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Manifestations of emergent properties in stressed
disordered materials are often the result of an
interplay of strong perturbations in the stress field
around defects. The collective response of a long-
ranged correlated multi-component system is an ideal
playing field for statistical physics. Hence, many
aspects of such collective responses in widely spread
length and energy scales can be addressed by tools
of statistical physics. In this theme issue some of
these aspects are treated from various angles of
experiments, simulations and analytical methods, and
connected together by their common base of complex-
system dynamics.

1. Introduction
Fracture, earthquakes and breakdown are some of
the oldest yet unsolved problems in the physical
sciences. The combination of some statistical regularities
with what are often very costly and deadly events
have encouraged many fertile lines of inquiry, which
combine elegant and far-reaching ideas with practical
consequences. Classical Greek religion associated earth-
quakes with the action of the sea-god Poseidon, while
Aristotle described them as resulting from subterranean
winds [1]. He also attempted to map earthquake risk,
which he claims is higher in areas with plentiful hot-
springs, but lower for islands far from the coast [1]. The
need for accurate earthquake risk management strategy
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remains today, and will be the topic of several papers in this theme issue on fracture and
earthquakes.

The prominent Renaissance figure, Leonardo da Vinci further observed that the tensile
strengths of nominally identical metal wires tended to decrease with the length of the wire [2].
Similar observations were made by Galileo Galilei, also more than 400 years ago [3]. It was
understood much later that these results are, in fact, manifestations of the extreme statistics of
failure [4,5]. Due to microscopic fluctuations in material properties, the most extreme defect in a
larger sample volume will tend to be more serious than any defect in a smaller sample volume,
on average. The weaker point’s ability to nucleate failure earlier implies a lower strength of the
larger sample. The statistics of these extreme fluctuations are quite different in nature from those
of average behaviour, or even critical fluctuations. Again, the statistical treatment of such rare
events, and how much they can be anticipated (if not exactly predicted) will be a theme that we
will return to repeatedly throughout this issue.

More formal investigations on fracture propagation began with the energy balance criterion
proposed by Alan Griffith [6]. His seminal paper (which remains the second most cited paper in
the long history of this journal) considered the energy balance required to activate an existing
flaw or crack, and forms one footing of modern linear elastic fracture mechanics. The other
is George Irwin’s analysis of the stress intensification surrounding a single isolated crack [7].
Although Griffith and Irwin described abstract models of fracture, these were the result of
important applied problems: Griffith worked at the Royal Aircraft Establishment during WWI,
studying fatigue fracture in airplane wings, while Irwin was employed by the US Naval Research
Laboratory during WWII, where he was charged with explaining the catastrophic fracture of the
Liberty ships [8].

The deterministic fracture propagation, or stability analysis, of a perfect sample with an
isolated defect, however, cannot explain the drastic effect that multiple defects have in a sample,
which interact via the distorted stress field around them [9]. Such interactions can develop long-
ranged correlations that lead to emergent properties in the response statistics of the samples,
such as the so-called “crackling noise" of a scale-free avalanche size distribution, the formation of
complex crack patterns and the roughness of real fractured surfaces [10–13].

In more recent years these observations have led to investigations along the path of statistical
physics, which attempt to deal with emergent phenomena in complex systems through a minimal
set of parameters. For example, the dimensionality of the space, the range of interactions of a
system of elements on that space, and so on, have been used to explain the universal behaviour of
both earthquakes, and large classes of related problems [14,15]. Considerable progress has since
been made in understanding the nature of the fluctuations and the consequent emerging features
of materials undergoing failure [16].

Scientists today are successfully investigating the effects of structural disorder and
inhomogeneity on materials failure occurring from the microscopic level (fracture) to the tectonic
scales (earthquakes). Advances have been made, approaching from a number of different
directions: experimentalists, playing with simple configurations of cracking clay, or tearing sheets,
have shown how the presence of disorder, or a symmetry-breaking field, can dramatically affect
fracture phenomena, while theorists have studied similar processes in minimalistic statistical
models, which have the power to bridge across multiple fields and applications [17–20].
Furthermore, earthquake researchers have discovered time-varying scaling statistics that have
allowed insights into the more helpful characterisations of earthquake statistics and even to
highlight dangerous areas having higher risks of major events [21–25].

This theme issue brings together these different developments concerning the extreme
statistics of the failure of driven disordered materials. Intertwined with it is also the fascinating
aspect of universality apparent in these statistics, which offers new applications of the concepts
of phase transitions and criticality (in both the static and dynamic aspects of failures). Our aim
has been to address these issues from a balanced perspective of experimental, numerical and
analytical developments, reported by experts both in terms of original research papers and review
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articles. The contributions are divided into three groups. The first set of papers deal with various
analytical, numerical and experimental approaches for considering fracture in disordered solids,
the second set of papers deal with properties that are observed and analysed in laboratory scale
but are transferable to tectonic scale of earthquakes, and finally in the third set are the papers
dealing directly with earthquake models and forecasting techniques.

2. Summary
In the first set of eight papers the statistical properties of fracture in disordered solids are analysed
from various approaches of experiments, numerics and analytical methods.

We start with a review [26], where the role of disorder in determining the failure mode of solids
under stress is discussed. The mode of failure is always governed by nucleation when the system
size is sufficiently large and the level of disorder is sufficiently low. However, for the very high
limit of disorder, and also in the limit of a large range for the load redistribution following a local
breakdown, the failure mode is governed by precursory avalanches or percolation-like failure.
The scaling laws are discussed based on extreme statistics theory, as well as the fibre bundle and
spring network models.

Continuing with quantifying the effects of strong disorder in fracture dynamics, in the next
contribution a discrete element model simulation was made for the compressive failure (Brazilian
test) of disordered solids [27]. The effect of disorder on the localisation of shear bands was studied.
Particularly, the disorder was varied by changing the distribution from which the particle radii
were chosen. With the increase in disorder strength, the width of the shear bands was shown to
increase. The distribution of the fragment size was shown to be a power law, with very large as
well as very small sized grains being present. In general, an increase in disorder has well-defined
effects on the dynamics and fragmentation sizes of sample (e.g. suppression of precursory signals
in quasi-brittle failures, percolation like structure of damaged region, and so on). This study is a
step towards quantifying such scalings.

The intermittency of crack propagation is a result of the distortion of the stress field within
a solid due to presence of heterogeneities. As such, we include an experimental study on how
a single crack propagates through a brittle solid with tuneable disorder [28]. Here, the aim is to
understand the effect of heterogeneities in the simplest possible laboratory scenario. The temporal
organisations of the avalanches were compared with phenomenological laws of seismicity, and
also to analytical predictions and simulations; a difference between global and local avalanche
size distribution exponents was found. Further, a velocity dependence of the avalanche size
distribution exponent was found, which may be useful for prediction of imminent failure and
dangerous hot-spots in a threshold activated system. Finally, the temporal shapes of avalanches
were discussed.

Next, the equation of motion of the velocity field of fracture front through a disordered solid
is considered in analogy with the velocity field for turbulence in an incompressible fluid [29].
A generic equation of motion containing all terms permitted under the symmetry constraints
of the system was written and the scaling exponents of the roughness profiles were calculated.
Different limiting cases were found to map to known forms of driven surface dynamics, such
as the Edwards-Wilkinson or the Kardar-Parisi-Zhang equations. The generalised form is of
interest concerning the fracture dynamics in a wide variety of systems, where the constants of
the equations can be taken from the specific properties of the sample under question.

As mentioned earlier, extreme statistics are intimately connected with fracture dynamics. In
Ref. [30] the authors add to this connection with an experimental study on crack propagation
along a weak plane between two PMMA blocks. The global as well as the local avalanches are
noted, and the study explores the scaling of the extreme statistics in avalanches. They show how
the exponents of various distributions are different in values from the mean-field predictions,
but still maintain certain scaling relations between each other. An inverse square elastic line was
also simulated and found to have similar statistics as the experiments, at least for a large enough
length scale. For shorter scales, lower than the characteristic scale of the disorder present, the
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elastic line model is no longer valid, suggesting the need for a different approach, such as crack
coalescence models of fibre bundles.

Ref. [31] deals with a similar crack propagation experiment to the preceding paper, but
includes and highlights the effects of thermal noise. The thermal noise enables the propagation
of a crack front, even when the driving force is below the critical limit given by Griffith’s criteria,
and follows Arrhenius dynamics. Their model, with its numerical simulations and analytical
calculations of the morphology and velocity distribution of the crack front, is in agreement with
the reported experiments.

Given the long range correlation developed during fracture, in quasi-static condition patterns
can emerge that are characteristics of the constituents and even the history of movements of the
material under study. Specifically, desiccation crack patterns emerge in various dried colloidal
systems, from mud to paintings. The appearance of desiccation cracks while drying a paste or
colloidal suspension can show a surprising variety of interesting behaviour. The next contribution
considers how pastes can remember shear motions, which are then visualised when drying
occurs [32]. An essential condition for the memory effect is the plastic nature of the paste, which
is determined by the relative quantities of powder and water. In a water dominant or fluid state
the memory is not stored and the same is valid when the power fraction is large and the system
behaves as a semi-solid. For the state in between, however, the system has a finite yield stress
and behaves as a plastic fluid. The effect of memory is seen in these cases. In the present work
the authors present a systemic summary of the phase diagram of the memory effect, depending
on the fraction of fluid and the amplitude of the vibration. They also discuss the rewriting of
memory, where multiple vibration effectively erases the memory effect. A model of the colloidal
suspension with linear compression and residual tension is used to explain these effects.

The desiccation crack patterns can also be influenced by external fields. In the review article
of Ref. [33], the authors provide an overview of desiccation cracks in drying pastes and colloids,
particularly in the symmetry-breaking presence of a strong DC or AC electric field.

The second set of articles also deal with the response statistics of disordered systems at a
laboratory scale, but the physical principles are applicable to the much larger scale of earthquakes.
Often, due to the scale-free nature of the stress field, or the critical correlation developed in a
driven disordered system with an intermittent response, the dynamics do not depend strongly on
the details of a system. This is a signature of self-organised criticality. In such cases, the dynamics
observed in a system at a small scale will, in principle, retain its qualitative features when scaled
up to, say, the tectonic scale. The next three papers explore such issues, and rescaling.

In Ref. [34], the remote triggering of seismic activities are addressed from the numerical model
of a confined granular medium, representing the gouge layer found in faults, or separating
plate boundaries. The so-called fluidisation at the resonance frequency of the gouge causes
remote triggering of earthquakes. Other applications in terms of confined granular media are
also discussed.

Segregation of the grain sizes in a granular gouge is a well-known phenomena. The mechanism
for such a process is debated. One explanation comes from the just-mentioned fluidisation
mechanism, and the subsequent segregation of the grains due to Brazil nut effect [34]. Such
a effect requires a significant porosity of the system, and gravity. In Ref. [35], however, the
authors show that neither fluidisation nor gravity is essential for the segregation effect. In their
simulation of a dense bi-disperse system, the authors show that segregation occurs both with
and without gravity, and that the relative positions of larger and smaller grains are interchanged
in presence and absence of gravity. Indeed, by changing various aspects of the simulations, the
authors conclude that it is the non-linear velocity profile of the system, which is responsible for
the segregation effect.

In the third article of this section, the crack patterns of strike-slip faults are analysed in analogy
with experiments on Plexiglas plates [36]. The plausibility of the scenario that piece-wise linear
crack patterns are formed due to the bottom-up propagation of cracks in the earth’s crust under
mode-III loading is tested. Arguing that the basic principles of a crack induced by mode-III shear
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loading are valid over a wide range of length scales, experiments were conducted with Plexiglas
plates under 4-point bending with cyclic and abrupt loading. The mode-III fracture advances
could be observed for in-situ conditions due to transparency of the material. The observation of
crack-front segmentations in the experiments were also verified by phase-field simulation models.

Finally, the last three papers of this theme issue deal with earthquake models and forecasting
mechanisms. The forecasting mechanisms are essentially applicable to systems having the generic
characteristics of intermittent dynamics.

In Ref. [37], the two dimensional Burridge-Knopoff model is simulated with a realistic
rate and state friction law, in an attempt to reproduce the properties of large earthquakes.
Particularly, the anisotropic characteristics of large avalanches are described. In spite of being
a homogeneous model, the asperity like behaviour is dynamically generated in the system. The
spatially anisotropic structure of the avalanches are unique for the two dimensional version of
the Burridge-Knopoff model and only seen for the rate and state friction law.

Forecasting is a central question in catastrophic phenomena including in earthquakes. Due
to their devastating consequences, there has been a vast effort in finding precursory signals for
major earthquakes. A consensus, however, is that a prediction of the exact time and magnitude
of a large quake is not possible. Nevertheless, there can be forecasting of a statistical form, i.e. the
probability of a quake larger than a certain magnitude after a certain time interval. That gives a
hazard map, which can be very useful for safety strategies in more earthquake prone areas. In Ref.
[39], one such method is discussed, namely ‘now-casting’ the earthquake risks, which refers to the
forecasting of earthquake risk at times very close to the present, based on past earthquake data.
The method can deal with a variable rate of seismicity by the use of a natural time scale, where
the sequence of the earthquakes is considered, rather than the real time separation of the events.
Using the scaling of the productivity laws of earthquake sequences, the now-casting method was
applied to three earthquake prone regions, viz. the Parkland earthquake of 2004, and induced
seismicity in Groningen and Oklahoma.

In a similar forecasting problem to that described above, our final paper deals with a different
method for such forecasting, viz. the change in the b-value of the Gutenberg-Richter like law
with the local stress on the system [38]. The question here is to find the optimal time and length
scale over which activity data is necessary to unambiguously determine a weak region in the
system. As opposed to ref. [37], a weak region in this model is not dynamically generated but
are embedded in the relative strength of the parts of the system, effectively creating an asperity
like structure. It was found that given a rate of earthquake events, there exist an optimal scale
up to which the spatial variations in the b-value and thereby the spatial variations of the stress
profile can be determined within a limited error range. For other choices, the error range in such
determinations become higher.

Data Accessibility. There are no additional data presented in the paper.

Authors’ Contributions. All authors were involved in all aspects of the paper.

Competing Interests. The author(s) declare that they have no competing interests.

Funding. SB acknowledges the Alexander von Humboldt Foundation for support. BKC is grateful to JC Bose
Fellowship, DST Govt. of India for support.

References
1. Aristotle, Meteorologica, translated by E. W. Webster, University of Adelaid (2016),

https://ebooks.adelaide.edu.au/a/aristotle/meteorology/index.html
2. Leonardo da Vinci, I Libri Di Meccanica, reconstructed from the original notes by Arturo Uccelli,

Kraus Reprint, Nendeln, Liechtenstein, 1972.
3. Galileo Galilei, Discorsi e Dimostrazioni Matematiche Intorno a Due Nuove Scienze, 1638.
4. W. Weibull, A statistical distribution function of wide applicability, J. Appl. Mech. 18, 293 (1951).
5. E. J. Gumbel, Statistical Theory of Extreme Values & Some Practical Applications, Columbia

University Press, N. Y. (1954).
6. A. A. Griffith, The phenomena of rupture and flow in solids, Phil. Trans. R. Soc. A 221, 163 (1921).



6

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

7. George R. Irwin, Analysis of stresses and strains near the end of a crack transversing a plate, J. Appl.
Mech. 24, 361 (1957).

8. Lucas Goehring, Stephen W. Morris, Cracking mud, freezing dirt, and breaking rocks, Physics Today
67, 39 (2014).

9. John D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems,
Phil. Trans. R. Soc. A 241, 376 (1957).

10. H. J. Herrmann, S. Roux (editors), Statistical models for the fracture of disordered media, Elsevier
(1990) North-Holland.

11. B. K. Chakrabarti, L. G. Benguigui, Statistical Physics of Fracture & Breakdown in Disordered
Systems, Oxford University Press, Oxford (1997).

12. Elisabeth Bouchaud, Scaling properties of cracks, J. Phys: Cond. Mat. 9, 4319 (1997).
13. M. Sahimi, Heterogeneous Materials II: Nonlinear & Breakdown Properties & Atomistic

Modelling, Springer, NY (2003).
14. Mikko J. Alava, Phani K. V. V. Nukala, Stefano Zapperi, Statistical models of fracture, Adv. Phys.

55, 349 (2006).
15. Daniel Bonamy, Elisabeth Bouchaud, Failure of heterogeneous materials: A dynamic phase

transition?, Phys. Rep. 498, 1 (2011).
16. Bikas K. Chakrabarti, Story of the development in statistical physics of fracture, breakdown and

earthquake: A personal account, Rep. Adv. Phys. Sci. 1, 1750013 (2017).
17. A. Hansen, P. C. Hemmer, S. Pradhan, The Fiber Bundle Model: Modeling Failure in Materials,

Wiley-VCH (2015).
18. Lucas Goehring, Akio Nakahara, Tapati Dutta, So Kitsunezaki, Sujata Tarafdar, Desiccation

Cracks and their Patterns, Wiley-VCH (2015).
19. Soumyajyoti Biswas, Purusattam Ray, Bikas K. Chakrabarti, Statistical Physics of Fracture,

Breakdown & Earthquake, Wiley-VCH (2015).
20. Alessandro Taloni, Michele Vodret, Giulio Constantini, Stefano Zapperi, Size effects on the

fracture of microscale and nanoscale materials, Nature Review Materials 3, 211 (2018).
21. J. M. Carlson, J. S. Langer, B. E. Shaw, Dynamics of earthquake faults, Rev. Mod. Phys. 66, 657

(1994).
22. John B. Rundle, Donald L. Turcotte, Robert Shcherbakov, William Klein, Charles Sammis,

Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems, Rev.
Goephys. 41, 1019 (2003).

23. Hikaru Kawamura, Takahiro Hatano, Naoyuki Kato, Soumyajyoti Biswas, Bikas K.
Chakrabarti, Statistical physics of fracture, friction and earthquakes, Rev. Mod. Phys. 84, 839 (2012).

24. Y. Y. Kagan, Earthquakes: Models, Statistics, Testable Forecasts, Wiley-VCH (2014).
25. Lucilla de Arcangelis, Cataldo Godano, Jean Robert Grasso, Eugenio Lippiello, Statistical

physics approach to earthquake occurrence and forecasting, Phys. Rep. 628, 1 (2016).
26. Purusattam Ray, Statistical physics perspective of fracture in brittle and quasibrittle materials, this

issue.
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