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Abstract

Rapid popularity of Internet of Things (IoT) and cloud computing permits
neuroscientists to collect multilevel and multichannel brain data to better understand
brain functions, diagnose diseases, and devise treatments. To ensure secure and reliable
data communication between end-to-end (E2E) devices supported by current IoT and
cloud infrastructure, trust management is needed at the IoT and user ends. This paper
introduces a Neuro-Fuzzy based Brain-inspired trust management model (TMM) to
secure IoT devices and relay nodes, and to ensure data reliability. The proposed TMM
utilizes node behavioral trust and data trust estimated using Adaptive Neuro-Fuzzy
Inference System and weighted-additive methods respectively to assess the nodes
trustworthiness. In contrast to the existing fuzzy based TMMs, the NS2 simulation
results confirm the robustness and accuracy of the proposed TMM in identifying
malicious nodes in the communication network. With the growing usage of cloud based
IoT frameworks in Neuroscience research, integrating the proposed TMM into the
existing infrastructure will assure secure and reliable data communication among the
E2E devices.
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Figure 1. Cycle of modern Neuroscience research.

Introduction

In recent years biological data has grown significantly, thanks to the technological
developments, now scientists can acquire data simultaneously from multiple levels and
channels of a living system [1], and simulate large scale brain networks [2, 3]. One of the
major contributors to this biological big data is Neuroscience [4]. Brain signals, e.g.,
Electroencephalogram (EEG), Electrocorticogram (ECoG), Neuronal Spikes (AP),
Local Field Potentials (LFPs) along with brain imaging techniques, e.g.,
Magnetoencephalography (MEG), Magnetic Resonance Imaging (MRI), Functional MRI
(fMRI), Positron Emission Tomography (PET) have been extensively used in diagnosis
of neurodegenerative diseases [5, 6], neuropsychiatric disorders [7], and developmental
disorders such as Autism Spectrum Disorder [8]. Additionally, this data has been
effectively utilized in developing various data-driven disease models [9, 10].

Modern day Neuroscience research is driven by data (see Fig. 1). Both clinical and
experimental neuroscience research generate huge amount of data [11] and analyzing
those data to draw meaningful conclusions is very challenging [12]. The extracted
knowledge from these data allow the development and refining of data-intensive models
and describe the underlying biological phenomena which in turn facilitate experimental
design [13]. The data analytics and modeling phases are computationally intensive, and
advancements in artificial intelligence [14] and cloud computing [15] allowed scientists to
perform these steps smoothly. The ‘cloudification’ greatly facilitated scientists by
providing ‘software as a service’ (e.g., service oriented architecture or SOA) instead of
running the data-intensive analyses and modeling locally in the computers. In other
words, cloud computing and big data paradigms converted context-aware research into
exhaustive, data-driven research.

Now, with the emergence of the Internet of Things (IoT), various sensors can be
connected to the cloud for seamless resource sharing. Such IoT-Cyber Physical Systems
(IoT-CPS) provide a platform to data-driven research and design appropriate medical
services for patients. The IoT-CPS tailored to patient monitoring and care are around
for a few years now and it allowed hospitals and healthcare processionals to seamlessly
exchange patients’ data even from remote locations. These data may represent a wide
range of healthcare parameters collected through the IoT for healthcare (IoHT) sensors.
One of the main challenges of this type of IoT-CPS is to ensure privacy and information
security. Thus, the trust management plays a vital role for the end users which act as a
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first step of information security. Despite the fact that trust management is required for
all such frameworks dealing with biological data acquirable through the IoHT devices,
the Neuroscience data stands apart from the others and requires special attention due
to their high variability and spontaneity. While in many biosignals (e.g.,
Electrocardiogram, Electromyogram) periodicities and similarities have been noticed in
terms of frequency content, amplitude and shape, the Neuroscience data (e.g., EEG,
ECoG, LFPs, AP, etc.) have been known for their variabilities [16–18] making them
more prone to misidentification, misclassification and misinterpretation in cases when
the signals are unsupervisedly acquired without any experts. Therefore, to design
robust telemedicine systems using IoT-CPS targeting Neuroscience applications, extra
care must be taken to ensure the trustworthiness of the IoHT nodes.

Mahmud et al. introduced a service-oriented architecture for web based collaborative
biomedical signal analysis [19]. As an initial platform with three main components (i.e.,
users, contributors, and services), this model assumed the inherent security of the
internet and used certificate based security as authentication scheme for the
contributors and users to deploy and utilize services. The same architecture can be
extended by delegating the data coming from the IoT devices to the cloud for analysis.
Additionally, a cloud-based healthcare system was proposed in [20] to provide
convenient patient-centric healthcare services. In this model, the cloud performed the
big data analytics and the authors reported significant performance improvement in the
cloud-based system which too can be adapted to suit smart healthcare applications.
Also, biologically inspired cloud resource provisioning was proposed for optimal
handling of big healthcare data [21].

While the assumption of a secure cloud is appropriate in the context of currently
discussed communication models, discarding malicious transmission – identified by the
nodes profile information, behavior, and data similarity – is vital to ensure the
optimized performance, reliability, and robustness of a system. In the current scenario,
profile information is validated by the authentication services, and the nodes behavior
and data similarity are handled by a trust management system. To make a more
trustworthy system, Shabut et al. identified the malicious nodes based on their behavior
and improved packets delivery through a multi-hop relay network excluding those
misbehaving nodes [22]. Another work proposed a dynamic cluster based
recommendation model to minimize the data sparsity or cold start situations using
nodes behavior to improve quality of service (QoS) of end-to-end (E2E)
transmission [23]. Chen et al. proposed a Fuzzy reputation-based trust model (TRM)
for IoT-CPS which estimated the nodes trust from their behavior and showed an
improved performance in comparison to a communication system without trust [24]. An
ant colony based trust model was presented to determine the trust value of wireless
nodes which exhibited improved accuracy [25]. Context-aware multiservice trust
management systems were proposed in [26,27] which filtered malicious nodes in the E2E
and heterogeneous IoT architectures with high accuracy. Another trust management
model (TMM) was proposed to evaluate the trustworthiness of nodes in the wireless
sensor network through beta distribution. The aggregated trust value from data and
energy was used in identifying the untrustworthy relay nodes to reduce the internal
threats [28]. Yet another trust management system, based on an agent’s trustworthiness
and confidence, was proposed to evaluate the trustworthiness of the IoT nodes [29].
Moreover, a joint social and QoS TMM was presented to find the trust level of wireless
nodes in a mobile adhoc network [30].

However, identifying the malicious transmission using only nodes behavior isn’t
enough to ensure reliable communication. It is important to guarantee that the data
generated by the nodes are error-free – which is a big challenge – and a TMM that takes
into account both nodes behavior and data similarity can be a solution to confirm nodes
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reliability.
This paper presents an Adaptive Neuro-Fuzzy based Brain-inspired TMM targeting

cloud based IoT architecture to determine data trust and behavioral trust for all IoT
devices and relay nodes to ensure reliable data communication between E2E devices.
This work also investigates the effects of trust management on the QoS issues of the
cloud based IoT architecture suitable for neuroscience applications.
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Figure 2. Cloud based IoT Architecture for Neuroscience Applications. All the IoT
sensor nodes are deployed in the perception layer (IoT site).

1 Cloud based IoT Architecture

The big data and cloud are two paramount elements for creating collaborative
frameworks to analyze brain signals (e.g., EEG, ECoG, AP, LFPs, etc.) and brain
images (e.g., MEG, MRI, fMRI, PET, etc.) and to perform data-driven modeling [19].
Due to the wide range of advantages offered by such architectures, they have become
the trend in recent years [31].

Focusing on applications related to Neuroscience, Fig. 2 illustrates a cloud based IoT
framework which consists of three main components, i.e., the IoT end (contains the data
generating devices), the cloud component (provides the access and connectivity, and
processing and analysis of data), and the user end (provides the analyzed and processed
data to the users, e.g., doctors, caregivers, and researchers). In this framework, the data
from various Neurotechnology empowered devices are collected for the development of
state-of-the-art techniques pertaining to intelligent healthcare and advancement of
Neuroscience research. At the IoT end, also known as perception layer, various data
generating devices are connected to respective transceiver devices to forward the data to
the cloud through the IoT gateway either for data analytics or simply for storage.
Additionally, the brain signals generated at the IoT end are also used in operating
various medical and assistive devices (e.g., automatic wheelchair, robotic arm,
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Figure 3. Cloud authentication model (adapted from [19]).

etc.) [31, 32] to provide the better monitoring and improve the quality of life. The cloud
is used for defining the access and the network and perform data storage and analytics.
Extending the work of Mahmud et al. [19], in our framework, we consider the cloud to
be secure through existing certification and authentication models (see Fig. 3). Finally,
at the user end, the service consumers can access and visualize the processed data based
on granted rights and privileges.
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Figure 4. Block diagram showing various steps of a trust evaluation process.

In the cloud based IoT architectures, the IoT devices or nodes generate data owing
to various Neuroscience applications. Like human relationships, these nodes collaborate
with each other through certain predefined social properties, and these properties are
the ‘Trust Compositions’ (see section 2). The values of these social properties are
propagated on the IoT and user ends (known as ‘Trust Propagation’). During direct or
indirect interactions, the trust metrics of each node are aggregated through static
weighted sum, neuro-fuzzy method, and Bayesian inference (known as ‘Trust
Aggregation’). The trust value of each node is then updated when an interaction is
completed (known as ‘Trust Update’). This update can also be done periodically for
energy efficiency. The block diagram of the trust management steps is illustrated in Fig.
4.
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2 Trust Management Model

The proposed TMM is illustrated in Fig. 5, where the IoT nodes directly or via
local/global relay nodes (such as smartphones, routers, etc.) interact with the sensor
hubs (see Fig. 2) to establish successful communication links. The individual trust
levels of the IoT devices and relay nodes are required to be evaluated to discard the
malicious nodes [33].

As the data communication in the access and cloud layer is secured, the IoT and
user ends are the main focus of our TMM for ensuring the E2E trust among IoT devices
and users for cloud based Neuroscience applications. Mimicking the social relation of
people, the IoT devices and relay nodes are assumed to have social relationships among
themselves. Thus, the interactions and collaborations among these nodes are employed
to evaluate the trust level of each node. In deducing E2E trust level, certain
relationship among the nodes are considered which include– node profile information,
node behavioral trust, and data trust [34].

The profile information is assured by the authentication service, whereas, the latter
two are estimated using adaptive neuro-fuzzy inference system (ANFIS) and
weighted-additive method, respectively. The node behavioral evidence is assessed
through direct and indirect interactions among the nodes. For each node, the
assessment of the behavioral trust is performed considering three factors related to that
node– relative frequency of interaction (RFI), intimacy, and honesty. The data trust is
assessed by estimating the deviation of a node’s instantaneous data from the historical
data of that node. Both direct and indirect methods can be employed to evaluate data
trust of a node.

Mathematically, the trust level of a given node (j) denoted by Tj is estimated by
summing up the behavioral and data trust as Equation 1.

Tj(t) = T nb
j (t) + T d

j (t), (1)

where, T nb
j (t) is the evaluated behavioral trust and T d

j (t) is the evaluated data trust.
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2.1 Evaluating Behavioral Trust

2.1.1 Behavioral Trust Metrics

The trust properties for the behavioral trust of a nodes are discussed below.

Relative Frequency of Interaction (RFI). Zhang et al. studied the interaction
frequency among nodes [35]. The interaction frequency refers to the number of
interactions, between the assessor and assessee, that take place within a given unit of
observation time. The higher the successful interaction rate, the higher the degree of
closeness. It means the assessee node is a trustworthy node. It has also been reported
that the closeness in a relationship (e.g., friendship) can be predicted from the past
interaction and it confound the future interaction [36,37]. Therefore, the RFI-aware
trust, T RFI

j , can be calculated by Equation 2.

T RFI
j =

nj
N
, (2)

where nj is the number of interactions between the assessee node j and the assessor
node in an observation period t, whereas, N is total number of interactions between
node j with other k nodes during t.

Intimacy. In any social context, the intimacy or relationship duration of interaction
is an important factor in calculating the trust level. The higher is the time of
interaction between an assessee node and an assessor or guarantor node, the higher is
the intimacy. Considering the total time spend of an assessor node i with the assessee
node j as tij and the cumulative time spend of j with other k guarantor nodes as tkj ,
the intimacy (T I

j ) can be calculated by Equation 3 [38].

T I
j =

tij
tij − tkj

. (3)

Honesty. Honesty is one of the main factors for establishing social trust between two
given nodes. It can be determined using the successful and unsuccessful interactions of
those nodes. Usually, the value of honesty lies between [0,1], i.e., T H

j ∈ [0, 1]. In other

words, T H
j = 0 means no successful interaction, and T H

j (t)→ 1 means the assessee
node j is a trustworthy node. While aj and bj denote successful and unsuccessful
interactions respectively, their values are estimated using the Beta distribution [39,40],
where the distribution f(p|aj , bj) is expressed by the Gamma function Γ(·) with
0 ≤ p ≤ 1, aj > 0, bj > 0; and p 6= 0 if aj < 1 and p 6= 1 if bj < 1 [41]. Finally, the
honesty aware trust value can be calculated by Equation 4.

T H
j (t) =

aj
aj + bj

. (4)

2.1.2 Node Behavioral Trust

The node behavioral trust is calculated from both direct and indirect interactions
between nodes. At a given time t, an assessor node directly interacts with the assessed
node and evaluates the direct trust level (i.e., T d,nb

j (t)) from the previous direct
interactions. Based on the guarantee provided by the adjacent nodes the indirect trust
level (i.e., T ind,nb

kj (t)) can be evaluated. The guarantor nodes (k number of nodes)
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provide guarantee based on the previous interactions with the assessed node. The
behavioral trust of j-th node is given by Equation 5.

T nb
j (t) = T d,nb

j (t) +
∑
k

1

Hk
T ind,nb
kj (t), (5)

where Hk is the hop count for the k-th guarantor node.

2.1.3 ANFIS based Node Behavioral Trust Model

Fuzzy inference system (FIS) is a rule based expert system which can mimic Brain’s
logical inference to represent a system. In ANFIS, a fuzzy inference system is employed
to represent a nonlinear system with any complexity. The parameters of the input and
output membership functions can be tuned by the backpropagation or hybrid
backpropagation-least squares algorithm [42,43]. Due to its adaptive nature, the ANFIS
is more powerful in comparison to FIS.
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I iI i+1I i+2

+
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Oij
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Figure 6. ANFIS for the node behavioral trust calculation. The model evaluates node
behavioral trust based on the RFI, Intimacy, and Honesty. The ‘fn’ denotes the yk
function in the form yk =

∑
i wkiIi + bk.

The node behavior is evaluated by the ANFIS model as illustrated in Fig. 6. The
system consists of three inputs –relative frequency of interactions (RFI), Intimacy, and
Honesty. Each input has three linguistic terms or membership functions (MFs), i.e.,
Low, Medium, and High. Therefore, there are nineteen possible IF-THEN rules in the
rule based system (see Fig. 6) and one output called node behavioral trust level.

There are five layers– Fuzzification, Rule, Normalization, Defuzzification and
Output. Detailed description of each of these layer is described in [32,42,43]. The
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outputs of the layers are expressed by:

Fuzzification: O1
ij = µij(Ii),

Rule: O2
k =

∏
O1

ij =
∏

µik(Ii),

Normalization: O3
k =

O2
k∑

k O
2
k

,

Defuzzification: O4
k = O3

kyk, yk =
∑
i

wkiIi + bk,

Output: O5
k = T nb

j (t) =
∑
k

O4
k,

where, i = 1, 2, 3; j = 1, 2, 3; k = 1, 2, ..., 19; µij is j-th MF for input Ii, wki and bk are
consequent parameters; and T nb

j (t) is the behavioral trust level of j-th node.
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Figure 7. The output surface plots of ANFIS where node behavioral trust is plotted
against the trust properties (a) Honesty and RFI, and (b) Honesty and Intimacy.

The ANFIS model is trained with the input-output datasets generated from the NS2
simulator [44]. This dataset is generated for the placement of 50 nodes where a
percentage of the nodes are configured as misbehaving nodes. Beta distribution
calculated the failure and success of the interactions. For the predefined rule-based, the
ANFIS model has changed the MFs, and premise/ consequent parameters for finding
the node-behavior trust value. Fig. 7 shows the output surface plots of ANFIS model
where node behavioral trust is plotted against the trust properties (a) Honesty and RFI,
and (b) Honesty and Intimacy.

2.2 Evaluation of Data Trust

The data trust of a node consists of direct and indirect trust based on the historical
data of the node(s).

Direct Data Trust. The value of direct data trust depends on the deviation of a
node’s instantaneous data from its historical data. The historical data are the average
value of the node’s data for a specific period. Mathematically, the direct data trust,
T dd
j (t), of the j-th node with the i-th relay can be expressed by equation 6.

T dd
j (t) =

{
Tmax for Ddd

j (t) = Dhis

1
|Ddd

j (t)−Dhis| for Ddd
j (t) 6= Dhis, (6)

where, Ddd
j is the instantaneous data of j-th node during direct interaction whereas

Dhis is the historical data.

Indirect Data Trust. The indirect data trust, T di
kj is the average value of the

deviation of a node’s instantaneous data from the historical data of k nodes with j-th
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relay under the assumption that the included nodes are all trusted. Mathematically,
T di
j (t) can be expressed by the equation 7.

T di
j (t) =


Tmax for

∑
k Dind

kj (t)

k = Dhis

1

|
∑

k Dind
kj

(t)

k −Dhis
j |

for
∑

k Dind
kj (t)

k 6= Dhis
j ,

(7)

where, Dind
kj is the instantaneous data of j-th node during indirect interaction with k

nodes.
Having obtained the direct and indirect trust values, data trust of the j-th node is

calculated by Equation 8.

T d
j (t) = T dd

j (t) +
∑
k

1

Hk
T di
kj (t− tm), (8)

where tm is the previous interaction time at the m-th slot.

3 Performance Metrics

The proposed Brain-inspired TMM, suitable for cloud based IoT frameworks targeting
Neuroscience applications, has been evaluated using Packet Forwarding Ratio
(PFR) [45]; Network Throughput (NetT) [46–49]; Average Energy Consumption Ratio
(AECR) [29]; Accuracy [32]; and F-measure [50].

PFR. The PFR is the ratio between a number of packets received by the IoT CPS
and the number of packets transmitted by the source node. The PFR decreases when
the forwarded packets are dropped due to reasons like– buffer overflow, blocking, route
failure. Mathematically, the E2E PFR is calculated by Equation 9.

PFR =

∑
k PKTrec∑
n PKTsend

, (9)

where, PKTrec and PKTsend are the number of packets received by the destination
node and packets send by the source node. The source node sends n number of packets
and destination node receives k number of packets, and k < n.

NetT. The NetT can be defined as the rate at which the source transmissions are
delivered successfully to the destination over the link(s) between the source-destination
pair. The value of the throughput declines with the appearance of misbehaving nodes in
the network. Mathematically, the NetT is calculated by equation 10.

NetT =
Nsuccess

ttrans
, (10)

where, Nsuccess is the number of successful transmission delivered to the destination
and ttrans is the considered transmission interval.

AECR. The AECR is an another performance metric which is the ratio between the
energy consumption for evaluating a trust metric (Ete) and the energy consumption for
the data transmission (for sending (Esend) and for receiving (Erec)) of a node. The
AECR of a malicious node is lower than that of a legitimate node as a malicious node
does not participate in the packet forwarding or route discovery. Mathematically,
AECR is calculated by Equation 11.

AECR =

∑
nEte∑

n(Erec + Esend)
. (11)
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Accuracy. Accuracy is the ratio between the numbers of total successful interactions
and total interactions. Mathematically, accuracy A is expressed by Equation 12 [51].

A =
TP + TN

TP + FP + TN + FN
, (12)

where, TP is the number of successful interactions categorized as successful, TN is the
number of successful interactions categorized as unsuccessful, FP is the number of
unsuccessful interactions categorized as successful, and FN is the number of
unsuccessful interactions categorized as unsuccessful.

F-measure. The Precision (=TP/(TP + FP )) as well as recall (=TP/(TP + TN))
are two important measures considered in evaluating a classification outcome [50]. It is
calculated by the harmonic mean of both recall and precision, and mathematically it is
expressed by Equation 13.

F-measure =
2

1/recall + 1/precision
. (13)

4 Results

To verify the efficacy of the proposed TMM, simulation was performed in the NS-2
platform [44]. The parameters and setting employed in this platform are listed in Table
1. The results were obtained by running the simulation for twenty times and then taking
the average values of these twenty runs. It was assumed that the nodes had wireless
capabilities and were communicating either directly or through multihop relay nodes to
the IoT-CPS. The Adhoc On-demand Distance Vector (AODV) routing protocol [52]
was employed to simulate the communication scenario. The IoT devices or relay nodes
were categorized in two types– legitimate node and malicious node. The legitimate
nodes took part in the route discovery and packet forwarding process, whereas the
malicious nodes in neither took part in packet forwarding nor in route discovery.

The ANFIS based TMM was incorporated in the IoT-CPS network and all the nodes
were initialized with random trust values. After a certain number of interactions the
node behavior trust, and direct and indirect data trust were evaluated by the model.

Table 1. Parameters and settings used in simulation.

Parameters Numerical Value

Simulator NS-2
Routing AODV
Node distribution Random
Traffic CBR
Nodes 50
MAC 802.11
Speed 3 m/s
Packet size 512 bytes
Range 250 m
Max. Connection 12
Reply delay 60 ms

The PFR dropped significantly when the malicious nodes arose in the IoT or user
end. A node was termed malicious if it hid (H) in the route discovery phase or dropped
(D) packets intentionally. Fig. 8 depicts the effect of malicious nodes on the PFR. The
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PFR decreased as the percentage of malicious nodes increased from 10% to 50%. In
both cases of malicious behavior, the proposed TMM outperformed TRM [24]. In
addition, in terms of PFR, both TMM and TRM achieved better performance compared
to AODV with no trust management framework (indicated as ‘AODV’).
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Figure 8. The effect of malicious nodes on PFR.

The malicious nodes changed the overall network throughput as illustrated in Fig. 9.
When the number of malicious nodes were increased (10% to 50%) and the remaining
nodes showed legitimate behavior, the throughput of the network decreased. The
performance drop was due to the fact that the appearance of the malicious nodes
dropped the packet forwarding in the network. The performance of the proposed TMM
(AODV-TMM in Fig. 9) was compared with the trusted AODV (TAODV in Fig. 9) and
AODV without trust (AODV in Fig. 9). The results showed that the proposed TMM
outperforms the TAODV and AODV.
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Figure 9. The effect of malicious nodes on overall network performance.

Additionally, the proposed TMM is more energy efficient (see Fig. 10). In
comparison to the TRM, with the increasing number of malicious nodes (10% to 50%)
present in the communication network, the proposed TMM consumes less energy during
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Table 2. Performance comparison of three types of Trust management techniques

Technique Accuracy f-measure

ANFIS (Case 1) 0.967 0.97
ANFIS (Case 2) 0.957 0.96
FIS 0.89 0.90

the data transmission process. The reduced AECR value, compared to the TRM,
indicates that the proposed TMM is capable of identifying more malicious nodes in the
communication network.

Table 2 shows that the proposed TMM has higher accuracy (0.967 in case 1, when 5
linguistic terms were used: Very Low, Low, Medium, High, and Very High; and 0.957 in
case 2, when 3 linguistic terms were used: Low, Medium, and High) in comparison to a
Fuzzy Inference System (FIS) which has an accuracy of 0.89. In addition, the
F-measure of the proposed TMM (case 1: 0.97 and case 2: 0.96) also obtained higher
values than FIS (0.90).

5 Conclusion and Future Work

With the unprecedented growth of Brain data and IoT, cloud based data analytics
solutions are gaining popularity and now security is a big concern. This paper proposed
a Brain-inspired TMM to secure data transmission and ensure data reliability for the
cloud-based IoT architecture targeting Neuroscience applications. The TMM evaluates
jointly node behavioral trust and data trust using an ANFIS based node behavioral
model and a weighted-additive method, respectively. Based on the evaluated trust
levels, the model constructs a list of trustworthy nodes. The performance of the
proposed TMM was evaluated regarding PFR, throughput, AECR and accuracy. The
NS2 simulation results show that the model performs better than FIS, NFTM and other
TM algorithms. In the future, sophisticated optimization techniques along with
Bayesian statistics, Deep Learning, and Reinforcement Learning based TMM will be
used in ensuring security, reliability and accuracy of the ever growing cloud based IoT
and Block Chain architectures.
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