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Summary 

The human gut microbiome is known to be associated with various human disorders, but a 

major challenge is to go beyond association studies and elucidate causalities. Mathematical 

modeling of the human gut microbiome at a genome-scale is a useful tool to decipher 

microbe-microbe, diet-microbe and microbe-host interactions. Here, we describe the 

CASINO (Community and Systems-level Interactive Optimization) toolbox, a 

comprehensive computational platform for analysis of microbial communities through 

metabolic modeling. We first validated the toolbox by simulating and testing the 

performance of single bacteria and whole communities in in vitro. Focusing on metabolic 

interactions between the diet, gut microbiota and host metabolism, we demonstrated the 

predictive power of the toolbox in a diet-intervention study of 45 obese and overweight 

individuals, and validated our predictions by fecal and blood metabolomics data. Thus, 

modeling could quantitatively describe altered fecal and serum amino acid levels in 

response to diet intervention. 

 

Introduction 

Increasing evidence indicates that changes in the composition of the human gut microbiota affect 

host metabolism and are associated with a variety of diseases (Backhed et al., 2005; Qin et al., 

2014). Changes in diet have been shown to rapidly affect the composition of the gut microbiota 

(David et al., 2014; Wu et al., 2011). Furthermore, microbiota-diet interactions impact host 

physiology through the generation of a number of bioactive metabolites (Cotillard et al., 2013; Le 

Chatelier et al., 2013; Nicholson et al., 2012; Wu et al., 2014). For example, short-chain fatty 

acids (SCFAs), which are generated by microbial fermentation of dietary polysaccharides in the 

gut, are an important energy source for colonocytes and also function as signaling molecules, 

modulating intestinal inflammation and metabolism (Donohoe et al., 2011; Fernandes et al., 

2014; Samuel et al., 2008; Smith et al., 2013b; Tolhurst et al., 2012). In addition, dietary proteins 

and amino acids are important substrates for microbial fermentation in the colon (Cummings and 

Macfarlane, 1997) where they also serve as an important nitrogen source for the microbiota and 

support the growth of the microbiota and the host (Wu, 2009).  

By quantifying the release and consumption of metabolites by the gut microbiota, it may be 

possible to elucidate interactions between the gut microbiota and host metabolism (Tremaroli and 

Backhed, 2012). This information would allow identification of diagnostic biomarkers and may 

provide insight into the role of the gut microbiota in disease progression (Karlsson et al., 2013; 

Qin et al., 2014; Zeller et al., 2014). A predictive systems-level model of the human gut 

microbiome is required to elucidate causalities and quantify the interactions between microbes, 

host and diet (Greenblum et al., 2013; Manor et al., 2014; Shoaie and Nielsen, 2014). 

A genome-scale metabolic model (GEM) is an integrative platform for exploring genotype-

phenotype relationships and metabolic differences between different clinical conditions (Ghaffari 

et al., 2015; Henry et al., 2010; Mardinoglu et al., 2014; Mardinoglu and Nielsen, 2015; Monk et 

al., 2014; Shoaie and Nielsen, 2014). We previously reconstructed GEMs to study the 

interactions between Bacteroides thetaiotaomicron and Eubacterium rectale (Shoaie et al., 2013), 
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representatives of Bacteroidetes and Firmicutes, the two dominant phyla in the human gut 

(Huttenhower et al., 2012), and between Bifidobacterium adolescentis and Faecalibacterium 

prausnitzii (El-Semman et al., 2014), also dominant and dietary-responsive gut microorganisms 

(Walker et al., 2011). In both studies, we manually identified the interactions between the 

bacteria and quantified the consumption and production rates of the defined interacting 

metabolites for each bacterial species. Although other studies have been conducted for 

communities of two and three species (Harcombe et al., 2014; Zomorrodi and Maranas, 2012), 

these approaches cannot be expanded to simulate the interactions of a large number of species 

representing the complex gut ecosystem. We therefore developed the CASINO (Community And 

Systems-level INteractive Optimization) toolbox, which comprises an optimization algorithm 

integrated with diet analysis to predict the phenotypes and related dietary intake within the 

human gut microbiota. The toolbox was tested using both data from in vitro experiments and 

results from a nutritional intervention study of subjects with varying gut microbial gene richness. 
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Results 

CASINO toolbox 

We first developed an optimization algorithm in the CASINO toolbox, which is based on a 

collaborative and a multi-dimensional distributed approach (Grimm et al., 2005). It takes into 

account both collaboration between the multiple species as well as the fact that each individual 

species seeks to optimize its growth individually. Although GEMs are linear models, the presence 

of several GEMs in the overall community model means that the optimization of community 

biomass production becomes a non-linear problem. We therefore separated the community model 

into systems-level (representing the community) and organism-level (representing each species), 

which allowed us to linearize the optimization problem.  

Simulations using CASINO start with an initialization stage that defines a primary profile of the 

systems-level topology (i.e. which species are present and how do they interact). This leads to the 

construction of a community matrix that defines effectors and receptors, with effectors being 

species that produce metabolites and receptors being species that consume metabolites. 

Following definition of the topology, the initialization step calculates metabolite production by 

each species using organism-level optimization. Thereafter, CASINO performs iterative multi-

level optimization to calculate the relative uptake of carbohydrates by each species, until the total 

community biomass production is optimized. In this study, this calculation is constrained by the 

relative abundance of each species (Experimental Procedures & Figure S1). 

To evaluate CASINO, we used the RAVEN toolbox (Agren et al., 2013) to update and 

significantly expand the content of our previously published GEMs for B. thetaiotaomicron, E. 

rectale, B. adolescentis and F. prausnitzii and to generate a GEM for Ruminococcus bromii, a 

representative of Clostridiales and a key gut symbiont (Ze et al., 2012). All GEMs were manually 

curated for functionality based on literature information. We defined a set of metabolic tasks, e.g. 

generation of biomass precursors (Table S1), to further investigate the functionality of the GEMs 

and checked that the resulting models could perform the defined tasks (Experimental 

Procedures). 

The GEMs were functionally validated using experimental data for each of the five bacteria. We 

quantified the abundance of the bacteria by 16S ribosomal RNA (rRNA) quantitative PCR 

(qPCR) at baseline and after 24 h of growth in selected media (Table S2; Extended 

Experimental Procedures). We performed targeted metabolomics to quantify products of the 

fermentative activity of the studied bacteria, specifically the SCFAs butyrate, acetate and 

propionate and 15 different amino acids, and consumption of carbohydrates (glucose, maltose, 

cellobiose and starch). Flux constraints were imposed using the metabolomics profiles of the 

growth media, and maximum growth of each bacterial species was set as an objective function to 

simulate the predictive power of the corresponding model (Experimental Procedures and 

Figure 1A). The experimental data confirmed that the GEMs predicted the metabolism and 

biomass growth for each bacterial species almost perfectly (Figures 1B-1D). The GEMs 

correctly predicted that acetate can be produced by B. adolescentis, B. thetaiotaomicron and R. 

bromii, butyrate can be produced by E. rectale and F. prausnitzii and propionate can only be 

produced by B. thetaiotaomicron (Figure 1B). Our simulations also predicted that these five 

bacteria synthesize significantly higher level of essential amino acids (valine, leucine, 
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methionine, lysine and phenylalanine) compared to non-essential amino acids (serine, tyrosine 

and threonine) (Figure 1D). 

Revealing the interactions between constituents of in-vitro microbial communities 

To test the performance of CASINO, we simulated the interactions between the microbes in two 

microbial communities that differed only in one bacterial species: EBBR (E. rectale, B. 

adolescentis, B. thetaiotaomicron and R. bromii) and FBBR (F. prausnitzii, B. adolescentis, B. 

thetaiotaomicron and R. bromii) (Figure 2A). The simulated values were validated by culturing 

EBBR and FBBR communities in selected media. We quantified the abundance of individual 

bacterial species in each community by 16S rRNA-based qPCR (Table S3). We also performed 

targeted metabolomics to quantify the production of SCFAs and amino acids and the 

consumption of carbohydrates (starch and cellobiose) for each community (Extended 

Experimental Procedures). 

Our model simulations correctly predicted the net production of the metabolites produced by each 

community and showed that the communities synthesized more essential amino acids than non-

essential amino acids (Figure 2B). More importantly, the simulations enabled quantification of 

the contribution of each individual bacterial species to the overall microbial conversion in the 

communities and showed that two of the species in each community dominated. Specifically, we 

predicted that B. thetaiotaomicron and E. rectale synthesized 41% and 36% of the amino acids in 

the EBBR community, respectively, and B. thetaiotaomicron and F. prausnitzii synthesized 39% 

and 47% of the amino acids in the FBBR community, respectively (Figure S2). We also 

predicted that E. rectale mainly contributed to the synthesis of valine, leucine, phenylalanine and 

methionine in the EBBR community, while F. prausnitzii was the major contributor to the 

production of valine and leucine in the FBBR community. Furthermore, the experimental data 

showed that substitution of E. rectale with F. prausnitzii decreased the level of butyrate in the 

media, due to the higher capacity of E. rectale for butyrate production (Louis et al., 2010), and 

also the model simulations showed a slightly lower butyrate production by the FBBR community 

compared with the EBBR community. 

Next we calculated the centrality scores for each bacterial species in order to identify which 

species have a dominant role in the overall metabolic conversion in each community (Extended 

Experimental Procedures). We observed that E. rectale and B. thetaiotaomicron were the main 

receptor and effector, respectively and thus represent key species (Figure 3A). We then evaluated 

the sensitivity of the optimization algorithm in CASINO by adding bacteria in three steps to each 

of these two bacteria, culminating in reconstruction of the two in vitro communities. We 

calculated the SCFA levels for each step (Figure 3B). Addition of B. adolescentis to E. rectale in 

the EBBR community resulted in reduced production of butyrate and increased production of 

propionate and acetate. Addition of F. prausnitzii to B. thetaiotaomicron in the FBBR community 

resulted in reduced production of propionate and acetate and increased butyrate production. The 

levels of the SCFAs changed further when the other species were added (Figure 3B). 

Analyzing the effect of gene richness and diet on gut microbiota composition 

To further evaluate CASINO, we examined data from a clinical study where 45 overweight and 

obese individuals were subjected to an energy-restricted high-protein diet with low glycemic 

index for 6 weeks (Figure 4A; clinical data in Table S4). These patients had previously been 
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stratified based on their gut microbial gene richness into ‘low gene count’ (LGC; n = 18) and 

‘high gene count’ (HGC; n = 27) based on a cut-off threshold of 480,000 genes (Cotillard et al., 

2013). LGC demonstrated a worse metabolic profile compared with HGC individuals (Cotillard 

et al., 2013).  

Analysis of metagenomics data before and after the diet intervention showed that six species 

dominated in all subjects: Escherichia coli and F. prausnitzii and four species associated with 

Clostridia, Bacteroides, Bifidobacteria, and Lactobacillus (Cotillard et al., 2013). To obtain 

quantitative data of these species, we analyzed fecal samples by 16S rRNA qPCR before and 

after the dietary intervention (Table S5 and Extended Experimental Procedures) and used 

these results to calculate the distribution of biomass between the species (Figure 4B). We 

observed significant differences in abundance for B. adolescentis, F. prausnitzi and E. rectale at 

baseline and for B. adolescentis and L. reuteri after 6 weeks between LGC and HGC individuals. 

In HGC individuals, levels of B. thetaiotaomicron significantly increased and L. reuteri and F. 

prausnitzii significantly decreased after 6 weeks of dietary intervention compared with baseline, 

whereas a significant decrease in LGC individuals was only seen for L. reuteri.  

Diet interventions alter amino acid and SCFA levels in HGC and LGC individuals 

In order to simulate the effect of the diet on the overall gut microbiota metabolism, we used 

representatives of the most abundant microbial groups that we had also modeled in vitro, i.e. B. 

thetaiotaomicron, B. adolescentis, F. prausnitzi, E. rectale as described above and Lactobacillus 

reuteri, for which we reconstructed a GEM. We also performed simulations with inclusion of E. 

coli, but as this species had no major impact on the production of SCFAs and amino acids (data 

not shown), we did not include this species in our further analysis. Using CASINO, we simulated 

the effect of diet on the human gut microbiota composition at baseline and after the dietary 

intervention for 44 of the subjects (registered diet information in Table S6). In order to translate 

the diets into metabolites that can be utilized by the five gut bacterial species, we computed the 

dietary macronutrients of 24 different food items (Table S7) and used this information in a diet 

allocation algorithm in CASINO. Using this algorithm, CASINO predicted that there was a 

decrease in carbohydrate consumption and an increase in amino acid consumption for all 

individuals after 6 weeks of dietary intervention (Figure 4C). The intake of fiber from bread and 

potatoes, and to lesser extent rice, cereals and snacks, was decreased but fiber from fruits and 

vegetables was increased in agreement with the dietary recommendation given to the patient 

during the intervention (Figure 4C). 

For the simulations, we assumed that carbohydrates and fibers were hydrolyzed to glucose to the 

same degree in all subjects, allowing us to calculate the relative amount of glucose available to 

the gut microbiome in each subject. We further assumed that glucose was the limiting substrate 

for the gut microbiome. We first used CASINO to quantify the community interactions and the 

relative glucose uptake by the individual species. We used the calculated values of species 

abundance in this process. Thereafter, we used CASINO to repeat the simulations, but now 

allowing the individual species to consume amino acids in the same ratio as their glucose uptake. 

The amount of available amino acids was calculated from the diet composition using CASINO. 

With this approach we could simulate the profile of three SCFAs and 14 amino acids produced 

by the gut ecosystem as well as the contribution of each microbial species to the overall 

metabolite production of the ecosystem at baseline and after 6 weeks of dietary intervention for 
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each individual. By plotting average profiles for all the subjects, we found that the levels of the 

SCFAs and amino acids produced by the gut microbiota were significantly decreased after dietary 

intervention when both LGC and HGC groups were combined (Figure 5A, decrease in the y-axis 

direction), but the greatest reductions were observed in LGC individuals (Figure 5A, increase in 

the x-axis direction).  

In order to experimentally evaluate our predictions on altered metabolite production by the gut 

ecosystem, we performed metabolomics analysis of fecal samples obtained from the HGC and 

LGC individuals at baseline and after 6 weeks of dietary intervention. These data confirmed the 

many of the predicted simulations by CASINO, i.e. alanine, proline, glycine, serine, 

phenylalanine, and tyrosine all showed a decreased level in response to the diet intervention in 

both HGC and LGC subjects but, with a larger decrease in the LGC subjects (Figure 5B, shift 

down-wards right). To test the significance of these changes for each group of subjects and 

between the two time points we calculated p-values using a student t-test, and except for alanine 

these changes were significant for the different groups (Figure 5C). Measured serine levels were 

significantly higher in LGC than HGC individuals at baseline but not after 6 weeks of dietary 

intervention (Figure 5B), in agreement with the predicted results (Figure 5A). Also, measured 

phenylalanine levels were significantly higher in LGC individuals than in HGC individuals at 

baseline but lower in LGC individuals compared to HGC subjects after 6 weeks of dietary 

intervention, in agreement with predicted results.  

In addition to predicting changes in some of the metabolites in response to dietary intervention, 

the model could also be used to predict the relative contribution of each bacterial species to 

production of specific metabolites, allowing us to quantitatively access how a variation in the gut 

microbiome correlates with metabolite production. Thus, we predicted the contribution of each 

bacterial species to phenylalanine levels in the gut ecosystem and showed that 23% of the total 

phenylalanine is produced by B. adolescentis and 26% by E. rectale in HGC individuals at 

baseline while this contribution increased for B. adolescentis to 26% and decreased for E. rectale 

by 21% after 6 weeks of dietary intervention (Figure S3). For LGC individuals, the contribution 

of E. rectale to phenylalanine production was 29% at baseline and decreased to 15% after 6 

weeks of dietary intervention (Figure S3). 

Serum metabolomics confirm model predictions and associate with clinical parameters 

Although the model simulations could correctly predict changes in several of the metabolites in 

the feces, we noted that the model simulations did not accurately predict changes in all the 

measured metabolites, which may be a result of differential absorption by the host. We therefore 

evaluated whether the model could predict changes in the serum. We used metabolomics to 

analyze serum of the 45 subjects at baseline and after 6 weeks of dietary intervention and found 

an excellent correspondence between the model predictions (Figure 5A) and the measured 

changes (Figure 6A). The serum levels of 10 detected amino acids decreased in response to the 

dietary intervention in the LGC subjects (Figure 6A). Furthermore, in agreement with the model 

predictions, there was a decrease in acetate in response to the diet intervention in all subjects 

(Figure 6A). In addition, we observed that phenylalanine levels were higher in LGC subjects 

compared to HGC subjects at baseline, but the level of phenylalanine decreased in LGC subjects 

after 6 weeks of dietary intervention (Figure 6Aand 6B). We also observed that levels of valine, 

leucine and alanine were higher in LGC subjects at baseline (Figure 6A and 6B).  
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To evaluate if these changes in serum metabolite levels may have any clinical relevance, we 

analyzed the correlations between the levels of the 10 amino acids in the serum and bioclinical 

parameters of the subjects at baseline (Figure 6C). Here we found that the serum phenylalanine 

levels were positively correlated with clinical variables related to body corpulence (BMI, DXA-

measure fat mass, waist circumference, leptin), insulin resistance, blood lipid homeostasis (serum 

triglycerides and cholesterol), and low-grade inflammation (hsCRP). The serum levels of valine, 

leucine were also positively correlated with BMI.  

Model-based diet design to improve metabolism of LGC individuals  

Finally, assuming that LGC subjects have a non-optimal gut microbiome metabolism (associated 

with a clinically altered metabolism) we wanted to identify which dietary change would improve 

the metabolism of their gut microbiome. We thus made the assumption that an adapted dietary 

recommendation in LCG subjects provided at baseline would enable them to reach the “optimal” 

gut microbiome metabolism of HGC subjects after 6 weeks of dietary intervention, which is 

indeed associated with an improved metabolic phenotype.  

.We then used CASINO and the abundance of the five different species, i.e. B. thetaiotaomicron, 

B. adolescentis, F. prausnitzi, E. rectale and L.reuteri, to predict the relative consumption of 8 

essential amino acids by the gut microbiome in the LGC subjects at baseline (base phenotype in 

Figure 7A) and in the HGC subjects at week 6 (improved phenotype in Figure 7A).  

From this model analysis, we found that the gut microbiome of HGC individuals had a higher 

consumption of these 8 essential amino acids at week 6 compared to that of the LGC subjects at 

baseline. An incremental augmentation of these amino acids would permit to acquire a similar 

metabolism of the gut microbiome in LGC and HGC subjects (Figure 7A). Many different 

combinations of food sources could fulfill such a requirement for essential amino acids. 

However, in an attempt to identify some overall guidelines, we correlated the difference between 

the two different requirements of amino acids with the composition of these amino acids in 

different food types (Table S8). This showed that LGC individuals should significantly increase 

consumption of dairy products, vegetables, white meat, fish pulses, eggs, oils and butter. In the 

meantime, they should considerably reduce intake of pastries, bread and rice to improve and 

slightly reduce intake of cereals and nuts (Figure 7B). 

Discussion 

The overall metabolism of the gut microbiome can be modeled in one of two ways: 1) by using a 

lumped model of all the metabolic reactions active in the different gut microorganisms or 2) by 

compartmentalizing the metabolism according to the individual microorganisms. The latter is 

clearly a better reflection of the true biological system and it also ensures that redox and energy 

balances are constrained within each organism considered. We therefore used this approach to 

model the metabolism of the human microbiome and reconstructed GEMs for individual species 

from the predominant phyla in the human gut. We identified which species to include in our 

analysis based on their abundance in the gut ecosystem. Thus, we reconstructed GEMs for five 

species that are representative bacteria of the dominant phyla in the human gut and we 

hypothesized that the reactions included in our models cover most of the metabolic functions that 

are present in the human gut. Compared with earlier attempts to model the human gut metabolism 

using GEMs, i.e. the COMETS algorithm (Harcombe et al., 2014), CASINO allows inclusion of 
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several species in the simulations. Furthermore, it is scalable and enables expansion to include 

even more than the five species that we considered in this study. 

In order to evaluate whether we are covering the main metabolic functions, we simulated the 

effect of different diets, studied the interactions between the microbes and host in response to the 

diet, and quantified the contribution of each bacterial species to the fecal metabolite profiling. 

The model simulations matched fecal metabolomics data, but more importantly it correctly 

correlated with changes in serum levels of 10 amino acids and one SCFA (acetate). Thus, the 

model captures some major metabolic functions of the human gut microbiome. In the future, the 

selection of species to be considered should be expanded, in particular to ensure representation of 

more specific metabolic functions such as vitamin biosynthesis and bile acid metabolism.  

The consistency between model predictions of metabolite productions and measurement of 

changes in metabolite levels in feces and serum suggests that our modeling correctly predicts the 

overall carbon fluxes in the gut ecosystem. Furthermore, our simulations enabled quantification 

of how the individual species compete for nutrients and produce different metabolites that may 

serve as nutrients for other species or be absorbed by the host. Studying the gut metabolism with 

our holistic approach also enabled understanding of metabolic shifts under different clinical 

conditions, and hereby could provide a direct link between the gut microbiome metabolism and 

serum chemistry.  

Thus, our simulations suggest that the gut microbiome may contribute to altered levels of several 

amino acids in the serum, including phenylalanine and branched chain amino acids. This is in line 

with an early report, using germ free mice, showing that the microbiota of the large intestine 

increased the free amino acid level in the gastrointestinal tract (Macfarlane et al., 1988). A later 

study showed that bacteria in the human large intestine take up peptides and amino acids, and 

convert these to different amino acids and SCFAs (Smith and Macfarlane, 1998). This study also 

showed that the production of amino acids was dependent on the composition of starch, proteins 

and peptides, and hence will be dependent on the dietary composition. Further confirmation of 

our findings is a documented in a recent review on the role of microbial amino acid metabolism 

in host metabolism, that provide a summary on a number of findings related to the role of the 

microbiota in the large intestine on production of not only SCFAs but also amino acids that are 

subsequently taken up by the host (Neis et al., 2015). However, we are aware that more 

experiments are required to validate if the gut microbiome actually contribute to host amino acid 

metabolism. 

In our study, obese individuals with a LGC microbiome, associated with more impaired 

metabolic phenotype compared with those with HGC, had elevated levels of these amino acids. A 

previous study has shown that phenylalanine is associated with type 2 diabetes (T2D), and serum 

levels of this essential amino acid are five to seven fold higher in individuals at risk of T2D 

compared to control subjects (Wang et al., 2011). Furthermore, the serum level of branched chain 

amino acids (valine, leucine and isoleucine) has been found to correlate with insulin resistance 

(Newgard et al., 2009). Circulating levels of leucine, arginine, valine, proline, phenylalanine, 

isoleucine and lysine are also significantly associated with an increased risk of 

hypertriglyceridemia in diabetic subjects (Mook-Kanamori et al., 2014), a phenotype we noted in 

the subjects with the LGC microbiome. Thus, our simulations point to two important findings. 

First it suggests that the gut microbiota in LGC individuals may contribute to increased serum 

levels of many amino acids that have been found correlated with metabolic diseases such as T2D, 
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and we believe this is consistent with the deteriorated glucose homeostasis related to insulin 

resistance observed for the LGC subjects at baseline both in French and Danish subjects 

(Cotillard et al., 2013; Le Chatelier et al., 2013). The HGC subjects on the other hand, with their 

more gene rich gut microbiome may have a better conversion of amino acids, resulting in lower 

levels of these in the plasma. Furthermore, the HGC microbiome also have higher capacity to 

produce SCFAs that are important energy sources for the colonocytes as well as they function as 

signaling molecules, modulating intestinal inflammation and metabolism (Donohoe et al., 2011; 

Fernandes et al., 2014; Samuel et al., 2008; Smith et al., 2013b; Tolhurst et al., 2012). Second, in 

agreement with the original study on the LGC in comparison to the HGC individuals, it 

highlights that LGC subjects can benefit from a dietary intervention that improve their gut 

microbiome metabolism, paving the way for a personalized approach in these subjects. Indeed, 

despite higher levels of some amino acids at baseline, LGC subjects had a larger decrease in the 

levels of a range of metabolites that are positively correlated with insulin resistance markers and 

cardio-metabolic risk factors. 

Using our approach we also predicted the relative contribution of each bacterial species to 

production of specific metabolites, and studied how this variation in the gut microbiome is 

correlated with specific metabolite production. Information generated from CASINO may 

therefore be extended for rational design of prebiotics as well as for identifying novel beneficial 

bacteria that can be used to fortify the microbiota to improve the gut microbiome metabolism. 

Importantly, rational design of microbiota interventions requires knowledge of diet as 

demonstrated in a study of children with kwashiorkor which showed that a disrupted microbiome 

that can be reversed by dietary interventions (Smith et al., 2013a). Interestingly, transferring the 

microbiota from children with kwashiorkor to germ-free mice in combination with Malawian diet 

resulted in marked weight loss in recipient mice associated with perturbations in amino acids. As 

we demonstrated CASINO can also be used to predict dietary changes required in order to ensure 

a certain profile of the gut metabolism, here represented as a specific consumption of 8 essential 

amino acids. The gut microbiome may change in response to dietary modulation, something that 

our simulations are not capturing. This study also emphasizes the importance of developing 

accurate tools to properly record dietary intakes in different populations. With more data it will 

probably be possible to also predict how the diet influences gut microbiome changes, and hereby 

CASINO may assist in the development of a precision medicine approach to treat metabolic 

diseases associated with dysfunction of the gut microbiota. 

In conclusion, we demonstrate how we can use model simulations to predict metabolic 

interactions within the gut microbiome and hereby assist in generating mechanistic insight into 

the contribution of individual species of the gut microbiome to the overall metabolism of the 

ecosystem and the host. Furthermore, focused on the diet and on host and gut microbiota 

metabolic interactions we show how the gut ecosystem and the individual members of the gut 

microbiota contribute to the host metabolism. CASINO may thus constitutes a valuable tool for 

enriching the information content provided by gut metagenome analysis, and hereby advance our 

understanding on how this important metabolic organ contributes to disease development and 

thus facilitate personalized interventions based on the microbiome. 
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Experimental procedures 

Reconstruction/updating of GEMs  

The B. adolescentis, B. thetaiotaomicron, E. rectale and F. Prausnitzii metabolic models were 

already published (El-Semman et al., 2014; Shoaie et al., 2013).These models were validated 

individually and updated based on extensive bibliometric survey of the literature and databases 

(Henry et al., 2010). The R. bromii and L. reuteri metabolic networks were reconstructed based 

on automatic and manual curation, considering information available in the literature and 

databases. For model reconstructions, updating and quality checks, the RAVEN toolbox was used 

(Agren et al., 2013). The defined metabolic task file was implemented to perform the gap filling 

process. This task file includes synthesis of amino acids, nucleotides and carbohydrates. A 

published metabolic model for E. coli was used for simulation (Monk et al., 2013). 

Validation of GEMs  

The metabolic models for B. adolescentis, B. thetaiotaomicron, E. rectale and F. prausnitzii and 

R. bromii were used to predict the experimental phenotypes based on the individual in-vitro data. 

The growth for each model was predicted as an objective function based on the available media 

components from the experiments. Measured amino acids and SCFAs secretion were used to 

constrain the models for individual simulations. The lower and upper bounds for the uptake and 

secretion reactions were assigned based on standard deviation of the measured metabolites in 

experimental data. The results were tested to see the consistency of the model through fixation of 

non-growth associated maintenance ATP.  

CASINO toolbox 

CASINO defines the primary topology of the community and identifies optimum solution by 

applying a multi-dimensional optimization procedure in two successive and connected stages: 

Initialization and Community optimization. The convexity of the solution space and linearity of 

the parameters are maintained by separating the problem into two independent optimizing 

dimensions, systems-level and organism-level, with three classes of variables: inputs, outputs and 

connecting parameters. Maximum biomass production was considered as objective function at 

both levels. At the organism level, each species seeks to maximize its biomass yield while at the 

system level the community seeks to stay in optimum balanced condition by synchronizing the 

competition between species (Figure S1). 

Initialization process assumes a structure of the community as a complex network and starts 

with an activation cascade supporting a specific threshold. Species are categorized into primary 

(grows independently by taking up system-level inputs) and non-primary (growth is dependent on 

connecting inputs, i.e. metabolites produced by other species) classes. The activation begins with 

identifying primary species within the community and activates them by providing required 

resources to grow. The compounds produced by activated species are added to the resource pool 

and the community is screened again to find non-primary species that now can grow based on the 

updated resource pool. This cascade of activation is repeated until the whole network has been 

activated. Now a feasible profile of community topology is constructed and this results in a 

definition of the community constraints matrix and the community objective function. At the end 

of the initialization process the system is locally optimum (species grow on maximum biomass 
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yield rate) but globally non-optimum (resources distribution between species do not satisfy 

community optimum conditions).  

Community optimization, a multi-level iterative process, starts based on the initial feasible 

space and a community objective function defined by the initialization procedure. In each step, 

the community level biomass production is optimized to find the optimum distribution of 

resources between species. Relative carbohydrate uptake rates are calculated in each intermediate 

systems-level optimum condition and these are used by the species to reach organism-level 

optimality. Metabolites secretion rates obtained after organism-level optimization is used to 

expand the boundaries of the intermediate feasible space and find a new system-level optimum. 

This iterative process continues until the solution converges to local and global optima. 

Objective function in this algorithm is considered as maximum biomass yield (local force) at the 

organism-level and maximum community biomass (community force) at the system-level. 

Summation of these two forces defines the direction of optimization through expansion of the 

feasible space. The community force is adjusted by centrality scores assigned to each species 

based on the network topology of the community established in the initialization procedure. Two 

centrality degrees, power centrality and degree centrality, are used to calculate controlling power 

of species as effectors and receptors. 

Maximize    𝑆 =     [𝜑 ×  𝜃′]. 𝐶𝐸 . 𝜔𝜇. 𝛿                                    

Where 

𝑠 =  𝛼. 𝑋 + 𝛽. 𝑍𝑖𝑛 + 𝛾. 𝑌 + 𝛿. 𝑍𝑜𝑢𝑡  

ωμ =  
𝜇(i)

min(μPL)
     

 
𝜑 =  [𝛼, 𝛽, 𝛾, 𝛿]   ∶ 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑚𝑎𝑡𝑟𝑖𝑥           
𝜃 =  [𝑋, 𝑌, 𝑍]       ∶ 𝐼𝑛𝑝𝑢𝑡𝑠, 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 𝑎𝑛𝑑 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠           
𝑃𝐿                          ∶ 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑙𝑖𝑠𝑡      

 
𝛿 is a binary vector that activates certain parameter in the objective equation. This binary vector 

is corrected by imposing the relative centrality scores of species. μ(i) is the biomass yield of 

individuals and μ
PL

 is biomass yield of species belong to PL. 

Statistical Analysis 

Peaks obtained from 144 samples (HGC and LGC subjects) at two different time points (0 hours 

and 6 weeks) was aligned and subjected to retention time correction, XCMS (Smith et al., 2006). 

About 295 features (mz) with aligned peak were normalized by Quantile normalization method 

(Amaratunga and Cabrera, 2001). Mass fragmentation spectra of each featured peak were 

matched against the reference spectra obtained from Metlin (Tautenhahn et al., 2012) and HMDB 

(Wishart et al., 2013) using exact template matching approach (Pavlidis, 2003). Spectra with 90% 

match probability were considered for further analysis. Again, the retention index of the matched 

peak(s) (mz) was verified with metabolites in HMDB (Wishart et al., 2013).Thus, spectral match 

and retention index ensure identification and annotation of metabolites. Intensity (or expression) 

of 15 metabolites of interest was extracted for HGC and LGC subjects at two time points. Two 

sample t-tests were performed for detecting the significant metabolites and P value < 0.05 was 

considered to be significant. All data are shown as mean ± 1 SD. 
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FIGURE LEGENDS 

Figure 1 Validation of the GEMs 

(a) Each GEM was validated based on the rRNA and metabolomics data generated by in vitro 

experiments. The byproducts and the substrate usage were constrained in the models and 

the growth rate was compared with the experimental data. 

(b) Predicted and measured SCFA levels by the individual bacteria. Propionate was produced 

only by B. thetaiotaomicron, while acetate was produced by Actinobacteria and 

Bacteroidetes phyla. Butyrate production was mainly produced by the bacteria from the 

class clostridia. 

(c) Predicted and measured biomass at the end of the fermentations. Growth was set as an 

objective function for each model and the predicted growth was compared with the 

experimental data. 

(d) Predicted and measured levels of AAs by the individual bacteria. Each model also 

predicted AA levels and the details of 15 significant amino acids produced are shown for 

each bacterium. The predicted and experimental values showed that all AAs could be 

produced in the range of experimental data with specific optimum solution. Data are 

presented as mean value ± SD. See also Table S1 and S2 for more details. 

Figure 2 Validation of the CASINO Toolbox 

(a) Two in-silico microbial communities EBBR (E. rectale + B. adolescentis + B. 

thetaiotaomicron + R. bromii) and FBBR (F. prausnitzii + B. adolescentis + B. 

thetaiotaomicron + R. bromii) were designed and simulated using the CASINO Toolbox. 

The results were compared with data from triplicate in-vitro experiments for EBBR and 

FBBR communities. In CASINO the interactions of the bacteria as well as the phenotype 

of the community were identified using an optimization algorithm. Growth of each 

bacterium had local optimum whereas the community had global optimum. The 

community optimum was detected by the intersection point of the fixed constraints for the 

community and the calculated dynamic constraints, which was obtained by summation of 

the local and community forces. See Figure S1 for development of the toolbox. See Table 

S3 for more details. 

(b) Predicted and measured levels of SCFA and AAs by the two in-silico microbial 

communities including EBBR (E. rectale, B. adolescentis, B. thetaiotaomicron and R. 

bromii) and FBBR (F. prausnitzii, B. adolescentis, B. thetaiotaomicron and R. bromii). 

We found that synthesis of essential AAs (histidine, isoleucine, leucine, lysine, 

methionine, phenylalanine, threonine and valine) produced by the communities is higher 

than the production of non-essential AAs (alanine, glutamate, glycine, proline, serine and 

tyrosine). Data are presented as mean value ± SD. See Figure S2 for details of AAs 

prediction. 

Figure 3 The network structure influence and sensitivity analysis on CASINO. 

(a) The community of B. thetaiotaomicron, B. adolescentis, F. prausnitzii, E.rectale and 

R.bromii were tested based on being receptor (receiving metabolites from the other 

microbes) or effector (producing metabolites where consumed by receptors). Two 

methods of centrality were tested on these networks (power centrality and degree 
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centrality). Calculated centrality scores determined E.rectale as the most important 

receptor and B.thetaiotaomicron as the most important effector. 

(b) The sensitivity of CASINO optimization was tested by evaluating the changes in SCFA 

profile upon adding different species to the community. First the most important receptor 

and effector in the communities were identified using the result of Figure 3A. 1 mmol/l of 

glucose was used for all the simulations and the SCFAs profile were predicted. Following 

identification of the dominant receptor and effector, the key species, the other species 

were added to the community one by one until the EBBR and FBBR community were 

reconstructed. Comparison between the simulations showed that the SCFA profile is very 

sensitivity of absence and existence of species with respect to their abundance and 

interactions.   

 Figure 4 The effect of the 6 weeks diet interventions in HGC and LGC individuals.  

(a) For each food source the major macronutrients were quantified and this enabled using the 

CASINO Toolbox to study the effect of the diet on the gut microbiota composition of 

subjects classified based on their microbial gene richness.  

(b) Abundance of species before and after diet interventions in HGC and LGC subjects. Data 

are shown as box-plots with E. coli (red), B. thetaiotaomicron (yellow), B. adolescentis 

(jade), L. reuteri (brown), F. prausnitzi (blue) and E. rectale (green). The heat map shows 

the p-values for four different comparison of the species levels (each row associated with 

the corresponding species indicated in the left part of the figure). See Table S5 for more 

details. 

(c) A diet algorithm was developed and implemented for prediction of the macromolecules 

present in different food sources and this allowed further conversion of diets to three main 

categories of macronutrients carbohydrates, fiber and AAs. See table S6 and S7 for more 

details. 

 

Figure 5 The effect of the 6 weeks diet interventions in predictions and fecal metabolomics   

of HGC and LGC individuals 

(a) Summary of average phenotypic predictions for baseline and after 6 weeks. The group of 

metabolites in the top right hand of the figure denotes the predictions at baseline and at 

the bottom left represents predictions after 6 week of dietary intervention. Subtracting the 

log10 average metabolite fluxes for HGC from LGC is represented on the x-axis and the 

summation on the y-axis. The x-axis shows the ratio of predicted metabolite levels 

between HGC and LGC and the y-axis the sum of predicted metabolite levels in the two 

groups. The colors show the metabolites distance from zero in y-axis (from dark blue at 

the top to dark red at the bottom).  

(b) Metabolomics analysis of fecal samples obtained from HGC and LGC subjects. The 

differences are shown for 14 detected AAs as well as for butyrate. 

(c) p-values based on Students t-test for specification of significantly changed metabolites for 

four different comparisons. B stands for baseline (before the dietary intervention), w6 

stands for week 6 (after the dietary intervention). 

 

Figure 6 The serum metabolomics validated the predictions and fecal metabolomics 

(a) Metabolomics of the serum samples obtained from HGC and LGC individuals. The 10 

AAs and acetate were quantified at the baseline (b) and week 6 (w6). 
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(b) p-values based on Students t-test for specification of significantly changed metabolites 

between HGC and LGC at baseline and week 6.  

(c) Correlation of the 10 quantified AAs in serum with different clinical parameters of HGC 

and LGC subjects. The figure shows significant correlations (p < 0.05) with the color 

code specifying the slope of the correlation.  Fat mass was measured by biphotonic 

absorptiometry (DXA). MIP1b: Macrophage inflammatory protein 1b; sCD14: soluble 

CD14; hsCRP: human sensitive CRP; HOMA-IR: Homeostatic model assessment-insulin 

resistance = 
𝐺𝑙𝑢𝑐𝑜𝑠𝑒 × 𝐼𝑛𝑠𝑢𝑙𝑖𝑛

22.5
 BMI: Body Mass Index (kg/m2); Disse index = 12 ×

 [2.5 ×  (
𝐻𝐷𝐿

𝑇𝑜𝑡𝑎𝑙 𝐶ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙
) − 𝐹𝐹𝐴] − 𝐼𝑛𝑠𝑢𝑙𝑖𝑛; MIP1b: Macrophage inflammatory protein 

1b; sCD14: soluble CD14; hsCRP: human sensitive CRP; NEFA: non esterified fatty 

acids. See Table S4 for details of clinical parameters.  

Figure 7 Modeling the dietary composition to transfer LGC individuals towards improved 

phenotype 

(a) The yellow circles specify the simulated consumption of the 8 essential AAs by the gut 

microbiome of the LGC individuals at baseline (base phenotype) and the green circles 

specify the simulated consumption of the 8 essential AAs for the HGC individuals at 

week 6 (improved phenotype).   

(b) After calculating the required amount of 8 essential AAs at base and improved phenotype, 

both patterns were correlated with composition of AAs in different food categories. The 

direction of the CorrImproved-CorrBase indicates the positive/negative effect of different food 

sources to improve the phenotype of LGC subjects. (CorrBase: correlation between pattern 

AAs in base phenotype and food, CorrImproved: correlation between pattern AAs in 

improved phenotype and food). See Table S8 for more details. 
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