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Abstract 

Breast cancer is a heterogeneous disease with many subtypes mostly identified based on 

expressions of oestrogen, progesterone, and/or epidermal growth factor receptors (or) none at all 

(also known as triple negative breast cancer, TNBC). TNBC account for 15-20% of all breast cancer 

and is the most aggressive subtype with a higher rate of local and distant metastasis and 

resistance to therapy which leads to frequent recurrences. TNBC treatment therefore rely mainly 

on neoadjuvant, surgery and/or radiotherapy. The level of immune infiltrate in TNBC has been 

linked to a more favourable outcome and lower mutation and neoantigen counts, indicating that 

an active immune surveillance is ongoing and that these patients might benefit from checkpoint 

inhibitor therapy. However, patients who did not display high level of immune infiltrate or whose 

disease and come back after conventional treatment, antigen-specific vaccine might provide a 

new method of treatment. The design of cancer vaccines need to take into consideration the 

choice of the antigen to be used in the vaccine (its expression pattern of the antigen by the 

tumour cells versus normal cells, its importance for the survival of the cancer cell, and its 

immunogenicity) as well as the delivery and adjuvant used in combination with the antigen. The 

cancer-testis antigen HAGE (DDX43, CT13) has been shown to be expressed in 43% of patients 

with TNBC, is not expressed by normal cells of vital organs, is required for the proliferation of 

cancer cells and is immunogenic. Therefore, patients with HAGE positive tumours might benefit 

from a HAGE-specific vaccine. 

This work has investigated the immunogenicity of two HAGE-derived sequences, has assessed the 

effect of several adjuvants as well as compared peptide HAGE 30mer versus DNA-HAGE vaccine in 

the form of Immunobody® and has assessed the anti-tumor efficiency of the best HAGE-derived 

vaccine. HAGE-derived 24 and 30-amino-acid long peptide using IFA as adjuvant were compared 

in the HHDII/DR1 transgenic mice. Based on peptide-specific immune responses determined using 

an IFNγ ELISpot assay, HAGE-30mer vaccine was found to be superior to the 24mer sequence as 

determined by high number of IFNɣ released against shorter vaccine-derived peptides. Range of 

adjuvants such as IFA, CpG, IRX-2, were administered either alone or in combination with HAGE 

30mer peptide vaccine. The best responses were found to be generated by HAGE 30mer 

formulations containing IFA+CpG and IFA+IRX-2. Since mode of delivery influences the nature and 

strength of immune responses, a DNA based vaccine was assessed in this study called 

Immunobody®. ImmunoBody® encodes a human antibody with antigen inserted within the 

Complementarity-Determining Regions (CDR). HAGE-Immunobody® generated strong anti-HAGE 

immune responses, as demonstrated by the significant increase in the number of IFNγ secreting 

splenocytes. Moreover, splenocytes from vaccinated mice stimulated in vitro could recognise and 

specifically respond to HAGE+ tumour cells, including MDA-MB-231. This response was both HAGE 

and T cell-specific. More importantly the tumour growth of B16 cells (knockout for β2-

microglobulin and transfected with HHDII, HLA-DR1, Luciferin and HAGE constructs) was 

significantly slowed down by ImmunoBody®-HAGE vaccine. Overall, this work has demonstrated 

the potential value of HAGE-derived vaccines for the treatment HAGE positive cancers. Future 

studies will combine the vaccine with immune-checkpoint inhibitors. 
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1 Main introduction  

1.1 Breast cancer and statistics 

In the UK, breast cancer accounted for 15% of all new cases (2015) diagnosed in women with 

increasing rates of incidence and deaths with age. The median age of women at the time of 

diagnosis was 62 during 2010-2014 (Howlader, Noone and Krapcho). In the 1970s, the lifetime risk 

of being diagnosed with BC was 1 in 11 and in 2017, it is estimated to be 1 in 8 women or 12.4% 

for women living in the US (American Cancer Society, Inc., Surveillance Research 2017). It was also 

found that rates vary with race and ethnicity where non-Hispanic white women have high 

incidence and Asian/Pacific islander have lower incidences. Researchers have found that 

difference in rates of incidence and mortality related to the incidence of different subtypes across 

racial and ethnic groups. In 2017, rates of mortality were high in non-Hispanic black women and 

low in Asian/Pacific Islander female populations (Source: North American Association of Central 

Cancer Registries, 2017). Triple negative BC rates were high in non-Hispanic blacks compared to 

other ethnic groups. In the UK, 53% of young women <45yrs were diagnosed with BC. In Europe, 

131,000 female death from BC were estimated in 2012, with the UK being ranked as 14th with 

highest mortality rates.  In the UK, during 2012-2014 mortality rates were 47% in women aged 

over 75. It accounts for 7% of all cancer-related death in the UK (2014), however, the rates are 

projected to fall by 26% during 2014-2035 (Cancer research UK webpage: 

http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-

type/breast-cancer#heading-Two). Owing to improved treatment approaches and development 

of screening methods for early detections, survival rates have has doubled over last decade such 

that 65% of women with BC survive for ≥ 20years. Risk factors include age, genetics and lifestyle 

factors. Based on reports from Cancer Research UK, about 27% of cases are linked to major 

lifestyle risk factors including overweight and obesity (9%), certain occupational exposures (5%) 

and alcohol (6%). Other factors such as sleep, stress, exercise, balanced diet and breastfeeding 

can protect against breast cancers. 

1.1.1 Breast Anatomy 

Breasts, medically known as mammary glands are composed of lobules, milk-producing glandular 

structures and a system of ducts that serve as connecting channels to transport milk to the nipple. 

The anatomical features of the breast are shown in fig 1.1. There are fat tissues and connective 

tissues between glandular tissue and ducts, with blood vessels and lymphatic vessels to drain 

fluids but do not contain muscles. Lymphatic vessels located in the breast drain to lymph nodes in 

the axilla (underarm area) and back of sternum (breastbone) as shown in fig 1.1. 

 

http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer#heading-Two
http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer#heading-Two
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Figure 1.1 Schematic representation of normal female breast.  

1.1.2 Breast cancer and progression 

Breast cancer is a heterogeneous disease with a high degree of diversity between individuals as 

well as within tumours among tumour-bearing patients. The composition of the breast with 

multiple cell types makes the tissue microenvironment heterogenous and adding to the 

complexity, constant tumour evolution within the micro-environment poses a huge challenge to 

develop effective treatment approaches. There is a range of factors that determine the tumour 

progression and resistance to therapy. Classified based on architectural features and growth 

patterns, the scheme of categorising the heterogeneity in breast cancers have been a valuable 

tool since there is a lack of markers to define hyperplasia (typical and atypical), carcinoma in situ 

and invasive cancers during tumour progressions as shown in fig 1.2. 

Under normal conditions, the architecture of mammary gland includes a bi-layer of epithelial cells, 

consisting of luminal cells on the inner layer, and myoepithelial cells on the outer layer that makes 

contact with the basement membrane. When cancer cells gain access to the bloodstream they 

can spread to other body parts, which is referred to as metastasis. Like in most cancer, primary 

tumours confined to the breast do not affect the survival, it is the dissemination of metastatic 

colonies into distant tissues, classified as Stage 4, including lungs, liver, bones, and brain which is 

life-threatening. Breast cancer develops from benign epithelial atypia and atypical ductal 

hyperplasia (ADH) to malignant DCIS (ductal in situ), LCIS (lobular in situ) and ultimately invasive 

ductal carcinoma (Bombonati and Sgroi 2011).  
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Figure 1.2 Breast tumour progressions from benign to malignant breast carcinoma. Cross section 

of the duct showing loss of epithelial integrity and filling of ducts with abnormal cells across different stages 

of breast cancer. (adapted from Chatterjee and McCaffrey 2014) 

The process of metastasis usually occurs step by step: 1) Invasion of surrounding healthy cells, 2) 

Penetration of cancer cells into circulatory or lymph systems, 3) Migration of cancer cells through 

circulation, 4) lodging at a different site and finally 5) micro-metastases, proliferation and invasion 

to form small tumours at the new site. The step-wise progression is shown in figure 1.2. Ductal 

and atypical hyperplasia consist of precursor lesions that are characterised by multi-layering of 

ducts carrying clonal populations. Ductal Carcinoma in Situ (DCIS) indicate early stages of breast 

cancers that lack epithelial organisation due to epigenetic and phenotypic alterations and are 

enclosed within the intact basement membrane. Further on in invasive carcinomas, there is a loss 

of epithelial cells and basement membrane allowing tumour cells to invade neighboring cells and 

migrate to distant sites, thus resulting in metastasis (Polyak 2007). The striking phenotypic and 

genetic diversity within breast tumours exhibit varied proliferation, invasiveness, metastatic 

potential and therapeutic response, hence contributing to inter-tumour heterogeneity (different 

patients) and intra-tumour heterogeneity (within cells of a single tumour). Dissections of the 

biology behind each biological stages of progressions have urged researchers to investigate the 

cellular precursors of breast tumours. 
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1.1.3 Origin of breast cancer and its subtypes 

Breast neoplasms originate from epithelial cells lining the milk ducts and the diverse phenotypes 

show the presence of an array of cell types within normal epithelium including basal, luminal and 

stem cells (Skibinski and Kuperwasser 2015). The bi-layered structure of mammary epithelium 

includes luminal cells in the inner layer and basal or myoepithelial cells (ME) in the outer layer 

(figure 1.1). The anatomy structure of the gland appears like a tree with a network of ducts 

branching into lobules. Milk is produced by the lobules while ductal and lobular myoepithelial 

cells release milk by smooth muscle contraction (Visvader and Stingl 2014). With successive 

pregnancies, these epithelial cells undergo regeneration and regressions indicating the existence 

of long-lived mammary stem cells (MaSC) this was demonstrated when fragments of mammary 

tissues could regenerate into an entire epithelial tree in recipient mice suggesting the pre-

existence of progenitor cells within the tissue (Hoshino and GARDNER 1967). There is evidence for 

progenitor stem cells that maintain populations of luminal or basal cell types. Currently, the most 

popular hierarchical model of mammary development is, with bipotential MaSCs at the vertex and 

lineage-committed luminal and myoepithelial progenitors that produces terminally differentiated 

progeny (shown in fig 1.3). Evidence on the bi-potentiality of MaSCs are limited until date as 

observations with fat pad transplantation assays may not exactly reflect the in situ behavior of 

these cells, although they demonstrate their ability to generate the clones of both lineages. 

Recently, the in vivo behavior and role of MaSCs has been studied using lineage-tracing approach 

and is still a topic of debate (Rios, et al. 2014). 

Current understanding of inter-tumour heterogeneity has been shaped by gene expression 

profiles that have allowed robust classification into molecular subtypes (Perou, et al. 2000). Four 

distinct subtypes have been identified from gene expression profiling and these include Luminal 

A, luminal B, HER2-enriched, basal-like and normal breast-like group. Originally these subtypes 

were derived from hierarchical clustering of global genes without regard to specific 

histopathological features, thus referred to as the “intrinsic subtypes”. Even though intrinsic types 

do not encompass the entire cancer diversity, tumours falling into the same subtype were found 

to display similar sensitivity to therapy (Nielsen, et al. 2004, Prat, et al. 2010).  
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Figure 1.3 Hypothetical model of breast tumour origin (Nagarajan D et al., 2018). 

There are varieties of reasons to state that MaSCs might be the source from which breast tumours 

originate. The long-lived MaSC cells within epithelium can undergo a series of genetic alterations 

for transforming into tumours while progenitor cells (lack self-renewal) or differentiated cells 

(lacks potential for both self-renewal and proliferation). Additionally, evidence from spontaneous 

mammary tumours in transgenic MMTV-Wnt1 mice show MaSCs to be the precursors for targets 

of transformation comprising both luminal-like and basal-like cells (Smalley and Ashworth 2003, 

Polyak 2007). The hypothetical model shown in fig 1.3, shows that intrinsic subtypes originate 

from bipotential stem cell progenitors derived from MaSCs. It is indicated that luminal progenitors 

can give rise to both Her2+ and triple negative subtypes besides Luminal A and B, whereas basal 

progenitors only differentiate into basal, claudin-low subtype, each having unique molecular 

features. 

These intrinsic subtypes have been extensively studied to reveal differences in incidence, survival 

and treatment responses. Notably, these classification complements the clinicopathological 

markers (Cheang, et al. 2009) at molecular levels and exhibit a high similarity between the 

primary and the metastasis/recurrences which suggest that each subtype represents a stable 

biological state of the disease (Macias and Hinck 2012).  Since then these distinct subtypes have 

gained attention to become the core area of breast cancer research. With the evolution of 

genomic studies, another intrinsic subtype was identified, known as Claudin-low (Herschkowitz, et 
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al. 2007). Currently, there are screening methods to allow diagnosis of men/women with breast 

cancers and identification of the subtype based on the application of new clinical parameters. The 

prevalence of BC subtypes among the human population is discussed in the following section. 

1.2 Molecular and pathologic features of TNBC  

Gene expression profiling led to the classification of breast tumours into 3 major subtypes: 

Luminal, HER2+ and basal-like. Luminal tumours that are ER and PR positive, respond well to 

hormonal interventions. HER2+ tumours over-expressing ERBB2 oncogene usually are treated with 

an array of anti-HER2 therapies. 75% of basal-like tumours generally lack both HER2+ and 

hormone ER/PR receptors and are thus referred to as triple-negative breast cancers (TNBC). These 

are the most aggressive subtype of breast cancer despite the initial good response to 

chemotherapy where unfortunately for this group early complete response (CR) does not 

correlate with overall survival. Approximately, 10–14% of breast cancers are triple negative 

(Gonzalez-Angulo, et al. 2011). TNBC patients tend to be more prevalent in younger women and 

from African-American origin who are three times more likely to present with TNBC than their 

Caucasian counterpart (Morris, et al. 2007). TNBC is usually of ductal origin, high grade with high 

mitotic rate, and tend to be of larger size. TNBC patients also tend to have a higher proportion of 

distant recurrence and poorer prognosis than the other subtypes. 

Although several inhibitors targeting polymerases, kinases, EGFR and chemotherapeutic agents 

(platinum salts) are in the early phase of clinical trial development currently there is no targeted 

therapy available for treating all TNBCs, indicating that TNBC can be further subdivided into 

further subclasses each potentially with unique molecular features and sensitivity to therapeutic 

drugs (Prat, et al. 2010, Lehmann, et al. 2011). According to Vanderbilt subtype classification, 

TNBC has six distinguished subtypes (fig 1.4). Two basal-like subtypes, Basal-like 1 (BL1) with 

increased gene signatures for cell cycle and DNA damage response and the other Basal-like 2 

(BL2) with high expressions of myoepithelial markers; two mesenchymal subtypes namely 

mesenchymal (M) and mesenchymal stem-like (MSL) with up-regulated growth factor signalling 

and cell differentiation; an immuno-modulatory (IM) subtype with enriched immune processes, 

and a luminal androgen receptor (LAR) type. Another classifier of TNBC from Baylor University 

proposed additional sub-groups basal-like immune-suppressed (BLIS) and basal-like immune-

activated (BLIA) that showed worst and best prognosis respectively (Burstein, et al. 2015). There 

are also other methods of classifications reported by different researches, such as French 

subtypes (based on immune response signaling) and PAM50 (Prosigna) assays-based subtyping, 

that have certain similarities and differences with both Vanderbilt and Baylor classifications 

 (Ahn, et al. 2016). 
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Figure 1.4: Lehman’s TNBC classification, gene ontology, and proportions. Different TNBC subtypes 

associated with distinct molecular features. Association of PUK3CA mutaations and aprocrine histology 

makes LAR subtypes the most distinct TNBC subtype. Both BL1 and 2 are characterised by expressions of 

both proliferation and damage response-related genes while BL-2 is associated with genes related to growth 

factor signalling. IM subtype is composed of all other subtypes with gene expression subtyping dominated 

by lymphocytic infiltrations. Both M and MSL are associated with genes for epithelial mesenchuymal 

transition (MET) where MSL is described to be claudin-low with expression of genes related to cancer stem-

cell like phenotype (Turner, N. C. and Reis-Filho 2013; Uscanga-Perales, Santuario-Facio and Ortiz-López 

2016). 

1.3 Conventional treatments for TNBC 

The dynamics, pattern of metastasis and risk of recurrences of TNBC disease is different from the 

other BC subtypes. It has been found that in TNBC prolonged overall and event-free survival time 

are linked to pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) 

(Cortazar, et al. 2014). However, patients who do not achieve pCR have a high risk of tumour 

recurrence within 2 years and poor overall survival, despite chemotherapy (Groheux, et al. 2015). 

Due to lack of effective targeted agents, the only option available to treat TNBC patients is 

systemic chemotherapy with inherent toxicities (Ismail-Khan, Minton and Khakpour 2015).  

Although currently, TNBC tumours respond to chemotherapy, the availability of treatment 

options is still limited. A meta-analysis comparing anthracycline-containing regimens using 

cyclophosphamide, methotrexate, and fluorouracil (CMF) showed the superiority of anthracycline 

regimen over CMF stating the benefit of HER2-neg from anthracycline. However, a randomised 

Phase III clinical trial in TNBC patients showed that addition of epirubicin to CMF prolong 5-year 

disease-free survival (DFS) compared to CMF alone (Rocca, et al. 2011). Anthracycline/taxane 
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being the most appropriate adjuvant regimens for TNBC, the addition of capecitabine showed 

improved PFS (Jiang, et al. 2012).  Thereafter, with an improved understanding of TNBC over the 

years has led to further discoveries of novel therapeutic alternative for treating TNBCs. Targeted 

agents include poly (ADP-ribose) polymerase (PARP) inhibitors, platinum salts and antibodies that 

target epidermal growth factor receptor, angiogenesis, PI3K/Akt/mTOR, androgen receptors and 

few other targets (Xu, et al. 2016). A few targets that have been used in clinical trials are listed in 

table 1.1. 

Table 1.1 Targeted therapy and novel systemic therapy for TNBC (adapted from (Zhang, et al. 
2016) 

Active large phase I-III trials using PARP inhibitors in TNBC patients 
  Clinicaltrials.gov population Therapy Phase Status 

NCT02338622 advanced TNBC 
Olaparib (AZD2281) + AZD5363 (AKT 
inhibitor) 

I Recruiting 

NCT00707707 mTNBC AZD2281 + paclitaxel I 
active, not 
recruiting 

NCT01074970 
TNBC with 
BRCA1/2 
mutations 

Cisplatin + rucaparib + preoperative 
chemotherapy 

II 
active, not 
recruiting 

NCT02032277 early TNBC 
Carboplatin-based NAC + 
veliparib/placebo 

III Recruiting 

NCT01204125 TNBC 
Iniparib (SAR2405550-BSI-201) + 
paclitaxel 

II Recruiting 

NCT00938652 mTNBC BSI-201 + gemcitabine/carboplatin III completed 

Studies evaluating cisplatin or carboplatin in TNBC patients 
  

NCT01930292 BL/claudin-low TNBC Paclitaxel + carboplatin I 
active, not 
recruiting 

NCT01982448 TNBC Cisplatin + paclitaxel II Recruiting 

NCT01560663 TNBC Docetaxel + carboplatin I Recruiting 

NCT02393794 mTNBC omidepsin + cisplatin I/II Recruiting 

NCT01216124 
Local advanced 
TNBC 

Docetaxel + oxaliplatin II Unknown 

NCT01276769 TNBC Paclitaxel + carboplatin/epirubicin II Unknown 

NCT01216111 TNBC Paclitaxel + cisplatin III Unknown 

NCT02445391 BL TNBC Platinum-based chemotherapy III Recruiting 

NCT00861705 TNBC 
Carboplatin + bevacizumab + paclitaxel + 
doxorubicin + cyclophosphamide 

II 
active, not 
recruiting 

Selected trials with EGFR-targeted in TNBC patients 

NCT00463788 TNBC Cetuximab + cisplatin II completed 

NCT00232505 TNBC Cetuximab + carboplatin II 
active, not 
recruiting 

NCT01097642 TNBC Cetuximab + ixabepilone II 
active, not 
recruiting 

NCT02158507 mTNBC Veliparib + lapatinib - recruiting 

NCT01732276 mTNBC Gefitinib II 
not yet 
recruiting 

NCT00894504 mTNBC 
Gemcitabine + carboplatin + 
panitumumab 

II 
completed 
has results 

NCT01426880 TNBC Carboplatin + NAC II/III completed 

NCT00540358 mTNBC Gemcitabine/carboplatin + iniparib II completed 

Note: Iniparib does not have typical characteristics of PARP inhibitors as indicated by recent preclinical and clinical data. 
Abbreviations: BRCA, breast cancer susceptibility protein; NAC, neoadjuvant chemotherapy; PARP, poly(ADP-ribose) 
polymerase; EGFR, epidermal growth factor receptor; TNBC, triple-negative breast cancer; mTNBC, metastatic TNBC. 
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1.4 Clinical challenges for triple-negative subtypes 

In the past, treatment options were based on the histologic properties, for example, is hormone 

therapy for ER+/ PR+ tumours and HER-2 therapy for HER2+ tumours. Unfortunately, in TNBC, 

chemotherapy still remains the primary option with 22% of TNBC patients achieving complete 

response although they have high rates of tumour relapse and metastasis compared to non-TNBC 

tumours (Liedtke, et al. 2008). TNBC is frequently taken as an intrinsic subtype Basal-like 

molecular phenotype and indeed 75-80% of TNBC are BL cancers. Identification of certain markers 

(such as CK14, CK17, EGFR/HER1, P-cadherin) by IHC of TNBC tumours are also expressed by 

basal/myoepithelial cells of the normal breast including epithelial marker, E-Cadherin (Rakha, 

Reis-Filho and Ellis 2008). It is also noted that about 54% of basal-like cancers do not have a TN 

phenotype on IHC sometimes observed with ER or HER2 over-expression. Currently, identification 

of TNBC/BL is best characterised based on IHC profiling of ER, HER2, CK5/6 and EGFR/HER1). Thus, 

there is an urge to identify molecular targets to improve therapeutic outcome in TNBC patients 

(Collignon, et al. 2016). 

The correlation between molecular characteristics of subtypes and their therapeutic outcomes 

have been studied such as basal-like and HER2+ tumours respond well to anthracycline and 

taxane treatments while they show different gene signatures associated with therapeutic 

responses (Rouzier, et al. 2005). Molecular characteristics of potential targets have been explored 

by examining the genomic patterns inherent within TNBC tumours. It was shown that in BRCA1-

associated TNBCs, BRCA1 expression levels and BRCA1 promoter methylation including p53 

mutation correlates with better response to cisplatin (Silver, et al. 2010).  Whereas, CD73 

overexpressions in TNBCs tumours are significantly associated with poor prognosis and increased 

resistance to doxorubicin, thereby suggesting CD73 a therapeutic target for TNBC (Loi, et al. 

2013). Alterations of several other genes in basal-tumours such as PIK3CA, PTEN loss, up-

regulation of HIF1 and Myc and amplification of several genes (cyclin E1, JAK2, AKT1, EGFR, and 

CDK4) have also been observed (Balko, et al. 2014). The heterogeneity of TNBCs and high rates of 

relapses poses a striking challenge to treat TNBC tumours. Residual tumours or tumours that re-

occur after chemotherapy mostly become chemo-resistant or insensitive re-emphasising the 

urgent necessity for identification of novel targets that can effectively increase progression-free 

survival in TNBC patients. 

1.5 Molecular targets for TNBC therapy 

These gene signatures have shown a correlation of signaling pathways in pre-clinical studies with 

drug response assays indicating their use in the forecast of tailored treatment outcome. DNA 

damaging agents such as cisplatin, rapamycin, and bicalutamide are effective for basal-like, 
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mesenchymal and LAR subtypes (Ahn, et al. 2016). Research suggested the targeting of MUC1 for 

LAR (luminal androgen receptor) subtype, inhibition of platelet-derived growth factor (PDGF) and 

c-kit for MES and inhibition of immune-suppression for BLIS and targeting of cytokines for BLIA 

subtypes (Burstein, et al. 2015). 

Basal-like subtype has accelerated proliferation rates and activated DNA damage responses, and 

hence could be effectively targeted by drugs such as platinum salts and poly-ADP ribose 

polymerase –I (PARP) inhibitors to induce breaking of DNA strands by cross-linking (Watkins, et al. 

2014). Nowadays, for genetic tests for BRCA mutations are used for selection of patients who are 

likely to benefit from PARP inhibitors (Gadducci and Guerrieri 2017). Findings have also 

highlighted the need to identify biomarkers to predict the effectiveness of PARP agents in 

patients. Therapies targeted at homologous recombination deficiency (HRD) is one of the 

examples of genomic scar-based biomarker (a flaw in genomic machinery) that was adopted for 

identifying patients who may or may not benefit from the use of PARP inhibitors and platinum-

based agents (Watkins, et al. 2014). Familial mutations in BRCA1 or BRCA2 genes predispose 

patients to female breast cancers, as a result of BRCA1/2 deficiency in homologous recombination 

(HR), DNA damages in the precancerous cells within at-risk organs cannot be repaired that 

eventually leads to cancer due to genomic instability (Li and Greenberg 2012). Certain DNA 

damaging agents, in particular, ionising radiations & platinum salts, might be more effective in 

BRCA-1 deficient tumours as BRCA1 functions by arresting the cell cycle and is involved in 

repairing damaged DNA. Biomarkers such as 53BP1 have also been identified with a gene 

signature associated with DNA damage for predicting responses of anti-PARP therapy, where loss 

of 53BP1 and restoration of BRCA1/2 demonstrate to confer resistance to PARP inhibitors 

(Hassan, et al. 2017). Thus, in the absence of DNA damage checkpoint, repair mechanism is 

disabled and thus can be killed by chemotherapy (Hoeijmakers 2001). In addition, pre-screening 

for BRCA1/2 promoter methylation as a signature of BRCAness (have defective HR without 

germline BRCA1/2 mutations) in patients may provide an indication for treatment with PARP 

inhibitors (Ruscito, et al. 2014, Vos, Moelans and van Diest 2017).  

Genomic data on mesenchymal tumours have suggested the contribution of gene clusters 

involved in extracellular matrix (ECM) interaction, cell motility and epithelial-mesenchymal 

transition (EMT). According to histology, about 57.1% of meta-plastic carcinomas i.e. a mixture of 

epithelial and mesenchymal cell types, a rare relative of IDC, are classified as mesenchymal 

tumours (Weigelt, et al. 2015). These mesenchymal subtypes frequently harbour aberrations in 

PI3K pathways and using metaplastic TNBCs as a surrogate for mesenchymal TNBC, therapeutic 

approaches evaluated so far includes mTOR inhibitors to target PI3K/AKT signaling pathways 
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(Basho, et al. 2017). Suppression of EMT pathways in breast cancer cells by using eribulin 

mesylate and inhibition of Fibroblast Growth Factor Receptor (FGFR) signaling pathway is 

suggested as other options to treat mesenchymal-like tumours (Yoshida, et al. 2014).  

Tumours characterised as immune-modulatory expresses enriched gene clusters involved in 

immune signaling processes associated with B cell, T-cells, NK cells and APCs; antigen-

presentation, immune cell transduction, cytokine and TNF signaling. Taking into account the 

distinct phenotypes such as infiltration of lymphocytes into IM tumours, they show better 

treatment responses compared to other breast tumour subtypes. Cytotoxic chemotherapy and 

immune checkpoint blockade may benefit patients with tumours of this subtype (Ahn, et al. 

2016). 

LAR subtypes differentially express pathways associated with oestrogen/androgen metabolism 

and hormone regulation with different DNA copy number (Burstein, et al. 2015). LAR tumours are 

targeted with androgen blockade (such as bicalutamide) and PI3K inhibitors as they are frequently 

mutated in LAR tumours (Lehmann, et al. 2011). A phase II clinical trial provided evidence of AR-

inhibitors in AR-positive TNBC patients with 19% of clinical benefit rate (CBR, 51 out of 424 

patients) (Gucalp, et al. 2013). Another phase II study showed clinical benefit rate (CBR) was 39% 

for 56 patients with AR-positive TNBC while only 11% CBR for 62 patients with AR-negative TNBC 

(Traina, et al. 2015), thus warranting the use of AR blockade in future therapies. Several on-going 

clinical trials in TNBC for targeted therapy, target therapeutic agents, combination target therapy 

and chemotherapy have been summarised by (Jhan and Andrechek 2017). Below is the table 

showing potential therapeutic targets used on subgroups of TNBC types. 

Table 1.2 TNBC subtypes and potential targets for therapy (adapted from (Collignon, et al. 2016) 

 TNBC subtypes Genetic abnormalities Potential therapeutic targets 

  

 Basal-like (BL1) 

Cell cycle gene expression 

Proliferation gene 

DNA repair gene (BRCA pathway) 

PARP inhibitors 

Gene-toxic agents 

Basal-like (BL2) 
Glycolysis, gluconeogenesis 

Myoepithelial marker expressions 

growth factors signaling 

mTOR inhibitors 

Growth factor inhibitors 

Luminal androgen receptor 

(LAR) 

AR gene expressions 

Luminal gene expression pattern 

Apocrine molecular subtype 

Anti-androgen therapy 

Immuno-modulatory (IM) 

Immune process (Ag presentation,  

CTLA-4, IL2/17) 

Medullary BC gene signature  

(the type with favourable prognosis) 

PD-1/PD-L1 inhibitors 

Mesenchymal-Like (ML) Cell differentiation and motility 

EMT, growth factor signaling 

mTOR inhibitors 

EMT and CSC targeted therapy 
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Although intense research on identification of potential, actionable targets, better knowledge on 

the biology of breast cancer microenvironment and immune cell interactions will allow for the 

identification and evaluation of novel specific treatment approaches devoted to this complicated 

and hard-to-kill BC subtype. 

1.6 Role of immune cells in BC subtypes 

BCs were not considered to be immunogenic previously. And several pieces of evidence indicate 

the association of high levels of TILs with prognosis and predictive values in TNBC patients. A 

higher level of TILs is a marker for an anti-tumour immune response or immune activity in TNBC 

patients.  It was also shown that TNBC patients with high TILs (>50%), in neoadjuvant settings, 

showed improved PFS and overall survival (Ono, et al. 2012). 

Although TNBC is frequently associated with TILs, only a minority of TNBC demonstrate the 

presence of high levels of TILs, suggesting that Immunotherapy (IM) might enable increase of 

adaptive immune infiltrate by promoting immune recognition to adequate levels for survival 

benefits of the majority of TNBC patients. The image below shows three contexts of tumour 

microenvironment determined by composition, density, functional state and organisation with 

leukocyte infiltrate. This information can help predicting responses, derive biomarkers for 

treatment and monitoring of anticancer therapies. 

Immune Desert

The Future of Immuno-Oncology turning Non-responders into responders

Immune ExcludedInflamed

 

Figure 1.5 Immune contexture in cancer prognosis and treatment. Images show the localisation of 

immune infiltrate (immune excluded), the presence of pre-existing immune responses (inflamed) and no 

infiltrate (immune desert) in cancer. (permissions acquired to re-print with reference from (Fridman, et al. 

2017). 

From figure 1.5, positive immune-related prognostic features involve the absence of 

immunosuppressive elements, the presence of specific T-cells and localisation of immune 

infiltrate within tumours. Anticancer therapies using chemotherapeutic or targeted agents aim to 

improve the local immune contexture to restore immune-surveillance for long-term protection. 

Presence of pre-existing response indicates a more favourable prognosis compared to patients 
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whose tumour lacks this feature (Fridman, et al. 2017). Use of immune-checkpoint blockade has a 

profound effect on TILs and with a better understanding of T-cell interactions with tumour cells, 

monoclonal antibodies to block immune checkpoint proteins have been developed. Some of the 

antibodies that block CTLA4, PD-1 or PD-L1 have been investigated in various TNBC treatments. 

The presence of TILs in TNBC is associated with better outcome it is reasonable to postulate that 

for the TNBC lacking TILs (immune desert) an immune response can be induced via the use of 

some immunotherapeutic intervention. The former will benefit from immunotherapy intended to 

remove the brakes that impair the function of the infiltrating immune cell while the latter will 

have to be first induced via the use of either oncolytic viruses or vaccines followed by some form 

of checkpoint inhibitors (all of these are discussed in further sections). In a metastatic setting, 

although there are some activities with vaccination therapy, the overall response has been 

disappointingly low. The only vaccine that is currently in phase III clinical trial is HER2 with GM-

CSF after showing clinical efficacy in Phase II with adoptive transfer of TILs into melanoma 

patients (Rosenberg, et al. 2011). Unfortunately, this trial has not been applied to breast cancer 

yet owing to the difficulty in generating of TILs against the primary tumour (Hinrichs and 

Rosenberg 2014). 

TNBC tumours are generally associated with high levels of TILs and activated expressions of 

inflammatory-related genes. Considering the more prominent role of TILs in the prognosis of 

TNBC than other subtypes, the efficacy of anti-PD1 has been evaluated in an immune-excluded 

contexture with an ideology to remove the brakes on all T-cells that might promote migration of 

T-cells into the tumour core from the periphery. Alternatively, anti-PD-L1 therapy can also 

theoretically prevent T-cell inactivity mediated by tumour cells on immune infiltrate. Clinical trials 

with anti‐PDL1 pembrolizumab and atezolizumab on 32 metastatic and 54 TNBC patients 

showed 19% and 24% response rates respectively, thus indicating the effect of PD-L1 blockade in 

TNBC tumours with pre-existing anti-tumour immunity. Recently, a trend of combining checkpoint 

blockades with other immune-modulatory agents have also been attempted to achieve complete 

pathological responses in TNBC patients. Combination strategy of PD-1/PD-L1 mAb was initiated 

in melanoma and some of these clinical trials also included use of co-stimulatory molecules and 

different therapeutics with chemotherapy to overcome blocking of intra-tumoural diffusion 

(Beyer, et al. 2011).  

In case of immune desert tumour microenvironment, inflammatory immune responses could be 

induced by use of vaccine immunotherapy, immunogenic chemotherapy, use of targeted agents, 

and even oncolytic viruses. Conversion of immune desert tumour environment into inflamed 

environment is mainly dependant on the efficiency of T-cell priming and activation. Sometimes 
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combination therapy involving low cytotoxic chemotherapy, use of TK inhibitors, TLR-agonist 

(such as CpG, poly I:C) and radiotherapy have shown to clinical responses (Bedognetti, et al. 2016). 

Thus, induction of inflammatory responses in immune desert tumours would be a primary pre-

requisite for a tumour to respond to any kind of therapy. This highlights the role of 

immunotherapeutic treatment approaches in such tumours to initiate a responding tumour 

environment that can be further adapted by other targeted combination strategies to achieve 

anticancer responses.  

1.7 Immunotherapy for breast cancer 

It is well established that tumour cells confer resistance to targeted therapies by activation of 

compensatory signals. Immunotherapy can target and eradicate micro-metastases depending on 

the tumour-specific protein expressions at minimal toxicity. Patients with an immunogenic 

tumour have a better prognosis which results in an enhanced immune system to target and kill 

cancer cells via personalised therapy in a high possibility of breast cancer treatment.  Most of the 

immunogenic breast tumours exhibit T-cell infiltration and yet survival of tumours is supported by 

immune suppressive mechanisms within the tumour microenvironment and inefficient sub-

optimal T-cell priming. Therefore, development of agents that trigger de novo T-cell responses 

towards neo-epitopes might be useful. A major focus of research in the last few years has been on 

the development of immune-checkpoint inhibitors to boost the anti-tumour immune response of 

vaccines. A considerable success has been achieved recently by using a combination of the 

blockade agents with vaccines or chemotherapy, thereby suggesting the approach to be a 

promising treatment strategy for patients with triple negative disease (Vonderheide, Domchek 

and Clark 2017). Immunotherapy can be of two types: active and passive. Active immunotherapy 

involves activation of patients own immune system to induce a tumour-specific cytotoxic and 

humoral immune responses with an immunological memory. Passive immunotherapy involves 

modulation of pre-existing immune responses directed to deliver anti-tumour immunity that does 

not have an immunological memory. 

1.7.1 Passive Immunotherapy 

1.7.1.1 Adoptive T-cell therapy 

Adoptive T-cell therapy (also referred as passive therapy), involves isolation of tumour specific T-

cells and expansion ex-vivo (Adams, et al. 2016). Priming of T-cells with cancer vaccine prior to T-

cell isolation from patient blood is a successful approach for ex vivo T-cell proliferation. In a phase 

I clinical trial involving 16 patients with metastatic breast cancer (mBC), bone marrow-derived 

tumour reactive T-cells re-stimulated in vitro with autologous dendritic cells pulsed with the 
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lysates derived from MCF7 cells, were able to induce immune responses against novel antigens. 

Moreover 44% of patients who received these in vitro activated T-cells and for whom tumour-

reactive memory T-cells could be detected in the peripheral blood had a significantly longer 

median survival compared to those who did not (Domschke, et al. 2013). One could argue that 

this approach might work better if a combination of breast cancer cell lines had been used instead 

of using only MCF7. 

1.7.1.2 CAR T-cells 

Engineering of T-cells has also been another research area where the gene encoding TCR are used 

to generate tumour-specific T-cells using α or β chain of TCR or with chimeric antigenic receptors 

(CAR) (Zhang, et al. 2016). CARs consist of tumour-specific antibody-derived extracellular domain 

linked to intracellular signalling domain. To generate tumour specific T-cells, genes are introduced 

by transfection or transduction into the patient’s own T-cells. The modified T-cells are then re-

infused into the patient’s blood to target tumour-specific proteins. The CAR T-cell technology is 

still in the pre-clinical phase of study for solid tumours owing to the challenge of using 

appropriate TAAs. In a pre-clinical study using TNBC tissues, CAR technique was assessed where 

67% of TNBC tissues expressed mesothelin (Tchou, et al. 2012). In vitro cytotoxicity assay using 

genetically modified mesothelin-specific CAR T-cells showed that these cells could kill 31.7% of 

mesothelin-expressing primary breast cancer cells compare to 8.7% by the unmodified T-cells 

(Tchou, et al. 2012). Another study identified another potential, target folate receptor α, from the 

observation that FRα specific CAR T-cells significantly inhibited the growth of MDA-MB-231 

xenograft in NO-SCID mice (Song, et al. 2016). In fact, a phase II clinical trial has been launched in 

2018 to treat TNBC patients with molecular target folate receptor (FRα), a biomarker that 

correlates with breast tumour recurrence (Precision vaccination article by Hackett DW, 2018). 

One study further modified the CAR-T cells generate to co-signal using CD3ζ and CD28 

respectively, the CD28-mediated signal 2 was used to promote T-cell proliferation while at the 

same time promoted the production of low level interleukin-2 (IL-2). These CAR T-cells modified 

to co-express HER2 and MUC1 not only induced T-cell expansion but also eradicated HER2+ 

tumours, thus confirming the advantage of using dual target CAR T-cell approach (Wilkie, et al. 

2012). The FDA has recently approved two CAR T-cell therapies (2017), for the treatment of acute 

lymphoblastic leukaemia (ALL) in children and for the treatment of lymphomas in the adults, but 

the progress of CAR T-cells in breast cancer is slow. HER2- specific polyclonal T-cells generated 

from vaccine-primed PBMCs were found to be safe and to induce tumour regressions in patients 

with advanced HER2+ cancers (Disis, et al. 2009). However, there are also studies showing adverse 

clinical effects following HER2-specific CAR T-cell transfer in metastatic colon cancer patients, 
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indicating that it is important to develop new CAR targets while paying particular attention to the 

“off-tumour” toxicity of organs expressing the CAR target (Morgan, et al. 2010). Researchers are 

now developing additional safety mechanisms that can be incorporated in the CAR T-cells, such as 

the use of transient mRNA coding for the c-Met CAR T-cells rather than lentiviral integration and 

used the intra-tumoural route of administration to accomplish gene transfer, rather than 

intravenous transfer (Vonderheide, et al. 2017). A recent finding has demonstrated the pre-

clinical efficacy of CAR T-cell-based therapy to target TEM8 (endothelial cell marker in colon 

tumour) as it is found upregulated in TNBC. Adoptive transfer of TEM8-specific CAR T-cells has 

induced killing of TEM8+ TNBC xenograft tumours and tumour endothelium to block tumour 

vasculature (Byrd, et al. 2018).  

1.7.1.3 Bispecific antibodies (BsAb) 

Bispecific antibodies are single molecules that contain the specificity of two antibodies and can 

simultaneously recognise different antigenic epitopes. The initial concept of using T-cells to target 

cancer cells emerged in the 1980s through the use of bispecific antibodies. Today, the majority of 

the bispecific antibodies are engineered to redirect effector cells (T, B, NK cells, macrophages, and 

monocytes) to recognise, assemble and kill tumour cells in a non-MHC restricted manner. 

According to the Fc domain, BsAb can be of two formats: IgG and non-IgG (Fan, et al. 2015). IgG-

like molecules retain Fc-mediated functions such as ADCC, complement-dependant-cellular 

phagocytosis (ADCP) (Nuñez-Prado, et al. 2015), majorly quandroma, knobs-into-holes, scFvs-IgG 

and (IgG)2. Quandroma is generated by combining the light and heavy chains of two different 

mAbs while knob into hole antibodies are additionally engineered by changing amino-acids to 

create a knob and hole in the CH3 heavy chain to prevent mispairing. The other formats free of Fc 

domain includes TandscFv, TandAb, F(ab’)2, Diabody, and DART (Fan, et al. 2015). In TandAb, VL 

and VH are connected by single polypeptide chain, and in TandscFv, two scFv are connected by a 

flexible short peptide linker to prevent intra-chain pairing but not the inter-chain pairing of VH 

and VL domains. Bispecific-T cell engager (BiTE) is based on the format with a long peptide linker. 

In diabody, two distinct antibodies are connected by two linkers, in tandem antibodies, VH and VL 

are connected by a single polypeptide chain. In DARTs, the configuration is VLA − VHB + VLB − VHA. 

Dual specificities allow bringing the tumour cells to a closer proximity to effector cells. Different 

formats are shown in fig 1.6 have resulted from combinations of whole antibodies with different 

fragments that allows modification to alter their specificity, immunogenicity, valency, 

pharmacokinetics and effector functions (Holliger and Hudson 2005).  
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Figure 1.6: Different formats of bispecific antibodies used in passive immunotherapy. Fc domain 

includes BITE, DART, Diabody, tandem Abs and remaining with Fc domain)- adapted from (Ayyar, Arora and 

O’Kennedy 2016) (Trends in Pharmaceutical sciences). scFv, single-chain Fv fragments; DART, Dual-Affinity 

Re-Targeting; TandAb, Tandem Diabodies; sctb, Single-chain Fv Triplebody; BIf, Bispecific scFv Immunofusion; 

DVD-Ig, Dual-Variable-Domain Immunoglobulin; VH, variable heavy chain; VL, variable light chain; CL, 

constant light chain and CH1-3, constant heavy chains. Linkers and disulphide bonds are illustrated as, thin 

and thick solid lines respectively. 

Catumaxomab is the first bispecific antibody approved in 2009 to treat malignant ascites that 

target EpCAM on tumour cells. T-cells were recruited via CD3 binding to TCR complex and 

concurrent activation of APCs and NK cells through Fcɣ receptor binding (Heiss, et al. 2005). In 

2014, a second bispecific antibody (Blinatumomab) was approved to treat B cell lymphoblastic 

leukaemia. The antibody has features of BiTE (small and lacking the Fc region) and acts by binding 
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to CD3 and CD19 on all cells (Buie, et al. 2015).  Ertumaxomab, an intact HER-2 bispecific antibody 

can simultaneously target HER2+ tumour cells and CD3 on T-cells and exerts ADCC function 

through activation of accessory cells via Fc fragment. A Phase I clinical trial with low expressing 

HER2+ resistant to trastuzumab in metastatic BC patients demonstrated the strong anti-tumour 

efficacy of this therapy where 33% of overall response rate (ORR) 15 patients experienced mild, 

reversible adverse effects (Kiewe and Thiel 2008). Another Phase I immunotherapy trial involving 

treatment of 23 metastatic breast cancer (MBC) patients with activated T-cells armed with anti-

CD3/HER2 BsAb in conjunction with low dose IL-2 and GM-CSF took place. The trial reported that 

the injection of the antibody resulted in 59% of patients having stable disease with improved 

overall survival (OS) of in 22.7% of HER2-/+ and median OS of 57.4 months in HER2+/3+ patients 

respectively. In addition, the treatment also induced Th1/type 1 immune responses with 

increased IL-12 production in MBC patients with a favourable survival benefit (Lum, et al. 2015a). 

The ability of Ertumaxomab to induce cytotoxic responses against low HER2-expressing tumours 

thereby provides a therapeutic option for BC unsuitable for HER2-targeted antibody treatments 

such as Trastuzumab, pertuzumab, and T-DMI (M. Jager, et al. 2009). MM-111 is a novel bispecific 

antibody that specifically targets HER2/3 heterodimer to block binding of HER3 and heregulin 

(HRG), thereby inhibiting downstream signaling pathways of HER3 (Huhalov, et al. 2010). 

Furthermore, drug-resistant tumours were significantly inhibited by activated T-cells bound to 

(HER2Bi-Aatc) HER2- bispecific antibody (Davol, et al. 2004). ZW25 is another humanised BsAb 

that showed potent anti-tumour activity in patients with low and HER2-expressing cancers 

(Hausman, et al. 2017). It is also suggested that BsAb targeting HER2 and CEA simultaneously 

could enhance tumour localisation since 12% of primary breast tumours expressing both HER2 

and CEA (Dorvillius, et al. 2002). 

Although passive immunotherapy can induce the protective immunity it can only last as long as 

the cells or the antibodies persist in the body and do not generally induce memory responses. On 

the contrary, an active immunotherapy can provide a sustained and long-term host immune 

benefit to fight against cancer even after the treatment has completed. 

1.7.2 Immune modulatory treatments for advanced breast cancers 

In women with TNBC, breast tumours do not express receptors for ER, PR, HER2+ and hence will 

not benefit from hormonal or HER2 targeted therapy. Therefore, surgery, chemotherapy, 

radiation and non-HER2 targeted therapy appear to be the only modalities currently available. In 

addition to these treatment modalities, immunotherapy is emerging to be a critical element in 

breast cancer treatment through cancer vaccine and immune-modulation. Although advances in 

molecular oncology have allowed significant initial promise, the complexity of the interactions 
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between the host immune system, the tumour, and its microenvironment still needs to be further 

understood for breast cancer care in the future. Owing to progress over years on understanding 

the breast cancer and tumour microenvironment, cancer immunotherapy has emerged to reflect 

the power of T-cell immunity, not only in tumour suppressions and prognosis for survival but also 

as predictive values for the response of primary, and metastatic BC subtypes to non-immune 

standard therapies. A list of treatments using immunotherapy against BC and TNBC that have 

been completed (table adapted from (Yu, et al. 2017) are shown below: 
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1.7.2.1 Immune checkpoint therapy 

Although breast tumours can be immunogenic, the functions of adaptive immune systems are 

dysregulated by inhibitory pathways (Topalian, Drake and Pardoll 2015). Immune checkpoints are 

surface molecules that mediate immune activation or inhibition within the tumour 

microenvironment, in the prevention of auto-immunity and in the maintenance of self-tolerance. 

The ligands can induce suppression of T-cells and activity of TILs. Thus, for the treatment of breast 

cancers and other solid tumours including melanoma, bladder and non-small lung cancers, 

targeting of immune checkpoints using blocking antibodies have shown an enhanced anti-tumour 

response (Yu, et al. 2017). T-cell-mediated cellular immunity is controlled by a system that is 

regulated by several stimulatory and inhibitory signals. Inhibitory receptors, referred to as 

immune checkpoints, regulate CTL activation and downstream effector functions to sustain self-

tolerance and reduce bystander tissue damage as a consequence of immune response versus 

pathogenic invasion (Pardoll 2012). When TCR recognises an antigen in the presence of MHC, 

immune checkpoint molecules modulate the co-stimulatory signal such as CD28 to amplify the T-

cell signal, while co-inhibitory molecules suppress this mechanism. Expressions of the molecules 

such as PD-L1/PD-L1 and CTLA-4 on activated T-cells tend to suppress anti-tumour responses 

when they adhere to their ligands present on either APCs or tumour cells. A new era of 

immunotherapy has emerged based on the use of monoclonal antibodies that target and block 

such immune-inhibitory interactions (refer fig 1.7) (Ott, Hodi and Robert 2013). Immune 

checkpoint inhibitors such as CTLA4, LAG3, and PD-1 are being used in breast cancer clinical trials 

and are discussed in detail in the following sections. 

1.7.2.1.1 CTLA-4 inhibitors 

The first immune checkpoint molecule that showed enhanced anti-tumour immunity upon 

inhibition is CTLA-4. In a two-step T-cell activation, the first step is antigen recognition by TCR and 

second step is a co-stimulatory signal from B7 and CD28 binding. CTLA-4, a homolog of CD28, 

binds with high-affinity B7 ligand yielding inhibitory signals that suppress T-cell activation. CTLA-4 

is the first immune inhibitor involved to prevent potentially dangerous self-reactive naive T cells 

during the initial stage of activation in the lymph nodes. CTLA-4 contrary to CD4+ T-cells is 

expressed constitutively by regulatory T-cells (Treg) which their function and are therefore key 

players in regulating peripheral tolerance (Topalian, et al. 2015). Thus, by blocking the CTLA-4, 

Treg cannot negatively regulate T-cells and there is a sustained T-cell activation that causes 

certain immune-related adverse reactions such as hypophysitis, colitis, and hepatitis (Maker, Attia 

and Rosenberg 2005).  
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Besides CTLA-4 inhibitors approved by FDA for melanoma, there are emerging clinical trials for 

breast cancer. As shown in table 1.2, two clinical trials in HER2-negative BC are being studied to 

determine the anti-tumour activity of tremelimumab (an anti-CTLA4 monoclonal antibody) in 

combination with MEDI4736 (anti-B7H1 antibody) and ipilimumab in combination with anti-B7H3 

antibody MGA271 for TNBC treatments. However, the safety profile of using CTLA-4 inhibitors in 

combination with other agents or therapies (chemo or radiation) and whether it would produce 

synergistic clinical outcome still need be determined. 

1.7.2.1.2 PD-1/PD-L1 inhibitors 

Another immunotherapy that has been approved by FDA for clinical studies is an inhibitor of PD-1 

or PD-L1.  CTLA-4 (cytotoxic T-lymphocyte–associated antigen 4) is considered to peripheral 

mechanisms employed by the immune system to prevent potentially auto-reactive T cells at initial 

stages of T cell activation in lymph node, and PD-1 pathways act to regulate the previously 

activated T cells at later stages of immune responses in peripheral tissues. Unlike CTLA-4 

expressions confined to T cells, PD-1 is broadly expressed on activated T cells, B cells and myeloid 

cells (Fife and Bluestone 2008). Prolonged T cell stimulation mediated by incomplete tumour 

clearance leads to T cell exhaustion with high PD-1 surface expressions. When a T cell undergoes 

coincident TCR and PD-1 binding, PD-1 generates a signal that prevents phosphorylation of key 

intermediates of TCR signaling resulting in reduced T cell activation and survival (Parry, et al. 

2005). Thus, PD-1 indicates exhausted state T cells that have experiences high levels of 

stimulation or reduced CD4+ T-cell help (Wherry 2011). 

Major ligands for PD-1 are PD-L1 (B7H1 or CD274), expressed by professional APCs, and PD-L2 

(B7DC or CD273, expressed by DCs and monocytes and even non-immune cells. Among them, PD-

L1 is responsible for tumour-immune modulation. PD-1 functions to down-regulate ongoing 

immunological effects in either the periphery or in neoplasm tissues. Several immune cells 

including CD4+, CD8+, B cells, NK cells and Tregs express PD-1. Inhibition of PD-1 on B cells has 

shown to enhance antibody responses, indicating that PD-1 plays a suppressive role in T-cell 

activation mediated by B cells (Ohaegbulam, et al. 2015). PD-1 blockade can reverse Treg 

mediated immune-suppressions and enhance the magnitude of immune responses from pre-

engaged T cells in effector phase. The PD-1 blockade is associated with low immune-related 

adverse effects compared to CTLA-4 as they act on the restricted spectrum of T cell activation (Ott, 

et al. 2013).  Thus, PD-1 has emerged as an immunotherapeutic target with PD-L1 as a potential 

response marker for PD-1/PD-L1 targeted therapies. PD-1/PD-L1 receptor-ligand interaction in the 

tumour microenvironment results in the blocking of immune responses. PD-1 and PD-L1 are 

majorly expressed on T-cells and tumour cells and APCs respectively, hence antibody inhibitors 
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that block either PD-1 or PD-L1 can allow activation/resurrection of cytotoxic T-cells, to induce T-

cell-mediated immunity.  

PD-L1 expressions at protein levels have been detected in 20-30% of BC particularly TNBC 

(Wimberly, et al. 2015), while PD-L1 mRNA expressions are detected in larger breast tumour 

subsets (Soliman, et al. 2014). However, tumours are heterogeneous in nature, so PD-L1 

expressions are not expressed uniformly across or within tumours. This is reflected by the varying 

levels of PD-L1 staining within tumours. Thus, PD-L1 tumour expressions and response to PD-L1 

inhibitors are still an area of debate that requires further understanding (D. Wang, et al. 2016). 

Similarly, PD-1 expressions vary depending on characteristics of the patients’ immune response. 

Nivolumab and Pembrolizumab are FDA approved PD-1 blockers for the treatment of metastatic 

melanoma and NSCLC with excellent clinical response in Phase III clinical trials against advances 

melanoma than NSCLC, renal cell carcinoma (RCC) (Postow, Callahan and Wolchok 2015).  

Atezolizumab is the first FDA-approved PD-L1 blocker and the efficacy was assessed in 21 PD-L1 

positive TNBC patients, with 24% objective responses: 10 %, 14% and 29% of patients showing 

complete responses, pathological response and progression-free survival at 24 weeks respectively 

with however several clinical adverse effects (Lum, et al. 2015b). Unfortunately, it is difficult to 

achieve such responses with patients pre-treated with chemotherapy. Another Phase II clinical 

trial using avelumab on metastatic TNBC patients showed an acceptable safety profile with 8.8% 

PR in TNBC and all the PR TNBC patients were PD-L1 positive (Dirix, et al. 2016). Thus, targeting 

PD-1 and PD-L1 can contribute towards an effective treatment with significant therapeutic activity. 

1.7.2.1.3 IDO1 inhibitors 

IDO 1 is an immunosuppressive enzyme reported to be involved in a tumour immune escape and 

is expressed in a range of carcinomas. Their expressions in a tumour, stromal and innate immune 

cells are associated with poor prognosis (Godin-Ethier, et al. 2011). Use of IDO blockade to block 

tryptophan catabolic enzymes, TDO and IDO2 have been developed as a new class of cancer 

therapeutic targets with compounds such as indoximod, epacadostat and navoximod were first to 

be evaluated in clinical trials (Prendergast, et al. 2017). Reports have shown that IDO1 is 

expressed in 37% of TNBCs and reflects the mutational load in basal-like TNBC tumours suggesting 

stratification of TNBC patients who would be more efficaciously treated with IDO1 inhibitors (S. 

Kim, et al. 2017). In fact, clinical trials based targeting IDO enzyme showed promise in serving as a 

therapy to convert non-responding advanced/metastatic TNBC patients to responders to 

treatment with checkpoint blockade to have a favourable prognosis and survival benefit (Tolba 

and Omar 2018). Thus, as IDO inhibitors continue to be evaluated in clinical trials, it is suggested 
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that combinatorial targeting of IDO1/2 and TDO in a single modality may offer opportunities to 

broaden therapeutic window to leverage not only immunotherapy regimens but also standard 

chemotherapy and radiotherapy in oncology clinics. 

1.7.2.1.4 LAG-3 target therapy 

Upregulated expressions of inhibitory receptors (IR) are crucial to counter balance the co-

stimulatory signaling activity and limit T cell activation. Lymphocyte activation gene-3 is an 

inhibitory receptor that is expressed on activated T-cells, NK cells, and DCs. LAG-3 up-regulations 

are essential to control hyper-activation of T cell to prevent onset of autoimmunity. Like CTLA-4 

and PD-1, LAG-3 is also reported to negatively regulate T-cell activation, proliferation and T-cell 

homeostasis and functioning of immune-suppressive Tregs (Huang, et al. 2004). LAG-3 has high 

structural homogeneity with CD4 exhibiting a high affinity to MHC class II molecule than CD4+ cells. 

Phase I clinical trial using anti-LAG3 (BMS-986016) mAb were initiated in 2013, as show clinical 

efficacy of antagonist LAG-3 antibodies making the third IR for targeted therapy. Since then, 

several LAG-3 modulating immunotherapeutic agents have been developed (Andrews, et al. 2017). 

IMP321, a soluble form of LAG-3, is an APC activator that functions by binding to MHC Class II to 

mediate APC activation followed by activation of CD8+ T cells. IMP321 in combination with 

paclitaxel has been evaluated in Phase I/II clinical trial with metastatic breast carcinoma. Results 

showed an increase in APC activation with an increase in the percentage of NK cells and cytotoxic 

effector-memory T-cells. (Table 1.2) The trial resulted in 50% overall response rate (ORR) and 90% 

clinical benefit with no clinically relevant adverse effects (Brignone, et al. 2010). Currently, a 

phase II clinical trial with IMP321, placebo, and paclitaxel is being conducted (NCT02614833). 
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Figure 1.7 Immunological co-signaling/interactions between T-cells and tumour or antigen presenting 

cells (adapted from Iwai Y et al., 2017) 

1.7.2.2 Stimulatory molecule agonist antibodies 

Besides targeting of immune checkpoints as mentioned above, there are a number of molecules 

that positively regulate T-cell activation. Co-stimulatory molecules play a central role in the 

initiation of T-cell responses. CD28 and CTLA-4 on T-cells represent to be stimulatory and 

inhibitory receptors respectively, with B7 molecules representing to be their corresponding 

ligands on APCs. It is well studied that among these, signal mediated by CD28 is required for T-cell 

activation while CTLA-4 has an antagonistic role  (Gardner, Jeffery and Sansom 2014).  The 

cognate ligands on APCs are CD80 (B7-1) and CD86 (B7-2), members of the B7 family. Both these 

molecules show a similar affinity towards CD28 receptors but differentially induce Th1 or Th2 

responses (Kuchroo, et al. 1995, Schweitzer and Sharpe 1998). It is also reported that CTLA-4 

(CD152) on T-cells also bind to CD80/86 and this interaction inhibits proliferation of CD4+ T-cells. 

In addition, CD40 on APCs such as dendritic cells can promote T-cell stimulation, however, CD40 

can interact with CD40 ligand (CD40L, CD154) only when expressed on T-cell surface upon 

activation. Another important co-stimulatory signal for optimal CD8+ T-cell activation is provided 

by the binding of receptors of family members of TNFα, such as OX40 and 4-1BB, with their 

respective cognate ligands.  Since the overall process of T-cell activation involves the integration 

of both negative and positive signals, it is believed that the use of an agonist could synergise with 
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targeted checkpoint blockade to augment T-cell-mediated anti-tumour responses. Although 

research on the potential of stimulatory molecule agonists in breast cancer therapy is still in its 

infancy, it might provide opportunities for combinatorial immunotherapeutic strategies in clinics 

in future. Immune stimulatory signaling and interactions are shown in fig 1.7. 

1.7.2.2.1 OX-40 agonist antibodies 

OX-40 (CD134) member of TNFα superfamily, expressed by both CD4+ and CD8+ T-cells during 

antigen-specific priming (Lane 2000, Bansal-Pakala, et al. 2004). Cross-linking of CD3/TCR in the 

presence of inflammatory cytokines such as IL-1, IL-2, TNF induces OX-40 expressions. OX-40 is 

not constitutively expressed on CD4+ T cells but is induced by antigen recognition at its peak from 

24hrs onwards to last longer in time period than CD8+ T-cells (<72h) (Cannons, et al. 2001) and 

these prolonged signaling through OX-40 with agonist Ab can induce protective CD8+ response 

where initial OX40/40L interactions were insufficient (Bansal-Pakala, et al. 2004). Ligation of OX40 

with OX40L or agonist antibodies is reported to promote the expansion of T-cells in a study 

demonstrating reduced CD4+/8+ T-cell expansion in OX40 or OX40L knockout mice (Hendriks, et al. 

2005, Redmond, et al. 2007). There are several studies highlighting the importance of endogenous 

OX40 expressions regulating T-cell expansion (Soroosh, et al. 2006, Marriott, et al. 2014). In 

addition, OX40 is shown to inhibit IL10 production and Treg suppressive function (Ito, et al. 2006). 

Further, a study on OX40 ability to regulate immune responses of T-cells derived from tumours 

and tumour-draining lymph node in mice and humans has led to an investigation of patient 

response to manipulations of OX-40 as a treatment. A Phase I clinical trial in patients with OX40 

monotherapy on metastatic cancers patients showed potent immune stimulation inducing 

regression of at least one metastatic lesion in 30% patients (Curti, et al. 2013). Several other 

clinical trials combining anti-OX040 mAbs with radiation and other checkpoint inhibitors on 

patients with solid tumours are currently ongoing (Aspeslagh, et al. 2016). 

In breast cancer, activated immune cells and TILs express OX40 and a Phase I clinical trial showed 

that OX40 agonist (9B12) induced regressions of metastatic lesions in 40% (12/30) patients. 

Besides acceptable levels of toxicity, increase in CD4+/CD8+ proliferation and endogenous tumour-

specific immune responses (Curti, et al. 2013) have been observed. Another phase I/II trial on 

patients with progressive metastatic breast cancer is currently ongoing with treatments using 

anti-OX40 antibody (MEDI6469, NCT01862900 refer to table 1.2) in combination with stereotactic 

radiotherapy. Given the immunological effects of OX40, its application in conjunction with other 

therapeutic agents/vaccines are more likely to increase the antigen-specific T and B-cell responses. 
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1.7.2.2.2 4-1BB agonist antibodies 

4-1BB (CD137) is another appealing candidate from the TNF superfamily for developing targeted 

therapies. 4-1BB is expressed on activated T-cells, NK cells, dendritic cells, eosinophils, mast-cells, 

Tregs and even on endothelial cells of some metastatic tumours (Watts 2005). 4-1BBL is 

expressed on DCs, macrophages, and also B cells. Binding of 4-1BB with its ligand results in up 

regulation of anti-apoptotic genes that prevent activation-induced cell death (AICD), thereby 

promoting durable CTL responses (Myers, et al. 2005). While it is assumed that T-cell co-

stimulation is the main consequences of 4-1BB antibody agonist binding, there are further 

evidence, provided by experimental data, supporting the hypothesis that such an antibody affect 

the function of several other immune cells: a) APCs activation, b) reduction in suppressive ability 

of Tregs or resistance of effector cells to suppression and c) co-stimulation of CD4+/CD8+ T-cells 

(Morris, Chen and Yi-chi 2003, Choi, et al. 2004). Furthermore, along with Tregs, activated NK and 

NKT-cells may also be relevant targets for anti-tumour activity. The use of anti-4-1BB agonist 

antibodies has been shown to induce an enhanced CTL response capable of rejecting established 

syngeneic tumour cell lines (Shuford, et al. 1997, Lynch 2008). Similar to other stimulatory 

antibodies, the combination with vaccination strategies has shown to improve the immune 

activity of poorly immunogenic tumours (Wilcox, et al. 2002). Phase II clinical trial of melanoma 

and RCC patients with Urelumab (BMS-663513, monoclonal anti-4-1BB antibody) suggested some 

evidence of responses (6 % PR in melanoma patients) with the antibody being well-tolerated 

(Ascierto, et al. 2010). Synergistic effects of 4-1BB antibody with trastuzumab could eradicate 

tumours in murine xeno-transplant of human breast cancer (Kohrt, et al. 2012). Since agonistic 4-

1BB antibody stimulated NK activation, it can be used for enhancing NK-mediated ADCC. However, 

the ability of anti-4-1BB to elevate autoimmunity (Sun, et al. 2002) and suppress humoral 

immunity in mice seems intriguing (Hong, et al. 2000, Fukushima, et al. 2005). As much as this 

could be used to the advantage of limiting antibody-mediated cytotoxicity, it could also be 

detrimental for generating an optimal anti-tumour immunity.   

1.7.2.2.3 CD40 agonist antibodies 

CD40 is also a member of TNFα superfamily, found to be expressed on APCs and its ligand CD40L 

is expressed on activated T cells. This CD40-CD40L interaction induces secretion of cytokines (such 

as IL-12) that promote T cell differentiation. CD40-CD40L, along with B7-CD28 interactions play an 

important role in co-stimulatory signaling for subsequent enhanced activation of antigen-specific 

T-cells  (Moran, Kovacsovics-Bankowski and Weinberg 2013). A Phase I clinical trial in patients 

with stage II and IV solid malignancies showed that treatment with agonistic anti-CD40 antibody 

was well-tolerated with 27% of partial response observed (Vonderheide, et al. 2007). The safety 
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of CD40 agonist mAb CP-870,893 in combination with paclitaxel and carboplatin was assessed in 

patients with advanced solid tumours with 20% showing partial responses (Vonderheide, et al. 

2013).  It was also suggested that progressions of breast cancer disease affect mRNA expressions 

of CD40 along with PD-L1, CD80 and CD14 as measured by qRT-PCR using mRNA derived from 

PBMCs of metastatic breast cancer patients compared to mRNA in PBMCs from healthy donors 

(Kawaguchi, et al. 2017). Although initially stimulation of CD40 with human CD40 ligand inhibits 

breast cancer both in in vitro and in vivo SCID mouse models (Hirano, et al. 1999), recently it was 

shown that direct CD40-CD40L interactions promote growth of breast tumour cells with increased 

production of IL-17, and TGFβ (H. Kim, et al. 2015). Moreover, a clinical study reported that 

cytoplasmic expressions of CD40 correlate with better prognosis suggesting the potential 

prognostic values of CD40 in breast cancer (Slobodova Z et al., 2011). Studies on the treatment of 

breast cancer cells with human recombinant CD40 ligand were observed to show direct cytotoxic 

activity along with up-regulation of co-stimulators, cytokines, adhesion molecules (Wang, et al. 

2013). 

1.7.3 Cancer vaccines 

The use of either checkpoint inhibitors to release the break or of agonist antibodies targeting 

stimulatory molecules all rely on the existence of a pre-existing immunity in the patients which as 

the immune landscape of some tumours show is not happening (immune desert), active 

immunotherapy using vaccines focuses on promoting the body’s own immune system to induce a 

tumour-specific immunity. Vaccines are capable of stimulating the patients ‘own immune system 

to recognise and kill tumour cells without affecting normal cells (Drake, Lipson and Brahmer 2014). 

Since William Coley in 1910s described the treatment of round-cell sarcoma with Streptococcus 

and Serratia vaccinations, the field of cancer vaccines has become an active area of research. 

Cancer vaccines include whole cell-based vaccine, antigen-specific (mRNA, DNA or 

protein/peptide-based), with or without dendritic cell-based (Guo, et al. 2013) and anti-idiotype. 

1.7.3.1 Cell-based vaccines 

Earlier strategies for cancer vaccination include tumour cell-based vaccines which involve the use 

of patient-derived tumour cells or allogenic cell lines (another member of same species) as 

immunogens. Autologous cancer vaccinations using irradiated cancer cells can be further 

improved by transfections with additional immune stimulatory molecules to induce anti-tumour 

immunity. Theoretically, the immunogen makes tumour cells more immunogenic and along with 

radiation, and the use of adjuvants can induce tumour lysis. The drawback of whole tumour cell 

vaccine is that the immune system is presented with a large number of normal and tumour 



38 

 

antigens as immunogens that can induce competitive inhibition in the immune system. Although 

these tumour tissues Disadvantages include the logistics of processing, manufacturing, and re-

injection of autologous vaccine preparations into each individual patient. Live tumour cells are 

less immunogenic due to secretion of various immune-modulatory signals. Moreover, allogenic 

vaccines derived from cancer cell lines of same species and type (lung, prostate, breast), they do 

not contain patient-specific tumour antigens and despite this disadvantage cell-based 

vaccinations have been used in clinical trials on patients with breast, lung, NSCLC cancers, 

melanoma and CML (Srivatsan, et al. 2014). Vaccination of 30 Her2+ mBC patients with allogenic 

breast cell line (MDA-MB-231) modified to express CD80 (B7-1) showed the strategy was well-

tolerised with tumour-specific immune responses induced only in minority of patients with no 

objective tumour regressions (Dols, et al. 2003).  Another Phase I clinical trials with allogenic GM-

CSF secreting breast tumour vaccine with cyclophosphamide (CY) and doxorubicin (DOX) have 

shown to enhance vaccine-induced immunity in mBC patients (Emens, et al. 2009). Many different 

methods have been evaluated to genetically modify the tumour cells to include immunogenic 

haptens, antigens, viral oncolysates, cytokines and/or co-stimulatory molecules (Berinstein and 

Berinstein 2013). It has been shown that HER2-specific cell-based vaccine induced robust tumour 

rejections with higher CD8+ T cell responses than HER2- specific, providing protection in 60% of 

mice re-challenged with Her2+ tumour cells (Chen, Jaffee and Emens 2013).  

1.7.3.2 DC-based vaccines 

DC-based immunotherapy has been shown to benefit BC patients, through CD40-CD40L 

interaction between DCs and T-cells for antigen presentation (Nencioni, et al. 2008). In BC, DCs 

were reported to be dysfunctional with weak lymph node migrations, low CD86, HLA, low IL-12 

secretions that prevent efficient antigen presentation to T-cells (Satthaporn, et al. 2004, Ma, et al. 

2013). In the tumour microenvironment, the presence of MDSCs and Tregs inhibit DC maturation 

by secreting suppressive cytokines such as VEGF, IL-10 that induces T-cell anergy and promote 

tumour progressions (De Monte, et al. 2011). Thus, to address these issues, DCs were bulked up 

ex vivo, induced using GM-CSF and IL-4 for subsequent antigen loading (in the form of DNA, 

protein, RNA or peptides) to produce mature DCs for clinical applications (Banchereau, et al. 

2001). 

Cell-based vaccine approach involves the synthesis of dendritic cells (DCs) loaded with tumour-

antigen ex-vivo followed by in vivo administration into patients. Based on the effectiveness of 

peptide-loaded DCs, the anti-tumour immunity is activated. A phase I trial with Lapuleucel-T, a 

vaccine generated based on PBMCs being co-cultured ex-vivo with HER2 sequences linked to GM-

CSF was shown to be well tolerated with significant HER2-specific T-cell expansion and 16.6% of 
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stable disease lasting for at least 1 year (Park, et al. 2007). Given that P53 is expressed in 30% of 

breast cancers, treatment with p53 has generated spontaneous p53-reactive T-cells producing 

p53-specific IFNɣ responses in 40% of patients  (Met, et al. 2011). A phase II clinical trial involving 

patients with progressive BC were treated with p53 DC vaccine resulting in 42% patients attaining 

stable disease (SD) and found to be associated with p53 tumour expressions, serum YKL-40 

(Chitinase-3-like protein1 an inflammatory glycoprotein) and IL-6 levels (Svane, et al. 2007). A 

combination of p53 DC vaccine with indoximob, an IDO inhibitor (Indoleamine 2,3-dioxygenase 1), 

was well tolerated but showed no effect, however, benefited responses from subsequent 

chemotherapy (Soliman, et al. 2014). DC vaccination with HLA-A*0201 restricted HER2 or MUC 

peptide-pulsed DCs have shown to induce responses in BC patients but clinical efficacy was not 

reported (Brossart, et al. 2000) while DCs using tumour lysate only showed a partial response (Qi, 

et al. 2012). Combination of DCs with cytokine releasing killer cells (IL-2, IL-12) has also shown 

improved patients outcomes and PFS (Ren, et al. 2013).  

Many more studies have assessed the efficacies of HER2 based DC vaccines in breast and bladder 

cancers (NCT01730118), p53 (NCT00049218), MUC1 (NCT02140996, NCT03300817, 

NCT00415818), and MAGE-3 (NCT00290355) in patients with a variety of cancers. With progress 

in the development of anti-cancer vaccines, pre-clinical and clinical reports suggest the synergistic 

effects of combining radiation therapy with cancer vaccines such as TLR (3, 7, 9), viral components, 

and DC subunit-based vaccines (Cadena, et al. 2018) 

1.7.3.3 Antigen-specific vaccine 

In general, the basic principle of cancer immune-surveillance is that malignant/cancer cells usually 

have an altered cell-surface antigenic protein expression that differentiates them from the normal 

cells which have broader implications for target selection, drug specificity and efficacy. Malignant 

cells express both normal self-antigens and tumour-associated antigens that arise from mutations 

or epigenetic events. These antigens can be classified into different types such as differentiation 

antigens, mutational, over-expressed, and viral and cancer-testis (CT) antigens. CT antigens are 

expressed by the germ line cells of testis and are silent in normal somatic cells (e.g. MAGE, NY-

ESO-1). Several of these tumours associated antigens (TAAs) (such as MUC-1, Her2/Neu), 

expressed in breast cancer, are also expressed in many other tumour types and some healthy 

tissues but are shown to be specifically recognised by T-cells (Jager, et al. 2000). 

Since the identification of MAGE as the first human tumour antigen, a range of new vaccines were 

successfully designed to target MAGE, Melan A. MART-1, gp100, tyrosinase, and Her2/neu in pre-

clinical models (Lachman, et al. 2001, Goldberg, et al. 2005). Regressions of metastatic lesions 
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were noted to be associated with peptide-specific CD8+ responses detected in patients and 

prolonged immunisations were shown to increase frequencies of antigen-specific CD8+ T cell 

clones (Jager, et al. 2000, Coulie, et al. 2001, Disis, et al. 2009). The criterions for an ideal antigen 

are oncogenic nature, specificity and high antigen expressions in cancer patients. Other criterion 

includes the cellular location of the antigen, the proportion of antigen-positive patients, number 

of antigenic epitopes and stem cell expressions (Cheever, et al. 2009). The majority of the 

antigens, including TERT and WT1, have been studied for their therapeutic efficacy and 

immunogenicity before translation into a clinical vaccine for treatment or prevention. 

There have been extensive efforts taken to develop therapeutic vaccinations for breast cancer. 

Tumour antigens targeted in clinical trials are HER2, MUC1, telomerase, survivin, mammaglobin, 

mutant p53, sialyl-Tn- keyhole limpet hemocyanin (KLH) and more (Emens 2012). These TAAs are 

now being considered for the development of bi-specific antibodies, CAR T-cells form of therapy 

(Emens 2012). Among 63 CT genes that were found to be upregulated in TNBC patients compared 

to non-TNBC datasets, several of the identified genes encode CT antigens such as MAGE-A (2, 3, 4, 

5, 6, 9B, 10, 12), NY-ESO1 and PRAME indicating that TNBCs express higher levels of certain CT 

antigens. (Liu, et al. 2018). Several vaccine formulations involving peptides, whole proteins and 

genetically-engineered constructs have been used. While most of the vaccines demonstrated that 

they could induce antigen-specific T-cell immunity, the majority of them did not translate into real 

clinical benefit (Rosenberg, Yang and Restifo 2004; Maeng, Terabe and Berzofsky 2018). 

MUC1 is a membrane-associated glycoprotein expressed not only in breast duct epithelia but also 

in lung, pancreas and the gastrointestinal tract. More than 70 % of cancers overexpress MUC1 

thus suggesting it to be a potential immunotherapeutic target (Kohlgraf, et al. 2004). Studies have 

shown the naturally immunogenic potential of MUC1 in vivo with generation of both humoral and 

cellular responses against in cancer patients (Ko, et al. 2003, Hamanaka, et al. 2003). Studies 

suggest that peptide MUC-1 vaccines induce CTL responses but antibody responses are 

unpredictable (Criscitiello 2012). Furthermore, MUC1 peptides used for vaccinations are different 

to MUC1 molecules that are under-glycosylated on tumour cells making MUC1 undetectable by 

antibodies generated with non-glycosylated peptide vaccine. However, there is also 

carcinoembryonic antigen (CEA) that seem to show safety and efficacy in clinical trials particularly 

CEA based, dendritic cells and recombinant viral-based vaccines. Human telomerase reverse 

transcriptase (hTERT) is another potential therapeutic target that has immunogenic epitopes to 

trigger cytotoxic T-cells in preclinical models. It is expressed in almost 85 % of cancers. hTERT 

based DC vaccines have shown safety and induction of hTERT-specific responses in BC and 

prostate cancer patients demonstrating the association of partial tumour regressions with CD8+ 
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TILs, thereby suggesting the rationale of using self antigens for vaccinating patients against 

telomerase (Vonderheide, et al. 2004).  

Mammaglobin is another glycoprotein molecule that is overexpressed in 80 % of metastatic 

breast cancers. GCDFP15 (Gross cystic disease fluid protein 15) expressions are also reported in 14 

% of primary and 21 % of metastatic TNBC (Huo, et al. 2013). However, in 2014 Rakhshani N et al., 

found that these markers were not expressed by TNBC in metastatic settings in the majority of 

cases. It was later found that SOX10 was a better marker for metastatic TNBC since it was 

expressed in 59 % cases which was higher than that found with markers such as GATA3, GCDFP15 

and even mammaglobin, suggesting the use of SOX10 as a diagnostic marker for metastatic TNBC 

(Peevey, et al. 2015).  Since TNBC are aggressive cancer types, it is often associated with poor 

prognosis and epithelial-mesenchymal transition (EMT) which is a crucial step in TNBC metastasis. 

MAGE-A expression profile was found to correlate with the prevalence of EMT marker vimentin 

but not epithelial markers E-cadherin or B catenin, suggesting the role of MAGEA in 

aggressiveness of TNBC (Wang, et al. 2016). 

Clinical trials using MAGEA and NY-ESO-1 are being carried out in cancer patients with lung, ovary, 

and melanoma. MAGEA and NY-ESO-1 are CT antigens that are expressed in 38% and 20% of ER-

negative primary breast tumours respectively and about 40% of ER-neg tumours express either 

MAGEA or NY-ESO-1 family members (Grigoriadis, et al. 2009). Both MAGEA and NY-ESO-1 have 

been found to be enriched in TMA staining of TNBC (47 % and 17 % respectively), suggesting their 

potential as a target and a biomarker in that patient group (Raghavendra, et al. 2018). Among the 

few antigens, Wilm’s tumour (WT-1) antigen is also expressed in 56 % of TNBC (Esposito, et al. 

2014). NY-ESO-1 expressions in DCIS has been shown to be a predictor of good prognosis as lack 

of NY-ESO-1 confers a high risk of invasive BC development in a cohort of 42 patients with DCIS. 

(Coombes, et al. 2017). NY-ESO-1, an independent prognostic marker is also associated with TILs 

(Lee, et al. 2015). T-cell therapy using NY-ESO-1 SPEAR T-cells have been used in phase I/II clinical 

trials in patients with multiple myeloma, HSCLC, melanoma and ovarian cancers, while 

MAGEA4/10 SPEAR T-cell therapy is in phase I study to evaluate efficacy in patients with 

melanoma, head and neck, ovarian, gastric and oesophageal and bladder cancers 

(www.adaptimmune.com/pipeline).  

1.7.3.4 DNA vaccines 

The therapeutic approach to cancer vaccines also includes the use of DNA encoding for tumour 

antigens to mount an immune response in tumour patients. Usually, it involves vaccination of 

patients with DNA plasmids to generate key tumour antigens without integrating into the host 

http://www.adaptimmune.com/pipeline
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cellular DNA. DNA vaccines offer the advantages of tailoring the plasmid backbone according to 

the theoretical concepts of the researcher. Generally, DNA plasmids constructs are composed of 

optimal eukaryotic promoters and polyadenylation signal to induce sufficient expressions of 

elements of interest (Ghanem, Healey and Adly 2013). It can also be designed to co-express co-

stimulatory molecules to induce both adaptive and cellular immunity (Lan, et al. 2013). Molecular 

adjuvants for DNA vaccines include cytokines (IL-2/12/15, GM-CSF), immune co-stimulatory 

molecules (CD28, CD80/86, CD40 etc), chemokines (Macrophage inflammatory protein, RANTES, 

CCR7), TLR agonists (TLR-3, TLR-9) or inhibitors of immuno-suppression (CTLA4, PD-1/PD-L1) and 

other co-signalling molecules (HSP70, TLR- adaptor proteins, T-Bet, NF-kB, transcription factors 

IRF 1,3,7 etc) (Li and Petrovsky 2016). DNA vaccines are usually delivered to DCs of the skin 

muscle cells (myocytes) by either electroporation or intra-muscular injection using gene gun 

(Colluru, et al. 2016) which then translates TAAs into both Class I and II pathways by two 

mechanisms of direct and cross presentations (non-DCs). Myocytes or dead cells at vaccination 

sites act as an antigen source to allows constant antigen supply (Rice, Ottensmeier and Stevenson 

2008). Several studies have demonstrated the clinical efficacy and safety of DNA vaccines in pre-

clinical models and also in Phase I / II clinical trials (Triozzi, et al. 2005, Chudley, et al. 2012). 

Human clinical trials using DNA vaccines include HPV-related cancers, breast cancer, prostate, and 

melanoma are on-going (NCT00807781, NCT01493154, NCT00849121, and NCT01138410 on 

clinicaltrials.gov). Another example of DNA vaccine is known as ImmunoBody®, developed by 

Scancell Ltd., tailored for immunotherapy against melanoma and was shown to generate high 

avidity T-cell responses in cancer patients (Pudney, et al. 2010). This DNA vaccine delivery system 

has been used in this study and hence has been discussed in detail in chapter 4. 

1.7.3.5 Protein /peptide vaccine 

Since the identification of tumour associated antigens (TAAs) expressed by many tumours cells, 

development of antigen-based vaccines using protein or protein subunits has been an active area 

of cancer research  (Parmiani, et al. 2007). Compared to CAR-T cells, TCR adoptive therapies that 

can target only surface antigen, peptide vaccines offer an advantage with the flexibility of using 

surface or intracellular protein-derived epitopes to confront antigen/epitope shedding by use of 

multiple antigenic epitopes. However, prior to designing effective anti-cancer vaccine, it is crucial 

to understand the disadvantages such that peptide or protein-based vaccines may also induce 

antibody responses that can induce anaphylaxis. This can be addressed by modifications of 

immunogen if necessary to design peptides that do not carry B cell epitopes.  

Natural immune responses against antigens or pathogens usually consist of integrated Th 

responses (CD4+) presented by MHC Class II and CTL responses (CD8+) to epitopes presented by 
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MHC Class I molecules. It is studied that strong helper T cell responses produce a cytokine milieu 

(TNFα, IL-2, IFNɣ) that promotes proliferation of CD8+ T cells with acquisition of cytolytic 

phenotype (Gattinoni, et al. 2005; Kim, Imbert and Leonard 2006). Thus, the rationale of peptide 

vaccines includes induction of CD8+ T cells along with stimulation of CD4+ T cells. Generally, the 

immunogenicity of peptide vaccines depends on the length and formulation of peptides that 

incorporate short or long amino acid sequences derived from tumour antigens combined with a 

vaccine adjuvant. In fact, development of effective peptide vaccines aims to generate large 

frequencies of strong peptide-specific T cells that offer long-term tumour protection. To achieve 

large quantities of T cells, a priming event is vital so as to expand T cell clones during the second 

antigen encounter. APC-mediated antigen processing eventually stimulates naïve T cells that can 

proliferate even upon second encounter on non-professional APCs. But when such naïve T cells 

experience antigenic peptides, the event of suboptimal engagement of peptide-MHC complexes 

from non-DCs trigger T cell anergy (Sadegh‐Nasseri, et al. 2010).  The strategy of using long 

peptides in vaccines allow presentation by DCs and requires exogenous antigen processing to 

produce minimal short peptide or Class I epitopes (Melief and Van Der Burg, Sjoerd H 2008). 

Moreover, vaccines using long peptides offer the advantage of harbouring MHC Class II and 

multiple MHC Class I epitopes restricted to broad HLA types. Upon peptide vaccination, 

intracellular processing (exogenous/endogenous), peptide/MHC complexes are transported to the 

cell surface carrying 8-10AA and 13-15AA that can be recognised by TCRs of CD8+ and CD4+ T-cells 

respectively. Although whole proteins are used in patients to allow the generation of responses 

against all antigenic peptides present within the protein, Melief and colleagues showed that use 

of long peptide rather than the entire protein could induce stronger immune responses. The first 

generation of peptide vaccines used short epitopes to exclusively target CD8+ T-cell responses and 

later long peptide harbouring both CD4+/CD8+ T-cell epitopes were shown to generate efficient 

anti-tumour responses (Melief and Van Der Burg, Sjoerd H 2008). Beyond peptide length, it is 

believed that prime-boost immunisation, route of administration, boosting event, and use of 

appropriate adjuvants play a critical role in the success of a peptide-based cancer vaccine (Sultan, 

et al. 2017). Detailed discussion of each of these factors are described in various chapter of this 

thesis. Route of administration influences the recruitment of naïve T cells fractions to generate 

primary responses, but T cells receiving TCR stimulation, without appropriate co-stimulation and 

cytokines become anergic upon subsequent activation (Sckisel, et al. 2015). This highlights the 

necessity of appropriate adjuvants that can augment activation and expansion T cells to achieve 

effective anti-tumour response. 
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Traditionally, peptide vaccine studies involve the use of immune-modulatory adjuvants that can 

enhance vaccine potency in triggering an immune response. Adjuvants such as incomplete or 

complete (IFA/ CFA, acts as a depot), CpG motifs, Poly I:C are predominantly used in several 

preclinical studies. But with further understanding on how to boost immunogenicity, adjuvant 

properties were improved leading to new adjuvants such as CAF09, IRX-2 and more. IRX-2, is a cell 

derived biologic (purified cytokines derived from supernatants of stimulated human leukocytes) 

that induces TAA-specific immunity by upregulation of DC functionality with safety and efficacy 

demonstrated in Phase II clinical trial with HNSCC patients (NCT00210470) (Schilling, et al. 2013). 

Currently, a Phase II trial for the treatment of squamous cell carcinoma patients with neoadjuvant 

and IRX2 adjuvant therapy (NCT01609386) is ongoing. Cationic adjuvant formulation (CAF09) is a 

poly I:C like (TLR3 agonist) that is adsorbed to dimethyldioctadecylammonium (DDA) 

bromide/monomycoloyl glycerol (MMG) liposomes. This potent liposome-based adjuvant was 

shown to induce antigen-specific CD8+ T-cell responses in a number of preclinical models 

(Korsholm, et al. 2014, Espinosa, et al. 2017). Data suggests the feasibility of generating high 

avidity T-cells through low dose vaccination of peptide with CAF09 as adjuvant (Billeskov, et al. 

2017). The importance of the route of administrations was also highlighted in the CAF09 adjuvant 

system where intraperitoneal route was shown to induce strong CD8+ T-cell responses, via cross-

presentations by lymph node-resident CD8α+ DCs, compared to intramuscular or subcutaneous 

routes.  This highlights the importance of self-drainage of vaccines from the injection site, and 

also particles or cell debris from tumour site to lymphoid organs (Schmidt, et al. 2016). Recently, 

(Chen, et al. 2018) showed that PAN-DR-binding peptide (PADRE-EGFRvIII self-assembling fibre 

can be designed to incorporate T cell epitopes into α-helical fibres with morphology similar to 

unmodified peptide. Initially, epitope-bearing β sheet fibres that lack structural precision and 

control on assembling kinetics were improvised into formats that assemble into α helical 

nanofibers which allow great structural control on the rate of assembly and disassembly. Specific 

antibody responses were generated by PADRE-form without any supplemental immune adjuvants 

and augmented responses to levels equal to mice receiving CFA adjuvant would generate (Wu, et 

al. 2016). The self-adjuvant lipopeptide vaccine micelles (core-shell nanoparticles generated by 

spontaneous assembly of individual amphiphilic molecules) was shown to effectively prevent the 

growth of cutaneous melanoma (B16-EGFRvIII), thereby suggesting a novel platform for eliciting 

responses against non-antigenic cancer-related epitopes. A phase II clinical trial in patients with 

metastatic triple-negative patients showed the safety and effectiveness of personalised peptide 

vaccine (PPV), with antigens selected based on pre-existing host immunity from a pool of different 

peptide candidates (Kumai, et al. 2017). Similarly, another Phase II trial involved treatment of 

mTNBC with the multi-peptide KRM-19 vaccine that consisted 19 peptides selected from 
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previously reported 31 personalised peptide vaccines (PPVs) based on their safety and anti-

tumour immunological profiles. PPV administrations induced potent anti-tumour immunity 

against mTNBC, as assessed by CTL responses and IgG responses. Based on these observations, 

phase II clinical trial with KRM-19 are currently ongoing (Toh, et al. 2016).  A vaccine consisting of 

9 MHC class I peptides from MAGE-A1, A3, A10, CEA, NY-ESO-1 and Her2 proteins was 

administered with Poly I:C, along with tetanus toxoid-derived T-helper epitope into BC patients. 

The study concluded the safety and efficacy of poly-ICLC in multiple peptide/adjuvant immune 

stimulation, assessed by ELISpot assays (Dillon, et al. 2017). Here, this study focuses on the 

development of a peptide-based vaccine therapy derived from a tumour associated antigen called 

HAGE encoded by DDX43, a member of DEAD box family of proteins. 

1.8 D-E-A-D box proteins 

The DEAD-box RNA helicases proteins family were first studied in the 1980s and represent a large 

family of enzymes important for most, if not all, aspects of RNA function and regulation. These 

share nine conserved motifs: Q-motif, motif 1, motif 1a, motif II, III, IV, V, and VI as shown in 

figure 1.8. Motif II contains the amino-acids DEAD (asp-glu-ala-asp) and thus the name.  Q-motif, 

motif I, II and VI are involved in ATP binding and hydrolysis whereas motifs 1a, 1b, III, IV, and V has 

been reported to be involved in RNA interaction and intra-molecular rearrangements (Tanner, et 

al. 2003).  

 

Figure 1.8 Motifs within DEAD box family. Represents different accessory domains and promoter 

sequences that help in RNA unwinding. Specific sequences termed DEAD help catalyze reactions that do not 

require direct ATP hydrolysis. 

 

1.11.1 Biological functions of RNA helicases 

DEAD-box proteins, as mentioned previously, are involved in many metabolic processes that 

typically involve RNAs. They are helicases that perform ATP-dependant unwinding to enable quick 

and efficient re-arrangements of ribonucleoprotein (RNP) complexes (Linder 2006). RNA helicases 

have shown to be involved in RNA metabolisms such as ribosome biogenesis (Venema and 

Tollervey 1999), pre-mRNA processing and splicing (Honig, et al. 2002), RNA degradation 

(Anderson and Parker 1998) and translation initiation (Chuang, et al. 1997), organelle gene 
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expression (Missel, et al. 1997), nuclear export (Schmitt, et al. 1999, Lund and Guthrie 2005) and 

other cellular processes such as RNP complex rearrangement (Staley and Guthrie 1998). For 

mRNA splicing to take place, re-arrangement of five RNP complexes (U1, U2, U4, U5, and U6) are 

required. 

 

1.8.2 DEAD-box polypeptide 43 (DDX43, CT 13) 

Many DDX proteins have been identified (https://www.genenames.org/cgi-

bin/genefamilies/set/499 and despite their similar and well-conserved core region, DDX proteins 

have remarkably different cellular, tissue, and developmental functions. DDX43, also known as 

Cancer Testis antigen 13 (CT13) is a probable ATP-dependant RNA helicase belonging to the D-E-

A-D box family of proteins. It was first identified in human sarcoma cell line as a cancer-testis 

antigen (Martelange, et al. 2000). According to radiation hybrid analysis, the CT13 gene is located 

on chromosome 6q (6q12-q13) and encodes a putative protein called HAGE made of 648 amino 

acids (a.a.) in length with a molecular weight of 73kDa (fig 1.9B). DDX43 gene has 3 transcripts or 

splice variants of 2513bp, 652bp and 568bp long that are protein-coding (648a.a.), processed 

transcript, and retained intron respectively.  

MSHHGGAPKASTWVVASRRSSTVSRAPERRPAEELNRTGPEGYSVGRGGRWRGTSRPPEAVAAGHEELPLCFALKSHFVGAVIGRGGSKIK

NIQSTTNTTIQIIQEQPESLVKIFGSKAMQTKAKAVIDNFVKKLEENYNSECGIDTAFQPSVGKDGSTDNNVVAGDRPLIDWDQIREEGLKWQ

KTKWADLPPIKKNFYKESTATSAMSKVEADSWRKENFNITWDDLKDGEKRPIPNPTCTFDDAFQCYPEVMENIKKAGFQKPTPIQSQAWPIV

LQGIDLIGVAQTGTGKTLCYLMPGFIHLVLQPSLKGQRNRPGMLVLTPTRELALQVEGECCKYSYKGLRSVCVYGGGNRDEQIEELKKGVDIIIA

TPGRLNDLQMSNFVNLKNITYLVLDEADKMLDMGFEPQIMKILLDVRPDRQTVMTSATWPHSVHRLAQSYLKEPMIVYVGTLDLVAVSSVK

QNIIVTTEEEKWSHMQTFLQSMSSTDKVIVFVSRKAVADHLSSDLILGNISVESLHGDREQRDREKALENFKTGKVRILIATDLASRGLDVHDV

THVYNFDFPRNIEEYVHRIGRTGRAGRTGVSITTLTRNDWRVASELINILERANQSIPEELVSMAERFKAHQQKREMERKMERPQGRPKKFH

Q

I Ia Ib

Ic II III

IV VaV

Vb VI

A)

B)

Figure 1.9 Structure DDX43 protein sequence. A) The depiction of conserved Helicase motifs. B) 

indications of the position of motifs within the DDX43 protein sequence. 

DDX43 contains signature motifs of superfamily-2 (SF2) RNA helicases as shown in fig 1.9A but in 

addition has conserved motifs Ic, Va, and Vb along with a KH domain in its N-terminal next to 

GXXG sequence (Valverde, Edwards and Regan 2008). Even though DDX43 was shown to be active 

https://www.genenames.org/cgi-bin/genefamilies/set/499
https://www.genenames.org/cgi-bin/genefamilies/set/499
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in RNA duplexes, regardless of single RNA tail orientation, a 5’-3’ polarity was preferred on RNA 

and a 3’-5’ polarity on DNA and recently a K-Homology (KH) domain (fig 1.9A) was responsible for 

nucleic acid binding and required for full unwinding activity (Talwar, et al. 2017). It was 

demonstrated that compared to the activity of the full-length protein, C-terminal helicase domain 

had no RNA unwinding activity and reduced DNA unwinding activity. Even a single amino acid 

change in the full-length protein affected the unwinding and binding of RNA and DNA substrates 

(Talwar, et al. 2017). 

1.8.3 DDX43 (HAGE) expressions in cancers 

Helicase antigen (HAGE) is also a CT antigen and therefore is not express by any healthy adult 

tissue with the exception of normal testis and in a range of ascites, while re-expressed by many 

solid tumours at mRNA level and at the protein level (Martelange, et al. 2000, Mathieu, et al. 

2010). In leukemia, HAGE expression was demonstrated in more than 40% of multiple myelomas, 

in  50% of CML and 20% in AML (Adams, et al. 2002). HAGE cDNA overexpression in AML and CML 

was also confirmed by (Chen, et al. 2011). Overall 75%  of carcinomas were confirmed to express 

HAGE as compared to normal tissues by qRT-PCR and immunohistochemistry (Mathieu, et al. 

2010), once again making HAGE a valid candidate for designing a cancer vaccine (shown in Fig 

1.10). In addition, 9/12 normal tissues did not express HAGE protein by IHC but have been 

detected at mRNA levels.  These indicate the ambiguity in considering the relevance of candidate 

mRNA expressions in prioritising the ideal targets for immunotherapy. Having said that, a broader 

mRNA expression profiles of HAGE (16/25, 75%) was shown along with 8 other CT genes in 

aggressive B-cell lymphoma-derived cell lines (Liggins, et al. 2010). More recently HAGE was 

reported to be expressed in 8% of all breast cancer while being expressed by 43% in locally 

advanced breast cancer and in 47% of TNBC (Abdel-Fatah, et al. 2016).  
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Figure 1.10: Immunohistochemistry staining of multiple cancer tissue microarrays and patient-

matched normal tissues for HAGE protein expressions(Mathieu, et al. 2010) 

1.8.4 Role of DDX43 in cancers 

Many helicases, such as DDX1, DDX3, DDX5, DDX6, DDX17, and DDX53, have been previously 

shown to be involved in the development and proliferation of tumours in a range of cancer types 

(Fuller-Pace 2013). Study of DDX43, HAGE, in a sub-population of chemo-resistant cells derived 

from malignant melanoma-initiating cells (MMIC) showed that HAGE promotes tumour growth 

and progression in melanoma through RAS/AKT and ERK pathways in ABCB5+ (cancer stem cells) 

MMIC-dependant tumourigenesis (Linley, et al. 2012). Furthermore, it was demonstrated that 

HAGE promotes MMICs-dependant tumour initiation by transcriptional repression of PML 

(promyelocytic leukemia protein), a protein that is expressed in ABCB5+ MMICs and plays a key 

role in stem cell proliferation and differentiation. HAGE was also shown to promote tumorigenesis 

by prevention of anti-proliferative effects of IFNα, thus implementing therapies targeting HAGE 

might improve malignant melanoma outcome (Mathieu, et al. 2014). 

The involvement and role of RNA helicases in cancer progression have been already reported. In 

fact, DDX5 (p68) that shares 55% homology with HAGE is known to acts as a transcriptional 

activator of ER-α and hence implicated in regulating abnormal cancer growth once 

phosphorylated (Yang, Lin and Liu 2005). These findings highlight the importance of HAGE 
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expressions in cancer that could be taken advantage of for immunotherapy particularly for cancer 

that cannot escape adaptive immunity by HAGE downregulation. Having shown that HAGE plays a 

vital role in RNA metabolism in tumour cells, its application as a tumour biomarker were 

investigated. 

1.8.5 HAGE as a biomarker in BC 

The expression of certain tumour associated antigens has been found to have some utility not 

only as a target for immunotherapy but as a biomarker. A biomarker is a molecule or a group of 

molecules found in the blood, or other body fluids, or in tissues that can be easily and objectively 

measured. A given biomarker is then associated with either a normal or abnormal biological 

status. The presence or the quantity of the biomarker is informative as regard to the presence, 

severity or the progression of a given disease, and can be used for monitoring the response to a 

treatment. 

HAGE protein expression in breast cancer patients, based on statistical analysis of 

clinicopathological parameters, was shown to be associated with high probability of aggressive 

cancer and with decreased long-term survival (Wiese and Pajeva 2014).  The role of HAGE as a 

potential prognostic marker for BC patients and predictor of response to adjuvant chemotherapy 

was also demonstrated (Abdel-Fatah, et al. 2014).  HAGE expression was also reported to be a 

promising prognostic marker with clinical significance in identifying TNBC patients who are likely 

to benefit from standard neoadjuvant/adjuvant anthracycline chemotherapy. Consequently, 

HAGE could be a surrogate predictive marker that suggests combination therapy for other 

patients whose chemotherapy response is predicted to be poor.  HAGE expression in tumour 

cores are shown in fig 1.11A, with strong cytoplasmic and/or nuclear staining defining the 

presence of high HAGE levels.  
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A) Photomicrographs showing  HAGE expressions in normal and neoplastic breast tissue

B) Clinical outcome of HAGE protein status of primary locally advanced TNBC

Normal Breast HAGE negative HAGE positive

 

Figure 1.11: Prognostic and predictive values of HAGE in TNBC –A) Images showing negative and 

positive HAGE expressions obtained by IHC staining of cancer and normal breast tissues. B) Illustration of the 

relationship between HAGE mRNA expression levels and BCSS in pre-chemotherapy biopsies (bottom left) 

and in the surgically removed residual tumor (post-chemotherapy surgical specimens- bottom right) 

represented by Kaplan-Meier curves. Figure obtained from(Abdel-Fatah, et al. 2016). 

It has been shown that HAGE+ tumours in locally-advanced primary (LAP)-TNBC patients treated 

with anthracycline combination adjuvant chemotherapy (AC-Neo-ACT) achieved 48% pathological 

complete response (pCR) compared with 14 % pCR of HAGE- TNBC tumours. This indicates that 

patients exhibiting high HAGE levels pre-chemotherapy had a lower risk of disease progression 

and death (fig 1.11B). Further, the relationship between tumour-infiltrating lymphocytes (TILS) 

and progression-free survival in BC patients were also investigated to show that 64 % of pre-

chemotherapy HAGE+/TIL+ TNBC achieved pCR with a significant association of high pre-

chemotherapy TILs with HAGE+ expressions. High levels of TILs was associated with significantly 

reduced risk of death or recurrences and higher pCR than those with low TILs (Abdel-Fatah, et al. 

2016). Furthermore, it was shown that 47 % (78/167) of primary locally advanced breast cancer 

(PLA-BC) were HAGE+ with 24 % of those achieving pCR. Hence, it is suggested that HAGE 

expression might not only serve as a biomarker for patient stratification, but patients with HAGE+  

residual tumours, exhibiting poor clinical outcome, might benefit from HAGE-based 

immunotherapy.  Over and above, combining immunotherapy with conventional or targeted 
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chemotherapeutics (Zitvogel, et al. 2008) will be beneficial to potentiate the adaptive anti-tumour 

immunity by inducing immunogenic cell death. The treatment of TNBC, which represents the 

most aggressive breast cancer subtype, with the poorest prognosis and high rates of relapse, is 

limited to chemotherapy because there are no known molecular targets. HAGE-derived vaccine 

combined with anti-immune checkpoint inhibitors might, therefore, represent a new treatment 

avenue for TNBC patients who have relapsed from current treatments.  

1.9 Animals model of the study   

There are several types of animal models used in the field of immuno-oncology research to 

determine the effect of therapy using drugs, targeted agents and vaccines that are discussed in 

detail in chapter 6. The current study was enitely based on double transgenic mice models to 

study and assess the generation of an HAGE antigen-specific immune response and the strength 

of anti-tumour efficacy against HAGE-expressing tumours.  

HHDII/DR1 transgenic mice, of C57BL6 background, carries transgene fragments of human HLA-

A*0201, HLA-DRB*0101 gene and mouse H2-Kb gene that encodes a functional chimeric human-

murine Class I and II molecules. This model expresses the α1 and α2 peptide binding domains of 

human HLA-A*0201 chimeric with murine α3 domain (H-2Dd) of mouse MHC class I and 

expressing HLA-DR1, with mouse MHC Class I (H-2b) and Class II (I-Ab) knocked out (Pajot, et al. 

2004). These mice were purchased from Charles Rivers Laboratories, maintained and inbred 

within NTU animal facility. Majority of the vaccine trials are primarily reported using such HLA-

humanised mice as they are known to harbor less CD4+ and CD8+ T cell amounts compared to 

other conventional mice strains used for dteremining pre-clinical vaccine efficacy (Pajot, et al. 

2004, Pajot, et al. 2007). 

1.10 Measurement of T-cell responses 

The overall immune responses and functionality of T-cells elicited by the vaccine generated by the 

vaccine in the transgenic models can be studied by in vitro techniques such as delayed 

hypersensitivity (DTH), proliferation assays and cytolytic assays to measure immune responses, 

measurement of humoral antibody responses by ELISA (enzyme-linked immune sorbent assay). 

However, these techniques have limitations of low sensitivity which can be overcome by 

advanced techniques such as flow cytometry analysis and ELISpot.  

Flow cytometry allows the analysis and sorting of cell populations of low frequencies with the 

labeling of fluorochrome-conjugated antibodies of different excitation/emission wavelengths. 

Intracellular staining provides information on the immune cell populations and on the type of 
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cytokines secreted which can be indicative of the vaccine efficacy, however, this method is 

expensive and require a large number of cells. A quick and cost-effective way to screen immune 

responses to a specific vaccine is to use in the first instance the ELISpot technique, which involves 

capturing the cytokine released during the response to peptide/antigen. The antibodies used in 

this procedure can allow detection of cytokines (IFNɣ, IL-2, granzyme B) secreted by activated T-

cells specifically induced by peptides or various length.  

The number of peptide-specific TCRs can be measured by staining with fluorochrome-conjugated 

tetramers or MHC: peptide complexes which can be analysed by flow cytometry to assess the 

presence of T-cells expressing the corresponding specificity towards the tetramers. These 

tetramers can be designed depending on the experimental purposes, generally to detect the 

presence of vaccine-specific T-cells in cancer patient blood or PBMCs. 
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1.11 Aims of the study 

The main aim of the study is to identify an immunogenic region within HAGE protein that harbors 

several short immunogenic epitopes capable of generating both CD4+ and CD8+ immune 

responses in HHDII/DR1 transgenic mice strains capable to killing in vitro and in vivo tumour cells 

expressing HAGE. Studies have revealed that the use of adjuvants in vaccine settings can 

improve/enhance the vaccine potency in stimulation of specific T-cell responses. Researchers 

have also found that delivery strategies also play a key role in the induction of T-cell repertoire of 

certain functional characteristics, such as affinity and avidity, that significantly determines the 

anti-tumour efficacy of an antigen-specific cancer vaccine. The Choice of appropriate animal 

models is important when the pre-clinical efficacy of optimal vaccine formulations is assessed.  

Since HAGE antigen is expressed in multiple solid tumours, the evaluation of long-term anti-

tumour protection of the HAGE vaccines against HAGE-expressing tumours will serve as a proof of 

concept.  

The aims of the study are to: 

 Identify suitable cell lines that can be used as targets to assess the anti-tumour vaccine 

efficiency in vitro and in vivo. 

 Identify immunogenic HAGE derived region(s)  

 Optimise the chosen HAGE-derived peptide formulation by testing different adjuvants.   

 Demonstrate the anti-tumour efficacy of the optimised HAGE-derived vaccine in tumour 

model(s). 
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2.0 Materials and methods 
2.1 Materials 

2.1.1 CELL CULTURE MEDIA PROVIDER 

Leibovitz media (L-15) SLS (Lonza) 

RPMI 1640 SLS (Lonza) 

DMEM SLS (Lonza) 

Opti-MEM®  Thermo Fisher Scientific 

Culture media supplements  PROVIDER 

Foetal calf serum (FCS) Fisher (GE Healthcare) 

L-Glutamine SLS (Lonza) 

D-glucose Sigma 

HEPES SLS (Lonza) 

Sodium Pyruvate SLS (Lonza) 

Pen/strep antibiotic solution SLS (Lonza) 

2-mercaptoethanol Sigma 

Other culture reagents PROVIDER 

Dimethyl sulfoxide (DMSO) Insight Biotechnology 

Dulbecco’s phosphate buffered saline (DPBS) SLS (Lonza) 

Incomplete Fruend’s adiuvant (IFA) Sigma 

Lipopolysaccharide (LPS) Sigma 

Matrigel® Matrix High Concentration Corning 

Phosphate buffer saline (PBS) BioWhittaker Europe 

Polyinosinic-polycytidylic acid (Poly I:C) Sigma 

Trypan Blue solution 0.4% Sigma 

Trypsin/Versene SLS (Lonza) 

Trypsin from porcine pancreas Sigma 

EDTA 0.5M Ambion 

Acetic acid Fisher Scientific 

Anhydrous ethanol Sigma 

Antibiotics  

Puromycin Sigma 

Geneticin Sigma 

Hygromycin Sigma 

Zeocin Invitrogen 

cytokines/peptides  

Interleukin 2 Sigma 

Human Ab serum Invitrogen 

Peptides Genscript 

2.1.2 CHEMICAL REAGENTS PROVIDER 

Agar Bioline 

Ammonium Persulphate (APS) Geneflow 

Ampicillin Sigma 

Bovine serum albumin (BSA) Merck 

Bromophenol blue Arcos Organics 

Butane Fisher Scientific 
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Calcium chloride (CaCl2) Sigma 

Chromium-51 Biosciences 

CRYO-EM-BED Embedding compound Bright 

DAPI VECTASHIELD Mounting media Vector Laboratories 

Dextran sulphate Sigma 

Dithiothreitol (DTT) Sigma 

Double distilled water (ddH2O) Barnstead, Nanopure 

DPX mountant for histology Sigma 

Clarity Western ECL Substrate Bio Rad 

Ethanol Fisher Scientific 

Ethyl alcohol absolute VWR chemicals 

Ethylenediaminetetraacetic acid (EDTA) Sigma 

Gold microcarriers (1.0mm) BioRad 

Glycerol Sigma 

Glycine Sigma 

Haematoxylin Sigma 

Hexadimethrine bromide (polybrene) Sigma 

Hoechst 33342 Solution (20 mM) Thermo Fisher Scientific 

Hydrochloric acid (HCl) Fisher Scientific 

Hydrogen peroxidase (H2O2) Sigma 

Isopropanol Sigma 

ISOTON sheath fluid Beckman Coulter 

Lipofectamine 3000 Transfection Reagent Invitrogen 

Liquid nitrogen BOC 

Magnesium chloride (MgCl2) Sigma 

Marvel skimmed milk Co-operative 

Methanol Fisher Scientific 

Murine IL-2 Biosource 

Paraformaldehyde Arcos 

Phosphate Buffer Saline (PBS) Bio Whittaker Europe 

Phosphate Buffer Saline (PBS) Tablets Oxoid 

Polyvinyl pyrrolidone (PVP) Sigma 

Protein Assay Dye Reagent Concentrate Bio-Rad 

Protease Inhibitor Cocktail Sigma 

Propidium iodide Sigma 

Protogel (30% Acrylamide mix) Geneflow 

Sodium azide (NaN3) Sigma 

Sodium chloride (NaCl) Calbiochem 

Sodium dodecyl sulphate (SDS) Sigma 

Sodium hydroxide (NaOH) Fisher Scientific 

Spermidine Sigma 

Sucrose Sigma 

2-methylbutane (isopentane) Acro Organics 

TEMED Sigma 
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Triton-X-100 Sigma 

1M Tris-HCl Invitrogen 

Trizma (Tris) base Sigma 

Tryptone Sigma 

Tween-20 Sigma 

Xylene Fisher Scientific 

Yeast extract Sigma 

2.1.3 Immunochemical Reagents (Antibodies) PROVIDER 

Rabbit anti-human DDX43 Novus 

Rabbit anti-human DDX43 Abcam 

Mouse anti-human DDX43 Sigma 

Mouse anti-human β-actin Sigma 

Rabbit anti-GFP  Abcam 

Mouse anti-GFP Abcam 

Anti-Rabbit IgG HRP-linked Ab Cell Signalling 

Anti-Mouse IgG HRP-linked Ab Cell Signalling 

Precision Plus Protein WesternC Standards  Bio Rad 

Precision Protein™ StrepTactin-HRP Conjugate        Bio Rad 

2.1.4 REAGENT KITS PROVIDER 

Dynabeads Untouched mouse CD8+ T cell isolation Invitrogen 

Dynabeads Untouched mouse CD3+ T cell isolation Invitrogen 

Murine IFN γ cytokine ELISpot kit Mabtech 

Human IFNγ cytokine ELISpot kit R & D systems 

DAB Peroxidase (HRP) Substrate Kit (with Nickel), 

3,3’-diaminobenzidine 

Vector Laboratories 

FcR Blocking Reagent Miltenyi Biotec 

LIVE/DEAD Fixable Violet Dead Cell Reagent Thermo Fisher Scientific 

OneComp eBeads Compensation Beads Thermo Fisher Scientific 

Wizard plasmid DNA miniprep Promega 

RNeasy Mini Kit (250) QIAGEN 

R.T.U. VECTASTAIN UNIVERSAL Elite ABC KIT Vector Laboratories 

QIAGEN QIAfilter Plasmid Midi QIAGEN 

2.1.5 Cell lines and plasmids PROVIDER 

MDA-MB-231 ATCC 

MDA-MB-468 ATCC 

HEK-293T ATCC 

PCI 13 ATCC 

PCI 30 ATCC 

B16/HHDII,DR1 Provided by Scancell  

Plasmids    

pBUD CE4.1 Addgene 

pGL4.2/puro Addgene 

pUC57/Kan(HAGE) Origene 

pLKO.1 puro Addgene 

psPAX2 Addgene 
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Normal testis Tissue array of human Biomax 

(6 cases/24 cores)   

Breast Cancer Test Tissue array Biomax 

(60 cases/120 cores)   

NOD/SCID mice Harlan Laboratories 

2.1.6 Enzymes, buffers and gels Provider 

Bam HI Promega 

Hind III Promega 

Not I Promega 

Sac I Promega 

Xba I Promega 

ApaI Promega 

AMV reverse transcriptase Promega 

T4 DNA ligase Promega 

RNAse inhibitor Promega 

All enzymes were used in combination with the buffers recommended and provided by the 

manufacturer.  

LB AGAR PLATE  FOR 500 ML  

NaCl 5 g 

Tryptone 5 g 

Yeast Extract 2.5 g 

Agar 7.5 g 

ddH2O Up to 500 mL 

Autoclaved, cooled down to 50°C   

Ampicillin 100 mg 

Kanamycin 50mg 

Zeocin 40mg 

Poured on Petri dishes, left to solidify and stored at 4°C for up to a week.  

LB BROTH   FOR 500 ML  

NaCl 5 g 

Tryptone 5 g 

Yeast Extract 2.5 g 

Autoclaved, cooled down to 50°C   

Ampicillin 50 mg 

Stored at 4°C for up to a week   

TRIS-EDTA (TE) BUFFER FOR 500 ML  

1 M Tris pH 8 5 mL 

0.5 M EDTA pH 8 1 mL 

ddH2O Up to 500 mL 

TRIS-Acetate EDTA (TAE) BUFFER FOR 50x  

1 M Tris base 242g 

Disodium EDTA 18.61g 

Glacial acetic acid 57.1mL 
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ddH2O Up to 1L 

Dilute to 1x using distilled water before use, store at 4°C  

  

4X SDS-PAGE LOADING BUFFER FOR 10 ML  

1M Tris-HCl pH 6.8  2.4 mL 

Sodium dodecyl sulfate (SDS)  0.8 g 

Glycerol  4 mL 

DTT 0.5 mL 

Bromophenol blue 4 mg 

ddH2O 3.1 mL 

Aliquots were stored at -80°C.  

5% STACKING GEL FOR 6 ML  

ddH2O 4.1 mL 

30% Acrylamide mix 1.0 mL 

1.0 M Tris (pH 6.8) 0.75 Ml 

10% SDS 0.06 mL 

10% ammonium persulfate 0.06 mL 

TEMED 0.006 mL 

10% RESOLVING GEL FOR 20 ML  

H2O 6.6 mL 

30% Acrylamide mix 8.0 mL 

1.5 M Tris (pH 8.8) 5.0 mL 

10% SDS 0.2 mL 

10% ammonium persulfate 0.2 mL 

TEMED 0.008 mL 

5X SDS RUNNING BUFFER FOR 1 L  

Glycine 94 g 

Tris base 15.1 g 

10% SDS 50 mL 

ddH2O Up to 1 L 

5X Running buffer was diluted with ddH2O to 1X working concentration prior use. Running 

buffer was stored at 4°C.  

TRANSFER BUFFER FOR 2 L  

Glycine 5.8 g 

Tris base 11.6 g 

10% SDS 0.75 g 

Methanol 400 mL 

ddH2O Up to 2 L 

Transfer buffer was stored at 4 oC.   

10 X TRIS-BUFFERED SALINE (10 X TBS) FOR 1 L 

Trizma base 24.2 g 

NaCl 80 g 
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ddH2O Up to 1 L 

TRIS-BUFFERED SALINE WITH TWEEN (TBST) FOR 1 L  

10 X TBS 100 mL 

ddH2O 900 mL 

RIPA BUFFER FOR 500 ML  

5 M NaCl (150mM) 3 mL 

1 M Tris, pH 8.0 (50Mm) 5 mL 

NP-40 (IGEPAL CA-630) 1% 1 mL 

10% sodium deoxycholate (0.5%) 5 mL 

10% SDS (0.1%) 1 mL 

Add 10% protease inhibitor cocktail (sigma) freshly 

before use. 

  

Laemilli buffer Volume 

10% SDS (w/v) (4% final) 4mL 

Glycerol (20%) 2mL 

1M Tris-HCL (125mM) 1.2mL 

10% 2-mercaptoethanol 1mL 

Distilled water 0.8mL 

Buffers for tissue cultures  

Trypan Blue: White cell counting solution: 0.1% (v/v) solution of Trypan blue in PBS 0.6% 

(v/v) acetic acid in PBS 

Buffers used in flow cytometry   

Permeabilisation &Fixation solution: 1% (v/v) paraformaldehyde in PBS 70% (v/v) ethanol 

in PBS 

FACS buffer: 0.1% (w/v) BSA, 0.02% (w/v) NaN3, 1X PBS 

Buffers used in immunohistochemistry  

Blocking solution: 2.5% horse serum in TBST (ready made in vector kit) 

Antibody diluent: 0.5mL (2.5% horse serum) in TBST+ 0.5mL TBST. 

DAB solution: 5mL distilled water+ 3 drops of buffer solution+ 4 drops of DAB substrate+ 2 

drops of hydrogen peroxide  

Blocking solution: 2.5% horse serum in TBST (ready made in vector kit) 

Antibody diluent: 0.5mL (2.5% horse serum) in TBST+ 0.5mL TBST. 

Sodium citrate antigen retrieval buffer pH 6.0 

2.94 g Sodium citrate trisodium dihydrate 

800 mL dH2O 

Adjust to pH 6.0 with HCl, once at pH 6.0 adjust to 1000 mL with dH2O 

0.5 mL TWEEN 20 

Tris-EDTA antigen retrieval buffer pH 9.0 

1.21 g Tris base 

0.37 g EDTA 

1000 mL dH2O (pH is usually around 9.0, but acid or alkali can be added to adjust it if not)  

0.5 mL TWEEN 20 
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3.0% Hydrogen peroxide in methanol 

8 mL 30% hydrogen peroxide solution 

72 mL methanol 

Cell sorting media concentrations 

EMEM - 

L-glutamine 1% 

EDTA 3 mM 

HEPES 25 mM 

Benzonase (95%) 3.513888889 

Pen/Strep 2% 

Complete T cell media concentrations  

RPMI 1640 - 

FCS 10% 

L-glutamine 1% 

Pen-Strep 2% 

HEPES 1% 

Fungizone 0.00% 

2-mercaptoethanol (to be freshly added) 50mM 
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2.1.7 Equipments 

LABORATORY PLASTICS, GLASSWARE AND SHARPS  PROVIDER 

Cell culture flasks (T25,T75,T175) Sarstedt, UK 

Coverslips SLS 

Conical flasks (50 ml,100 ml) Pyrex 

Cryovials TPP 
Eppendorf tubes (0.5 ml, 1.5 ml, 2 ml) Sarstedt, UK 

ELISpot plates Millipore 
FACS tubes Tyco healthcare group 

Falcon tubes (50 ml, 15 ml) Sarstedt, UK 

Filter tips (0.5-10 µl, 2-20 µl, 20-200 µl, 200-1000 µl) Greiner bio-one/ Sarstedt 

Flat-bottom culture dishes (6, 24, 96-well) Sarstedt, UK 

Fluorescence suitable 96-well plate Corning Biocoat 

Glass coverslips SLS 

Glass slides SLS 

Micro tips (0.5-10 µL, 20-200 µL, 200-1000 µL) Sarstedt, UK 

Magnetic cell separators Mini MACS Miltenyi Biotech 

Pasteur pipettes Sarstedt, UK 

Petri dishes Sarstedt, UK 

Pipettes (5mL, 10mL, 25mL) Sarstedt, UK 

PVDF blotting membrane  GE Healthcare, Life science 

Scalpels SLS(Swann Morton) 

Screw-top tubes (15mL, 50mL) Sarstedt 

Serological pipettes Sarstedt 

Multichannel pipette Sartorius 

Superfrost™ Microscope Slides Thermo Fisher Scientific 

Syringes (10ml,20ml) Becton Dickenson 

Tefzel tubing BioRad 
Universal tubes (20ml) Greiner 

Western blot filter paper Schleicher-Schuell 

0.45 µm syringe filter  Sartorius  

0.22 µm syringe filter Sartorius  

40 µm nylon strainer Greiner 

70 µm nylon strainer Greiner 

25mm Gauge needle BD microlance  

 

EQUIPMENT SUPPLIER 
4°C refrigerators  Lec 
-20°C freezers Lec 
-80°C freezers Revco/ Sanyo 
96-well plate reader  Tecan  
Autoclave Rodwell  
Bacterial cell orbital incubator 37°C Stuart 
Bacterial cell culture plate incubator 37°C Genlab 

Viral cell culture incubator 37°C, 5% CO2 IncuSafe 

Human tissue culture incubator 37°C (without CO2) LEEC 

Human tissue culture incubator 37°C, 5% CO2 Sanyo, Binder 
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Real time cell analyser Xcelligence 

Cell culture incubator Sanyo 
Centrifuges Sanyo, Eppendorf 
CCD camera - GBOX –western blot/gel imaging system Syngene 
Class II safety cabinets Walker 
Cryostat Leica 
Fluorescence microscope  ZEISS 
FACS cell sorter Beckman Coulter 
Flow cytometer Beckman Coulter 
Freeze vacuum dryer  Virtis 
Haemocytometers  SLS 
Heat blocks Lab-Line 
Helios Gene gun BioRad 
ImmEdge pen Vector Laboratories 
Light microscope  Nikon/Olympus 
Vacuum drier  Eppendorf 
Nucleo counter®  ChemoMetec  
Microcentrifuge  MSE 
Mo FloTM cell sorter Beckman Coulter 
Nanodrop 8000 Spectrophotometer Thermo scientific 
NanoDrop ND UV-VIS Spectrophotometer version 3.2.1 Thermo scientific 
ELISpot plate reader CTL 

pH meters Metler Toledo 
Pipettes and multichannel pipettes Gilson, Star Labs, Eppendorf 
Plate rocker VWR, Stuart 
Mixer/agitator Intelli-mixer (ELMI) 
Microplate gamma scintillation counter TopCount (Packard) 
Sonicator VWR 
Spectrophotometer for 96-well plate  Tecan ULTRA 
Top count scintillation counter Packard 
Transfer tank  Bio Rad 
Tubing prep station BioRad  
Ultracentrifuge Optima TLX Beckman 
Ultrapure water dispenser  Barnstead 
Vacuum filtration unit Sarstedt 
Vortex Scientific industries 
Water baths Clifton 
SOFTWARE 
Aperio ImageScope  Leica Biosystems 

Axiovision Microscopy Software 4.7.1. version ZEISS 

ELISpot CTL software CTL 
GraphPad Prism 7 Graph Pad software 
Kaluza 1.3 version Beckman Coulter 
Real time cell analysis software Xcelligence 
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2.2 Methods 

2.2.1 Cell culture 

2.2.1.1 Thawing of adherent cell lines into culture 

Required vials of cells were removed from liquid nitrogen and thawed quickly in C2 hood. The cells 

were transferred into a 20mL tube and added to cell line specific culture media at the same 

temperature as the content of the vial. Cells were pelleted by centrifugation at 400g, 5mins and 

supernatant discarded. Fresh culture media was then added to the cells which were then transferred 

to a T25 or a T75 flask depending on the pellet size and the cells were incubated at 37°C 5% CO2 until 

80%-90% confluency was reached for sub-culturing. 

2.2.1.2 Sub culturing of adherent cell lines 

Upon reaching 80% confluence, cells were removed from the incubator and the media was removed. 

Cells were washed with sterile PBS by gentle swirling. Following PBS wash, 1-2mL of pre-warmed 

trypsin-EDTA was added onto the cells and incubated at 37°C with loosed caps for 2-5mins until cells 

detached from the surface. 5-10mL of culture media was added to neutralise the trypsin-EDTA and 

media/cell mixture was transferred into a centrifuge tube for spinning at 400g, 5mins. The supernatant 

was discarded and the pellet re-suspended with fresh media. Cells were then ready for counting 

and/or re-seeding. 

Table 2.1 List of cell lines and culture media

Cell lines Tumour origin Culture media

HEK293 Human kidney DMEM+10%FCS+1% L-Glutamine

MDA-MB-231 TNBC Leibovitz (L15)+10% FCS+1% L-Glutamine

MDA-MB-231/HAGE
TNBC

Leibovitz (L15)+10% FCS+1% L-Glutamine
1µg/mL puromycin

MDA-MB-468 TNBC Leibovitz (L15)+10% FCS+1% L-Glutamine

BT-549 TNBC
RPMI 1640 +10% FCS+1% L-Glutamine+
0.023 IU/ml insulin

PCI 13 HNSCC RPMI 1640 +10% FCS+1% L-Glutamine

PCI 30 HNSCC RPMI 1640 +10% FCS+1% L-Glutamine

PCI 30/HAGE HNSCC
RPMI 1640 +10% FCS+1% L-Glutamine+ 150µg/mL 
Zeocin

B16 (K/O murine MHC, knock 
in of human MHC HHDII/DR1)

Murine melanoma
RPMI 1640 +10% FCS+1% L-Glutamine
+ 300µg/mL Hygromycin+500µg/mL Geneticin

B16 (K/O murine MHC, knock 
in of human MHC HHDII/DR1) 

plus HAGE and Luc2 gene
Murine melanoma

RPMI 1640 +10% FCS+1% L-Glutamine
+ 300µg/mL Hygromycin+500µg/mL Geneticin+
550µg/mL Zeocin+ 1µg/mL Puromycin 
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2.2.1.3 Freezing of cell lines 

Cells to be frozen down were removed from incubator and taken out of the flask as mentioned above. 

After centrifugation the cell pellet was re-suspended in freezing media (90% FCS+ 10% DMSO). 

Volumes of freezing media to be added depended on the pellet size and cell count. Usually 1x106 cells 

were frozen in 1mL of freezing media and aliquoted into cryovials for freezing at -80°C until needed. 

2.2.1.4 Cell counting  

2.2.1.4.1 Haemocytometry 

 Cells were counted to ensure their viability to obtain consistency between assays. For adherent cells, 

cells were passaged as mentioned in 2.1.2 and cell suspension were used for performing a cell count. 

Haemocytometer was cleaned and a coverslip was placed at the centre. About 10µL of cell 

suspensions was added to 90µL of tryphan blue (working concentration) at 1:10 dilution. A small 

volume was added onto the edge of the coverslip and counted for cells in 4 corners with 16 squares 

under the microscope. 

Concentrations of cells per mL were calculated according to the formula: 

= (Total number of cells /number of squares counted) x dilution factor x 104 

2.2.1.4.2 Nucleocounter cell counting 

Cells were counted using Nucleocounter to obtain the cell numbers and viability. Cell suspensions 

were diluted to roughly be around 1x106/mL concentration. From the suspension, 50µL of cells were 

mixed with 2.5µL of Solution 18 and added onto counting slides before inserting into nucleocounter 

for counting. The percentage viability and cell concentration were obtained from automatic 

calculations by the software. Cells more than 80 % viability were generally used for experiments. 

2.2.2 Expression analysis 

2.2.2.1 RNA extraction and cDNA synthesis 

RNA STAT-60 was used to isolate total RNA from cell lines and tissues using following manufacturer’s 

instructions. Cells were added with 1ml of RNA STAT-60 and mixed well before placing on ice for 5 

minutes. Then, 0.2ml of chloroform was added and shaken vigorously for 60 seconds followed by 

incubation for 10minutes at room temperature. Samples were then centrifuged at 10,000g for 10 

minutes for seperation of organic, interphase and aqueous phase. The aqueous phase was carefully 

transferred to a fresh eppendorf and added with 0.5ml of isopropanol. After 10mins of incubation at 

RT samples were centrifuged at 15000g for 15 minutes at 4°C. The pellet was washed by adding 70% 

(v/v) ethanol and centrifuging as before. The RNA pellet was then air-dried and dissolved in molecular 
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grade RNAse free water. The concentration and purity of the RNA obtained was measured using a 

Nanodrop to take required volume of mRNA for cDNA synthesis. 2µg of mRNA was added with 1µL 

(200ng) of Oligo-dT15 primers in an eppendorf. Samples were heated at 70°C for 5 minutes and 

immediately placed on ice for 5minutes. After incubation, a master mix containing 5µl of 5X Reaction 

buffer, 1µl of dNTP (12.5Mm, Invitrogen), 25 units of ribonuclease inhibitor (RNasin, promega), and 1 

µL (200U/µL) of M-MLV reverse transcriptase were added to the sample with addition of nuclease free 

water (ddH2O) to a final volume to 25µl. Samples were gently mixed and incubated for 90 minutes 

using a waterbath set at 37-39°C. Samples were then stored at -20°C for further use.  

2.2.2.2 Real time quantitative PCR  

Reverse transcription of cDNA templates from mRNA samples of breast/prostate cancer cell lines were 

performed with primers from Sigma. Primers for various genes (GAPDH, h18S, HAGE, β actin) were 

purchased from Sigma these were pre-optimised. All primers were later validated by performing PCR 

using serial dilutions of cDNA templates, described in table.1 below. All primers were designed so as to 

obtain a PCR product of size <250bp to optimise the qRT-PCR. 

qRT-PCR was performed using a Q-Rotor real time PCR cycler from Qiagen using SYBR green 

fluorescent dye. Thermocycling reactions were setup in PCR tubes containing containing 1µl of cDNA 

template, 4.75µl of SYBR green supermix (consists of high fidelity DNA polymerase), and 5pmol (0.5µl) 

of each of the gene-specific primers made up to a final volume of 12.5µl with ddH2O. qRT-PCR was 

initiated by a melting step, followed by 40 cycles of denaturation, annealing at the corresponding 

annealing temperatures and extension, with a step of final extension and stop at 4°C. The list of 

primers for HAGE, GUSB, IDO and PD-L1 are listed in table below with the settings used for PCR 

reaction.  

Table 2.2 List of primer sequence used for qRT-PCR 

Genes Primer sequences 

Human DDX43 forward CAACACCTATTCAGTCACAG  

Human DDX43 reverse GACCAGATGAATAAATCCAGG  

Human GUS B forward ACTGAACAGTCACCGAC 

Human GUS B reverse AAACATTGTGACTTGGCTAC 

PD-L1 forward ATGCCCCATACAACAAAATC 

PD-L1 reverse GACATGTCAGTTCATGTTCAG 

IDO forward TTGTTCTCATTTCGTGATGG 

IDO reverse TACTTTGATTGCAGAAGCAG 

HAGE forward (codon optimized) CCACATGCACTTTCGACGAT 

HAGE forward (codon optimized) ATTCCTGGTCGGTTCCTCTG 
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Table 2.3 qRT-PCR conditions for different genes

Genes DDX43, GUS b IDO PD-L1
Codon optimised 
HAGE primers

Denaturation 95°C 10s 95°C 15s 95°C 10s 95°C 10s

Annealing 58°C 18s 60°C 20s 58°C 18s 58°C 18s

Extension 72°C 20s 72°C 20s 72°C 20s 72°C 20s

 

2.2.2.3 Immunofluorescence  

A day prior to staining, 5X104 adherent cells were cultured in 24 well plates with glass coverslips at the 

bottom of each well. Media were removed and cells were permeabilised and fixed with 1% (w/v) 

paraformaldehyde for 20 minutes at 4°C. Mouse anti-alpha enolase (1:50), and mouse anti-HAGE 

(1:100) were used in these experiments. Following incubation with the primary antibody in blocking 

buffer (5%BSA +0.05% Tween in PBS), cells were washed twice in wash buffer (0.05% Tween in PBS) 

and incubated for 60 minutes on ice with Alexa488-conjugated goat anti- mouse (1:250) secondary 

antibody blocking buffer (5% BSA +0.05% Tween in PBS) accordingly. Finally, cells were washed twice 

in wash buffer. Cover slips were dried at 37°C, mounted onto slides and left overnight at 4°C. Slides 

were finally studied under confocal microscope the following day. 

2.2.2.4 Cell lysate preparation  

TNBC cell lines were harvested and washed twice in ice cold PBS at 400g for 5 minutes at 4°C. Cell 

pellets were re-suspended in RIPA buffer with 10% protease inhibitor cocktail (Sigma) or 100µl of 

Laemelli buffer for lysis. When using Laemelli buffer, 1X106 cells were re-suspended in 100µl of 

Laemelli buffer boiled at 95°C for 15 minutes and loaded onto SDS gel directly or stored for future use. 

When using RIPA buffer, tubes were sonicated for 5 minutes and incubated on ice for 5 minutes. This 

step was repeated 3 times. Tubes were then centrifuged at 14000rpm for 30 minutes at 4°C and 

supernatants were transferred to fresh tubes. Samples were stored at -20°C until further use in protein 

assay and SDS-PAGE. 

2.2.2.5 Protein assay for SDS-PAGE 

Protein concentrations in the lysates were determined by performing a BioRad Dc protein assay as 

described by the manufacturer’s protocol. The BSA standard were made using RIPA buffer in a serial 

dilution. Briefly, 25µl of mixture (1mL of reagent A+ 20uL of reagent S) was added to 5µl of test 

samples in a 96well flat bottom plate followed by addition of 200µl of Reagent B to each well 

containing sample. Usually each sample was run in triplicates. After 15 minutes of incubation at room 

temperature in dark, the plate was read at 750nm on a Tecan 96-well plate reader to obtain 

absorbance values. 
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2.2.2.6 SDS-PAGE and transfer 

While using RIPA buffer lysates, reducing sample buffer was added to samples in ratio 1:3 and boiled 

at 95°C for 5 minutes to denature proteins before being loading (30µg) onto polyacrylamide gel. The 

gel (100cm2) was run at 70V through the 4% stacking gel and then at 110V through the 10% resolving 

gel using electrophoresis. Proteins from the gel were then transferred onto PVDF membrane by setting 

up transfer block in a transfer tank to run overnight at 30V using transfer buffer maintained at 4°C. 

2.2.2.7 Immunoprobing 

PVDF membranes were stained with Ponceau red to ensure that proteins have been transferred onto 

the membrane. The membrane was blocked for 1 hour at RT in blocking buffer (TBSTwith 5%-Marvel) 

under constant agitation. After blocking the membrane, primary antibody (anti-DDX43, β-actin) was 

first adsorbed by overnight incubations at 4°C. After washing the membrane thrice with TBST (TBS-

0.05% Tween 20) at RT, the secondary HRP-conjugated antibody (anti-mouse/rabbit) was added to the 

membrane at a 1:1000 dilution in blocking buffer for 1hour incubation at RT. The membrane was 

washed thrice for 5 minutes each in TBST at RT, and the protein bands revealed after using ECL chemi-

luminescence kit (BioRad). The imaging was carried out using Syngene G-box gel documenting system. 

2.2.2.8 FACS (Fluorescence activated cell sorting) 

Cell lines that were trypsinised and the cell pellet were reuspended in RPMI culture media. Cells were 

stained FITC conjugated beta-2-microglobulin at 5ug/mL for 1X106 cells and incubated at 37°C for 

30minutes prior to washing with sterile PBS. Cell pellet was re-suspended in 500µL FACS cell-sorting 

media (mentioned in materials section). Cells expressing high beta -2-microglobulin were then sorted 

using Beckman Coulter FACS cell sorter onto a plate containing culture media containing 2% PenStrep.  

2.2.2.9 Immunohistochemistry 

Paraffin embedded tissue sections from various patients were stained for antigen/receptor 

expressions using standard staining protocols. Slides with tissue sections were deparaffinised by 

heating at 60°C for 5 minutes and washed thrice with xylene for 10minutes each. For rehydration, 

slides were washed 3 times in 100% ethanol, followed by 1minute wash in 95%, 85% and 75% ethanol 

sequentially and finally in distilled water. For results with heat-mediated antigen retrieval, Tris-EDTA 

buffer was used for PD-L1 expressions and for HAGE and for IDO, sodium citrate buffer was used at 

100°C, 5 minutes and washed thrice with distilled water 2mins each. Sections were covered with H2O2 

for 15mins and washed twice with PBST. Primary antibody was added at recommended dilution in the 

IHC antibody diluent (2.5%horse serum in TBST) for 90mins at room temperature to cover the surface 

uniformly. After incubation, slides were washed thrice with PBST (PBS + 0.1% tween) and incubated 

with secondary antibody for 15mins and wash as previously. For the last step, DAB substrate was 

added to the section and incubated until suitable staining is developed and washed thoroughly with 
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water. Slides were further counterstained with haematoxylin for 3mins and washed again. Slides were 

then washed for 1min with 75%, 85% and 95% ethanol and washed in 2 changes of 100% ethanol and 

3 changes of xylene with 1min each wash. Cover slips were mounted onto slides with mounting media 

and allowed to dry overnight to analyse the result of staining. 

2.2.3 Gene induction 

2.2.3.1 Lipofectamine transfection 

Lipofectamine 3000 was used to transfect cells as per manufacturer’s instructions. Briefly, Cell 

lines were plated to reach 60-70% confluence. Upon reaching confluency, 5µg of expression 

plasmid DNA was diluted in 500µL of OPTI- MEM medium. Simultaneously, 15µL of lipofectamine 

was diluted in 500µL of OPTI-MEM medium and incubated for 5minutes at RT. Following 

incubation, DNA and lipofectamine mixtures were combined and gently mixed for 20 minutes 

incubation at RT to allow the formation of DNA-lipofectamine complexes. The required volume of 

mixtures were added onto cells, according to well plates or flasks, in which the cells for 

experiments were cultured and gently swirled around for uniform spreading. After 24hours, 

culture medium was replaced with 1mL of fresh culture medium containing respective antibiotics 

(500mg/mL G418 or 50mg/mL zeocin or 1µg/mL puromycin). The selective antibiotics were 

chosen in agreement with the mammalian resistance gene expressed by the plasmid used for 

transfection. Transiently-transfected cells were allowed to reach confluency to obtain cells for RT-

PCR analysis, FACS or immunofluorescence. Further for generating stable cells post-tranfsection, 

transfected cells were plated in 96-well plate at 100 cells per well with selective medium. 

Transfected clones were bulked up by using selective media for expression analysis by RT-PCR and 

storage at -80°C or liquid ntirogen until further use. 

2.2.3.2 Viral transduction 

HEK293T cells were used to generate viral particles carrying DDX43 DNA that will be used to infect 

target cells of interest.  Transfection was performed with a combined ratio of transfer plasmid, 

packaging plasmid, and envelope plasmid at 4:2:1, respectively on HEK293T cells plated at 1X106/mL 

according to Lipofectamine 3000 protocol. After transfection, HEK293T supernatants were collected 

after 24hours and 48hours as fraction 1 and fraction 2 respectively and stored at -20°C until use. 

Target cells were plated to reach 70% confluence. Upon reaching the confluence, media was removed 

and replaced with transduction media (50% culture media+50% viral supernatant+ 8µg/mL 

hexadimethrine bromide). Plates/flasks were gently swirled and incubated for 18-20hours at 37°C to 

allow viral particles to infect the cell lines. The lentiviral particles were then removed and fresh media 
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containing puromycin (1µg/mL) was added and replaced every 3-4 days to select the resistant clones 

were identified. 

2.2.4 Cloning of human HAGE 

2.2.4.1 Enzyme digestion 

Plasmids were digested using restriction enzymes, in order to generate the correct overhangs for 

ligation, based on the cloned cDNA sequence and availability of restriction enzymes available in the 

multiple cloning sites of the donor and the recipient vectors. Briefly, 1µg of DNA was mixed with 2µL of 

restriction enzyme-specific buffer, 0.2µL of 1X acetylated BSA and 0.5µL of each restriction enzyme 

and made up to a total volume of 20µL with deionised distilled water. The mixture was gently mixed 

by pipetting and incubated at optimal temperature (37°C) for 1-2 hours. A negative control was 

included containing DNA without the reaction mix, replaced with ddH2O. The restriction enzyme 

digestion products were then run on a 0.7% (w/v) agarose gel and visualised under UV light. 

2.2.4.2 Band extraction of DNA 

As described above, DNA was run on a 0.7% Agarose gel. Bands were visualised by using a Syngene G-

box. The DNA bands of interest was then excised from the gel using an extractor to slice the gel piece 

containing the DNA band. For quick and safe recovery of DNA, QIAquick gel extraction kit was used to 

extract the DNA from the gel. The QIAquick columns made of silica membrane help the removal of 

agarose and other impurities from the sample by promoting selective adsorption of DNA molecules up 

to 10µg of size. Bands were weighed and added with 3 volumes of QG buffer to 1 volume of gel. Gel 

slices were incubated at 50°C until the gel was dissolved. 1 volume of isopropanol was added and 

mixed thoroughly before transferring the contents into the column. Columns were assembled with a 

collection tube were centrifuged tor 1min at 13,000rpm and flow-through was discarded. DNA-bound 

columns were then washed with 0.5mL QG buffer and then with 0.75mL of buffer PE by centrifuging as 

mentioned previously. Finally, DNA was eluted into a fresh tube by adding 35µL of elution buffer to the 

column and centrifuging at 13,000rpm for 1min. Eluted DNA was ready to be quantified by Nanodrop 

and stored until used for further experiments.  

2.2.4.3 DNA ligation 

HAGE, Luc2, HAGE/Luc2 DNA were ligated into new pBUDCE4.1 expression vectors by using T4 ligase 

as per the manufacturer’s instructions. Briefly, required volumes of double digested plasmid was 

added with calculated quantities and respective volumes of digested insert along with 2µL of T4 ligase 

buffer and 1µL of T4 DNA ligase and made up to a total volume of 10µL with nuclease-free water. This 

mixture was then incubated at RT for 4hours or overnight at 4°C to complete the ligation process.  
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To calculate the amount (ng) of insert needed to include in the ligation reaction, the following 

equation was followed: 

{[ng of vector] x [kb size of insert]} / {kb size of vector} x ( insert : vector ratio) 

= ng of insert required 

2.2.4.4 Transformation into XL1-Blue E.coli and bulking up  

XL1-Blue is a competent strain of E. coli used for cloning procedures. For transformation, XL1-B cells 

were defrosted on ice followed by addition of 10µL of the ligation mix and incubation on ice for 30 

minutes. Following incubation, cells were subjected to heat-shock at 42°C for 3 minutes and then 

immediately cooled on ice for 10 minutes. 500µL of Luria Bertini (LB) media was added to cells and 

incubated at 37°C for 1 hour in a shaker. 100-200µL of transformed cells were then plated onto LB agar 

plates containing respective anitbiotics (50µg/mL ampicillin or 40µg/mL zeocin) depending on the 

resistance gene expressed of the plasmid used for transformation. Plates were allowed to absorb 

culture media before placing the plates inverted at 37°C incubator overnight. Following incubations, 

colonies from the agar plates were picked up using a pipette tip and mixed into 10mL of LB broth 

containing antibiotics (50µg/mL ampicillin or 30µg/mL zeocin) and placed at 37°C shaker to grow 

overnight.  

2.2.4.5 DNA isolation and sequencing 

2 mL of each of the overnight cultures, prepared as above, were harvested for pelleting bacterial 

plasmid DNA by following manufacturer’s protocol using a Plasmid MiniPrep kit (Qiagen). Briefly, 

bacterial cells were centrifuged at 8,000g for 3 minutes at RT. Pellets were re-suspended in 250µL of 

buffer P1, followed by 250µL of buffer P2 and mixed by inverting. Then, 350µL of buffer N3 was added 

and centrifuged for 10 minutes at 13000rpm. 800µL of supernatant was applied to the QIAprep 2.0 

spin columns and centrifuged. After this, QIAprep 2.0 spin columns were washed with 500µL of buffer 

PB, then washed with 750µL of buffer PE. After the last wash, DNA was eluted into a fresh tube in 30µL 

of TE elution buffer by centrifuging for 1 minute. The DNA isolated was quantified by Nanodrop and 

sent for sequencing to Source bioscience which confirmed the sequences of the cloned cDNA. 

Sequencing primers are listed below in table 2.4. Results were extraction using Finch TV, Clustal 

omega/BLAST. 

Table 2.4 List of primer sequences used for sequencing

Genes Sequences

CMV F CGCAAATGGGCGGTAGGCGTG

M13F(-77) GATGTGCTGCAAGGCGATTA

M13R(-88) TTATGCTTCCGGCTCGTATG

SV40 F TATTTATGCAGAGGCCGAGG

SV40 R GAAATTTGTGATGCTATTGC
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2.2.5 Animal Immunisation 

2.2.5.1 Animals 

C57BL/6 HLA-A2.1/-DR1 (HHDII-DR1) animals, originally purchased from Charles River, were 

maintained inbred by ensuring they have a common F0 ancestor. Colonies were bred in house at 

Nottingham Trent University animal facility in accordance with the Home Office Codes of Practice for 

the housing and care of animals. Their genotype was assessed regularly by PCR-based assays using 

allele-specific sequencing primers. 

2.2.5.2 Plasmid, DNA bullets for gene gun immunisation  

Expression vectors encoding HAGE were coated onto 1.0µM gold micro-carriers using manufacturer’s 

instructions. Briefly, 36µg of DNA was added with 200µL of 0.05M spermidine containing 16-17mg of 

gold. After sonication, 200µl of 1M calcium chloride was added drop-by-drop to the mixture whilst 

vortexing and followed by 10 minutes incubation at RT. The DNA-gold mixture was then washed twice 

in 1mL of anhydrous ethanol and re-suspended in 2mL of 0.025mg/mL of PVP. The sample was loaded 

into a dried Tefzel tubing, whilst sonicating the mixture. After setting up the tube with gold-DNA 

mixtures in position in the tubing Prep Station, the tube was left to stand for 10-15 minutes. The 

particles settle down and dry PVP/ethanol was gently removed from the tube using a syringe without 

disturbing the gold. Nitrogen gas was supplied into the tube with constant spinning of the tube for 10-

15minutes. Once totally dried, the tubing was removed from the station and cut into 1cm pieces using 

a guillotine. DNA bullets were first for proper dispersal of gold particles by test firing onto a sheet and 

stored at 4°C until used for immunisation.  

2.2.5.3 Peptides and peptide immunisation 

Peptides binding to HLA-A*0201 and DRB*0101 predicted by Syfpeithi (table 4.1, 4.2), based on their 

binding scores, were synthesised (Genscript) and dissolved with a minimum purity of 80%. Upon 

arrival, peptides were reconstituted in DMSO to a working concentration of 10mg/mL and then stored 

at -80°C. Animal experiments were performed in accordance with Home Office project license in 

barrier facility. All animals received one or more booster doses of vaccine based on the dose regimen 

used for optimisation. 

2.2.5.4 Animal immunisation 

Development of vaccine involves various steps with a regimen that involves priming and booster dose, 

adjuvants and delivery systems. For peptide immunisations, HHDII/DR1 mice were immunised on day 1 

and day 15 at the base of the tail using formulations containing 75µg of peptide (elongated peptide or 

short peptide cocktail) were prepared with PBS.  
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Prime

Day 1 Day 15

Boost

Day 22

Immunisation regimen for HAGE vaccine

Day 7

None

Prime BoostBoost

HAGE 30mer ImmunoBody®
at 1µg DNA/dose by
gene gun

Harvesting of
spenocytes

Straight ex vivo 
ELISpot IFNɣ assay

HAGE 30mer peptide 
(75µg/dose) with adjuvants

 

Figure 2.1 Schematic representation of workflow of immunisation regimen used for vaccination of peptide 

and DNA ImmunoBody   

Certain immunisations had a different route of administration and dosing schedule than others 

depending of the type of adjuvants used. The table 2.5 shows the different dose regimens used in the 

study. 

Table 2.5 Dose schedules used for the study 

Vaccine injections Adjuvants 
Route of 

administration 
Dose schedule 

Peptide (long or 

short peptide 

cocktail) 

IFA, CpG, Poly I:C 

(75µg of peptide) 

Sub cutaneous 

injections at the base 

of the tail 

Day 1 priming 

Vaccine boost on Day 15 

Harvesting on day 22. 

Peptide vaccine 
IRX-2 

(75µg of peptide) 

Sub cutaneous 

injections at the base 

of the tail 

Day 1 priming 

Day 2,3 of IRX-2 in PBS 

Vaccine boost on Day 15 

Harvesting on day 22 

Peptide vaccine 
CAF09 

(75µg of peptide) 

Intra-peritoneal 

injections 

Day 1 of priming 

Day 15 of 1stboostervaccine 

Day 29 of 2nd booster vaccine 

Harvesting on Day 36 

DNA vaccine 
1µg of 

HAGE DNA 
Gene gun 

Day 1 of priming 

Day 7 of 1stboostervaccine 

Day 15 of 2nd booster vaccine 

Harvesting on Day 22 

2.2.5.5 Cell line preparations for tumour injections into mice 

Cell lines were trypsinised (according to 2.2.1.2) and washed twice in PBS before re-suspension into 

serum-free culture media (RPMI 1640+ 1% L-Glu) for cell counting (according to 2.2.1.4.2). 0.75 million 

cells per 100µL were per mice were prepared with 10% Matrigel in serum free RPMI media. Cell 

suspension was uniformly mixed before subcutaneous injections into HHDII/DR1 mice. 
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2.2.6 T cell preparation and cytotoxicity assays 

2.2.6.1 Ex-vivo ELISpot assays 

Spleens from immunised animals were harvested after 7 days from last immunisation. Splenocytes 

were flushed out using T-cell media and passed through a strainer to remove tissue-debris. The cell 

suspension was then washed by centrifuging at 400g, 10min and counted using Nucleocounter prior to 

plating on to 96-well ELISpot plates (Millipore) for murine IFN γ ELISpot assay (Mabtec). 

For each experiment, 0.5x106 splenocytes/well were plated in triplicates with 1µg/mL of Class I and 

10µg/mL of class II relevant peptides. T-cells were incubated at 37°C, 5% CO2 for 48 hours and then 

assessed for cytokine release by following the manufacture’s protocol with mouse IFN-ɣ ELISpot kit. 

After 48 hours, ELISpot plates were developed using BCIP/NBT (BioRad) susbtrate at the last step by 

incubating plates in dark at RT for 30-45 min until spots become visible. Plates were then rinsed with 

tap water. Spots were quantitated using an ELISpot plate reader (Cellular Technology Limited) and a 

response from an animal was scored as positive when the response from peptide containing well was 

at least twice that of control wells. 

2.2.6.2 In vitro re-stimulation of murine splenocytes  

2.2.6.2.1 Peptide re-stimulation (IVS) 

Splenocytes obtained from mice spleens were stimulated in vitro at 4x106/mL with relevant peptide 

with Class I (1µg/mL) peptide cocktail to evaluate CD8-specific killing of target cells. Cells were 

stimulated in vitro at 37°C, 5% CO2 for 7 days, followed by cell harvesting and counting. Cells were 

later plated with target cells at desired effector to target ratio depending on the experimental layout. 

 

HAGE ImmunoBody HAGE peptide/adjuvant

Total splenocytes

5x106 splenocytes/mL with 10µg of HAGE peptide

HAGE 30mer cocktail of Class I epitopes (3.33µg each)

Co-culture of stimulated splenocytes with 
LPS blast cells for 1 week

Total splenocytes

 

2.2 Workflow showing the protocol followed for isolation of splenocytes for 1- week re-stimulation with 

LPS-activated cells. 
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2.2.6.2.2 Preparation and co-culture of splenocytes with LPS blast 

Splenocytes from naive mice were harvested and plated at 1.5x106/mL in complete T cell media with 

lipopolysaccharides (25µg/mL) and dextran sulphate (0.7µg/mL) for 37° C for 48hours. After 48hours, 

cells were harvested and counted for treating with Mitomycin C at 1µg/mL per 1x106 splenocytes for 

30minutes at 37°C. Post Mitomycin C treatments, cells were then pulsed with cocktail of class I 

peptides at 100µg/mL for 75mins at 37°C and washed with media. LPS treated cells were then seeded 

with splenocytes from immunised mice at 1:5 ratio (5x106 LPS cells with 1x106 splenocytes) for 6 days 

at 37°C. On day 6, cells were harvested washed and counted for plating with target cells for 

cytotoxicity assays. 

Harvesting of splenocytes 
from naïve mice 

Addition of Lipo-polysaccharides
+ dextran sulphate

Treatment with mitomycin C

Stimulation with 100µg/mL of 
Class I peptide cocktail

1 week co-culture (LPS blast cells + 
HAGE vaccine-derived splenocytes)

Freshly harvested 
splenocytes from HAGE 

immunized mice

Day 3

Day 1

Day 10

Chromium Release assay

Harvesting and plating of LPS activated cells 
with chromium labelled target cells

 

Figure 2.3 Schematic layout of preparation and induction of LPS blast cells for chromium cytotoxicity 

assays 
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2.2.6.3 Chromium killing assay 

Target tumour cell lines of interest of at least 2x106 cells for labelling with chromium (Cr51) in a volume 

of 500µL media added with 20% FCS. 1.85Mbq of chromium isotope was added onto cells and 

incubated at 37°C water bath for 1hour and washed with media at 1200rpm, 5min. After washing, cells 

were rested for 1hour at 37°C until plated at 5x103/well with T cells and seeded at different effector: 

target ratios of 100:1, 50:1 , 25:1 and 12.5:1. Controls were set up for spontaneous and maximum load 

with target cells and target cells with 1% SDS for 4 – 24 hours at culture conditions. After incubation 

periods, 50µLof supernatants were transferred onto LUMA plates that contains dried scintillant. Plates 

were dried until ready for reading with Top count beta scintillation counter. The percentage 

cytotoxicity is calculated according to the formula: [(experimental - spontaneous release)/(maximum 

load- spontaneous release) x 100] and expressed as the mean of triplicate samples. 

2.2.6.4 Real time cell analysis (RTCA Xcelligence) 

The Xcelligence system monitors cellular events in real time by measuring the electr5ical impedance 

across integrated electrodes at the bottom of the specially designed E-plates 16.  The impedance 

measurement provides quantitative information on the adherent cells including viability, morphology 

and cell numbers. Prior to plating of cells onto the E-plates, plates were added with media to assess 

the impedance values as a result of current flow between the electrodes. Tumour cells were plated at 

15x103 per well in 100µLof media and monitored for growth pattern for first 24hours. HAGE-vaccine 

derived T cells were added at 15x104 per well in 100µLmedia. Co-cultures were assessed by the system 

with a measure every 15minutes for up to 48hours. Results expressed as cellular Index were 

normalised (nCI) with RTCA software. 

2.2.7 Kynurenine assay 

Tumour cell lines were treated with Interferon gamma protein at various concentrations for different 

time intervals. At the end of the assay, supernatants were collected before obtaining cells for flow 

cytometry staining. The effect of IFNγ treatments on IDO activity were measured by quantifying the 

presence of kynurenine present in the supernatant collected at the end of each time point. 200µl of 

supernatants/standard were added with 100µl of Trichloro-acetic acid (TCA) and then vortexed well. 

Tubes were centrifuged at 8,000g for 5mins at 4°C. About 75µl of supernatants were transferred to 96 

well flat-bottom plates and added with equal volume of Ehrlich reagent (20mg/mL 4-dimethylamino 

benzaldehyde) and incubated for 15-20minutes before reading the absorbance at 495nm using a 

microtiter plate reader. 
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2.2.8 Processing of tumours  

Tumours were harvested from treated or untreated mice upon reaching the maximum tumour 

volume. A portion of tumour was cut for isolation of infiltrated immune cells before snap-freezing the 

tumour masses into storage using liquid nitrogen.  

2.2.8.1 Snap-freezing of tumours 

Tumours removed from euthanised mice were preserved as frozen tissue specimens for further 

analysis such as immunohistochemistry (IHC). Tumours were placed on cork sheets labelled pre-

labelled with tumour tissue details and covered generously with cryo-embedding compound. Then the 

assembly of cork-tumour tissue with cryo-embed material was completely immersed into a glass 

beaker containing 2/3 of isopentane (2-methylbutane) which was placed into a Dewar of liquid 

nitrogen enough to come up to 1/3 of the glass beaker for 2-3minutes per sample. The beaker was 

taken out to check if the clear portion of isopentane was completely submerged to be frozen into solid 

white. Samples carefully frozen without block cracking were placed on dry ice or temporarily 

transferred to -20°C until moved to -80°C. 

2.2.8.2 Isolation of TILs 

To obtain single cell suspensions from tumours, tumours were further minced into tiny pieces using 

scissors and immersed into 5mL of sterile PBS in a white-top bijou containing collagenase at 1mg/mL. 

The tubes were setup to gently swirl for 20-30mins at 37°C to help cell dissociation. The tissue 

mixtures were then filtered through cell strainer (pore size 70µm). 100µL of cell suspension was taken 

and centrifuged at 400g, 5 mins and washed once with PBS before staining with antibodies. 

2.2.9 Flow cytometry – cell surface staining 

0.5-1x106 cells were washed with 2mL of PBS prior to staining and added with fluorochrome-

conjµgated antibodies at recommended concentrations. For mouse cells, anti-mouse antibodies were 

used and in case of human cells, they were pre-incubated with 10µLof human Fc receptor blocking 

antibody for 15mins at 4°C before staining.  In case of use of fluorochrome-conjµgated secondary 

antibody, cells were washed after incubations with primary antibody and incubated with secondary 

antibody for at least 15-30mins at 4°C. Stained cells were washed once again with PBS by centrifuging 

at 400g, 5mins and supernatant discarded. To the pellet cytometer running buffer (Isoton) was added 

and ready to analyse in the flow cytometer (Gallios). 

2.2.9.1 T2 peptide binding assay 

T2 cells (100µL) were incubated at 1x106/mL in RPMI+10%FCS with 3µg/mL β2-microglobulin and 

added with 0-100 µg/mL of HAGE 24mer/30mer –derived Class I peptides for 4hours and incubated at 
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37°C. After incubation, cells were washed once with PBS and stained with 5µL of HLA-A2 antibody for 

30 mins at 4°C. The T2 cells were washed and analysed by flow cytometry. 

2.2.9.2 Surface staining on fresh splenocytes or tumour-derived lymphocytes 

Following harvesting of splenocytes from spleens, 2x106 cells were taken for surface staining using 

different antibodies according to the panel of study. Prior to staining with antibodies cells were 

incubated with anti-mouse FCR block (Biolegend) added at 1µg/test for 15-30minutes at 4°C.  

Table 2.6 Antibodies for cell surface staining -flow cytometry 

Antibody Quantity µg / Volume µL Company  

CD4 (Alexa-fluor700) 0.25 µg / 0.5uL Biolegend 

CD8 (APC-Cy7) 0.5 µg / 2.5uL Biolegend 

CD3 (BV421) 0.2 µg / 1uL Biolegend 

Live dead (zombie yellow or bright 

violet) 
0.5uL Biolegend 

Memory panel 

CD62L (FITC) 0.25 µg / 0.5uL Biolegend 

CD44 (APC) 0.25 µg / 1.25uL Biolegend 

Activation marker panel   

GITR (CD357) FITC 1 µg / 2uL Biolegend 

OX-40 (CD134) PE 0.25 µg /1.25uL Biolegend 

CTLA-4 (CD152) PE/Dazzle™ 594 0.5 µg /2.5uL Biolegend 

LAG-3 (CD223) PerCp-Cy5.5 0.5 µg /2.5uL Biolegend 

Tim-3 (CD366) PE-Cy7 0.5 µg /2.5uL Biolegend 

PD-1 APC 0.5 µg / 2.5uL Biolegend 

2.2.9.3 Intracellular cytokine staining of splenocytes after 1-week re-stimulation 

Splenocytes after 1-week stimulation with HAGE-derived peptides were harvested from wells or flasks 

and washed thoroughly using PBS by centrifuging at 400g for 5mins. Pellets were resuspended in T cell 

media for cell counting to take at least 2x106 splenocytes for intracellular staining. Cell volumes were 

spun down to resuspend in 50µL of FCS. Cells were incubated with anti-mouse FCR blocking agent 

added at 1µg/test for 15-30minutes at 4°C. Following that surface antibodies (table below) were 

added for 15mins incubation in 4°C.  
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Table 2.7a Antibodies for intracellular staining panel  

Antibody Quantity µg / Volume µl Company 

CD107a (FITC) 1.5 µg / 3 µL Biolegend 

CTLA-4 (APC) 0.5 µg / 2.5 µL Biolegend 

CD4 (Alexa-fluor700) 0.25 µg / 0.5 µL  Biolegend 

CD8 (APC-Cy7) 0.5 µg / 2.5 µL Biolegend 

CD3 (BV421) 0.2 µg / 1 µL Biolegend 

Live dead yellow 0.5 µL Invitrogen 

 

Cells were then added with 1mL of fix/perm solution for 15-30mins in dark. Cells were then washed 

with 2mL permeabilisation buffer (dilution of 10x permeabilisation buffer to 1x with water, FoxP3 

fix/perm kit) followed by resuspension in 100µL of permeabilization buffer and incubated with 

intracellular antibodies for 30mins at 4°C. After incubation, cells were washed with 2mL of 

permeabilization buffer by centrifuging at 400g, 5mins. Pellets were resuspended in 350-500µL of 

isoton for flow cytometry analysis.  

Table 2.7b Antibodies for intracellular staining panel 

Antibody Quantity µg / Volume µL Company 

TNF-a (PE) 0.25 µg / 1.25 µL Biolegend 

Ki67 (PE-efluor610) 0.125 µg / 0.3 µL Biolegend 

IL-215 (PerCp-Cy5.5) 0.6 µg / 3 µL Biolegend 

IFNg (PE-Cy7) 0.6 µg / 3 µL Biolegend 

Dextramer HAGE (PE) 

Replaced for TNFa when 

used 

2.5 µg / 2.5 µL Immunodex 

 

2.2.10 Assessment of HAGE-specific T cells in patient-derived PBMCs  

2.2.10.1 PBMCs defrosting and human IFNγ ELISpot assays 

PBMCs were defrosted using complete media (RPMI+5% human AB serum+1% L-glutamine) rested for 

2hours at 37°C and counted to be plated at 2x106/mL with either mixture of HLA-A2 restricted Class I 

peptides or HLA-DR1 restricted Class II peptides at 1µg/mL and 10µg/mL respectively. PBMCs 

stimulated with CEF peptides (1µg) were used as positive controls. PBMCs were incubated until day 10, 

with addition of IL-2 (20U/mL) and IL-15 (10ng/mL) on day 4. On day 10, cells were washed and rested 

in the complete media for 48hours. PBMCs were harvested and plated with peptide pools (final 

conc.5µg/mL) on ELISpot plates at 0.5x105 per well. Plates were incubated overnight at 37°C and then 

developed according to the manufacturer’s protocol (R&D systems).  
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2.2.10.2 Dextramer staining 

Dextramer for the peptide YLMPGFIHLV (peptide 6 HLA-A*0201) were synthesised to be 

conjugated with fluorochrome phycoerythrin (PE) and purchased from Immunodex. Cells were 

added with 10µL of FCR blocking and incubated for 10 mins in dark and added with 10µL of HAGE 

– dextramer for 30mins incubation at 4°C along with surface antibodies for CD3, CD19, CD8  and 

live/dead stain. After incuabtion, cells were washed with 2mL of PBS by centrifuging at 400g, 5 

mins. Cells were then fixed using 1mL of FOXP3 fix/perm solution (eBiocience 1 part 

concentrate+3 parts of diluent) for 20mins at room temperature in dark. Cells were then washed 

with permeabilisation buffer (10x permeabilisation buffer diluted 1:10 with distilled water) 

followed by incubation for 15mins with 25µL of serum specific for antibodies used. Without 

washing the intracellualr antibodies such as IL-2, 17, TNFα, IL-10, IFNγ were added at respective 

recommended concentrations for 15-30mins at 4°C. Cells were then washed with 

permeabiolisation buffer and then added with isoton for analysed with a flow cytometer. 

2.2.11 Statistic used for the ELISpot assay in the study 

The in-vitro experiments to be performed on the cells generated from this study will include the 

ELISPOT assay. The spots on the ELISPOT plate are counted using a plate reader and these directly 

correlate with the number of specifically functional IFN-gamma producing T cells generated as a result 

of the immunisation protocol above. Data will be processed to give group mean values and standard 

deviations where appropriate. Quantitative data will be analysed by a suitable statistical test– namely 

two-way ANOVA, not limited to Student T-test and stated accordingly below graphs. In ELISpot assays, 

a response was considered to be positive if the number of spots in well with presence of specific 

peptides was 2-folds higher than the spots in the wells without peptide (control). 

2.2.12 Data acquisition 

Wells were scanned and counted with CTL ELISpot plate reader using the CTL version. Specific 

guidelines were used to evaluate ELISpot plates. The following parameters were fine-tuned to allow 

exclusion and inclusion of artefacts: spot colour and saturation, intensity. For each experiment, the 

applicability of the set of parameters were tested and adjustments were made when the conditions 

required it, (e.g. overcrowded wells with smaller spots). Counts were always checked for plausibility 

and audited. 

For β counting to obtain data from Chromium cytotoxicity assays, plates with culture supernatants 

were counted by Top Count β scintillation counter. The radioactivity emissions are converted into 

counts per minute, measured as experimental output. 
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Chapter 3. Preparation of target cells 

3.1 Introduction 

3.1.1 Breast tumour antigens and immune recognition 

Breast cancer is an exceptionally heterogeneous disease and has not generally been thought of as 

an immunogenic malignancy. However, it has recently become apparent that a subset of tumours 

can trigger an effective immune response. A study classified TNBC into four distinct sub-types, 

with two subtypes based on whether the immune system is immunosuppressed (BLIS) or 

activated (BLIA), with the worst prognosis being associated with BLIS tumours (Burstein, et al. 

2015). It is therefore possible that some TNBC subtypes may benefit from a vaccine therapy 

followed by checkpoint inhibitor treatment. Cancer testis antigens (CTAs) are ideal 

immunotherapeutic targets due to their restricted expression in cancers and limited expression in 

normal adult tissues.  

3.1.2 Helicase antigen (HAGE) as an immunotherapeutic target 

Many CT antigens have been identified and shown to be expressed by TNBC. Amongst them 

MAGE-A and NY-ESO-1 CT antigens were found to be expressed in a substantial proportion of 

TBNC. As mentioned earlier in introduction, our group demonstrated that HAGE was expressed by 

many solid cancers (Mathieu, et al. 2010) and more recently in collaboration with Dr. S. Chan’s 

group from City Hospital Nottingham HAGE was found to be expressed by 47% of TNBC (Abdel-

Fatah, et al. 2016). Moreover, TNBC expressing HAGE protein were found to have more Tumour 

Infiltrating Lymphocytes (TILs) and both the presence of TILs and HAGE expression were found to 

be independent predictors for pathological complete response (pCR, ps<0.001) and associated 

with prolonged-free survival (PFS<0.01), following anthracycline combination neo-adjuvant 

chemotherapy (AC-Neo-ACT) (Abdel-Fatah, et al. 2016).  Therefore, considering the limited 

treatment options for TNBC, combined chemo-immunotherapy might serve as a therapeutic 

option for the aggressive breast cancers. Immunotherapy can be either passive or active 

immunotherapy. This study focuses on active immunotherapy using cancer vaccines derived and 

developed based on tumour antigen HAGE. 

An important part of vaccine design, is to ensure that the vaccine is able to not only generate 

antigen-specific T cells but also ensure that these T-cells can recognise and kill target cells 

expressing HAGE in an HLA-specific manner. In addition, target antigen density can heavily 

influence the evaluation of in vitro biological T cell responses. This phase of the study can be 

particularly challenging if therapeutically relevant cell line models are unavailable. It is reported 

that differences in T cell cytotoxicity measured against certain cancer targets can be 
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misunderstood due to very low antigen expression levels below which no activity can be achieved 

or assessed (Velders, et al. 1998). Moreover, in a clinical setting, levels of protein expression can 

impact the diagnosis, treatment monitoring and modulations (Jarantow, et al. 2015). Recently the 

importance of intra-tumoural heterogeneity has also been highlighted in several reports which 

provide possible tumour immune escape mechanism and source of resistance to therapy (Turner 

and Reis-Filho 2012). It is therefore important to evaluate the levels of antigen expression in cells 

or cell-lines derived from different BC subtypes (table 3.1). However, TNBC (basal-like/ claudin 

low) subtypes are of interest for this study. 

 

In order to determine the T cell cytotoxicity against relevant cellular backgrounds based on 

tumour models, different cell lines, expressing high-levels of antigenic protein can be used. The 

mouse model used in this study to assess the immunogenicity and the anti-tumour efficacy of the 

vaccine is the C57Bl/6 mice that have been engineered to express only a human chimeric HLA-

A*0201 and the HLA-DRB*0101 molecules. Therefore, a series of human and murine target cells 

that express HAGE protein and relevant HLA-surface molecules were of interest for this study.  To 

generate a stable cell line with preferred characteristics, a range of molecular techniques can be 

employed to induce transient or permanent gene expressions. 

3.1.3 Molecular transfection methods 

Introduction of genetic materials (DNA or RNA) into cells can be achieved for either stable or 

transient expression of a gene of interest. Generally, for stable transfection, the expression vector 

can either integrate into the host cell genome or be maintained as an extra- chromosomal 
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(episomal) element, under conditions of chronic selection. In contrast, genes transfected 

transiently are only expressed over limited period which can be lost during cell division. This 

choice of transfection depends on the experimental purposes. Expression or inhibition of genes by 

transfection enables studying the function of gene or gene products. Two types of DNA 

transfection are shown in the fig 3.1. And they are known to have important applications such as 

gene therapy by delivery of genes, transcriptional factors, siRNA, and establishment of cells to 

produce recombinant proteins for therapeutic purposes (Wurm 2004). Different methods of gene 

transfer and vector sequences used are described in detail in table 3.2 and have specific 

advantages and disadvantages depending on the purpose/application of the transfection (Recillas-

Targa 2006). 

Foreign DNA

Host genome 
integration

Nucleus

Cytosol
Expression

Foreign DNA mRNA

Cytosol

Nucleus

Stable transfection Transient transfection

Types of transfection 
(delivery of foreign genetic materials)

Short term, less homogenous expressionLong term expressions

proteinprotein

mRNA delivery

 

Figure 3.1 Schematic representation of stable and transient transfection. Protein products are expressed as 

a result of host genome DNA integration in stable transfection, producing protein (blue) via endogenous 

pathway. Transient transfection of DNA results in brief protein expressions without integration into host 

genome.mRNA transfections produces protein (green) via exogenous pathway that does not require nuclear 

entry thereby eliminating risk of genomic integration.  
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3.1.4 Prohibition of tumour’s immunological escape mechanisms 

Over decades, the role and efficacy of the immune system in tumour containment or rejection has 

been determined based on the possibility of inducing effective anti-tumour responses capable of 

rejecting an experimentally implanted tumour. This, in other words, can be termed as “tumour 

immune surveillance”. In 2004, the immune-surveillance theory was elaborated by Schreiber et 

al., into “cancer immune-editing” hypothesis postulating three phases: elimination, equilibrium 

and escape. Out of the three, elimination phase is the most critical phase where innate and 

adaptive immune responses prevent tumour development. If this phase is unsuccessful, tumour 

cells may enter equilibrium and under pressure from the immune system may lead to the 

emergence of tumour variants. These variants have evolved to evade the immune attack and 

therefore are able to continue to grow that eventually become clinically detectable. (Dunn, et al. 

2002, Dunn, Old and Schreiber 2004). Key players of immunity are identified in both innate and 

adaptive immune system, whose aim is to kill sufficiently “foreign/different” and/or antigen-

bearing tumour cells, this mechanism is known as the cancer immunity cycle (Chen and Mellman 

2013).  

The immune system is first alerted by the presence of tumour cells when these become 

sufficiently “dangerous” which is usually achieved by inflammation and cell death. An anti-cancer 

immune response is then mounted to eliminate cancer cells and repair the damaged. This 

response includes the following steps: 1) capturing of mutated/overexpressed/neo- antigens 

derived from dying tumour cells by antigen presenting cells of which dendritic cells are the most 

potent 2) T cell priming with antigen and cytotoxic T cell activation 3) tumour infiltration by 

activated T cells 4) Tumour cell recognition and binding by T cells 5) release of cytotoxins by 

bound effector T cells to induce apoptosis to target cancer cell. The apoptotic cancer cells release 

additional tumour-antigens that propagates the immunity cycle further. These are the steps 

involved in an ideal situation of anti-tumour immune attack against tumour cells, but in reality, 

the scenarios of tumour microenvironment have evolved to become much more challenging. 

In response to immune-surveillance (or) immunotherapy, tumour cells can evolve to adapt new 

mechanisms to escape immune recognition and eradication. Evading anti-tumour immunity is a 

hallmark of tumour development and progressions (Hanahan and Weinberg 2011). Immune 

evasion mechanisms include: A) loss of antigenic expressions and MHC molecules by tumour cells, 

which can be circumvented by use of multivalent/antigenic approach, B) release of 

immunosuppressive cytokines and inhibitory molecules that can inhibit effector T cell activation 

and C) interruption of antigen processing and presentation. Within a tumour microenvironment, T 

cells can suppress cancer or become dis-regulated depending on the immune suppressions 
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exhibited. Tumours employ multiple inhibitory mechanisms as shown in figure 3.2 to escape 

recognition by immune system. 

Within a tumour niche, when there is infiltration of T cells they are rendered dysfunctional by up-

regulated expressions of indoleamine-2,3-dioxygenase (IDO), PD-L1/B7-H1 binding, and 

recruitment of FoxP3+ regulatory T cells (Tregs), tumour-associated macrophages (TAMS), 

myeloid‐derived suppressor cells (MDSCs) that participates in promoting tumour growth. It is also 

argued that major immunosuppressive pathways are intrinsically driven by immune cells instead 

of being orchestrated by cancer cells thereby implying that targeting immune checkpoints could 

be beneficial for patients with pre-existing T cell inflamed tumour microenvironment (Spranger, et 

al. 2013). Another inhibitory receptor expressed by activated CD8+ T cells is CTLA-4 (CD152) but 

which is constitutively expressed by Treg cells provides inhibitory signal to T cells after binding to 

CD80 (B7-H1) and CD86 (B7-H2) on APCs. Therefore, it is suggested that combinatorial approach 

of immune checkpoint blockade with antigenic vaccines can induce prolonged anti-tumour 

immunity without any immune inhibitions that allows tumour escape. 
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Figure 3.2 Immunosuppressive molecules mediated by tumour cells to escape immune attack. 

NKG2D- natural killer group 2D, AHR –aryl hydrocarbon receptor, CCL2-chemokine ligand 2. (partly adapted 

from (C Prendergast, et al. 2011). 

3.1.5 Programmed death ligand-1 (PD-L1) 

Over the last 10 years, researchers have studied various mechanisms that tumour cells adapt to 

suppress or inhibit anti-tumour immunity. One of the most interesting tumour escape 

mechanisms is Programmed Death ligand-1 (PD-L1) pathway that protects tumour cells from 

activated T cells by: a) overexpression of PD-1 on infiltrating T cells in the lymph node that 

prevents subsequent T cell priming thus reducing T cell recruitment to the tumour, b) 

upregulation of PD-L1 on dendritic cells within tumour microenvironment that deactivates 

cytotoxic T cells (Chen, Irving and Hodi 2012, Chen and Mellman 2013).   

PD-L1 is expressed in 34% of breast tumours of high histologic grade and associated with high-risk 

clinico-pathological features. Under normal conditions, PD-L1 play a role to maintain immune 
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homeostasis (Robainas, et al. 2017). However, in many cancers abundant PD-L1 expressions 

allows cancer cells to escape immune attack by: i) evading T cell attack by PD-1 binding due to PD-

L1 up-regulations in response to IFNγ, a novel mechanism by which IFNγ impairs tumour immunity 

(Mandai, et al. 2016). ii) Another mechanism is through oncogenic signalling, where loss of PTEN 

regulates the PD-L1 expressions in TNBC cells leading to decreased T cell proliferation and 

increased apoptosis (Mittendorf, et al. 2014a).  The interaction between PD-1 and PD-L1 results in 

T cell tolerance, inhibition of T cell proliferation, reduced cytokine production and tampering of 

tumour cell recognition resulting to be a major mechanism of tumour immune evasion, hence an 

important immune checkpoint pathway to target. Besides this, PD-1/PD-L1 signalling also plays a 

vital role in tumour intrinsic function and survival (Clark, et al. 2016). It is also reported that 

antibodies targeting either PD-1 or PD-L1 have elicited durable and objective responses in 

patients with melanoma, NSCLC and renal carcinoma (Brahmer, et al. 2012). Therefore, to induce 

an efficacious long-term anti-tumour T cell response, combinatorial effects of anti-cancer 

immunotherapies with drugs targeting PD-1/PD-L1 axis such as anti-PD1 or anti-PD-L1 blocking 

antibodies have been developed and evaluated.  

3.1.6 Immuno-modulatory effects of Indoleamine (2,3)-dioxygenase (IDO1) 

The involvement of L-tryptophan and its metabolite, kynurenine (Kyn) in various biological 

processes including cancers has become more evident. IDO is an enzyme that plays a major role in 

depleting tryptophan and regulates maternal tolerance and general aspects of T cell tolerance. It 

has been reported in placental trophoblast and IFNγ -activated APCs. The critical link between IDO 

and aryl hydrocarbon receptor (AHR) has been elucidated in the development of Tregs and Th17. 

It is even revealed that AHR expressions are crucial for IDO1 induction and IDO1-mediated 

tryptophan catabolism resulting in immuno-regulatory mechanism that underlie immuno-

tolerance, suppression and immunity (Nguyen, et al. 2014). IDO1 has been identified as an 

immunosuppressive checkpoint protein that supports tumour growth. Increased levels of IDO1 

protein drives growth inhibition and apoptosis of effector T cells. In addition to tumour cells IDO is 

also expressed by DCs in draining lymph-node that impairs immune responses by a cascade of 

events, below is the conversion of IDO1 in kyn pathway which catalyses the tyrotphan 

degradation into N-formyl-kynurenine and then to L-Kyn.  

 
Figure 3.3 Schematic representation on role of IDO1 in converting tryptophan into kynurenine. 
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3.1.7 The role of IDO1 in cancer immune-editing 

During the elimination phase of immune-editing, transformed cells are killed by immune cells of 

both adaptive and innate immune systems. B cells produce antibodies, NK and T cells release 

inflammatory cytokines, such as IFNγ that activates DCs to secrete IDO at low levels. This inhibits 

tumour growth due to tryptophan depletion. But during the equilibrium phase, surviving tumour 

cells rapidly accumulate mutations such that the tumour can no longer be controlled by immune 

cells. These edited cells become clinically manifested and enter the escape phase with high IDO 

levels produced by tumour cells and immune cells (MDSCs, TAMs, DCs). This leads to immune-

suppressions and tolerogenecity by NK and T cell inhibition, MDSC activation and Treg induction 

(Hornyák, et al. 2018).  These elevated levels of Kyn activates aryl hydrocarbon receptor (AhR) 

that renders DCs tolerogenic.  Production of IDO is elevated upon: i) IFNγ release by effector T 

cells, ii) production of inflammatory cytokines by immune cells, iii) IL-27 and IL-10 stimulations, iv) 

CTLA4 expressions on Tregs inducing IDO expressions by DCs (Belladonna, et al. 2009) and v) IL-

10, TGFand adenosine production by other immunosuppressive cells (Hornyák, et al. 2018). 

Hence the biochemical role in tumour metabolism and immune surveillance makes IDO1 a valid 

target to increase the effectiveness of immunotherapies against highly aggressive and IDO-

expressing cancers. Therefore, tumour immunologists aim to achieve cancer eradication by 

reversing immune-editing processes through inhibition of immunosuppression mechanisms with 

simultaneous activation of potent anti-tumour T-cells. 

3.1.8 TDO2 (tryptophan 2,3-dioxygenase) 

There is also another enzyme called TDO2 (tryptophan 2,3-dioxygenase) that catalyses this 

conversion into kynurenine. Although there is structural similarity between IDO1 and TDO, they 

do not share sequence homology (Zhang, et al. 2007). Information regarding the function of TDO 

in cancer is very limited but what is known is that TDO is expressed by tumours of different origin 

particularly, melanoma, glioblastoma and bladder cancer (Pilotte, et al. 2012). It was 

demonstrated that TDO-specific immunity is more frequent in healthy donors. TDO-specific T cells 

contribute to immune-regulatory networks to repress immune suppression, whereas in cancer 

patients it is conceptualised that TDO-specific Tregs may enhance the TDO-mediated immune 

suppression (Sorensen, et al. 2011, Hjortsø, et al. 2015). Thus, TDO might also be an additional 

target for cancer immunotherapy. Targeting TDO might synergise with IDO1 inhibition since they 

share similar downstream effectors, such as stress kinases GCN2, AHR (Platten, et al. 2015). 
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3.1.9 Brief chapter content 

This chapter focuses on finding and/or generation of suitable HAGE expressing, HLA-A2+ (or not 

for control) target cells. In order to achieve this, a panel of HNSCC and TNBC cell lines were 

screened for HAGE expression. Further reporter systems were included to facilitate the use of in 

vivo imaging of tumours in treatment settings. In addition, a melanoma C57Bl/6 mouse-derived 

cell line (B16) already knocked out-for β2m and transfected with both the chimeric HHDII and 

HLA-DR1 gene was used for establishing relevant tumour model. This cell line was further 

transfected with plasmids encoding HAGE and the Luc2 gene. To gain insights on the 

immunosuppressive signals regulated by IFNγ cytokine signals, PD-L1 and IDO expression levels in 

TNBC cell lines were assayed in this part of the study. 
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3.2 Results 

3.2.1 Screening of panel of cell lines for HAGE expression 

In order to determine the anti-tumour efficacy of the HAGE-derived vaccine, it is crucial to choose 

an appropriate target cell that is both HAGE+/HLA-A*0201+. Although this study focusses on triple 

negative breast cancer, HAGE was found to be expressed at high levels in one head and neck 

cancer cell line (PCI13) while PCI30 cells were found to be negative for HAGE expression and these 

cell lines were therefore used as positive and negative controls respectively.  

Initially, HAGE expression at mRNA level was assessed in a panel of TNBC cell lines that were 

available along with positive and negative control, PCI 13 and PCI 30 respectively (fig 3.4A). 

Further MDA-MB-231, MDA-MB-468 and BT-549 were assessed for HAGE protein expression 

based on positive (or) negative HLA-A*0201 expressions. The lysates of three TNBC cell lines were 

used for western-blotting analysis (fig 3.4B) along with PCI 13 and PCI 30 lysates used as positive 

and negative controls respectively.  

It was observed that HAGE (72KDa) was expressed by TNBC cells including MDA-MB-468 (HLA-

A*0201 negative) and hence was chosen for testing HLA specific targeting in downstream 

experiments. HAGE expressions were also assessed by Immunofluorescence on TNBC cell lines (fig 

3.5) and observed to be expressed in all TNBC cells while MDA-MB-468 had comparatively mild 

staining than the other two cell lines.  The polyclonal rabbit anti-DDX43 antibody (HPA 031381) 

has been validated by the human protein atlas (HPA) by immunohistochemical staining of human 

endometrium against human testis and corresponding orthogonal RNAseq confirmation to show 

significant difference in expression levels. Comparison of staining of MDA-MB-231 and MD-MB-

468 with mouse monoclonal (SAB1400618) and rabbit polyclonal in appendix fig 8.3 shows a slight 

difference in cytoplasmic and nuclear staining of cells. 
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Figure 3.4 Differential HAGE gene expression patterns in TNBC and HNSCC cell types at mRNA 

and protein levels. A) Real-time PCR analysis was performed on cDNA templates of various HNSCC and 

TNBC cells cultured in vitro. Results indicate high HAGE mRNA levels in PCI-13 compared to other cell lines, 

relatively expressed in terms of ∆Ct on Y-axes (n=3). Results indicate low HAGE mRNA levels in TNBC cells. 

∆Ct calculated by normalising with β actin house-keeping gene. B) Lysates from HNSCC and TNBC cells were 

extracted and 20µg of protein was loaded per sample. HAGE expressions were detected in more than one BC 

cells with protein band of 73kDa. TNBC cells MDA-231, MDA-468 were compared for HAGE expression levels 

agains PCI 13, positive control.  
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Figure 3.5 Immunofluorescence staining for DDX43 expressions. Cells were stained with A-enolase 

primary (1:50), DDX43 primary (1:100) & secondary anti-rabbit (Alexa-488) at 1:250 dilution. There was no 

staining obtained from secondary alone. Objective at 4X. 

3.2.2 Preparation of HAGE-encoding plasmid constructs for generation of HAGE + cells 

To assess the in vivo anti-tumour efficacy of the vaccine, a tumour model would need to be 

established in the HHDII/DR1 transgenic mice. In this study we have used B16/HHDII/DR1 cells 

(Kindly donated by Prof. Lindy Durrant, Professor of Cancer Immunotherapy, Faculty of Medicine 

& Health Sciences, The University of Nottingham) for generating a tumour model in HHD-DR1 

mice. These cells were knocked-out for murine β2 microglobulin (mBeta-2M) and transfected with 

human HHDII and HLA-DR1 constructs for better antigen presentation in HHD-DR1 mice. These 

cells are of melanoma origin and were used as a proof of concept to assess vaccine efficacy 

against target antigen (HAGE). mBeta-2M negative and chimeric HHD-DR1 positive B16 melanoma 

cells were further transfected stably with human HAGE (Target antigen) and firefly luciferase 

(Luc2) open reading frame constructs for this study. A lentiviral expression plasmid (pLenti-puro) 

carrying puromycin selection marker were constructed to express HAGE and a second expression 

vector pBUDCE4.1 with Zeocin selection marker were constructed to encode Luc2 gene to 

facilitate in vivo imaging of the tumour-bearing mice to evaluate HAGE vaccine efficacy. 
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To achieve this, the full-length codon optimised HAGE gene, synthesised and cloned into pUC57 

cloning vector were purchased from Genscript (Piscataway, New Jersey, United States). Firstly, the 

plasmid DNA was isolated after overnight culture and sequenced by Sanger sequencing was used 

to confirm the identify and the presence of the insert using appropriate sequencing primers for 

the vector as mentioned in the methods section. Other plasmids pGL4.2/Luc2 and pLenti-Puro 

were purchased from Addgene. Luc2 gene were required to be sub-cloned into mammalian 

expression vector pBUDCE4.1. 

3.2.2.1 Cloning of HAGE and Luc2 fragment individually into empty pBUDCE4.1 vector 

pUC57-Kan/HAGE and empty pBUD vectors were double digested with Sac I and Hind III 

restriction enzymes. Similarly, pGL4.2/Luc2 and empty pBUD vectors were double digested with 

Hind III and Bam HI. The digested products were run on a gel and bands of 1959bp (HAGE) and 

1954bp (Luc2) were purified from the gel and ligated with linearised pBUD vector backbone using 

T4 DNA ligases, transformed into competent XL1-Blue E.coli and plated on LB agar with Zeocin. 

Clones were screened by restriction enzyme digestion. As seen in Fig 3.6, in all 6 clones the band 

could be detected with a band of 1959bp and 3 out of 3 clones were found to also have the 

1954bp band. These clones were obtained with 100% identity sequence to published Luc2 

sequence (appendix fig 8.6) and codon-optimised DDX43 sequence in two of them upon 

sequencing (appendix fig 8.7). 
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Figure 3.6 Agarose gel image after double digestion of pBUDCE4.1/HAGE, pBUDCE4.1/Luc2 

clones.  After double digestion of pBUDCE4.1/HAGE clones with Sac I and Hind III, a band of 1959bp could 

be observed in 6 of 6 clones (lanes 2-7) and after double digestion of pBUDCE4.1/Luc2 clones with Hind III 

and Bam HI enzymes, a band of 1954bp could be detected in 3 of 3 clones (lanes 8-10) indicating successful 

cloning of HAGE or Luc2 into the empty pBudCE4.1/HAGE mammalian expression vector (lane 1) of 4595bp. 

The vector maps of various constructs designed for this experiment are listed in the appendix (figure 8.4) 
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3.2.2.2 Cloning of HAGE fragment from pUC57/Kan into empty pLenti/Puro plasmid vector 

pUC57-Kan/HAGE and empty pLenti/Puro vectors were double digested with XbaI and ApaI 

restriction enzymes. The digests were run on a gel and bands of 1971bp (HAGE) was gel purified 

and ligated with linearised pLenti/puro vector backbone using T4 DNA ligases, transformed into 

competent XL1-Blue E.coli and plated on LB agar with zeocin. Clones were screened by restriction 

enzyme digestion. As seen in fig3.7, two clones could be detected with a band of 1971bp and 

clone 1 was selected for reconfirmation of successful HAGE insertion, with band could be 

detected with 1971bp. This clone was obtained with 100% identity sequence to the codon-

optimised DDX43 sequence in both of them upon sequencing (shown in appendix fig. 8.5). Vector 

maps are available for reference in appendix fig 8.4.  
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Figure 3.7 Agarose gel image of restriction digestion of pLenti/puro –HAGE clones. Image on the 

left shows HAGE fragment band at ~2000bp after double digestion of the pLenti/HAGE clones 1 & 2 (Lanes 

1,2), pUC57/HAGE (Lane 3) with Xba I/Apa I. Image on the right shows Lane A to E with plasmids that were 

subjected to either single digestion with Apa I or double digestion with Xba I and Apa I enzymes. Lanes A - 

pUC57 digestion with Apa l, B - pUC57 digestion with Xba I/Apa I, C - pLenti/HAGE digestion with Apa I, D - 

pLenti/HAGE digestion with Xba I/Apa I and E- pLenti/puro empty vector digestion with Apa I. Bands clearly 

shows the insertion of HAGE fragment into pLenti/puro-clone1. 

3.2.2.3 Expression of HAGE and Luciferase at protein levels in HEK293 cell lines 

After confirming the sequence alignment and gene orientation, the plasmid DNA was transfected 

into HEK293 cell lines to assess the target gene expression at protein levels. Transfection of DNA 

into cultured HEK293 cells lines was accomplished by using Lipofectamine 3000 as mentioned in 

method section. 48hours post transfection; HEK transfectants were harvested as protein lysates 

to perform a robust Luciferase reporter assay to determine the relative transfection efficiency 

(fig3.8).  
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Figure 3.8 HAGE and Luc2 protein expression analysis by western blotting and Luciferase 

reporter assay. A) Lysates of HEK293 transfected with pBUD/HAGE were obtained 48hours post 

transfection using Laemilli buffer. 20µg of protein lysates were used for observing HAGE protein expressions 

at 72kDa. B) Likewise, reporter assay using lysates from HEK293-pBUD/Luc2 cells exhibited high levels of 

luminescence. Graph showing maximum luciferase activity in HEK293/Luc2 with error bars of mean ± SEM 

three replicates (n=2). 

As mentioned earlier the murine melanoma B16 cell line was kindly provided by Prof. Lindy 

Durrant (from Scancell) (knockout for murine MHC molecules and knock-in with the chimeric HLA-

A2 encoded by a HHDII plasmid construct). These cells will be referred to as B16/HAGE+ from here 

on throughout the thesis. These cells will be used to establish tumours directly in HHDII/DR1 

transgenic mice and therefore were transfected with human HAGE gene and a Luc2 reporter 

gene. The firefly luciferase reporter gene (Luc2) will produce luminescence suitable for monitoring 

tumour growth by in-vivo live imaging. This will allow testing the proof of concept whether HAGE 

vaccine could delay or even eradicate B16/HAGE+ tumours. Cells used as control for B16/HAGE 

will be referred to as B16 only (HHDII+, murine MHC- but not transfected with human HAGE).  

3.2.3 Generation of stable HAGE/Luc 2 double transfectants 

B16 cells obtained from Prof. Lindy Durrant were previously double transfected to express HHDII 

and DR1 using plasmids containing the antibiotic selections genes G418 and hygromycin 

respectively. These cells were further transfected with recombinant constructs pBUD/Luc2 and 

pLenti/HAGE successively. Non-transfected B16 cells were treated with a range of antibiotic 

concentrations over 7-10days to determine the lowest concentration that can induce 100% cell 

death while ensuring no cell death caused due to confluency. Thus, the antibiotic sensitivities for 

Zeocin and puromycin individually for B16 cells were determined to be 550µg/mL and 1µg/mL 

respectively. Transfected B16/Luc2+, HAGE+ cells were subjected to antibiotic selection 24 hours 

post-transfection using Zeocin (550µg/mL) and puromycin (1ug/mL) and cells were analysed for 

HAGE and Luc2 mRNA and protein expressions. 
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The image below shows the transfected B16 cells selected with a cocktail of antibiotics- G418, 

hygromycin, zeocin and puromycin added to culture media (fig 3.10). Following this, B16 cells 

were stained for β2-microglobulin and sorted using FACS to select the populations with the 

highest HHDII expression (fig 3.10). From this, single cell clones were plated to identify HAGE+ and 

Luc2+ clone that can be used to establish tumours in HHDII/DR1 mice.  

B16 cells post transfection were stained for HAGE expressions at mRNA levels (fig 3.9A) and 

protein levels (fig 3.9B, 9C) with monoclonal mouse anti-DDX43 antibody. Immunofluorescence 

staining shows that B16/HAGE, Luc2 transfectants contain mixtures of clonal populations 

expressing low and high HAGE levels. This indicates the need for single cell cloning by plating 1 

cell per well using cell sorter to culture individual clones for further detection of uniform HAGE 

expressions. Staining of B16/empty vector also validated the specificity of mouse monoclonal 

antibody used in the study.  
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Figure 3.9 HAGE expressions at mRNA and protein levels. B16 cells transfected with lentiviral vector 

with and without HAGE were assessed by A) RT-PCR for HAGE mRNA levels, B) western blotting for HAGE 

protein expressions with rabbit anti-DDX43 (HPA013081) at 1:500 dilution and C) Staining with anti-DDX43 

at 1:100 followed by Alexa Fluor568 conjugated anti-rabbit secondary antibody at 10ug/mL. Melt curve 

shows a single pure amplicon/product synthesised by HAGE-specific primers. Staining revealed that cell 

cultured with antibiotics contained a mixture of both high and low HAGE expressing cell populations. 
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Figure 3.10 HLA- A2 and HLA-DR1 surface expressions on B16 cells using flow cytometry analysis. 

B16 cells were stained with B2m and DR1 (2.5ug per 1x106 cells). 

Single cell clones obtained from B16 transfected with HAGE, Luc2 genes were cultured in 

respective antibiotics and assessed for HAGE protein levels by Immunofluorescence (Fig 3.11) and 

western blotting (fig 3.12D), and mRNA expressions by qRT-PCR analysis (fig 3.12C). Luciferase 

reporter assays were performed to confirm Luc2 gene expressions (fig3.12 A, B).  

 

Figure 3.11 Immunofluorescence staining for HAGE. B16 cells transfected with lentiviral vector with 

and without HAGE were stained with rabbit anti-DDX43 (HPA013081) at 1:100 dilution with Alexa Fluor568 

conjugated anti-rabbit secondary antibody at 10ug/mL. Clones were screened for uniform HAGE expressions 

and the clone showing high HAGE was selected for cytotoxicity assay. 
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Figure 3.12 Assessment of B16 clones for HAGE expressions at mRNA levels and Luc2 

expressions. A) Luciferase expressions measured with D-luciferin (30ug/uL) expressed in 0.1X106 cells. B) 

HAGE mRNA expressions measured by qRT-PCR analysis with ∆Ct calculated by normalising with Gus B 

house-keeping gene, error bars mean±SEM. C) Quantitation curve and D) HAGE protein expressions by 

western blotting. Out of 5 single B16 clones, clone 8 expresses both HAGE and Luciferase thus suitable to be 

used as a target. 

3.2.4 Generation of stable pBUD/HAGE single HNSCC transfectants  

To assess the cytotoxic effect of HAGE vaccine-derived T cells on HAGE-specific tumour cells 

irrespective of cancer types, another HAGE negative HNSCC cell line PCI-30 was transfected with 

pBUD/HAGE construct. Non-transfected PCI30 cells were treated with a range of zeocin antibiotic 

concentrations over 7-10days to determine the lowest concentration that can induce 100% cell 

death while ensuring no cell death caused due to confluency. The cells were found to be sensitive 

to 150µg/mL of Zeocin. Hence, pBUD/HAGE transfectants were selected by zeocin antibiotic 

selection at a concentration of 150µg/mL. Cells were maintained in selection media for two 

passages and cell lysates were obtained for HAGE protein expressions analysis by western blotting 

as shown in fig 3.13.  
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Figure 3.13 HAGE protein expression analysis of transfected PCI-30 cell lines: Lysates were 

obtained from PCI-30 cells transfected with eitherHAGE encoding recombinant pBUD (or) pcDNA vectors 

using Laemilli buffer for western blot analysis. 20µg of protein was loaded and blotted with rabbit anti-

DDX43 antibody at 2-5µg/mL. HAGE expressions were observed indicating successful transfection of PCI 30 

cells with pBUD/HAGE. 

3.2.5 Effect of Interferon gamma treatments on PD-L1 surface expressions of TNBC cell lines 

Successful vaccination induces production of IFN by T-cells. In order to assess whether IFNγ 

cytokine influences the PD-L1 and IDO expressions on the target cells, TNBC cells were treated 

with 100ng IFNγ cytokine for 24, 48 and 72 hours. The concentration was chosen based on 

previous observations and reports that suggest the most efficient dose of the cytokines capable of 

inducing the maximum increase in HLA-A expression, which is used as a surrogate marker of the 

effect of this cytokine. mRNA was extracted from the cells post-treatment for cDNA synthesis. 

Levels of PD-L1 and IDO were assessed by qRT-PCR analysis with appropriate primers as per 

written in method sections. 

Figure 3.14 shows that both TNBC cell lines increased PD-L1 with IFNɣ treatment. MDA-MB-231 

cells exhibited upregulated PD-L1 surface expressions for first 24hours but gradually decreased 

over 48 and 72hrs. MDA-MB-468 cells showed PD-L1 upregulations at 24hrs, with highest PD-L1 

surface levels at 48hrs and a fall with 72hrs treatment period. 
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Figure 3.14 IFNγ treated TNBC cells specifically induce PD-L1 expressions: TNBC cells were 

treated with IFNγ at 100ng/mL for different time periods and assessed for up-regulation of MHC 

and PD-L1 expressions on cancer cell surfaces. PDL-1 expressions measured at mRNA levels in IFNγ 

treated cells compared against untreated as control. ∆Ct calculated by normalising with Gus B 

house-keeping gene (n=3). A two-way ANOVA statistical analysis showed significant difference 

(p<0.0001) between treated and untreated groups within different time points. 

Further, effect of IFNɣ on TNBC cells with IDO profile were also studied. After cytokine stimulation 

for 24,48 and 72hrs, cells were harvested for mRNA to synthesise cDNA for qRT-PCR using IDO-

specifc primers. Figure 3.15 shows that cytokine stimulation did not significantly regulate IDO 

expressions on MDA-MB-231 cells. But in MDA-MB-468 cells IDO levels were increasing with time 

period of cytokine treatments. Kynurenine assays were performed to measure the IDO activity 

and it confirmed the same observation. Between the two cell lines, IDO levels were regulated by 

IFNɣ in MDA-MB-468 but not in MDA-MB-231 cells.  
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Figure 3.15 Kynurenine assay post IFN treatment (IDO expressions): TNBC cell lines were treated 

for several hours with different IFNγ doses. The supernatant media was collected to measure IDO activity 

mediated by IFNγ.  Kynurenine amounts measured in TNBC cells after 24, 48 and 72hours of treatment: B) 

MDA-MB-231, C) MDA-MB-468. A qRT-PCR was performed to compare the IDO expressions at mRNA levels 

induced in treated with 100ng/mL of IFNγ vs. untreated cells. Data above are shown with error bars 

indicating mean ± SEM (n=3). ∆Ct calculated by normalising with Gus B house-keeping gene.  
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3.3 Discussion 

HAGE or CT-13 antigen encoded by DDX43, belonging to RNA helicases D-E-A-D box family, was 

originally identified in rhabdomyosarcoma cell line (Martelange, et al. 2000). RNA helicases are 

highly conserved enzymes that are involved in RNA metabolism and HAGE has been shown to 

promote MMIC-dependent tumour growth and to be associated with survival of ABCB5+ 

melanoma cell populations within tumours that are chemo-resistant. It was also demonstrated 

that HAGE promotes tumour proliferation by regulating RAS protein expressions (Linley, et al. 

2012).    

Recently it was shown that HAGE was expressed 43% in pre-chemotherapy locally advanced 

primary breast tumours but only in 18% post chemotherapy. The prognostic and predictive value 

of HAGE has also been characterised in BC patients who received pre-chemotherapy. Lack of 

HAGE expression in tumours was found to be associated with poor chemotherapy response and 

patients with HAGE positive residual tumours had a worse prognosis, for which immunotherapy in 

conjunction with chemotherapeutic agents is suggested as an alternative to target HAGE after 

chemotherapy (Abdel-Fatah, et al. 2016) 

The use of the humanised HHDII/DR1 mice are extremely useful to demonstrate the 

immunogenicity of a given vaccine with direct translational potential. However, this alone is not 

enough and one needs to also demonstrate the ability of the vaccine to slow down or even 

eradicate tumour grown within these animals. It is also important to demonstrate that human 

TNBC expressing HAGE can be killed at least in vitro by T-cells derived from these animals after 

they received the vaccine. 

In vitro testing for HAGE expressions was performed in human cell lines belonging to TNBC. Two 

HNSCC cell lines, PCI13 and PCI30 - known to be positive and negative respectively, for HAGE 

expression were used as controls. This was indeed confirmed for HAGE expression in the PCI13 

while PCI30 were confirmed to be negative.  Among the TNBC cell lines tested, MDA-MB-231, 

MDA-MB-468 and BT-549 were found to express HAGE at mRNA levels. TNBC cell lines, MDA-MB-

231 (HLA-A2+) and MDA-MB-468 (HLA-A2-) were chosen to perform in vitro assays to demonstrate 

the anti-tumour/cytotoxic effects of HAGE-vaccine. HAGE expression of these cells at protein 

levels was confirmed. Since the aim was to generate more than few target cell lines to 

complement the HAGE vaccine specificity during in vitro assessment, attempts were taken to 

either induce HAGE in HAGE negative wild-type cell line (PCI30) or to knock-out HAGE in a 

naturally HAGE-expressing cell line (PCI13). Although strategies of knocking out HAGE were 

attempted using HAGE shRNA in PCI 13 cells it was unsuccessful as it involved laborious 

optimisations. On the other hand, knock-in of HAGE in wild type HAGE -negative target cells (B16 
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cells and PCI30) were more feasible. In order to express exogenous DNA in mammalian cells, a 

commonly used technique is transfection.  Generation of stable or transient transfectants can be 

achieved by different ways depending on the cell line characteristics and the desired downstream 

applications. So here for carrying out a stable transfection, expressions plasmids were constructed 

to encode HAGE and Luciferase reporter genes. 

Plasmids generated by cloning gene (HAGE or Luciferase) from cloning vector or expression 

vectors were confirmed for successful cloning by the plasmid DNA sequencing (data shown in 

appendix) from BioSource company. The sequence results were analysed to match with reference 

sequence at 100% homology. Once confirmed, the plasmid DNA was used for transfection or 

transduction of target cells depending on the plasmid types. Lipofectamine 3000 was used to 

transfect target cells with plasmid DNA. In viral transduction, target cells were infected with 

supernatants containing viral particles generated in HEK cells post-transfection with viral 

constructs+ packaging+ envelope plasmids as mentioned in methods section. Below is the list of 

cell lines restricted to different HLA types that were previously assessed for HAGE mRNA and 

protein expressions based on which the cell lines were further induced to express HAGE protein 

by using plasmid transfection/transduction methods.  

Table 3.3. List of cell lines showing wildtype characteristics and transfection experiments required for the study

Cell l ines Tumour origin HLA-A*0201 
status

HAGE 
expression

Modifications made

MDA-MB-231 Invasive ductal carcinoma 
metastasis (Pleural
effusion)

+ medium HAGE induction by transduction
(using pLenti/HAGE+)

MDA-MB-468 Invasive ductal carcinoma 
metastasis (Pleural
effusion)

- medium HHDII induction by transfection
(using HHDII plasmid)

BT549 Invasive ductal carcinoma 
metastasis (lymph nodes)

+ medium None

PCI 13 Squamous cell  carcinoma 
of head and neck

+ High None

PCI 30 Squamous cell  carcinoma 
of head and neck

+ Nil or very 
low

HAGE induction by transfection
(using pBUD/HAGE+)

B16 (B2M knock out, 
HHDII/DR1 knock in) *

Murine melanoma + - Induction of HAGE and Luc2 by transduction 
and transfection respectively

(using pLenti/HAGE, pBUD/Luc2)

* - generous gift from Prof. Lindy Durrant from Scancell Limited
 

Over the last decade, researchers have identified various TCRs with high affinity towards human 

HLA-A*0201 restricted TAAs that were directly translated into clinical trials (Parkhurst, et al. 

2009).  So, the study aimed to produce murine target cells for evaluation of HLA-A*0201 and 

DRB*0101-restricted CTL responses in both in vitro assays and in vivo models using the HHDII/DR1 

transgenic strain available. Furthermore, a murine cell line was preferred for demonstrating the 



104 

 

proof of concept in tumour models prior to testing against human breast cancer cells.  Although 

HAGE-derived vaccine might harbour short peptides restricted to multiple haplotypes, the animal 

strain of the study limits the testing of epitopes restricted to A2 and DR1 haplotypes. Assessment 

of epitopes of other HLA haplotypes will require additional transgenic strains (such as HLA-DR4, 

DP4) with different MHC alleles.  

Prof. Lindy Durrant kindly donated to our group the murine cell line B16/F0 previously knockout 

for murine MHC molecules and double transfected to express the chimeric HLA-A2 and the HLA-

DR1 molecules. Several models of melanoma exist in mouse strains including C57BL/6 and BALB/c 

and subcutaneous injections of these cells are known to induce tumours in transgenic mice 

(Overwijk and Restifo 2000).  This cell line was the best-fit for our immunological studies and for 

MHC restricted interventions. Another reason is that, assessment of the HAGE vaccine on human 

cell lines will involve use of NOD/SCID mice strains followed by adoptive transfer of HAGE- vaccine 

induced-T cells from immunised HHDII/DR1 mice. In vitro isolations of CD3+ immune cells for 

intravenous injections might introduce errors and complications such as T cell viability and 

population of tumour-responding T cell of multiple effector functions with unknown functional 

properties including proliferation, functional differentiation and avidity (Kalos and June 2013). 

This might lead to the generation of inconsistent and un-comparable data between individual 

mice.  On the contrary, B16 model helps by generating reliable information allowing us to take 

control of number of injected cells for tumour establishment and monitor of tumour growth 

based on vaccine-induced T cell interactions with tumour.  Hence B16 modified to express HAGE 

was prepared for use in pre-clinical model for testing the proof of concept on development and 

evaluation of HAGE vaccine. Additionally, B16 cells transfected with firefly luciferase reporter 

gene to detect the tumours size and spread obtained from respective optical luminescent 

intensities under a given set of imaging conditions. GFP reporter gene is another well 

characterised reporter system and despite improvements on the fluorescent yield, there are still 

drawbacks of poor sensitivity, low dynamic range and high levels of background fluorescence 

signal in small animal imaging conditions (Troy, et al. 2004). Major disadvantage of any 

fluorescent reporter systems is that there is relatively higher background signal emitted from 

excitement of endogenous chromophoric material within biological subject tissue which is 

overcome by bioluminescence due to low auto-luminescence of mammalian tissues (Welsh and 

Kay 2005). Since no fluorescence is detectable in bioluminescent imaging conditions, location and 

size of luminescence can be precisely determined with high sensitivity after administration of 

substrate and in addition, any other fluorescent signals can be differentiated when imaging 

conditions are applied for excitation (Close, et al. 2011). It is noted that neither amount of 
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luciferase nor biphotonic activity affect the tumour growth, in vitro or in vivo (Tiffen, et al. 2010). 

However, one needs to be aware of the fact that luciferase expressions has been shown to induce 

cellular response that can restrict growth and metastatic potential of 4T1 murine breast tumour 

cells when genetically labelled with reporter luciferase (Baklaushev, et al. 2017). Nonetheless, in 

order to facilitate in vivo imaging, B16/HAGE, Luc2 cells were generated by stable transfection 

using pBUDCE4.1 plasmid DNA encoding Luciferase (Luc2) gene controlled by CMV promoter 

which warrants high levels of Luc2 expressions. CMV promoters are widely used for exogenous 

protein expressions, but it was shown that CMV and lentivirus promoters can be targeted for non-

cytolytic down-regulation of expression (Baklaushev, et al. 2017). This could be one of the reasons 

for diminished reporter gene expressions in cells transfected with plasmid constructs that carry 

target reporter genes inserted under CMV promoters. This can be bypassed by using third 

generation lenti-viral constructs which are now available to provide fast and efficient gene 

expressions. TALEN, IRES and CRISPRs offer alternative methods for endogenous gene editing with 

minimal off-target effects (Shearer and Saunders 2015). The cell lines required for in vitro and in 

vivo experiments for this study were successfully generated and validated for gene expressions. 

B16 cells assessed immediately post- transfection clearly showed a mixed population emphasising 

the importance of single-cell cloning to expand the populations having uniform HAGE expressions. 

Out of five clones, two clones were found to be positive and the clone expressing the highest 

HAGE levels were chosen for further experiments. For assessing HAGE transfection efficacy, 

HNSCC cells PCI 30 were successfully transfected with plasmid pBUDCE4.1/HAGE and validated for 

HAGE protein expressions. These PCI 30 cells will also be useful for both in vitro assays and in vivo 

models to generate evidences on HAGE vaccine target specificity irrespective of cancer type.  

With better understanding of tumour microenvironment, it is evident that various tumour-

mediated mechanisms can influence and determine the activation status of tumour-infiltrating 

cells. Of them are PD-L1 and IDO immune suppressive mechanisms that are notoriously known 

and widely investigated over recent years. (Soliman, et al. 2014) showed that a subset of basal 

type breast cancer cells expresses high PD-L1 levels compared to other basal and luminal subtype 

cells. Degree of PD-L1 expressions tend to vary within TNBC cell lines and recently nuclear PD-L1 

was identified in MDA-MB-231 (Rom-Jurek, et al. 2018) and here we observed PD-L1 levels in 

TNBC cell line MDA-MB-231 to be comparatively higher than MDA-MB-468 and BT-549 

(Mittendorf, et al. 2014). Besides PD-L1, 60% of BC expresses IDO with 42, 66 and 71% IDO 

expressions in stage I, II and III respectively (Larrain, et al. 2014).  In addition, studies have shown 

that IDO and PD-L1/B7-H1 up-regulations were dependant on IFNγ in tumour microenvironment 

(Spranger, et al. 2013b). So in this study, levels of IDO and PD-L1 were analysed after IFNγ 
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treatments on MDA-MB-231 and MDA-MB-468 cells.  In MDA-MB-231 cells, PD-L1 levels were up-

regulated for only 24hours and then diminished over 48 and 72hours of IFNγ exposures. But MDA-

MB-468 cells not only expressed PD-L1 but also increased levels of IDO upon prolonged IFNγ 

stimulations compared to MDA-MB-231, measured by kynurenine activity. Recently, it has been 

shown that breast cancer cells transplanted in vivo show diminished PD-L1 levels compared to 

their in vitro counterpart but neither the gene copy number nor presence of immune cells in 

humanised mice has an effect on PD-L1 content (Rom-Jurek, et al. 2018). This suggests that 

tumours established from such cells can create an immune-suppressive microenvironment which 

can be potentially reversed with the use of checkpoint blockade such as anti-PD-L1 or IDO 

inhibitors.  

Overall in this chapter, target cell lines required for in vivo models and in vitro assays were 

successfully prepared. The next part of the study will assess the identification of the most 

immunogenic region within HAGE protein to formulate an optimal vaccine that can induce T cells 

that can specifically recognised and kill HAGE-expressing cells. The target cells prepared in this 

chapter will play a crucial role in determining HAGE-vaccine efficacy by evaluating the HAGE-

specific targeting of HAGE-vaccine induced T cells.   
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Chapter 4.  Identifying the immunogenic region of the HAGE antigen 

4.1 Introduction 

The nature of T cell effector function and the induction of specific cytolysis was established in late 

1960 (Cerottini, Nordin and Brunner 1970), and this was followed by the demonstration of MHC 

restriction and the structural description of components underlying antigen recognition in the 

1970s (Zinkernagel and Doherty 1974). Further elucidation of TCR/peptide-MHC interactions and 

insight into the consequences of antigen receptor signaling via the TCR and co-signaling events in 

the early 1980s enabled the development of culture techniques for establishing stable cytolytic T 

lymphocyte lines from melanoma patients. A stable tumour-reactive cytolytic T lymphocyte (CTL) 

clone from cancer patient was used in the early 1990s to guide the molecular cloning of MAGE-1 

using direct or genetic immunology (van der Bruggen, et al. 1991, Peterson, Rask and Lindblom 

1974). Since the discovery of the first Tumour Antigen (TA) and thereafter its epitopes, various 

strategies for the identification of MHC Class I and Class II epitopes have been used, the major 

two of which are termed ‘direct’ and ‘reverse’ immunology. 

Identification of tumour antigens 

Direct approach

Genetic
mRNA

Biochemical
MHC bound peptides

Indirect approach

SEREX

PROTEOMEX

cDNA microarray
Next Generation 
Sequencing

Proteomics

 

Figure 4.1 Major experimental approaches for identifying tumour antigens 

4.1.1 Direct immunology 

One of the ‘direct’ immunology approaches depends on the biochemical properties, whereby the 

MHC-bound peptides are eluted using acid elution techniques, purified and sequenced to identify 

the TAAs (Peterson, et al. 1974). For this approach, peptides bound to heavy chain of HLA-A, B 

and C molecules on the cell surface were purified by papain digestion which cleaves residues of 

heavy chain CH2 domain above disulphide bridge to result into three different subunits (VH and 

CH1), (VL and CL), and CH3 yielding about fragments of 11kDa (Huber, et al. 1976). HLA-DR is an 

integral membrane protein made of two different glycoprotein chains associated with 
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noncovalent complex and proteolysis of the membrane with papain yields 23-30kDa fragments 

(Kaufman and Strominger 1979). Further, these antigens were crystallised, from which peptide 

can be eluted by acid fractionation for subsequent analysis by HPLC mass-spectrometric analysis 

to gain important information on sequence length and composition (Henderson, et al. 1993).  In 

early days, although isolation of MHC-associated peptides by papain digestion was moderately 

successful they were not widely used due to large requirements of starting material. Hence, in 

1990s, the main techniques used were: 1) strong acid elution using TFA from whole cell lysate 

(Falk, Rötzschke and Rammensee 1990), 2) mild acid elution for Class I but not Class II peptide 

from cell surface (Storkus, et al. 1993), and 3) immunoaffinity purification of both MHC I and II 

complexes from isolated complexes released from solubilised cell lysates (Van Bleek and 

Nathenson 1990). Further (Galati, et al. 1997) showed that quantitative cytometry of papain 

digestion from living cells allows simultaneous assessment of efficacy and toxicity, followed by 

selective retrieval of mature MHC from cell membrane by affinity chromatography.  

Currently, mild acid elution and immune-affinity purification are widely used even if they require 

large volumes of starting material. MHC I peptides were isolated from cell lines, bone marrow-

derived dendritic cells (BMDCs) and primary thymocytes by cell-surface specific acid elution 

however these will include a significant proportion of peptides non-specific to MHC Class I (de 

Verteuil, et al. 2010). Immunoaffinity purification (IP) first includes lysis with non-denaturing 

detergent, then affinity purification of peptides with affinity column bound with specific mAb, 

which requires large-scale production of mAb to isolate peptides. Sometimes, papain digestion is 

also coupled with IP method to isolate surface peptide-MHC molecules (Antwi, et al. 2009). An 

advantage is that the method isolated MHC-associated peptides with high specificity and can be 

used for both MHC I and II peptide isolation (Bassani-Sternberg, et al. 2010, Bassani-Sternberg, et 

al. 2015) 

Another direct approach involves the stimulation of PBMCs derived from patients demonstrating 

significant clinical benefit with primary melanoma (Somasundaram, et al. 2000). The cDNA library 

of melanoma cell line was divided into pools containing up to 100 genes, which were then 

transfected into fibroblast-like cells (Cercopithecus aethiops, COS) engineered to express 

appropriate HLA molecules. Tumour-reactive CTL clones derived from mixed lymphocyte-tumour 

cell cultures were then used for testing transfectants for target antigen expression. Transfection 

cycles for cDNA sub-cloning were continued until a minimal sequence, similar to that used for the 

activation of a tumour-reactive CTL clone, is identified. The recognition of cells loaded 

exogenously with short synthetic peptides allows the identity of antigenic peptides to be 

confirmed. Most tumour antigens that have been identified to date are derived from melanoma, 
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as melanoma is one of the most immunogenic tumours and melanoma cell lines are therefore 

easier to generate.  

Following the identification of MAGE-1 in melanoma, other TAAs such as BAGE and GAGE antigens 

have been identified. Antigens such as MART-1/Melan A and gp100 were screened and isolated 

by stable cDNA library transfectants followed by TRP1, TRP2, B catenin and MART-2/ski mutated 

antigen using transient expression systems (Kawakami, et al. 2004). Due to difficulty with the 

identification of MHC restriction and relevance of antigens for in vivo tumour rejections, it was 

necessary to use MHC-blocking mAbs and use TILs to induce tumour regressions.  The reactivity of 

CTL clone derived from PBMC of melanoma patient to HLA-B57 led to the identification of an 

antigen anti-sense tRNA isopentenyltransferase 1 (AS-TRIT1) (Swoboda, et al. 2014). More 

recently, the library-based screening method has been used to identify neoantigen-specific T cell 

in peripheral blood of lymphoma patients primed with peptide-pulsed DCs (Nielsen, et al. 

2016)(Nielsen JS et al., 2016). Another technique was used to identify and clone T cells that 

recognise shared TAAs from healthy PMBC (Theaker, et al. 2016), the same method was used to 

identify neoantigens in peripheral blood of ovarian cancer patients (Martin, et al. 2018). The 

outcome of most of these techniques relies on proteomics analysis adding cost and complexity, 

while phage-displayed protein libraries can also identify protein binding partners. Phage libraries 

involve the display of proteins on bacteriophages which can then be panned against peptide-

binding ligand for identification of the putative binding protein. Studies have used “reverse 

biopanning” and “microarray analysis” in combination to improve the efficiency of phage-display 

biopanning and to identify novel cancer-targeting peptides that bind to tax interacting protein 1 

(TIP1) (Ferraro, et al. 2013). Table 4.1 summarises several approaches that have been developed 

for identification and isolation of tumour antigens.  

 In addition, whole genome association scans are another forward approach for non–MHC-

encoded polymorphic peptides where genotyping of cell lines that co-express pertinent HLA 

molecules for single nucleotide polymorphism (SNP), followed by identification of T cell associated 

with individual SNP genotypes in the cell lines. However, this approach is limited to TCRs with low 

affinity to MHC-peptide complex. And, additional knowledge on TCR interactions with MHC 

complexes, and requirements of MHC-peptide binding has enabled a more indirect approach has 

been proposed for identification of immunogenic peptides “reverse immunology”. 
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Table 4.1 Isolation methods for candidate tumour antigens recognized by T cells

Criteria for isolation Methods

Immunogenicity • cDNA expression cloning with tumour-reactive T cells
• cDNA expression cloning with patients’ serum (SEREX)
• Specific gene expression analysis (over-expressed, tumour-specific, 

tissue-specific, Cancer-testis antigen)

Genome DNA • DNA sequencing (mutation, polymorphism)

mRNA • cDNA subtraction (RDA, PCR differential display)
• cDNA profile comparison (DNA Chip/microarray, SAGE, EST databases)

Protein • Protein expression profile comparison (2D- electrophoresis, mass 
spectrometry (MS), protein chip, databases)

• Isolation and identification of HLA-bound peptide using HPLC, and MS.

SEREX (serological analysis of autologous tumor antigens by recombinant cDNA expression cloning), SAGE (serial 
analysis of gene expression), HPLC (High-performance Liquid Chromatography), RDA (Representational differential 
analysis) (table adapted from Kawakami Y et al., 2004)

 

4.1.2 Reverse Immunology 

An alternative strategy to identify tumour antigens is reverse immunology in which peptide 

candidates are predicted by in silico analysis using algorithms, such as BIMAS, SYFPEITHI, SNP-

derived epitope prediction and TEPITOPE to screen and determine peptides with strong binding to 

HLA-I and HLA-II molecules. Recent advances from HLA-associated peptidome by mass 

spectrometry, analysis of SNP databases, MHC-tetramer technology, and flow cytometry has 

enabled identification of peptides candidates that undergo HLA-restricted processing and 

presentation. Proteasomal cleavage, peptide processing, transporting efficacy and HLA-binding 

affinity can be combined in computational approached to select optimal candidate epitopes 

(Larsen, et al. 2005). Recent advances in technology now allows broad studies to be conducted at 

system-level to meaure components for the whole immune system, their state and function 

including cytokines, chemokine signalling, metabolites along with genes encoding these molecules  

(Furman and Davis 2015) single molecule of peptide antigen detection on CD4+ T cells (Irvine, et 

al. 2002), up to the use of advanced DNA sequencing for in-depth analysis of vaccine-responding 

immunoglobulin and TCR repertoires (Jiang, et al. 2013, Han, et al. 2014). Mass spectrometry (MS) 

– based immune-peptidomics is another field of MS-based proteomics to identify and quantify 

MHC-associated peptides using DDA (discovery-based shotgun MS), targeted data acquisition, 

data-independent acquisition (Caron, et al. 2015). Hence, these strategies have allowed the 

identification of targetable tumour antigens, anti-tumour T cell clones and even enabled the 

development of donor immune cell compartments that can be educated to selectively target 

tumour cells. Therefore, high throughput methodologies and comprehensive profiling of tumour 
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antigens have encouraged the use of immunogenic peptide epitopes derived from tumour 

antigens TAAs for vaccine development in cancer immunotherapy.    

Tumour antigens are generally classified based on their distribution as tumour-specific (TSA), 

expressed only by tumour cells or as tumour-associated antigens (TAA), expressed even by normal 

cells (van der Bruggen, et al. 1991, Kessler and Melief 2007). Unique antigens are of patient-

restricted expression and shared antigens are commonly shared across various samples of 

different tumour types of same histologic subtype but not expressed in normal cells except for 

germline cells- testis or placenta (Parmiani, et al. 2007). A list of different antigens is shown 

below: 

 

Table adapted from (Spurrell and Lockley 2014) 

4.1.3 MHC processing pathways 

To develop a safe and efficient immunotherapy using tumour antigens, antigenic peptides present 

on tumour cells should elicit a strong T cell response. Immune cells CD8+ and CD4+ cell survey the 

MHC Class I and Class II complexes respectively (Pamer and Cresswell 1998, Busch, et al. 2000). 

Recognition of antigenic peptide by CD8+ T lymphocytes usually originates with protein 

degradation by a cytosolic complex called proteasome, whereas products of lysosomal 

degradation are recognised by CD4+ T lymphocytes. CD8+ T cell epitopes are of endogenous origin 
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synthesised on APCs, while CD4+ T cell epitopes are exogeneous origin endocytosed by APCs.  The 

cellular proteins are unfolded and degraded by cytosolic proteasomes and are transferred into the 

lumen of endoplasmic reticulum (ER) by transporter associated protein (TAP) proteins. Inside ER, 

they are further digested aminopeptidases (ERAP1 and ERAP2) before the assembled peptide-

MHC complex is transported to the cell surface for recognition by appropriate T cell with specific 

TCRs (Carbone, et al. 1989). Peptides of suitable length (8-10 amino acid) will bind to MHC class I 

molecules based on the affinity to peptide binding cleft of MHC molecule, with the help of 

peptide-loading complex. Stable peptide/MHC I complex on healthy cells are not recognised by T 

cells whereas tumour cells express a new repertoire of peptides from viral or TAA proteins. 

Cytotoxic T lymphocytes (CTLs) can detect cells bearing as few as 10 peptides/MHC complexes 

(Kageyama, et al. 1995). However, it is also possible for exogenous proteins to enter the MHC 

class I pathway via a process known as cross-presentation which involves priming across the MHC 

barrier (Kovacsovics-Bankowski and Rock 1995). 
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Figure 4.2 MHC class I and class II pathway of presentation. Peptide loading of MHC A) Endogenous 

peptide processing pathway and B) exogenous peptide processing pathway.TCR – T cell receptor, TAP -

transporter associated protein, LMP -low molecular mass protein 2 catalytic subunit, CLIP- Class II-

associated invariant chain peptide. (adapted from Nature Reviews/Immunology) 
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Pathways involving DC or macrophages can result in TAP-dependant cross-presentation resulting 

from the ‘leakage’ of antigens into the cytosol l (Huang, et al. 1996), or via direct endosomal 

loading due to an exchange of peptides inside endosomes to MHC Class I molecules under acidic 

conditions (Campbell, Serwold and Shastri 2000). Peptide processing mechanism and MHC-

binding is a selective event which determines the MHC I or II epitopes expressed on tumour cells 

for identification.  

4.1.4 In silico methods of MHC-restricted peptide epitopes 

Computational methods can predict stability and the binding affinities of peptide epitopes that 

can be potentially be recognised by T cells to MHC complexes, and this forms the basis of T cell 

epitope identification (Lafuente and Reche 2009). Several MHC-binding prediction methods that 

are based on the chemical nature and position of each amino acid in a particular (anchor) position 

within the peptide have been developed. Peptides of 9 AA in length are known to have a peptide-

binding motif that includes 2 primary anchors at the C terminus (usually position 2 for MHC class 

I) and secondary anchor residues. Over the years, technologies such as crystallography, mass 

spectrometry, and experimental binding assays can assess the influence of a single amino-acid 

change on its ability to bind and stabilise MHC molecules on the surface of cells. However, cells 

with impaired processing due to mutated TAP gene could not be assessed but with recent 

advances, it has been possible to design software which can predict peptides that are likely to be 

produced by the proteasome and capable of binding a given HLA haplotype. BIMAS (https://www-

bimas.cit.nih.gov/molbio/hla_bind/) and SYFPEITHI 

(http://www.syfpeithi.de/bin/MHCServer.dll/EpitopePrediction.html) are two such free internet-

based access algorithms to rank epitopes based on prediction of half-time of HLA-Class I molecule 

dissociation and prediction of peptide- binding affinities with HLA molecules depending on the 

position of anchor residues, respectively.  

Upon the selection of the TAA and the prediction of potential T cell epitopes present within it, 

candidate peptides are synthesised and screened for their immunogenicity, natural processing 

and presentation on MHC molecules using in vitro or in vivo assays. This method has enormously 

reduced the workload, cost and time-consuming method of screening a panel of overlapping 

peptides spanning the whole length of the protein of interest. Often peptide-epitopes are 

identified and evaluated against HLA-A2 as it has a high prevalence worldwide and has almost 300 

allelic variants. The frequency and distribution of alleles within HLA-A2 family vary with geography 

and ethnicity (Krausa, et al. 1995). Generally, supertypes B7, A3, A2, A24, B44, A1, and B27 are 

the most prevalent among different ethnic groups (Sette and Sidney 1999). The most frequent 

HLA-A*02 allele detected is HLA-A*02011 in almost 95.7% of Caucasian and 94.3% of native 

https://www-bimas.cit.nih.gov/molbio/hla_bind/
https://www-bimas.cit.nih.gov/molbio/hla_bind/
http://www.syfpeithi.de/bin/MHCServer.dll/EpitopePrediction.html
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American populations (Ellis, et al. 2000) whereas in China the most frequent HLA-A2 alleles 

include HLA-A*0201, A*0203, A*0206, A*0207 and A*0210 that account for >99% of Chinese 

population  (Zhang, et al. 2003;Cheng, et al. 2005). HLA-A1 is a rare supertype, with frequencies 

<9% in more than half of populations and 22% frequencies in European, African populations. 

Whereas A3 supertypes are exhibited evenly among populations between 14-32% frequencies 

(dos Santos Francisco, et al. 2015). In general, these polymorphic diversities at appreciable 

frequencies are of clinical importance as HLA-A, HLA-B and HLA-DR have been known as major 

transplantation antigens.  Hence, HLA-A2 and HLA-DR restricted peptide epitopes used in vaccines 

can benefit a broader patient group widening the vaccine applicability among world populations.  

Once the peptide sequences have been selected their capacity to generate immune responses 

needs to be evaluated. Generally, there are two approaches a) immunisation of HLA transgenic 

mice and/or b) in vitro stimulation of PBMCs derived from healthy donors selected on the basis of 

their haplotypes. Several transgenic mice models have been developed to demonstrate that there 

are diverse TCR repertoires between A2.1/Kb-Tg mice and Human cells that respond to the same 

A*02:01 peptide complexes (Wentworth, et al. 1996). Thus, determination of pre-clinical 

responses using humanised models might reflect responses in humans thereby accelerating 

evaluation and development of immunotherapies. Along with the evaluation of specific responses 

against peptide epitopes, researchers have also exploited strategies to enhance immunogenicity 

of poorly immunogenic protein/peptides using adjuvants. 

4.1.5 Cancer vaccine adjuvants 

Adjuvants are substances that are injected with antigenic vaccines to increase the host’s immune 

response against the antigen. The injection of antigen alone may not elicit a desired immune 

response due to rapid antigen removal by the immune system. The purpose of using adjuvants is 

to improve the poorly immunogenic vaccines by 1) Recruitment and activation of APCs; 2) 

induction of cytokine release for T cell activation; 3) targeted immune reaction at specific 

locations; and 4) controlled slow-release of antigen (depot effect) (Marciani 2003, Awate, Babiuk 

and Mutwiri 2013). A better understanding of the mechanisms of ‘adjuvanticity’ has enabled 

researchers to design more cost-effective immune enhancers. Protective immunity can be 

generated against different pathogens/antigens by using appropriate adjuvants with minimal 

toxicity. Adjuvants that are approved for use in human trials based on quality evaluation of 

formulation that demonstrates compatibility of adjuvants with antigenic components, proof of 

adequate adsorption of antigen in vaccine while enabling the induction of strong humoral and T 

cell responses with a long-term protective immunity, to be non-pyrogenic and non-mutagenic or 
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carcinogenic and to remain stable for long periods of time while in storage (guidelines by CPMP, 

committee for proprietary medicinal products).  

There are about 6 common types of adjuvants – mineral salts, oil emulsions, microbial products, 

saponins, synthetic products, and cytokines. They promote immune-stimulatory properties of 

antigens by promoting innate and adaptive immunity. They can be immune-stimulatory molecules 

(TLR ligands, CLR ligands, NOD-like receptors, etc.) or delivery systems (alum salts, emulsions, 

lipids etc.), most adjuvant strategies being a combination of both. Aluminum salts can be used as 

adjuvants and as a vehicle for delivering the vaccine antigen. The development of currently-

licensed adjuvants by empirical methods that have emphasised humoral responses has led to the 

development of adjuvants capable of enhancing antibody responses, but not Th1 or CTL response. 

The ability of an adjuvant to affect the quality of the outcome of an immune response has 

become an important consideration inorder to elicit cellular immune responses against cancer. 

Several pre-clinical studies have demonstrated the requirements of different adjuvants in 

combination to induce strong anti-tumour immune responses (Melero, et al. 2014). Several 

vaccines adjuvants (BCG, HSP, Detox, Montanide, CpG-ODN, Alum, very small proteoliposomes 

etc.) are used in Phase I, II and III randomised trials based on their properties to induce DC 

activation, cross-presentation, Th1-Th2 polarisation, CTL promotion (Mesa and Fernández 2004). 

Currently, several vaccine adjuvants such as schistosome (Stephenson, et al. 2014) and 

thymoquinone (Mostofa, et al. 2017), are being tested in pre-clinical stages for optimal T cell 

activation that maximises therapeutic vaccine efficacy. Majority of the vaccine adjuvants are 

grouped into either class I adjuvants (delivery systems) Class II adjuvants (immunopotentiators) as 

shown in Fig 4.3. 

 

Figure 4.3 Examples of class I and class II adjuvants based on the mechanism of action 
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Most of the adjuvants in use are either immune-stimulatory agents or passive depots. There are 

two major groups of immuno-stimulants: a) specific and b) non-specific immuno-stimulants, 

acting as antigen for stimulation and acting as adjuvants to enhance responses to antigens, 

respectively (Shahbazi and Bolhassani 2016). Immuno-stimulants activate innate responses by 

interacting with primary ligands for pattern recognition receptors (PRRs), activate major factors of 

the immune system including phagocytosis, release IgG antibodies, synthesis of antibodies and 

cytokines etc. (Maraskovsky, et al. 2009). Bacterial toxins and non-toxin proteins, liposomes, 

tenso-active adjuvants and immune-stimulating complexes (ISCOMs), carbohydrate adjuvants, 

CpG-ODN, innate molecules, cell-based chemokines and cytokines (IL-1,2,6,12, 18 IFN, and GM-

CSF), saponins, virosomes and virus-like particles (VLPs) have been studied for their adjuvant 

properties. In addition, biodegradable polymeric particles and non-degradable nanoparticles can 

serve as delivery vehicles. A broader understanding on the mechanisms of action and 

immunobiology of TLRs, PRRs and the importance of specific T helper responses is providing a 

platform for optimising and improving the quality of vaccine production (Mohan, Verma and Rao 

2013).  

Interestingly, other than AS04 (Alum + monophosphoryl lipid A (MPL)) and AS03, no single 

adjuvant has been approved for use as part of a peptide-based cancer vaccine by the Federal 

Drugs Administration (FDA). Although the reason for this remains largely unknown, it is expected 

that the nature of the antigen itself and therefore the peptides used will influence the outcome of 

the immune response. To date, no computer algorithm has the capacity to predict which adjuvant 

is likely to give the maximum immune response, but with minimum unwanted side-effects for any 

given peptide sequence. It is, therefore, necessary to experimentally assess the effect of the 

combined use of the TAA-derived peptide sequence with the adjuvant. Hence this study also 

involved experimentation of various adjuvant settings for compatibility with HAGE -derived 

vaccine to elicit enhanced antigen-specific immune responses. 
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4.1.6 Aims for this chapter 

Having shown the strong relevance of the HAGE antigen to breast cancer, and its novelty, the first 

aim of the study was to identify an immunogenic region (peptide sequence >15mer) within the 

HAGE protein sequence using in silico analysis of Reverse Immunology approach. The second aim 

is to comparatively evaluate the immunogenicity of HAGE-derived peptides in the presence of 

different adjuvants.  

As a part of the preliminary work, double transgenic HHDII/DR1 mice were immunised with whole 

length HAGE cDNA to screen peptide libraries by matrix screening method and identify potential 

overlapping 15mer peptides based on ex vivo ELISpot assays (Appendix fig 8.1, table 8.1). 

Preliminary screening was performed using 15mer peptides, that overlap eachother by 10 

aminoacids, synthesised to span the entire length of HAGE protein (648 aminoacids). 

 

Figure 4.4 Workflow for identifying HLA-restricted HAGE-specific T cell epitopes in HLA-

transgenic mice. A) Peptide pools/libraries consisting eleven HAGE-derived peptides per pool were 

screened by ELISpot assays using short 15mer overlapping peptides. B) HAGE peptide pools 

generating responses were shortlisted by identifying short immunogenic peptides that were 

present in common between two different peptide pools. C) Individual epitope (15mer) identified 

was extended on either ends to achieve a length to allow incorporation of several other 

immunogenic epitopes restricted to multiple HLA -haplotypes as investigated by in silico SYFPEITHI 

analysis. 
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4.2 Results 

4.2.1 In silico prediction of HAGE-specific T cell candidate epitopes 

 In silico analysis using SYFPEITHI algorithm was to identify relevant HLA Class I and Class II 

epitopes from overlapping individual peptide identified by peptide-library screening and the 

whole length DDX43 protein sequence. SYPEITHI database assigns specific values considering the 

amino acids in the anchor and auxiliary positions. Ideal anchors will be given 10 points, unusual 

anchors 6-8 points, auxiliary anchors 4-6 points and preferred residues 1-4 points in the scoring 

system. In several studies, vaccination strategies using long peptides over short peptides has 

shown the generation of stronger responses  (Bijker, et al. 2007). Hence the HAGE 15mers 

sequences obtained from preliminary data (Appendix) were elongated on either side to identify a 

region harbouring multiple immunogenic epitopes resulting in the identification of HAGE 24mer 

peptide sequence (HAGE 99-123). Further, upon SYFPEITHI analysis of entire HAGE protein for 

HLA-A*0201, a short 9mer (HAGE 297-306) was identified with a top score of 24 and extended on 

either side to obtain a HAGE 30mer (HAGE 286-316).  SYFPEITHI database search on HAGE -

derived 24mer and 30mer sequences for MHC Class I (8-10mers) and MHC Class II (15mers) and 

the binding scores of short peptides within these regions were determined (Table 4.3 and 4.4). 

Peptides having a score below 20 were deemed as not being sufficiently immunogenic and were 

therefore not selected. This cut-off is based on the accumulated experimental evidence 

accumulated by Rammensee’s group over the years (Rammensee, et al. 1999). However, since the 

only transgenic mouse model available in the laboratory was the HLA-A2 and HLA-DR1 transgenic 

HHDII/DR1 mice, only those peptides were evaluated. 

 

 

Figure 4.5 HAGE protein sequence (648 amino acid in length) highlighted for positions of 24mer 

and 30mer region within the sequence with a list showing the method of identification. 

HAGE protein sequence: 

MSHHGGAPKASTWVVASRRSSTVSRAPERRPAEELNRTGPEGYSVGRGGRWRGTSRPPEAVAAGHEELPLCFALKSHFVGAVIGRGG

SKIKNIQSTTNTTIQIIQEQPESLVKIFGSKAMQTKAKAVIDNFVKKLEENYNSECGIDTAFQPSVGKDGSTDNNVVAGDRPLIDWDQIRE

EGLKWQKTKWADLPPIKKNFYKESTATSAMSKVEADSWRKENFNITWDDLKDGEKRPIPNPTCTFDDAFQCYPEVMENIKKAGFQKPT

PIQSQAWPIVLQGIDLIGVAQTGTGKTLCYLMPGFIHLVLQPSLKGQRNRPGMLVLTPTRELALQVEGECCKYSYKGLRSVCVYGGGNR

DEQIEELKKGVDIIIATPGRLNDLQMSNFVNLKNITYLVLDEADKMLDMGFEPQIMKILLDVRPDRQTVMTSATWPHSVHRLAQSYLKE

PMIVYVGTLDLVAVSSVKQNIIVTTEEEKWSHMQTFLQSMSSTDKVIVFVSRKAVADHLSSDLILGNISVESLHGDREQRDREKALENFKT

GKVRILIATDLASRGLDVHDVTHVYNFDFPRNIEEYVHRIGRTGRAGRTGVSITTLTRNDWRVASELINILERANQSIPEELVSMAERFKAH

QQKREMERKMERPQGRPKKFH 
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Table 4.3: Short peptides derived from TIQIIQEQPESLVKIFGSKAMQTK- 24mer 

 

 

Table 4.4: Short peptides derived from QTGTGKTLCYLMPGFIHLVLQPSLKGQRNR – 30mer 
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4.2.2 T2 peptide binding assay 

T2 cells are human lymphoblastoid cells that have a mutation in the transporter associated 

protein gene (TAP) which renders them unable to endogenously process and present internal 

TAP-dependant peptide. As a consequence, these cells produce mainly empty HLA-A2 molecules 

on their surface. These are unstable and the HLA-A2 molecules are rapidly recycled. However, if 

cells are incubated in the presence of a peptide which has a sufficient binding affinity for the HLA-

A2 molecules, then the peptide will bind and stabilise the MHC complexes (van der Burg, et al. 

1996). All the HLA-A2 epitopes that were predicted by SYFPEITHI were therefore assessed for 

their MHC binding affinity in vitro by incubating T2 cells with different peptide concentrations of 

the peptides (10, 30 or 50 µg/mL) for 24 hours in serum-free medium as indicated in the method 

section. Thereafter, T2 cells were washed and stained using a FITC-conjugated HLA-A2 

monoclonal antibody (mAb) prior to analysis by flow cytometry. Flow cytometry staining of T2 

pulsed with peptides (Fig 4.6A and B) indicates that the ability of the peptides to stabilise the 

MHC class I complex on the T2 cell surface. Fig 4.6A shows the overlay of histogram of T2 cells 

stimulated with individual HAGE derived peptides against DMSO as control. The binding 

efficiencies of the tested peptides were determined by dividing the mean fluorescence intensity 

(MFI) of HLA-A2 expression by cells incubated with peptide by the MFI of the T2 cells that were 

incubated in the absence of peptide, but in the presence of the same concentration of DMSO as 

used for the highest peptide concentration (Fig 4.6B). A peptide with a Fluorescence Ratio of 1 

was considered as being a non-binder, whereas a score of 2 was considered a moderate binder 

and a score higher than 3 was a good binder. Hence the higher the intensity, the stronger the 

binding of a peptide epitope to MHC. An ideal epitope quickly binds to MHC and remains stable 

for longer time periods.  Here almost all the peptides demonstrate to be moderate -good binder 

based on the binding ratios. 
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A) Flow cytometry staining for HLA-A2 expressions on T2 cells stimulated with HAGE-derived peptides

T2 with anti-human HLA-A2 antibody
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Figure 4.6 Flow cytometry analysis of predicted HLA-A2 peptides. T2 cells incubated with predicted 

peptides for 24hrs at 26°C. The indicated concentrations of MHC Class I binding peptides was added to T2 

cells and the intensity of MHC Class I expression determined by flow cytometry using a FITC-conjugated HLA-

A2 monoclonal antibody. A) Overlay of histograms obtained from staining of T2 cells stimulated with 10, 30 

and 50µg of Class I peptides derived from HAGE 24mer and 30mer peptide sequence. B) Binding efficacies of 

HLA-A*0201 peptides derived from both HAGE 24 & 30mer against DMSO as control represented as fold 

change from influences intensities of HLA-A2 staining. Graphs indicated with mean± SEM (n=3). 

4.2.3 Assessment of HAGE-specific immune responses induced by HAGE derived 24mer, 30mer  

In order to ascertain the immunogenicity of the 24 or 30mer HAGE-derived sequences and the 

processing of the peptides predicted by SYFPEITHI scoring system, HHDII/DR1 mice were 

immunised twice, seven days apart, with either the 24- or the 30mer peptide sequences in the 

presence of incomplete Freund’s adjuvant (IFA). It is well established that a second immunisation 

is necessary to obtain a better long-lasting immune response because first response is capable of 

discriminating quality and amount of immunogen but booster dose broadens CTL responses and 

production of mAbs of high avidity and specificity  (Ramsay, Leong and Ramshaw 1997, Chu, et al. 

2001, Puaux, et al. 2004). However, it was uncertain as to whether one should boost with the 
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same long sequence of the peptide or with a selected number of short peptides derived from the 

same sequence. Boosting with long peptide allows cross-presentation and activates memory 

panel whereas boosting with peptide cocktail narrows the CTL responses restricted to MHC Class I 

peptide used.  Therefore, mice were immunised with either the 24mer or 30mer HAGE-derived 

sequence on day 1 followed by either a second immunisation containing only the MHC class I 

peptides (or) the same long sequence in 1:1 emulsion with IFA on day 14 as described in the 

Methodology.  Seven days after the second immunisation, splenocytes were isolated and 

stimulated with HLA-A*0201 (MHC Class I), HLA-DRB*0101 (MHC Class II) peptides derived from 

either 24mer or 30mer in order to quantify peptide-specific responses on the basis of IFN- 

secretion using the ELISpot assay. On day 22, splenocytes from immunised mice were harvested 

to be plated at 0.5x106 per well with MHC Class I (1µg/mL), MHC Class II peptides (10µg/mL) 

derived from HAGE 24mer and HAGE 30mer along with SEB (2.5µg/mL) as a positive control for 

every ELISpot assay. 

The data presented in Figure 4.7A demonstrates the influence of the second immunisations on 

the generation of peptide-specific IFN- responses. Spleens harvested 7 days after last the 

immunisation were processed to be plated for ELISpot assays with MHC Class I (HLA*0201) and 

MHC Class II (HLA-DRB*0101) peptides. The peptide-specific induction of IFN- secretion by 

splenocytes from immunised groups were compared. The groups immunised with the cocktail of 

shorter MHC Class I peptides showed the generation of a significantly higher number of cells 

secreting IFNγ cytokine.  

Observations on immune responses against individual peptides (Fig 4.7B) showed that T-cells 

responses generated against the 24mer-derived MHC I peptides were very low to nil (<10 IFN-ɣ 

specific spots generated). Modest responses against MHC class II 24mer derived peptides were 

generated (with a maximum of 30 IFN-ɣ specific spots generated). IFNɣ responses against 

peptides 4, 6 and 7 (HAGE-296-305 [LMPGFIHLV], HAGE-295-305[YLMPGFIHLV], HAGE-290-

315[GKTLCYLMPGFIHLV] respectively) derived from the 30mer were capable of generating 

immune responses, as assessed by the ex-vivo IFN-ɣ ELISPOT assay (Fig 4.7C). Splenocytes with no 

addition of peptides were used as a control. It is interesting to note that although the predicted 

binding score, as well as the T2 binding score of the peptides 4, 5 and 6 derived from the HAGE-

derived 30mer, did not significantly differ, only peptide 4 and 6 were found to be recognised by 

the splenocytes immunised with the HAGE 30mer and boosted with a mixture containing these 3 

MHC Class I peptides. One could, therefore, hypothesise that the presence of a Tyrosine at 

position 1 of this peptide is not important for the binding of the HLA-A2 molecules but is 

important for the TCR binding/recognition. The experiments were repeated thrice with 3 mice per 
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group. After comparing the overall IFNɣ responses generated by HAGE 30mer region and the 

HAGE 24mer, it was decided that only the HAGE 30mer peptide sequence should be selected for 

further evaluation. 

Priming and boosting with HAGE 30mer induces higher number of IFNg-releasing cells
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Figure 4.7 Boosting with a cocktail of short peptides enhances IFN ɣ response in HHDII/DR1 mice. IFN-ɣ 

responses in cells from groups of mice immunised with the 24mer and/or 30mer on day 1 with incomplete 

Freund’s adjuvant (IFA) and boosted on day 14 with either, (i) short peptide cocktail, or (ii) the long peptide 

against the control group. A) Comparison of booster dose between HAGE 24mer and 30mer. Peptide-specific 

IFN ɣ response induced by short peptides derived from B) HAGE 24mer C) HAGE 30mer. Data here has been 

represented with grand median (n = 3) with 3 mice/group. A significant difference (p<0.0001) in immune 

responses between test and control groups (IFA alone, without any peptide) were determined using a two-

way ANOVA followed by Dunnett’s multiple comparison tests. T-cell responses were enhanced in groups 

boosted with a cocktail of short Class I HLA-A2 peptides compared to responses induced by boosting with 

elongated peptide (HAGE 24mer/30mer) in HHDII/DR1 transgenic mice. 
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4.2.4 Optimisation of peptide vaccine formulation using different adjuvants 

As mentioned in the introduction a range of adjuvants exists, all with the potential ability to 

increase the vaccine efficacy by inducing stronger T cell responses. However, it is currently no 

possible to anticipate which adjuvant is likely to work better with a given peptide sequence and 

therefore these need to be evaluated individually.  

In this part of the study, HAGE 30mer peptide vaccine efficacy was administered to HHDII/DR1 

mice with several different adjuvants in order to evaluate their individual ability to increase the 

overall T cell responses. 

Different adjuvants, mostly TLR agonists, are known to improve the overall immune response to 

any given vaccines (Speiser, et al. 2005).  In addition to IFA, several other adjuvants were 

evaluated with the HAGE 30mer peptide vaccine. Adjuvants such as Poly (I:C)- Polyinosine-

polycytidylic acid (TLR3 agonist), CAF09 (poly I:C like), CpG-ODN (a synthetic 

oligodeoxynucleotides, ODNs) (TLR9 agonist), and with a cell derived biologic adjuvant known as 

IRX-2 containing 700pg (15IU)/mouse of IL-2, were formulated either alone or combined with IFA, 

and with HAGE 30mer peptide for immunisation. 

HHDII/DR1 mice were immunised with HAGE 30mer peptide vaccine with adjuvants on day 1 and 

day 15. For CAF09 immunisations, the mice received the vaccine on day 1, 14 and 28. The last 

immunisation consisted of the mixture of Class I HLA-A*0201 peptides derived from HAGE 30mer. 

For the IRX-2 group had a different dose regimen with a series of IRX-2 injections from day 1 to 4 

according to manufacturer’s instructions. Spleens were harvested 7 days after last immunisation 

and processed for an ex-vivo ELISpot assay. 

The results presented in Fig 4.8A shows that IFA was better than any of the other individually 

tested adjuvants. All adjuvants tested benefitted from the addition of IFA in the vaccination mix. 

CAF09 adjuvant already contained IFA. From figures 4.8 A and B, it is observed that IFA+CpG and 

CAF09 were the two best combinations whose splenocytes derived from the immunised animals 

produced the highest number of IFN-g specific producing cells per half a million splenocytes. 
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Figure 4.8: Improvement of immune responses as an effect of combining adjuvants. The impact of the 

above adjuvants on immunogenicity were compared individually and also in combination to evaluate their 

ability to augment antigen-specific responses in HHDII/DR1 mice by IM injections as described in methods 

section. ELISpot IFN-ɣ release assays were performed with splenocytes from mice immunised with HAGE 

30mer on day 1 and peptide cocktail boost on day 14. A) Overall responses between different adjuvant 

immunisations were compared. The means were compared between groups; the bars represent the grand 

median (n=3) with 3 mice per group. B) Immune responses generated by individual peptides within each 

group showing error bars mean±SEM with p-value significance against cells alone.  A significant difference in 

immune responses between IFA and (IFA+CpG), (IFA+IRX-2, CAF09 groups were determined using a two-way 

ANOVA followed by Dunnett’s multiple comparison tests. 

 

 



126 

 

Beyond the assessment of IFN-γ responses, the proportion of CD4+ and CD8+ within the 

splenocytes was investigated directly ex-vivo. Freshly isolated splenocytes from the different 

groups of immunised mice were stained with CD3, CD4, and CD8 antibodies and analysed by flow 

cytometry. Results shown in Figure 4.9 identified CAF09 and IFA+CpG adjuvants as the groups 

capable of generating the highest percentage of CD8+ T cells. 

F

igure 4.9 Comparison of CD8+ T cells obtained from different vaccine adjuvant immunisation regimes. 

HHDII/DR1 mice were immunised with HAGE 30mer peptide on day 1 and day14 with different adjuvants, 

except for CAF09 groups which were administered on day 1, 14 & 28. After 7days from last immunisations, 

splenocytes were isolated from mice spleens and stained with CD8 antibodies to be analysed using flow 

cytometry. A) plots showing the gating strategy to obtain % CD4+, CD8+ cells on populations gated on CD3+ 

cells from IFA immunisations. B) representative plots of the population of CD4 vs CD8 generated by different 

vaccine adjuvant strategies. Graphs comparing the T cells between groups C) CD8+, D) CD4+ cells. There was 

significant difference obtained by two-way ANOVA (Tukey’s multiple tests) between (IFA+CpG) and CAF09 

groups. The experiment was performed with three mice per group. 
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The results presented thus far demonstrated that using a mixture of HLA-A2 HAGE 30mer-derived 

peptides for the last immunisation increased significantly the number of IFNγ producing cells 

especially if administrated with either IFA + CpG or with CAF09. However, using HLA-A specific 

peptides restricts the patients eligible to receive such a vaccine to those who are HLA-A2+, 

whereas using only the HAGE-derived 30mer peptide would bypass the need for HLA-typing 

patients before immunisations. Indeed, the 30mer sequence would allow the potential processing 

and presentation of peptides in association with various HLA-haplotypes such as those listed in 

table 4.2. It was therefore decided to investigate the effect of the best 2 adjuvants combinations 

on immune responses obtained after using only the HAGE-30mer peptide sequence. 

Based on earlier observations which suggested that an additional booster dose was required and 

a booster formulation containing short peptide cocktail can generate stronger immune responses, 

we investigated whether immunising mice with using only cocktail of Class I HLA-A*02:01 

peptides could contribute to T cell generation on its own with IFA+CpG adjuvants and without the 

need of using long peptide in prime or boost. Data in figure 4.10 suggested that HLA-

A*02:01peptide cocktail injections definitely generate T cell responses and when used in 

combination with long peptide in prime-boost regimen showed an increased peptide-specific 

response. However, this indicates that there is no significant differences or advantage of using 

long peptide when a short peptide cocktail formulation will be used in an immunisation regimen.  

 

Figure 4.10 Cytokine release induced by HAGE 30mer peptide cocktail immunised into HHDII/DR1 mice. 

Splenocytes generated from 2 mice groups injected with IFA+CpG adjuvant together with either 1 dose of 

peptide cocktail or long peptide prime followed by peptide cocktail boost. ELISpot IFNγ responses compared 

between 2 groups with error bars indicating mean ±SEM (n=2, 3 mice/group). Peptide 4,6 and 7 always 

generated more IFNγ responses than peptide 5 and 8.  
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4.2.5 Induction of immune responses by (IFA+CpG) and CAF09 adjuvants with long HAGE 30mer 

peptide vaccine 

Thus, in this part of the study, the best adjuvant combinations found in the previous section was 

used for both the prime and boost with the HAGE-derived 30mer peptide immunisations.  

HHDII/DR1 mice were vaccinated with the HAGE-derived 30mer peptide with (IFA+CpG) or with 

CAF09 adjuvants on day 1, 15 and day 1, 15, 29 respectively. Spleens were harvested and 

processed 7 days after the final immunisation for ex-vivo ELISpot assays. The experiments were 

scheduled so as to finish at the same time. The IFN-γ production by the splenocytes posts 

immunisations were compared by plating splenocytes with Class I peptides (1µg/mL) and Class II 

peptides (10µg/mL) on ELISpot plates coated to capture IFNγ released upon peptide-specific 

activation of immune cells derived from immunised mice groups. Cells cultured with no peptide 

served as a control for the in vitro assay but splenocytes from non-immunised mice (naive) were 

used as a negative control to compare the HAGE-specific immune responses between test groups.  
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Figure 4.11 Comparison of T cell responses between CAF09 and (IFA+CpG) with HAGE 30mer long peptide 

immunisations. ELISpot data here represents mean± SEM values, n=2 (3 mice/group). A) Comparison of 

peptide-specific responses generated between test groups. B) comparison between responding within each 

group. Both the groups generated strong immune responses and IFA+CpG was taken forward for further 

experiments after observing strong induction of T cell responses than CAF09 groups. A significant difference 

in immune responses between (IFA+CpG) and CAF09 groups was determined using a two-way ANOVA 

followed by Dunnett’s multiple comparison tests. 

Peptide-specific IFNγ responses were observed for both groups indicating the potency of these 

adjuvants combination to enhance the immunogenicity of long peptide formulation. It was also 

observed that IFA+CpG showed consistent and better peptide-specific responses than CAF09 

adjuvant settings (fig 4.11A). Interestingly, in contrast with the previous experiments which used a 

mixture of the three HLA-A2 restricted peptides with the combined adjuvants and found that 
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splenocytes thereby generated responded to peptides 4 and 6, here it is peptide 5 and 6 that are 

recognised (fig. 4.11B). It is possible that peptide 4 has a better HLA-A2 affinity than peptide 5 but 

is not naturally endogenously produced. It is, therefore, possible that the use of the short peptide 

mixture during the last immunisation influenced the generation of T cells specific for a peptide 

that was actually not endogenously processed. This was indeed confirmed when the splenocytes 

isolated from mice immunised only once with the mixture of short peptides 4, 5 and 6 in IFA+CpG 

only responded to peptide 4 and 6 but not 5 (shown in fig 4.10). 

4.3 Discussion  

HAGE, a cancer-testis antigen, was previously shown to be expressed by many solid cancers, be 

immunogenic in transgenic mouse models (Riley, et al. 2009, Mathieu, et al. 2010) and was shown 

to be an independent prognostic factor for TNBC showing strong associations with prediction of 

clinical outcomes in patients with TNBC (Abdel-Fatah, et al. 2016).  In this study, immunogenic 

regions of HAGE protein have been identified for their potential application in developing HAGE-

derived peptide- based cancer vaccine for the treatments of HAGE positive cancers, especially 

TNBC for whom very little other effective treatment exists. It has been suggested that the 

induction of antigen-specific T-lymphocytes can be efficacious in prevention and therapy of 

various cancer types. Moreover, Melief’s group has shown that the use of long peptide sequences 

rather than the entire protein is better at inducing long-lasting CD8+ specific T-cells responses. The 

use of adjuvants has also been shown to significantly later immune responses to peptide-based 

vaccines, and therefore in this chapter, two HAGE-derived regions were investigated for their 

immunogenicity and the use of different adjuvants was compared.  

In the preliminary work of the study, the cDNA sequence coding for the entire HAGE protein was 

used to immunised HHDII/DR1 mice using gene gun technology, the splenocytes of which was 

then used to identify immunogenic regions of HAGE recognised by T-cell in ELISpot in vitro assay. 

In order to screen hundreds of short (15mers) overlapping by 10 amino-acids HAGE-derived 

peptide sequences, but minimise the number of tests, a screening strategy based on a matrix of 

peptides pools was carefully designed (see appendix). From 28 peptide pools, six pools were 

shortlisted.  From these six peptide pools, individual short peptides were assessed and the 

peptide inducing the strongest T-cell stimulations was chosen (See appendix). This stretch of 

15mer was elongated on either end to allow incorporation of as many as possible CD8/CD4 

epitopes as found using the freely available online epitopes prediction: SYFPEITHI. To evaluate the 

method of screening, T-cell epitopes originating from this protein sequence were predicted for 

their binding capability to MHC-I or MHC-II using SYFPEITHI database.  The lists of epitopes 

restricted to various HLA-haplotypes embedded within this 24mer peptide was obtained. 
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Interestingly, further SYFPEITHI analysis on entire HAGE protein sequence for HLA-A*02:01 MHC 

epitopes resulted in a short 9 amino acid sequences (LMPGFIHLV - binding score 28), outside the 

24mer peptide region.  This sequence HAGE 297-306 (LMPGFIHLV) was extended on either side to 

obtain a 30mer stretch that has been analysed for in silico epitope predictions. This sequence has 

been predicted to encompass multiple epitopes restricted to a broad spectrum of HLA- 

haplotypes.  The identified immunogenic regions within HAGE are highlighted in the protein 

sequence (figure 4.5)  

The goal of vaccination is to generate a strong and long-lasting immune response and this often 

requires the usage of compounds capable of either enhancing antigen immunogenicity; reducing 

the number of immunisation or the amount of antigen; improving vaccine efficacy or being used 

as antigen delivery system promoting antigen uptake (McElrath 1995). In the development of 

immunisation strategy, results may be affected by several factors such as dose and concentration 

of antigen, choice of adjuvants, the time between administration and measurement of responses, 

and also methods of detection, thus making the choice of immunisation protocol very complex 

(Schunk and Macallum 2005). Based on their mechanisms of action adjuvants are classified in 3 

categories: a) active immune-stimulants, to increase immune response to antigen such as IL-2 b) 

carriers, such as immunogenic proteins to activate T-cells c) vehicle adjuvants, such as oil 

emulsions or liposomes that serves as a matrix of antigens as well as a stimulator of immune 

response (Tyrrell, et al. 1976). Pre-clinical studies have shown that peptide-adjuvant vaccination 

requires at least a second injection, often referred to as “boost’ in order to generate long-term 

functional memory T-cell populations to effectively induce immunity in prophylactic setting 

(Kendra, et al. 2012).  In this study, the enhancement of the overall T-cell response was induced 

by a prime-boost regimen using IFA (Incomplete Freund’s adjuvant). IFA is an oil in water 

emulsion that is stable, potent and less toxic compared to other adjuvants or cytokines or lipid 

carriers (Chang, et al. 1998). Long peptides (>15mer) have been found to be better at inducing 

strong and long-lasting immune responses compared to either the entire protein or short 

peptides by inducing a broader range of HLA-restricted T-cells responses. It was, therefore, 

thought worth comparing the response between immunising and boosting with the long HAGE-

derived sequences (HAGE 24mer/30mer) with immunising with the long HAGE-derived sequences 

but boosting with a cocktail of HLA-A2 specific peptides derived from either of these sequences.  

The results showed that the boost strategy using a cocktail of short Class I HLA-A*0201-restricted 

peptides significantly improved the T-cell responses compared to the responses induced by 

boosting with the elongated peptides with IFA adjuvants. Generally, immune responses, 

comprising CTL and Th responses, depend on 3 mechanisms: Duration of MHC- restricted 
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presentation by APCs, the affinity of MHC-TCR binding and the presence or absence of helper 

CD4+ T cells which plays a critical role in anti-tumour responses (Riquelme, et al. 2009). Thus, for 

generation of long-term peptide-specific anti-tumour responses, optimal immunisations will 

require the recruitment of both CD8+ and CD4+ T cells which might be augmented by the use of 

stronger types of adjuvant. 

Having demonstrated the increased responses obtained when the boost consisted of short HLA-

A2 restricted peptides as well as the superior immunogenicity of the HAGE-derived 30mer, it was 

decided to assess additional adjuvants known to have different properties and mechanism of 

actions. Adjuvants tested here included CAF09, Poly (I:C)-like structures, CpG, IRX-2 alone or in 

combination with IFA. CAF09 is a combination of liposome + DDA+MMG-1+ poly(I:C), that has 

been shown to induce strong CD8+ specific T cells responses (Korsholm, et al. 2014). CpG-ODN 

have been used for Flu vaccines in combination with other adjuvants such as MF59, CAP or PLG to 

induce more potent Th1 and strongly enhanced IFNγ responses in mice models. (Wack, et al. 

2008). Combination of CpG-ODN in the presence of emulsified IFA with MART-1/Melan-A peptide 

was shown to elicit a strong systemic CTL response and enhanced frequencies of CD8+ T cells 

(Miconnet, et al. 2002). Another adjuvant used in this study is IRX-2 an immunomodulator that 

preferentially enhances tumour antigen-specific T cell responses. With T cell assays, it was found 

that IRX-2 is superior to the commercial combination adjuvant (MPL+TDM in squalene/tween 80) 

used in murine systems (Naylor, et al. 2010). Interestingly, the results presented here found that 

IFA was better than any of the other individually tested adjuvants. However, the response 

obtained with each adjuvant was significantly improved with the combined use of IFA. CAF09 

adjuvant already contained IFA. CpG + IFA and CAF09 were found to be the best combinations. 

Although this methodology worked well it would only benefit HLA-A2+ patients and while initial 

results using the HAGE-derived 30mer for the prime and boost did not deliver the strong immune 

responses anticipated and taking into account the synergising effect observed between IFA and 

CpG or with CAF09, it was thought worth assessing again the use of HAGE-derived 30mer as prime 

and boost with IFA+CpG or CAF09. The results were extremely interesting. First and foremost 

strong immune responses were generated meaning that in the future it would not be necessary to 

HLA-haplotype patients prior to receiving the vaccine and secondly the results highlighted 

differences in peptide processing. Indeed, while peptide 6 from the HAGE-derived 30mer was 

consistently produced and recognised, peptide 4 was only recognised when used in the injection 

mix whereas it was peptide 5 which was shown to be endogenously processed when the HAGE-

derived 30mer was used for priming and boosting. This could be due to the fact that peptide 4 

lack the Tyrosine at the beginning of the sequence and peptide 5 lack the Valine at the end of the 
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sequence while peptide 6 contains both of these. Moreover, the 15mer peptide 7 which was 

shown to also be processed and recognised after mice received the HAGE-30mer injections with 

adjuvants, also contain within its sequence the sequence form peptide 6. The ELISPOT assay was 

performed over two days and therefore it is possible that the response observed here with 

peptide 7 is, in fact, a CD8 response with T-cells recognising peptide 6 due to further in vitro 

processing. Having said that, responses were higher with peptide 7 than with peptide 6 but not 

significant. Future experiments would require the isolation of CD4+ T-cells prior to the ELISPOT 

assay. 

Most of the peptide vaccines are designed to activate CD8+ cytotoxic T cells as well as CD4+ T cells 

since both are needed to induce strong anti-tumour protective immunity.  A proper Th1 

associated cytokine milieu is critical for induction for immune-mediated tumour rejection. Vaccine 

strategies in preclinical models using antigens recognised by MHC-class I restricted CTL rely on 

adjuvants or pathogen-derived class II-restricted antigens to support CTL induction. In such type 

of vaccination or in the absence of MHC class II-restricted epitopes, Th responses generated may 

enhance and induce CTL priming but may not participate in effector phase that needs help from 

tumour-specific CD4+ T cells.  CD4+ T cells are critically important for orchestrating multiple 

effector arms that are dependent on Th1 and Th2 cytokines (Hung, et al. 1998). Although short 

immunogenic peptides are easy to make and generate potent CD8+ specific T-cells responses, 

these are HLA-A restricted, that can lead to escape variants and have been shown no generation 

of memory responses (Slingluff 2011). Long peptide sequences are therefore preferred over 

whole length antigenic protein for development of vaccines which also allow incorporation of 

epitopes that are recognised by both CD4+ and CD8+ T cells. Using long peptide sequences, allow 

for the generation of long term memory CD8+ T cell responses compared to vaccination with short 

peptides (Zwaveling, et al. 2002). However, even long peptide sequences require appropriate 

adjuvants and unfortunately, no single adjuvant has been approved by the FDA and no software 

exists which can predict which adjuvant will work best for a given sequence. Here, CpG+IFA and 

CAF09 were found to be best the combinations for the HAGE-30mer sequence. The regimen of 

prime and boost using IFA+CpG adjuvants with long peptide were compared between HAGE 

24mer and 30mer (shown in appendix 8.2) to observe increase in IFN-γ release by peptide-

induced immune cells.  

In conclusion, a combined approach of matrix-screening method of overlapping peptides (fig 8.1) 

and reverse immunology in transgenic mice has been successful in identification of low-to-

moderate affinity HAGE-derived peptide targets to derive immunogenic regions within HAGE 

protein found to encompass several short class I and class II epitopes restricted to a broad range 
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of HLA haplotypes, thus making ideal candidates for development of immunotherapeutic cancer 

vaccine. Besides the use of adjuvants, that also partially serves as a delivery system, novel delivery 

strategies remain to be explored. It is believed that the use of an effective delivery strategy in a 

combinatorial approach can maximise the chances of inducing an immunogenic tumour rejection. 

Delivery systems such as DNA vaccines are known to show several advantages over peptide 

vaccines with commendable qualities such as safety, design, stability, mobility and also 

immunogenicity that has the potential to trigger a strong antigen-specific cellular immune 

response. Currently there are several ways of improving the immunogenicity of an antigen 

including next-generation delivery methods that use of immune plasmid constructs that can 

target death receptors, growth factors, adhesion molecules, chemokines and also Toll Like 

receptors (TLRs) that result in overall enhanced vaccine strategy (Kutzler M et al., 2008). In the 

next part of the study, a novel delivery system of using DNA vaccine of HAGE 30mer was assessed 

and explored for its potential in eliciting a strong HAGE-specific T cell response compared to HAGE 

30mer peptide adjuvant vaccine in HHDII/DR1 mice. 
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Chapter 5 HAGE-derived 30mer DNA vs peptide vaccine 

5.1 Introduction 

Since the identification of the first tumour associated antigen-MAGE, and with it the fact that 

cancer patients have detectable level of circulating T-cells against antigens expressed by their 

tumour, immunologists have focused their research on developing vaccines incorporating part of 

those antigens in conjunction with some form of adjuvants capable of boosting the already 

existing, albeit inadequate or too weak, immune response detected in those patients. Many more 

tumour associated antigens have since been identified and amongst them cancer testis antigens 

have been thought to represent excellent candidates for immunotherapy and vaccine 

development due to their restricted expression pattern. It is thought that to achieve a strong and 

long-lasting immune response any vaccine should contain several components including a suitable 

tumour antigen, strong adjuvants agents and/or delivery strategies the combination of which 

predicted to induce sufficiently strong anti-cancer immunity to achieve a positive clinical outcome 

(Fioretti, et al. 2010). The format of the antigen chosen for the vaccine can be delivered in the 

form of a crude extract derived from tumour cells, nucleic acid (DNA and/or RNA), peptide, viral-

like particles (VLP), or pulsed/transfected into dendritic cells. Treatment modalities for cancers 

can classified based on relevant target cells (tumour or APC), proteins associated with cancers and 

vectors that majorly serves as delivery systems as shown in fig 5.1. 

Vaccine modalities

Cellular based vaccines

Protein-based vaccines

Vector-based vaccines

 Whole tumour cell

 Gene-modified tumour

 DCs (dendritic cells)  Proteins

 Peptides

 Agonist peptides

 mAb fusion proteins

 Anti-idiotype Monoclonal 

antibody (mAb)

 Viral vectors

 Bacterial vectors

 Yeast vectors

 Plasmid DNA

 

Figure 5.1 Different types of vaccination. 3 main modalities that have been developed against several 

diseases including cancers among which protein/peptide and DNA-based vaccine have further involved in 

designing of cancer vaccine. 

Over the last 20 years, various ideas have been conceived to re-invigorate a therapeutically 

relevant immune response against cancer cells, including DCs (Palucka and Banchereau 2013), 

peptide (Bloy, et al. 2014) and DNA-based vaccines (Yang, et al. 2014).  All the strategies aim to 
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enhance the potential of host antigen presenting cells (APCs) to prime a robust and specific, 

cellular immune response against one or more TAAs. In DC-based vaccines, circulating monocytes 

are derived from patients and expanded ex vivo in the presence of TAAs with appropriate 

maturation and re-infused into the patient eventually  (Palucka and Banchereau 2012). In peptide-

based vaccinations, patients are administered with either full-length TAAs or a peptide region in 

conjunction with strong immune-stimulatory agents that are commonly referred to as adjuvants 

(Ricupito, et al. 2013). Lastly, DNA-based vaccines are circular DNA constructs encoding one or 

more TAAs that can be delivered to patients as naked plasmids or within suitable vectors (Liu 

2011). Vector-based DNA vaccines should be differentiated from oncolytic viruses (natural or 

genetically engineered) and other viral-based anticancer therapies for two main reasons. First, 

vectors in gene therapy and oncolytic viruses target cancer cells while vector constructs encoding 

TAAs are consumed and expressed by non-malignant cells such as APCs, myocytes and epithelial 

cells (depending on route of administration) (Russell, Peng and Bell 2012). Secondly, the oncolytic 

viruses and specific gene products delivered aim at inducing cancer cell death that can ideally 

elicit an immune response towards any of the antigens present while DNA-based vaccines aim to 

induce a specific immune response towards the gene that they carry (Senovilla, et al. 2013). 

5.1.1 Virus-based and DNA-based delivery systems 

To reach full potential in the induction of efficient anti-tumour immunity, Type I interferons are 

believed to be essential among several other factors (Pylaeva, Lang and Jablonska 2016). 

Adjuvants, oncolytic viruses, and chemotherapeutic agents all require interferon stimulation to 

induce a maximum immune response. Zitvogel and colleagues highlighted that tumour 

elimination strategies should learn from the way the immune system has evolved from original 

state to eradicate virus-infected cells, thus mimicking a state of viral infection to induce Type I 

IFNs in cancer cells (Zitvogel, et al. 2015). Oncolytic viruses (OVs) have emerged as potent anti-

tumour agents owing to tumour-selective and multi-mechanistic property to induce killing of 

tumour cells and cells associated with it via direct oncolysis and by-stander effect respectively. 

Oncolytic virotherapy induces immunogenic cell death by accumulation of PAMPs and release of 

DAMPs. PAMPs and DAMPs along with cytokines (Type I IFN, TNF) activates DCs to induce TAA-

specific T cell responses (Woller, et al. 2014). Thus, to further potentiate the OVs efficacy as 

vaccines, they are engineered to carry GM-CSF or immunostimulatory genes (Bartlett, et al. 2013). 

Other approaches for treating cancers include gene therapy (via delivery of small molecule drugs, 

fusion proteins etc. using viral and non-viral methods) that can potentially target cancer cells to 

deliver exogenous genetic materials without causing toxicity. Vectors serve as a solution for safe 

and efficient gene-delivery systems and can be broadly classified into viral and non-viral vectors. 



137 

 

Viral vectors include Adeno-Associated virus (AAV), retrovirus and poxvirus that can be either 

integrating or non-integrating vectors (e.g. AAV). Although viruses serve to be good gene-carriers, 

each type has its own limitations. For example, retroviral vectors have low in vivo efficacy, 

inability to transduce non-dividing cells, risk of mutational insertion that can cause oncogene 

activation and p53 suppressions (Bushman 2007). In general, requirement of detailed studies for 

improved safety is also a major limitation owing to the complexity in structure and biology of 

different viruses. Non-viral vectors include naked-DNA and liposomes and have the advantages 

that they allow repeated administrations of unlimited transgene size in a simple non-toxic way 

(Mali 2013). Depending on the routes of administration or delivery, naked DNA vaccines have 

shown to induce either Th1 or Th2 responses. Intramuscular injections of DNA vaccines tend to 

induce Th1 response while intradermal vaccination using a gene gun induces Th1 responses as 

well as Th2 responses bypassing the induction of local inflammatory response. After injection, 

DNA at located extracellularly, transfection of DCs require plasmid internalisation. DC activation is 

facilitated by specific binding of CpG motifs within DNA backbone to TLR9 within endocytic 

vesicles, thus initiating a Th1-biased pro-inflammatory microenvironment (Wagner 2002). It is also 

speculated that CpG motifs in bacterial plasmid induce accumulation of pro-inflammatory 

cytokines such as IL-6, IL-12 and TNFα at the site of vaccination (Klinman, et al. 1996, Raval, et al. 

2007). Hence this suggests that the choice of method of administration of DNA vaccines can have 

profound effects on the type of Th responses and therefore the vaccine efficacy.  

As stated previously, DNA vaccines containing multiple antigens are easy to prepare (especially for 

modifying the DNA sequence of an antigen) and more stable than proteins, peptides, viral/ 

microbial vectors and induction of immune responses can be significantly heightened by use of 

potent delivery system (or) a formulation for efficient DNA transfer.  Table 5.1 shows the methods 

of gene/DNA delivery methods that have been tested. 
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5.1.2 Factors involved in improving the immunogenecity of DNA vaccines 

The efficacy of DNA vaccines to mount an effector T cell-based response has made them an 

attractive and promising tool for anti-cancer therapies in both prophylactic and therapeutic 

settings. There are few crucial factors that affect the outcome of DNA vaccination as shown in Fig 

5.2.  

Entry barriers
TAA
Neo-antignes
Plasmid backbone
Administrative route

Direct stimulators of 
immune response

CD4+ and CD8+ T cells
Antigen presentation
 Single chain fusion genes

Threats of immune escape
MHC I down-regulation
MDSCs
Tregs
TAM

Indirect stimulators
Vaccine adjuvants
 Inflammatory cytokines

Supplements
 Immune checkpoint 

inhibitors
Chemotherapy/radiotherapy

2

1

3
4

5

Success of 
DNA vaccine

 

Figure 5.2 Five potential immune forces that can affect the success of DNA-based therapeutic approach 

against cancer (adapted from Amara S et al., 2017) 

The efficacy of DNA vaccines to elicit tumour-specific immune responses can be significantly 

improved by ensuring that the antigen or the portion from the antigen chosen is immunogenic by 
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adding elements likely to increase the presentation of the antigen once produced e.g. the antigen 

is produced in the form of an antibody with an Fc fragment which can be recognised by APC 

(Coban, et al. 2011), by adding co-stimulatory molecules such as CD80/CD86 by addition of 

pathogen-associated molecular patterns (PAMPs) such as bacterial CpG-DNA, and by optimising 

the number and gap between immunisations (Häcker, Redecke and Häcker 2002, Shirota and 

Klinman 2017). However the main concern of DNA vaccines remains the transfection efficiency, 

expression and immunogenicity. Certain elements can be inserted downstream of the plasmid 

DNA promoter region, such as insertion of Kozak sequences before start codon (a sequences 

signalling as an initiator/enhancer of mRNA translation from a mammalian promoter (Kozak 

1991)), use of species-specific codon (as synonymous mutations can affect protein expression 

rates up to 1000 folds in redundant genetic code), promoters that enable tissue-specific 

expressions of TAAs in DCs and nuclear localisation signals (Dean, Strong and Zimmer 2005, Ni, et 

al. 2009). 

Like for any other vaccine, DNA vaccines should avoid generating immunity against self-antigens 

or be toxic while at the same time be able to activate humoral and cellular immunities. Naked 

DNA vaccines are considered to be safe due to the low probabilities of integration into the host 

genome when there is no significant homology with the target organism genome (Wang, et al. 

2004), and even in that case it was found in mammals that the rate of insertional mutagenesis is 

significantly lower than the rates of spontaneous mutations (Schalk, et al. 2006). Evidence also 

suggests that the choice of vectors and the route of administration significantly influences the 

nature and strength of immune responses in mice (Kibbe, et al. 2016), such that besides gene gun, 

intra muscular and electroporation could also generate highly sustained antibody expressions that 

can inhibit human breast tumour-bearing nude mice (Kim, et al. 2016). 

5.1.3 DNA ImmunoBody® 

Delivery of antigen or antigenic fragments using viral or plasmid DNA vectors is one of the areas 

that has received a lot of attention in recent years. DNA vaccine are bacterial plasmids that are 

designed to function as a shuttle system to deliver and express the tumour antigen of interest 

(either the whole protein or portion of it) to cells which are then supposed to present the 

digested peptides/protein to immune cells thereby starting a cascade of events leading to both 

cellular and humoral immunity (Liu 2011). ImmunoBody®(IB) vaccine, provided by Prof Lindy 

Durrant (from Scancell Ltd), is a plasmid DNA that is designed to encode a human antibody 

molecule engineered to express cytotoxic and helper T cell epitopes derived from one or more 

tumour antigens of interest. It is a double expression vector containing IB variable heavy (VH) and 

kappa chain (VL) and human kappa and heavy IgG1 constant region in two reading frames both 
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controlled by separate CMV promoter ending with Bovine Growth Hormone (BGH) 

polyadenylation to provide maximum mRNA stability. The complementary determining regions 

(CDRs) were replaced with unique restriction sites for cloning of Class I and Class II epitopes. 

Effective transcription and translation of antibody chain inserted were characterised by 

(Metheringham, et al. 2009). Detailed vector map provided (fig 5.3).  

Epitope inserted into H2 site – HAGE 243-272
(QTGTGKTLCYLMPGFIHLVLQPSLKGQRNR)

 

Figure 5.3 Schematic diagram of ImmunoBody® DNA plasmid showing features in the vector map (details 

provided by Scancell Ltd.) 

The ImmunoBody® -HAGE construct was designed to carry the gene coding for the HAGE 30mer 

(HAGE 243-272) peptide and was inserted in the heavy variable region by Scancell Holdings Plc. 

Prior to immunisation ImmunoBody® -HAGE plasmid, DNA was coated onto gold particles (Bio-

Rad). DNA vaccines for prophylactic or therapeutic purposes can be delivered via different routes 

of administrations: intravenous, intradermal, intraperitoneal, subcutaneous and intramuscular 

(Doria-Rose and Haigwood 2003). The standard method of delivering DNA based vaccine has been 

intradermal where dermal and epidermal DCs are transfected to process and present tumour 

antigens. In intramuscular routes, muscle cells produce antigens to allow cross-priming by DCs 

that result in Th1 responses. But recently administration of plasmid DNA vaccines into mice 

models via transdermal route using a Bio-Rad Helios gene gun have demonstrated improved 

plasmid delivery. Booster immunisations have shown to improve the DNA vaccine efficacy to 

increase the numbers of high-avidity T cells (Pudney, et al. 2010).  Thus, in this study, DNA 

ImmunoBody® immunisation regimen included one prime followed by two booster immunisation 

each a week apart.   
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The first developed ImmunoBody®, called SCIB1, is a plasmid DNA that encodes a human antibody 

molecule engineered T cell epitopes (both helper and cytotoxic) derived from melanoma antigens 

TRP-2 and gp-100. SCIB1 ImmunoBody® is currently in Phase I/II clinical trial for treating 

melanoma and has shown to significantly prolong the survival rates particularly in patients with 

the resected disease (Patel, et al. 2018). The majority of cancer vaccines cannot specifically target 

dendritic cells in vivo, and thus requires ex vivo antigen pulsing of dendritic cells for re-infusion 

into individual patients which can be expensive and time-consuming (Turnis and Rooney 2010) . 

ImmunoBody® has been carefully designed to overcome these limitations. Antibodies can be ideal 

carrier vectors for antigens as they have long half-life and allow efficient stimulation of helper and 

CTL responses by effective targeting of dendritic cells via the high affinity Fc receptors.  

ImmunoBody® -DNA vaccines are shown to maximise T cell activation and avidity by two distinct 

mechanisms namely direct and cross-presentation (fig 5.4). 

5.1.4 Rationale for DNA vaccines 

DNA constructs are easier and cheaper to synthesise as well as scaling up compared to 

protein/peptides and have been shown capable of inducing CTLs and helper T cell as well as 

antibody responses. Most exogenous proteins may stimulate antibody responses. Antigenic 

molecules that are internalised to be processed via endo-lysosomal pathway result in a yield of 

peptide associated with MHC Class II molecules that produce T cell help. On the contrary, CTL 

responses are generated when the intracellular proteins, synthesised by tumours, are processed 

by proteasomal cleavage into resultant peptides that bind to nascent MHC Class I molecules for 

exportation to the cell surface by golgi bodies. While viruses and tumours result in the 

intracellular production of proteins that stimulate CTLs, some particles such as hepatitis B surface 

antigen can deliver particles directly into the processing machinery to synthesise MHC I 

molecules. Direct gene delivery into APCs with subsequent protein translation is one of the most 

developed approaches (Liu 2011, Liu 2010). In addition, it is reported earlier that CpG (TLR9) 

enriched plasmid DNA constructs confer strong immune-stimulatory signals that improved 

induction of antigen-dependant protective, T cell mediated immune response (IR) against 

melanoma (Schneeberger, et al. 2004). 



142 

 

ImmunoBody 
DNA

CD4 CD4

CD8
CD4

DIRECT PRESENTATION

Protein 
synthesis

CROSS PRESENTATION

TUMOUR CELL

TUMOUR CELL

Amplification of T cell responses

Killing of 
tumour cells

Recognition of
and attack by T cells

Antibody protein 
secretion

Cleavage of proteins

Uptake via Fc

receptors

Peptides bind to MHC

tumour cells 

Figure 5.4 Dual mechanism of action of ImmunoBody® vaccines. Indirect presentation, ImmunoBody® DNA 

targets APCs directly via transfection where DNA is transcribed until antibody is processed and presented to 

CD4, CD8+ T cells via MHC Class I and II molecules. Generation of low avidity T cells may result in weak anti-

tumour effect which might be overcome by the alternative mechanism of cross-presentation. In cross-

presentation ImmunoBody® DNA transfects other non-APC cells which then produces antibody protein that 

targets APC via Fc receptor. Thus, these mechanisms induce amplified T cell responses by generating high 

frequencies of CD4+, CD8+ T cells.  

5.1.5 Pre-clinical studies of DNA vaccines  

Having shown that plasmid DNA vaccines are non-infectious and can induce both humoral and 

cellular immune responses, without inducing anti-vector responses, the tolerance and safety was 

demonstrated in several clinical trials, leading to licensing for veterinary use (Cui 2005). Several 

plasmid DNA products have been tested in Phase 2 or 3 (Matijevic, et al. 2011). It has been 

observed that DNA vaccinations in newborns resulted in immunity rather than tolerance despite 

concerns due to such an immature immune system. Several DNA vaccines against infectious 

diseases (e.g. HIV, Influenza, Ebola) and cancers (e.g. melanoma, breast, prostate, colon, 

lymphoma etc.) are into clinical trials evaluating the safety and therapeutic profile of DNA-based 

anti-cancer vaccines (Bloy, et al. 2015).  

DNA vaccine using gp100 for 34 melanoma patients were given a total dose of 2ng of mouse 

gp100 plasmid DNA per 1ug of gold to evaluate the safety and efficacy but the results showed 

neither partial response nor progressive disease post treatments taking into account the diameter 

of the target lesions since the beginning of the treatment 
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(https://www.clinicaltrials.gov/ct2/show/study/NCT00398073?term=DNA+vaccine&rslt=With&ra

nk=4&sect=X49870156). 

Currently there are 496 clinical trials for triple negative breast cancer treatments are currently 

happening that either will be or are actively recruiting (www.clinicaltrials.gov, accessed on Jan 

2018). There are two very recent clinical trials with 24 TNBC patients recruited for neo-antigen 

DNA vaccine with Durvalumab (PD-L1 mAb) and 30 TNBC patients for polypeptide DNA vaccine 

treatment following neo-adjuvant therapy respectively. There are certain specific immunological 

factors that affect the successful outcome of novel anti-cancer DNA vaccines. Understating on 

current standing, potential strengths, future challenges and threats of failure can help us with 

developing a strategy for successful long-term anti-tumour DNA-based vaccine.  

The clinical outcomes of the participants are usually measured in the patient PBMCs to evaluate 

the T cell responses using an IFNγ ELISpot, intracellular staining and MHC tetramer staining. 

Similarly, in pre-clinical studies, the T cell reactivity against tumour antigen are measured using 

same techniques alongside other cytotoxic assays that are mentioned in detail in the following 

section.   

5.1.6 Methods of measuring tumour-specific T cell cytotoxicity 

It is well known that CD8+ and NK+ cells are the key players of the adaptive and innate immune 

response respectively and cell-contact-dependant cytotoxicity is the hallmark of their function. 

Two major contact-dependant pathways can be observed by in vitro assays. First pathway is 

where cytotoxic effector cells releases pore-forming toxin, perforin, and pro-apoptotic proteases, 

granzymes which activate several lytic pathways to kill target cells (Trapani and Smyth 2002).  The 

second pathway includes the induction of apoptosis via production of TNF, Fas ligand (FasL) or 

TRAIL by the effector cells (Waring and Müllbacher 1999). NK cells, being the first line of defence 

against malignant cells, are capable of detecting cells that have lost or significantly downregulated 

the expression of some or all self-MHC Class I molecules. Although there are differences between 

the two cell types (NK and CD8+ T-cells) in their recognition and signalling pathways, they both 

express specific lytic granules.  An advantage of the cytotoxic effector pathway is that it uses 

several members of TNF family, thus in conjunction can increase the spectrum of target cells and 

provides an alternative pathway when the other pathway is either blocked or rendered ineffective 

due to tumour-mediated immunosuppression.  

One of the popular assays for measuring cell-mediated cytotoxicity is 51Cr Chromium release assay 

that was developed by (Brunner, et al. 1968) and which is still being used by many research labs 

https://www.clinicaltrials.gov/ct2/show/study/NCT00398073?term=DNA+vaccine&rslt=With&rank=4&sect=X49870156
https://www.clinicaltrials.gov/ct2/show/study/NCT00398073?term=DNA+vaccine&rslt=With&rank=4&sect=X49870156
http://www.clinicaltrials.gov/
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today. This assay is based on passive internalisation and binding of 51Cr to the target cells. Lysis of 

target cells induced by effector cells results in the release of 51Cr into the culture supernatant 

which can then be added to a plate containing a scintillant, which captures the energy from the 

emitted beta particle and, in turn, releases the energy in the form of photons that can be 

measured by TopCount® Plate Counters, which uses a photomultiplier tube for detection. There 

are also methods to evaluate the caspase 3 activation in target cells after CTL attack (Jerome, 

Sloan and Aubert 2003) 

The assessment of the CTL frequency and function can also be performed by IFNγ ELISpot assays. 

There are several advantages for using ELISpot over Chromium Release assays in terms of labelling 

efficiency of the target cells and it being a non-radio-active assay.  It has been proven that results 

obtained from ELISpot assays correlate well with the frequency of CTL determined by chromium 

assays (Scheibenbogen, et al. 2000), moreover ELISpot assay can also detect analytes such as 

Granzymes B which can provide information on the target specific recognition of the T-cells 

degranulation. Despite these advantages, ELISpot assays on their own are not sufficient to prove 

byound any doubt that target cells have been killed by the release of granzymes. More over 

unless CD8+ T-cells are isolated prior to the assay, it is not possible to confirm that only CD8+ T-

cells were the cells entirely responsible for the release of granzymes since NK cells can also 

release these. It is nowdays possible to obtain these results by using lfow cytometry which can 

both confirm the release of cytokines and granzymes B by specific cells as well as the specific 

death of the pre-labelled target cells (Zaritskaya, et al. 2010). However, such assay is significantly 

more expansive than the use of ELISpot and 51Cr release assays when large number of samples 

needs to be assessed simultaneously. There are also reports on methods referring to the relative 

simplicity of luciferase or GFP quantitative assay to accurately reflect the target cell viability after 

CTL exposures by luminescence and fluoro-based assays (Chen, et al. 2005). 

Recent emergence of real-time cell analysis (RTCA) facilitates label free and operator independent 

monitoring of cell behaviour (Martinez-Serra, et al. 2014). It serves as a platform to investigate 

cell characteristics such as adhesion, migration and invasion accurately with the highlight of 

capturing real-time kinetic data. In contrast to pre-labelling of cells (Cr51 assay) and monitoring 

over set exposure time, RTCA (RTCA Xcelligence system) is an advanced approach to perform real-

time monitoring and automatic cell analysis allowing throughout the entire course of the 

experiment. Studies indicate that impedance-based data has increased sensitivity in comparison 

to traditional endpoint assays in measuring the antigen-specific cytotoxic T cell activity and thus 

can be used against tumour cells to determine the optimal T cell cytotoxicity (Erskine, Henle and 
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Knutson 2012). Tumour cells detach following T cell-mediated killing resulting in decreased 

electrical impedance that is measured by Xcelligence systems and thus has been in this study.  

Besides studying only one aspect of T cell function, information on other T cell characteristics can 

provide knowledge on the T cell interactions with tumour cells expressing specific antigen. Study 

of surface molecules expressed on immune cells or tumour cells can contribute to understanding 

of the immune suppressions mediated directly or indirectly by tumour cells. 

5.1.7 Interaction of T cells with APC and/or tumour cells  

It is well established that a tumour microenvironment consists of several T cell subsets defined by 

combinations of surface markers, transcription factors and the cytokines released. And today, 

study on changes of T cell phenotype and function in response to its environment is a much 

researched and necessary platform in development of T cell-based therapy. In pre-clinical 

assessment of vaccine, it is vital to investigate the profile of the percentage of lymphocyte subsets 

with its differential expressions of markers of activation or inhibition. Profiling of immune cells for 

cell-specific signatures including NanoString technology, intracellular flow cytometry staining, 

antibody-based protein assays (Lyons, et al. 2017). 

In a tumour microenvironment, T cell exhaustion is a predicted phenomenon which is a hypo-

responsive state of T cells with enhanced inhibitory receptors, reduced cytokine secretions and 

impaired cytotoxicity. Reversing T cell exhaustion represents an inspiring approach to cancer 

treatment. Among the majority of inhibitory receptors such as PD-1, TIM-3, LAG-3 can negatively 

regulate immune cells to help cancers evade immune attack (figure 5.5). The function and 

indication of these markers along with CTLA-4, OX-40, GITR are mentioned in the table 5.2. 

 
Figure 5.5 T cell surface activation and proliferation markers.* - constitutively expressed. 
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Table 5.2 List of T cell markers that indicate state of stimulation or inhibition 

T  cell markers  Function  Indication  References  

GITR 

Glucocorticoid induced 
TNF receptor related 

protein  

• Expressed on activated CD4+ T cells and Tregs.  
• Enhances T cell expansion and cytokine production by co-

stimulatory effect on conventional CD4+,CD8+ T cells.  
• Abrogated Treg-mediated suppression.  

Stimulation  

(van Olffen, et 
al. 2009, 

Ronchetti, et al. 
2004, Stephens, 

et al. 2004) 

OX-40  
Tumour necrosis factor 
receptor superfamily, 

member 4  

• Present on activated T cells.  Up-regulated after TCR 
engagement.  

• Proliferation of effector T-cells. 
• Inhibits Tregs function  

Stimulation  
(Mendel and 

Shevach 2006) 

CTLA-4 

Cytotoxic T lymphocyte 
antigen-4  

• Maintains unresponsive state of tolerized T cells leading 
to T-cell tolerance.  

• Expressions on Tregs and conventional T cells lead to 
compromised activation and suppressed effector 
functions such as proliferation, cytokine secretion, and 
tumour cell lysis  

Inhibition  
(Eagar, et al. 

2002) 

LAG-3  
Lymphocyte-activation 

gene-3 co-receptor  

• LAG 3 plays important role in modulating T cell expansion 
and function. 

• Limits Treg proliferations and function.  
• Expressed on activated T cells, NK and B cells. Co-

expression of LAG-3, PD-1 can indicate exhausted CD8+ T 
cells. 
Expression is low on naive CD4/CD8+ T-cells and increases 
upon antigen stimulation  

Inhibition  
(Blackburn, et 

al. 2009) 

Tim-3  
T cell Immunoglobulin 

Domain and Mucin 
Domain 3  

• Negative regulator of human T cells and regulated Th1 
and Th 17 cytokine production.  

• Up-regulated in exhausted CD8+ T cells  
Inhibition  

(Hastings, et al. 
2009, Jones, et 

al. 2008) 

PD-1  
Programmed Death 1  

• Negative regulator of T cell responses. Role in down-
regulating the immune system and promoting self 
tolerance by suppressing T cell inflammatory activity 

• Linked to T-cell differentiation and activation 

• PD1 limits T-cell activity by inhibiting CD28 co-stimulation  

Inhibition  

(Jiang, et al. 
2015) 

(Hui, et al. 
2017) 

 

5.2 Results 

5.2.1 IFNγ responses induction – DNA vs. peptide vaccine 

HHDII/DR1 mice were immunised with either HAGE-DNA vaccine (ImmunoBody®) or HAGE30mer 

peptide/IFA+CpG vaccine as per written in methods section 2.2.6.2.1. Seven days after the last 

immunisation, the splenocytes of the immunised animals were harvested and their ability to 

respond specifically to peptides listed in Table 1.1 was assessed by IFN ELISpot assay.  

The superiority of the HAGE-ImmunoBody® vaccine in generation of immune responses is shown 

in figure 5.6A. Indeed, statistically significant increase in the number of IFN producing 

splenocytes immunised with the ImmunoBody® /HAGE was found for peptide 5, 6 (9AA long) and 

peptide 7(15AA long). It is important to remember that only 1µg of ImmunoBody®/HAGE DNA 

was used per injection per mouse compared with 75µg of HAGE 30mer peptide/CpG-IFA 

demonstrating further the cost-effective value of such vaccine. Vaccinations of HAGE 30mer as 

both DNA and peptide version have resulted in processing ad presentation of same epitopes at 

different frequencies, affinity and avidity.  
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B) Flow cytometry staining on HAGE-induced T lymphocytes

 
Figure 5.6 Comparison of Immune responses induced by HAGE 30mer ImmunoBody® and 

peptide/adjuvant (IFA+CpG) vaccine. A) Straight ex vivo ELISpot IFNγ cytokine release by splenocytes 

obtained from mice immunised with HAGE 30mer peptide with (IFA+CpG) and HAGE 30mer ImmunoBody® 

DNA. Splenocytes were plated with peptide (1ug/mL final conc.) were incubated for 48hours at 37°C to 

measure the immune response induced by individual HAGE-derived short peptides between different 

immunisation groups compared to naïve. B) Flow cytometry staining of splenocytes for a panel of markers to 

differentiate the T cell state – exhausted or activated (6 mice per test groups, 2 naïve mice) with +/+ groups 

indicating populations that were double positive for two markers in respective plots. Data represented with 

error bars indicating ±SEM. A two-way ANOVA followed by Tukey’s multiple test showed significant 

difference of p<0.0001 against test groups. 
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Cells obtained from HAGE ImmunoBody® and HAGE 30mer/ IFA-CpG peptide vaccine were stained 

for anitbodies listed in table 5.2. Data shown in fig 5.6B indicates that HAGE ImmunoBody® 

induces CD8+ T cell sub-populations that expresses TIM-3, LAG-3 inhibitory markers while peptide 

vaccine-induced T lymphocytes expresses high levels of PD-1. Expression of GITR/OX-40 activation 

markers were also observed to be expressed by CD4+ T cells in both vaccination groups. 

Representative plots for flow cytometry staining on vaccine-induced cells are shown in appendix 

fig. 8.8A and B for HAGE ImmunoBody® and HAGE peptide/IFA+CpG derived immune cells. 

5.2.2 HAGE specific CD8+ T cell responses after IVS 

Splenocytes, harvested on day 21 after immunisation, from HHDII/DR1 mice immunised with 

Immunbody®-HAGE30mer or HAGE 30mer/ IFA-CpG peptide vaccine, were stimulated with either 

individual peptides or cocktail of Class I peptides (final conc. 10µg/mL) for 1 week at 37°C for in 

vitro T cell stimulation (IVS). After 7 days, cells were harvested to assess the percentage of IFNγ 

secreting CD8+ T cells by flow cytometry (figure 5.7).   

Flow cytometry analysis of peptide-stimulated splenocytes (gating strategy shown in 4.9A), figure 

5.7A indicated that ImmunoBody®/HAGE vaccine generated higher frequencies of CD8+ T cells 

compared to HAGE 30mer peptide in IFA+CpG vaccine. 

To assess the functional avidity of T cells generated by the HAGE vaccines, RMAS/A2+ cells were 

pre-pulsed with peptide 5 titrations (1µg to 10-7µg/mL) and seeded on ELISpot plates along with 

enriched CD8+ T cells isolated from 1-week peptide IVS. T cells from immunised mice were plated 

with RMAS-A2.1 cells at 1:10 target to effector ratio. Fig 5.7B shows that HAGE ImmunoBody® 

generates high avidity T cells than peptide/IFA+CpG. Nearly 10 folds difference in the EC50 was 

observed between the two vaccination strategies. The EC50 refers to the biological function of 

effector cells and represent the peptide concentrations required for 50% maximum effector 

function. In figure 5.5B, a sigmoidal graph with log µM peptide concentrations is shown with EC50 

values indicating the ability of T-cell to response to low antigen concentrations (hence low EC50) 

and vice versa.  

Based on avidity observations, ImmunoBody® -derived splenocytes stimulated with individual 

short peptides for 1 week were assessed for intracellular IFNɣ cytokine secretion in comparison to 

naïve cells.  Although there was significant difference in the number of CD8+ T-cells between naïve 

and ImmunoBody® /HAGE groups (fig 5.7C) peptides 5, 6 and 7 induced high frequency of IFNɣ-

producing cells CD8+ T cells derived from ImmunoBody® groups compared to naïve (figure 5.7D). 
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 Figure 5.7 CTL responses induced by HAGE 30mer DNA versus peptide vaccine. A) Flow cytometry 

analysis % CD8+ T cells gated on CD3+ cells represented with mean ±SEM (9 mice per group). Although not 

statistically significant, percentages of CD3+/CD8+ T cells were higher in ImmunoBody® immunised mice than 

peptide, IFA+CpG groups. RMAS-A2 cells pulsed with different concentrations of peptide 5, and peptide 6 

were co-cultured with T cells derived from immunised mice for ELISpot assays. Sigmoidal curves of showing 

avidity of B) peptide 5, C) peptide 6. Results indicated that ImmunoBody® vaccination induced increased CTL 

frequencies of functional avidity higher than peptide vaccination.  D) Flow cytometry analysis of intracellular 

IFNγ staining of HAGE vaccine-derived T cells stimulated for 1week in vitro stimulation with individual short 

HAGE-30mer derived peptides. Peptides 5,6 and 7 induced high frequency of IFNγ secreting CD8+ T cells 

compared to naïve groups (n=1). 

5.2.3 Vaccine induces HAGE-specific CD8+ T cell responses 

TAP-deficient T2 cells pulsed overnight with and without HAGE peptides (10µg/mL) were used as 

a positive and negative control for the assay respectively. Peptide-pulsed T2 cells induced IFN-γ 

cytokine release by T cells derived from both the immunisation groups, (figure 5.8). Although the 

number of cells derived from mice immunised with HAGE-30mer/IFA-CpG producing IFN-g were 

found to be higher than those derived from ImmunoBody®- HAGE upon co-culture with T2-cells 

pulsed with peptide 5, only those derived from ImmunoBody®- HAGE immunised mice were able 

to recognise naturally processed HAGE on the surface of B16/HHDII+/HAGE+. Both groups however 
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responded to TNBC cells HLA-A2+/HAGE+ (MDA-MB-231) but not TNBC cells HLA-A2neg/HAGE+(MD-

MB-468). 
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Figure 5.2.2: IVS (In vitro stimulation) ELISpot assay (A) Pure CD8+ T cells were isolated and plated 

together with target cells T2 un-pulsed and  peptide- pulsed (100ug/mL), B16 +/- HAGE, TNBC 

(MDA231, MDA 468) cell lines for 48hours to measure the IFNγ induced due to presence of target 

cells. HAGE-specific target induced IFNγ cytokine release was observed in HLA-A2+ , HAGE+ cell lines. 

 

Figure 5.8 HAGE specific CD8+ T cell responses after IVS (In vitro stimulation). Pure CD8+ T cells 

isolated after 1week re-stimulation were plated with target cells at 1:10 (target to effector) ratio on ELISpot 

plates. Vaccine-specific responses generated against T2 cells (T2+) pulsed with cocktail of Class I peptides 

(4,5 & 6) were compared with unpulsed T2 cells (T2-) and similarly between B16 cells with HAGE (B16+) and 

without HAGE (B16-). Bars represent error bars with mean ±SEM, n=2 (3mice per group) with p value 

significance obtained by two-way ANOVA followed by Dunnetts multiple tests. Data suggests HAGE specific 

targeting and HLA-specific targeting by T cells generated by HAGE vaccination. 

5.2.4 Chromium release cytotoxicity assays 

5.2.4.1 Cytotoxicity of HAGE 30mer vaccine-derived CTLs 

The ability of the cells generated after one-week in vitro stimulation to specifically recognise and 

kill HAGE-expressing target was assessed by Chromium release assy.  T cells from HAGE 

vaccinated mice were co-cultured for 7 days with mitomycin-treated and peptide-pulsed LPS blast, 

thereafter harvested and plated with chromium-labelled target cells at different effector to target 

ratios.  T2 cells pre-pulsed overnight with a cocktail of Class I peptides (1µg/mL) were used as 

controls for every cytotoxicity assay. 

In a killing assay, cytotoxic CD8+ effector cells were incubated at different ratios with the 51Cr-

labelled target T2 cells (typically at E:T ratios of 100:1, 50:1, 25:1 and 12.5:1) for 4 h at 37 °C. At 

the end of the test, the amount of radioactivity release from the lysed target cells is determined 

in the supernatant using a liquid scintillation counter. 
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Figure 5.9 Induction of HAGE specific cytotoxicity after in vitro re-stimulation. A) Schematic plan for 

expansion CD8+ T cells and induction of CTL activity. (B) Chromium release assay to determine the 

percentage of HAGE specific cytotoxicity induced against T2 cells pulsed overnight with cocktail of Class I 

peptides at 26°C. Splenocytes from immunised mice were co-cultured in vitro with LPS activated cells and 

plated with chromium labelled-target cells for 4hours at 37°C (n=2, 3 mice per group). 

5.2.4.2 Use of PCI30, HAGE-/+ and B16/HAGE-/+ as targets assess HAGE-specificity of the vaccine 

Human head and neck squamous cell carcinoma (HNSCC) cell lines, PCI 30 cells with and without 

HAGE (prepared in chapter 3, Fig 3.14) were used as targets for 4hours cytotoxicity assays. Figure 

5.10A shows the specific lysis of PCI30/HAGE+ but not PCI30/HAGEneg by cells derived from mice 

immunised with ImmunoBody® - HAGE which were stimulated in vitro with HAGE 30mer-derived 

peptides. This indicates HAGE-specific targeting of CTLs generated by HAGE vaccine. 

Similar experiments were carried out using B16 murine melanoma cells with and without HAGE as 

a proof of concept to assess the HAGE-specific in vitro cytotoxicity of HAGE-vaccine derived T cells. 

To investigate whether T cell require prolonged period of target cell exposures to induce 

enhanced cytotoxicity, HAGE vaccine-derived T cells were incubated for 24hours with target cells. 

Data indicated that 4hrs of T cell/target cell co-cultures could induce only a maximum of 4% 
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cytotoxicity in B16/HAGE+ target cells (Fig 5.10B). And as a result of increased target: effector co-

culture periods, percentage HAGE-specific lysis increased to ~25% in both vaccination groups. 

ImmunoBody® -derived T cells at 100: 1 (effector: target) ratio were observed to induce more 

significant cytolysis against B16/HAGE+ compared to peptide-adjuvant groups. It has to be noted 

that B16/HAGE+ targets used here are a mixed population of B16 /HAGElow, B16/HAGEhigh (fig 

3.10).  

B)

A)

 
Figure 5.10 Cytotoxicity induced by HAGE vaccine on tumour target cells. Splenocytes obtained 

from mice immunised with peptide (HAGE 30mer, IFA+CpG) or DNA ImmunoBody® were stimulated in vitro 

for 1 week with 1ug/mL of Class I peptides. Target cells were labelled with Cr51 and incubated together with 

effector cells at 37°C. (A) PCI 30 wild type and HAGE positive cells were co-incubated with effector T cells for 

4hrs. B) Comparison of 4hours and overnight (~24hrs) co-culture periods of B16 –HAGE-/+ target cells (from 

figure 3.10) with effector T cells. The HAGE –specific cytotoxicity induced by longer and shorter T cell 

exposures to target cells were compared between the immunisation groups with statistical p values 

obtained by two-way ANOVA analysis. Data represented with error bars indicating mean ± SEM (n=1, 3 

mice/group). 
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Hence, it was investigated whether T cells can recognise and lyse B16/HAGEhigh clone (Figure 3.12, 

3.13) more efficiently. Cytotoxic assays shown in fig 5.11 performed using B16/HAGE++ clone 8 (fig 

3.11) showed that percentage HAGE-specific lysis could be improved from 30% up to 65% and 

40% (at 100:1, effector: target ratio) with ImmunoBody®-derived and peptide/ (IFA+CpG) vaccine-

derived T cells respectively. As expected, T cells generated by ImmunoBody® HAGE DNA vaccine 

induced significantly higher cytotoxicity against B16/HAGE+ (clone 8) than HAGE peptide vaccine 

(p value****). 

HAGE-specific target recognition and cytotoxicity exhibited by T cells

A)

B)

 

Figure 5.11 In vitro cytotoxicity of effector T cells against B16 -/+HAGE targets generated by 

HAGE vaccine. Target specific killing induced by CTLs generated by HAGE vaccine from overnight co-

culture.  % specific lysis was induced more by CTLs from ImmunoBody® than (IFA+CpG) peptide vaccination. 

A) Graph showing cytotoxicity demonstrated against B16 cells mixed populations of low, medium and high 

HAGE expressions. B) Percentage HAGE specific lysis against B16/HAGE cells derived from a single clone 

(clone 8, fig 3.13) expressing high HAGE levels. Groups were compared to obtain statistical p values obtained 

by two-way ANOVA analysis. Data represented with error bars indicating mean ± SEM (n=2, 3 mice/group). 
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5.2.4.3 Use of TNBC cells as targets 

Cytotoxicity of HAGE-vaccine derived T cells against TNBC target cells (MDA-MB-231, MDA-MB-

468) were evaluated. MDA-MB-231 cell are TNBC cells expressing both HLA-A2 and HAGE protein. 

However, since MDA cell lines express low levels of protein (refer fig 3.5), it was investigated 

whether pre-pulsing of target cells with cocktail of Class I peptides could enhance the level of CTL 

targeting and cytolysis compared to un-pulsed wild type TNBC targets.  So Cr51-labelled TNBC cell 

were pulsed with peptide cocktail for 1 hr and washed thoroughly prior to plating with T cells. 

The fig 5.12 clearly shows that addition of exogenous peptide significantly increased the killing of 

the HLA-A2+ TNBC cells but not that of the HLA-A2neg TNBC cells in both immunised groups. This 

indicates that sufficient surface HAGE antigenic epitopes on cell surface is an important criterion 

for recognition and targeting by antigen-specific T cells. MDA-MB-231 (HAGE+, HLA-A2+) was 

targeted more than HLA-A2neg, but HAGE+ TNBC cell lines (MDA-MB-468). In addition, T cells 

derived from ImmunoBody® induced more cytotoxicity than peptide/IFA+CpG groups.   
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Figure 5.12 Induction of HAGE-specific killing in wild type versus peptide-pulsed TNBC targets. 
Cytotoxicity assessed against TNBC targets that were pre-pulsed with cocktail of Class I peptides (1hr at 37°C) 

and plated with effector cells for 4hours at 1:100 ratio. A two-way ANOVA was used to obtain statistical p 

value significance. Data plotted with error bars indicating mean ± SEM (n=1, 3 mice per group).  

These results demonstrated that either the level of HAGE protein expression influences the level 

of peptides processed and expressed on the surface of the cells or that peptide 5 was only weakly 

expressed on the surface of these cells. Previous results using isolated CD8+ T-cells (Figure 5.8) 

demonstrates that CD8+ T-cells could recognise un-pulsed MDA-MB-231 cells, therefore the 

number of CD8 or inadequate periods of T cell exposure might have caused low level of killing 

observed here. 
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5.2.4.4 Blockade of PD-L1 (B7-H1) augments HAGE –specific ex vivo T cell responses  

PD-L1 is expressed in 20% of TNBC, suggesting PD-L1 to be a therapeutic target. Hence TNBC cell 

lines MDA-MB-231, MB-468 cells were assessed for PD-L1 surface expressions and levels of PD-L1 

expressions is shown in fig 3.15. It is well known that PD-L1 expressions by tumour cells are one of 

the mechanisms used to escape tumour-specific T cell recognition and evasion.  Increasing data 

indicates that binding of PD1 —PD-L1 is related to immune suppression and tumour progression. 

Hence, we investigated whether blocking of PD-1/PD-L1 binding can provide benefit by improving 

T cell proliferation and production of cytokines that leads to enhanced T cell activation. For 

functional blockade, αPD-L1 mAb (clone 29E.2A3.C6, Biolegend) was used on TNBC cell lines 

incubated for 4hrs in culture conditions. Tumour cells, treated/untreated with PD-L1 blockade, 

were labelled with chromium. The labelled target cells were co-cultured overnight with T cells 

stimulated in vitro with Class I peptide cocktail followed by treatment with or without IFNγ with 

cytokines (100ng/mL of IFNγ for 48hrs). The % percentage cytotoxicity induced shown in fig 5.13, 

suggests that combination of IFNγ cytokine treatment with PD-L1 blockade enhances T cell 

activation, proliferation, and also cytotoxicity by prevention of tumour cell-mediated T cell 

suppression. 
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Figure 5.13 Effect of PD-L1 blockade and IFNγ cytokine presence on target recognition and lysis 

by ImmunoBody® derived T cells. Cells treated with IFNγ were recognised and lysed more than wild type 

indicating the IFNγ cytokine help with cytotoxic T cell expansion. IFNγ treated cells were shown to increase 

surface expressions of PD-L1 levels and thus when PD-L1 blockade were used, T cell suppression was reduced 

thereby inducing more cytotoxicity. Using only PD-L1 blocking did not impact or improve the HAGE-specific 

cytotoxicity. Treatment groups were compared to obtain statistical p values by two-way ANOVA analysis. 

Data represented with error bars indicating mean ± SEM (n = 1, 3 mice/group). 
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5.2.5 Impedance-based assays for detection of cytotoxic T cell activity by RTCA 

The In vitro cytotoxicity of CTLs generated by HAGE 30mer vaccine was also assessed by using 

Xcelligence real time monitoring. The proliferation pattern of cell lines was used to determine the 

optimal cell seeding density. Cell lines B16 +/-HAGE, MDA-MB-231 and MDA-MB-231/HAGE cells 

were plated at optimal cell densities to reach log growth phase onto the Xcelligence plates with 

growth monitored for approximately 24hours. About 15x103 cells per well were seeded in 100µL 

of respective media. Attachment and proliferation of cells were monitored for 24 hours and upon 

reaching log phase, effector T cells stimulated with long 30mer (or) short peptide cocktail were 

added onto target cells at 15x104 per well in 100µL. The isolation of CD3+ T cells were assessed 

for purity by flow cytometry staining on pre and post isolation samples (appendix fig 8.9). 

Cytotoxicity was measured every 30mins over next 48hours after T cell addition.  

 The data shown in figure 5.14A (i) showed that B16/HAGE (green line) were targeted more than 

the B16/empty (blue –untreated, red- treated).  Data also suggests that addition of CD3+ T cells 

derived from long peptide stimulation induced more HAGE-specific lysis than that peptide-cocktail 

derived CD3+ T cells. This ensures that HAGE long 30mer peptide generates a wider T cell 

repertoire that increases the chances of epitopes recognitions on tumour cell surface than those T 

cells primed with only 3 Class I peptides (peptide 4, 5 and 6). 

It was also seen in Figure 5.14A (ii) that MDA-231/HAGE were lysed more than MDA-MB-231 wild 

type indicating that MDA-MB-231 cells did not express sufficient HAGE epitopes on cell surface to 

induce CTL recognition while transfected cells expressed more HAGE peptide epitopes. Further it 

was also studied that although addition of pure CD8+ T cells to cancer cell lines induced target 

specific killing, addition of purified CD3+ T cells (CD4+/CD8+) induced enhanced HAGE-specific T cell 

cytotoxicity, thus re-emphasising the importance of CD4+ T cell help for CTL mediated antigen-

specific responses. 
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Figure 5.14 Real time monitoring of reduction in impedance mediated by cytotoxic T cells. Plots 

shows the impedance tracings over 72hours either with or without T cells. A) (i) Upon CD3+ T cell addition, 

real-time impedance traces show a distinct fall in the number, size/shape and/or attachment quality of 

target cells. This response is observed to be dose-dependent with effector to target ratio yielding the most 

substantial decrease by effector T cells stimulated with long peptide than Class I peptide cocktail. (ii) CD3+ T 

cell mediated cytolysis of MDA-MB-231 transfected with HAGE was targeted more than MDA-MB-231 wild 

type showing HAGE specificity. B) representation of differences in cell index from cells treated with T cells. 

Results are representative of one experiment with duplicate wells. 
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5.3 Discussion 

In the previous chapter, an immunogenic peptide region within HAGE protein was identified and it 

was demonstrated that a prime-boost strategy involving the same elongated peptide with a 

combination of two adjuvants could induce an enhanced T cell response in HHDII/DR1 mice. 

Although heterologous prime-boost immunisations represents to be more immunogenic than 

homologous prime-boost immunization (Lu 2009), beyond immunogenicity the key for a vaccine is 

to generate a repertoire of T cells with cytotoxic potential against specific target cells. Thus, to 

proceed with development of a successful cancer vaccine, it is important to investigate the best 

delivery strategy that can deliver HAGE 30mer immunogenic sequence to the immune cells that 

will generate high avidity T cell response even when very little is known about underlying 

mechanisms that decides the function of the cells. Vaccines that can generate high frequency of 

high avidity T cells in pre-clinical models have demonstrated recognition of tumour target 

recognition and shown effective anti-tumour immunity (Zeh, et al. 1999). DNA immunisations can 

elicit antibody of avidity that are 1000-folds higher than that of antibody generated by soluble 

protein immunisation (Boyle, et al. 1997). Protein immunisations with OVA produced IgG1 

predominantly regardless of the route whereas DNA immunisations yielded higher levels of IgG1 

after inter-dermal (i.d.), thus accounting for total Ab levels while intra-muscular, and intra 

muscular DNA immunisations yielded higher IgG2a than proteins for OVA (Boyle, et al. 1997). It 

was also noted that splenocytes from DNA-immunised mice secreted higher levels of IFNafter in 

vitro stimulation.  

This part of the study represents a comprehensive comparison of DNA versus protein 

immunisation of HAGE 30mer immunogenic region via different routes of immunisations. Use of 

ImmunoBody® DNA-encoding HAGE 30mer peptide antigen and peptide-adjuvant doses allowed 

us to investigate uniqueness of DNA delivery systems and differences due to route of 

administrations. We found that there was an elevated level of IFN secreting cells in mice 

receiving i.d. immunisations of HAGE ImmunoBody® DNA vaccine for 3 weeks compared to mice 

immunised with HAGE peptide and adjuvants for same period. Straight ex vivo ELISpot results (fig 

5.6) showed that peptide 5 (HAGE 295-304), peptide 6 (HAGE 295-305) and peptide 7 (HAGE 290-

315) were short HLA-A*0201, HLA-DRB*0101 peptides that generated strong immune responses 

in both DNA and peptide vaccine immunisation. Observations also revealed that HAGE 30mer 

ImmunoBody® were more efficient enhancing the vaccine immunogenicity in comparison to 

peptide adjuvant vaccine that was optimised previously (chapter 4). As mentioned earlier, direct 

transfection of APCs and cross presentation could have contributed towards direct priming and 

induction of CTLs.   
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In general, many studies have shown the efficacy of DNA vaccines in induction of antigen-specific 

CD4+ and CD8+ T cell responses with efficient T cell priming following DNA injections. Here it is 

also shown that HAGE –derived 30mer antigenic region can elicit immune responses that not only 

generate high frequency of CD8+ T cells but also high avidity T cells. Although DNA vaccines are 

known to induce descent levels of B cells and antibody responses, it is an important to determine 

the CD8+ CTL induction. CD8+ T cells have two effector functions: a) induction of target cell lysis 

that express the cognate antigen and b) secretion of cytokines in response to antigen encounter 

(Levy, Mackewicz and Barker 1996). Data obtained here showed that DNA ImmunoBody® induced 

more CD8+ T cells than peptide vaccines owing to the dual mechanism of action (fig 5.7A). Mice 

immunised with ImmunoBody® plasmid DNA also induced CD4+ T cell responses more than 

peptide (P value significance * = 0.0110, data not shown) indicating the lysosomal targeting by 

HLA-DRB*0101 epitopes and processing by professional/non-professional APCs. Other studies 

have also evaluated the benefits of CD4+ T cell protection against lymphocytic choriomeningitis 

virus (LCMV) where DNA vaccine-mediated priming of CD4+ T cells did not enhance vaccine’s 

efficacy against viral challenge (Rodriguez, et al. 2001). 

Peptide 8 (HAGE 297-312), a MHC class II epitope, was unable to induce neither CD4+ nor CD8+ T 

cell response upon at lysosomal delivery to APCs or cross priming, leading to a hypothesis that 

HAGE epitope might be actively degraded in the lysosome. An endopeptidase, cathepsin D is the 

most abundant lysosomal enzyme that has a profound impact on antigen processing and is 

involved in generation of Class II peptides (Hewitt, et al. 1997), which cleaves preferentially after 

hydrophobic residues (Barrett 1979). Usually, protein molecules comprise of hydrophobic cores 

with polar and charged amino acids to preferentially cover the surface. These molecules may also 

be positive or negatively charged to allow interactions for stabilisation of the three-dimensional 

structures. Peptide 8 (MPGFIHLVLQPSLKG) contains mostly hydrophobic residues (A, I, L, M, F, V, P 

and G) that could be targeted for enzymatic cleavage resulting in unsuccessful presentation by 

MHC Class II lysosomal pathway.  

Induction of TIM-3 and PD-1 expressing T cells by ImmunoBody® and 30mer peptide vaccine 

respectively, with LAG-3+ T cells induced by both immunisations indicate that these receptors 

allow modulation of T cell function at the tumour site, therefore suggesting consideration of using 

checkpoint blockade to synergise with the vaccine in tumour eradication. GITR is known to be 

expressed at low levels in murine CD4+ and CD8+ T cells and upon activation, naïve T cells and 

Tregs show GITR upregulations for few days (Tone, et al. 2003). In tumour immunosuppressive 

microenvironment, GITR is constitutively expressed at higher levels on Tregs (CD4+, CD25+, FoxP3+ 

T cells) particularly memory or antigen-experienced Tregs. GITRL is predominantly expressed by 
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activated APCs including DCs and macrophages. Additionally, GITR -/- cells may protect T cells 

from AICD and modulates responses towards Th1 instead of Th2 (Schaer, Murphy and Wolchok 

2012).  

For tumour elimination by immunotherapy, it is imperative to understand how functional avidity 

is maintained in T cells. It is demonstrated that when T cells encounter an antigen they undergo a 

process called functional avidity maturation that leads to increased avidity in antigen experienced 

cells than naïve T cells (Slifka and Whitton 2001). In principle, this functional avidity determines 

the strength of stimulus received by T cells upon antigen exposures at defined densities (Appay, 

Douek and Price 2008). Furthermore, at a given antigen dose, T cells of higher avidity could elicit 

strong function, perform rapid and effectively at low cognate antigen concentration thresholds, to 

promptly expand shaping their immune-dominance thus leading to tumour clearance (Dzutsev, et 

al. 2007, Bennett, et al. 2007, Ercolini, et al. 2005). Thus, functional avidity of T cells being a 

critical determinant for tumour eradication, we determined the avidity of the T cells induced by 

HAGE ImmunoBody® and peptide vaccine against one of the strong HAGE 30mer-derived HLA-

A*0201 MHC Class I epitope. T cells derived from DNA and peptide immunisations were treated to 

defined concentrations of peptide 5 to characterise the cytokine response elicited at low peptide 

antigen concentrations (Fig 5.7B). It is shown that DNA ImmunoBody® vaccine induced T cells of 

high avidity as indicated with IC50 values 100 folds lower than the peptide (IFA+CpG) 

immunisations. Recently vaccinia vectored viral vaccine (VAVC) was shown to induce antigen-

specific CD8+ T cells with functional avidity relatively higher than those from DNA vaccine (Hu, et 

al. 2017). Live vaccinia viral vaccine has been used in eradication of small pox and is now 

developing as an oncolytic virotherapy platform leading to their evaluation as tumour vaccines 

with a great safety profile (Deng, et al. 2017). 

The CD8+ T cell response induced by individual peptides were determined by staining splenocytes 

stimulated in vitro for 7 days. Results indicated that all peptides induced higher CD8+ T cells than 

stimulated splenocytes from non-immunised mice. Among all peptides, only peptide 5 and 

peptide 7 induced IFNγ producing CD8+ T cells as assessed by flow cytometry using eFluro-450 

conjugated anti-mouse CD8 antibody (fig 5.7D). It is possible that antigen-stimulated CD8+ T cells 

can regulate their effector function by producing cytokines but elicit low cytolytic activity. Thus, 

antigen responsive CD8+ T cells can be termed CTLs only when their lytic activity is proven in vivo 

and/or in vitro. 

Use of ex vivo T cell assays for detection of immunologic responses and enumeration of tumour-

specific CTLs and their effector functions help determining the success or failure of a vaccine and 
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its immunological potency. Chromium release assay and ELISpot assays are the two common 

assays used to monitor vaccine-induced lymphocyte-mediated cytotoxicity. 

Although this method is considered the gold standard with advantages ease to perform and 

reproducibility, the drawbacks includes:  i) in vitro stimulation of T cells prior to assay is required, 

thus altering the composition, activity and original state of T cell populations, ii) provides no 

information on single T cell behaviour , iii) considerable  inter-assay variable, iv) use of autologous 

tumour cells to reflect the actual ability of T cell to lyse tumours in vivo and  v) semi-quantitative 

data unless the component of limiting dilution is incorporated (Lyerly 2003). 

After 1-week in vitro stimulation (IVS) of splenocytes from ImmunoBody® and peptide immunised 

mice groups, ELISpot assays were performed using pre-pulsed T2 target cells as a positive control 

and data shown in fig 5.8 strongly suggests that pre-pulsed T2 cells were recognised by CD8+ T 

cells while un-pulsed T2 cells were unrecognised. Data also indicated that peptide-specific T cells 

were able to recognise HAGE specific target cells (B16/HAGE+) and produce IFN γ signals while T 

cells derived from peptide adjuvants immunisation groups showed non-HAGE specific B16/HAGE-  

target recognition. However, TNBC cell lines MDA-MB-231 induced more IFNγ release by T cells 

compared to MDA-MB-468. T cells were stimulated in vitro with cocktail of HLA-A*0201 peptides 

thus capable of detecting HLA-*0201 positive target MDA-MB-231 and not MDA-MB-468 even 

when it is HAGE+, thus suggesting the ability of HLA/HAGE- specific targeting of HAGE-vaccine 

derived immune cells. 

Cytotoxicity chromium release assay (CRA) performed with peptide-pulsed T2 cells (TAP-deficient) 

with limiting dilutions showed that T cells derived from ImmunoBody® and peptide induced 

HAGE-specific target cell lysis based on effector T cell densities with significant levels of 

cytotoxicity between pulsed and un-pulsed T2 cells (fig 5.9B). Further, use of HNSCC cells 

(PCI30/HAGE+) as targets in cytotoxicity assays demonstrated the HAGE specific target cell lysis by 

ImmunoBody® than peptide/adjuvant vaccine (fig 5.10A). HAGE-specific CTL-mediated tumour cell 

lysis was once gain confirmed with B16 cells expressing HAGE.  Initially, 4hrs of target-effector co-

cultures induced max. 6% cytolysis but prolonged T cell exposures to targets percentage of 

resulted in ~30% HAGE-specific cytolysis against B16/HAGE+ cells (fig 5.10B). This highlights the 

importance of understanding key parameters that can affect measurement of antigen-mediated 

ADCC against target cells in the process of evaluation of vaccine-induced killer effector T cell 

efficacy. 

Problems of lack of HAGE-specific targeting by peptide-adjuvant derived T cells and low % 

cytotoxicity against B16/HAGE+ by ImmunoBody® was suspected to arise from use of mixed 
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populations within transfected B16 cells expressing high, medium and low HAGE levels (chapter 3, 

fig 3.10). This emphasised the need of selection of single cell clone with uniform HAGE 

expressions. As a result of using CTLs against B16/HAGE+ clone (fig 3.12), the percentage 

cytotoxicity heightened from 20% to ~65% (fig 5.11B). Overall, CTLs derived from ImmunoBody® 

induced significantly higher cytotoxicity than peptide-adjuvant-derived T cells (100:1 ratios, p 

value <0.0001). Overall, assessment of in vitro efficacy of HAGE 30mer vaccine suggested that 

HAGE ImmunoBody® to trigger HAGE-specific anti-tumour immunity than HAGE 30mer peptide-

adjuvant vaccine. 

Having obtained a very low % cytotoxicity against TNBC cells by HAGE vaccine-derived CTLs, it was 

hypothesised that “whether presence of sufficient HAGE epitopes on cell surface can improve 

target cell lysis?”  Interestingly, when TNBC cell lines pre-pulsed with Class I peptides (fig 5.12) 

were used as target cells; percentage cytotoxicity of peptide, and ImmunoBody®-derived T cells 

increased to almost 40 folds and 50 folds respectively. These results not only provide evidence 

that HAGE –specific CTLs can kill peptide-pulsed HLA-A2 target cells, but also highlights the 

presence of adequate surface expressions of HLA-A2 and small antigenic peptides as an important 

pre-requisite to trigger CTL recognition and release of cytotoxic mediators. Thus, lack of targeted 

lysis with wild type TNBC cells could be due to either insufficient surface molecules crucial for 

recognition by CTLs or inadequate co-incubation periods to allow T cell- targets interactions. 

As mentioned earlier about various methods of measuring the cytotoxicity of T cells, another 

impedance-based assay was performed to validate the previous cytotoxicity assays with B16+/- 

HAGE and TNBC cell targets. Figure 5.11 showed that during 48hours of CD3+ T cells co-cultures 

with target cells at 10:1 ratios, there was a decrease in impedance compared to untreated control 

cells. Besides drop in the impedance, (fig 5.14) data also revealed that in vitro T cell stimulation 

using long 30mer resulted in enhanced cytotoxicity than short HLA-A*0201 peptides stimulations. 

The difference of cell index between untreated and CD3+ treated B16/HAGE, Luc2 cells once again 

agreed with our previous results. This enhanced lysis could be due to participation of both CD8+ 

and CD4+ T cell-mediated cytotoxicity as B16 cells express both HLA-A2 and DR1 MHC molecules.  

 In addition, treatment of TNBC MDA-MB-231 wild type (WT) cells and MDA-MB-231/HAGE+ with 

CD3+ (pre-stimulated with short Class I cocktail, fig 5.14) showed increased lysis of MDA-MB-

231/HAGE+ cells, thus reassuring the previous observations. Results on assessing whether pure 

CD8+ CTLs (derived from peptide cocktail stimulations, fig 5.14B) can induce enhanced target cell 

lysis showed significant CTL-mediated cell lysis between B16/HAGE- and B16/HAGE+; and MDA-

MB-231 of p values ** and * respectively. By comparing the CD3+ (CD4+, CD8+) and pure CD8+ T 

cell cytotoxicity, we could conclude that CD3+ with long peptide in vitro stimulations 
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demonstrates more HAGE-specific cytolysis against all the cancer cells tested. However, it still 

proved difficult to improve the targeting of CTLs against TNBC wild type cells which led us to 

investigate the possible causes of such as PD-1/PD-L1 interactions and suppressive role of IFNγ. 

Several studies indicate elevation of PD-L1 levels within tumour microenvironment due to tumour 

infiltration of activated T cells producing IFNγ. This can lead to up-regulation of PD-1 to engage 

with PD-L1 in tumour microenvironment resulting in compromise of vaccine induced proliferation 

and function of infiltrating high avidity T cells.  Thus, upregulation of PD-L1 is a hurdle in tumour 

eradication by vaccine induced anti-tumour T cells, therefore PD-1/PD-L1 blockade in combination 

with vaccine can improve the function of antigen-specific cytotoxic T cells.  

Although monotherapy using PD-1 blockade has showed significant anti-tumour responses with 

enhanced CD8+ T cell infiltrations but not CD4+ T cells. Studies have shown low avidity, non-IFNγ 

secreting T cells induce tumour regressions when combined with PD-1 blockade suggesting that 

combination of vaccine to induce high-avidity T cells with PD-1 or PD-L1 blockade can synergise to 

provide efficient anti-tumour therapy. Use of PD-1 blockade with SCIB1 vaccine has 85% survival 

in aggressive B16 melanoma model (Xue, et al. 2016). Thus, consequently the in vitro effect of 

using PD-L1 blockade on TNBC cell lines was studied and whether it can enhance the target 

recognition by CTLs induced by HAGE ImmunoBody® DNA. In addition, effect of IFNγ on the 

functional avidity of HAGE-specific CTLs has been assessed.  In CRA shown in fig 5.13, 20% of 

cytotoxicity against MDA-MB-231 WT was improved to 25% with IFNγ pre-treatment but PD-L1 

blockade showed no effect. However, combination of both IFNγ pre-treatment and PD-L1 

blockade enhanced target cytolysis to 35%. Simultaneously, PD-L1 blockade and IFNγ pre-

treatment of MDA-MB-468, either individually or in combination, significantly influenced the 

cytotoxicity induced by CTLs. IFNγ treatment and with PD-L1 blockade improved % HAGE –specific 

lysis to ~9% (p *** 0.002) and ~18% (p*** 0.006) respectively compared to <3% lysis of wild type. 

Collectively, this phase of the study has successfully evaluated the efficacy of HAGE 30mer vaccine 

either as DNA ImmunoBody® or peptide-adjuvant vaccine in generation of CTLs. The ability of 

HAGE vaccine derived T cells to recognise HAGE-specific target cells in vitro to induce lysis on 

various cancer cell lines has been demonstrated in this chapter with B16, HNSCC and TNBC cell 

lines.  Therefore, results obtained formed the basis to carry onto next phase of the study that 

involves the assessment of clinical efficacy of HAGE 30mer vaccine using in vivo tumour models. 
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Chapter 6 HAGE vaccine efficacy in in vivo models 

6.1 Introduction 

Pre-clinical studies have allowed clinical advancements in the field of immunotherapy with the 

identification of novel immunotherapeutic targets and understanding their mechanism of action, 

thereby aiding immunotherapy to evolve into a therapeutic strategy for the many cancer patients. 

In this aspect, in vivo models serve as a valuable tool to assess and validate the safety and efficacy 

of novel immunotherapeutic agents before translation into clinics. The major types of 

experimental models used for assessment of immunotherapy are discussed in this chapter. 

Recent advances in genetically engineered mice models have provided opportunities to mimic 

genetic and biological evolution of human cancers that are required for target validation, for the 

assessment of tumor-immune response, modeling resistance, and toxicity studies, all of which 

have considerably improved the success of cancer therapy development. 

Predictive and robust pre-clinical models are paramount to any clinical trial in order to minimise 

the translational failures in immune-oncology. While the main focus of oncology research is 

towards the discovery of novel immunotherapy, the choice of the appropriate well-characterised 

animal model still remains a challenge. Historically, anti-cancer agents have been assessed in 

either syngeneic models that have a fully functional murine immune system or immuno-deficient 

mice that allows the engrafting of human xenografts. Over the years research progressed towards 

studying tumour responses to immunomodulatory agents and neoplastic therapies for which 

accurate mimicking of the complexity of tumour microenvironment was needed. Hence the 

demand for animal models with a more “human” immune systems began, and, in this regard, 

humanised animal models offer the possibility to evaluate the immunogenicity/efficacy of various 

vaccines. However, each animal model has its own strength and weaknesses. Different animal 

models available for immunotherapy studies are depicted in fig 6.1. 

6.1.1 Transplanted and Orthotopic tumour models 

The first-generation of mouse models are those where tumour cells are engrafted 

subcutameously (transplants models) or at the correct physiological site of origin (orthotopic 

models) and are derived from either human tumour (called xenotransplants or xenografts) or 

from mouse (called syngeneic) tumours. Transplanted and Orthotopic tumour models are ideally 

suited to test the anticancer efficacy of new drug candidates as well as assessing the anti-tumour 

efficacy of vaccines using calliper to monitor the growth of the tumours. In transplanted tumour 

models, the growth of the tumour is monitored using callipers whereas orthotopic models require 
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the use of luciferase-transduced cell lines to permit the in vivo follow up of the tumour growth 

using bioluminescence imaging (BLI). 

6.1.1.1. Xenograft models 

Human xenografts are one of the most commonly used models in examining of responses to 

therapy. Usually nude mice, SCID mice or NOD/SCID mice are used. Nude or SCID models have 

intact B cells, DCs, and granulocytes with increased NK activity and macrophages even when some 

components of immune system are missing. There are also several advantages such as: i) use of 

original human tumour tissues with intact heterogeneity preserved, ii) use in development of 

personalised molecular therapies, iii) results can be obtained within week prior to drug therapy in 

contrary to GEM that require years to develop, iv) single tumour biopsy allow testing of multiple 

therapies, v) tissue microarray on human biopsy and xenograft tissue are available for extensive 

analysis before and after therapy, and vi) orthotopic implantations allow positioning of tumours 

into exact organ locations, vii) stroma of human tumours can be included too, and viii) xenograft 

using mice humanised with human PBMCs or bone marrow cells allow complete immune 

reconstitution to evaluate tumour-specific responses with stronger predictive response value 

(Johnson, et al. 2001). Different xenograft models are shown in fig 6.1 but xenografting of human 

tumours to humanised mice have different advantages compared to use of nude or SCID mice. 

Humanised mice have taken immunotherapy research to different levels. Heterogeneous tumours 

have a complex microenvironment and clinically relevant information on cell-cell interactions and 

in situ variations are unavailable in in vitro studies based on tumour cell lines. This gap becomes a 

major obstacle to our understanding on how malignant cells interact and manipulate their 

surroundings or immune cells and the development of successful novel immunotherapies 

(Snowden, et al. 2017).  However, they are expensive and technically complicated models.  

On the other hand, athymic mice that lack T cells were the first Patient-Derived Xenograft (PDX) 

model generated and then followed by the creation of CB17 mice that lack both B and T cells. It 

was then discovered that the presence of NK cells induced rigorous anti-tumour immune 

responses capable of inhibiting tumour growth. Hence, current immunodeficient models 

established use lymphopenic mice (strain deficient of innate immunity – B and NK cells) such as 

non-obese- diabetic (NOD)/SCID and NOD/SCID/IL-2γ-receptor null (NSG) mice. These mice lack IL-

2Rγ resulting in NK deficiency and IL-2, 4, 7, 9, 15 and 21 signaling (Kinter, et al. 2008). These 

strains also have SIRP1α polymorphisms that prevent phagocytosis of human cells by murine 

monocytes (Barclay and van den Berg, Timo K 2014) and hence information on lymphocyte-

mediated responses to tumours are lost. Further, these issues of SCID mice (lacks both B and T 
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cell) and NOD/SCID can be overcome by using humanised tumour models. Since even humanised 

mice cannot be completely restored with human immune system, engrafting of irradiated human 

umbilical cord-derived CD34+ hematopoietic stem cells into new-born mice have been a valuable 

model with humanised phenotype (fig 6.1).   

PDX models allow preserving of tumour microenvironment where tumours are surgically 

transplanted with small, non-disrupted pieces of primary tumour of human tumour under the 

dermal layer of NOD/SCID/IL-2Rγ2-KO (NSG mice) (Cassidy, Caldas and Bruna 2015). 

Transplantation of human specimens or established cell lines (xenografts) into immuno-

compromised mice, is an intermediate between human cell culture and mouse cancer models, 

which allows the study of human cancer cells in a microenvironment, thus reflecting the tumour 

complexity and architecture. When researchers co-engrafted tumour fragment with donor-

unrelated CD34+ umbilical cord hematopoietic stem cells (HSCs), the tumour growth was 

observed with expressions of T cell maturation and tumor-cell specific T cell activation (Siolas and 

Hannon 2013). This indicates that CD34+ HSCs can restore human innate cells without the 

complication of graft-versus-host disease (GVHD). To further allow assessment of patient’s anti-

tumour immune response, humanised mice can be engrafted with human hematopoietic stem 

cells (HSCs) with mutations in IL-2 receptor common γ chain locus (Shultz, et al. 2012). IL-2 

receptor for γ-chain is required for binding and signalling of several cytokines and NK 

development (Meazza, et al. 2011) and mutation with the IL-2 γ-chain results in absence of NK cell 

(Disanto, et al. 1994), thus allowing better human tumour cell engraftment of several solid 

tumours (Shultz, et al. 2005). Further to facilitate the engraftment of different cell types, 

genetically engineered cells expressing cytokines or recombinant proteins have been developed 

and reviewed in detail by (Drake, Chen and Chen 2012). 

6.1.1.2. Syngeneic models 

In syngeneic models, murine tumour cell lines derived from an inbred strain are implanted either 

subcutaneous (s.c.), intravenous (i.v.) or into the relevant physiological sites of the tumour 

(orthotopic) into mice of the same background to generate a cohort of the tumour-bearing 

models. Commonly used strains include C57BL/6, BALB/c, and DBA/2. Compared to xenograft 

models, these models can be easily setup in immune competent host to allow evaluation of 

immunotherapy treatments. These models are also often used to assess chemotherapeutic drugs, 

the tumour microenvironment, and anti-angiogenic compounds to name but a few. 

They also allow for easy expansion of the cell lines, competent immune systems in recipient mice, 

inexpensive host strains, and historical data on cell growth and drug sensitivity. However, these 
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models are limited to availability of human cell line (such as MC38, CT26, H22 and EMT6) due to 

species-specific functional differences between human and murine immune systems resulting in 

difficulty with data interpretation. In addition, in this model, since both tumour and immune cells 

are of murine origin, some therapeutic agents or drugs might not recognise the murine ortholog 

of their human target. Also, most of the lines grow rapidly in vivo that shortens the dosing 

window before reaching tumour volume limits, which does not mimic human patients’ tumours. 

Although there are reports on DC functionality and the efficacy of DC-based therapies, syngeneic 

models have specific limitations possibly due to the fact that the heterogeneity of human cancers 

cannot be easily reproduced in these models. The genetic alterations of human tumours are 

recapitulated by GEM models and are considered to be useful tools for designing effective DC-

based vaccines (Mac Keon, et al. 2015). Despite their limitations, syngeneic models are 

extensively used in preclinical investigations as primary mice tumours can be readily engineered 

for improved immunogenicity such as MC38-OVA (Allard, et al. 2013) and B16-OVA (Quetglas, et 

al. 2015). Syngeneic models were used as proof of concept to confirm the checkpoint inhibition of 

PD-1 antibody MC38 tumours. These models are genomically and immunologically profiled to 

evaluate immunotherapeutic agents in various laboratories. 

Homografts of primary tumours in syngeneic mice allow engrafting of spontaneous murine 

tumours that are expanded in vitro which have different biological properties than cell-line based 

syngeneic models. The grafts do not show irrelevant genetic drifts required for in vitro growth. 

But in cell-line based syngeneic models, homografts have complete mouse-competency that is 

suitable for surrogate immunotherapy research with operational simplicity and consistency of 

robust data compared to GEM models. Homografts derived from spontaneous murine tumours 

from a specific GEMMs can be instantly applied to study target intervention in a human disease, 

particularly combination therapies. Over years, a whole library of primary mouse tumour 

homografts have been developed to support immunotherapy research (Li, et al. 2017). 
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Figure 6.1 Different mice strain used for research purposes in today’s era. (partially adapted from Day PC 

et al., 2015). 
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6.1.2. Genetically Engineered mouse models (GEMs) 

The second and third generation of tumour models are mice that have been genetically modeified 

(GEMM) where the expression of oncogenes or shut down of tumor suppressors can be 

constitutive or conditional with the added possibility of temporally and spatially controlling their 

expression including the combined expression of different mutations. The genetic profile of the 

mice is modified in a way such that genes that are thought to be involved in malignant 

transformations are mutated (over-expressed or deleted) to study the subsequent effect of 

alterations and in vivo therapeutic responses to tumours over time.  Indeed, although there are 

differences between mice and humans, these models have allowed for a more accurate model of 

sporadic human cancers by specifically controlling the time and location of mutations. These 

models have demonstrated the importance that the microenvironment plays in tumorigenesis, 

and the interaction with the surrounding stroma. These models have also been instrumental in 

understanding cancer initiation, the role of the immune system, tumour angiogenesis, tumour 

invasion, and metastasis. Often these models are designed such that the mutations induced are 

found in particular cancer types such BrCa1 –associated breast cancer model will be driven by 

tissue-specific BrCa1 and p53 deletion. These models have also helped us to understand the 

relevance of molecular diversity observed among human cancers. Breast cancer is such a 

heterogeneous disease that studies using these models have shed lights on how distinct 

molecular changes drive various aspects of tumorigenesis and how these can be exploited to 

evaluate and validate the efficacy of novel drugs and vaccines for use in the clinic. Hence, this has 

led to increased reliance on GEM models using immunocompetent mice as well as athymic nude 

mice and mouse xenograft models using human cancer cell lines. Moreover, GEM models are 

inbred and do not therefore capture the additional complexity that human heterogeneity 

represent. 

However, several criteria for GEM models of human cancer have been suggested: i) mice must 

also reflect same mutations that occurs in human tumours; ii) it should be an endogenous 

mutation and not a transgene; iii) except for models of inherited paediatric tumours, it should be 

silent mutations during early post-natal development; iv) mutations should be restricted to 

specific target tissues; and v) limited numbers of mutated cells. Cancer GEMs also pose a 

challenge in achieving reproducible host-tumour environment in each model. They might show 

delayed or varied tumour growth and/or metastasis between individual mice due to genetic 

heterogeneity (aneuploidy, loss or gain of genes) from one cell to another within the same 

tumour. Hence, although GEM models are regarded superior than xenograft models, use of 

primary human tumours instead of mouse tumours will be required to examine to know whether 
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a patients’ tumour will respond to therapy. However, compared to GEM models there are also 

other viable model systems available with advantages of synchronised growth suitable for in vivo 

immune-oncology studies. 

6.1.3. Pre-clinical image-based evaluation of cancers 

The proficiency of pre-clinical studies relies on the choice of appropriate animal models. It is 

crucial to have a fully functional immune system that is involved in disease function and 

generation of immune responses. During the progression into metastasis, there is a reciprocal and 

dynamic interaction between immune cells and tumour microenvironment even following 

therapeutic intervention (Hölzel, Bovier and Tüting 2013). Although these interactions have been 

modeled in native/primitive genetically engineered mice (GEM) and orthotopic transplantation of 

GEM-derived allografts (GDAs) into immunocompetent mice (Merlino, et al. 2013), it is ineffective 

in current human xenograft models. Hence, evaluation of therapeutic agents or biomarkers shall 

depend on pre-clinical models that modelled naturally occurring metastasis. In such metastatic 

models, accurate monitoring of the disease progression and therapeutic response is vital to 

facilitate relevant clinical endpoints (Day, et al. 2014). For metastatic tumours, optical imaging is 

currently a dominant technique due to its ability to measure the growth of tumours in real-time, 

and it is cost and time-efficient (Baker 2010). The most popular traceable marker proteins are 

firefly luciferase (ffLuc) and enhanced green fluorescent protein (eGFP) from jellyfish, but these 

are known to induce inconsistent immune responses in immune-competent mice, graft-rejections 

and also suppress metastatic activity that can mislead the validity of the conclusions (Day, et al. 

2014). Rodents that are genetically altered by gene targeting technologies have tremendously 

contributed to our understanding of function and regulations of genes at molecular levels.  

As for cell line-derived, syngeneic rodent models with homografts (murine tumours) is suitable for 

surrogate cancer research (proof of concept) as they have complete immuno-competency and 

offers an advantage over GEM models for the simplicity of obtaining spontaneous tumours to 

study the robustness and consistency of targeted interventions in development of immuno-

oncology therapies (Li, et al. 2017). 

6.1.4. Humanised mice 

Although previous models are widely used for testing mouse surrogate therapies, murine tumour 

immunity is different to human patients, and so human therapeutics cannot be assessed. (Lute, et 

al. 2005, Peggs, et al. 2009) have developed various chimeric mouse tumour models via 

introduction of human targets that can be recognised by human therapeutics, thus enabling in 

vivo testing of biological therapies with murine immunity against murine tumours. An example is 
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knock in of C57H black 6 mice for PD-1 and CTLA-4 to evaluate immunotherapies recognising 

human PD-1 and CTLA-4. In this aspect, chimeric MHC I and MHCII transgenic mice used are 

capable of mounting human HLA-A and DR-restricted immune responses and TCR knock in models 

can generate human antigen-specific T cell responses (Obenaus, et al. 2015). 

Transgenic models are commonly used strains as they offer a promising avenue for development 

of active immunotherapy using cancer vaccines. Usually, the rationale behind cancer vaccines 

involved epitope identification and selection based on in silico modelling, with confirmation of 

immunogenicity using in vivo animal strains. Due to inter-species variability between mice and 

human, epitope recognition varies significantly and hence, mice models do not match epitope 

binding by human HLA. This can be overcome by developing mice expressing human HLA. These 

HLA transgenic mice can be combined with syngeneic models to test vaccine efficacies. 

HLA transgenics are among the most suitable models to confirm the immunogenicity of peptides 

identified using in silico analysis as well as the evaluation of different form of vaccines and 

adjuvants. Initial HLA transgenic mice did not remove the murine MHC molecules and 

overexpressed the human HLA molecules. However, the issue of murine MHC molecules 

competition with HLA restricted responses (immunodominance) could be dealt by deletion of 

murine endogenous (H2) molecules to express only human HLA and can be combined with a 

syngeneic tumour modelling to assess vaccine efficacy. It was also studied that processing of Class 

I pathways are remarkably similar between mouse and human systems, however, there are TAP 

differences and the C+ terminal is not efficiently transported by mouse TAP molecules (Momburg, 

et al. 1994, Sesma, et al. 2003). Mechanisms of self-tolerance, in mice models of immune 

reactivity, is another important criterion to be addressed where false positive data could result 

when a peptide epitope, described as immunogenic, has not tolerised in vivo due to interspecies 

homology of the sequence, especially while assessing the immunogenicity of tumour antigens. 

And a complete interspecies dissimilarity of a peptide sequence might induce stronger responses 

in vivo merely due to immune reactivity against the foreignness of the peptide, thus leading to 

false-positive observation. Therefore, it is vital to check the degree of homology between the 

murine and human sequences of tumour antigen of interest to design stringent parameters that 

ensure the true positive significance of the data.  

Transgenic HHDII/DR1 mice used in this study are engineered to express a chimeric HLA-A2 

molecule where the alpha1 and alpha2 loop of the HLA-A2 molecules are human while the alpha 3 

loop with the transmembrane domain is a murine. This means that the peptide is located withint 

the completely human part of the HLA-A2 molecules while the CD8 marker from the murine T-

cells can recongise the alpha3 loop and furthre signal can be sent via the CD8 moecule. On the 
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other hand the HLA-DR1 molecules present inthese mice are completely human. This means T-

cells generated in these mice will recognise human HLA-A*0201 and HLA-DRB*0101 molecules on 

target cells (Vitiello, et al. 1991). There are also many other HLA transgenic mice models and 

these include HLA-DP4, HLA-DR4, HLA-DR4, HLA-A1, HLA-A11, HLA-A2.1, HLA-A24, HLA-B44, HLA-

B7. One of the downsides of using models based is that only peptides of certain HLA types can be 

assessed for immunogenicity. It is well-known that several epitopes can be immunogenic, 

processed to belong to certain HLA and even shared between two or three different haplotypes. 

Thus, screening for immunogenicity of antigenic peptides restricted to a wide range of HLA 

haplotypes becomes laborious and costly as it requires the use of several HLA transgenic animal 

models to screen a large proportion of HLA subtypes. 

In the pre-clinical development of vaccine/drugs, despite huge investments, the overall rates of 

clinical translation remain low. An obvious reason for this is flawed preclinical research where the 

use and outcome of the animal study are decisive of bridging the translational gap from bench to 

beside. It is therefore vital for selection and validation of animal models while addressing the 

clinical question. Following the in vitro cytotoxicity of the HAGE-derived vaccine formulation 

against B16 (HHDII/DR1)/HAGE, use of same animal strains against same B16 cell line-based HAGE 

tumours were preferred as a proof of concept on validation of HAGE vaccine efficacy. This strain 

was more suitable as there was no need to acknowledge the limitations and challenges of 

commonly used tumour engrafting approaches using NOD/SCID mice. 
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6.1.5 Aims of this chapter 

In this chapter, the aim was to determine the anti-tumour efficacy of the HAGE-derived vaccine in 

pre-clinical models and demonstrate the target-specific cytotoxicity of the vaccine-induced HAGE-

specific T cell repertoire. There are two main models studied and showed in this chapter. Major 

studies were designed using transgenic HHDII/DR1 mice models to study whether the vaccine can 

induce a significant effect on tumour growth. The overview of the experimental design is shown in 

fig 6.2. 

  

Figure 6.2 Flow chart of the approach for tumour studies in the chapter 

 

 

 

 

 



174 

 

6.2 Results 

In the previous chapter, the in vitro efficacy of HAGE vaccine-derived immune cells to recognise 

and kill HAGE-expressing cells was demonstrated. Based on the in vitro cytotoxicity data, target 

cells (engineered to express HAGE) were used for injections into mice models to establish HAGE 

tumours. The experimental plan was to assess the in vivo efficacy of HAGE vaccine in therapeutic 

and prophylactic settings against HAGE expressing tumours. 

6.2.1 Evaluation of HAGE-vaccine efficacy in prophylactic/therapeutic setting 

HHDII/DR1 mice injected with B16 were used to assess the efficacy of the HAGE-30mer vaccine in 

a prophylactic setting. To facilitate this, B16 cells transfected to express human HAGE protein 

were used as target cells. These modified B16/HAGE+ cells were first assessed for tumorigenicity 

i.e. tumour growth kinetics and then used for assessing vaccine efficacies. For prophylactic and 

therapeutic studies, mice were vaccinated before and after the tumour injections respectively. 

Mice were immunised thrice pre- or post- tumour injections (based on the study) at 4-day dose 

intervals. The tumour volumes were monitored using calipers and calculated according to the 

formula: π/6 x (width x length2). The tumour growth obtained as assessed by the increase of the 

tumour volume over time was found to be suitable (Figure 6.3 A) and therefore this cell number 

was used for the subsequence assessment on the efficacy of the vaccine.  
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Figure 6.3 HAGE 30mer DNA vaccine (Immunobody®) induces anti-tumour immunity more 

efficiently in prophylactic settings than in a therapeutic setting. HAGE 30mer induced T cells are 

shown to prolong survival and delay tumour progressions against B16/HAGE+ tumours. A) Growth rates of 

B16/HAGE+ cells in HHDII/DR1 mice injected sub-cutaneously at 0.5x106 cells/mice (3 mice per group). 

Survival curves of HHDII/DR1 mice bearing B16/HAGE+- B) comparison of the anti-tumour efficacy of HAGE 

30mer - ImmunoBody versus peptide/(IFA+CpG) vaccine in a prophylactic setting. A statistical Gehan-

Breslow-Wilcoxon test showed p value significance between ImmunoBody and control group. C) Effect of 

ImmunoBody vaccine in a therapeutic setting. D) Isolation of TILS from B16/HAGE tumours for flow 

cytometry analysis of T cell populations. Error bars indicate mean ± SEM (n=5 per group). 

Following tumourigenicity of B16/HAGE+ cells (fig 6.3A), a prophylactic study comparing HAGE 

ImmunoBody and peptide/adjuvant vaccinations was first performed where mice received either 

Immunobody®-HAGE or HAGE as a 30mer peptide with IFA+CpG prior to receiving the B16/HAGE+ 

cells as per written in the method section. The results in Figure 6.3 B show that ImmunoBody 

vaccine could significantly delay the growth of B16/HAGE+ (p value **, 0.0091) compared to mice 

that received either no vaccination or those that received the HAGE 30mer peptide with IFA+CpG. 

In therapeutic settings, ImmunoBody did not show a significant anti-tumour effect (fig 6.3C) but 

B16 tumours were found to have more infiltrated CD8+ T cells (fig 6.3D). 
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6.2.2 Optimisation of in vivo imaging of B16 tumour models 

Initial results on the anti-tumour activity of the Immunobody®-HAGE was encouraging. However, 

these results were obtained using the B16/HAGE tumour cells not containing the Luciferin gene 

which at the time was not available. This could underestimate the total amount of tumour still 

present in the mice as B16 tumour can spread internally and therefore not be assessable via the 

use of callipers. Live imaging allows monitoring of animals bearing tumours that are either 

fluorescent or bioluminescent. Therefore, for this study, B16/HAGE cells were further transfected 

with the reporter gene Luc2 that encodes luciferase enzyme.  

To assess the in vivo cytotoxicity of vaccine-specific CTLs on HAGE+ tumours, cell lines that express 

Luc2 gene were first tested for both tumorigenicity and luciferase activity measured over time. 

Initially, 0.5X106 B16/Luc2 cells were used as in the previous experiment but results did not show 

steady growth of the tumour, measured by luminescence which was observed previously (Figure 

6.3 A). This could be due to the fact that the measurement using callipers previously were less 

accurate, the increase in tumour volume could be caused by oedema rather than an increase in 

tumour cell number/growth. It is also possible that the insertion of yet another gene could have 

resulted in slow proliferation rates of tumour cells. Either way a higher dose of 0.75X106 B16/Luc2 

cells was then induced a steady growth (Figure 6.4 A) and was chosen to assess the anti-tumour 

efficacy of the Immunobody®-HAGE vaccine. Figure 6.4 B represents the actual location of the 

tumour cells and size within a mouse shown as a luminescence signal that demonstrates tumour-

uptake post tumour implantation.   
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Figure 6.4 Real-time optimisation of in vivo imaging using B16/HAGE, Luc2 cells. Data from live 

imaging of animals injected with murine B16/HAGE+ cells engineered to express an enzyme, Luciferase, that 

will produce luminescence when it reacts with a substrate called D-Luciferin. A) Graphs showing the total 

flux measured in two mice groups injected with 0.5 million and 0.75 million B16/HAGE, Luc2 cells to measure 

the growth kinetics of these modified cells. Data plotted with mean±SEM, with n=3 per group. B) 

Representation of one animal imaged at different time intervals shows an increase in luminescence 

measured as photons per second (Rainbow scale). The total flux readings were proportional to growth in 

tumour size or increase in tumour burden at the site of injection.  

After carrying out tumorigenicity for B16/HAGE+, Luc2 cells, the efficacy of HAGE ImmunoBody 

vaccine was tested in both prophylactic and therapeutic settings in HHDII/DR1 mice with a larger 

group size (n=11/group). 0.75 million of B16/HAGE, Luc2 cells were injected for both prophylactic 

and therapeutic study. Figure 6.5 shows the survival proportions of vaccinated mice compared to 

untreated groups.  
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Figure 6.5 HAGE 30mer DNA vaccine (Immunobody®) induces anti-tumour immunity more 

efficiently in prophylactic settings than in a therapeutic setting.  On the top is the schematic outline 

of the B16 -prophylactic and therapeutic study. Study outcome (Bottom) with survival curve comparison 

using Gehan-Breslow-Wilcoxon test showed significant differences (p-value) between control and treatment 

groups (n=11 per group).  

Mice treated with Immunobody demonstrated a significant delay in tumour growth compared to 

untreated groups. Prophylactic treatments had better anti-tumour protection than therapeutic 

treatments of Immunobody®-HAGE vaccine. It has to be mentioned that the majority of the mice 

from the therapeutic group were terminated even before reaching the maximum tumour size due 

to tumour ulcerations on the skin. But overall, both the treatment settings of HAGE ImmunoBody 

vaccine have demonstrated to induce anti-tumour immunity against B16/HAGE, Luc2 cells. 

Further, the presence of immune cells within the spleen and the B16 tumours were investigated 

to understand and compare the profile of T cell populations induced by HAGE vaccine. In fig 6.6, 

the percentage of CD4+ T helper cells and cytotoxic CD8+ T cells infiltrated into B16/HAGE 

tumours are shown. Overall, vaccinated groups were found to have a significantly higher 

percentage of CD3+ T cells populations, particularly the prophylactic group compared to control 
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(Figure 6.6 A). It was also noticed that higher frequency of CD8+ cells with the CD62L+CD44lo naïve, 

central memory CD62L+CD44int−hi phenotype; or effector memory cells that are CD62L-CD44hi were 

induced in the therapeutic groups compared to prophylactic and untreated groups. Figure 6.6B 

shows the Images of 3 representative tumour-bearing mice from each group with the 

bioluminescence in B16/HAGE tumours obtained at different time points of the experiment. 

Gating strategy shown in appendix fig 8.10. 

Induction of T cells in both treatment settings have been shown in fig 6.6. High CD3+ T cells were 

significantly higher in the prophylactic compared to the therapeutic group and control group.  

Profiling of T cells after in vitro stimulations with the long HAGE-30mer peptide could only be 

performed on the last mice surviving from the prophylactic group. Hence the tumours and spleens 

were isolated for TILs and splenocytes for further analysis of T cell profile. Images in fig 6.6B also 

represents tumour clearance and delayed progressions in treatment groups compared to control. 

In fig 6.7 A, the percentage of total of CD4+ and CD8+ T cells is shown. Figure 6.7 B shows the 

peptide-specific IFNɣ cytokine release from fresh splenocytes derived from M13, M14, M17, and 

naïve mice. Interestingly, the best results were obtained with M17 which represents the mice 

with the smallest tumour. The ability of these cells to kill HAGE-expressing target specifically was 

also assessed and Fig 6.7C shows that again only M17 derived splenocytes were able to kill HAGE-

expressing cells significantly more than B16 cells expressing no HAGE. It is possible that the 

majority of CD3+ T cell populations derived from the other mice could be NK T cells killing tumour 

cells non-specifically. 
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Figure 6.6 In vivo efficacy of the HAGE-derived vaccine. Graph showing infiltration of T cells (TILs) into 

B16/HAGE tumours. A two-way ANOVA analysis showed a significant difference in % infiltration of CD3+ T 

cells between untreated and treated groups. CD44 and CD62L expressing CD8+ T cells indicate the 

percentage of total CD62L+CD44lo T cells are considered naive; CD62L+CD44int−hi are considered activated or 

central memory, and CD62L-CD44hi cells are considered effector memory. B) Images of 3 representative 

tumour-bearing mice from each group showing bioluminescence in B16/HAGE tumours obtained at different 

time points of the experiment.  
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Figure 6.7 Ex vivo analysis of responding mice (vaccinated tumour-bearing mice) from 

prophylactic therapy. A) Flow cytometry staining of splenocytes and TILs from three responding mice of 

prophylactic groups. ELISpot IFNɣ assays using splenocytes derived from the responding mice compared to 

naïve splenocytes B) HAGE-derived peptide-specific immune responses shown as IFNɣ responses per 0.5 

million splenocytes per well. C) co-culture of splenocytes with B16 targets w, w/o HAGE plated at 1 in 10 

titrations starting at 0.5x105 targets with 0.5x106 splenocytes. Data plotted with an average of wells in 

triplicates. 
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6.2.3 Functional and phenotypic characteristics of ImmunoBody®-HAGE vaccine derived T cells. 

An intra-cellular staining of the same splenocytes were also performed after 1-week re-

stimulation with the HAGE-30mer long peptide. No significant differences were found in the 

overall percentage of CD4+ and CD8+ T-cells (Figure 6.8 A) and cytokine secretions between 

treated vs untreated mice, however, a higher proportion of CD8+ T cells from the splenocytes 

derived from M17 had high levels of GITR expressions, activation marker and LAG-3 expressions, 

an inhibitory marker (fig 6.8B). Levels of other markers of T cell inhibition such as TIM-3, PD-1, 

and CTLA-4 were too low to block CD8+ T cell activity. Notably, CD4+ T cells exhibit high levels of 

TIM-3, LAG-3, and PD-1 suggesting the state of T cell exhaustion during anti-tumour cytotoxicity 

after tumour exposure (fig 6.8C). Interestingly enough, M17 has been observed to have high 

levels of GITR expressions on CD4+ and CD8+ T cells that correlate with the relative size of tumours 

removed from the mice compared to mouse 13 and 14. Titration of targets B16/HAGE- and 

B16/HAGE+ co-cultured with peptide-stimulated splenocytes in an ELISpot IFNγ assay showed 

HAGE-specific target-induced IFNγ cytokine release. It was once again noticed that M17 secreted 

more cytokine than other responding mice.  
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Figure 6.8. Immune responses in mice to B16/HAGE tumour challenge after immunisation with 

the HAGE-30mer vaccine. Flow cytometry staining of immune cells harvested from spleen and 

B16/tumours after 1-week in vitro re-stimulations with long 30mer peptide. A) Intracellular cytokine staining 

for IFNɣ and IL-2 secretions by T cell populations. Markers of activation and inhibition exhibited by B) CD8+ T 

cells and C) CD4+ T cells derived from splenocytes after 1-week stimulation with HAGE 30mer peptide. 
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6.3 Discussion 

Human experimentations are neither practical nor ethical and therefore animal models have been 

essential in cancer research. Preclinical research assessing the ability of any given vaccine to delay 

or even eradicate growing tumour using humanised animal models is instrumental in bridging the 

translational gap from bench to bed-side. Moreover, the Food and Drug Administration (FDA) 

requires that pre-clinical assessments have been performed before a given vaccine can be given 

to humans. In the previous chapters HAGE 30mer with IFA+CpG and Immunobody®-HAGE have 

both been shown to be able to generate cells capable of recognising shorter HAGE sequences 

derived from the one used in the vaccine. However, Immunobody®-HAGE was shown to be 

superior in both the generation of high avidity T-cells and in the ability of the generated cells to 

recognised and kill HAGE-expressing cells. Among researchers, it is accepted that the induction of 

higher CTLs frequencies does not necessarily indicate a potent anti-tumour immune response. It 

was demonstrated that only a small subsets of vaccine-induced T cells are of high avidity (≤10%) 

and those are the cells that can efficiently lyse tumour cells (Stuge, et al. 2004).  Recent evidence 

shows that DNA vaccine coding for an antibody where the CTL epitopes is incorporated into the 

CDR regions of the encoded antibody can generate high-avidity T cells and these responses are 

superior to those generated by peptide-adjuvant vaccine of the same sequence (Brentville, et al. 

2012). Vaccine-induced CTLs exhibiting high functional avidity (referring to the strength of T cell-

target interactions) is a good indicator of clinical response (Dutoit, et al. 2001, Ayyoub, et al. 2003, 

Durrant, et al. 2010). Pudney A and colleagues showed that CTL-incorporating DNA vaccines were 

capable of inducing high avidity T cells with anti-tumour efficacy both in vitro and in vivo (Pudney, 

et al. 2010). In the previous chapters, it was shown that Immunobody®-HAGE vaccine induced 

significantly higher number of high avidity antigen-specific CD8+ T cells compared to 

peptide/adjuvant in HHDII/DR1 immunisations. The efficacy of this vaccine elicited CTLs capable 

of recognising and killing HAGE-expressing tumour cells in vitro assays.  Hence, in this chapter, the 

in vivo efficacy of the immunobody®-HAGE vaccine to delay tumour growth has been evaluated 

against HAGE -expressing murine melanoma model as a proof of concept. Indeed, it was 

necessary to find a cell line that was originated from the C57Bl/6 species in order for the cells not 

to be rejected due to minor histocompatibility complexes.  So, a human cell line devoid of MHC 

molecule and then transfected with the chimeric HHDII gene would not grow in the HHDII/DR1 

mice.  

Amongst all the cell lines used to establish tumours in the C57Bl/6 mice, B16 melanoma cells, and 

its sublines B16-1 and B16-F10 have been extensively used as syngeneic transplants in C57L/6 

mice. B16 cells express low MHC I levels and are poorly immunogenic (Nanni, et al. 1983) and thus 
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immunotherapeutic approaches that generate protection do not work as well with B16 tumours 

(Overwijk and Restifo 2000). For the same reason, this model serves well for evaluating the 

strength of anti-tumoural immunotherapies. These cells were donated to us by Prof. Durrant’s 

group. These had already been knockout for beta2m and therefore devoid of any murine MHC 

molecules and thereafter transfected with the chimeric HHDII gene and the HLA-DR1 gene. These 

were further transfected with both the HAGE and the Luciferin constructs. It was found the 

addition of the Luciferin construct meant that more cells were required to achieve sustained 

tumour growth. Nonetheless this was successfully achieved, and a tumour model was generated. 

The initial challenged experiments performed showed that only the Immunobody®-HAGE was 

able to significantly alter the course of the tumour growth and another experiment was set to 

assess the efficacy of this vaccine to prevent or delay tumour growth in the HHDII/DR1 mice. Mice 

immunised with immunobdy®-HAGE were able to significantly delay the growth of the very 

aggressive B16/HAGE+/Luc+. The vaccine was not however able to eradicate already established 

tumours even very small. It is not too surprising to find that the use of a vaccine is not enough. 

Due to the lack of time it was not possible to assess the combination of vaccine and anti-PD1 

strategy in eliminating established tumours. The combination of vaccine with anti-PD1 has already 

been shown to work against poorly immunogenic B16F1-DR4 tumours using SCIB1, an 

ImmunoBody® encoding a human IgG1 antibody, with three epitopes from gp100 and one from 

TRP-2 engineered into its CDR regions (Xue, et al. 2016).  

Upon analysis of the percentage of T cells induced in the two treated and in the non-treated 

groups it was observed that the prophylactic group showed high frequencies of CD3+ T cells. 

Interestingly, the therapeutic group showed elevated levels of naive T cells (CD62L+CD44lo ) and 

effector memory cells (CD62L-CD44hi ) at the time of the spleens were harvested. It should be 

noted that the majority of mice from therapeutic groups were culled only due to ulcerations and 

not due to tumour size (<1.5mm3). It is therefore possible that these mice would have shown a 

prolonged survival otherwise.  

To further analyse the immune profile of vaccinated responder mice in more detail, the last three 

mice from the prophylactic group were assessed for the percentage of CD4+ and CD8+ T cells. 

Short culture of these splenocytes stimulated in vitro with the HAGE 30mer-derived peptide and 

re-assessed using ELISpot IFNɣ assays demonstrate that the mouse that had the smallest tumour 

at the end of the study had the highest number of IFNɣ-secreting cells compared to naïve and 

other mice from same groups. ELISpot assays using B16/Luc2+ with and without HAGE re-

confirmed HAGE-specific target-induced IFNɣ release as measured by limiting dilution of target 

cells with splenocytes. The intracellular staining of the same cells also showed that the cells 
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derived from M17 expressed the highest levels of GITR on CD4+ and CD8+ T cells, with CD4+ T cells 

also expressing high TIM3, PD-1 levels among the 3 responders.  The data suggest that B16, 

HHDII+/DR1+ cells might express Class II antigenic epitope (peptide 7) on cell surface which were 

targeted by peptide 7-specific T cell repertoire induced by HAGE ImmunoBody vaccine in 

HHDII/DR1 mice.  

Overall ImmunoBody®-HAGE was shown to induce HAGE-specific immunity which was able to 

delay the growth of the B16/HAGE+/Luc+ tumours. However as mentioned before the same 

vaccine was unable to slow down the growth of already established tumour cells. Inhibitory 

molecules such as PD-L1/B7-H1 can cause anergy of tumour-reactive T cells (Brahmer, et al. 2012). 

B16 melanoma cells are known to express high levels of PD-L1 suggesting that PD-L1 mediated 

immune suppressions could have occurred in our in vivo models. In addition, immune editing with 

down-regulation of co-stimulatory signals, defective antigen presentation could be factors 

promoting immune tolerance and deviation. Moreover, if the tumours do not display uniform and 

adequately high expressions of antigenic epitopes/determinants (antigen shedding), it is more 

likely immune tolerance will be established against such antigenic epitopes (Miller 1982). 

Although B16/HAGE+ cells were tested positive prior to animal injections, uniform HAGE 

expressions by histochemical staining across B16 tumours needs to be validated from mice 

euthanised at the end of the study. Given that HAGE ImmunoBody can generate high-avidity CTLs, 

tumour cells with differential surface expressions of HAGE-antigen might also induce low avidity T 

cells. In vivo studies have shown that low avidity CTLs can inhibit high avidity CTL target cell lysis in 

an antigen-specific manner by stripping of specific pMHC via trogocytosis without degranulation 

(Chung, et al. 2014). This highlights that repertoire of peptides on tumour cell surface shapes the 

interactions with T cells. Thus, avidity is also a crucial factor to be considered in vaccine design.  

Increased LAG3+/CD8+ T cells and PD-1+/CD4+ T cells from responder mice (M13, M14, and M17) 

hints to the possibility of PD-1/PD-L1 in vivo interactions that could have blocked T cell activation 

in the therapeutic setting. It also suggested that use of anti-PD-1 or anti-PD-L1 blocking antibodies 

could down-regulate the PD-L1-mediated killing of tumour-reactive CTLs (Blank, et al. 2006). 

Staining of splenocytes for the presence of NK-T cells and Tregs as Tregs and functional Teff play 

different critical roles in controlling tumours. Further status of T cells could be identified by 

staining of TILs for markers of activation or exhaustion. It is also studied that tumours can deplete 

glucose to very low levels that could impair the nutrient uptake and fitness of anti-tumour T cells 

regardless of immune-modulatory signals (Schroeder, et al. 2005).  

Besides this, there are several important factors that influence the results from an animal study 

such as time course of the treatment, reproducibility of experimental animal results, group size 
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indicating the importance of proper design, conduct and reporting (Denayer, Stöhr and Van Roy 

2014). Another feature of pre-clinical study is the use of preferred endpoints, usually tumour sizes 

while overall survival is commonly used in clinical trials. For ethical reasons, survival of 

experimental animals is acceptable occasionally, but progression-free survival, often being the 

secondary endpoint in clinical trials, could be included in pre-clinical studies.  

In the future, the use of anti-PD1 or anti-PD-L1 in conjunction with HAGE ImmunoBody vaccine is 

expected to elevate the levels of overall anti-tumour immunity of HAGE vaccine. Studies with 

additional booster doses to eradicate tumours or re-challenge of mice with tumours could also be 

assessed in future in a triple-negative human breast cancer tumour model using MDA-MB-231 

cells in NOD/SCID mice. To facilitate in vivo imaging, in vivo tumour growth kinetics of MDA-MB-

231-Luc cells is currently being studied in NSG mice models which will receive antigen-specific T 

cells by adoptive transfer from immunised HHDII/DR1 mice to assess therapeutic effect. 
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7.0 Discussion  

Immunotherapy for cancer is a rapidly evolving field that exploits the entire immune system of 

cancer patients to induce tumour rejections and prevent their recurrences. Among breast cancer 

subtypes, triple-negative cancer is the most aggressive phenotype with poor prognosis and high 

rates of relapse. Therapeutic approaches for TNBC vary depending on whether it is the early or 

metastatic stage of the disease. Although randomised clinical trials with anthracycline/taxane 

neoadjuvant therapy and platinum agents have demonstrated significantly pCR rates, 

substantially added toxicities are observed in participants of these routine treatments (Székely, 

Silber and Pusztai 2017). For patients whose tumour has not been completely eliminated or has 

recurred after chemotherapy/surgery and/or radiotherapy interventions, the choices of 

treatment are extremely limited and immunotherapy may well be their only survival chance. In 

fact, recent trials have combined traditional chemotherapy or radiation therapy with various 

molecular targeted agents, bi-specific antibodies, immune checkpoint inhibitors and other 

immune-stimulatory molecules (Vanpouille-Box, et al. 2015, Swart, Verbrugge and Beltman 2016). 

Immunotherapeutic interventions offer the advantage of having very low toxicities. 

Immunotherapy is a very active area of cancer research and many scientists are investigating new 

ways to use immunotherapy to treat cancer and while the use of antibodies and immune 

checkpoint inhibitors have shown to work in some patients, therapeutic vaccines aimed to cure 

have proven to be harder than initially thought. 

The National cancer institute, in 2009, has published 75 antigens that are used in DNA-based 

vaccine development but none of these possess all the characteristics of what an ideal cancer 

antigen is considered to have. Nevertheless, 46 were classified to be immunogenic and 20 of them 

were shown to have some therapeutic clinical efficacy (Cheever, et al. 2009). The main criteria for 

antigen selection include:  1) Therapeutic function, 2) Immunogenicity, 3) Role of antigen in 

oncogenicity, 4) Specificity of expression, 5) Expression levels and proportion of cells expressing it, 

6) Stem cell expression, 7) Number of cancer patients expressing antigen, 8) Number of antigenic 

epitopes and 9) Cellular localisation of antigen expression. The prioritization of cancer antigens 

aims to increase the number of successful clinical translation of cancer vaccine.  

HAGE is a cancer-testis antigen with a cancer-restricted expression and has been found to be 

overexpressed in many solid tumours including in 47% of triple negative breast cancer, it is also 

found to be required for the proliferation of cancer cells and to be expressed by some cancer 

stem cells (Abdel-Fatah, et al. 2016, Linley, et al. 2012). The rationale behind the study was, 

therefore, to study HAGE as a potential target for the treatment of chemotherapy-resistant TNBC. 

So the study began with an assessment of HAGE expressions in a panel of TNBC cell lines (HLA-
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A*0201 +/-) to identify the cell line suitable for this study. Since not many cell lines available were 

HLA-A*0201 positive and HAGE positive, only MDA-MB-231 (A*0201+) and MDA-MB-468 

(A*0201-) were found to be relevant and appropriate for use in in vitro assays. To facilitate the 

use of a cell line in transgenic HHDII/DR1 mice, a murine melanoma cell line (B16/ HHDII+, DR1+) 

were provided by Prof. Lindy Durrant. Since they do not express human HAGE, it was required to 

transfect B16 cells with plasmid vectors constructed to encode a codon-optimised DDX43 gene. 

The choice of plasmid vector was crucial with appropriate antibiotic selection since B16 cell lines 

has been previously double-transfected with plasmids encoding the chimeric HLA-A2 molecule 

and HLA-DR1 molecule.  In addition, Luciferase reporter system was employed in the study to 

facilitate the in vivo imaging of tumour bearing animals. Therefore any cells intended to be used 

for tumour models were also transfected with Luc2 gene.  Several stable cell lines were generated 

using plasmids of appropriate selection markers and these included B16/HAGEneg/Luc2+, 

B16/HAGE+/Luc2+, PCI 30/HAGE+, MDA-MB-231/HAGE+ by transfection or transduction methods 

with different constructs. Although the project focuses on TNBC, B16/HAGE+/Luc2+ are melanoma 

cells that were primarily generated to be used to establish tumour in the HHDII/DR1 mice and 

assess the efficacy of HAGE-derived vaccine as a proof of concept. The success of the 

transfection/transduction was demonstrated by the expression at mRNA and protein level for the 

gene if interest.    

The aim was to identify of an immunogenic region within HAGE protein, to ensure that the HAGE-

derived subunit vaccine could induce effector T-cells capable of recognising and killing tumour 

cells that express HAGE protein. An ideal immunogenic peptide sequence is considered to harbour 

several Class I and Class II epitopes that can stimulate CD8+ and CD4+ T-cells respectively. In 

addition, the presence of epitopes predicted to bind to multiple HLA haplotypes means that 

patients with different HLA types would benefit from such a vaccine. So, preliminary studies 

involving DNA immunisations of HHDII/DR1 mice with the entire HAGE gene and screening of 

short 15mer sequences led to the identification of a 24 amino-acid sequence within HAGE protein. 

Further with in silico analysis of HAGE protein, a 30mer was identified to encompass epitopes 

restricted to a range of HLA-haplotypes. 

7.1 24mer versus 30mer HAGE-derived sequences 

HHDII/DR1 mice immunised with these sequences in combination with Incomplete Freud’s 

adjuvant (IFA) demonstrated that  the HAGE 24mer region is less immunogenic than HAGE 30mer, 

and that the splenocytes extracted from the immunised mice only responded to a 15 AA long 

HAGE-24mer derived peptides despite the use of a cocktail of class-I peptides derived from the 

sequence used during the boost, implying that no class-I epitopes were generated from this 
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sequence. It was therefore decided that time would be better spent studying further the 

immunogenicity of the 30mer HAGE-derived sequence. It is well known that peptides are not 

immunogenic on their own and require the use of adjuvants. An adjuvant is considered a “good 

adjuvant” if it promotes inflammatory responses at the site of antigen delivery and attracts 

activated macrophage and dendritic cells (DCs) thereby improving antigen uptake and 

presentation. IFA was used for the initial experiments comparing the HAGE-derived 24mer with 

the 30mer sequence. Importantly, it has been shown that the choice of adjuvant can impact 

significantly on the type and strength of immune responses generated by the vaccine (Coffman, 

Sher and Seder 2010).  

Lipopolysaccharides (LPS) is a toll-like receptor (TLRs)-4 (TLR4) agonist. So far, around ten TLRs 

have been identified in human (TLR1–TLR10) and twelve TLRs in mouse (TLR1–9, TLR11–13). TLR1, 

TLR2, TLR4, TLR5, and TLR6 are expressed on the cell surface whereas TLR3, TLR7, TLR8 and TLR9 

are expressed by intracellular compartments (Gay and Gangloff 2007). The binding of all surface 

TLRs with their respective ligands leads to the production of pro-inflammatory cytokines such as 

IL-6 and tumour necrosis factor-α (TNFα) while all intracellular TLRs will induce the production of 

anti-viral cytokines such as IFNs (IFNα/β/γ). TLR4 is the only TLR capable of inducing the 

production of both hence the reason why the majority of studies use LPS as an adjuvant with 

peptide (Dowling J.K, 2016). Moreover, it has been shown that the binding of TLR3, TLR4, TLR7, 

TLR8 and TLR9 favour a Th1 type of immune response, whereas the activation of TLR5, TLR2/1 and 

TLR2/6 promote more a Th2 type of response (Jin, et al. 2012). It was therefore decided that 

additional adjuvants/TLRs should be tested to find out whether higher numbers of HAGE-specific 

IFN producing cells could be generated by changing the adjuvant. 

7.2 Assessment of additional adjuvants  

Poly I:C is a synthetic TLR3 ligand mimicking dsRNA that can enhance antigen cross-presentation 

by DC to CD8+ T-cells and has been shown to induce enhanced primary and memory CD8+ T-cell 

responses (Salem, et al. 2005). Synthetic CpG oligonucleotides (ODN) are TLR9 agonists, which 

mimic CpG motifs found in bacterial DNA, that can stimulate the APC-mediated production of pro-

inflammatory and Th1 cytokines. They have been used in clinical trials against several cancers - 

melanoma, glioblastoma, sarcoma, lung, ovarian including breast cancer. CAF09 is a novel and 

potent liposomal cationic adjuvant formulation which incorporate immuno-stimulators. CAF09 

has recently demonstrated its ability to induce strong antigen-specific antibody as well as CD8+ T-

cell responses (Espinosa, et al. 2017). The immune profile induced by CAF09 observed in Phase I 

clinical trial included both CD8/CD4: Th1/Th17 responses with enhanced protective efficacy 

against several subunit antigens (Korsholm, et al. 2014). IRX-2 is a cocktail of active cytokines, 
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extracted from activated human PBMCs, which prevents immuno-suppression by restoring 

immune functions and activation of T-cells, DCs, NKs against tumours. In vivo clinical activity of 

IRX-2 has been shown to improve the survival of HNSCC patients with enhanced T-cell activation. 

IRX-2 treatment of human DCs ex vivo resulted in the maturation and activation of DCs 

emphasising the utility of mature DC with upregulated functionality to obtain clinical benefit 

(Egan, et al. 2007, Schilling, et al. 2013).  

In a peptide-adjuvant vaccination strategy, a booster vaccine is shown to induce long-term 

functional memory T-cell repertoire (Smyth, et al. 2012). Initial administrations of 30mer HAGE-

derived sequence with IFA in prime-boost dosing regimen did not generate any significant results. 

It was anticipated that boosting with short HLA-A2+-restricted peptides would generate stronger 

CD8+-driven immune responses. Hence a cocktail of HAGE-30mer-derived HLA-A2+ restricted 

(peptides- 4, 5, and 6) were used with the same adjuvant for the second injection (boost) on day 

15 following the priming injection with the 30mer HAGE-derived sequence.  

The results obtained showed that the number of INF-producing HAGE restricted T-cells could be 

significantly enhanced when IFA was combined with CpG or IRX-2 or when CAF09 was used. Due 

to the shortage of IRX-2, it was not possible to continue with this particular adjuvant. Having 

observed significant improvement in the response induced by IFA+CpG and CAF09 adjuvants using 

first HAGE 30mer followed by the HAGE 30mer-derived HLA-A2+ peptides cocktail, it was thought 

that perhaps using the HAGE 30mer-peptide twice would also work with these stronger adjuvants. 

It was indeed worth trying since this would avoid the need for HLA-typing patients eligible to 

receive such a vaccine. The results demonstrated that both adjuvants were indeed able to induce 

high level of HAGE-specific IFN producing cells, with IFA+CpG adjuvants being superior to CAF09. 

Interestingly, the use of the 30mer HAGE-derived sequence (true for both adjuvants) for priming 

and boosting highlighted a difference in the way the 30mer peptide was processed. Indeed, 

peptide 4 which had previously been shown to induce IFN production from splenocytes cells 

derived from mice immunised with HAGE-30mer followed by cocktail of HLA-A2 peptides 

(including peptide 4), was no longer recognised by splenocytes derived from mice immunised and 

boosted with HAGE-30mer peptide with IFA+CpG or CAF09 adjuvant. While the previously 

unrecognised, peptide 5, by splencoytes isolated from mice which received the peptide cocktail as 

a booster vaccine, was now recognised by the splenocytes derived from HAGE-30mer peptide 

booster vaccine. In other words, in experiments using long HAGE for priming followed by a boost 

using the shorter peptide cocktail, the processing of HAGE-30mer peptide in vivo resulted in the 

production of peptide 5, 6 and 7 but not peptide 4 and the initial responses observed were 

artificially generated by the use of the peptide within the cocktail of HLA-A2 peptides used for the 
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second immunisation. As to why then was peptide 5 not recognised in the same experiments 

could be the results of the differences in their respective binding affinity for HLA-A2 molecules, 

indeed the results of the peptide-biding experiments showed that peptide 4 is a stronger HLA-A2 

binder requiring less peptide to stabilise the empty HLA-A2 molecules on the surface of the T2 

cells and has a higher MHC binding score, 28, compared to 27 for peptide 5. This meant that the 

booster dose using the mixture of peptides 4, 5, and 6 was sufficiently strong to induce cells 

capable of recognising peptide 4 but not 5. This was indeed confirmed when a single 

immunisation was performed using this peptide mixture.  

7.3 Comparison of ImmunoBody® HAGE with HAGE 30mer peptide/adjuvant vaccine 

DNA vaccines are safer, easier to make, and more stable than peptide especially peptide of 30 

amino-acids long. ImmunoBody® is a plasmid DNA designed to encodes human antibody 

engineered to incorporate the antigen sequence of interest within the Complementary-

Determining Region (CDR). SCIB1 is one such ImmunoBody® construct which has been shown to 

prolong the survival rates of melanoma patients in a Phase I/II clinical trial (Patel, et al. 2018). The 

ImmunoBody® delivery system offers the advantage of effectively targeting APCs and non-APCs 

via direct and cross-presentations, thereby generating high avidity CD4+ helper and CD8+ T-cells. 

Prof. Lindy Durrant kindly accepted to provide us with the ImmunoBody®-HAGE construct 

(containing the DNA encoding the 30 amino-acid sequence) to be evaluated in the HHDII/DR1 

model. The murine melanoma cells, B16 (HHDII+/DR1+) cells expressing both HHDII (MHC Class I) 

and DR1 (MHC Class II) used for the main model in this study, could therefore be targeted by both 

CD4+ and CD8+ T-cells. This DNA vaccine was administered by gene gun twice on day 1, 8 and 15 as 

per described by (Pudney, et al. 2010) and compared with HAGE 30mer peptide with IFA+CpG. 

ImmunoBody®-HAGE was found to be more potent at enhancing the vaccine immunogenicity as 

assessed by the higher number of HAGE-specific IFN responses obtained after the incubation of 

splenocytes from immunised animals with shorter vaccine-derived peptides.  Functional avidity 

and maintenance of functional avidity is regarded as crucial in tumour eradication by 

immunotherapy. ImmunoBody®-HAGE immunisations elicited higher frequencies of high avidity 

CD8+ T-cells against Class I peptide 5 and 6. The difference between the avidity of T-cells derived 

from ImmunoBody®-HAGE and HAGE 30mer peptide vaccines could result from the nature of the 

vaccine delivery. Conventional peptide vaccines are susceptible to structural instability in an in 

vivo microenvironment containing peptidases (Slingluff, et al. 2011). Whereas, DNA vaccines do 

not face this issue as they produce the encoded peptide epitopes only once inside the cells which 

ensure a constant supply of antigenic peptides at low levels to generate cellular immunity (Fioretti, 

et al. 2010). This prolonged exposure of T-cell to low level but prolonged antigenic peptides 
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resulted in the generation of T-cell repertoires with increased sensitivity to peptides. Whereas, 

peptide vaccines with a periodic dosage of peptide/adjuvant at high concentrations might lead to 

the selection of low avidity T-cells that are stimulated only under high peptide concentrations. 

However, the detection of vaccine specific high-avidity CD8+ T-cells, is not sufficient and it is 

important to assess and prove their ability to kill target in a specific manner in vitro prior to in vivo 

studies. Hence, immune cells derived from ImmunoBody® and peptide/adjuvant vaccines were 

subjected to 1-week in vitro stimulation with the Class I peptides 4, 5, and 6, prior to their use in a 

Chromium release assay against T2 cells (peptide-pulsed), PCI30/HAGE+/-, and B16/HAGE+/- targets.  

ImmunoBody®-HAGE derived T-cells demonstrated increased cytotoxicity against HAGE-specific 

target cells compared to T-cells derived from the peptide-adjuvant vaccine, as measured by in 

vitro assays. Although major studies characterise the T-cell function with IFNɣ release, CD8+ 

effector T-cells kill target cells via the central pathway of TCR-triggered release of effector 

molecules perforin and granzyme B. Hence ex vivo analysis of Granzyme B (GzB) and/or perforin 

(PFN) secreting effector cells would have provided additonal insights into the functional 

characteristics of CD8+ T-cells (IFNɣ+/GzB+/PFN+) induced by HAGE-based vaccine therapy. 

Traditional chromium release assay measures the leakage of Chromium from target cells instead 

of T-cell specific cytokine release. A flow cytometry-based cytotoxicity assays using Live/Dead 

staining of target cells gated on specific T-cell populations (CD4+ or CD8+) could also provide 

information on the nature and status of the T-cell responsible for the cell lysis since B16 

(HHDII+/DR1+) target cells could be targeted by both CD8+ and CD4+ T-cells.  

Besides CTL cytotoxicity against B16 targets, it was also important to assess cytotoxicity against 

TNBC cell lines. Since TNBC cell lines do not express high HAGE levels, wild-type cells were pulsed 

with Class I peptide (4,5, and 6) prior to co-culture with vaccine-derived T-cells. The data obtained 

from the 4hrs cytotoxicity assays showed that less than 8% of the TNBC wild-type targets were 

lysed by HAGE-vaccine derived CTLs whereas peptide-pulsed-TNBC target cells were recognised 

and killed by T-cells (40-60%) derived from both vaccination groups. Notably, T-cells derived from 

ImmunoBody®-HAGE induced more cell death than cells from the peptide with IFA+CpG group.  

The use of Class I peptides cocktail for in vitro stimulation would induce selectively expansions of 

T-cells expressing the TCRs specific for peptides 4, 5, or 6, which will therefore recognise wild-type 

TNBC targets if they express Class I epitopes. This implies that wild-type TNBC cell lines used in the 

study either do not express any of these peptides or express them but at insufficient level. As 

mentioned before, it is unlikely that peptide 4 is generated by the processing of HAGE protein. 

Peptide-elution followed by Mass-spectrometry analysis would be one approach to confirm this. 
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Chromium release assay require that the target cells are first detached from their flasks and use in 

a suspension with the T-cells. This might affect the target cells rendering them more resistant to 

killing by the T-cells and/or more prone to die from the radio-labelling with 51Cr. Toward the end 

of the study, it has been possible to use another immune monitoring approach known as real-

time cell analysis (RTCA). In this analysis, adherent target cells are seeded onto wells with gold 

microelectrodes at the bottom to measure the impedance caused by the flow of electric current 

induced by the adhesion of cells to the electrodes. Impedance values (plotted as cell index) 

increase as the cells proliferate, while the addition of suspension cells, such as lymphocytes, does 

not. Thus, targets are allowed to adhere to the electrodes prior to the addition of the effector 

cells. The detachment and therefore death of the adherent cells is measured in a continuous 

manner for 48 hours. Controls wells containing only the adherent cells are also set up to ensure 

that the cells are not dying due to over-confluency. Initial results showed that the addition of pure 

CD8+ T-cells isolated after splenocytes, derived from the immunised mice, and cultured in vitro 

with peptide 4, 5, and 6, induced a decrease in the impedance of B16/HAGE and MDA-MB-231 

targets compared to the control wells of the same cells however this was not significant. It was 

therefore thought that the responses could be improved by using (i) purified CD3+ T-cells 

(CD4+/CD8+) instead of purified CD8+ T-cells, and (ii) long 30mer peptide stimulations to increase 

the populations of both CD4+ and CD8+ T-cells. 

Cytotoxicity capability of CD3+ T-cells isolated from in vitro re-stimulation using long 30mer 

peptide or Class I peptides (4,5, and 6) were compared in RTCA assays against B16 -/+ HAGE target 

cells. The data demonstrated that, indeed, the use of long peptide during the short in vitro 

stimulation of the splenocytes from immunised mice generated CTLs with higher cytotoxic 

potential than when the cocktail of Class I peptides was used against B16/HAGE+ target cells. 

Simultaneously, B16/HAGE- target cells were unaffected thus validating HAGE-specificity of 

vaccine-induced CTLs. In addition, CD3+ T-cells targeted both MDA-MB-231 cells wild-type and 

peptide-pulsed cells used in these assays, thereby agreeing with the previous observations from 

the chromium cytotoxicity assays showing enhanced lysis of MDA-MB-231 cells transfected to 

overexpress HAGE protein. 

Stimulation with Interferon-ɣ released from infiltrating CD8+ lymphocytes or delivered as 

therapeutic drug were expected to improve cancer therapy by reversing downregulated MHC-I 

expressions on tumours. However, besides MHC-I upregulations, IFNɣ also induces PD-L1 

upregulations on cancer cells and promotes tumour growth (Abiko, et al. 2015). Since PD-L1 

expression can be induced on the surface of tumour cells by IFNɣ, this demonstrates the dual role 

of this cytokines as both anti- and pro-tumour growth suggests. Therefore, a therapy using both 



195 

 

PD-L1 blockade antibodies with a vaccine is strongly advised (Mandai, et al. 2016, Garcia-Diaz, et 

al. 2017). The use of PD-L1 blockade on TNBC cell lines pre-treated with IFNɣ significantly 

enhanced the recognition and cytolysis by HAGE-specific CTLs compared to untreated wild-type 

cells. There was no significant improvement in the cytotoxicity of TNBC cells when treated with 

IFNɣ or PD-L1 blockade alone. It was also noted that cytotoxicity against wild-type MDA-MB-231 

cells increased from 8% to 20% upon T-cell exposures from 4hrs to 24hrs. 

MDA-MB-468 (HLA-B27+, Bw35+) are HLA-A*0201 negative and yet after being pre-treated with 

IFNɣ and PD-L1 blockade these cells were lysed, which was rather unexpected. However, upon 

investigation using Syfpeithi analysis of the HAGE 30mer sequence for these haplotypes, it was 

found that Class I peptide 5 also had good binding affinity to HLA-B27. This suggests that T-cell 

repertoire selectively expanded based on peptide 5/MHC complexes in immunised mice, can also 

recognise other target cells expressing same peptide epitope. This indicates that the presence of 

peptide 5- specific T-cell repertoires during the assays could have recognised MDA-MB-468 which 

is a phenomenon often termed “TCR promiscuity”. It is a mechanism for relatively limited TCR 

repertoire to deal with potentially much larger antigenic peptide repertoire. However, purified 

HAGE 30mer-stimulated CD8+ T-cell populations did not lyse MDA-MB-468(B27, Bw35). It also 

indicates that long peptide-stimulated CD3+ T-cells could induce more killing than CD8+ T-cells 

alone, thus highlighting the importance of CD4+ helper T-cell role in mediating tumour cell-lysis 

either directly or by the production of cytokines. 

7.4 In vivo studies 

After assessing the in vitro cytotoxicity efficacy of the HAGE vaccine-derived T-cells, the next 

phase of the study was to assess the in vivo efficacy of the vaccine against B16/HAGE tumour.  

Initial prophylactic studies showed that ImmunoBody®-HAGE could induced a significant tumour 

delays or prolonged survival of tumour-bearing animals compared to peptide/adjuvant vaccine. 

The success of peptide immunisations relies heavily on the dose and the administration route 

(Parmiani, et al. 2002) which can negatively influence the immune system by rendering it 

unresponsive due to peptide-specific T-cell tolerization instead of activation. This was indeed 

observed in animal models when repeated intranasal peptide administrations down-regulated 

CD4+ T-cell ability to proliferate (Burkhart, et al. 1999) and repeated subcutaneous exposures to 

OVA peptides were shown to induce Tregs in BALB/c mice (Dahlberg, et al. 2007). The results 

obtained until now demonstrated the superiority of ImmunoBody® HAGE vaccine and therefore, 

being mindful about the 3RRs (Reduction, Refinement, and Replacement) it was decided that only 

this vaccine shall be used for additional in vivo tumour studies.  
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The first therapeutic studies using ImmunoBody® HAGE vaccine although did not demonstrate 

significant anti-tumour activities but showed infiltration of CD8+ lymphocytes into B16/HAGE+ 

tumours. The tumour cells had lost the HHDII expression but this was only found after the tumour 

had already been implanted. Based on these early results, further prophylactic and therapeutic 

studies using ImmunoBody® HAGE were carried out with a larger group size in test groups.  Stable 

cell line B16/HAGE, Luc2 cells with a reporter system were employed to establish HAGE+ tumours 

expressing luciferase that facilitate in vivo live imaging and the cells were sorted based on their 

HLA-A2 expression. 

The studies conducted in prophylactic and therapeutic studies revealed that ImmunoBody® HAGE 

confers significantly higher anti-tumour protection in prophylactic studies than the therapeutic 

setting. A delay in tumour progression is a clinical sign of in vivo priming and activation of HAGE-

specific CTLs. This study showed that ImmunoBody® HAGE vaccine could induce significant 

delayed in tumour progressions in both settings, with the most significant anti-tumour effect in 

prophylactic groups. Further, to demonstrate that the T-cell responses observed in vivo were 

HAGE-specific, immune cells from the only surviving but tumour bearing mice were analysed as 

well as the tumours. 

Tumours from mice in the therapeutic group showed infiltration of CD8+ effector and central 

memory T-cells suggesting that additional booster doses could have increased the anti-tumour 

responses. Although flow cytometry analysis provided information on the presence of immune 

infiltrate, tumour cross-sections staining with relevant antibodies (HAGE, anti-CD3/4/8) would 

have been useful to learn more about the localisation, density, and specificity of immune cells 

with respect to levels of HAGE expressed within the tumours. Also, the possibility for the presence 

of immuno-suppressive cells (Tregs, MDSCs, TAMs etc.) within tumour microenvironment was not 

inspected in this study.  

A T-cell response against antigen-expressing tumours can be diminished by central tolerance and 

limits the ability of T-cell to induce tumour eradication due to a pre-existing immune suppressive 

tumour microenvironment (Schietinger and Greenberg 2014). B16 cells are known to express high 

levels of PD-L1 surface molecules that may engage with PD-1 to inhibit T-cell activation. HuIgG1 

SCIB1 (ImmunoBody) vaccinations against B16F1DR4 tumours were associated with CD4+/CD8+ T-

cells  infiltrations but the proliferation and avidity of CD8+ infiltrate were mitigated by combining 

the vaccine with PD-1 blockade to result in survival of 80% of treated mice. It is suggested that 

vaccines that can induce T-cells releasing IFNɣ within tumour microenvironment may be expected 

to benefit from combination of PD-1 blockade (Xue, et al. 2016).  From this fact, the presence of 

immune infiltrates within established B16 tumours in therapeutic groups of this study highlight 
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trafficking of immune cells to the tumour site but the information regarding  their activation 

status would have beeen interesting. Flow cytometry analysis of ImmunoBody-induced T-cells was, 

on the other hand, examined, and the resutls showed that these cells expressed high levels of PD-

1, TIM-3, and LAG-3. The use of anti-PD-1 instead of anti-PD-L1 might have a more pronounced 

effect because PD-1 bind to both PD-L1 and PD-L2.  

A variety of factors can contribute to a weakened HAGE anti-tumour response. Generally, DNA 

vaccine efficacy depends on the development of medium-affinity T-cell repertoire that will be 

retained after depletion of high and low-affinity T-cells (Klein, et al. 2009). Here, there is a lack of 

information and knowledge about the frequencies of the medium-affinity T-cell repertoires 

generated in vivo by ImmunoBody® DNA vaccines. During such situations, a combination of DNA 

vaccines with one or more vectors encoding TAAs and co-stimulatory molecules (such as 

PROSTVAC-VF, (Madan, et al. 2009) might be useful for initial priming and subsequent boosting to 

ensure viable TAA-specific immune responses. 

Currently, HAGE ImmunoBody® vaccine is used in combination with WT-1 ImmunoBody to 

evaluate its efficacy against Chronic Myeloid Leukemia (CML). Recently, NY-ESO-1 peptide 

identified by SYFPEITHI analysis has been used for immunisations with IFA+CpG adjuvants. HAGE, 

WT-1 and NY-ESO1 are antigens that are expressed by many cancers and their possible combined 

usage will decrease the chance for one cancer cell to stop expressing all these at once.   

7.5 Human cell-line derived tumour models in NOD/SCID mice 

Preclinical tumour studies using HAGE-expressing human cancer cell lines was performed in a 

small study groups. The human PCI30/HAGE+ cells were established in NOD/SCID mice and 10x106 

CD3+ T-cells isolated from HHDII/DR1 mice, immunised with either HAGE 30mer with IFA+CpG or 

ImmunoBody®-HAGE, were injected intravenously and the tumour growth was monitored using 

callipers (data are shown in the appendix fig 8.11). In terms of survival, tumour-bearing mice that 

received HAGE vaccine-induced T-cells did not show any significant therapeutic effect compared 

to untreated groups, however mice treated with ImmunoBody®-induced T-cells had the smallest 

tumours at the end of the study compared to peptide-induced T-cells. The diminished anti-

tumour responses post-adoptive transfer could result due to injection of T-cells populations with 

low-affinity TCRs during in vitro CD3+ T-cell isolations and the numbers of cytotoxic T-cell available 

might not be sufficient enough to completely eradicate tumours in vivo. Instead, tumours might 

override immune attack by mediating T-cell energy and apoptosis. On the contrary, use of 

transgenic models avoids this variable of losing important T-cell compartments that occurs during 

transfer of immune repertoire into immune-compromised mice.  Other investigations have shown 
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that antigen-loaded DCs can potentially activate anti-tumour responses to reject tumours in vivo 

even in therapeutic settings, rather than using naked DNA or peptide/adjuvants strategies 

although they all induce CTL responses (Soares, Mehta and Finn 2001). 

Thus, as a proof of concept, the anti-tumour efficacy of HAGE-derived vaccine against B16/HAGE+ 

tumours were demonstrated successfully. In the future, HAGE vaccine efficacy needs to be 

assessed and validated using triple negative breast cancer models. Thus, it is important to utilise a 

proper human tumour model using TNBC cell line for experimenting HAGE anti-tumour efficacy. 

Although cell line-based tumour models may inform on the vaccine potency, the use of patient 

material for evaluating the presence of antigen-responsive T-cells, such as PBMCs derived from 

TNBC patients, provides more robust and clinically relevant information. Flow cytometry analysis 

of human PBMCs provides extensive information on frequency, phenotype, cytokine profile of the 

antigen-specific T-cells with high sensitivity. Here, few patient-derived PBMCs were analysed for 

presence of pre-existing HAGE-responsive T-cells. 

7.6 HAGE-specific T-cells in TNBC patient PBMC analysis 

Besides animal models, peripheral mononuclear blood cells (PBMCs) isolated from the blood of 

female patients diagnosed with triple-negative breast cancer were assessed for the presence of 

HAGE specific T-cells. PBMCs were stimulated in vitro for 1 week with HAGE derived Class I 

peptides and then stained with a dextramer synthesised using peptide 6 (HAGE 295-305). Peptide 

6 being a strong Class I epitope with peptide 5 embedded within the sequence was chosen to be 

synthesised as a PE-conjugated dextramer for flow cytometry staining. It was demonstrated that 

one 1 out of 3 Triple Negative Breast cancer HLA-A*0201 positive patients exhibited the presence 

of HAGE-specific T-cells (~0.11% of CD8+ T-cells shown in the appendix fig 8.12). This suggests that 

some TNBC patients have detectable level of an anti-HAGE immune response which would be 

boosted upon immunisation. These results have important implications for the outcome of 

patients who would receive this vaccine. Indeed, it has been demonstrated by many groups that 

patients who have pre-existing T-cells specific for an antigen are more likely to respond to a 

vaccine derived from the same antigen and in turn are more likely to have some real clinical 

benefit from the vaccine.  

7.7 Major limitations and challenges in cancer treatments 

The translation of scientific discoveries into effective cancer therapies are restricted by two 

important issues: a) the strength of immunological tolerance and b) intrinsic limitation on T-cell 

ability to expand in response to antigenic stimuli. Natural and strict biologic restriction on 

excessive T-cell activation and expansion are the same restrictions that limit cancer vaccines. 
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Several immunotherapeutic agents have been identified, formulated and proven to be active 

biologically, which includes activator, growth factors, adjuvants, T-cell stimulators and growth 

factors, immune checkpoint inhibitors, genetically-engineered T-cells (CAR T-cells) and molecular 

agents targeting to inhibit suppressive cells, enzymes, and cytokines. And only a few of these 

agents are available for development of regimens using multi-component cancer vaccines. 

Immune cells present within tumour microenvironment are used as a prognostic marker for 

breast cancer as several pieces of evidence show that immune cells can effectively either induce 

or inhibit tumour growth (Gingras, et al. 2015). But tumours utilise an opportunistic and 

redundant mechanism to sustain their survival and growth. Although the majority of the immune 

cells are T lymphocytes (70-80%) and the rest cells include B cells, macrophages, NK cells and 

APCs (Coventry, et al. 2015), the robustness of immune-inhibitory process poses a real challenge 

to cancer immunotherapy. Hence, in future, antigenic vaccines rely on suitable adjuvants and 

vehicles designed to store and deliver danger signals to not only induce activation but also to 

induce recovery of the immune system from tumour-mediated immuno-suppressions. 

7.8 Conclusion 

The development of cancer vaccines aimed to enhance anti-tumour immune responses is a 

promising research area. Associations of HAGE target antigen (proteins) expression with 

aggressive clinicopathological state of TNBC, makes it an attractive target for breast cancer 

immunotherapy. Although only small proportions of patients will benefit from a HAGE-based 

vaccine, there are no other treatment options available for patients who fail to respond to 

chemotherapy.  

In this research, the study has confirmed: 1) identification of HAGE 30mer as an immunogenic 

region within HAGE antigen to be used as vaccine, 2) assessment of different biological adjuvants, 

with IFA and CpG in combination to improve immunogenicity of vaccine, 3) investigation of 

vaccine delivery modalities such as peptide/adjuvant-based vaccines, and ImmunoBody®-HAGE 

vaccines, to show better T-cell induction from ImmunoBody®-HAGE DNA, and 4) evaluation of 

HAGE-derived vaccine anti-tumour efficacy in in vitro as well as preclinical models against HAGE-

expressing tumour targets. Out of two vaccination strategies, ImmunBody®-HAGE was capable of 

generating high IFNɣ secreting high avidity T-cells capable of inducing HAGE-specific target 

cytolysis both in vivo and in vitro against B16/HAGE+ tumour cells. However, it is required to 

further assess the HAGE vaccine efficacy in a triple-negative breast tumour model using NOG mice. 

The study also suggests the use of checkpoint inhibitors and use of immunogenic epitopes from 

multiple tumour antigens (such as NY-ESO-1) in the vaccine to induce epitope spreading to further 
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complement the effectiveness of immunotherapy. Overall, data obtained from the study would 

certainly support the development of vaccine strategies based on HAGE (ImmunoBody®/ peptide-

multi-adjuvanted approaches) in conjunction with checkpoint inhibitors to demonstrate the 

generation of specific and strong anti-tumour responses while preventing immune escape.  
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8 Appendix 

8.1 Identification of 15mer peptides by matrix screening method to derive at 24mer sequence 

Pools K 1 K 2 K 3 K 4 K 5 K 6 K 7 K 8 K 9 K 10 K 11

L 1 4 15 25 34 42 49 55 60 64 67 69

L 2 70 5 16 26 35 43 50 56 61 65 68

L 3 81 71 6 17 27 36 44 51 57 62 66

L 4 90 82 73 7 18 28 37 45 52 58 63

L 5 98 91 83 74 8 19 29 38 46 53 59

L 6 105 99 92 84 75 9 20 30 39 47 54

L 7 111 106 100 93 85 76 10 21 31 40 48

L 8 116 112 107 101 94 86 77 11 22 32 41

L 9 120 117 113 108 102 95 87 78 12 23 33

L 10 123 121 118 114 109 103 96 88 79 13 24

L 11 125 124 122 119 115 110 104 97 89 80 14
 

Figure 8.1 Matrix screening method for identification of immunogenic short overlapping 

peptides. Matrix designed to show peptide pools (K1.. K11, L1…L11) containing 11 short overlapping 

15mers each. Highlighted peptide pools across rows and columns share common short 15mers (blue) and 

were further shortlisted (table 8.1).  

Table 8.1 List of individual peptides shortlisted (preliminary data) 

Shortlisted 
Peptide No. 

Peptide positions within 
HAGE protein 

Overlapping peptide sequence 

11 116 H-WRGTSRPPEAVAAGH-OH 

19 124 H-KNIQSTTNTTIQIIQ-OH 

22 127 H-EQPESLVKIFGSKAM-OH 

38 143 H-TKWADLPPIKKNFYK-OH 

46 151 H-DDLKDGEKRPIPNPT-OH 

79 184 H-TYLVLDEADKMLDMG-OH 

86 191 H-TSATWPHSVHRLAQS-OH 

88 193 H-RLAQSYLKEPMIVYV-OH 

103 208 H-NISVESLHGDREQRD-OH 

Highlighted sequences (19, 22) were eventually shortlisted and elongated to 
reach 24a.a. sequence used in this study.  

 

8.2 Assessment of immune responses induced by HAGE-derived 24mer/30mer with IFA+CpG 

adjuvants 
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Figure 8.2 Comparison of IFN-ɣ responses induced by 24mer and 30mer in IFA+CpG. Responses 

from 24mer peptide vaccine were heightened by IFA+CpG adjuvant settings compared to preliminary 

immunisations with IFA alone and was comparatively very low to responses induced by HAGE 30mer 

vaccination. A significant difference between peptide-specific immune responses and control (cells alone) 

within groups were determined using a two-way ANOVA followed by Dunnett’s multiple comparison tests. 

Error bars indicate mean± SEM (n=3 mice/group). 
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Figure 8.3 Immunofluorescence staining of TNBC cells with anti-DDX43 antibodies (1:100 

dilution). MDA-MB-231 and MDA-MB-468 cells were stained with mouse monoclonal antibody and rabbit 

polyclonal antibody were compared for specificity as antibody validation experiment. Monoclonal antibody 

shows more of cytoplasmic staining whereas polyclonal antibody shows both cytoplasmic and nuclear 

staining on these TNBC cells. Images obtained at objective 20X.  
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Figure 8.4: Vector maps of recombinant constructs developed by cloning. (A) pBUD inserted with 

HAGE into MCS of CMV promoter, (B) pBUD inserted with Luciferases gene under CMV promoter, and (C) 

plenti/Puro plasmid inserted with HAGE under CMV promoter. (Vector maps generated using SnapGene 

Viewer software) 
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Figure 8.5 Multiple Sequence alignment using NCBI blastn suite: Sequence data extracted using 

Finch TV were aligned with the gene sequence available at NCBI database. DDX43 sequence aligns with 

plasmid DNA confirming successful DDX43 gene insertion in the pLenti/Puro viral vector. 
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Figure 8.6: Multiple Sequence alignment using NCBI blastn suite: Sequence data extracted using 

Finch TV were aligned with the gene sequence available at NCBI database. Luc2 sequence from plasmid 

database of the manufacturer aligns with plasmid DNA confirming successful Luc2 gene insertion in the 

pBUDCE4.1 vector. 
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Figure 8.7: Multiple Sequence alignment using NCBI blastn suite: Sequence data extracted using 

Finch TV were aligned with the gene sequence available at NCBI database. Codon optimised DDX43 

sequence (provided by the Genscript company) aligns with plasmid DNA confirming successful DDX43 gene 

insertion in the pBUDCE4.1 vector. 

 



207 

 

G
a

te
d

 o
n

 C
D

4
+

G
a

te
d

 o
n

 C
D

8
+

 

Figure 8.8A: Dot plot showing expressions of activation and inhibitory markers on T cells 

induced by HAGE ImmunoBody® vaccine. T cell subpopulations (CD4+ and CD8+ T cells) were assessed 

for a panel of markers listed in table 5.2 displayed with percentage gated. 
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Figure 8.8B: Dot plot showing expressions of activation and inhibitory markers on T cells 

induced by HAGE 30mer peptide/IFA+CpG vaccine. T cell subpopulations (CD4+ and CD8+ T cells) were 

assessed for a panel of markers listed in table 5.2 displayed with percentage gated. 

 

 



209 

 

P
re

-i
so

la
ti

on
 o

f 
CD

3+
 T

 c
el

ls
 

Po
st

-i
so

la
ti

on
 o

f 
CD

3+
 T

 c
el

ls
 

 

Figure 8.9 Flow cytometry staining to assess the purity of CD3+ T cells. HAGE ImmunoBody® derived 

spelnocytes stimulated in vitro with either long 30mer peptide or cocktail of Class I were isolated for CD3+ T 

cells for in vitro cytotoxicity assays with relevant target cells. The top row shows that purity of CD3+ T cells 

obtained from isolations increased from 57% (pre-isolation) to 95% purity (bottom row). 

 
 

 

Figure 8.10 Gating strategy for splenocytes /TILs from immunised/tumour bearing mice treated 

with HAGE-derived vaccine. Dot plots showing with T cell populations displayed as percentage gated. 

CD44/CD62L markers were used on tumour infiltrating CD4+/CD8+ T cells for determining presence of central 

memory T cells. 

 



210 

 

T cell therapy

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

0

5 0

1 0 0

S u rv iv a l p ro p o rt io n s :  P C I 3 0 /H A G E +  c e lls

D a y s  p o s t T  c e ll  th e ra p y  (n = 4  p e r  g ro u p )

P
e

r
c

e
n

t
 s

u
r
v

iv
a

l

U n tr e a te d

Im m u n o B o d y

P e p t id e  v a c c in e

Adoptive transfer of T cells from HAGE vaccinated HHDII/DR1 mice   

 

Figure 8.11 Monitoring of HAGE vaccine efficacy in human tumour model. PCI30/HAGE+ tumours 

established in NOD/SCID mice were adoptively transferred with T cell derived from HHDII/DR1 mice 

immunised with ImmunoBody ® -HAGE or peptide vaccine. On the left, graph shows the tumour growth 

represented as tumour volumes post T cell therapy. Survival curve (right) shows the percent survival of 

tumour-bearing mice and indicates HAGE vaccine did not show therapeutic effect on tumour growth as 

compared to untreated groups. 
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Figure 8.12 Dextramer staining of TNBC patient PBMCs. Patient-derived PBMCs stimulated in vitro 

with HAGE 30mer-derived Class I peptides (4,5, and 6) and stained for presence of HAGE-responsive T cells 

using antibody against peptide 6 HAGE-295-305[YLMPGFIHLV]. About <0.5% of pre-existing HAGE peptide-

specific T cells releasing IFNɣ cytokines were found in TNBC patients (HLA-A*0201), ACP -A2 negative. 
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