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Abstract 

 Psychometric intelligence is closely related to working memory capacity. Here 

we aim to determine the associations of neural activation patterns during the N-back 

working memory paradigm with psychometric intelligence and working memory 

performance. We solved the statistical problems of previous studies using (1) a large 

cohort of 1235 young adults and (2) robust voxel-by-voxel permutation-based statistics 

at the whole-brain level. Many of the significant correlations were weak, and our findings 

were not consistent with those of previous studies. We observed that many of the 

significant correlations involved brain areas in the periphery or boundaries between the 

task-positive network (TPN) and task-negative network (TNN), suggesting that the 

expansion of the TPN or TNN is associated with greater cognitive ability. Lower activity 

in TPN and less task-induced deactivation (TID) in TNN were associated with greater 

cognitive ability. These findings indicate that subjects with greater cognitive ability have 

a lower brain response to task demand, consistent with the notion that TID in TNN reflects 

cognitive demand but partly inconsistent with the prevailing neural efficiency theory. One 

exception was the pre-supplementary motor area, which plays a key role in cognitive 

control and sequential processing. In this area, intelligent subjects demonstrated greater 

activity related to working memory, suggesting that the pre-supplementary motor area 

plays a unique role in the execution of working memory tasks in intelligent subjects. 
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Introduction 

Psychometric intelligence is an important individual difference, as it can 

predict performance in a wide range of cognitive, academic, and job-related tasks 

(Cattell 1971). One way to measure psychometric intelligence is to use standard IQ tests 

that assess cognitive ability across multiple tasks and domains (Cattell 1971). Another 

method is to use tests of non-verbal reasoning (called tests of general fluid intelligence) 

in which one has to solve novel non-verbal problems (Cattell 1971). Indeed, these two 

measures strongly correlate (Cattell 1971). Working memory is the limited capacity 

storage system involved in the maintenance and manipulation of information over short 

periods of time. The working memory span correlates with performance on a wide 

range of tasks (Baddeley 2003) and is also strongly associated with general intelligence 

(Engle et al. 1999a). The neural mechanisms underlying individual differences in 

psychometric and general intelligence have been subject to intensive investigation (Jung 

and Haier 2007). The networks commonly activated during externally directed 

attention-demanding tasks are the lateral prefrontal cortex (LPFC) and posterior parietal 

cortex (e.g., the inferior/superior parietal lobule), together known as the task-positive 

network (TPN). This network is activated during working memory performance and 

non-verbal reasoning tasks (Baddeley 2003). Alternatively, the task-negative network 

(TNN) [or default mode network (DMN)], which includes the medial prefrontal cortex 

(mPFC), posterior cingulate gyrus (PCC), precuneus, and temporo-parietal junction, is 

commonly deactivated during externally directed attention demanding tasks such as 

working memory performance and non-verbal reasoning tasks (Baddeley 2003). 

Many neuroimaging studies have investigated the neural mechanisms 

underlying individual differences in psychometric intelligence, including several 
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examining the association between psychometric intelligence and neural activation as 

measured by functional magnetic resonance imaging (fMRI) during the N-back working 

memory paradigm. However, several findings were inconsistent across these studies. 

Four such studies (Burgess et al. 2011; Gray et al. 2003; Tang et al. 2010; Waiter et al. 

2009) reported differences in positive and negative correlations between psychometric 

intelligence and neural activation in the prefrontal, parietal, and other brain regions 

(Table 1). Another study (Basten et al. 2013) using multiple types of working memory 

tasks (including updating tasks, similar to the N-back task) found that more intelligent 

subjects exhibited greater combined brain activity in the fronto–parieto–temporal areas, 

hippocampus, and cerebellum during these tasks (Basten et al. 2013). 

These discordant results could be due to any number of methodological 

differences (though this idea is speculation and not supported by existing theories). 

Moreover, these previous neuroimaging studies are limited by several unresolved 

statistical issues. First, several studies reporting significant correlations or that failed to 

find significant correlations did not correct for multiple comparisons in whole-brain 

analyses. For example, Gray et al. (2003) and Tang et al. (2010) used uncorrected P 

values. Alternatively, a study by Waiter et al. (2009) used the appropriate correction for 

multiple comparisons, specifically an SPM-based voxel-level correction for multiple 

comparison at the wholebrain level that was previously validated as an appropriate 

control for false positives (Eklund et al. 2016). This study found no significant 

association between general intelligence score and brain activity during the N-back 

working memory task. Basten et al. (2013) and Burgess et al. (2011) used the alphasim-

based cluster size threshold in their studies, which was shown to be inappropriate for 

such applications (Eklund et al. 2016). In the latter study, procedures defining ROIs for 
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analyses of general intelligence included identification of voxels with significant 

correlations between brain activity and task accuracy, which in turn correlates with 

general intelligence. This kind of ‘double-dipping’ procedure has been shown to be 

improper (Vul et al. 2009). 

The second problem with previous neuroimaging studies investigating the 

association between working memory capacity and general intelligence is small sample 

size (N = 100 at most). Recent studies have demonstrated several pitfalls of whole-brain 

analyses, especially whole-brain analyses of individual differences, thereby 

underscoring the importance of large cohorts. For example, recent studies have shown 

that the widely used cluster-based corrections for multiple comparisons at the whole-

brain level included in a variety of software packages are liberal and lead to substantial 

numbers of false positives (Eklund et al. 2016). In addition, tests have shown that the 

reliability of inter-individual brain activity is not high, and even established simple-task 

paradigms such as the N-back task have a reliability of approximately 0.5 for specific 

ROIs (Plichta et al. 2012). The use of conservative corrections for multiple 

comparisons, such as voxel-level corrections for multiple comparisons in Statistical 

Parametric Mapping software (Eklund et al. 2016), requires a large sample size to 

overcome this low reliability. Without a large cohort, the results of these analyses are 

likely to be noncomprehensive, and the strength of the results will be highly 

overestimated (Vul et al. 2009) or more likely to yield false positives (Button et al. 

2013). Some previous studies on general intelligence and working memory-related brain 

activity focused on ROIs (Tang et al. 2010). However, previous fMRI studies using a 

large cohort found that brain activity in areas that lie on the border between networks 

and some individuals show activation during the tasks while others show deactivation 
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during the tasks, are also robustly associated with performance or other psychometric 

measures (Mennes et al. 2010; Takeuchi et al. 2014a). In such cases, ROI analyses 

cannot properly identify the areas of significant associations between activity and 

cognitive performance. 

The third problem is the unresolved issue of whether the positive and negative 

correlations of performance with brain activity represent associations with activation or 

with deactivation. In other words, it is unclear whether a positive correlation between 

cognitive performance and brain activity represent the association between better 

cognitive performance and greater neural activation or less deactivation. Basten et al. 

(2013) observed that general intelligence positively correlated with brain activity on 

average, but suggested that more intelligent subjects exhibited greater activity in TPN 

with less deactivation in TNN. No other studies have addressed this issue and this 

question remains unresolved due to the aforementioned statistical problems.  

Despite the importance of general intelligence and working memory, there is 

still no comprehensive picture of the associations between brain activity during working 

memory and general intelligence. The purpose of this study is to address the three 

aforementioned problems and to identify brain regions in which working memory-

related brain activity is significantly associated with general intelligence and working 

memory span. This question is investigated at the whole-brain level using corrections 

for multiple comparisons shown to properly control for false positives.  

Through these investigations, we tested three major important hypotheses or 

questions in this field. The first question is whether performance and activity correlate 

in (a) TPN, (b) TNN, and (or) (c) border areas, as described above (here TPN and TNN 

are defined as the areas that are activated and deactivated during the externally directed 
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attention-demanding tasks used in the present study). The second hypothesis to be tested 

relates to neural efficiency theory, which is based on diverse neuroimaging results. 

The neural efficiency theory is based on observations that intelligent people generally 

show lower prefrontal activity during tasks of low-to-moderate difficulty or after 

sufficient practice to develop efficient strategies compared to less intelligent people 

(Neubauer and Fink 2009), while in more complex tasks, there is a positive correlation 

between brain activity and general intelligence (Neubauer and Fink 2009). A review of 

this topic highlighted the importance of parietal lobes in intelligence (Jung and Haier 

2007). Similarly, a review by Toffanin et al. (2007) suggested that highly intelligent 

subjects are more likely to recruit the parietal lobes. To study this hypothesis, we set 

relatively easy task conditions and allowed sufficient practice with instructions 

regarding strategies, and then tested whether intelligence negatively correlates with 

activity in the prefrontal areas and positively with parietal lobe activity. 

The third question addressed asks whether subjects with greater cognitive 

ability show more or less task-induced deactivation (TID) in TNN. According to the 

view that TID reflects more efficient attentional reallocation (Sambataro et al. 2008), 

subjects with greater fluid intelligence should show more TID. Consistent with this 

view is the finding that an elderly cohort exhibited both less TID in TNN and a 

substantial decline in fluid intelligence (Park et al. 2002). On the other hand, according 

to the view that TID reflects cognitive load (McKiernan et al. 2003), subjects with 

greater cognitive ability should show less TID. While the findings of Basten et al. 

(2013) are consistent with this view, such findings have not been reported in other 

studies. 
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Material and Methods 

Subjects 

The present study, which is a part of an ongoing project to investigate the associations 

among brain imaging, cognitive function, and aging, included relevant reliable cognitive 

measures and imaging data from 1235 healthy righthanded individuals (710 males and 

525 females). The mean age of the subjects was 20.8 years [standard deviation (SD) 

1.8 years, age range 18–27 years]. For detailed subject information, see Supplemental 

Methods. See Supplemental Discussion for the limitations conferred by this choice of 

cohort. Written informed consent was obtained from all participants or their guardians. 

This study was approved by the Ethics Committee of Tohoku University. 

 

Assessment of psychometric measures of general intelligence 

Raven’s Advanced Progressive Matrix (Raven 1998), a measure of non-verbal 

reasoning shown to be most strongly correlated with general intelligence (Raven 1998), 

was used to assess psychometric intelligence. This test contains 36 non-verbal items 

requiring fluid reasoning ability. Each item consists of a 3 × 3 matrix with a missing 

piece to be completed by selecting the best among eight alternatives. The score on this 

test (number of correct answers in 30 min) was used as an index of individual 

psychometric intelligence. The description of this test is reproduced from our previous 

study that used the same assessment methods (Takeuchi et al. 2015b). 

 

Assessment of working memory span 

Computerized forward and backward digit span tests were used to assess 

working memory span. Subjects were asked to view a progressively increasing number 
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of random digits visually presented at one digit per second on a computer screen. They 

were then asked to repeat the sequence by pressing numbered buttons on the screen in 

the presented order (digit span forward) or in the reverse order (digit span backward), 

starting from two digits. Three sequences were given at each level until the participants 

incorrectly responded to all three sequences, at which point the task was ended. The 

score of each test is equal to the sum of the number of digits correctly repeated in the 

digit span-forward and digit span-backward tasks. The following descriptions are 

reproduced from our previous study using the same method (Takeuchi et al. 2011a). 

Some studies have emphasized the difference between simple working memory 

span tasks, such as the letter span task, and complex working memory tasks, such as the 

reading span task, which is based on a greater association of the latter span tasks with 

other cognitive functions. In this study, we selected a simple span task (digit span tasks) 

instead of complex span tasks such as reading span. This choice was made based on the 

view that the difference in complexity is only important for the cognitive functions 

relevant to the operation task used in the complex working memory task (such as 

reading in reading span tasks) (Wechsler 1997) (although, this is a matter of 

controversy).  

Also, although some studies have stressed the difference between the span-

forward task and the span-backward task, others deny the importance of this difference 

(Wechsler 1997). We used a standard combined score of the span-forward and 

span-backward tasks based on the latter view. 

 

fMRI task.  

fMRI was used to map brain activity during cognitive tasks. The descriptions 



 12 

of this task are reproduced from our previous study using the same methods (Takeuchi 

et al. 2015a). The N-back task is a typical task for fMRI studies. We used the N-back 

task with conditions of 0-back (simple cognitive processes) and 2-back (working 

memory). We used a simple block design and the N-back working memory task 

(Callicott et al. 1999) to map brain activity during working memory. The N-back task 

was performed during fMRI scanning as described in our previous studies (Takeuchi et 

al. 2011a, c, 2014b). For more details, see Supplemental Methods. Sufficient practice 

was allowed, and we ascertained that subjects understood the tasks and the strategy of 

updating items to remember two by two during the 2-back task (Takeuchi et al. 2012). 

Several previous studies investigated brain activity related to the trial of lure during the 

N-back task (Burgess et al. 2011; Gray et al. 2003). A lure trial is the trial in which the 

stimuli which are correct answers in contingent trials appear and are therefore 

confusing. Since only four stimuli were used in this study, the whole block was regarded 

as related to the lures. Reaction time (RT) and accuracy on 0-back and 2-back tasks 

were used in analyses.  

We have previously conducted experiments using N-back tasks on a similar 

subject sample (e.g., Takeuchi et al. 2012) and the measurement parameters used here, 

including task difficulty, were chosen based on the results and experiences in such 

experiments. We believe that the task was not too easy for testing our hypotheses 

despite the almost 100% accuracy (see “Results”). First, in previous neuroimaging 

studies of brain activities during N-back tasks in psychiatric patients and controls, the 

ease of the tasks did not prevent clear group differences in brain activities. For example, 

Jansma et al. (2004) demonstrated brain activity differences between patients and 

controls during the 0-back task despite almost 100% accuracy in both groups. Further, 
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group differences were similar to those of the 1-back task, in which patients made some 

mistakes. The same pattern was observed in another study comparing brain activities 

during the 0-back task and 2-back task between controls and relatives of schizophrenics 

(Whitfield-Gabrieli et al. 2009). But in Jansma et al. (2004), during the more difficult 2-

back and 3-back tasks, such differences of activity became smaller in ROIs due to 

activity reduction in patients. Therefore, the assumption that more difficult N-back tasks 

can better reveal activity differences is not congruent with previous findings. Second, as 

described in the “Introduction”, neural efficiency theory itself hypothesizes differences 

of brain activity even when the task is easy (Neubauer and Fink 2009), and our study is 

testing predictions of the neural efficiency theory, so the tasks are supposed to be easy. 

 

Image acquisition.  

MRI data acquisition was conducted using a 3T Philips Achieva scanner. Forty-

two transaxial gradient-echo images (echo time, 30 ms; flip angle, 90°; slice thickness, 

3 mm; FOV, 192 mm; matrix, 64 × 64) covering the entire brain were acquired at a 

repetition time of 2.5 s using an echo-planar sequence. For the N-back session, 174 

functional volumes were obtained. Diffusion-weighted data were acquired using a spin-

echo echo-planar imaging (EPI) sequence (TR, 10293 ms; TE, 55 ms; FOV, 22.4 cm; 2 

× 2 × 2 mm3 voxels; 60 slices; SENSE reduction factor, 2; number of acquisitions, 1). 

The diffusion weighting was isotropically distributed along 32 directions (b value, 

1000 s/mm2). Additionally, using a spin-echo EPI sequence (TR, 10293 ms; TE, 55 ms; 

FOV, 22.4 cm; 2  2  2 mm3 voxels; 60 slices), images with no diffusion weighting (b 

value, 0 s/mm2) (b = 0 images) were acquired. From the collected images, fractional 

anisotropy (FA) and mean diffusivity (MD) maps were calculated (Takeuchi et al., 
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2011b) and used for preprocessing of BOLD images (see Supplemental Methods for 

details). The descriptions of this subsection are mostly reproduced from our previous 

study using the exact same methods (Takeuchi et al., 2015a). 

 

Preprocessing of imaging data 

Preprocessing and analysis of functional activation data were performed using SPM8 

implemented in Matlab. Here we provide a summary, while the full details and 

methodological considerations are provided in the Supplemental Methods. Before 

analysis, individual BOLD images were realigned and re-sliced to the mean BOLD 

image, which was then realigned to the mean b = 0 image as previously described 

(Takeuchi et al., 2011a). As the mean b = 0 image was aligned with the FA image and 

MD map, the BOLD image, b = 0 image, FA image, and MD map were all aligned. All 

images were normalized using a previously validated two-step “new segmentation” 

algorithm of diffusion images and the previously validated diffeomorphic anatomical 

registration through exponentiated lie algebra (DARTEL)-based registration (Takeuchi 

et al., 2013a). The voxel size of normalized BOLD images was 3  3  3 mm3. The 

descriptions in this subsection are mostly reproduced from our previous study using the 

exact same methods (Takeuchi et al., 2015a). 

 

First-level analysis of functional imaging data 

Individual-level statistical analyzes were performed using a general linear 

model. A design matrix was fitted to each participant with one regressor in each N-back 

task condition (0- or 2-back) using a standard hemodynamic response function. The cue 

phases of the N-back task were modeled in the same manner but were not analyzed 



 15 

further. Six parameters obtained by rigid body correction of head motion were regressed 

out by including these parameters in the regression model. The design matrix weighted 

each raw image according to its overall variability to reduce the impact of movement 

artifacts (Diedrichsen and Shadmehr, 2005). We removed low-frequency fluctuations 

using a high-pass filter with a cutoff value of 128 seconds. After estimation, beta images 

were smoothed (8 mm full-width at half-maximum) and taken to the second level of 

analysis. The descriptions in this subsection are mostly reproduced from our previous 

study using the exact same methods (Takeuchi et al., 2015a). 

 

Statistical analyzes of behavioral data 

The behavioral data were analyzed using SPSS 22.0 statistical software (SPSS Inc., 

Chicago, IL). In each analysis, P < 0.05 was considered statistically significant. 

Associations among RAPM score, digit span score, and RTs on the 0-back and 2-back 

tasks were analyzed using simple regression. 

 

Group-level whole-brain imaging data analysis.  

At the group level, we tested for relationships between individual cognitive ability and 

regional brain activity levels during the 0-back and 2-back tasks as well as relationships 

between individual cognitive ability and working memory-specific regional activity (2-

back –0-back contrast). In the whole-brain analysis, we used multiple linear regression 

to identify areas where the beta estimates of the contrast were significantly related to 

individual cognitive ability. The effects of sex, age, accuracy, and RTs of the 2-back task 

and 0-back task, and volume-level mean framewise displacement during the scan for the 

N-back task (Power et al., 2012) were corrected for by entering these parameters into 
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the multiple regression model as covariates. Each whole-brain analysis included only 

one cognitive ability of interest. Therefore, we performed six brain analyzes (3 contrasts 

[0-back task, 2-back task, and 2-back–0-back] × 2 tasks [RAPM and digit span] = 6). 

A multiple comparison correction was performed using the T score with 

randomized (5,000 permutations) nonparametric testing using the toolbox 

(http://dbm.neuro.uni-jena.de/tfce/). We applied a voxel threshold of FWE corrected at 

P < 0.05. 

Accuracy and RT were adjusted in the analyzes. While this is considered the 

gold standard for such analyzes, we are aware that some of these adjustments may 

regress out some relevant components of general intelligence and working memory 

capacity (such as cognitive speed). However, without this adjustment, it is unclear 

whether the observed differences in neural activity simply reflect behavioral differences 

themselves. 

 

Results 

Basic psychological data 

Mean (±SD) age, RAPM score, digit span score, accuracies and RTs of the 0-

back and 2-back tasks, and volume-wise framewise displacement are presented in 

Supplemental Table 1. 

Response accuracies on the 2-back and 0-back tasks showed ceiling effects 

(>99.0% correct on average). Significant associations were observed among greater 

RAPM score, greater digit span score, lower 0-back task RT, and lower 2-back task RT 

(Table 2). The correlation between the 0-back task RT and 2-back task RT was strong (r 

= 0.612), while the other correlations were weak (r < 0.3). Ceiling effects are not likely 

http://dbm.neuro.uni-jena.de/tfce/
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to diminish the associations between brain activity and cognitive abilities because even 

brain activities during easy tasks can show associations with cognitive abilities, a 

finding observed in this study as well. 

 Nonetheless, the weak association between working memory capacity and 

general intelligence (RAPM score) might still reflect the choice of tasks. However, in 

college cohorts, this level of correlation between working memory performance and 

general intelligence as measured by non-verbal reasoning (RAPM score) is commonly 

observed even when a complex working memory span task is used to measure working 

memory capacity (Engle et al., 1999b). 

 

Correlation between brain activity during the N-back task and performance on a 

general intelligence task 

 After controlling for confounding variables, multiple regression analysis 

revealed that the RAPM score was significantly and positively correlated with brain 

activity level during the 0-back task (0-back > rest) in parts of the superior frontal gyrus 

defined by automated anatomical labeling (AAL) (Tzourio-Mazoyer et al., 2002) [the 

right rostrolateral prefrontal cortex (RLPFC)], which is deactivated during the 0-back 

task (Fig 1a. Table 3). There was a significant negative correlation of RAPM score with 

brain activity during the 0-back task in areas spread across the right inferior parietal 

lobule, right supramarginal gyrus, right postcentral gyrus, and lateral areas of the 

superior frontal gyrus in AAL (right premotor cortex), which are activated during the 0-

back task (Fig 1b,c, Table 3). 

 After controlling for confounding variables, multiple regression analysis 

revealed a significant positive correlation between RAPM score and brain activity 
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during the 2-back task (2-back > rest) in areas spread across the precuneus and cuneus 

(AAL labels), areas deactivated during the 2-back task (Fig. 2a, Table 3). There was also 

a significant positive correlation in part of the supplementary motor area (AAL label), 

specifically in the pre-supplementary motor area (the region rostral to the vertical plane 

through the anterior commissure) ((Picard and Strick, 1996; Zilles et al., 1995), which 

was activated during the 2-back task (Fig. 2b, Table 3). Finally, there was a significant 

positive correlation in an area spread across the superior frontal medial area and lateral 

area of the superior frontal gyrus (AAL labels) (the dorsal part of the mPFC), which 

was deactivated during the 2-back task (Fig. 2c, Table 3). A significant negative 

correlation was observed between the RAPM score and brain activity during the 2-back 

task in areas spread across the right inferior parietal lobule, right supramarginal gyrus, 

and right postcentral gyrus (AAL labels), which were activated during the 2-back task 

(Fig. 2d) (Table 3). 

 After controlling for confounding variables, multiple regression analysis 

revealed a significant positive correlation between RAPM score and brain activity 

specific to working memory (2-back–0-back) in an area mainly within the right 

hippocampus, but also covering the right parahippocampal gyrus and right amygdala 

(AAL labels), which were deactivated (2-back–0-back), and the supplementary motor 

area (AAL label) or the pre-supplementary motor area, which was activated (2-back–0-

back) (Fig. 3a,b) (Table 3). 

 

Correlation between brain activity during the N-back task and a working memory span 

task 

After controlling for confounding variables, multiple regression analysis 
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revealed a significant positive correlation between digit span score and brain activity 

during the 0-back task in an area within the medial part of the superior frontal gyrus 

(AAL label) (the dorsomedial prefrontal cortex), which was neither activated nor 

deactivated during the 0-back task (Fig 4) (Table 4). 

There were no significant associations between digit span score and brain 

activity during the 2-back task. 

After controlling for confounding variables, multiple regression analysis 

revealed a significant positive correlation between digit span score and brain activity 

specific to working memory (2-back–0-back) in an area spread across the right 

hippocampus and the right parahippocampal gyrus (AAL labels), which was deactivated 

in this contrast (Fig. 5a) (Table 4), areas of the left postcentral gyrus, which were 

deactivated in this contrast (Fig. 5b) (Table 4), the right Rolandic operculum, which was 

deactivated in this contrast (Fig. 5c) (Table 4), and the left parahippocampal gyrus, 

which was deactivated (Fig. 5a) (Table 4). 

 

Discussion 

The present study newly reveals associations between regional brain activity 

during working memory and general intelligence in a very large cohort (N > 1200) 

using robust permutation-based voxel-by-voxel statistics at the whole-brain level to 

prevent the problems described in the “Introduction”. We tested neural efficiency theory 

and two theories involving individual differences of TID in TNN, and investigated the 

neural locations of significant correlations (positive or negative correlations, TPN, 

TNN, border areas). 

The simple correlation coefficients between beta estimates of brain activity in 
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areas of significance and RAPM score or digit span were relatively small (around 0.1–

0.16) in the present study. Further, when voxel-level correction for multiple 

comparisons by permutation was used, the areas of significance were limited despite the 

huge sample size. These small correlations may reflect a relative weak association 

between task-dependent brain activation pattern and cognitive ability, as more 

widespread associations were observed when an uncorrected threshold P < 0.001 was 

applied. Therefore, this pattern of findings may have same roots (the effect is small). 

Relatively weak correlations (r < 0.2) between individual cognitive differences and 

neuroimaging measures are actually common in studies using huge samples of young 

normal adults (i.e., N > several hundred) regardless of the specific imaging measures 

(Magistro et al. 2015; Schilling et al. 2012; Takeuchi et al. 2015c, 2017). In fact, we are 

not aware of any exceptions. The large effect sizes and correlation coefficients for peak 

voxels in significant areas yielded by whole-brain analyses on small samples do not 

indicate true effect sizes or correlation strengths (Murphy et al. 2012). Rather, in whole-

brain analyses, especially those on small samples, the effect sizes were overestimated 

due to overfitting (Vul et al. 2009). In addition, due to publication bias, and stringent 

thresholds, the studies of whole-brain analyses with small sample size cannot report the 

significant findings of small effect size. Even when single studies show remarkable 

effect size (especially under low statistical power), the effect size reported in meta-

analyses can be very small (e.g., Murphy et al. 2012). Adding these up, we cannot 

presume the large effect size in these kinds of studies. 

From the observed weak correlations, we believe that it is critical to use 

relatively large sample sizes for this kind of study and that such large samples increase 

the reliability of the results. To detect a small effect such as r = 0.1 reliably (e.g., α = 
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0.001; power = 50%), a sample size of approximately 1080 subjects is required. 

Therefore, the present results validate the necessity for a large sample size. Statistical 

power is typically very low in the field of neuroscience (Button et al. 2013), which leads 

not only to overestimates of effect size but also low reproducibility. Indeed, the general 

replicability of combined neuroimaging/psychometric studies was recently questioned 

(Eklund et al. 2016). Therefore, in addition to novelty, increased reliability, which 

requires larger sample size, is critical. 

Several factors may account for the weak correlation coefficients reported in 

the present study. It is important to note, however, that weak correlation coefficients do 

not necessarily indicate that the associations between brain activities that fMRI is 

expected to measure and cognitive functions are weak. Rather, factors such as low 

reliability of fMRI measures during N-back tasks (around 0.5 according to Plichta  

et al. 2012), differences in subject condition, image preprocessing inaccuracies, and 

random factors such as temperature, noise in the scanner, or the subject’s specific 

thoughts during rest may undermine the strengths of the associations between cognitive 

function and fMRI measures. Regardless, the weak correlations suggest limitations of 

fMRI for purposes such as predicting an individual’s cognitive capacity. 

Many of the significant associations we observed between cognitive function 

and brain activities were at the border between areas activated or deactivated during the 

task or at the periphery of such areas (i.e., areas distant from those where most subjects 

showed peak activation or deactivation during the task). The findings indicate in many 

of the cases, subjects with greater cognitive abilities have more/less additive peripheral 

areas of the functional areas or networks in the border areas of different functional 

network areas, rather than greater/lesser strength of the functional activation or 
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deactivation among the centers of the nodes in each functional network. This pattern is 

congruent with our previous findings of associations between resting-state functional 

connectivity and cognitive differences in large samples (Takeuchi et al. 2013b, 2014a) 

and may thus be a robust feature of associations between cognitive differences and 

functional imaging indices. A previous study reported similar brain map pattern, with 

concentrations of correlations in border areas between TPN and TNN (Basten et al. 

2013). Whether these areas are activated or deactivated during certain tasks is likely to 

be unaffected by variables such as mood, thoughts, and actions during the task and noise 

during the scan. Thus, these measures are likely stable and sensitive. The concentrations 

of the associations in these kinds of peripheral regions may be another reason why 

significant associations were limited to small areas. 

The predictions based on neural efficiency theory (Neubauer and Fink 2009) 

that people with high intelligence will exhibit lower prefrontal activity during tasks of 

low to moderate difficulty and stronger dependence on the parietal lobe were not 

confirmed by the present study. Both the 0-back and 2-back tasks were easy enough as 

evidenced by high (near perfect) response accuracy, primarily due to careful explanation 

of the task and practice time allowed prior to scanning. The correlations between 

cognitive function and brain activity under higher load (0-back > rest, 2-back > rest, 2-

back–0- back) were mostly positive in the prefrontal cortex (Figs. 1a, 2b, 3b, 4) except 

for right premotor cortex (Fig. 1c). Further, the correlations between cognitive function 

and brain activity under higher load (0-back > rest, 2-back > rest, 2-back–0- back) were 

mostly negative in the parietal lobe (Figs. 1b, 2d) except for the precuneus (Fig. 2a). 

Therefore, incongruent with predictions of the neural efficiency hypothesis, both 

positive and negative correlations were observed in the frontal and parietal cortices. As 
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this theory was devised using inductive reasoning, the principles of the theory may 

require revision as more experimental evidence obtained by robust statistics is being 

accumulated. 

The present results are congruent with the hypothesis that deactivation in the 

TNN reflects the cognitive load. Positive associations between cognitive function and 

brain activity associated with higher load (0-back > rest, 2-back > rest, 2-back-0-back) 

were observed in the precuneus and dorsal part of the mPFC, key nodes of the TNN 

(DMN) (Buckner et al., 2008), as well as in areas deactivated during the tasks such as 

the hippocampus, contingent regions and right RLPFC (Fig. 1). The degree of 

deactivation in the TNN (DMN) is thought to reflect the cognitive load (McKiernan et 

al., 2003) or the degree of concentration applied during the task (Sambataro et al., 

2008). The present results are consistent with a previous study showing that subjects 

with higher IQ exhibit less deactivation during cognitive tasks (Basten et al., 2013). 

Thus, the present results suggest that subjects with greater cognitive ability face a lower 

cognitive load during cognitive tasks and exhibit relatively higher brain activity (less 

deactivation) in these regions. 

With the exception of the pre-supplementary motor area (Figs. 2b, 3b) and 

border areas between the networks (Fig. 4), subjects with greater general intelligence or 

working memory span showed lower levels of activation and deactivation (Figs. 1, 2, 3, 

5). In other words, subjects with greater cognitive ability exhibited lower activity 

increasesor less deactivation as task demand increased. Therefore, the present results are 

not in perfect accord with the neural efficiency theory, which suggests that subjects with 

greater intelligence should exhibit lower brain activation in the prefrontal area (and high 

activation in the parietal area). However, the notion that subjects with greater 
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intelligence execute tasks more efficiently and face less cognitive demand appears 

consistent with our findings.Alternatively, subjects with greater intelligence may 

maintain greater brain activity during rest. Additional studies are needed to determine 

whether this pattern appears when using other functional imaging paradigms. 

We observed that working memory-related brain activity (during the 2-back 

task) and working memory-specific brain activity (2-back–0-back contrast) in the pre-

supplementary motor area correlated significantly and positively with general 

intelligence. This area is continuously activated during working memory tasks, with 

greater activation as the memory load increases (Owen et al. 2005). The pre-

supplementary motor area is preferentially involved in higher-level planning processes 

and more abstract aspects of cognition, while the supplementary motor area proper (the 

more caudal region) is strictly associated with motor execution (Cona and Semenza 

2017; Picard and Strick 1996; Seitz et al. 2006). The pre-supplementary motor area 

contributes to sequence operations in a variety of cognitive domains (Cona and 

Semenza 2017), aspects of task switching, and changing of plans in cognitive control 

(Nachev et al. 2008). All of these processes are likely to be involved in the effective 

execution of N-back tasks, which require remembering sequential information and 

continuous updating. Intelligent subjects may recruit this area and activate these 

cognitive processes, thereby reducing cognitive load. 

The present study newly reveals the associations among regional brain activity 

during working memory tasks, general intelligence, and working memory span using 

rigorous statistics and a large cohort, thereby solving statistical problems that have 

limited the reliability of previous studies. Many findings of the current study were not 

observed in previous studies. Many of the significant associations between cognitive 
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functions and brain activity were found in the border regions between areas activated or 

deactivated during the tasks or at the periphery of such areas, suggesting the that 

expansion of activated or deactivated areas is associated with higher cognitive function. 

The strengths of all correlations were weak. Further, many of our findings were not 

predicted by the neural efficiency theory well. We observed that less activity in TPN 

and less TID in TNN were associated with greater cognitive ability, indicating that 

subjects with greater cognitive ability show a smaller change in brain activity or 

deactivation under higher task demand. This finding is consistent with the idea that TID 

reflects the cognitive demand. One exception was the pre-supplementary motor area, 

which plays a key role in cognitive control and sequential processing. In this area, 

intelligent subjects showed greater activity related to working memory, suggesting that 

the this area plays a unique role in the execution of working memory performance in 

intelligent subjects. 
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Table 1. Summary of documented associations between general intelligence and brain activity during N-back tasks 

Study Psychological 

measure 

Subjects Activity measure Brain regions 

Burgess et 

al. (2011) 

A factor from 

RAPM and 

CCFT 

102 healthy young 

adults (58 females; 

mean age, 22.21 

years; SD, 4.78 years) 

Lure-related 

activities in the 3-

back task of faces 

and words 

ROIx: Positive correlations in bilateral DLPFC, mPFC, bilateral median and 

lateral parietal areas, left fusiform gyrus, and bilateral parahippocampal gyrus 

Gray et al. 

(2003) 

RAPM score  60 healthy adults (31 

females; age, 18–37 

years) 

Lure-related 

activities in the 3- 

back task of faces 

and words 

Uncorrected whole-brain analyzes: bilateral positive correlations in LPFC, 

dorsal ACC, right cerebellum, supramarginal gyrus, bilateral superior temporal 

gyrus 

Tang et al. 

(2010) 

General 

intelligence 

calculated from 

average of z 

scores of eight 

tests 

40 healthy adults (19 

females; mean age, 

26.6 years; SD, 4.60 

in males, 4.90 in 

females) 

1,2,3-back vs. 0-

back in the letter N-

back task 

ROI: negative correlations in the right parietal cortex 

Waiter et 

al. (2009) 

RPMy 52 of 79 older adults 

(28 females; age, 69–

70 years) 

2-back–0-back in the 

matching type letter 

N-back task 

No significant results 

CCFT, Cattell Culture Faire test; ROI, Region of interest (for analysis); RAPM, Raven’s Advanced Progressive Matrices; RPM, Raven’s 

Progressive Matrices 

XNote: ROIs in this study included identification of voxels with a significant correlation between brain activity and task accuracy. This 

procedure has been shown to be improper for ROI selection to identify neural correlates of psychological measures that correlate with 

task accuracy (Vul et al., 2009). 
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Table 2. Associations among RAPM score, digit span score, and reaction times (RTs) of the 0-back and 2-back tasks (simple correlation 

coefficient, P-value) 

 RAPM score Digit span score 0-back RT 2-back RT 

RAPM score - - - - 

Digit span score 0.279, 2.05×10−23 - - - 

0-back RT −0.120, 2.50×10−5 −0.179, 2.34×10−10 - - 

2-back RT −0.194, 6.57×10−12 −0.178, 3.22×10−10 0.612, 1.02×10−127 - 
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Table 3. Brain regions with significant correlations between brain activity and RAPM score 

Included gray matter areas* (number of significant 

voxels in the left and right sides of each anatomical 

area) x y z T score  

Corrected 

P-value 

(FWE) 

Cluster 

size 

(voxels) 

r** 

Positive correlation between 0-back activity and RAPM 

score       

 

 Superior frontal gyrus (other parts***) (R:4) 24 69 9 4.37 0.028 5 0.123 

Negative correlation between 0-back activity and RAPM 

score       

 

 Inferior parietal lobule (R:4)/Postcentral gyrus 

(R:13)/Supramarginal gyrus (R:9) 36 −36 45 4.84 0.006 26 

-0.134 

 Superior frontal gyrus (other parts****) (R:1) 27 −12 57 4.36 0.035 1 -0.110 

Positive correlation between 2-back activity and RAPM 

score       

 

 Cuneus (R:10)/Precuneus (L:1, R:16) 6 −72 30 5.05 0.003 27 0.140 
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 Pre-supplemental motor area (R:12) 9 9 69 4.74 0.008 12 0.123 

 Superior frontal gyrus (medial part) (R:1)/Superior 

frontal gyrus (other parts****) (R:1) 12 42 54 4.38 0.036 3 

0.122 

Negative correlation between 2-back activity and RAPM 

score       

 

 Inferior parietal lobule (R:7)/Postcentral gyrus 

(R:14)/Supramarginal gyrus (R:5) 36 −39 48 4.83 0.008 26 

-0.150 

Positive correlation between (2-back–0-back) activity 

and RAPM score       

 

 Amygdala (R:1)/Hippocampus 

(R:11)/Parahippocampal gyrus (R:3) 18 −6 12 4.56 0.018 16 

0.159 

 Pre-supplemental motor area (R:1) 6 6 69 4.29 0.043 1 0.099 

 *Labelings of the anatomical regions of gray matter were based on the WFU PickAtlas Tool 

(http://www.fmri.wfubmc.edu/cms/software#PickAtlas/) (Maldjian et al., 2004; Maldjian et al., 2003) and on the PickAtlas automated 

anatomical labeling atlas option (Tzourio-Mazoyer et al., 2002). In this atlas, temporal pole areas and some other areas include all 

http://www.fmri.wfubmc.edu/cms/software#PickAtlas/
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subregions. 

** Simple correlation coefficients between mean beta estimates of significant clusters and RAPM score. Note that due to overfitting in 

whole-brain analyzes (Vul et al., 2009), the correlation coefficients of significant areas are overestimated to a degree depending on the 

sample size and number of comparisons. 

*** This area is classified as the supplementary motor area in this atlas. However, as noted in the Results section, it has been pointed out 

this area specifically corresponds to pre-supplementary motor area ((Picard and Strick, 1996; Zilles et al., 1995), therefore, we called so 

in this table, too.  

****Areas of the superior frontal gyrus other than the medial, orbital, and medial-orbital parts. 
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Table 4. Brain regions with significant correlations between brain activity and digit span score 

Included gray matter areas* (number of significant 

voxels in the left and right sides of each anatomical area) x y z T score  

Corrected 

P-value 

(FWE) 

Cluster 

size 

(voxel) 

r** 

Positive correlation between 0-back activity and digit 

span score       

 

 Superior frontal gyrus (medial part) (L:2, R:11) 6 30 51 4.63 0.011 13 0.141 

Positive correlation between (2-back–0-back) activity 

and digit span score       

 

 Hippocampus (R:7)/Parahippocampal gyrus (R:5) 24 −15 −21 4.81 0.007 13 0.159 

Postcentral gyrus (L:15) −30 −30 75 4.80 0.008 17 0.121 

 Rolandic operculum (R:8) 51 −12 15 4.58 0.017 8 0.139 

 Parahippocampal gyrus (L:1) −18 −3 −24 4.36 0.040 1 0.161 

 *Labelings of the anatomical regions of gray matter were based on the WFU PickAtlas Tool 

(http://www.fmri.wfubmc.edu/cms/software#PickAtlas/) (Maldjian et al., 2004; Maldjian et al., 2003) and on the PickAtlas automated 

http://www.fmri.wfubmc.edu/cms/software#PickAtlas/
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anatomical labeling atlas option (Tzourio-Mazoyer et al., 2002). In this atlas, temporal pole areas and some other areas include all 

subregions. 

** Simple correlation coefficients between mean beta estimates of the significant clusters and digit score. Note that due to overfitting in 

the whole-brain analyzes (Vul et al., 2009), the correlation coefficients of significant areas are overestimated to a degree depending on 

the sample size and number of comparisons. 
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Figure  
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 

 

 

 

 

 

 

 



 46 

Figure legends 

Fig. 1 Associations between regional neural activity during a simple cognitive task and 

performance of a general intelligence task. RAPM score and neural activity during the 

0-back task showed a significant a positive correlation in the right RLPFC, b negative 

correlation in the right supramarginal gyrus, and c negative correlation in the right 

premotor cortex. In a–c, the colored bars indicate T scores. All results are overlaid on a 

“single-subject T1” SPM8 image. The scatter plots express the associations between 

psychometric scores and mean beta estimates of significant clusters. Upper left: areas of 

significant correlations. In the left column, the results were obtained using a threshold 

of P < 0.05, corrected for multiple comparisons based on 5000 permutations using the T 

score (subsequently termed ‘corrected’). In the right column, the results were obtained 

using a threshold of P < 0.001, uncorrected. Lower left: scatter plot of the association 

between RAPM score and mean beta estimates in the significant clusters. Upper right: 

areas of significant activation during the 0-back task. The results shown were obtained 

using a threshold of P < 0.05, corrected. Lower right: areas of significant deactivation 

during the 0-back task. Results were obtained using a threshold of P < 0.05, corrected 

 

Fig. 2 Association between brain activity during the working memory task and general 

intelligence task score. RAPM score and brain activity during the 2-back task showed a 

significant a positive correlation in the precuneus; b positive correlation in the pre-

supplementary motor area; c positive correlation in the dorsomedial prefrontal cortex, 

and d negative correlation in the right intraparietal sulcus. In a–d, the colored bars 

indicate T scores. All results are overlaid on a ‘single-subject T1’ SPM8 image. The 

scatter plots express the associations between psychometric scores and mean beta 
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estimates of significant clusters. Upper left: areas of significant correlations. In the 

left column, the results were obtained using a threshold of P < 0.05, corrected. In the 

right column, the results shown were obtained using a threshold of P < 0.001, 

uncorrected. Lower left: scatter plot of the association between RAPM score and mean 

beta estimates in the significant clusters. Upper right: areas of significant activation 

during the 2-back task. Results were obtained using a threshold of P < 0.05, corrected. 

Lower right: areas of significant deactivation during the 2-back task. Results were 

obtained using a threshold of P < 0.05, corrected 

 

Fig. 3 Associations between working memory-specific activity and performance of a 

general intelligence task. The RAPM score and working memory-specific brain activity 

(2-back task– 0-back task contrast) showed a significant a positive correlation in the 

right hippocampus and b positive correlation in the right pre-supplementary motor 

area. In a and b, colored bars represent T scores. Results are overlaid on a “single-

subject T1” SPM8 image. The scatter plots expressed the associations between the 

psychometric scores and mean beta estimates of significant clusters. Upper left: areas of 

significant correlations. In the left column, the results were obtained using a threshold 

of P < 0.05, corrected. In the right column, the results were obtained using a threshold 

of P < 0.001, uncorrected. Lower left: scatter plot of the association between RAPM 

score and mean beta estimates in the significant clusters. Upper right: areas of 

significant activation for the 2-back–0-back contrast. Results were obtained using a 

threshold of P < 0.05, corrected. Lower right: areas of significant deactivation for the 

2-back–0-back contrast. Results were obtained using a threshold of P < 0.05, corrected 
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Fig. 4 Association between activity during a simple cognitive task and performance of a 

working memory span task. Digit span score and neural activity during the 0-back task 

showed a significant positive correlation in the dorsomedial prefrontal cortex. Colored 

bars represent T scores. Results are overlaid on a “single-subject T1” SPM8 image. The 

scatter plots express the associations between the psychometric scores and mean beta 

estimates of significant clusters. Upper left: areas of significant correlations. In the left 

column, results were obtained using a threshold of P < 0.05, corrected. In the right 

column, the results were obtained using a threshold of P < 0.001, uncorrected. Lower 

left: scatter plot of the association between digit span score and mean beta estimates in 

the significant clusters. Upper right: areas of significant activation during the 0-back 

task. Results were obtained using a threshold of P < 0.05, corrected. Lower right: areas 

of significant deactivation during the 0-back task. Results were obtained using a 

threshold of P < 0.05, corrected  

 

Fig. 5 Associations between working memory-specific brain activity and performance 

of a working memory span task. The digit span score and working memory-specific 

brain activity (2-back task– 0-back task) showed significant positive correlations in a 

right hippocampus, b right postcentral gyrus, c right Rolandic operculum, and d left 

hippocampus. In a–d, colored bars represent T scores. All results are overlaid on a 

“single-subject T1” SPM8 image. The scatter plots express the associations between the 

psychometric scores and mean beta estimates of significant clusters. Upper left: areas of 

significant correlations. In the left column, the results were obtained using a threshold 

of P < 0.05, corrected. In the right column, the results were obtained using a threshold 

of P < 0.001, uncorrected. Lower left: scatter plot of the association between digit span 
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score and mean beta estimates in the significant clusters. Upper right: areas of 

significant activation for the 2-back–0-back contrast. Results were obtained using a 

threshold of P < 0.05, corrected. Lower right: areas of significant deactivation for the 2-

back–0-back contrast. Results were obtained using a threshold of P < 0.05, corrected 
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Supplemental Online Material 

Supplemental Methods 

Subjects. The present study, which is part of an ongoing project to investigate the association between 

brain imaging, cognitive function, and aging, included relevant cognitive measures and imaging data 

from 1235 healthy, right-handed individuals (710 men and 525 women). The mean age (± standard 

deviation, SD) of the subjects was 20.8 ± 1.8 years (range, 18–27 years). Some of the subjects who 

participated in this study also became subjects in our intervention studies (psychological data and 

imaging data recorded before the intervention was used in this study, so this point is not supposed to 

affect the results) (Takeuchi et al., 2014). Psychological tests and MRI scans not described in this study 

were performed together with those described in this study. All subjects were university students, 

postgraduates, or university graduates of less than one year’s standing. All subjects had normal vision 

and none had a history of neurological or psychiatric illness. Handedness was evaluated using the 

Edinburgh Handedness Inventory (Oldfield, 1971). Written informed consent was obtained from each 

subject. For nonadult subjects, written informed consent was obtained from their parents or guardians. 

This study was approved by the Ethics Committee of Tohoku University. 

Subjects were instructed to get sufficient sleep, keep fit, eat a sufficient breakfast, and 

consume their normal amounts of caffeinated foods and drinks on the day of cognitive tests and MRI 

scans. In addition, subjects were instructed to avoid alcohol the night before the assessment. 

The descriptions in this subsection are mostly reproduced from another study within the same project 

using the exactly same methods (Takeuchi et al., 2015a). 

Details of N-back fMRI task. Participants received instructions and practiced the tasks before entering 

the scanner. During scanning, they viewed stimuli on a screen via a mirror mounted on a head coil. 

Visual stimuli were presented using Presentation software (Neurobehavioral Systems, Inc., Albany, CA, 

USA). A fiber-optic light-sensitive key press interface with a button box was used to record participants’ 

task responses. 

Two conditions were used: 0-back and 2-back. Each condition had six blocks, and all N-back tasks were 

performed in one session. Subjects were instructed to recall visually presented stimuli (four Japanese 
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vowels) presented “n” letters before that currently presented (e.g., two letters previously for the 2-back 

task and the currently presented letter for the 0-back task). Two buttons were used during the 0-back 

task, and subjects were asked to push the first button when defined target stimuli were presented and 

the second button when non-target stimuli were presented. During the 2-back task, subjects were asked 

to push the first button when the currently presented stimulus and the stimulus presented two letters 

previously were the same and to push the second button when the currently presented stimulus and the 

stimulus presented two letters previously were different. Since the four stimuli were presented randomly, 

the ratio of matched trials to unmatched trials was 1:3 on average. Our version of the N-back task was 

designed to require individuals to push buttons continuously during the task period. The task level of 

the memory load was shown above the stimuli for 2 s before the task started, and remained visible during 

the task period (cue phase) and remained unchanged during the task period. Each letter was presented 

for 0.5 s, and a fixation cross was presented for 1.5 s between each item. Each block consisted of 10 

stimuli. Thus, each block lasted 20 s. A baseline fixation cross was presented for 13 s between the last 

task item and the presentation of the next task level of the memory load (start of the cue phas). Thus, 

the rest period lasted for 15 s (13 s + 2 s). There were six blocks for each 2- and 0-back condition. 

Preprocessing of imaging data 

Preprocessing and analysis of functional activation data were performed using SPM8 

implemented in Matlab. The following descriptions are reproduced from our previous study using the 

same preprocessing procedure (Takeuchi et al., 2015b). Before analysis, individual BOLD images were 

re-aligned and resliced to the mean BOLD image, which was then realigned to the mean b = 0 image as 

described previously (Takeuchi et al., 2011a). As the mean b = 0 image was aligned with the FA image 

and MD map, the BOLD image, b = 0 image, FA image, and MD map were all aligned. For 

normalization, we used a previously validated two-step “new segmentation” algorithm of diffusion 

images and a previously validated diffeomorphic anatomical registration through exponentiated lie 

algebra (DARTEL)-based registration process (Takeuchi et al., 2013). This normalization method was 

used for all diffusion images, including gray matter segments (regional gray matter density [rGMD] 

map), white matter segments (regional white matter density [rWMD] map), and cerebrospinal fluid 
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(CSF) segments (regional CSF density [rCSFD] map). 

Using the new segmentation algorithm implemented in SPM8, FA images from each 

individual were segmented into six tissues (first new segmentation). In this process, default parameters 

and tissue probability maps were used, except that affine regularization was performed using the 

International Consortium for Brain Mapping (ICBM) template for East Asian brains, and the sampling 

distance (the approximate distance between sampled points when estimating the model parameters) was 

2 mm. We next synthesized the FA image and MD map. In this synthesized image, the area with WM 

tissue probability > 0.5 in the aforementioned new segmentation process was the FA image multiplied 

by −1. Hence, this synthesized image shows a very clear contrast between WM and other tissues. The 

remaining area is the MD map. The reasons for this procedure are given below. The synthesized image 

from each individual was then segmented using the new segmentation algorithm implemented in SPM8 

and the same parameters as above (second new segmentation). This two-step segmentation process was 

adopted because the FA image had a relatively clear contrast between GM and WM, as well as between 

WM and CSF, so the first new segmentation step can distinguish WM from the other tissues. On the 

other hand, the MD map had a clear contrast between GM and CSF, and the second new segmentation 

can segment GM. Since the MD map alone does not have a clear contrast between WM and GM, we 

needed to use a synthesized image and the two-step segmentation process. 

We next proceeded to the DARTEL registration process implemented in SPM8. In this process, 

we used the DARTEL import image of the GM tissue probability map produced by the second new 

segmentation process as the GM input for the DARTEL process. The WM input for the DARTEL 

process was created as follows. First, the raw FA image was multiplied by the WM tissue probability 

map from the second new segmentation process within the areas with a WM probability > 0.5 (the 

signals from all other areas were set to 0). Then, this FA image×the WM tissue probability map was 

coregistered and resliced to the DARTEL import WM tissue probability image from the second 

segmentation. The template for the DARTEL procedures was created using imaging data from 63 

subjects who participated in Takeuchi et al. (2011a) and in the present study. The use of a subset of 

subjects to produce the template was necessary because the project is still ongoing, and we cannot 
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reprocess all images using a new template every time we add subjects, especially as our DARTEL 

processes require a great deal of time and the resulting images require substantial storage resources. 

However, this sample (N = 63) is not small compared to previous studies, so we believe that these 

subjects have the same characteristics on average as the entire cohort. 

Next, using this existing template, DARTEL procedures were performed. The parameters 

were changed as follows to improve the accuracy of the procedures. The number of Gauss–Newton 

iterations to be performed within each outer iteration was set to 10. In each outer iteration, we used 8-

fold more timepoints than the default values to solve the partial differential equations. The number of 

cycles used by the full multi-grid matrix solver was set to 8. The number of relaxation iterations 

performed in each multi-grid cycle was also set to 8. The resultant synthesized images were spatially 

normalized to Montreal Neurological Institute (MNI) space. Using the parameters for these procedures, 

the raw FA, rGMD, and rWMD maps from the abovementioned second new segmentation process were 

normalized to yield images with 1.5  1.5  1.5 mm3 voxels. The FA image * the WM tissue 

probability map was used in the DARTEL procedures because this synthesized image includes different 

signal intensities within the WM tissues, and the normalization procedure can take advantage of these 

intensity differences to adjust the image to the template from the outer edge of the tissue and within the 

WM tissue. No modulation was performed in this normalization procedure. 

The voxel size of normalized FA images, MD images, and segmented images was 1.5  1.5  

1.5 mm3. The voxel size of normalized BOLD images was 3  3  3 mm3. Next, we created averaged 

normalized rGMD and rWMD images using a subset of the entire sample (63 subjects) (Takeuchi et al., 

2013). 

We did not co-register EPI or DTI images to T1-weighted structural images because they had 

a different shape resulting from the unignorable distortion of EPI images acquired by 3T MRI. 

Supplemental Discussion 

Potential limitations of the study 

This study has several limitations. One limitation common to our previous studies as well 

as many other studies in this field is the use of college student cohorts (Jung et al., 2010; Song et al., 
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2008; Takeuchi et al., 2011b; Takeuchi et al., 2010a, b; Wei et al., 2013) as their unique sample 

characteristics may bias results and limit generalizability. For example, young subjects with greater 

cognitive ability showed less deactivation in the TNN, a pattern also observed in elderly subjects with 

cognitive decline and patients with schizophrenia (Sambataro et al., 2008; Whitfield-Gabrieli et al., 

2009). Whether our findings would also hold across the full range of population samples must be 

determined in future studies (Takeuchi et al., 2012). In addition, there are several discrepancies with 

previous studies. However, many of these previous studies have statistical problems (see Introduction). 

These studies also differ from ours in sample characteristics, task characteristics, and methodologies 

(Table 1), which may contribute to the discrepancies in results. Another possible limitation of the study 

is that we used only one measure for general intelligence (RAPM). However, the RAMP is one of the 

most broadly accepted single measures for general intelligence and has been frequently used alone 

(Raven, 1998). Also, if we used several time-consuming measures of general intelligence, it would 

have been impossible to collect the huge sample size needed to achieve our study goals. Nonetheless, 

the use of other types of general intelligence tests requiring verbal processes may increase the 

generalizability of our findings. 
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Supplemental Table 1. 

Demographics of study participants 

  Number 

Measure  Mean SD Men Women 

Age 20.81 1.89 711 525 

RAPM 28.45 3.83 711 525 

Digit span  36.20 6.97 708 522 

0-back-RT (ms) 4541.10 761.16 711 525 

0-back-accuracy (%) 99.57 2.22 711 525 

2-back-RT (ms) 6732.78 1789.77 711 525 

2-back-accuracy (%) 99.2 2.84 711 525 

Volume-wise frame-wise displacement* 0.21 0.05 711 525 

*Frame-wise displacement calculated by the method of Power et al. (2012) 

 


