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ABSTRACT 35 

 36 

The role of molecular signals from the microbiome and their coordinated interactions with 37 

those from the host in hepatic steatosis – notably in obese patients and as risk factors for 38 

insulin resistance and atherosclerosis – needs to be understood. We reveal molecular 39 

networks linking gut microbiome and host phenome to hepatic steatosis in a cohort of non-40 

diabetic obese women. Steatotic patients had low microbial gene richness and increased 41 

genetic potential for processing of dietary lipids and endotoxin biosynthesis (notably from 42 

Proteobacteria), hepatic inflammation and dysregulation of aromatic and branched-chain 43 

amino acid (AAA and BCAA) metabolism. We demonstrated that faecal microbiota transplants 44 

and chronic treatment with phenylacetic acid (PAA), a microbial product of AAA metabolism, 45 

successfully trigger steatosis and BCAA metabolism. Molecular phenomic signatures were 46 

predictive (AUC = 87%) and consistent with the gut microbiome making an impact on the 47 

steatosis phenome (>75% shared variation) and, therefore, actionable via microbiome-based 48 

therapies.  49 
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Main 50 

Hepatic steatosis is a multi-factorial phenotype common to several chronic conditions such as insulin 51 

resistance, atherosclerosis and fatty liver disease, with increasing worldwide prevalence related to the 52 

obesity epidemic1-5. The gut microbiota recently emerged as a pivotal transducer of environmental 53 

influences (i.e., dietary components, drug treatments) to exert protective or detrimental effects on 54 

several host tissues and systems, including regulation of intermediary metabolism, liver function and 55 

cardiovascular disorders, either directly via translocation or indirectly through microbial metabolism or 56 

function in metabolic disorders6-8,9-11. Rodent studies demonstrated the role of the gut microbiome in 57 

liver disease and to the stratification of Type 2 diabetes (T2D) and cardiovascular disorders (CVD). 58 

Microbiome-associated factors involve, for instance, bacterial lipopolysaccharides (LPS) or 59 

methylamines such as trimethylamine (TMA) and trimethylamine N-oxide (TMAO)12,13 playing a role in 60 

the development of insulin resistance and atherosclerosis6,14,15. Hepatic steatosis is a shared 61 

mechanism for the development of T2D and CVD in humans in both non-alcoholic and virus-62 

associated fatty liver disease16 but the physiological mechanisms behind this interplay remain poorly 63 

understood17,18.  64 

 65 

Here, we take advantage of the advances in high-throughput sequencing and phenotyping 66 

technologies to characterize in humans physiological mechanisms responsible for the integrated 67 

interactions between signals from the gut metagenome and the host molecular phenome (a 68 

comprehensive set of molecular phenotypes useful to identify subgroups of patients17) of hepatic 69 

steatosis. We introduce a unique integrative multi-omics and precision medicine approach combining 70 

shotgun metagenomics, liver transcriptomics, metabolomics in plasma and urine and clinical 71 

phenotyping to reveal the molecular mechanisms and multi-scalar interactions involved in the 72 

physiology of steatosis in a new cohort of non-diabetic obese women we recruited as part of the 73 

FLORINASH consortium. 74 

 75 

In-depth analyses of faecal metagenomics and phenomics reveal a robust signature highlighting a 76 

tight crosstalk between the microbiome, host gene expression and metabolism in hepatic steatosis 77 

involving low microbial gene richness19 (MGR) and imbalances in aromatic amino acid (AAA) and 78 

branched-chain amino acid (BCAA) metabolism20,21. Based on the results obtained in our clinical 79 
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study, we then demonstrated a causal role of the microbiota-produced metabolite most strongly 80 

associated with steatosis, namely phenylacetic acid (PAA), in the triggering of the hepatic steatosis 81 

phenome by faecal microbiota transplants (FMT) and by testing PAA on primary cultures of human 82 

hepatocytes and in mice. 83 

 84 

Cohort design and identification of clinical confounders  85 

To characterize the hepatic steatosis phenome, we established two unique and independent cohorts 86 

of women – negative for viral hepatitis – from Italy and Spain who elected for bariatric surgery. We 87 

focused on morbid obesity in non-diabetic women to examine liver steatosis variability. In particular, 88 

we excluded patients with known T2D to avoid the confounding influence of long-term 89 

hyperglycemia22 or medications such as metformin23,24 on the microbiome (see Methods for full 90 

inclusion and exclusion criteria). The degree of hepatic fat was defined according to the joint 91 

guidelines from the European Associations for the study of Liver, Obesity and Diabetes (EASL, EASO, 92 

EASD, see Methods)25,26,27. Given the impact of the microbiome on insulin resistance6,28, we also 93 

performed oral glucose tolerance tests (OGTT) and euglycemic hyperinsulinemic clamps (EHC) 94 

(Supplementary Table 1). Clinical phenotypes were complemented by faecal metagenomics and 95 

molecular phenomics (plasma and urine metabolomes and liver transcriptomes) for association 96 

studies29,30. We then devised a data-driven hypothesis generation and validation strategy (Fig. 1). We 97 

first identified age, cohort and BMI as confounders, while all other clinical variables were mediators or 98 

had no effect on the generalized linear models (Supplementary Fig. 1, Supplementary Table 2). 99 

These three confounders were taken into account in all subsequent partial Spearman’s rank-based 100 

correlation (pSRC) patterns across clinical variables. 101 

 102 

Metagenomic signatures of hepatic steatosis 103 

To obtain detailed taxonomic and functional information in hepatic steatosis for the faecal microbiome, 104 

we sequenced the patients’ faecal metagenome and data were processed using our in-house pipeline, 105 

performing QC checks, filtering, and binning of reads into taxonomic kingdoms (Supplementary 106 

Table 3, Supplementary Fig. 2); metagenome assembly, gene prediction and clustering, functional 107 

annotation of gene clusters and comparison with the HMP Integrated Gene Catalog (IGC)31 were 108 

performed. A total of 19,140,155 predicted genes were identified, which formed 3,902,787 gene 109 
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clusters. Of these genes, 2,320,286 mapped to the IGC, while 1,582,501 were novel (90 % query 110 

length, 95 % identity; Supplementary Table 4). We derived gene counts, i.e., a measure of MGR, 111 

based on average values obtained from 30 samplings of 7 million randomly sampled reads that 112 

mapped to genes8, resulting in a mean of 558,246 ± 154,249 genes across the samples 113 

(Supplementary Table 5), which is in the same order of magnitude as previous reports19. 114 

Remarkably MGR was significantly anti-correlated with hepatic steatosis (Fig. 2a; liver steatosis 0 115 

665,063 ± 126,062 vs liver steatosis 3 517,989 ± 126,062 genes, n = 10 patients both groups, P = 116 

0.03 Wilcoxon rank sum test) and with a number of markers of liver function, including γ-117 

glutamyltransferase, alanine aminotransferase and inflammation (C-reactive protein) as well as with 118 

echography-assessed liver steatosis (Fig. 2b). Our data demonstrate for the first time the association 119 

of MGR with liver steatosis in a BMI-adjusted context, reinforcing previous observations for body 120 

weight and liver cirrhosis19. 121 

 122 

To determine whether specific microbes were responsible for this correlation, we assessed the 123 

abundance of prokaryotes within the metagenomes. Several taxa were significantly associated with 124 

liver steatosis and other related clinical parameters (Fig. 2c–e, Supplementary Fig. 3a, 125 

Supplementary Fig. 4, Supplementary Table 6): at the phylum level Proteobacteria, Actinobacteria 126 

and Verrucomicrobia were significantly correlated with liver steatosis, while Firmicutes and 127 

Euryarchaeota were significantly anti-correlated, whereas species diversity (calculated using the 128 

Chao1 estimator) was not correlated with liver steatosis (Supplementary Fig. 3b). 129 

 130 

We next investigated associations between microbial function, by mapping our microbial gene catalog 131 

onto KEGG modules, and clinical phenotypes, thus revealing positive associations of hepatic 132 

steatosis with microbial carbohydrate, lipid and amino acid metabolism (Supplementary Fig. 5). 133 

These data suggest a change in microbial metabolism may contribute to liver health in morbidly obese 134 

women. Of particular relevance, LPS and peptidoglycan biosynthesis was significantly correlated with 135 

liver steatosis (Supplementary Fig. 5); this increase in LPS biosynthetic potential being consistent 136 

with an increased representation of Gram-negative Proteobacteria in steatosis, as observed in 137 

rodents32. These pathway-level analyses also highlight an increase in bacterial biosynthetic potential 138 

for fatty acids and sugars and various amino acids including BCAAs (Val, Leu and Ile) and AAAs (Trp, 139 
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Tyr and Phe) associated with steatosis and insulin resistance; this increase in BCAA biosynthesis 140 

further confirming previous reports in obesity and insulin resistance contexts28,33. 141 

 142 

Impact of the microbiome on the hepatic steatosis phenome 143 

To reveal metabolic phenotypes possibly involved in steatosis related to the gut microbiome and liver 144 

steatosis, we performed metabolic profiling of urine and plasma by 1H-NMR spectroscopy. A 145 

metabolome-wide association study (MWAS)30 resulted in 124 metabolite signals in urine and 80 in 146 

plasma correlated with hepatic steatosis and associated clinical traits (Supplementary Fig. 6, 7). 147 

Strikingly, the majority of liver steatosis-associated metabolites in plasma and urine were also 148 

associated with low MGR (Fig. 3a, b, Supplementary Fig. 8, Supplementary Table 7). Among the 149 

top liver steatosis metabolites (also associated with low MGR), we observed a significant correlation 150 

with BCAAs in plasma (leucine p-FDR = 4.69×10-5; valine p-FDR = 1.72×10-4; isoleucine p-FDR = 151 

9.72×10-5, Fig. 3a) and a significant increase in urine (leucine p-FDR = 6.1×10-4; valine p-FDR = 152 

1.73×10-3; isoleucine p-FDR = 0.024, Fig. 3b) consistent with reports in obese patients20,28. Plasma 153 

choline and phosphocholine were not anti-correlated with liver steatosis for the 56 patients (but were 154 

anti-correlated in the larger cohort, n=102, Supplementary Fig. 9), whereas increased choline 155 

excretion was observed in liver steatosis (Fig. 3b), which is consistent with previous reports regarding 156 

choline bioavailability6,34. Remarkably, urinary hippurate was associated with MGR, echoing similar 157 

associations recently observed with Shannon diversity index obtained from 16S rRNA gene sequence 158 

profiling35. Among the microbial–mammalian co-metabolites significantly associated with steatosis 159 

and low MGR, plasma PAA (p-FDR = 4.69×10-5) showed the strongest positive association (Fig. 3a). 160 

High MGR observed in non-steatotic patients was significantly correlated with a number of gut-derived 161 

microbial metabolites, such as urinary phenylacetylglutamine (p-FDR = 3.10×10-9), plasma acetate (p-162 

FDR = 0.009) and TMAO (p-FDR = 0.006) (Supplementary Table 7), a microbial-host co-metabolite 163 

playing a role in insulin resistance and atherosclerosis6,14,15. We further confirmed that TMAO, but not 164 

TMA, was marginally anti-correlated with steatosis by UPLC-MS/MS using isotopically-labelled 165 

standards36,37, which is consistent with recent reports on the role of TMAO in metabolic 166 

homeostasis15,38 (Supplementary Table 8). Altogether, these results suggest for the first time the 167 

existence of a metabolic phenotype associated with hepatic steatosis and low MGR, pinpointing 168 
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elevated BCAAs, AAAs and microbial metabolites coupled to a potential imbalance in hepatic 169 

oxidation and conjugation of those microbial substrates. 170 

 171 

To identify hepatic molecular mechanisms associated with the gut microbiome, we complemented our 172 

phenome coverage by profiling hepatic (liver biopsy) transcriptomes from the same set of patients. 173 

We identified 3,386 and 3,201 genes significantly positively and negatively correlated, respectively, 174 

with liver steatosis (pSRC p-FDR < 0.05) (Supplementary Table 9). Furthermore, 3,581 human 175 

genes significantly correlated (p-FDR < 0.05) with MGR: the pathways associated with the 1,776 176 

genes significantly positively correlated with MGR largely matched those significantly anti-correlated 177 

with steatosis (Supplementary Fig. 10). However, the 1,805 anti-correlated with MGR matched those 178 

positively associated with hepatic steatosis (Supplementary Fig. 10), consistent with an anti-179 

correlation between liver steatosis and MGR (Supplementary Table 9, Supplementary Table 10). 180 

 181 

To generate molecular hypotheses that could be useful for microbiota-related next-generation 182 

therapeutic strategies we performed a hepatic signalling pathway impact analysis (SPIA, see 183 

Methods) including the 2,277 genes intersecting the liver steatosis and MGR-associated genes. In 184 

particular hepatic genes associate with non-specific pathways involved in the core immune response 185 

to clearance of viral and bacterial (Proteobacteria, Gram-negative) infections (i.e., viral 186 

carcinogenesis; pathogenic Escherichia coli infection, shigellosis), alcoholism and insulin resistance 187 

(Fig. 3c). Enrichment analyses (see Methods) of the hepatic genes significantly associated with MGR 188 

further highlighted a significant (p-FDR < 0.2) over-representation of KEGG pathways associated with 189 

the proteasome, phagosome, insulin resistance, glucagon signalling and non-specific responses to 190 

microbial (Gram-negative, viral) infections (Fig. 3d). Among the overlapping genes co-associated with 191 

hepatic steatosis and low MGR, LPL (lipoprotein lipase) was among the most correlated with hepatic 192 

steatosis, while ACADSB (short/branched chain acyl-CoA dehydrogenase) and INSR (insulin 193 

receptor) were the most anti-correlated (Fig. 3e), suggesting a molecular basis for the observation 194 

that individuals with low MGR have a reduced capacity to respond to insulin exemplified by decreased 195 

glucose disposal rate (during the EHC) and increased HOMA-IR (as shown in Fig. 2b and previously 196 

reported in ref 28). 197 

 198 
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We further complemented our analyses of the hepatic transcriptome by assessing the topology of a 199 

directional network made of 2,277 genes significantly associated with liver steatosis and low MGR 200 

mapped onto KEGG pathways involved in liver disease, by aggregating all the KEGG networks with at 201 

latest one gene in common with the genes included in the NAFLD pathway. To analyse the topology 202 

of this resulting network, we computed shortest paths between the significant genes and derived the 203 

betweenness centrality metric39,40, i.e., the number of shortest paths passing through a particular gene 204 

product, to evaluate how central these genes are in the network. Betweenness centrality further 205 

highlights clusters of central genes channelling a high proportion of the shortest paths involving 206 

cAMP-related genes (CREB3L4, PRKACA, CRTC2), innate immunity (Nuclear Factor Kappa B 207 

subunit 1, NFKB1) and INSR amongst others (Fig. 3f). Overall, hepatic gene expression is 208 

concordant with the metabolic signature obtained in plasma and urine showing elevated BCAAs 209 

concomitantly associated with low MGR, liver steatosis and insulin resistance, highlighting the 210 

interconnection among these three parameters. Genetic manipulation of INSR in the hepatocyte 211 

displayed a NAFLD phenotype41,42 and the gut microbiome has recently been shown in rodents to 212 

interfere with INSR activation in the liver43. These results provide in humans a validation of numerous 213 

rodent-based hypotheses. 214 

 215 

Steatosis-associated microbiota and microbial metabolites modulate the steatosis phenome 216 

Our results document a strong contribution of the gut microbiome to the hepatic steatosis phenome. 217 

The increased microbial capacity for metabolism of BCAAs and metabolism of AAAs such as 218 

phenylalanine, tyrosine and tryptophan in liver steatosis (Supplementary Fig. 5) – phenylalanine 219 

metabolism resulting in PAA production – is supported by circulating metabolic markers (Fig. 3a-b), 220 

suggesting potentially causal mechanisms involving the microbiome in the steatosis phenome. In 221 

particular, our results strengthen the contribution of the gut microbiome to increased levels of 222 

circulating BCAAs in the host28,33 – a metabolic phenotype gaining a central role in metabolic 223 

disorders20. This disruption of the gut–liver axis is further exemplified by the increase in inflammatory 224 

response, ER stress and phagosome pathways associated with a decrease in insulin signalling and 225 

small-molecule catabolic processes, conceivably altogether contributing to impaired BCAA and AAA 226 

metabolism as well as detoxification of liver steatosis-associated microbial compounds. 227 

 228 
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We then tested whether faecal microbial communities from donors with hepatic steatosis (steatosis 229 

grade 3) could trigger steatosis molecular mechanisms to recipient mice when compared with 230 

samples from donors with no hepatic steatosis (grade 0) (Fig. 4a). Donors with hepatic steatosis (n=3, 231 

steatosis grade 3) were randomly selected. Among subjects without hepatic steatosis (n=3, grade 0), 232 

we chose those that were similar in age, BMI, and fasting glucose to those with steatosis. For 233 

instance, fasting glucose was 87.3 ± 16.7 mg/dL in subjects without steatosis and 97.3 ± 6.4 mg/dL in 234 

the steatosis group (P = 0.39). After a short antibiotic treatment and wash-out period and four 235 

consecutive daily faecal microbiota transplantations (FMTs), the recipient mice were fed a chow diet 236 

for 2 weeks. In the former group, this procedure resulted in a moderate but rapid accumulation of 237 

hepatic triglycerides (Fig. 4b). We also observed an increased Fabp4 expression and plasma valine 238 

concentration compared with mice that received samples from patients without liver steatosis 239 

(Supplementary Fig. 11a,b), showing the general impact of the steatosis-associated microbiota from 240 

human donors on mouse liver lipid accumulation. By permutation testing seven-fold cross-validated 241 

O-PLS models using the donor human microbiome composition, we could successfully predict 242 

recipient mouse phenome responses, especially for steatosis, hepatic triglyceride content, Fabp4 and 243 

plasma valine levels (Fig. 4c and Supplementary Fig. 11c-e, 1,000 random permutations, see 244 

Methods), highlighting the statistical robustness of the prediction between human donor microbiomes 245 

and recipient mouse phenome. We then derived significant associations between the donor 246 

microbiota composition and the mouse phenome, showing that the steatosis-associated microbiota 247 

influences multiple patterns of association with hepatic triglycerides, circulating BCAAs and TMAO 248 

(Fig. 4d). Similar, yet weaker associations were also observed between the mouse phenome and 249 

recipient mouse microbiota evaluated by faecal 16S rRNA gene amplicon analysis (Supplementary 250 

Fig. 12). The rapid hepatic lipid accumulation suggested a causal role of the human faecal microbiota 251 

in the triggering of hepatic steatosis which over a long-term period could lead to a highly significant 252 

liver lipid depot further contributing to hepatic insulin resistance. 253 

 254 

To highlight the potential of novel microbial compounds to directly affect the hepatic steatosis 255 

phenome, we selected PAA due to the convergence of metagenomic and metabolomic observations: 256 

i) there is increased abundance of microbial gene pathways associated with its production in 257 

metagenomic sequences (Supplementary Fig. 5), and ii) it is the strongest microbial metabolite 258 
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associated with steatosis in our MWAS models (Fig. 3a). We compared its effects with the effects of 259 

palmitic acid, a free fatty acid known to trigger hepatic steatosis in human primary hepatocytes44, 260 

using a full factorial design. We assessed lipid accumulation, expression of genes involved in 261 

steatosis as well as BCAA metabolism and consumption. PAA initiates molecular mechanisms 262 

leading to triglyceride accumulation in human primary hepatocytes in synergy with palmitic acid (Fig. 263 

5a-b) and induces expression of lipid metabolism genes (LPL and FASN, Fig. 5c-d). PAA induced 264 

INSR expression contrary to palmitic acid and participated in the reduction of GLUT2 expression (Fig. 265 

5e-f). We next investigated AKT phosphorylation, which was significantly lowered by PAA, suggesting 266 

PAA reduces the response to insulin (Fig. 5g). PAA increased ACADSB expression (Fig. 5h) and 267 

resulted in an increased utilization of BCAA from the cell medium (Fig. 5i-k). We then treated mice 268 

with PAA for 2 weeks to confirm the increase in hepatic triglycerides and excreted isoleucine (Fig. 5l-269 

m). These results suggest that PAA, as one of our top hepatic steatosis-associated microbial 270 

metabolites, significantly increases hepatic BCAA utilization and hepatic lipid accumulation. 271 

 272 

Integrative data crosstalk and steatosis signatures 273 

We finally quantified the crosstalk among gut microbiome, clinical phenotypes, liver transcriptome, 274 

urine and plasma metabolomes by estimating the proportion of shared variation amongst the different 275 

tables through Rv coefficients (Fig. 6, see Methods). A high proportion of information (79–97%) was 276 

shared between matching datasets (Fig. 6a, Supplementary Table 11), suggesting a strong 277 

similarity between metagenomic and phenomic data; the weakest (79.44%) being between urinary 278 

metabolome and clinical parameters. The metagenomic data shared 92–93% similarity with clinical 279 

parameters, liver transcriptome and plasma metabolome, while they only shared 74.68% with the 280 

urinary metabolome. This statistical crosstalk analysis suggests that, although metagenomic and 281 

phenomic data have strong similarity, there is still information attached to each original dataset which, 282 

if pooled together, could result in a robust signature.  283 

 284 

We then built a multivariate model integrating metagenomic, transcriptomic and metabolomic 285 

information by fitting an orthogonal partial least squares discriminant analysis (O-PLS-DA) and tested 286 

its ability to correctly predict new samples during a seven-fold cross-validation through random 287 

permutation testing (Fig. 6b, 10,000 random permutations, P = 0.0029). We derived a bootstrapped 288 
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Receiver-Operator Characteristic (ROC) curve for the cross-validated models illustrating the ability of 289 

the model to correctly predict new samples (AUC=87%, Fig. 6c, Supplementary Table 12) of the 290 

binary prediction of steatosis (i.e., steatosis vs. no steatosis) using cross-validated scores derived 291 

from seven-fold cross-validation of the O-PLS-DA model (see Methods), thereby confirming the joint 292 

predictive power of molecular phenomics and metagenomics. The predictive power of the phenome 293 

model is driven by the hepatic transcriptome (AUC 85%) that directly relates to the affected organ, but 294 

the excreted phenome and plasma metabolome both reach 73% and 79%, respectively. This AUC is 295 

particularly relevant as the non-invasive basal clinical data yielded 58%, which only increases through 296 

addition of more invasive metabolic challenges (OGTT and EHC, AUC 69%). Altogether, these 297 

predictive models based on molecular phenomics and metagenomics further support the idea that 298 

these molecular signatures used to generate hypotheses are robust and ultimately suggesting that the 299 

link tethering the microbiome to hepatic steatosis is robust too. 300 

 301 

DISCUSSION 302 

In this study, we performed an in-depth clinical characterization of well-phenotyped non-diabetic 303 

obese women from Spain and Italy. We then reveal molecular networks between the gut microbiome 304 

and the hepatic steatosis phenome in this population of morbidly obese women, through 305 

computational integration of individual metagenomes, metabolomes and hepatic transcriptomes with 306 

histological steatosis scores. The robustness of our phenome signatures and the experimental follow-307 

ups show that hepatic steatosis is negatively associated with MGR and the microbiome contributes to 308 

the steatosis phenome. The striking association between low MGR and hepatic steatosis is consistent 309 

with clinical and preclinical results confirming the role of the microbiome in rodent models7 of non-310 

alcoholic fatty liver disease and the role of MGR in metabolic disease19,45. 311 

 312 

We then functionally characterized an increased gut microbial amino-acid metabolism in steatotic 313 

subjects that has a profound impact on their liver transcriptome, biofluid metabolomes and liver fat 314 

accumulation, leading eventually to fatty liver. We found an anti-correlation pattern between steatosis 315 

and MGR was valid for the most significant steatosis-associated genes and metabolites, thereby 316 

suggesting that the reduction in MGR is a key factor that imbalances microbiome metabolic pathways 317 

leading to a steatosis-associated phenome, as observed for obesity19,45. From this tight crosstalk, we 318 
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further depict a coordinated disruption of the gut–liver axis in hepatic steatosis that manifests itself 319 

across the faecal metagenome, hepatic transcriptome and biofluid metabolome. For instance, the 320 

increased Proteobacteria frequency in hepatic steatosis is mirrored by an increase in microbial-321 

associated functional pathways related to endotoxin production and immune response in steatotic 322 

patients – both at the hepatic and circulating levels. Our study further confirms the impact of LPS and 323 

putatively other microbial products on liver lipid accumulation in humans46, as previously proposed in 324 

rodent models32. 325 

 326 

By integrating numerous biological measurements, our data analysis strategy implemented a detailed 327 

functional analysis of the patient faecal metagenomes and molecular phenomes, offering novel 328 

insights for the integrative physiology of hepatic steatosis. For instance, the increased microbial 329 

potential for BCAA production, a phenomenon already reported for insulin resistance and obesity28,33, 330 

is mirrored by an increase in the BCAA pool in biofluids. Also, our bioinformatic analysis of 331 

metagenomic sequences combined with metabolomic data suggested a direct role for microbial 332 

degradation of AAAs into PAA in patients with steatosis. Our preclinical studies in rodents and primary 333 

culture of human hepatocytes corroborated the role of this metabolite, amongst others, as an example 334 

of a microbially-related metabolite involved in hepatic steatosis. By subsequently focussing on a 335 

unique microbiome-associated feature such as PAA, which was selected through converging patterns 336 

observed in microbial gene functions and biofluid metabolomes, we identified a novel mechanism by 337 

which the microbiome facilitates steatosis, via increased BCAA utilisation and AAA metabolism. 338 

Whilst acknowledging the complexity of the microbiome–host interplay, it should be noted that 339 

although PAA is an exemplar metabolite highlighted in our human dataset, its effects are here limited 340 

to triggering steatosis-associated molecular mechanisms and it is unlikely to be the sole player in 341 

steatosis. The PAA effects are most likely part of a much broader, multifactorial process orchestrated 342 

by the microbiome and involving many factors that warrant further studies. 343 

 344 

The demonstration that the faecal microbiota obtained from patients with steatosis (grade 3, >66%) 345 

initiated hepatic lipid accumulation and affected the phenome of recipient mice through FMTs 346 

reinforces the causal role of the microbiota in steatosis. Not only did the human donor microbiota from 347 

patients with steatosis trigger hepatic triglyceride accumulation in recipient mice, but it also affected 348 
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their circulating metabolome and hepatic transcriptome, through an increase in circulating valine 349 

levels and an increased expression of genes involved in lipid metabolism. Moreover, the 350 

characteristics of the donor microbiota predicts the extent of the phenomic response in the donor mice, 351 

which echoes recent reports on the prodromal role of the microbiota for metabolic response to diet in 352 

animal models15,47 and humans48. The successful replication of the steatotic phenotype using human 353 

donor material for FMT in mice represents a key translational link between metagenomic studies in 354 

patients with NAFLD, hepatic fibrosis or cirrhosis8,49,50 and previous FMT studies that had only been 355 

established for NAFLD with mouse donors7. 356 

 357 

Altogether, we propose a model in which the microbiome orchestrates three possibly complementary 358 

contributions to hepatic steatosis in obesity: i) reduced MGR – indicative of deleterious changes in 359 

microbiome functions – can trigger steatosis and increase the BCAA pool; ii) microbially-produced 360 

PAA and possibly other related metabolites facilitate hepatic lipid accumulation via a synergetic 361 

increase in BCAA utilization in the TCA cycle; and iii) microbially-associated factors such as LPS 362 

induce inflammation in hepatocytes. 363 

 364 

Similar to Qin et al. (2014) who studied the faecal metagenome of liver cirrhosis patients8, our data 365 

indicate a slight shift of the faecal microbiome in patients with steatosis to one more similar to that 366 

found in the human small intestine and oral cavity. For example, patients with steatosis had fewer 367 

Lachnospiraceae and Ruminococcaceae responsible for butyrate production and were enriched in 368 

Acidaminococcus and Escherichia spp. Bacteroides spp. were associated with insulin resistance, 369 

concordant with observations from Pedersen et al.28, who showed Bacteroides vulgatus was one of 370 

the main species contributing to insulin resistance, and circulating levels of BCAAs in humans28. 371 

 372 

In conclusion, this work offers a unique clinical resource and integrated analysis of metagenomics 373 

with molecular phenomics of hepatic steatosis in non-diabetic obese women coupled with 374 

experimental validations in cellular and animal models. Not only does our work further validate 375 

previous studies in humans49, but it also confirms hypotheses formulated in rodent models, such as 376 

the role of LPS, in which the gut microbiome was shown to influence gene pathways involved in the 377 

immune system and metabolic disorders (i.e., inflammation impacting host metabolism7,32,51). 378 
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Ultimately, this integrated database and modelling approach also suggests new potentially causal 379 

mechanisms in hepatic steatosis involving BCAA- and AAA-derived metabolites. Our investigations 380 

further support the view that the molecular crosstalk between the microbiome and its human host is of 381 

utmost importance for patient health and highlights the need for integrative analyses of metagenomes 382 

and broad-sense phenomes52,53. Our study establishes a comprehensive understanding of the 383 

microbial factors affecting human metabolic disease states for precision medicine, thereby laying the 384 

groundwork for targeted FMT therapies and pharmacotherapies to promote hepatic metabolic 385 

homeostasis. 386 

 387 

Online Content  388 

Methods, along with any additional Extended Data display items and Source Data, are available in the 389 

online version of the paper; references unique to these sections appear only in the online paper. 390 
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FIGURE LEGENDS 420 

Figure 1. Flowchart showing approach used for the integration of clinical, molecular 421 

phenomics and metagenomic information and biological validations. a, Confounder and modifier 422 

analysis performed on the FLORINASH clinical markers identified three confounders: age, BMI and 423 

country (n = 105). Subsequent analyses were performed using partial Spearman rank-based 424 

correlation (pSRC) coefficients adjusted for age, BMI and country. b, Metagenome-wide and 425 

phenome-wide association of taxonomic abundance data with clinical markers (n = 56 patients). c, 426 

Network analysis of hepatic transcriptome (n = 56 patients). d, Metabonome-Wide Association Study 427 

based on plasma (n = 56) and urine (n = 56) 1H-NMR spectra. e, Integrative comparison analysis 428 

using Rv coefficients (n = 56). f, Predictive performance of an O-PLS-DA model integrating all 429 

metagenomic and phenomic modalities for prediction of non-alcoholic fatty liver (no hepatic steatosis, 430 

score = 0, n = 10 vs. steatosis, score > 0, n = 46) in ROC curves. 431 

 432 

Figure 2. Association between liver steatosis, microbial gene richness (MGR) and 433 

metagenomic data in obese women. a, MGR was significantly anti-correlated with liver steatosis. b, 434 

Correlation of MGR with clinical data (p-FDR values shown). c, Association of genus-level abundance 435 

data with clinical data. +, p-FDR < 0.05. d, Prokaryotic taxa significantly (p-FDR < 0.05) anti-436 

correlated with liver steatosis at the phylum and genus levels. e, Prokaryotic taxa significantly (p-FDR 437 

< 0.05) correlated with liver steatosis at the phylum and genus levels. (No liver steatosis = 10; liver 438 

steatosis 1 = 22; liver steatosis 2 = 14; liver steatosis 3 = 10 for all panels.) 439 

 440 

Figure 3. Association of metabolomic and transcriptomic data with liver steatosis and 441 

microbial gene richness (MGR). a, Plasma metabolites most significantly (p-FDR < 0.05) partially 442 

correlated with liver steatosis. b, Urinary metabolites most significantly (p-FDR < 0.05) partially 443 

correlated with liver steatosis. c, SPIA evidence plot for the intersection of the 2,277 genes 444 

significantly associated with liver steatosis and MGR. Each signaling pathway is represented by one 445 

dot. The pathways at the right of the red oblique line are significant (< 0.2) after Bonferroni correction 446 

of the global P values, pG, obtained by combining the pPERT and pNDE using the normal inversion 447 

method. The pathways at the right of the blue oblique line are significant (< 0.2) after a FDR 448 

correction of the global P values, pG. The yellow node represents the KEGG pathway ‘Non-alcoholic 449 
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fatty liver disease (NAFLD) – Homo sapiens (human)’; 05222, Small cell lung cancer; 4914, 450 

Progesterone-mediated oocyte maturation. d, Enrichr (KEGG pathway) analysis of the hepatic genes 451 

significantly (p-FDR < 0.05) correlated and anti-correlated with MGR. e, The ten hepatic genes most 452 

significantly (p-FDR < 0.05) correlated and anti-correlated with liver steatosis. f, Network analysis of 453 

the 2,277 hepatic steatosis – MGR intersecting genes. The correlation values for liver steatosis were 454 

used to generate the network: the bluer a node, the more significantly anti-correlated liver steatosis is 455 

with the hepatic gene; the redder a node, the more significantly correlated liver steatosis is with the 456 

hepatic gene. Analysis of betweenness centrality39,40 showed CREB3L4, PRKACA, CRTC2, OGT, 457 

INSR, NFKB1, PPP1CA, IKBKG, MAP3K7, MAPK9, ITGAV, RRAS2, RPS6KA2, PHKA1, PHKB, 458 

BRAF, ALDOC, PFKL, EFNA1, FGF12, ANGPT4, PDGFB, VEGFB, FGFR4, MAP2K2, TAPBP, 459 

ALDH3A2, ALDH7A1, GPI and GNAI3 to be (from highest betweenness centrality to lowest) the 30 460 

genes having most control over the network. Genes with no network connections have been removed 461 

for clarity. (No liver steatosis = 10; liver steatosis 1 = 22; liver steatosis 2 = 14; liver steatosis 3 = 10 462 

for all panels.) 463 

 464 

Figure 4. Transfer of steatotic and metabolic phenotypes to mice through FMT of material from 465 

patients with liver steatosis grade 3. a, FMT protocol. b, Hepatic triglycerides in recipient mice. c, 466 

Permutation tests for goodness of fit (R2) and prediction (Q2) parameters obtained from a seven-fold 467 

cross-validated O-PLS regression model quantitatively predicting recipient mouse hepatic lipid 468 

accumulation from human donor microbiome composition. d, Association between recipient mouse 469 

phenome and human donor microbiota (n = 44). The quality of a given O-PLS model is usually 470 

assessed by goodness-of-fit (R2) and goodness-of-prediction (Q2). The R2 parameter corresponds to 471 

the explained variance of the model whilst the Q2 parameter corresponds to the predicted variance, 472 

as assessed by seven-fold cross-validation of the given model. The significance of the R2 and Q2 473 

parameters is then assessed by using 10,000 random permutations of the class membership variable. 474 

The horizontal axis corresponds to the correlation between the original class membership (on the 475 

right) and the permuted class membership (10,000 permutations on the left of the plot). The vertical 476 

axis corresponds to the R2 (green dots) and Q2 (blue dots) coefficients. The green (R2) and blue (Q2) 477 

lines are both increasing form left to right suggesting that the original R2 and Q2 parameters on the 478 

right are significantly different from both populations of R2 and Q2 parameters obtained from models 479 
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fitted with random permutations of the class membership on the left. Data obtained from FMT 480 

protocols performed independently with faecal material from three patients with liver steatosis (grade 481 

3, >66% steatosis) and three control patients (grade 0, <5% steatosis), n = 8 recipient mice per donor. 482 

Data are mean ± s.e.m., * p < 0.05. 483 

 484 

Figure 5. Microbial PAA induces liver steatosis and BCAA use in primary human hepatocytes 485 

and mice. a, Micrographs of primary human hepatocytes stained with Oil Red O. b, Quantification of 486 

lipid accumulation. c, LPL expression in hepatocytes. d, FASN expression in hepatocytes. e, INSR 487 

expression in hepatocytes. f, GLUT2 expression in hepatocytes. g, AKT phosphorylation in 488 

hepatocytes. h, ACADSB expression in hepatocytes. i, Valine in hepatocyte cell medium. j, Leucine in 489 

hepatocyte cell medium. k, Isoleucine in hepatocyte cell medium. l, Hepatic triglycerides in PAA-490 

treated mice. m, Isoleucine in urine from PAA-treated mice (n = 8-10 per group). Data obtained with n 491 

= 4 observations per group unless stated otherwise. Data are mean ± s.e.m., * p < 0.05, ** p < 0.01, 492 

*** p < 0.001. Abbreviations: CTRL, control group; PAA, phenylacetic acid treatment group; PA, 493 

palmitic acid treatment group; PA+PAA, palmitic acid and phenylacetic acid treatment group. 494 

 495 

Figure 6. Phenome-wide crosstalk and predictive modelling. a, Metagenome–phenome matrix 496 

correlation network computed for the patients with matching metagenomic and phenomic profiles (n = 497 

56) using the modified Rv correlation matrix coefficient. Each phenomic table corresponds to a node 498 

and edges represent the relationships between tables, i.e., the per cent of shared information, derived 499 

from the Rv2 matrix correlation coefficient corresponding to the proportion of variance shared by the 500 

two tables – which like a squared Pearson’s correlation coefficient (r2) – corresponds to the proportion 501 

of explained variance between two variables. b, Discriminative power of a supervised multivariate 502 

model (OPLS-DA) fitted with patients with matching metagenomic and phenomic profiles (n = 56) to 503 

predict new samples, using random permutation testing (10,000 iterations). c, Performance of 504 

classification of liver steatosis status (n = 10, vs. others, n = 46) based on matching molecular 505 

phenomic and gut metagenomic profiles. A ROC curve was obtained for the cross-validated model 506 

predictions derived from the O-PLS-DA model, reaching an AUC of 87.07%, corresponding to the 507 

successful prediction rate. Groups for all panels are: no steatosis (grade 0), n = 10; steatosis (grades 508 

1-3), n = 46.  509 
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SUPPLEMENTARY METHODS 635 

 636 

Primary human hepatocyte culture and treatments. Cryopreserved primary human hepatocytes 637 

(HH) were obtained commercially (Innoprot, Bizkaia, Spain) and cultured with hepatocytes medium 638 

(Innoprot) supplemented with 5% fetal bovine serum, 1% hepatocytes growth supplement (mixture of 639 

growth factors, hormones and proteins necessary for culture of primary hepatocytes), and 100 U/mL 640 

penicillin and streptomycin. HH were grown on poly-L-lysine pre-coated cell dishes at 37 °C and 5% 641 

CO2 atmosphere following manufacturer’s recommendations. Cells were treated 24 h after seeding 642 

with phenylacetic acid (PAA), palmitic acid (PA) or a combination of both. Compounds were prepared 643 

as follows: 136.16 mg of PAA (P16621, Sigma, San Luis, MO) were dissolved in 10 mL of phosphate-644 

buffered saline (PBS) and 27.84 mg of PA (Sigma, San Luis, MO) in 1 mL sterile water to obtain both 645 

components at 100 mM stock solutions. Bovine serum albumin (BSA, 5 %) was prepared in serum-646 

free DMEM and then mixed with PA stock solution for at least 1 h at 40 ºC to obtain a 5 mM solution. 647 

HH were treated with PAA 10 mM, PA 200 µM or a combination of both for 24 h. BSA and PBS were 648 

used as vehicles. All experimental conditions were performed in four biological replicates. 649 

 650 

After treatment, cells were washed with PBS and collected with Qiazol for RNA purification. Total 651 

RNA was extracted and purified using RNeasy Mini Kit (QIAgen, Gaithersburg, MD) following the 652 

manufacturer’s protocol. Gene expression procedures were assessed using LightCycler 480 Real-653 

Time PCR System (Roche Diagnostics SL, Barcelona, Spain), using TaqMan technology suitable for 654 

relative genetic expression quantification. Fatty acid (FA) accumulation was tested with Oil Red O 655 

staining. Briefly, after treatment cells were washed twice with PBS, fixed with paraformaldehyde 7% 656 

for 1 h and dipped in isopropanol 60% before staining with Oil Red O (Sigma, Lyon, France) for 10 657 

min at room temperature. Pictures were taken with an inverted microscope. For quantification, 100% 658 

isopropanol was added to elute Oil Red O and optical density was monitored spectrophotometrically 659 

at 500 nm (Cytation5, Biotek). Finally, insulin resistance analysis was performed as follows: HH were 660 

maintained in starvation for 1 h after treatment. Insulin (100 nM in serum-free DMEM medium) was 661 

used for stimulation of insulin pathway for 10 min. Then, cells were collected and homogenized in 50 662 

μL of lysis buffer (Cell Signaling Technology, Barcelona, Spain) and cell debris was discarded by 663 

centrifugation (10 min, 15,000 r.p.m. at 4 ºC). Protein amount was determined using the Lowry assay 664 
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(Biorad, Madrid, Spain). Protein extracts were separated by SDS-PAGE and transferred to 665 

nitrocellulose membrane by conventional procedures. Membranes were immunoblotted with 666 

phosphorylated (Ser473) Akt serine/threonine kinase (pAkt) and total Akt (Cell Signaling Technology). 667 

Anti-rabbit IgG coupled to horseradish peroxidise was used as secondary antibody. Horseradish 668 

peroxidase activity was detected by chemiluminescence and quantification of protein expression was 669 

performed using Scion image software. Cell-based assays were not performed in a blind manner. 670 

 671 

PAA treatment in mice. Procedures were carried out according to the French guidelines for the care 672 

and use of experimental animals (Animal authorization agreement n° CEEA34.AFB/CP.082.12, 673 

validated by the University Paris Descartes Ethical Committee). 10-week old C57BL/6J mice (Janvier 674 

labs) were used for in vivo PAA treatments. Mice were maintained in a 12 h light/dark cycle with water 675 

and standard diet (65% carbohydrate, 11% fat, and 24% protein) supplemented or not with 0.8% of 676 

PAA (Sigma) for 2 weeks. The mouse experiments were not performed in a blind manner. 677 

Experimental groups (n = 8-9 per group) were randomly allocated. 678 

 679 

Faecal microbiota transplantation in mice. All animal experimental procedures were approved by 680 

the local ethical committee (approval number 31-278) of Rangueil University Hospital (Toulouse, 681 

France). Faecal microbiota and faecal water transplantation were performed as previously 682 

described54,55 so that 20 mg per day per mouse (C57BL6 male, 8 week old, Charles River) were 683 

administered for four consecutive days. Briefly, six faecal samples from subjects with (n=3) and 684 

without (n=3) hepatic steatosis matched for age and BMI (see Supplementary Table 1) were 685 

suspended separately in sterile reduced PBS (N2 gas and thioglycolic acid, Sigma Aldrich, St. Louis, 686 

MO). The faecal matter was used to treat 8-week-old mice. First, eight mice per patient were treated 687 

for 7 days with an antibiotic mixture (neomycin, ampicillin, metronidazole as described54,55). A 4-day 688 

wash-out period ensured elimination of the antibiotics. The mice were then gavaged once-a-day for 689 

four consecutive days with the faecal matter suspended in the buffer. Two weeks later the mice were 690 

sacrificed; livers and plasma were collected and frozen before assay. The mouse experiments were 691 

not performed in a blind manner. Experimental groups were randomly allocated. 692 

 693 
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Western blot analysis (mouse and primary hepatocytes). Proteins from liver tissue were extracted 694 

from whole cell lysates. Proteins were subjected to 10% SDS-PAGE gels and electroblotted to 695 

nitrocellulose membranes. Rabbit polyclonal antibodies of Akt (Cell Signaling, 9272), pAkt (ser473, 696 

Cell Signaling, 4060) and pAkt (thr308, Cell Signaling, 3038) were used at 1:1000. 697 

 698 

Recruitment of patients and processing of samples. All subjects gave written informed consent, 699 

validated and approved by the ethical committee of the Hospital Universitari Dr Josep Trueta (Comitè 700 

d'Ètica d'Investigació Clínica, approval number 2009 046) and Policlinico Tor Vergata University of 701 

Rome (Comitato Etico Indipendente, approval number 28-05-2009). The human subject cohort 702 

comprised 105 morbidly obese women at the Endocrinology Service of the Hospital Universitari de 703 

Girona Dr Josep Trueta (Girona, Spain, n = 44) and at the Center for Atherosclerosis of Policlinico Tor 704 

Vergata University of Rome (Rome, Italy, n = 61). Sample size was not determined by statistical 705 

methods.  706 

 707 

Inclusion criteria: Pre-established inclusion criteria were: all subjects were of Caucasian origin; the 708 

subjects reported a stable body weight 3 months preceding the study, and were not given a liquid diet 709 

before surgery, were free of any infections, including use of antibiotics, 1 month before surgery and 710 

had no systemic disease. 711 

 712 

Exclusion criteria: Pre-established exclusion criteria were: subjects with known medical history of 713 

diabetes or self-reported use of hypoglycemic agents, presence of liver disease, specifically HCV 714 

infection and tumor disease, and subjects with thyroid dysfunction were excluded by biochemical 715 

work-up. Alcohol consumption >20 g/day was an exclusion criterion. Hepatitis B was routinely 716 

excluded before the surgical procedure (anti-HB virus antibodies), iron overload: serum ferritin was 717 

below 200 ng/mL in all subjects, autoimmune hepatitis was excluded by histology and exclusion of 718 

viral hepatitis, alpha-1 antitrypsin deficiency was excluded by anamnestic data and clinical evidence, 719 

drug-induced liver injury was excluded using a drug questionnaire. 720 

 721 
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Stool and biofluid samples from all of the subjects were obtained during the week before elective 722 

gastric bypass surgery, during which the liver biopsy was sampled. Liver samples were collected in 723 

RNAlater, fragmented and immediately flash-frozen in liquid nitrogen before storage at −80 °C. 724 

 725 

Histology on liver biopsies (human). The investigators were blind to group allocations. A 726 

pathologist and a radiologist in each center assigned groups independently. Liver biopsies were 727 

analysed by a single expert pathologist. The liver samples were stained with hematoxylin and eosin, 728 

Masson's trichrome and reticulin. Excessive hepatic fat accumulation, associated with insulin 729 

resistance, is defined by the presence of liver steatosis in >5% of hepatocytes according to 730 

histological analysis21,22  731 

 732 

Clinical biochemistry (human). Plasma glucose concentrations were measured in duplicate by the 733 

glucose oxidase method using a Beckman glucose analyser II (Beckman Instruments, Brea, 734 

California). Duplicate samples were used for plasma insulin determination by the immunoradiometric 735 

assay (Medgenix Diagnostics, Fleunes, Belgium). The coefficients of variation (intra-assay) were 5.2 736 

% at a concentration of 10 mU/Land 3.4 % at 130 mU/L. The coefficients of variation (inter-assay) 737 

were 6.9 % and 4.5 % at 14 and 89 mU/L, respectively. Total plasma cholesterol was measured by an 738 

enzymatic, colorimetric method through the cholesterol esterase/cholesterol oxidase/peroxidase 739 

reaction (Cobas CHOL2). HDL cholesterol was quantified by a homogeneous enzymatic colorimetric 740 

assay through the cholesterol esterase/cholesterol oxidase/peroxidase reaction (Cobas HDLC3). 741 

Total plasma triglycerides were measured by an enzymatic, colorimetric method with glycerol 742 

phosphate oxidase and peroxidase (Cobas TRIGL). LDL cholesterol was calculated using the 743 

Friedewald formula. Cortisol was determined by routine laboratory test56. 744 

 745 

Euglycemic hyperinsulinemic clamp (human). Insulin action was determined by the euglycemic 746 

hyperinsulinemic clamp (EHC). After an overnight fast, two catheters were inserted into an antecubital 747 

vein, one for each arm, used to administer constant infusions of glucose and insulin, and to obtain 748 

arterialized venous blood samples. A 2-h EHC was initiated by a two-step primed infusion of insulin 749 

(80 mU/m2/min for 5 min, 60 mU/m2/min for 5 min) immediately followed by a continuous infusion of 750 

insulin at a rate of 40 mU/m2/min (regular insulin; Actrapid, Novo Nordisk, NJ). Glucose infusion 751 
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began at minute 4 at an initial perfusion rate of 2 mg/kg/min, then was adjusted to maintain plasma 752 

glucose concentration at 4.9–5.5 mmol/L. Blood samples were collected every 5 min for determination 753 

of plasma glucose and insulin. Insulin sensitivity was assessed as the mean glucose infusion rate 754 

during the last 40 min. In the stationary equilibrium, the amount of glucose administered (M) equals 755 

the glucose taken by the body tissues and is a measure of overall insulin sensitivity. A 75-g oral 756 

glucose-tolerance test (OGTT) in accordance with American Diabetes Association criteria was also 757 

performed57. 758 

 759 

Metabolic profiling and phenotyping by 1H-NMR spectroscopy. All 1H-NMR spectra were 760 

acquired using Bruker DRX600 spectrometers (Rheinstetten, Germany) running under TopSpin, with 761 

either a 5 mm TXI probe operating at 600.13 MHz or a 5mm BBI probe operating at 600.44 MHz. All 762 

runs were carried out using Bruker BACS60 sample handling automation; prior to each run the 90° 763 

pulse length was determined and set for the run. The field frequency was locked on D2O as solvent. 764 

In all experiments, water suppression was carried out by noise irradiation during the 2 s recycle delay 765 

(RD). For all experiments, 128 scans were recorded into 32K data points with a spectral width of 20 766 

ppm, and an exponential function was applied to the FID prior to the Fourier transformation, which 767 

resulted in a line broadening of 0.3 Hz. All urine and plasma NMR spectra were automatically phased, 768 

baseline-corrected and referenced either to trimethylsilylpropionate TSP (δ 0.0) for urine, or the center 769 

of the α-glucose anomeric doublet (δ 5.23) for plasma, using in-house MatLab (The MathWorks, 770 

Natick, Massachusetts) scripts. Baseline and peak alignment quality control was done by individual 771 

verification for each spectrum and occasionally a spectrum was manually adjusted. Spectral line-772 

shape quality was also individually assessed, and occasionally spectra were re-acquired during the 773 

same sample run. The spectra were all then imported to Matlab and the region around the water 774 

resonance (δ 4.7–4.9 ppm for urine and δ 4.5–5.0 ppm for plasma) was zeroed. The NMR data arrays 775 

then underwent spectral median fold-change normalization58 using a probabilistic quotient 776 

normalization (PQN) algorithm, performed with in-house scripts. 777 

 778 

Urine samples. Urines were thawed at room temperature from frozen storage at -80 °C and briefly 779 

centrifuged to allow clean supernatant aliquoting into a 5 mm NMR tube. A high D2O (80:20) buffer 780 

was operationally prepared by weighing 5.77 g of Na2HPO4, 1.05 g NaH2PO4, 33.65 mg TSP and 80 781 
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mg NaN3 into a flask, with the addition of 180 mL of D2O and 20 mL H2O to make approximately 200 782 

mL of buffer. Urine samples were prepared by adding 150 µL of phosphate buffer to 350 µL of urine in 783 

5 mm NMR tubes, and the mixture was then briefly vortexed. The primary data acquisitions were 784 

made using the standard 1-D pulse program noesypr1d, [Recycle delay (RD)-90°-t1-90°-tm-90°- 785 

acquire free induction decay (FID)]6. 786 

 787 

Plasma samples. Plasma samples were primarily stored at -80 °C in heparinized lithium tubes, though 788 

a few early samples were in EDTA tubes. A 0.9 % (w/v) NaCl solution was prepared with 80 %:20 % 789 

(v/v) H2O:D2O, with 200 mg/L added NaN3 to inhibit microbial activity. After thawing plasma at room 790 

temperature, 350 μL aliquots were carefully extracted by micropipette to avoid any coagulates and 791 

placed in a 5 mm NMR tube, with 150 μL of isotonic 0.9 % saline solution “extender” then being 792 

added and gently vortexed briefly to make a final volume of 500 μL. 1H-NMR spectra of the plasma 793 

samples were acquired employing two 1-D NMR experiments. Acquisitions were made using a 794 

standard 1-D pulse program, noesypr1d, [Recycle delay (RD)-90°-t1-90°-tm-90°- acquire free induction 795 

decay (FID)], and also a Carr-Purcell-Meiboom-Gill (CPMG) [RD-90°-(τ-180°-τ) n-acquire FID] using 796 

the pulse program cpmgpr, where n = 100, the number of spin echoes and t= 400 μs, the CPMG 797 

delay time), yielding a 2 nτ spin-echo cycle for a total of 80 ns. The CPMG data were those used for 798 

all subsequent metabolic modeling of plasma, due to the useful partial suppression by CPMG of 799 

intensity from the ultra-broad lipoprotein signals present6. 800 

 801 

Plasma methylamine quantification by UPLC-MS/MS. Methylamines were quantified as previously 802 

described36,37. Plasma samples (10 uL) were spiked with 10 μL isotopically labelled Internal 803 

Standards (IS) (13C3/
15N-TMA, d9-TMAO and d9-choline in water; 1 mg/L, Sigma-Aldrich). TMA was 804 

derivatized to its ethoxy- analogue with the addition of 45 μL of derivatization solution (15g/L ethyl 2-805 

bromoacetate, 1% NH4OH in 1:1 acetonitrile/water). The reaction was completed after 30 min at room 806 

temperature. Protein/lipid precipitation solution (935 μL; 94% acetonitrile/5% water/1% formic acid) 807 

was added; samples were centrifuged for 15 min (4 °C, 20,000g) and were transferred to UPLC-808 

autosampler vials. 2 uL were injected to a Waters Acquity UPLC-Xevo TQ-S UPLC-MS/MS system 809 

equipped with an Acquity BEH HILIC (2.1 × 100 mm, 1.7 μm) chromatographic column. An isocratic 810 

elution was applied with 10 mM ammonium formate in 95:5 (v/v) acetronitrile:water for 6.3 min at 750 811 
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μL/min and 50 °C. Positive electrospray (ESI+) was used as ionization source. The monitored 812 

transitions were the following: for derivatized-TMA, +146->+118/59 m/z (23/27 V); for derivatised-813 
13C3/15N-TMA, +150->+63 m/z (27 V); for TMAO, +76->+59/58 m/z (12/13 V); for d9-TMAO, +85->+68 814 

m/z (18 V); for choline, +104->+45/60 m/z (22/20 V) and for d4-choline, +108->+60 m/z (20 V). 815 

 816 

Transcriptomics. Vials containing snap-frozen liver biopsy samples (one per patient) were sent on 817 

dry ice to MiltenyiBiotec (Germany), where RNA was extracted from samples using standard 818 

extraction protocols (Trizol). RNA was quality-checked [electropherograms, gel images and RNA 819 

integrity number (RIN)] using an Agilent 2100 Bioanalyzer platform (Agilent Technologies); RNA with 820 

a RIN of greater than six was of sufficient quality for gene expression profiling experiments59. For 821 

linear T7-based amplification of RNA, 100 ng of each total RNA sample was used. To produce Cy3-822 

labelled cRNA, the RNA was amplified and labeled using the Agilent Low Input Quick Amp Labeling 823 

Kit according to the manufacturer’s instructions. Amounts of cRNA and dye incorporated were 824 

measured using a spectrophotometer (ND-1000; NanoDrop Technologies). Hybridization of the 825 

Agilent Whole Human Genome Oligo Microarrays, 4×44K was done according to the Agilent 60-mer 826 

oligo microarray processing protocol using the Agilent Gene Expression Hybridization Kit. After two 827 

washes with Agilent Gene Expression Wash Buffer and one with acetonitrile, the fluorescence signals 828 

of the hybridized Agilent microarrays were detected using Agilent’s Microarray Scanner System. The 829 

image files were read using Agilent Feature Extraction Software to determine feature intensities (i.e. 830 

to produce the raw data). 831 

 832 

Microarray data were processed and normalized using R and the BioConductor package LIMMA 833 

(Linear Models for Microarray Data), with the modifications for single channel data implemented60. 834 

Quality of data was assessed using pseudo MA plots and box plots on raw data. Background 835 

correction was done (method = ‘normexp’, offset = 16, normexp.method=’rma’). Normalization of the 836 

green channel between arrays was done using ‘cyclicloess’ between pairs of arrays. Control and low-837 

expressed probes were filtered out of the data. Probes that were at least 10 % brighter than the 838 

negative controls on at least one array were kept. The batch effect among samples was removed 839 

using removeBatchEffect based on ‘Batch’60. Probes with which no genes (i.e. no Entrez ID) were 840 

associated were removed from the batch-corrected data. Probe data were averaged based on 841 
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association to a particular gene. The processed data submitted to ArrayExpress (accession E-MTAB-842 

4856) represent the normalized, batch-corrected data with average values for genes. Human KEGG 843 

pathways (KGML format) were downloaded from the KEGG PATHWAY database 844 

(http://www.genome.jp/kegg/pathway.html) on 29 April 2016 and used in SPIA61 and network 845 

(KEGGgraph, RBGL)62 analyses. Network analysis was performed using the genes significantly 846 

correlated with NAFLD and a set of 20 KEGG pathways involving at least one gene belonging to 847 

KEGG liver disease pathway: hsa04151 PI3K-Akt signaling pathway, hsa04145 Phagosome, 848 

hsa04010 MAPK signaling pathway, hsa04024 cAMP signaling pathway, hsa04141 Protein 849 

processing in endoplasmic reticulum, hsa03010 Ribosome, hsa04060 Cytokine-cytokine receptor 850 

interaction, hsa04120 Ubiquitin mediated proteolysis, hsa05206 MicroRNAs in cancer, hsa03050 851 

Proteasome, hsa04931 Insulin resistance, hsa04910 Insulin signaling pathway, hsa04932 Non-852 

alcoholic fatty liver disease (NAFLD), hsa04612 Antigen processing and presentation, hsa04620 Toll-853 

like receptor signaling pathway, hsa04621 NOD-like receptor signaling pathway, hsa05100 Bacterial 854 

invasion of epithelial cells, hsa00280 Valine, leucine and isoleucine degradation, hsa00010 855 

Glycolysis/Gluconeogenesis and hsa04923 Regulation of lipolysis in adipocytes. 856 

 857 

16S rRNA gene sequencing (mouse) 858 

Fecal and ileal content were extracted and sequenced by Vaiomer (Vaiomer SAS, Labège, France) 859 

as previously described63. Briefly, total DNA was extracted from fecal and ileal content using the using 860 

the QIAamp DNA Stool Mini Kit (QIAgen, Hilden, Germany) after two mechanical lysis steps in a bead 861 

beater (TissueLyser; Qiagen,); first 3 min at 30 Hz with 5 mm stain steel bead (Qiagen) then two 862 

times for 30 sec at 20 Hz with Mobio 0.1 mm glass beads (Qiagen). 863 

 864 

The quality and quantity of extracted nucleic acids were evaluated by gel electrophoresis (1% [w/w] 865 

agarose in Tris/borate/ethylenediaminetetraacetic acid 0.5×) and NanoDrop 2000 UV 866 

spectrophotometer (Thermo Scientific, Waltham, MA, USA). The V3-V4 hypervariable regions of the 867 

16S rDNA were amplified by two steps PCR using Vaiomer V2 primers  and sequenced using MiSeq 868 

Reagent Kit v3 (2x300 bp Paired-End Reads, Illumina, San Diego, CA, USA) as previously 869 

described63. The MiSeq sequences were then analysed using the bioinformatics pipeline established 870 

by Vaiomer using FROGS v1.4.0 64. Briefly, after demultiplexing barcoded Illumina paired reads, 871 
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single read sequences are cleaned and paired for each sample independently into longer fragments. 872 

Operational taxonomic units (OTU) are produced with via single-linkage clustering and taxonomic 873 

assignment is performed in order to determine community profiles (generated by Blast+ v2.2.30+ 874 

against the Silva v128 Parc databank restricted to the bacterial kingdom)64.  875 

 876 

Metagenomics (human). Shotgun sequencing data were generated for 56 patients. Faecal total DNA 877 

was extracted from frozen feces using the QIAamp DNA mini stool kit (Qiagen, Courtaboeuf, France), 878 

slightly modified by adding a bead- (≤106 µm diameter) beating step (6500 rpm, 3 x 30 s) as 879 

previously described51. Full details of the pipeline (SCAMP) used to process and analyse 880 

metagenomic data are available65. Pipeline scripts and instructions for obtaining the independently 881 

distributed programs and databases are available from http://www.imperial.ac.uk/bioinformatics-data-882 

science-group/resources/software. Briefly, raw sequence data were assessed for presence of adapter 883 

sequences and trimmed using Trim Galore! 884 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/trim_galore_User_Guide_v0.4.1.pdf) 885 

to remove low-quality bases (Q < 20) from the 3’ end of reads and discarding trimmed reads shorter 886 

than 50 nt. Reads were binned to higher taxa (human, parasites, fungi, protozoa/helminths, plants 887 

and prokaryotes, Supplementary Fig. 2), by alignment to reference databases (Supplementary 888 

Table 13) using the BWA MEM algorithm (https://arxiv.org/abs/1303.3997). Reads that did not map to 889 

any reference dataset were assumed to be prokaryotic in origin and subjected to further analysis. 890 

MetaPhlAn2.066,67 was used to identify the taxonomic composition of each sample and assess the 891 

abundance of prokaryotes within the metagenomes. Bacteroides ovatus, Bac. uniformis, Bac. 892 

vulgatus, Blautia obeum, [Ruminococcus] torques, Faecalibacterium prausnitzii and Subdoligranulum 893 

spp. were detected in all 56 samples. Partial correlations adjusted for age, BMI and country were 894 

done on taxa meeting a previously published criterion (median relative abundance of >0.01 % in one 895 

or more steatosis groups)8. Metagenome assembly was carried out in two rounds using IDBA-UD68, 896 

with an initial independent assembly carried out for each sample. Unassembled reads were then 897 

pooled and subjected to a second round of assembly in assembly to improve the representation of 898 

low-abundance sequences. Ab-initio gene prediction was carried out using MetaGeneMark69,70. The 899 

resulting predictions were translated, and the protein sequences clustered using the cluster-fast 900 

method of UCLUST71, with a 95% identity cut-off. Centroid sequences from each cluster were used to 901 
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form a non-redundant gene catalogue used for downstream analysis. Gene abundance in each 902 

sample was determined by alignment of the reads using BWA MEM against the gene catalogue, 903 

determining the number of reads mapped to each gene sequence and normalizing as described19. 904 

Functional annotation was carried out by mapping to the KEGG protein database (version 73.1, 905 

downloaded on 10 February 2015) using USEARCH71 with an e-value cutoff of 1x10-9. 906 

 907 

Determination of microbial gene richness (MGR). MGR was derived essentially as described 908 

previously8,19. Briefly, data were downsized to adjust for sequencing depth and technical variability by 909 

randomly selecting 7 million reads mapped to the merged gene catalogue (of 3,902,787 genes) for 910 

each sample and then computing the mean number of genes over 30 random drawings. This was 911 

done for all 56 patients for whom metagenomic data were available. Results are shown in 912 

Supplementary Table 5. 913 

 914 

Statistical analyses. Linear modeling was used to identifier confounders and modifiers within the 915 

clinical data, with missing values were replaced by group medians. Metagenomic, transcriptomic and 916 

metabolic profiling data were not normally distributed. On the basis of these analyses, partial 917 

Spearman rank-based correlations (pSRC) were used to assess associations among the various 918 

datasets, with BMI, age and country included as confounders in all analyses. All results were adjusted 919 

for multiple testing using the Benjamin and Hochberg procedure (p-FDR) unless otherwise stated. 920 

Data are presented as median ± sd. Multivariate matrix correlations were performed using to compare 921 

the information between tables as previously described72 using the modified Rv coefficient due to high 922 

collinearity in the data73. Predictive multivariate models were built using orthogonal partial least 923 

squares discriminant analysis (O-PLS-DA) as previously described74. The predictive power of O-PLS-924 

DA models was initially assessed using seven-fold cross-validation74, to derive Q2
Yhat goodness-of-925 

prediction parameters. The significance of the Q2
Yhat parameter was then derived by H0 permutation 926 

testing (10,000 iterations)75 and the predictive ability of the cross-validated O-PLS-DA models was 927 

evaluated using bootstrapped Receiver Operator Characteristic (ROC) curves. 928 

 929 

Accession numbers. The raw metagenomic sequence data (with human-associated reads removed) 930 

have been deposited under study accession number PRJEB14215 (secondary accession number 931 
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ERP015847). The raw 16S rRNA gene sequence data associated with the mouse FMT work have 932 

been deposited under study accession number PRJEB24891. 933 

  934 
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EXTENDED DATA TABLES 935 

Supplementary Table 1. Clinical information for 105 female bariatric-surgery patients whose liver 936 

biopsies were assessed for hepatic steatosis. 937 

 938 

Supplementary Table 2. Use of linear models to examine effects of confounders/modifiers on 939 

analyses (n = 105). 940 

 941 

Supplementary Table 3. Read count and binning data for metagenomic data for each patient (n = 942 

56). 943 

 944 

Supplementary Table 4. Number of metagenome genes found in IGC at different cut-off values (n = 945 

56). 946 

 947 

Supplementary Table 5. Gene counts (MGR) determined for each patient for whom metagenomic 948 

data were available (n = 56). 949 

 950 

Supplementary Table 6. Spearman’s ranked based partial correlations of liver steatosis with 951 

taxonomic abundance data (n = 56). 952 

 953 

Supplementary Table 7. Spearman’s ranked based partial correlation (taking into account age, BMI, 954 

cohort) of MGR with metabolic phenotyping data (n = 56). 955 

 956 

Supplementary Table 8. Methylamine quantifications by UPLC-MS/MS and Spearman's rank based 957 

partial correlation with steatosis (taking into account age, BMI and country; n = 60). 958 

 959 

Supplementary Table 9. Spearman’s ranked based partial correlations (taking into account BMI, age, 960 

cohort) of liver steatosis with hepatic transcriptome data for the patients for whom metagenomic data 961 

were available (n = 56). 962 

 963 

Supplementary Table 10. Spearman’s ranked based partial correlations (taking into account age, 964 
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BMI, country) of MGR with hepatic transcriptome data (n = 56). 965 

 966 

Supplementary Table 11. Evaluation of shared variance between metagenome and phenome 967 

through Rv matrix correlation coefficients (n = 56). 968 

 969 

Supplementary Table 12. Areas under the curve (AUC) for bootstrapped Receiver Operator 970 

Characteristic curves obtained from 7-fold cross-validated O-PLS-DA models for binary classification 971 

between no steatosis (grade 0), n = 10; steatosis (grades 1-3), n = 46. 972 

 973 

Supplementary Table 13. Source and composition of reference datasets used in processing of 974 

metagenomic data. 975 

 976 

  977 
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EXTENDED DATA FIGURES 978 

 979 

Supplementary Figure 1. Determination of distinction between confounders and modifiers, for 980 

inclusion of confounders in partial correlations (n = 105). a, Effect of country of recruitment on clinical 981 

data. Red, Spain; blue, Italy. b, Based on linear modeling BMI, country and age were found to be 982 

confounders. Significant differences between the data for the Spanish and Italian cohorts were 983 

determined using Student’s t test. c, Example of identification of modifiers rather than confounders, 984 

using glucose disposal rate (M) (mg/(kg/min)). Any change in slope of the line between both models 985 

indicates that M (mg/(kg/min)) is a mediator not a confounder and can, therefore, not be corrected for 986 

in partial correlations. d, Heatmap of partial Spearman rank-based correlations between clinical 987 

parameters adjusted for age, BMI and country. 988 

 989 

Supplementary Figure 2. Breakdown of binning of metagenomic DNA to different kingdoms (n = 56). 990 

a, Total DNA (reads). The majority of faecal DNA belonged to prokaryotes (archaea and bacteria). b, 991 

Plant DNA. Plant-associated DNA was predominated by dietary sources of plant material. c, 992 

Parasite/helminth DNA. Among the parasite/helminth DNA in samples, reads from Trichuristrichiura 993 

(human whipworm) predominated. 994 

 995 

Supplementary Figure 3. Additional analyses of taxonomic data generated using MetaPhlAn2.0 and 996 

the metagenomic sequence data (n = 56). a, Upper two rows: prokaryotic species significantly (p-FDR 997 

< 0.05) anti-correlated with liver steatosis; lower two rows, prokaryotic species significantly (p-FDR < 998 

0.05) correlated with liver steatosis. b, Species richness, measured using Chao1, was not significantly 999 

correlated with liver steatosis (p = 0.0750). 1000 

 1001 

Supplementary Figure 4. Heatmaps showing partial Spearman rank-based correlation of abundance 1002 

data at different taxonomic ranks with clinical data for the 56 patients whose metagenomes were 1003 

analyzed. +, p-FDR < 0.05. 1004 

 1005 

Supplementary Figure 5. Heatmaps showing partial Spearman rank-based correlation of 1006 

metagenome-derived KEGG pathway data with clinical data for the 56 patients whose metagenomes 1007 
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were analyzed. +, p-FDR < 0.05. 1008 

 1009 

Supplementary Figure 6. Heatmap showing partial Spearman rank-based correlation of urinary 1010 

metabolites with clinical data for the 56 patients included in the metagenomic study. +, p-FDR < 0.05. 1011 

Only significant annotated urinary metabolites are shown. 1012 

 1013 

Supplementary Figure 7. Heatmap showing partial Spearman rank-based correlation of plasma 1014 

metabolites with clinical data for the 56 patients included in the metagenomic study. +, p-FDR < 0.05. 1015 

Only significant annotated plasma metabolites are shown. 1016 

 1017 

Supplementary Figure 8. 1H-NMR-based Metabolome-Wide Association Study in urine and plasma 1018 

for MGR and steatosis. Red dots, significantly (p-FDR < 0.05) correlated with MGR or steatosis; blue 1019 

dots, significantly (p-FDR < 0.05) anti-correlated with MGR or steatosis; grey dots, not significantly 1020 

correlated with MGR or steatosis. 1021 

 1022 

Supplementary Figure 9. Heatmap showing partial Spearman rank-based correlation of plasma 1023 

metabolites with clinical data for the 102 patients within the FLORINASH cohort for whom plasma 1024 

metabolomes were available. +, p-FDR < 0.05. Only annotated plasma metabolites are shown. 1025 

 1026 

Supplementary Figure 10. Enrichr76,77 was used to identify KEGG pathways related to genes 1027 

significantly correlated (pSRC) with hepatic steatosis for 56 patients. Additional significant (p-FDR 1028 

<0.05) results are shown for the KEGG pathways associated with genes positively correlated with 1029 

steatosis. 1030 

 1031 

Supplementary Figure 11. Additional recipient mouse phenotypes predicted from donor 1032 

microbiota composition. a, Fabp4 gene expression in liver of recipient mice. b Plasma valine 1033 

measured by 1H-NMR. c-d, Permutation tests (n = 10,000) for goodness of fit (R2) and prediction (Q2) 1034 

parameters obtained from a seven-fold crossvalidated O-PLS regression model quantitatively 1035 

predicting recipient mouse phenomes from human donor microbiome composition: c, hepatic Fabp4, 1036 

d, plasma valine. Data obtained from FMT protocols performed with independent 3 patients with liver 1037 
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steatosis (grade 3, >66% steatosis) and 3 control patients (grade 0, <5% steatosis), n = 8 recipient 1038 

mice per donor. Data are mean ± s.e.m., * p < 0.05. 1039 

 1040 

Supplementary Figure 12. Link between mouse phenotypes and their microbiota composition. 1041 

Heatmap obtained Spearman’s ranked based correlations between mouse phenotypes and Family 1042 

taxonomical level derived from 16S rRNA gene amplicon analysis (p-FDR<0.05, n = 43). 1043 

 1044 

  1045 
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