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Abstract—In this paper the steady-state tracking performance
of minimum kernel risk-sensitive loss (MKRSL) in a non-
stationary environment is analyzed. In order to model a non-
stationary environment, a first-order random-walk model is used
to describe the variations of optimum weight vector over time.
Moreover, the measurement noise is considered to have non-
Gaussian distribution. The energy conservation relation is utilized
to extract an approximate closed-form expression for the steady-
state excess mean square error (EMSE). Our analysis shows
that unlike for the stationary case, the EMSE curve is not an
increasing function of step-size parameter. Hence, the optimum
step-size which minimizes the EMSE is derived. We also discuss
that our approach can be used to extract steady-state EMSE for
a general class of adaptive filters. The simulation results with
different noise distributions support the theoretical derivations.

Index Terms—Adaptive filter, Kernel risk-sensitive loss, Non-
stationary, tracking analysis.

I. INTRODUCTION

ADAPTIVE filters have been successfully applied in a
variety of fields [1]. Generally, in the adaptive filters,

the filter coefficients are adjusted to minimize (or maximize)
a cost function, which is indeed a statistical similarity mea-
sure among the desired and actual filter outputs. Among the
available measures, those based on the second-order statistics,
such as mean-square error (MSE) are more popular due to
their simplicity and optimality under the linearity and Gaussian
data. Unfortunately, adaptive filtering algorithms that rely only
on the second-order similarity measure perform poorly when
dealing with nonlinear models and non-Gaussian signals [2],
[3]. Therefore, to enhance the performance of algorithms in
such situations it is necessary to consider similarity measures
that use high-order statistics (such as kurthosis and skewness)
[3]. As another alternative to the MSE, the risk-sensitive loss
(RSL) has been reported in [2] which can deliver suitable
performance when the data model deviates from the Gaussian
distribution. However, as the error surface of RSL tends to be
super-convex, it is not robust to outliers or impulsive noises,
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specially when it is used as cost function in stochastic gradient
based algorithms.

In recent years, information theoretic learning (ITL) has
been developed as an alternative learning framework [3].
In the ITL framework, learning metrics (such as entropy,
divergence) are defined as functions of probability density
function (pdf) of the data, meaning that they contain all the
statistical information (e.g. the higher-order statistics) of the
data. Using Parzen window density estimator, the PDF can be
elegantly estimated form the data samples which makes the
ITL metrics suitable for applications where on-line learning is
needed [4]. Therefore, ITL has been successfully used in many
applications such as adaptive filtering, blind source separation,
classification, neural networks training, matched filtering, and
feature extraction [3], [5]–[7].

An important result of the ITL framework is the connec-
tion between the ITL and kernel method. More specifically,
most similarity measures that are originally developed in
ITL framework can be described in a new space, namely
reproducing kernel Hilbert space (RKHS) [3]. For example,
the correntropy is defined in ITL as a local similarity criterion
which indicates the similarity between two random variables
over an observation window (kernel bandwidth) [8]. In the
kernel space, the correntropy can be interpreted as a correlation
metric. The correntropy captures the higher-order statistics
of data. Moreover, the kernel bandwidth can be to reduce
the effect of outliers and out-of-range data. These properties
motivated using the correntropy as a cost function in adaptive
filters [9]–[13].

The performance of correntropy-based adaptive filters have
been studied in [14]–[16] where the results show that they
provide good steady-state performance with slow convergence
rate1. To address the convergence issue of correntropy, in [17]
Chen et al. have developed a new similarity metric in kernel
space, named kernel-risk sensitive loss (KRSL). They have
also used KRSL to derive an adaptive filter referred to as
minimum KRSL (MKRSL) algorithm. Based on the provided
analysis in [17], MKRSL delivers fast convergence and low
steady-state error compared to those given by other robust
adaptive filters including correntropy-based adaptive filter.

As adaptive filters are used in time-varying environments it
is crucial to investigate the tracking performance of the adap-

1The slow convergence rate of correntropy-based adaptive filter stems form
its non-convex error surface, i.e. it is sharp around the optimum point but flat
at points which are far from the optimal point
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tation algorithms under mentioned conditions. Therefore, in
this paper, we study the tracking performance of the MKRSL
algorithm in a non-stationary environment where a first-order
random walk model is utilized to model the optimal parameter
changes. In our analysis we do not impose any specific
distribution for the measurement noise. We only consider the
basic assumptions that are widely used in the analysis of
adaptive filters. In our analysis, we use the energy conservation
method [1] and obtain an approximate closed-form expression
for the EMSE. We provide numerical examples with different
noise distributions, which show that the MKRSL algorithm
is able to keep tracking the optimal weight. Moreover, the
simulation results support the theoretical findings.

The remainder of this paper is organized as follows. In
Section II, we briefly review the MKRSL algorithm. In Section
III, we analyze the tracking performance of the MKRSL
algorithm. In Section IV, we present the simulation results
to verify our theoretical analysis, and we conclude the paper
in Section V.

We use small boldface letters for vectors and bold capital
letters for matrices. Normal font letters denote scalars. The
notation (·)∗ denotes conjugation for scalars and Hermitian
transpose for matrices conjugate transposition and (·)T for
matrices transposition. The operator tr {·} refers to the trace
of its matrix argument.

II. THE MKRSL ALGORITHM

We consider an adaptive filter with in a system identification
setup where the filter length is M . We denote by wo ∈ RM×1
the unknown model coefficients of the system. The filter
is deployed to estimate wo using a stream of wide-sense
stationary data {di,ui}, where {ui} denotes a sequence of
zero-mean real-valued (row) input vectors and {di} denotes a
sequence of zero-mean real-valued output samples. The system
is described by a linear model as

di = uiw
o + vi (1)

where vi represents the zero-mean measurement noise of
variance σ2

v,k. As it is convenient, we consider the following
assumptions for data model given in (1).

Assumption 1.
(i) The second-order moments of the input regressors vectors

are E[uT
i ui] = Ru > 0.

(ii) The measurement noises {vi} are independent of each
other and the regression vectors {uj} for any i and j.

As discussed in [17], an estimate of wo can be obtained by
minimizing the KRSL cost function defined as

J (w) =
1

λ
E[exp (λ(1− κσ(ei))] (2)

where λ > 0 is the risk-sensitive parameter, ei = di − uiw
denotes the error at time i, and w is the estimated weight
vector (filter weight vector). Moreover, κσ is the Gaussian
kernel with kernel bandwidth σ which is defined as:

κσ(ei) =
1√
2πσ

exp

(
− e2i

2σ2

)
(3)

In many practical cases, the distributions of data are unknown
and only a finite number of samples is available. In these
situations, the expectation value can be estimated by using an
average over N samples, which results in the empirical KRSL
cost function as:

Ĵ (w) =
1

Nλ

N∑
i=1

exp (λ [1− κσ (ei)]) (4)

The online (instantaneous) cost function, N = 1, under the
MKRSL criterion at time i is

Ĵ (w) =
1

λ
exp (λ [1− κσ (ei)]) (5)

Using the empirical cost function, a stochastic gradient based
adaptive algorithm can be derived as

wi = wi−1 − µ∇wĴ (wi−1)

= wi−1 + ηuT
i exp (λ [1− κσ (ei)])κσ (ei) ei (6)

where η = µ
σ2 . It is noteworthy that as σ → ∞ the MKRSL

becomes the LMS algorithm.

III. NON-STATIONARITY ANALYSIS

A. Assumptions and Definitions

In this paper, we investigate the tracking performance of the
MKRSL algorithm under non-stationary condition where the
optimal weight wo varies over time according to a first-order
random walk model as

wo
i = wo

i−1 + qi (7)

where {qi} is a zero-mean random process vector with
positive-definite covariance matrix Q = E[qiq

T
i ]. In our

analysis, we consider the following assumption

Assumption 2. The sequence {qi} are independent initial
value wo

0 and {u`, vj ,qj} for all i and j.

Remark 1. This assumption is the same as the one considered
in e.g. [18], [19]. In [1, pp. 271–273] the suitability of random
walk model for the tracking performance of adaptive filters has
been discussed in more detail. Moreover, in [1, pp. 325–327]
the problem of tracking a Rayleigh fading channel in a wireless
communication environment has been discussed, which shows
how a random walk model arises in practical applications.

As the performance metric, we consider the steady-state
excess mean square error which is dened as

ξ = lim
i→∞

E[e2a,i] (8)

In (8) ea,i denotes the a priori error signal which is defined
in terms of the weight-error vector w̃i as

ea,i , uiw̃i = ui(w
o
i −wi) (9)
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B. Analysis

We consider the KRSL recursion (6) in a compact form as

wi = wi−1 + ηuT
i f(ei) (10)

where f(ei) is given by

f(ei) = exp (λ(1− κσ(ei)))κσ(ei)ei (11)

The first step in the energy-based method is to derive an
energy-conservation relation for the MKRSL algorithm. The
obtained energy-conservation relation is used to arrive at
expression which reveals how E[‖w̃i‖2] evolves over time.
By subtracting wo

i from both sides of (10) and replacing wo
i

with wo
i−1 + qi in the right hand side (r.h.s), we obtain

w̃i = w̃i−1 + qi − ηuT
i f (ei) (12)

By equating the squared Euclidean norm of (12) the energy-
conservation relation for MKRSL algorithm is obtained as:

‖w̃i‖2 = ‖w̃i−1‖2 + w̃T
i−1qi − ηw̃T

i−1u
T
i f(ei) + ‖qi‖2

+ qTi w̃i−1 − ηqTi uTi f(ei)− ηuiw̃i−1f(ei)

− ηuiqif(ei) + η2 ‖ui‖2 f2(ei) (13)

Now, we proceed to use the energy-conservation relation (13)
to estimate E[e2a,i]. By taking expectations of both sides of
(13) and using Assumption 2 we obtain the following variance
relation

E[‖w̃i‖2] = E[‖w̃i−1‖2]− 2ηE[uiw̃i−1f(ei)]

+ E[‖qi‖2] + η2E[‖ui‖2 f2(ei)]

+ E[w̃T
i−1qi] + E[qT

i w̃i−1]

− 2ηE[qT
i u

T
i f (ei)] (14)

Remark 2. Comparing (14) with the variance relation for
MKRSL algorithm under stationary condition reveals that (14)
contains extra statistical moments that represent the effects of
non-stationary environment.

For the third term in the r.h.s of (14) we have

E[‖qi‖2] = E[tr
{
qiq

T
i

}
] = tr {Q} (15)

For the last three terms in (14), firstly it should be noted that
w̃i−1 can be written as

w̃i−1 = wo
i−1 −wi−1 = wo

0 +

i−1∑
n=0

qn −wi−1

As wi−1 depends on the input data {di,ui} and they are
independent of qi (see Assumption 2), we have

E[w̃T
i−1qi] = E[woT

0 qi] +
i−1∑
n=1

E[qT
nqi]− E[wT

i−1qi] = 0

(16)

Similarly, for the last two terms in (14) we have

E[qT
i w̃i−1] = E[qT

i u
T
i f(ei)] = 0 (17)

Using (15)-(17), (14) becomes

E[‖w̃i‖2] = E[‖w̃i−1‖2]− 2ηE[ea,if(ei)]

+ η2E[‖ui‖2 f2(ei)] + tr {Q} (18)

In the steady-state we have

lim
i→∞

E[‖w̃i‖2] = lim
i→∞

E[‖w̃i−1‖2] (19)

Moreover, due to Assumption 2 the third term in the r.h.s of
(18) becomes

lim
i→∞

E[‖ui‖2 f2(ei)] = tr {Ru} lim
i→∞

E[f2(ei)] (20)

Using (19) and (20) relation (18) at steady-state becomes

lim
i→∞

E[ea,if(ei)] = ηtr {Ru} lim
i→∞

E[f2(ei)]

+ η−1tr {Q} (21)

To obtain a closed-form expression for EMSE from (21)
we need to calculate the appeared moments E[ea,if(ei)] and
E[f2(ei)]. As we do not consider any specific distribution for
vi, it is difficult to derive the theoretical expressions for the
mentioned moments. To handle this issue, we resort to the
Taylor expansion and firstly approximate f(ei) with respect
to ea,i around vi which yields

f(ei) = f(ea,i + vi)

≈ f(vi) + f ′(vi)ea,i +
1

2
f ′′(vi)e

2
a,i +O

(
e2a,i
)

(22)

where

f ′(vi) = exp (λ (1− κσ(vi)))κσ(vi)

×
(

1 + λ
v2i
σ2
κσ(vi)−

v2i
σ2

)
(23)

and

f ′′(vi) = exp (λ (1− κσ(vi)))κσ(vi)

×

(
λ2v3i
σ4

κσ
2
(vi) +

3λσ2vi − 3λv3i
σ4

κσ(vi)

+
v3i − 3viσ

2

σ4

)
(24)

Now, (22)-(24) can be used to obtain the approximated mo-
ments in (21). In this way for E[ea,if(ei)] we have

E[ea,if(ei)] = E[ea,if(vi) + f ′(vi)e
2
a,i +O(e2a,i)]

≈ ξ E[f ′(vi)] (25)

Similarly, for E[f2(ei)] we have

E[f2(ei)] ≈ E[(f(vi) + f ′(vi)ea,i +
1

2
f ′′(vi)e

2
a,i)

2]

≈ E[f2(vi)] + ξE[f(vi)f
′′(vi) + (f ′(vi))

2
] (26)

Replacing (25) and (26) in (21) and solving the resultant
equation for ξ we obtain the approximated EMSE for MKRSL
algorithm in a non-stationary environment as follows:

ξ =
ηtr {Ru}E[f2(v)]− η−1tr {Q}

2E[f ′(v)]− ηtr {Ru}E[f(v)f ′′(v) + (f ′(v))
2
]

(27)

Note that we omit the time index i for brevity.

Corollary 1. Let’s rewrite the EMSE in (27) as

ξ =
ηA+ η−1B

C − ηD
(28)
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where

A = tr {Ru}E[f2(v)]

B = tr {Q}
C = 2E[f ′(v)]

D = tr {Ru}E[f(v)f ′′(v) + (f ′(v))
2
]

(29)

The first term term in the numerator of (28) decreases with
step-size and increases with tr {Q} while the second term
increases with step-size. So, the EMSE expression is not
an increasing function in terms of step-size unlike for the
stationary case.

Corollary 2. The optimum step-size value which minimizes
the EMSE is obtained by setting the derivation of (27) to zero
( dξdη = 0). Doing so we have

ηo =
−BD +

√
B2D2 +ABC2

AC
(30)

Corollary 3. In comparison to stationary environments, there
is an increase at the steady-state which is given by

∆ξ =
η−1B

C − ηD
Remark 3. The presented approach for derivation of EMSE
holds for any adaptive filter which can be described by (10).
This is a very useful result in the context of tracking analysis
because it allows us to derive the steady-state EMSE for
any adaptive filter only by evaluating A, B, C and D for a
given function f(v). For example, for the adaptive filtering
with the maximum correntropy criterion (MCC), we have
f(v) = v[exp(v2/(2σ2))]. Hence, the approximated EMSE
for adaptive filter under MCC is given by (28) with

A = tr {Ru}E
[
v2 exp

(
−v2

σ2

)]
B = tr {Q}

C = 2E

[(
1− v2

σ2

)
exp

(
−v2

2σ2

)]
D = tr {Ru}E

[(
1 +

2v4

σ4
− 5v2

σ2

)
exp

(
−v2

σ2

)]
which is the same results as those obtained in [16].

IV. SIMULATION RESULTS

In this section, we present some numerical examples to
examine the performance of the MKRSL algorithm in non-
stationary condition, and to verify the theoretical analysis. We
consider the system identification setup where the filter length
is M = 20 and the initial vector wo

0 = [1, 1, · · · , 1]T. The input
vector ui is generated from a zero-mean Gaussian process with
unit variance matrix, and the measurement noise is a zero-
mean uniform distribution with unit variance. The covariance
matrix in the first-order random walk model is selected as
Q = 10−6I . We perform over 500 Monte Carlo simulations,
with 20000 iterations in each simulation to ensure that the
algorithm reaches the steady-state. A null vector is considered
as the initial weight vector w0 for MKRSL algorithm.
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Fig. 1. Time evolution of adaptive filter weights (estimates) over time.
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(a) σ = 1.8, λ = 9, η = 2 × 10−6 , Simulation
(b) σ = 2.5, λ = 11, η = 8 × 10−6 , Simulation
(c) σ = 2, λ = 9, η = 5 × 10−6 , Simulation
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Fig. 2. Theoretical steady-state EMSEs and the simulated convergence curves
with different parameter settings under non-stationary environment.

In the first example, we examine the tracking ability of
MKRSL algorithm, where the algorithm parameters are se-
lected as σ = 2.5, λ = 11, and η = 8 × 10−6. Fig. 1
shows how the filter coefficients wi(1) and wi(2) track wo

i .
We can observe that estimates wi(1) and wi(2) approach wo

i

after few samples and keep tracking of wo
i as it changes over

time. In the next experiment, we examine the accuracy of
expression (27). The theoretical steady-state EMSEs which are
calculated by (27) and convergence curves simulations with
different parameter setting in the non-stationary environment
are shown in Fig. 2. It is obvious that finally the simulated
curves converge nearly exactly towards the theoretical values.
In Table I, we consider other distributions for the measurement
noise including, Gaussian (zero-mean with unit variance which
is denoted by N (0, 1)), Binary (± 1 with probability 0.5),
Cauchy (with PDF p(v) = 1/[π(1 + v2)] and impulsive noise
given by a Gaussian mixture model as

pv(v) = (1− ε)N (0, β) + εN (0, κβ)

where β = 10−3 is the nominal noise variance, ε = 0.01 is the
contamination ratio, and κ = 100. As seen from Table I, the
theoretical expression in (27) is valid for both Gaussian and
non-Gaussian distributions. In the last example, we investigate
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TABLE I
THEORETICAL AND SIMULATED STEADY-STATE EMSES FOR DIFFERENT NOISE DISTRIBUTIONS.

Noise distribution Parameter setting Theory (db) Simulation (db)
Gaussian λ = 9, σ = 1.2, η = 0.000008 -15.6459 −15.5057± 0.6
Binary λ = 9, σ = 1, η = 0.00004 -24.0263 −24.2358± 0.9
Cauchy λ = 7, σ = 2, η = 0.00003 -10.0016 −9.7210± 0.28
Gaussian mixture model λ = 8, σ = 1.5, η = 0.000005 -10.7955 −10.4037± 0.9
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dB
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Fig. 3. Theoretical and simulation EMSE versus η.

the effect of η on the steady-state EMSE. To this end, both
the theoretical and simulated cases the steady-state EMSE are
plotted in terms of η in Fig. 3. The curves are obtained by
averaging over the last 200 samples. Fig. 3 supports the claim
that in a non-stationary environment the EMSE curve is not
an increasing function of step-size parameter. Moreover, this
figure shows that the theoretical expression in (27) is valid for
a wide range of step-size parameters.

V. CONCLUSION

In this paper, we studied the tracking performance of
MKRSL algorithm in a non-stationary environment where a
first-order random walk model is used to model the variations
of optimum weight vector in each iteration. In our analysis,
which uses the energy conservation argument, we used a
general non-Gaussian distribution for the measurement noise.
Our analysis revealed that the EMSE curve is not an increasing
function of step-size parameter. Hence, we need to choose an
optimum step-size to achieve an acceptable performance. We
presented some simulation results which well confirmed the
theoretical derivations.
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