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Tolerant Embedding for Internet of Things    
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Lloret, Senior Member IEEE, Sushil Kumar, Member IEEE, Rajiv Ratn Shah, Mukesh Prasad, Shiv Prakash

Abstract—Recently, virtualization in wireless sensor networks 

(WSNs) has witnessed significant attention due to the growing 

service domain for IoT. Related literature on virtualization in 

WSNs explored resource optimization without considering 

communication failure in WSNs environments. The failure of a 

communication link in WSNs impacts many virtual networks 

running IoT services. In this context, this paper proposes a 

framework for optimizing fault tolerance in virtualization in 

WSNs, focusing on heterogeneous networks for service-oriented 

IoT applications. An optimization problem is formulated 

considering fault tolerance and communication delay as two 

conflicting objectives. An adapted non-dominated sorting based 

genetic algorithm (A-NSGA) is developed to solve the 

optimization problem. The major components of A-NSGA 

include chromosome representation, fault tolerance and delay 

computation, crossover and mutation, and non-dominance based 

sorting. Analytical and simulation based comparative 

performance evaluation has been carried out. From the analysis 

of results, it is evident that the framework effectively optimizes 

fault tolerance for virtualization in WSNs.   

Index Terms–IoT, Virtualization, Wireless sensor networks.

I. INTRODUCTION

etwork virtualization has got significant attention as an

enabling technology for service-oriented heterogeneous 

network for Internet of Things (IoT) [1].  The rigid 

communication architecture of Internet is one of challenging 

issues in IoT. Network virtualization enables Internet to retain 

its communication architecture while enlarging and 

transforming as IoT. In IoT enabled smart cities, service-

oriented communication architecture is required for smart 

applications (see Fig.1). It can be addressed by implementing 

network as a service through virtualization [2]. Sensing as a 

service can be implemented in collaboration with network as a 

service, to support heterogeneous networking and sensing 

resource optimization for smart applications in IoT.     
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Fig. 1. Heterogeneous networks in Internet of Things (IoT) 

Network virtualization is implemented using virtual 

network embedding (VNE) algorithms [3]. Due to the 

inception and evolution of VNE, the role of Internet service 

provider has been divided into two parts namely, infrastructure 

provider and service provider. Infrastructure provider is 

responsible for deployment and maintenance of physical 

infrastructure whereas, service provider is responsible for 

range of customizable services to end user. Various virtual 

network embedding techniques have been suggested focusing 

on wired-networks [4]. The two key issues in virtual network 

embedding include resource optimization [5], and 

survivability [6].  

Due to the recent developments in IoT technology, network 

virtualization in WSNs has been envisioned [7]. Some of the 

initial works on the virtualization focuses on service-oriented 

network architecture to optimize sensing resources. An four-

layered architecture for virtualization in WSNs has been 

suggested, based on reducing redundant deployment of sensor 

networks for different IoT applications [8]. Another five-

layered virtualization architecture has been explored to 

support network diversity and increase resource utilization in 

IoT [2]. Brain-inspired adaptive architecture has been 

presented for embedding and running IoT applications on 

virtual wireless sensor networks [9]. The aforementioned 

architectures did not consider communication failure on 

virtual networks, caused by the communication failure on 

physical WSNs. The fault tolerance (reactive capability of 

handling communication failure in physical networks) is a 

pressing issue in virtualization in wired networks [10]. The 
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fault tolerance in WSNs environments is more challenging as 

compared to its wired counterparts, due to the dynamic 

wireless channel based connectivity.  Bandwidth reservation 

based fault tolerance enhancement decreases resource 

utilization [11]. Moreover, estimation of guaranteed 

connectivity, which is utilized to enhance fault tolerance in 

VNE for wired-networks [12], is quite challenging in WSNs.     

 In this context, this paper proposes a framework to 

maximize fault tolerance and minimize communication delay 

for VNE in WSNs environments focusing on IoT services. It is 

a reactive optimization of fault tolerance and communication 

delay for service-oriented heterogeneous virtual networks in 

IoT. Specifically, the major components of the framework are 

listed below as contributions to literature: 

1) The fault tolerance optimization problem is mathematically

formulated considering fault tolerance and communication

delay as the two conflicting objectives in WSNs

environments.

2) An adapted non-dominated sorting based genetic algorithm

(A-NSGA) is developed to solve the optimization problem.

3) The solution framework is consisted of chromosome

representation, fault tolerance and delay computation,

crossover and mutation, and non-dominance based sorting.

4) Simulations are performed to analyze the performance of

A-NSGA in optimizing fault tolerance for virtualization in

WSNs.

The rest of the article is organized into following sections. 

Section II reviews related literature on fault tolerance in VNE 

considering three categorizations including survivability, 

topological knowledge for trust, and reliability using single 

objective optimization.  Section III presents the detail of 

mathematical formulation of the multi-objective optimization 

problem, and A-NSGA for solving the problem.  Section IV 

discusses simulation setting, metrics and comparative 

performance evaluation, followed by conclusion made in 

section V.  

II. RELATED WORK

     In this section, related literature on fault tolerance in VNE 

is reviewed. It is divided into three categories including 

resource reservation, topological knowledge, and single 

objective optimization based survivability. Next, virtualization 

in WSNs is critically explored as the contribution area.  

A. Resource Reservation based Survivability

A proactive survival virtual network embedding (SVNE) 

technique has been suggested for single link failure using 

bandwidth reservation [13]. Specifically, SVNE is 

mathematically formulated and solved using two heuristic 

considerations including hybrid policy heuristic and baseline 

policy heuristic. The preserved quota for backup on each link 

has been utilized for restoration and protection. Although link 

restoration and protection based survivability measure is quite 

effective in business perspective. The management of 

restoration information for each link reduces the applicability 

of the approach in realistic network scenario specifically in 

case of wireless environments. Moreover, fault tolerance 

capability of links and communication delay are not 

considered in the survivability measurement. SVNE has been 

enhanced by addressing node failure along with link failure 

using dynamic recovery (DR-SVNE) technique [11]. An 

algorithm has been developed to discover alternative path end 

points of the failed link as source and destination. Node failure 

has been addressed by discovering a set of alternative paths 

for each link of the node. Although back up resources have not 

been utilized in dynamic recovery yet, it manages backup 

information for recovering each link.  It did not explore all the 

alternative paths to select best available alternative path rather 

finds the first alternative path satisfying the requirement.   

Another survival virtual network embedding technique has 

been suggested based on optimal resource allocation for both 

working and backup resources [14].  The problem of single 

node failure in the network has been viewed as NP complete 

multi-commodity network flow problem. Integer linear 

programing model based solution has been suggested to utilize 

available and backup resources optimally. Auxiliary protection 

graph is constructed to facilitate single node survivability. 

Heuristic based algorithm is developed for embedding 

auxiliary protection graph to physical network. Although 

heuristic based mapping effectively addresses single node 

failure. The consideration of backup resources, and possibility 

of multiple nodes and links failure are the undesirable aspects 

of this embedding technique. SVNE has been enhanced 

considering failure dependent protection and transformed 

virtual network request [10]. A backup node has been 

considered corresponding to each node. Enhanced virtual 

network has been designed from the initial virtual network 

request using complete connected graph, for minimizing the 

requirement of resources to survive in case of failure. Binary 

quadratic programing and mixed integer linear programing 

have been utilized to formulate failure dependent protection 

and transform virtual network, respectively.  Heuristic based 

algorithms have been developed for solving the embedding 

problem. The undesirable aspect of failure dependent 

protection is the management of backup resources.     

B. Topological Knowledge based Survivability

Topology aware virtual network embedding has been

suggested to improve utilization of resources, and thus, 

maximize revenues due to the better utilization [15].  Six 

topological characteristics have been suggested to rank both 

node and link during mapping. The characteristics include 

degree, strength, closeness, between-ness, eigen vector, and 

Katz centralities. Heuristic embedding algorithms have been 

developed by utilizing these topological characteristics apart 

from resource requirements. The topological characteristics 

have been devised focusing on better utilization of resources 

without considering the fault tolerance capability. Topology 

aware embedding has been improved considering convergence 

degree to avoid embedding of virtual link on longer physical 

path [12]. The degree of virtual nodes has been considered as 

convergence degree. Maximum convergence degree based 

embedding algorithm has been developed to ensure shorter 

physical paths for virtual links. Although survivability 

improves due to the shorter path consideration yet, no direct 

contribution on fault tolerance. Geographical location of 

physical resources has been utilized in VNE to enhance 

survivability with lower operational cost [16]. Location 

constrained survival virtual network embedding (LSNE) 
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problem has been vied as multi-commodity network flow 

problem. The problem has been addressed using integer linear 

programing model for small size network whereas, heuristic 

based algorithm has been utilized for larger size network. The 

impact of location information is negligible in case of smaller 

network due to the high speed of physical links. The 

topological knowledge significantly increase revenue gain, 

and indirectly enhance survivability. The undesirable aspects 

of topology based survivability is the direct impact of 

topology change on virtual networks. It could force re-

embedding for revenue gain.  

C. Single-Objective Optimization based Survivability

Fault tolerance in virtual network embedding with

redundant resource has been modelled as an integer linear 

programming problem [17]. A single-objective optimization 

technique namely, discrete particle swarm optimization (PSO) 

has been utilized to solve the embedding problem. The 

consideration of redundant resource as backup reduces 

resource utilization of the PSO-based survivability 

enhancements. Another single-objective optimization 

technique namely, ant colony optimization (ACO) has been 

utilized to improve survivability of VNE, by guarantying 

completeness of virtual network despite a node failure [18]. 

The survival embedding problem has been modelled as integer 

linear programming problem. To solve the problem, firstly, 

primary-cut set of has been identified from the sub-network of 

the virtual network obtained after the removal of failed node. 

Secondly, ACO has been utilized to find optimal embedding 

of virtual network. The performance of some well-known 

single-objective optimization techniques and their variants has 

been investigated comparatively for virtual network 

embedding [19]. ACO-based algorithms differ in the order of 

virtual node embedding and computing pheromone trail 

whereas, PSO-based algorithms differ in calculating rank of 

nodes. Although number of network parameters are 

considered for procuring survival embedding yet, optimal 

values of the parameters not obtained due to the usage of 

single-objective optimization techniques.   

D. Virtualization in WSNs for IoT: The Contribution Area

Recently, virtualization in WSNs has witnessed significant

attention due to the advancements in IoT technology. 

Although not much works has been done in the area yet, some 

potential initiatives have been made towards VNE for WSNs 

infrastructure. Network virtualization for IoT has been 

introduced focusing on resource constrained devices [7]. It has 

focused on the two key issues in IoT environments, including 

the lack of end-to-end connectivity among sensors in gateway 

based communication, and access control and authentication 

in direct communication without using gateways. Some use 

cases have conceptualized the virtual networking in IoT. An 

architecture has been suggested for virtualization of WSNs, to 

reduce redundant deployment of sensor networks for different 

IoT applications [8]. The architecture includes four layers 

considering physical, virtual sensor, virtual sensor access, and 

application. Two communication paths including data and 

control, and five interfaces have been also considered in the 

architecture. Another network virtualization architecture for 

IoT has been suggested to support network diversity and 

increase resource utilization [2]. A five-layered architecture 

namely, smart service system has been developed for 

implementing network virtualization in IoT. A four-phase 

service delivery model for IoT has been designed considering 

registration, discovery, description, and execution of services. 

The virtual network resource management model for IoT 

environments has been presented to handle service delivery 

with optimal resource utilization. Brain-inspired adaptive 

architecture has been presented for embedding and running 

IoT applications on virtualized WSNs [9]. Specifically, 

hierarchical modular structure of brain has been utilized for 

constructing different level of virtualization.  

Most of the proposal on virtualization in WSNs focuses on 

enhancing resource (i.e., sensor) utilization, by executing 

application-centric multiple tasks in sensors and abstracting 

sensors based on application (i.e., virtual sensors). This is 

evident from recent surveys focusing on critical investigation 

of node and network level virtualization in WSNs for IoT [20, 

21] and applications [22-25]. Different levels of abstraction

have been considered for the same purpose including four

layers [8], five layers [2], and hierarchical layers [9].

Complementary to these proposal, we focus on fault tolerance

aspect in virtualization in WSNs, which can be utilized to aid

the aforementioned resource-centric proposals. Specifically,

we utilize multi-objective optimization to maximize fault

tolerance and minimize communication delay parallelly.

III. FAULT TOLERANT VIRTUALIZATION 

In this section, the detail of fault tolerant aspect of 

virtualization in WSNs is presented. A four-layered network 

architecture is considered (see Fig. 2). The bottom most 

physical layer is represented by the actual sensor nodes, 

i.e.,(𝑠1, 𝑠2, 𝑠3, 𝑠4) , capable of performing different types of

tasks. Task based virtualization of sensors is performed in the

sensor virtualization layer, i.e.,(𝑠11, 𝑠12, … , 𝑠43), resulting in

more number of sensors than the number of actual physical 

sensors. Different wireless networks are generated at the 

access layer based on fault tolerant embedding of task oriented 

sensors. Each embedded network is considered as access 

agent. The application layer represents smart applications of 

IoT. The proposal is implemented in the access layer.  
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Fig. 2. Fault tolerance embedding at virtual sensor access layer 
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Table I. Nomenclature 

Notation Description 

𝑆𝑖 or 𝑆𝑖𝑗 𝑖𝑡ℎsensor or 𝑗𝑡ℎvirtualization of 𝑖𝑡ℎsensor 

𝑟 Distance of nearest neighbour sensor 

∆𝑟 Small increment in 𝑟  

𝑁𝐴 Network area 

𝜆 Density of sensors in the network 

𝑃𝑟|(𝑟+∆𝑟) 
𝑐  Probability of closest sensor between 𝑟 and 𝑟 + ∆𝑟 

𝑃𝑟|(𝑟+∆𝑟) 
𝑠  Probability of some sensor between 𝑟 and 𝑟 + ∆𝑟 

𝑃<𝑟 
0  Probability of no sensor at less than 𝑟distance 

𝑁𝑛 Number of sensors in the network 

𝑓𝑟(𝑟) Pdf of closest neighbour distance 

𝑅 Transmission range of sensors 

𝐸(𝑟) Expected closest neighbour distance 
 𝑠𝑝 Source physical sensor   

𝑑𝑝 Destination physical sensor 

𝐷 Distance between 𝑠𝑝and 𝑑𝑝 
(𝑁𝑖𝑛 − 2)𝐶𝑘 Number of paths with 𝑘 intermediates 

𝑁𝑝 Total number of paths between 𝑠𝑝and 𝑑𝑝 

𝑁𝑖𝑛 Number of intermediate nodes between 𝑠𝑝and 𝑑𝑝 

𝐹𝑇𝑖
𝑝

 Fault tolerance of 𝑖𝑡ℎpath 

𝐹𝑇𝑖
𝑙 Fault tolerance of 𝑖𝑡ℎlink 

𝐶𝐷𝑖
𝑝

 Communication delay of 𝑖𝑡ℎpath 

𝐶𝐷𝑖
𝑙 Communication delay of 𝑖𝑡ℎlink 

𝐶𝐻𝑖
 𝑖𝑡ℎchromosome 

𝑁𝑟𝑒
 Number of retransmissions for a success 

𝑒𝑖,𝑗
 Packet error rate of a link between nodes 𝑖 and 𝑗 

𝑑𝑖,𝑗
𝑙  Degree estimation of a link between nodes 𝑖 and 𝑗 

𝑑𝑖
𝑒 Degree of 𝑖𝑡ℎnode 

𝛼 Decision variable 

𝑑𝑖,𝑗 Distance between nodes 𝑖 and 𝑗 

𝑆𝑝 Propagation speed 

𝑆𝑡 Transmission speed 

𝑆𝑝𝑘𝑡 Size of packet 

𝑠𝑣 and 𝑑𝑣 Virtualized source and destination sensors of a link failure 

𝑆𝑝𝑜𝑝 Size of chromosome population 

𝑁𝑔𝑒𝑛 Number of generations during solution optimization  

A. The Optimization Problem 

Let there is a link failure between two virtual sensors 𝑠𝑣 and 

𝑑𝑣due to the path failure embedded for the link. The path for 

the link in wireless sensor network is between the physical 

sensor nodes 𝑠𝑝  and 𝑑𝑝 . All the available paths between 𝑠𝑝 

and 𝑑𝑝  need to be explored to obtain an alternative path 

between these nodes with maximum fault tolerant capacity. 

The knowledge of expected number of paths with intermediate 

node is required for exploring these paths.  

To find the total number of paths, expected distance of the 

nearest neighbor node qualified for communication 

establishment is computed. The expected distance of closest 

neighbor sensor can be determined once the probability 

density function (𝑝𝑑𝑓) of the location of sensors is known. To 

determine 𝑝𝑑𝑓 of the location of sensors, the probability of a 

neighbor sensors between the two distances 𝑟 and (𝑟 + ∆𝑟) is 

derived, where 𝑟 is a distance within transmission radius and 

∆𝑟  represents a small incremental distance.  

It is assumed that sensors are distributed across a physical 

wireless sensor network area  𝑁𝐴 with uniform density  𝜆 .  

Therefore, the probability of presence of a sensor in the area is 

1, which can be expressed as given by Eq. (1) 

∫ 𝜆 𝑑𝑁𝐴 = 1
𝑁𝐴

⇒  𝜆 =
1

𝑁𝐴
     (1) 

The probability 𝑃𝑟|(𝑟+∆𝑟) 
𝑐 of closest neighbor sensor at the 

distance between 𝑟  and (𝑟 + ∆𝑟)  is the joint probability of 

𝑃𝑟|(𝑟+∆𝑟) 
𝑠 presence of some neighbor sensor at this distance, 

and probability 𝑃<𝑟 
0 of presence of no other sensor closer than 

the distance 𝑟.  The probability 𝑃𝑟|(𝑟+∆𝑟) 
𝑐  can be expressed as 

given by Eq. (2) 
 𝑃𝑟|(𝑟+∆𝑟) 

𝑐 = 𝑃<𝑟 
0  . 𝑃𝑟|(𝑟+∆𝑟) 

𝑠     

= [1 − 𝑃<𝑟 
𝑠 ] . [𝑃𝑟|(𝑟+∆𝑟) 

𝑠 ]          (2) 

Considering only half of the area in transmission range 

towards destination 𝑑𝑝 with 𝑁𝑛 sensor nodes in the network, it 

is simplified as given by Eq. (3).    

𝑃𝑟|(𝑟+∆𝑟) 
𝑐 = [1 − ∑ (𝑁𝑛

𝑗
) (

𝜆𝜋𝑟2

2
)
𝑗

𝑁𝑛
𝑗=1 (1 −

𝜆𝜋𝑟2

2
)
𝑁𝑛−𝑗

] .  

                   [∑ (𝑁𝑛
𝑗
) ∫ (

2𝜆𝜋𝑟 .  𝑑𝑟

2
)
𝑗

𝑑𝑟. ∫ (1 −
𝑟+∆𝑟

𝑟

𝑟+∆𝑟

𝑟

𝑁𝑛
𝑗=1

2𝜆𝜋𝑟 .  𝑑𝑟

2
)
𝑁𝑛−𝑗

𝑑𝑟 ]     

= (1 − 𝜆𝜋𝑟2)𝑁𝑛 [1 − (1 − 𝜆𝜋(𝑟𝑑𝑟 + 𝑑𝑟2))
𝑁𝑛
]    

= (1 − 𝜆𝜋𝑟2)𝑁𝑛 [1 − {1 − (𝑁𝑛
1
). (𝜆𝜋(𝑟𝑑𝑟 + 𝑑𝑟2)) +

(𝑁𝑛
2
). (𝜆𝜋(𝑟𝑑𝑟 + 𝑑𝑟2))

2
…}]   

= (1 − 𝜆𝜋𝑟2)𝑁𝑛 [𝑁𝑛𝜆𝜋𝑟𝑑𝑟 + 𝑁𝑛𝜆𝜋𝑑𝑟
2 − (𝑁𝑛

2
). (𝜆𝜋(𝑟𝑑𝑟 +

𝑑𝑟2))
2
… ]            (3) 

The probability density function 𝑓𝑟(𝑟)  of closest neighbor 

distance can be obtained by considering limit in Eq. (3) as: 

𝑓𝑟(𝑟) = lim
𝑑𝑟→0

𝑃𝑟|(𝑟+∆𝑟) 
𝑐

𝑑𝑟
= 𝑁𝑛𝜆𝜋𝑟(1 − 𝜆𝜋𝑟

2)𝑁𝑛 (4) 

Considering 𝑅 as transmission range of sensors in Eq. (4), the 

expected closest neighbor distance 𝐸(𝑟)can be expressed as 

given by Eq. (5).  

𝐸(𝑟) = ∫ 𝑟𝑓𝑟(𝑟)𝑑𝑟
𝑅

0
= ∫ 𝑁𝑛𝜆𝜋𝑟

2(1 − 𝜆𝜋𝑟2)𝑁𝑛
𝑅

0
𝑑𝑟   

= [
−𝑟(1−𝜆𝜋𝑟2)

𝜆𝜋(𝑁𝑛+1)
]
0

𝑅

+ ∫
(1−𝜆𝜋𝑟2)𝑁𝑛+1

𝜆𝜋(𝑁𝑛+1)

𝑅

0
𝑑𝑟   

= [
1

𝜆𝜋(𝑁𝑛+1)
∑ (𝑁𝑛+1

𝑖
)

𝑁𝑛+1
𝑖

(−𝜆𝜋𝑟2)
𝑖
 𝑟

𝑖+1
]
0

𝑅

    

𝐸(𝑟) =
√𝑁𝐴

𝜆𝜋
3
2⁄ (𝑁𝑛+1)

∑
(−1)𝑖

𝑖+1

𝑁𝑛+1
𝑖    (5) 

Now, the number of paths from 𝑠𝑝  to 𝑑𝑝with 𝑘 number of 

intermediate nodes is (𝑁𝑖𝑛 − 2)𝐶𝑘  where 𝑘 =

{1,2,3,… (⌊𝐷 𝐸(𝑟)⁄ ⌋ − 1)} , total intermediate nodes 𝑁𝑖𝑛 =

(⌊𝐷
𝐸(𝑟)⁄ ⌋ − 1)  and 𝐷  represents distance between 𝑠𝑝  and 𝑑𝑝 . 

The total number of paths 𝑁𝑝 from 𝑠𝑝 to 𝑑𝑝can be expressed 

as given by Eq. (6). 

𝑁𝑝 = (𝑁𝑖𝑛 − 2)𝐶1 + (𝑁𝑖𝑛 − 2)𝐶2 +⋯+ (𝑁𝑖𝑛 − 2)𝐶(𝑁𝑖𝑛−2)
 

= {(𝑁𝑖𝑛 − 2)𝐶0 + (𝑁𝑖𝑛 − 2)𝐶1 +⋯+ (𝑁𝑖𝑛 − 2)𝐶(𝑁𝑖𝑛−2)
} − 1  

= 2𝑁𝑖𝑛 − 1              (6) 

Using the number of paths in Eq. (6), the maximization 

function for Fault Tolerance (FT) can be expressed as: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐹𝑇 = max
𝑖=1,2,…,𝑁𝑝

(𝐹𝑇𝑖
𝑝
)   (7) 
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Where, 𝐹𝑇𝑖

𝑝
represents fault tolerance of 𝑖𝑡ℎ path from 𝑠𝑝  to 

𝑑𝑝. The normalized fault tolerance of a path can be expressed 

as: 

𝐹𝑇𝑖
𝑝
=

1

(⌊𝐷
𝐸(𝑟)⁄ ⌋−1)

∑ 𝐹𝑇𝑖,𝑗
𝑙

𝑖=(⌊𝐷
𝐸(𝑟)⁄ ⌋−1),𝑗=𝑑𝑝

𝑖=𝑠𝑝,𝑗=1
  (8) 

Where, 𝐹𝑇𝑖,𝑗
𝑙 is the fault tolerance of a link between an adjacent 

pair of nodes, and 𝑖, 𝑗 ∈ 𝑆𝑖
𝑜𝑝
= {𝑠𝑝, 1,2, … , (⌊𝐷

𝐸(𝑟)⁄ ⌋ −

2) , (⌊𝐷
𝐸(𝑟)⁄ ⌋ − 1) , 𝑑𝑝}. The ordered set of nodes of 𝑖𝑡ℎpath 

is represented by 𝑆𝑖
𝑜𝑝

. Similarly, the minimization function for 

Communication Delay (CD) can be expressed as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝐷 = min
𝑖=1,2,…,𝑁𝑝

(𝐶𝐷𝑖
𝑝
)  (9) 

Where, 𝐶𝐷𝑖
𝑝

represents delay of 𝑖𝑡ℎ path from 𝑠𝑝  to 𝑑𝑝 . The 

normalized CD of a path can be expressed as: 

𝐶𝐷𝑖
𝑝
=

1

(⌊𝐷
𝐸(𝑟)⁄ ⌋−1)

∑ (
𝐶𝐷𝑖,𝑗

𝑙

𝐶𝐷𝑚𝑎𝑥
𝑙 )

𝑖=(⌊𝐷
𝐸(𝑟)⁄ ⌋−1),𝑗=𝑑𝑝

𝑖=𝑠𝑝,𝑗=1
 (10) 

Where, 𝐶𝐷𝑖,𝑗
𝑙 is the delay of a link between an adjacent pair of 

nodes, and 𝑖, 𝑗 ∈ 𝑆𝑖
𝑜𝑝

. The maximum link delay among all the 

links is represented by 𝐶𝐷𝑚𝑎𝑥
𝑙  . The constraints corresponding 

to the aforementioned optimization problem include 0 <

𝐹𝑇𝑖
𝑝
≤ 1, 0 < 𝐹𝑇𝑖

𝑙 ≤ 1, 0 < 𝐶𝐷𝑖
𝑝
≤ 1, 0 <

𝐶𝐷𝑖,𝑗
𝑙

𝐶𝐷𝑚𝑎𝑥
𝑙 ≤ 1.  

B. Adapted NSGA 

An adapted NSGA is developed for solving the multi-

objective optimization problem focusing on chromosome 

representation, fault tolerance and delay computation, cross 

over and mutation operations, and sorting chromosomes using 

non-dominance concept. 

1) Chromosome Representation 

An ordered set of intermediated nodes 𝑆𝑖
𝑜𝑝

starting from 

source 𝑠𝑝  and ending with destination 𝑑𝑝nodes, represents a 

chromosome in the solution space of A-NSGA considering the 

optimization problem.   Each node of the set represents a gene 

of the chromosome representation. An 𝑖𝑡ℎchromosome can be 

represented as (see Fig. 3):  

 

𝐶𝐻𝑖 = {𝑠𝑝, 1,2,… , (⌊𝐷 𝐸(𝑟)⁄ ⌋ − 2) , (⌊𝐷 𝐸(𝑟)⁄ ⌋ − 1) , 𝑑𝑝}𝐹𝑇,𝐶𝐷  (11) 

 
 

𝑠𝑝 Node-1 Node-2 … Node-𝑁𝑖𝑛  𝑑𝑝 

FT CD 

Fig. 3. Genotype representation of chromosome 

 

2) Fault Tolerance and Communication Delay 

The fault tolerance of links are utilized to obtain cumulative 

fault tolerance of a path. The fault tolerance of a link is 

derived considering packet error rate based link quality 

estimation, and neighbor density based degree estimation. It 

can be expressed as given by Eq. (12). 

𝐹𝑇𝑖,𝑗
𝑙 = (1 − ∑ (𝑒𝑖,𝑗)

𝑡
(1 − 𝑒𝑖,𝑗)

𝑁𝑟𝑒
𝑡=0 ) + 𝑑𝑖,𝑗

𝑙   (12) 

Where 𝑁𝑟𝑒 is the number of retransmission required for a 

successful transmission over the link, 𝑒𝑖,𝑗  is the packet error 

rate of the link and 𝑑𝑖,𝑗
𝑙  is the degree estimation of the link. 

The degree estimation can be derived as expressed by Eq. 

(13).     

𝑑𝑖,𝑗
𝑙 =

{
 
 

 
 
1,                           𝑑𝑖

𝑒 = 𝑑𝑗
𝑒 = 𝑁𝑛 − 1 

1 − 𝛼𝑑𝑖
𝑒
,               𝑑𝑖

𝑒 = 𝑑𝑗
𝑒 < 𝑁𝑛 − 1 

1 − 𝛼

(𝑑𝑖
𝑒−𝑑𝑗

𝑒)
2

𝑑𝑖
𝑒+𝑑𝑗

𝑒

,          |𝑑𝑖
𝑒 − 𝑑𝑗

𝑒| > 0

 (13) 

where  𝑑𝑖
𝑒and 𝑑𝑗

𝑒are the degrees of nodes 𝑖 and 𝑗, respectively 

and 𝛼 is a decision variable varies between 0 and 1.  

The communication delay is computed considering 

interference for the link determined by the link quality, and 

propagation and transmission delay. It can be expressed as 

given by Eq. (14). 

𝐶𝐷𝑖,𝑗
𝑙 = (1 − ∑ (𝑒𝑖,𝑗)

𝑡
(1 − 𝑒𝑖,𝑗)

𝑁𝑟𝑒
𝑡=0 ) +

𝑑𝑖,𝑗

𝑆𝑝
+

𝑆𝑝𝑘𝑡

𝑆𝑡
 (14)        

Where, 𝑑𝑖,𝑗  is the distance between the pair of nodes 𝑖 and 𝑗, 

𝑆𝑝represents propagation speed, 𝑆𝑝𝑘𝑡is the packet size and 𝑆𝑡 

represents transmission speed.    

3) Crossover and Mutation  

The crossover operation is performed by selecting two 

chromosomes (also termed as parent solution in optimization 

theory) from the population (all paths between 𝑠𝑝 and 𝑑𝑝), and 

randomly exchanging a group of nodes between the 

chromosomes (see Fig. 4). The exchange is constrained to the 

reachability of the nodes from both downward and upward 

direction in the chromosome. The larger group size is 

considered in initial stage of the solution (at lower 

generations) whereas, smaller group size is preferred in latter 

stages. Thus, size of the group for crossover operation is based 

on the generation number and size of the chromosome pair. 

Due to the possibility of repetition of intermediate nodes, the 

chromosome after crossover operation (also termed as 

offspring in optimization theory) are repaired. The 

intermediate nodes present in the parent chromosome but not 

in the newly generated offspring, are considered while 

repairing the offspring.  
                               Crossover group  
 

𝑠𝑝 2 4 9 8 6 1 14 𝑑𝑝 

0.815 

(FT) 

0.807 

(CD) 

 
𝑠𝑝 13 10 2 5 7 1 9 𝑑𝑝 

0.856 

(FT) 

0.819 

(CD) 

                            Crossover Operation 

      repaired by 9  

    

𝑠𝑝 2 4 2 9 5 7 1 14 𝑑𝑝 

0.818 
(FT) 

0.805 
(CD) 

        

             repaired by 2 

𝑠𝑝 13 10 9 2 8 6 1 9 𝑑𝑝 

0.860 
(FT) 

0.817 
(CD) 

Fig. 4. The crossover operation 

 

offspring-2 

 

Parent-1 

offspring-1 

Parent-2 
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In the mutation operation, the order of two randomly 

selected nodes is exchanged in the chromosome, if the nodes 

are reachable (present as neighbor) from their downward 

nodes. Illustrative example of crossover and mutation 

operation is shown in Fig. 4 and 5, respectively.     
 

𝑠𝑝 13 10 9 5 6 1 8 𝑑𝑝 

0.860 

(FT) 

0.817 

(CD) 

 
Mutation Operation      Pair of nodes exchanged  

𝑠𝑝 13 10 6 5 9 1 8 𝑑𝑝 

0.863 

(FT) 

0.815 

(CD) 

 
Fig. 5. The mutation operation 

 

4) Non-dominance based Sorting for Chromosomes 

The concept of non-dominance is used for sorting 

population of chromosomes. The sorting technique prioritizes 

chromosomes based on multiple conflicting objectives. Let us 

consider, two chromosomes 𝐶𝐻𝑖and 𝐶𝐻𝑗 from the population. 

According to Pareto optimal, chromosome 𝐶𝐻𝑖 is said to 

dominate 𝐶𝐻𝑗 if at least one of the objectives fitness value of 

𝐶𝐻𝑖  is better than the fitness value of 𝐶𝐻𝑗 , and the fitness 

value of the other objectives are equivalent. Parato optimal 

based prioritization is preferred in multi-objective 

optimization use cases in communication networks [26, 27]. 

For two objectives, it can be derived as:  

𝐶𝐻𝑖 > 𝐶𝐻𝑗 = {
𝐶𝐻𝑖(𝐹𝑇) > 𝐶𝐻𝑗(𝐹𝑇),∧  𝐶𝐻𝑖(𝐶𝐷) ≮ 𝐶𝐻𝑗(𝐶𝐷)

𝐶𝐻𝑖(𝐶𝐷) > 𝐶𝐻𝑗(𝐶𝐷),∧ 𝐶𝐻𝑖(𝐹𝑇) ≮ 𝐶𝐻𝑗(𝐹𝑇)
   (15) 

The chromosomes of the population are ranked in ascending 

order by comparing their fitness values using non-dominance 

concept. The chromosomes not dominated by any other 

chromosomes are ranked 1st in the population. The 2nd rank is 

assigned to the chromosomes dominated by only one 

chromosome in the population. The chromosomes dominated 

by two other chromosomes are ranked 3rd in the population. 

The crowding distance is calculated for each chromosomes of 

the population after ranking of the chromosome. Tournament 

selection approach is utilized to select population for the next 

generation.  

5) Adapted NSGA  

The complete set of steps utilized for solving the 

optimization problem is presented in Algorithm 1.  

 
Algorithm 1: A-NSGA 

 Notations:  lS,D: Link between 𝑠𝑝 and 𝑑𝑝; 𝐹𝑖
𝑝𝑎𝑡ℎ

:Fault tolerance of 𝑖𝑡ℎ path 

  D𝑖
𝑠  : Dominance set of 𝑖𝑡ℎ solution; 𝑆𝑖: 𝑖

𝑡ℎ solution of the population 

  np  =This is the number of solutions that dominate p;  𝐹𝑗: 𝑗
𝑡ℎ front 

 𝑆𝑐ℎ𝑖𝑙𝑑−𝑝𝑜𝑝: Size of child population;  𝑅𝑖: Rank of 𝑖𝑡ℎ solution  

  𝑔 : Number of generations used for looping; 𝑆𝑝𝑜𝑝: Size of the old population 

considered for execution; 𝐶𝑑𝑖𝑠𝑡: Crowding distance 

  𝑁𝑔𝑒𝑛 : Number of generations; 𝑜𝑙𝑑𝑝𝑜𝑝 : Old population; 𝑐ℎ𝑖𝑙𝑑𝑝𝑜𝑝 : Child 

population;  

Input: lS,D, 𝐹𝑖
𝑝𝑎𝑡ℎ

, 𝑆𝑝𝑜𝑝, 𝑁𝑔𝑒𝑛    

Process:  

1. Generate initial population of size 𝑆𝑝𝑜𝑝 by random distribution of 

decision variable in given range (low, high). Save one copy of 

population as 𝑜𝑙𝑑𝑝𝑜𝑝 

2. for each 𝑆𝑖 ∈ 𝑜𝑙𝑑
𝑝𝑜𝑝 

a. Calculate objective-1 normalized fault-tolerance using Eq. (8)   

b. Calculate objective-2 normalized delay using Eq. (10)   

endfor 

𝑔 = 1 

3. While (𝑔 ≤ 𝑁𝑔𝑒𝑛) 
Non-dominated_sorting( 𝑜𝑙𝑑𝑝𝑜𝑝) // function for Non-Dominated sorting  

4.         for each 𝑆𝑖 ∈ 𝑜𝑙𝑑
𝑝𝑜𝑝    

             Calculate D𝑖
𝑠 

         endfor 

         𝑗 = 1,  
5.          For each 𝑆𝑖 ∈ 𝑜𝑙𝑑

𝑝𝑜𝑝 

             If (D𝑖
𝑠 = 𝜙) 

                 𝐹𝑗 = 𝐹𝑗 ∪ 𝑆𝑖 

                  𝑅𝑖 = 1  

              Endif 

        Endfor 

        𝑗 = 2 

6.         For each 𝑆𝑖 ∈ 𝑜𝑙𝑑
𝑝𝑜𝑝 

             If (D𝑖
𝑠 ≠ 𝜙 && 𝑅𝑖 == 𝑗 − 1) 

                 𝐹𝑗 = 𝐹𝑗 ∪ 𝑆𝑖 

                 𝑅𝑖 = 𝑗  
                 𝑗 = 𝑗 + 1 

              Endif 

        Endfor  // end of function Non-dominated_sorting 

 Crowing_distance (𝑜𝑙𝑑𝑝𝑜𝑝)  // function for crowing distanc 

       Assume 𝐶𝑑𝑖𝑠𝑡  from boundary point (group of solution) to ∞ for 

any solution  

7.        for each 𝑆𝑖 ∈ 𝑜𝑙𝑑
𝑝𝑜𝑝 // The crowing distance Start 

               calculate 𝐶𝑑𝑖𝑠𝑡 from all point excluding boundary points 

        endfor  // end of crowding distance function 

 

8. Select the best half population as 𝑝𝑎𝑟𝑒𝑛𝑡𝑝𝑜𝑝  considering 𝑅 and 𝐶𝑑𝑖𝑠𝑡 
using tournament selection approach.  

   𝑐ℎ𝑖𝑙𝑑𝑝𝑜𝑝 = Φ      

    𝑆𝑐ℎ𝑖𝑙𝑑−𝑝𝑜𝑝 = 0 

9.    While(𝑆𝑐ℎ𝑖𝑙𝑑−𝑝𝑜𝑝 ≤ Spop) 
        Randomly select two chromosomes from the parent population  

        Perform crossover to produce two child chromosomes 

        Update 𝑐ℎ𝑖𝑙𝑑𝑝𝑜𝑝 and  𝑆𝑐ℎ𝑖𝑙𝑑−𝑝𝑜𝑝 = 𝑆𝑐ℎ𝑖𝑙𝑑−𝑝𝑜𝑝 + 2 

        Randomly choose a chromosome from parent population 

        Mutate chromosome to produce a child chromosome 

        Update 𝑐ℎ𝑖𝑙𝑑𝑝𝑜𝑝 and 𝑆𝑐ℎ𝑖𝑙𝑑−𝑝𝑜𝑝 = 𝑆𝑐ℎ𝑖𝑙𝑑−𝑝𝑜𝑝 + 

     endwhile 

10.      Generate new population of size (2×Spop) by 𝑜𝑙𝑑𝑝𝑜𝑝 ∪ 𝑐ℎ𝑖𝑙𝑑𝑝𝑜𝑝 

11.      Calculate normalize fault-tolerance using Eq. (8)  
12.      Calculate normalized delay using Eq. (10)  

13.      Non-dominated_sorting( 𝑜𝑙𝑑𝑝𝑜𝑝 ∪ 𝑐ℎ𝑖𝑙𝑑𝑝𝑜𝑝)  

14.      Crowing_distance (𝑜𝑙𝑑𝑝𝑜𝑝 ∪ 𝑐ℎ𝑖𝑙𝑑𝑝𝑜𝑝)   

15.      Select again the best half population as 𝑜𝑙𝑑𝑝𝑜𝑝 using rank and 𝐶𝑑𝑖𝑠𝑡  
endwhile 

16. exit       
Output: optimized chromosomes 

 

Explanation of A-NSGA 

 In step 1 and 2, population (paths from source and 

destination pair) is generated and initialized. The population is 

sorted following non-dominance based sorting in steps 3-6. 

The best half population is selected as parent in steps 7-8. In 

step 9, crossover and mutation operations are performed for 

generating better solutions from selected parent population. In 

steps 10-15, better half population is again selected from the 

combined (old and newly generated) population.   These steps 

are repeated until the condition mentioned in step 3 satisfies 

(the predefined maximum number of generations). These steps 

are presented as flowchart in Fig. 6. The time complexity of 

A-NSGA is  𝑂(2×𝑆𝑝𝑜𝑝×𝑁𝑔𝑒𝑛) , where 𝑆𝑝𝑜𝑝 is size of 

population and 𝑁𝑔𝑒𝑛  represents the number of generations. 

Chromosome-1 

after mutation 

Chromosome-1 

before mutation 
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The size of the network indirectly controls the number of 

generations, and thus execution time. Also, time require for 

each generation might vary, and depend on the hardware 

configuration of the system. 

 

Start

End
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N

Y

N

 
 

Fig. 6. Flowchart of A-NSGA 

IV. EMPIRICAL RESULTS 

 In this section, analytical, case study based simulation 

results are discussed for analyzing the performance of the 

proposed fault tolerance optimization framework for IoT.  It is 

broadly divided into two parts. Analytical results are discussed 

in the first part, whereas simulation setting, metrics and 

comparative analysis of simulation results are discussed in the 

second part. 

A. Analytical Results 

The characteristics of the mathematical derivations are 

analytically analyzed using mathematical tool. The analytical 

analysis evaluates the performance of the mathematical 

formulations obtained for solving the optimization problem in 

IoT environments. Most of the parameters considered for 

generating analytical results are pointed in the results itself. 

The increment on network area has exponential impact on 

expected nearest node distance.   The increment in number of 

paths with the increase in number of intermediate vehicles is 

initially slower but continuous and approximately exponential 

nature with higher intermediate nodes (see Fig. 7 (a) and (b)).   

  
                             (a)                                                             (b) 

Fig. 7. Analytical results, (a) impact of 𝑁𝐴 on 𝐸(𝑟), (b) impact of 𝑁𝑖𝑛on 𝑁𝑝 

B. Simulation Results 

In this section, simulations carried out to evaluate the 

performance of the framework is presented focusing on 

environment setting, metrics, and comparative analysis of 

results. The two objectives were aimed for performing case 

study based simulations. Firstly, effectiveness of fault tolerant 

optimization is measured considering the impact of number of 

generations on optimization. Secondly, efficiency of fault 

tolerant optimization is measured considering network density. 

1) Simulation Setting and Metrics 

The proposed optimization of fault tolerance and delay in 

virtual network is implemented in network simulator NS-2 

using C++ programing language for implementing major 

classes of the simulation. The major classes of the simulation 

include ‘NetworkNode’, ‘VirtualNode’ ‘RandomProvider’, 

‘PathSearchNSGA’ and ‘MainApp’. All the characteristics of 

a node in a network such as position, list of neighbors, link 

delay with neighbors, fault tolerance of associated links are 

implemented in ‘NetworkNode’. Interface based task 

processing is implemented at ‘VirtualNode’, For different 

simulation runs, different set of network nodes are randomly 

generated using ‘RandomProvider’. The optimization of fault 

tolerance and delay for generating virtual network is 

implemented in ‘PathSearchNSGA’. Two prototype IoT 

applications are implemented in ‘MainApp’ class.  The 

simulation is performed in a machine having Intel Core i7-

2500S 2.70 GHz processor, 16GB RAM, 64bit Linux OS. The 

other basic setting of parameters in simulation is 

approximately similar the parameter table and setting 

considered in [28, 29].  Three different sets of network with 

100, 500 and 1000, 1500, 2000 nodes are generated following 

Poisson process. The adapted NSGA is executed up to 500, 

1000 and 1500, and 2000 generations to optimize fault 

tolerance and communication delay in four deferent networks. 

The chromosomes of the last generation in results which 

represents the last optimized values.  

2) Analysis of Results 

A comparison of optimization performance between A-

NSGA and SVNE is shown in Fig. 8(a)-(d) considering 100 

nodes and 500~800generations. It can be clearly observed 

that the optimization performance of A-NSGA is better as 

compared to SVNE for both the objectives including fault 

tolerance and communication delay. The observation affirms 

the capability of handling failure in virtualization of WSNs. 

Specifically, the optimized value of fault tolerance is 

approximately 0.65 whereas the optimized value of delay is 

approximately 0.02 . This can be attributed to the accurate 
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prediction of fault tolerance using packet error rate based link 

quality estimation. In case SVNE, optimized value of fault 

tolerance is approximately 0.3 whereas the optimized value of 

delay is approximately 0.2 . This is due to the degree of 

connectivity based fault tolerant estimation. The estimation is 

not suitable in wireless scenario.  Moreover, large number of 

chromosomes has higher delay and lower fault tolerance 

values. Also, the impact of increment of number of 

generations on the optimized chromosome is quite lower due 

to the smaller network (100 nodes). As the difference between 

the successive results ((a)-(d)) is not clearly visible. This is 

due to the lesser number of path formation in smaller 

networks. 

 
                             (a)                                                             (b) 

 
                              (c)                                                             (d) 

 Fig. 8. Optimized chromosome with 100 nodes after (a) 500 (b) 600, (c) 

700, (d) 800 generations 

 

The network size is enlarged considering 500  nodes for 

magnifying the optimization performance difference in 

successive generations. A comparison of optimization 

performance the larger network size is shown in Fig. 9(a)-(d). 

It is evident from results that the optimization performance of 

A-NSGA is better as compared to SVNE considering both the 

objectives. In particular, the last optimized chromosome value 

of fault tolerance is approximately 0.8 whereas, the optimized 

chromosome value of communication delay is approximately 

0.015 . This can be attributed to the availability of higher 

number of paths with larger networks which helps in selection 

better quality links, with greater fault tolerance nad lower 

communication delay. The optimized chromosome value of 

fault tolerance is approximately 0.3  whereas the optimized 

value of delay is approximately 0.15. This is due to the slower 

convergence of the wired network based approach.  Moreover, 

the number of optimized chromosomes has still lesser and the 

convergence rate towards optimal solution is quite lower. 

Also, the impact of increment of number of generations on the 

optimized chromosome is little bit better due to the larger 

network ( 500  nodes). As the difference between the 

successive results ((a)-(d)) is more visible. 

 
                             (a)                                                             (b) 

 
                              (c)                                                             (d) 
 

 Fig. 9. Optimized chromosome with 500 nodes after (a) 500 (b) 600, (c) 

700, (d) 800 generations 

 
                             (a)                                                             (b) 

 
                              (c)                                                             (d) 

 Fig. 10. Optimized chromosome with 1000 nodes after (a) 500 (b) 600, (c) 

700, (d) 800 generations 

 

The network size is further enhanced with 1000  nodes to 

improve the convergence rate towards optimal solution. A 

comparison of optimization convergence rate is shown in Fig. 

10(a)-(d). It is evident from results that the optimization 

convergence rate of A-NSGA is better as compared to SVNE 

for both the objectives. The optimized chromosome value of 
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fault tolerance is approximately 0.98 whereas, the optimized 

chromosome value of communication delay is approximately 

0.010. This can be attributed to the better felt tolerant path 

selection from the large number of available paths with scaled 

network size. In case of SVNE, the optimized chromosome 

value of fault tolerance is approximately 0.48  whereas the 

optimized value of delay is approximately 0.13. Moreover, the 

number of optimized chromosomes has significantly increased 

with scaled network size. The chromosomes are densely 

clustered for both approaches. The impact of increment of 

number of generations on the optimized chromosome is 

clearly visible in successive results ((a)-(d)) due to the greater 

availability of paths.  

C. Summary of Observations 

The optimization of fault tolerance in virtualization WSNs 

significantly improves the performance of IoT applications, 

requiring heterogeneous network architecture. The problem 

can be modelled as multi-objective optimization. The 

optimization problem can be solved using A-NSGA. The 

number of paths between source and destination pair increases 

exponentially with the increase of network density  The fault 

tolerance can be represented as link quality and density of 

neighbor nodes in wireless network environments. The 

analysis of case study based simulation results attests the 

effectiveness of the optimization framework in handling 

failure of virtual networks. The convergence rate of the 

optimal solution is quite lower with smaller network size (100 

nodes). The impact of number of generations on optimization 

of solutions is more visible with larger network size (1000 

nodes), due to the higher number of paths. The optimized 

chromosomes are higher in numbers and densely clustered 

with scaled network size. Therefore, the fault tolerant 

approach is scalable, and suitable for the scaled network 

environments of IoT.    

V. CONCLUSION AND FUTURE WORK 

In this paper, a framework for optimizing fault tolerance in 

virtualization in WSNs is presented focusing on heterogeneous 

network requirement for IoT applications. A multi-objective 

optimization problem is mathematically formulated 

considering fault tolerance and communication delay in 

virtualization. An A-NSGA is developed for solving the 

optimization problem. The optimization framework is more 

effective as compared the state of the art approaches. It is 

evident from the better optimization results obtained with 

lower number of generations. The optimization results are also 

obtained in shorter time as compared to the state of the art 

approaches. This affirms the efficiency of the proposed 

framework. In future research work, authors will consider 

more network parameter in the multi-objective optimization 

problem.  
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