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Abstract

We study how the dynamics of a drying front propagating through a porous medium are affected

by small-scale correlations in material properties. For this, we first present drying experiments in

micro-fluidic micro-models of porous media. Here, the fluid pressures develop more intermittent

dynamics as local correlations are added to the structure of the pore spaces. We also consider this

problem numerically, using a model of invasion percolation with trapping, and find that there is a

crossover in invasion behaviour associated with the length-scale of the disorder in the system. The

critical exponents that describe large enough events are similar to the classic invasion percolation

problem, while the addition of a finite correlation length significantly affects the exponent values of

avalanches and bursts, up to some characteristic size. We thus find that even a weak local structure

can interfere with the universality of invasion percolation phenomena. This has implications for a

variety of multi-phase flow problems, such as drying, drainage, and fluid invasion.

∗ lucas.goehring@ntu.ac.uk
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I. INTRODUCTION

The flows of many fluids into porous media have been found to evolve complex shapes

with extensive interfaces, which are well described by the fractal morphology of invasion

percolation models [1–5]. Nonetheless, these flows will also often reflect any microstruc-

ture of the materials in which they move, for example travelling along preferential paths

like fractures. In fluid-fluid invasion [6–8], and the drying of porous media [9, 10], it has

been demonstrated that local correlations in the pore-scale properties of a granular medium

can dramatically modify any fluid flows within it. For immiscible flows, as occur when oil

displaces water, increasing the correlation length (the distance over which pores are ap-

proximately the same size) of pore-scale disorder has been shown to decrease the residual

saturation of the wetting phase at breakthrough [6, 7], leading to a more gradually-varying

capillary pressure-saturation relation [11, 12], and improving the connectivity, and hence

permeability, of both phases [12]. Changes in fluid retention have also been observed upon

varying the correlation length of particle wettability in a bead pack [8]. These types of

flows have a wide range of practical applications, for example involving the production of

groundwater and hydrocarbons, monitoring or assessing the contamination of soils and water

sources and their remediation, the safe storage of hazardous wastes and carbon sequestra-

tion [13, 14].

The physics of multi-phase flows often leads naturally to the ideas of intermittent dy-

namics. Such dynamics are characterised by short bursts of activity that are separated by

much longer quiescent (i.e. event-free) intervals, and appear in diverse physical, biologi-

cal and even social systems [15–18]. For fluids, the classic examples include Haines jumps

[19, 20], or instabilities triggered by the burst, touch, or overlap of nearby menisci [21, 22].

However, more diverse examples of the same universal phenomenon range from earthquakes

[23] to granular avalanches [24], fracture propagation [25], turbulent energy transfer [26],

variations in stock markets [27], blackouts in power grids [28], and evolution [29]. Much

of the complex behaviour of these systems can be captured by surprisingly simple models.

Specifically, the statistics of intermittent dynamics are routinely found to be equivalent to

invasion percolation [1], a model of a network of fragile bonds which fail as a system is

stressed. In this model a failure front, corresponding to the leading edge of a fluid invasion,

reaction or drying front, drives its way through the network, and the activity of this front

2



(a)

Boundary layer

Solid pillars on grid

a = 130 µm

Pore space

ζ = 1 ζ = 4 ζ = 15ζ = 10

Sm
al
l

(b
) 

P
or

e 
si
ze

E
ar
ly

L
at
e

B
ig

(c
) 

In
va

si
on

 t
im

e

FIG. 1. Invasion into correlated porous media. (a) A flat pore space is designed and fabricated in

a micro-fluidic chip by soft lithography techniques. The drying cell consists of an array of pillars,

which surround pores. The pores are initially filled through channels along one edge of the cell and

then dry through the opposite edge, which is open to the atmosphere. (b) Correlations between

pillar sizes, and hence pore sizes, are randomly introduced with different correlation lengths ζ. (c)

The drying pattern (shown here at breakthrough, when the invading phase connects to the back

of the chip) and sequence of invaded pores reflect the underlying structure of pillar sizes.

is found to obey well-defined and universal scaling laws [2, 30].

Here, we consider how local correlations in the strength of a system can modify the

universal response of invasion percolation, and explore this response within a paradigm

experimental system, namely a drying porous medium. During drying, evaporation of a

defending fluid increases the curvature of any menisci caught in the pore spaces, resulting

in the capillary invasion of air, once a local pressure threshold is exceeded. We study, both

experimentally and numerically, the invasion patterns and statistics of a drying front moving

through such a disordered porous medium, where the sizes of nearby pores are correlated

with each other. The experimental realisation is a quasi-two-dimensional micro-fluidic chip,

where fluids can move around an array of rigid pillars arranged on a regular grid [10], as

described in Fig. 1. The pillar radii are correlated over a given length scale ζ [9, 10]. The

numerical simulation is that of invasion percolation on a grid, with its parameters taken

from the geometry of the experiments. In both cases, as shown in Fig. 2, the capillary

pressure at the drying front fluctuates, and spatial correlations change the statistics of these

fluctuations, such as the likelihoods of extreme pressures, or the distributions of sudden

bursts of activity.

Our primary aim is to explore and explain the effects of such a correlation length, interme-
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FIG. 2. Local correlations in the sizes of pores and throats dramatically affect how the fluid

pressure fluctuates as a porous medium is dried, in both experiments and a complimentary invasion-

percolation model. When there are no correlations (ζ = 0) the pressure sequence is similar to white

noise, centred around the average invasion pressure of the porous medium (P = 1). In contrast,

when the correlation length is ζ = 15 times the typical pore size, the pressure sequence shows

strong intermittency.

diate between the pore or grid-scale and the system size, on fluid invasion phenomena. Given

that the intermittent dynamics of the drying front is a critical phenomenon, its statistics can

be characterised by a set of critical exponents [4, 5, 31, 32]. We find that these exponents

are changed by the introduction of the correlation length scale. Connecting these features

directly to our micofluidic experiments, we further investigate these effects and determine

the scaling relations for drying interfaces in correlated media.

II. METHODS

A. Microfluidic experiments

Experiments were conducted in micro-fluidic chips containing a mechanical micro-model

of a porous medium; detailed methods of their design and fabrication are given in Refs.

[9, 10]. Briefly, we used soft lithography techniques to create a pattern of 100 × 100 solid

pillars on a regular grid, of spacing 130 µm, defining a pore space between them. The

pillars had an average radius of a = 50 µm and height h = 40 µm and the pore space was
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designed in a Hele-Shaw geometry, as in Fig. 1(a). To introduce disorder, the pillar sizes

were randomised over the range of 40-60 µm. For samples with no correlations, the size

of each pillar was selected randomly from a uniform distribution over this range. To make

geometries with correlations in pillar sizes, such as patches of larger or smaller pillars, we

generated random Gaussian rough surfaces [9, 33] with a characteristic correlation length ζ.

Pillar sizes were then assigned by sampling this surface at the grid positions, and mapping

the resulting values onto the range of 40-60 µm. The manufacturing tolerance on these

pillar sizes is estimated at about ±3% [10]. The length ζ defines the distance, measured in

grid spacings, over which nearby pillars will have roughly similar sizes. Example designs are

shown in Fig. 1(b).

The system was then filled with a wetting volatile oil and allowed to dry from one edge of

the cell. The drying pattern was imaged by an overhead camera, and the time-lapse images

were used to find the time at which any given pore was invaded by air, as in Fig. 1(c). By

identifying the widest exposed throat on each invaded pore, at the moment of its invasion,

the sequence of pore invasions was used to determine the sequence of invasion pressures,

during drying. We consider the absolute value of the pressure sequence, for simplicity,

although the actual capillary pressure will be negative (i.e. lower than atmospheric). These

pressures were then normalised by the characteristic pressure P̄ = 2γ(1/w + 1/h), where

w = 30 µm is the average throat width, and γ is the surface tension. In this study we

focussed on the relative pressure, P , of the main cluster, which is the set of filled pores

that remain connected to the rear of the chip. As shown in Fig. 2, the observed pressure

fluctuations of the main cluster show intermittent dynamics, which depend on the range of

correlations in the experiment.

B. Invasion percolation model

In order to simulate these dynamics we used a minimal model of the drying front –

i.e. the fluid-air interface of the main cluster. The pore throats each have a threshold

pressure (again, taking the absolute value, relative to atmospheric pressure), which must

be exceeded in order to invade a pore through that throat. As in the experiments, we

considered a square lattice of pillars, using the same algorithms for randomly selecting the

pillar sizes, with correlation length ζ. The separations between adjacent pillars give the
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FIG. 3. Model and statistics of the pressure-saturation fluctuations. (a) The invasion-percolation

model tracks an interfacial line between wet (blue) and unsaturated (white) regions. At every

time step i the interfacial throat with the lowest absolute invasion pressure Pi is broken, and air

invades the pore behind it. Two example invasions are shown, highlighted in yellow and green.

The difference ∆P measures the absolute value of the change in the fluid pressure between the

successive invasion of two pores. (b) Bursts are defined by record-breaking values of the pressure

(here, highlighted in red). Their size is measured by the number of subsequent events required

until the previous maximum pressure is exceeded. Forward and backward avalanches are defined,

in contrast, for every invasion step (as in [2, 30]). Their sizes, Sf and Sb, give the number of

invasion events required before that moment’s invasion pressure is next exceeded, or was last seen,

respectively.

throat apertures, and hence the invasion pressures. A simulation begins with a saturated

pore space, and is invaded by air from one edge. The weakest throat exposed to the invasion

line, or drying front, is invaded and the position of the front is adjusted accordingly. The

weakest throat along the new front is then identified, the pore behind it invaded, and so on.

An example of this algorithm is shown in Fig. 3(a).

The sequence of the throat invasions provides a sequence of invasion pressures, which can

then be compared with experiments of similar, or identical, sample geometry. In this study,

we consider the effect of spatial correlations on the dynamics of this pressure signal, P . Our

quasi-static model is equivalent to the invasion-percolation problem with trapping [1–3, 34].

This means that the further evolution of any isolated clusters, trapped behind the drying

front, are not considered. Furthermore, the dynamics are tracked only by the sequence of

pore invasions, rather than any more physically meaningful sense of time. In these ways it

differs from a related pore-network model, which has been developed to explore the impact of
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FIG. 4. The power spectra of the pressure signals from (a) experiments and (b) simulations respond

to local correlations. For low frequencies, in particular representing fluctuations over tens or more

invasion events, the uncorrelated porous media show relatively flat power spectra, characteristic of

white noise. The introduction of correlations in the pore geometry adds significantly to the low-

frequency power, which corresponds to the jumps of the pressure shown in Fig. 2. For comparison,

the dashed lines show a 1/q response, which is classically associated with intermittency [15].

spatial correlations on drying rates [9]. The percolation model that we consider here exactly

reproduces the sequence of pore invasions along the drying front of that pore-network model,

but highlights the universal aspects of the system response.

C. Burst and avalanche statistics

We use a variety of statistics to characterise the fluctuations in the system pressure, Pi,

over the sequence i of pore invasions, as shown in Fig. 3(b). The power spectrum can be

calculated directly from the pressure series, for a relative frequency q normalised by the

Nyquist or sampling rate, here that of the pore invasion rate. Between the invasion of any

two successive pores there is a change in the invasion pressure of ∆Pi = |Pi−Pi+1|, and the

intermittency of the pressure signal can be characterised by the probability distribution of

these steps, D(∆P ).

We also measure the burst size distribution N(n), where n is the size of a burst, defined

as the number of events from one extreme value of the pressure, until this pressure is next

exceeded. In other words, ni is the number of pores invaded between sequential record-

breaking values of the fluid pressure. For a fluid invasion experiment with a controlled
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injection pressure, invasion would be unstable between these points, and occur in a rapid

‘burst’, as in Refs. [4, 5]. In contrast, for drying [3, 20] or rate-controlled fluid drainage [34]

the pore pressure relaxes during pore invasion, and the intermediate pressures can be more

readily observed.

The number of record-breaking events, or bursts, in any particular experiment is relatively

small. Therefore, to characterise the ‘roughness’ of the pressure fluctuations we also measure

the size distributions of forward and backward avalanches, as defined in Refs. [2, 16, 30].

These note that after each and every pore invasion the pressure signal may take some time to

recover to its former level, providing a local definition for the size of an invasion avalanche.

In other words, each point in the pressure signal can be taken as the root, or starting point,

of its own specific avalanche. The size of a forward avalanche, Sf , is thus defined as the

number of pore invasion events required until the pressure at the root of that avalanche is

next exceeded. Similarly, by reversing the time series, the size of a backward avalanche, Sb,

may be calculated for every pore invasion, measuring the number of steps that have passed

since that pressure at the root was last exceeded. For discrete data, these definitions are

not necessarily equivalent, and can have different power-law distributions [30]. These local

definitions of avalanches allow for all the arbitrarily small peaks and valleys of the pressure

signal to contribute to a statistical distribution, rather than just the few extreme points

representing the pressure bursts.

In the following results we will show how these metrics, and their distributions, are

affected by correlated disorder in both experiments and simulations of invasion percolation.

III. RESULTS

The behaviours of fluids drying in correlated and uncorrelated random media are

markedly different, as was shown in Fig. 2. These differences can be seen more clearly,

especially in light of any experimental noise, in the power spectra of the pressure signals.

As shown in Fig. 4, for uncorrelated (ζ = 0) disorder, the low-frequency fluctuations in

the pressure signal are comparable to white noise, for both experiment and simulation. As

correlations are added, they add power to the low-frequency signal, increasing it until it

approaches a 1/q noise spectrum. Our aim here is to explain these differences, in light of

the crossover length-scale provided by the correlation length of the disorder.
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FIG. 5. Distributions of the pressure changes between subsequent pore invasions are shown for (a)

drying experiments and (b) simulations. As the correlation length ζ increases, there is a tendency

to have fewer extreme events, as more invasion events will occur within correlated regions of

similar pore size. This is clearer in the simulation data, as uncertainties in exactly determining the

experimental pressure signal introduce high-frequency random noise.

Correlations also affect the distribution of the pressure jumps between sequential invasion

events, as represented by the high-frequency response of the invasion pressure. In Fig. 5

the probability distributions for the sizes of these jumps are plotted for both experiments

and simulations. The plots have similar trends, depending on the correlation length ζ. In

particular, an increasing ζ implies that larger jumps become less common. This can be

understood by noticing that once a pore has been invaded, it is likely to allow the drying

front to explore an entire region made up of similarly-sized pores, with similar invasion

pressures. The larger, rarer, pressure jumps will frequently represent the front travelling

between correlated regions, separated by areas with tighter pores. Crossing such a high-

pressure barrier triggers an avalanche, and then the pressure will start to build up again as

the front explores its new patch of available pores. Since the number of pores in a correlated

region scales with ζ2, this sets a natural ‘timescale’ for considering crossover behaviour.

A common measurable of intermittent phenomena is the burst size distribution. As

mentioned in the previous section, the number of bursts in any given experimental run is

rather limited, as the number of record-breaking events typically grows logarithmically in

time. Hence, we consider here only the simulation results, averaged over 60 independent

realisations. To improve the statistics for this result we also simulate larger areas, of 700

× 700 pores, and correlation lengths of up to ζ = 30. The results are presented in Fig.

6. Bursts in the uncorrelated (ζ = 0) porous medium show a clear power-law behaviour,
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FIG. 6. A burst covers the invaded area between any two sequential record-breaking values of

the saturation pressure. For pressure-controlled invasion, as in Refs. [4, 5], this would be a rapid

‘burst’ of activity between stable pressure values, while for our volume-controlled invasion it can

be measured from the invasion pressure series, as in Fig. 3. In the absence of any correlations

in pore size, the bursts follow a power-law distribution with an exponent that is similar to values

reported for other examples of invasion percolation [4, 35, 36]. When correlations are introduced,

the distribution shifts to a steeper power law, representing more frequent, but smaller, burst events,

such as those confined to a single correlated patch of pores.

with N ∼ n−τ . A least-squares fit to the logarithmically binned data gives an exponent of

τ = 1.41± 0.03. This agrees with recent experimental observations of comparable burst size

statistics in drainage [4], where the exponent is measured at 1.37 ± 0.08. It is also close

to, albeit slightly higher than, the burst size distribution predicted by percolation theory

in an infinite 2D system [36], namely 17/13 ' 1.31, and corresponding simulations [35].

However, as the correlation length ζ increases, the results shift away from this distribution,

especially for smaller bursts. By ζ = 30 a large range of data is seen to be converging to a

new power-law distribution, with the steeper exponent of 1.76± 0.05. For the intermediate

correlation lengths, the events of smaller sizes resemble the highly correlated regime, while

the larger events approach the response of the uncorrelated system. This crossover is rather

intuitive, as the smaller events preferentially sample nearby pores with similar sizes, while

larger events will be limited by pores outside the immediate correlated patch, which have

more random fluctuations.

Avalanche size distributions, as defined in Fig. 3(b), offer a similar metric to bursts, but

allow for more statistics to be gathered. They also show a crossover between two types of
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FIG. 7. Backward avalanches measure the number of events, going backwards in time, until the

pressure of any particular invasion was last exceeded (see Fig. 3). The simulated distributions (a)

collapse onto a master curve (b) when scaled by the area of a correlated patch of pores, ζ2. The

crossover between these two scaling regimes, marked by a dashed line, occurs at around 5 times

the correlation length, ζ. Essentially, while small bursts are strongly affected by local correlations,

events large enough to average over many such correlated patches show a mean-field distribution.

response. We consider the size of backward avalanches in Fig. 7, again for simulations of 700

× 700 pores. For uncorrelated porous media, as in Fig. 7(a), the probability distribution

of the backward avalanche sizes is a power-law, Nb ∼ S−θb
b , with a critical exponent fit to

θb = 1.59±0.03. As expected by the theory of invasion percolation [30], this value is related

to the exponent of the burst size distribution by

θb = 3− τ. (1)

For invasion into correlated porous media the avalanche size distribution also changes, and

becomes shallower. When scaled by ζ2, as in Fig. 7(b), the results for all correlation lengths

collapse onto one master curve with two distinct scaling regimes. Events that are significantly

larger than the correlated area are consistent with the scaling of invasion percolation in

uncorrelated porous media, and are fit by the exponent θb = 1.59 ± 0.06. Smaller events,

which are more likely to explore only a space confined to a single patch of similarly-sized

pores, show a power-law distribution that is well-fit by the smaller exponent 0.93 ± 0.03.

Interestingly, the relationship in Eq. 1 no longer seems to hold for these local events, where

θb+τ = 2.69±0.06. The crossover scale, estimated by the intersection of the two asymptotic

curves, is about 5ζ (specifically, ζ2 = 23.5). This implies that avalanche events must cover
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FIG. 8. Backward avalanches were measured in the experimental pressure signals. (a) There is

no clear effect of correlation length in the avalanche statistics, despite its leading to intermittency

in the original signal (Fig. 2) and power spectra (Fig. 4). We find, however, that the measured

avalanche size distribution is strongly affected by noise, or uncertainties in the invasion pressure of

each throat. (b) Adding 3% random noise to each measurement, comparable to our experimental

manufacturing tolerance [10], is enough to interfere with seeing the crossover behaviour of our

simulations. As a guide to the eye, curves show the fit from Fig. 7(a) for the noise-free ζ = 0

simulations.

a remarkably large area before they can average over enough local structure to return to a

mean-field distribution.

We also measured backward avalanche sizes in the experimental invasion pressures, the

distribution of which is given in Fig. 8(a). The data generally follow a power-law, which

is consistent with the exponent of θb = 1.59 seen in the simulations of uncorrelated media.

However, there is no noticeable effect of correlations on the experimental results, and specif-

ically there is no clear crossover behaviour with ζ. A possible reason for this discrepancy lies

in experimental noise: there is a random manufacturing error, of about ±3%, in the pillar

radii [10]. Since we rely on these radii to infer the pressure signal during drying, there will be

a corresponding uncertainty in each pressure measurement. To test the implications of this,

we added a 3% random perturbation to each value of the simulated pressure signals (using a

100 × 100 grid of pores, to match the experimental scale), and reanalysed the resulting data.

As can be seen in Fig. 8(b), even this small uncertainty is sufficient to obscure the crossover

between the two limiting types of distribution. In fact, the data from the simulations with

noise now strongly resemble the experimental distributions.

Finally, we measured the forward avalanche sizes, and their distributions, in both sim-
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FIG. 9. Forward avalanches measure the number of events, going forward in time, until any

particular invasion pressure is next exceeded (see Fig. 3). (a) In simulations the distribution for

an uncorrelated porous medium follows a power-law distribution with exponent θf = 1.99± 0.05.

This is consistent with a ‘superuniversal’ distribution, where θf = 2, seen in a large class of

invasion models [16, 30]. The local correlations modify this distribution, lowering the exponent to

θf = 1.66 ± 0.04. (b) The forward avalanches in the experiment are show little variation with ζ,

and are consistent with θf = 2. (c) As with backward avalanches, the introduction of as little as

3% noise into the pressure signal interferes with the clear observation of the crossover behaviour.

ulations and experiments. The results, plotted in Fig. 9, show similar trends to those

of backward avalanches. For simulations of invasion in uncorrelated porous media, and the

larger grid of 700 × 700 pores, the probability distribution of forward avalanche sizes follows

a power law with exponent θf = 1.99 ± 0.05, as in Fig. 9(a). Correlated disorder modifies

this exponent: for the ζ = 30 simulations, the data are instead well-fit by the lower expo-

nent θf = 1.66 ± 0.04, for example. However, again, this reduction in exponent cannot be

detected either in the experimental data of Fig. 9(b), or in the (100 × 100 pore) simulations

to which noise has been added to better mimic the experimental pressure signal, as shown

in Fig. 9(c). In a large class of avalanche statistics, or intermittent phenomena, it is known

that forward avalanches follow a ‘superuniversal’ distribution [16, 30], with θf = 2, and our

ζ = 0 results are consistent with that expectation. Interestingly, the local correlations in

the geometry on which invasion happens are able to modify this critical exponent, with a

crossover to a shallower exponent describing avalanches that are comparable or smaller to

the area of a patch of similarly-sized pores.
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IV. DISCUSSIONS AND CONCLUSIONS

Inspired by experimental observations of drying [9, 10], fluid-fluid invasion [6–8] and

drainage [4, 5], we have investigated how local correlations in the structure of an otherwise

random porous medium can affect how fluids move through that material. For this we used

a micro-fluidic micro-model of drying, which allows matched numerical modelling, by either

a pore-network model [9], or an invasion-percolation model of the leading drying front. In

all cases, the introduction of even relatively weak local correlations in the size of nearby

pores and throats visibly changed the sequence of invasion pressures. As represented by

both time series (Fig. 2) and power spectra (Fig. 4), the local correlations increase the

variability of the pressure signal. Specifically, they add to the low-frequency aspects of the

pressure fluctuations, leading to a pattern similar to the 1/f noise traditionally associated

with intermittency.

These changes are due to the introduction of a length-scale, intermediate to the size of a

single invaded pore, and the system size. It describes the size of a patch of similarly-sized

pores, and corresponds to an invasion landscape consisting of easy-to-invade ‘valleys’, sep-

arated by more challenging ‘peaks’. Such a geometry produces fewer extreme events, but

adds longer-term fluctuations as activity shifts from one correlated region to another. These

effects can be seen throughout our analysis, from the power spectra of Fig. 4, the distri-

bution of pressure changes between sequential invasion events (Fig. 5), and the probability

distribution of the sizes of pressure bursts (Fig. 6). Although it has been known that cor-

relations in pore geometry can affect the breakthrough saturation and fractal dimension of

invasion phenomena [6, 7, 37], we have shown that they can also interfere with the expected

relationships of the critical exponents of invasion problems. For example, when correlations

are significant, the critical exponents of bursts and backward avalanches obtained in our

model no longer sum to 3, while that of forward avalanches is no longer required to be

precisely 2.

Surprisingly, very little correlation is required to modify the scaling laws of invasion per-

colation. We found a crossover between two sets of the critical exponents that characterise

the burst size distribution (Fig. 6), and the distributions of backward (Fig. 7) and for-

ward (Fig. 9) avalanches. Our geometry is constructed around an autocorrelation function

a = exp(−χ/ζ), for two points separated by a distance χ. Here, mean-field behaviour was
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recovered only for events spanning an equivalent scale of χ ≥ 5ζ, over which distance cor-

relations will be virtually unmeasurable. For flows in real systems, such local correlations

in material properties can be introduced in many ways. For example, by the roughness

typical of a fracture surface [38, 39], or by a soil containing grains with a mixture of wet-

tabilities [8, 40], or by pore-scale correlations that are present in even relatively uniform

sedimentary rock like Berea sandstone [37]. One may expect, therefore, that the types of

effects discussed here will apply to just as wide a range of situations. They also highlight the

danger of coarse-graining, or continuum approximations, made without taking into account

disorder, and fine-scale structure, in relation to percolation phenomena.
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