique is that the normal
single marker approach only focuses on a small subset (~0.1%) of
the genes actively influencing a given condition. Moreover, by only
selecting the 100 strongest interactions, it is guaranteed that in the
resulting network, the biggest hubs, hence the most like drivers of
the disease and targets for therapy, will be kept to a minimum and
will be biased towards the most differentiated genes as seen in Fig. 6.
It is important to note however, that for a highly focused system such
as studying a specific subset of genes in a subset of a disease, such as
proliferation markers in untreated breast cancer patients, the very
nature of the data would result in a network where all the hubs are
equally important. Thus, in such cases, identifying key markers and
drivers using the strongest interactions is still the superior choice.

As seen in Fig. 6, upon separating the data to only include gene
expression data exclusively from the hippocampus from AD patients
only, selected as it is the area most strongly affected in AD, a rarely
ns of the hippocampus in the E-GEOD-48350 AD cohort. Red edges indicate and inhibitory
he strength of the interaction. Green nodes are upregulated genes while red ones are
ownregulation. (For interpretation of the references to colour in this figure legend, the



Fig. 7. Alternative circular layout interactome of the 1000 strongest interactions between 500 genes in AD independent of the brain region in the E-GEOD-48350 dataset. Based on the
overall expression of all brain regions. Novel targets identified. Red edges indicate and inhibitory effect, whereas blue edges indicate promotion. Edge thickness is directly proportional
to the strength of the interaction. Green nodes are upregulated genes while red ones are downregulated. The intensity of the colour is directly proportional to the degree of up- or
downregulation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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seen duality presents itself. Inmost complex diseases such as cancer, the
dysregulation that is represented in such interactomes is a direct result
of the mechanisms of the disease. Successful cancers can highjack the
body's immune response, avoid detection and proliferate uncontrolla-
bly. This in turn, leads to the body mounting a very strong response by
attempting to upregulate anti-tumour factors and suppress prolifera-
tion factors among others in order to prevent the abnormal cells from
disrupting the function of crucial organs [10]. Diabetes is similarly
represented, as due to chronically high sugar levels the function of
the organs affected get significantly damaged [41]. This leads to
interactomes that are either mostly up- or down-regulated.

However, irrespective of the cause, non-familial AD is a direct result
of the failure to regenerate damaged cells and clean away debris over a
long period of time. Moreover, the isolated nature of the brain, the
increased regulation of substances that can cross the blood brain barrier
and most importantly the brain's plasticity, are crucial defence factors
other organs lack. Plasticity is especially important as the brain can tol-
erate extensive damage before showing significant dysregulation,
which is why AD is so hard to identify early [42]. As a result, the
interactomes of affected regions show both up- and downregulation
as it is possible to observe both suppression factors that could poten-
tially be the direct cause of the disease and healing factors that are
attempting to restore balance, as the mechanisms for it are still present
and functional. In fact, dysregulation in themechanisms involved in im-
mune response and debris clearance could be used as predictors for
early prognosis of AD as they are still functional, but increasingly
ineffective.

This duality in the interactome however, reveals an interesting
pattern within the data. Based on a fold change analysis of the original
microarray data for AD in E-GEOD-48350, the genes that are over-
expressed are downregulated overall. Conversely, underexpressed
genes are predicted to bemostly downregulated. It is a fact that the hip-
pocampus is themost dysregulated brain region in AD, so this is possible
proof that the system is attempting to restore balance by suppressing
the high expression of factors such as HIPK1 [43], a kinase which plays
an important role in senescence, ITPKB, a kinase that regulates inositol
polyphosphates or BCL2, a protein phosphatase which is a crucial apo-
ptosis factor. In short, the system is attempting to decrease the effect
of genes involved in cell death.

The factors that are underexpressed on the other hand, appear to be
upregulated and significantly more dysregulated, with an overall larger
number and stronger individual interactions. The largest hub is PPM1H,
another protein phosphatase which dephosphorylates CDKN1B, a CD
kinase inhibitor involved in diseases such as Type IVMultiple Endocrine
Neoplasia and familial Primary Hyperparathyroidism. Another such
gene is FRS3, a fibroblast growth factor receptor substrate which is in-
volved in regulation of RAS signalling.

While these genes and others like them seem to indicate that there is
a significant effort to re-establish homeostasis, of further interest are the
genes that do not fall inside these clearly defined categories. These
genes include multiple tubulins such as TUBA1B and TUBB2A which
are underexpressed but being simultaneously up- and downregulated,
TGFBR3 which encodes for the transforming growth factor beta, type
III receptor and plays a crucial role in cell adhesion and is associated
with diseases such as familial cerebral saccular aneurysm. TGFB itself
activates transcription factors of the SMAD family, which in turn,
regulates gene expression. ATP2C1 is an ATPase which catalyses the
hydrolysis of ATP and is underexpressedwhile still attempting to down-
regulate CARD8. CARD8 itself is caspase recruitment domain containing
family of proteins and is involved in pathways negatively regulating the
activation of NFKB, which as explained during the introduction, has
a key role in the theory of neuroinflammation, and is quite likely an at-
tempt to slow down or stop the chronic immune response leading to
said neuroinflammation. Other irregularities include MAP1LC3A and
MPP2 explained earlier and CD44, a cell-surface glycoprotein involved
in cell-cell interactions, cell adhesion and migration and interacts
with, among other things, matrix metalloproteinases (MMPs). MMPs,
and MMP-9 in particular have long been suspected in playing a key
role during AD and have been shown neuroprotective capabilities
[44]. Finally, one of themost highly underexpressed and downregulated
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genes is C1QTNF4, a complement-C1q tumour necrosis factor-related
protein whose role is not clearly defined but has been suspected of act-
ing like a pro-inflammatory cytokine, leading to the activation of NFKB
and upregulate production of IL6.

Additionally, one of the major advantages of this method is the that
it generates a large and complex interactome that can be used to further
examine a gene of interest as seen in Fig. 8.

In this example tubulin 2 beta (TUBB2A), a structural component of
microtubules and a gene closely associated with tau, has consistently
been in the top genes identified in AD across multiple tests. Due to the
size of the previous interactome, there is enough complexity to be
able to further analyse the way it interacts with other genes without
having to use the algorithm again. If enough genes are identified as rel-
evant to the question, then they can be used as predictors in the contin-
uous ANN and then used for network inference. This also solves the
major disadvantage of this methodology; it is computationally expen-
sive and slow.

In Fig. 8 we can observe that TUBB2A is underexpressed but also
downregulated by the clearmajority of predicted interactions, including
by other tubulin variants such as TUBB3 and TUBB4B as well as
BRE which was discussed earlier. It is interesting however that both
CASC3 and NFKBIA, both of which are overexpressed in this case, are
attempting to upregulate TUBB2A, weakly in the case of NFKBIA but rel-
atively strongly in the case of CASC3. CASC3 also appears to be very
strongly downregulated by TUBB4B,MRPS25 amitochondrial ribosomal
subunit involved in mitochondrial translation and organelle mainte-
nance and biosynthesis, and FARSB, a Phenylalanyl-TRNA Synthetase
Fig. 8. Focused Tubulin interactome based on Fig. 7. Tubulin beta 2A inter
Beta Subunit involved in tRNA aminoacylation and has been found to
be associated with muscular dystrophy. Thus, it is possible to surmise
that the dysregulated state of the TUBB2A gene in the network is
directly correlated with mechanistic dysregulations in other genes
that in turn affect genes responsible for regulation of TUBB2A itself.
CASC3 and NFKBIA are failing to significantly upregulate TUBB2A back
to normal levels due to dysregulation within themselves.

2.6. Driver Analysis

Oneof the challenges facedwhen trying to elucidate amarker, driver
or therapy target is the selection criteria used. It is crucial to point out
that the data used in these experiments presents us with a “snapshot”
of the condition investigated, a generalized picture of how each gene
is affected by every other gene, while the biological system is in a
state of imbalance. As a result, the biggest hubs of most interactomes
tend to be either the genes most up- or down-regulated in the network
at the time. This has two potential interpretations. The hub is the source
of the imbalance and thus, the most likely driver of the disease and tar-
get for therapy, and the downregulation is a result of the system
attempting to restore balance, or that the hub is the factor preventing
the imbalance by working against the disease and is being upregulated
in an effort to restore the system to its original state.

The purpose of the driver analysis is to provide a non-biased selec-
tion condition based on the sum of the weights each gene exerts on
the network, quantifying the amount of influence on a target and the
amount of influence of a target. As explained in Section 2.4 the
actions in AD. Of note is its positive regulation by an NFKB inhibitor.
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interaction algorithm analyses the selected genes in a pairwise manner
and assigns each of those pairs a value predicting how strongly their
genes interact. Hence, by summing the weight that each source gene
exerts on each target and vice versa, it becomes possible to rank them
by which ones have the greatest overall effect on the network and
which ones are the most affected.

The advantage of this method is the fact that it considers and
gives equal importance to non-hubs as it only measures the total
effect each gene has on the totality of the network. As such, it is pos-
sible to draw attention to genes with a multitude of weak interac-
tions rather than only a few strong ones, which might otherwise
not be visible. It is reasonable to assume that such genes may not
be the greatest drivers of the disease, but crucial components of the
system, and this method allows us to analyse those genes without
Table 1
Diver analysis showing the top 50most influential andmos
on the network in the hippocampus in AD. The influence
interaction algorithm and is relative to the rest of the va
January 2017.

Amount of influence Gene symbol Am
−1213.081747 ITPKB 23
−1155.143791 GNA13 18
−1148.207036 RHOBTB3 17
−1130.228993 VCAN 17
−1122.165399 PRKD3 17
−1119.483983 ITPKB 17
−1113.48562 TRAK1 16
−1108.416853 CASC3 /// 

MIR6866
−1

−1090.674524 SRGAP1 16
−1087.335279 LPP 16
−1028.750389 LIFR −1
−1026.678888 GLIS3 −1
−1025.359853 TEAD1 −1
−1018.653673 CARD8 −1
−1018.095788 ERBB2IP 15
−1017.418527 RUFY3 15
−1012.441445 242611_at 15
−1010.030914 CRTAP −1
−992.2756126 PABPC1 /// RLIM 14
−982.4210022 SORBS1 −1
−979.1729048 233323_at −1
−973.5676705 SYNCRIP −1
−971.9687449 SEPT8 −1
−967.7392151 SSFA2 −1
967.402376 BCL2 13
−966.0628739 DTNA −1
962.5225317 KLC1 −1
−949.0374794 GRAMD3 −1
−935.7444619 FAM107A −1
−933.9110942 SSFA2 13
−930.2480972 HMBOX1 13
−917.4727487 TRPS1 −1
−913.4533421 PALLD 13
−913.3942276 FAM107A 13
−909.7624557 BCL2L11 −1
−905.7671419 CDK2AP1 12
−904.8356429 VCAN −1
−904.3397815 CAPN2 12
−902.6081661 233323_at 12
−899.9210524 NOTCH2NL 12
−896.8863383 ZFP36L1 12
893.9583626 ZNF385B 12
−888.5853093 ADD3 12
−880.9829708 WWTR1 −1
−876.8780354 PALLD −1
861.0770622 SYN2 −1
−860.3346604 NFIA 12
−859.6319203 228297_at 12
−851.0770584 DTNA −1
849.629429 AP2M1 11
them being obscured by the hubs and most likely drivers, thus giving
a wider and impartial view of the condition. Moreover, the driver
analysis is not affected by the complexity of the question, being
able to provide comparable results across multiple datasets, in both
focused and general conditions.

The driver analysis was carried out on the 500 selected genes of
the matrix interaction. The most influential source genes showed
significant similarities and differences to the results of previous anal-
yses on AD (Table 1). Genes identified in the interactome such as a
ITPKB and CASC3 as well as trafficking proteins like TRAK1 and ki-
nases like PRKD3 are expected. Of note is the disproportionate pres-
ence of BCL2 when compared to the interactome. However, the
sources of interest include RHOBTB3, a member of the highly con-
serve family of Rho GTPases similar to RHOQ discovered during
t influenced genes according to their unbiased impact
amount is the sum of all weights calculated by the

lues. Probe IDs in red have not been annotated as of

ount influenced Gene symbol
81.32828 RP4-758J24.5
14.197348 PPM1H
92.055655 C6orf57
54.53677 PRKCZ
38.174507 FAM174B
33.508537 FAM174B
94.647661 LRP11
686.025743 CAPN2

43.902991 RASGRF2
12.688333 FASTKD2
609.099447 1561158_at
592.564443 RXRA
560.277805 HIPK1
533.256201 SWAP70

29.733365 GALNT14
23.370265 LOC100129361
04.669747 PEG3
473.99368 RP11-513M16.7

37.631403 HECTD4
435.335801 SYF2
431.019129 1557286_at
430.602853 TGFBR3
419.648077 FAM107A
390.736715 244457_at

76.260249 BNIP1
366.651015 LTBP1
352.118161 B3GNT5
351.336497 CRTAP
320.758301 RP11-5C23.2

15.432274 ABCE1
14.897356 FAM174A
312.652293 HMBOX1

10.768154 AP2S1
02.110691 GPS1
289.970537 MOB1A

82.458469 ALKBH6
270.746624 KRT8P12

64.244601 MAGI1
55.168137 ANKRD39
51.151278 DNAJC6
40.782655 EHD3
31.946711 238466_at
27.9842 AREL1
218.986806 ATAT1
211.954338 LILRA4
207.832696 LIFR

07.407361 TUBA1B
04.867524 GABBR2
195.223424 ITPKB

94.137548 PLEKHB2
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earlier testing, as well as SRGAP1. SRGAP1 encodes for a GTPase acti-
vator and works in conjunction to CDC42, a GTPase of the same fam-
ily, to negatively regulate neuronal cell migration. Moreover, when
combined with receptor ROBO1, it can deactivate CDC42. Its pres-
ence so high on the source list as a downregulating factor, indicates
that its function is being stronger than expected, resulting in slower
cell migration and impediment of the regeneration process. CARD8,
discussed earlier, has a strong, negative effect on the network, suppress-
ing the expression of related genes.

Meanwhile, the most targeted genes on the network include
PPM1H, a protein phosphatase, TGFBR3, multiple kinases, and an
alpha-tubulin TUBA1B. More beta tubulins are included in the complete
list. Also, although rarely seen, ATAT1, an alpha tubulin acetyltransfer-
ase, a neuronal cell component crucial to the microtubule growth
appears to be negatively regulate. ATAT1 is involved in coenzyme bind-
ing and tubulin N-acetyltransferase activity and only acetylates older
microtubules, being unable to act on unstable ones. Genes such as
APGAT1 which fulfil similar purposes have been discovered in previous
test, suggesting that slower/weaker acetylation of older microtubules
could play a key role in the development of AD. Curiously, one of the
upregulated factors is AREL1, apoptosis resistant e3 ubiquitin protein
ligase 1, which inhibits apoptosis. It is possible that it is being upregu-
lated in an attempt to keep the neurons alive and functioning to prevent
further damage. Finally, the presence of ITPKB as both a significant
source and target indicate that it is a crucial component of the system
regardless of disease state. The results will be used for a functional anal-
ysis via the Bioconductor R package [45]. A second table regarding the
driver analysis of the cohort of cognitively normal controls is available
in the Supplemental Table 2 for comparison.
3. Conclusions and Future Developments

In conclusion, the results obtained by this series of experiments
show promise for a greater understanding of the biology behind
Alzheimer's disease, its progression and the mechanisms involved. By
expanding to other brain regions and datasets and focusing the ques-
tions on the most relevant genes, it is possible to identify new markers
and drivers of the disease that can be used alongside the current ones to
improve prognosis and provide more targets for therapy.

It is worth noting that the results obtained and analysed with this
pipeline have been generated without using a null hypothesis, in a
non-parametric manner. The only question was the difference between
AD and healthy brains and was expanded to include predictors as gen-
eral as the presence of the disease down to the expression of individual
genes. It is evident by the results that by reducing the bias introduced
by datamining for very focused questions and increasing the variance,
we are presentedwithmultiple potential biomarkers aswell as newdis-
covery routes such as further evidence of the role on inflammation and
microtubule stabilisation. The pipeline has thus managed to generate
unbiased, varied and novel information that can be used to guide
further, more targeted research as well as validation of these results
experimentally.

Future developmentwill focus on improving the speed andpower of
the algorithms and increase the interpretability of the results. Using
general-purpose computing on graphics processing units, it is possible
to reduce the time requirements by up to 75% at the cost of computa-
tional power, though recent advances in the field have made it signifi-
cantly more likely and affordable. Further tests are being focused on
the variance between different brain regions as well as the effect of
individual genes on the system. Moreover, this series of tests is being
repeated in RNA-seq and proteomic datasets in order to study the effect
of AD pre and post translation, aswell as other gene expression datasets
to ensure consistency in the results.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.csbj.2018.02.001.
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