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the Distribution of standard 
Deviations Applied to High 
throughput screening
Quentin s. Hanley  

High throughput screening (Hts) assesses compound libraries for “activity” using target assays. A 
subset of Hts data contains a large number of sample measurements replicated a small number of 
times providing an opportunity to introduce the distribution of standard deviations (DsD). Applying the 
DsD to some Hts data sets revealed signs of bias in some of the data and discovered a sub-population 
of compounds exhibiting high variability which may be difficult to screen. In the data examined, 21% 
of 1189 such compounds were pan-assay interference compounds. This proportion reached 57% for the 
most closely related compounds within the sub-population. Using the DSD, large HTS data sets can be 
modelled in many cases as two distributions: a large group of nearly normally distributed “inactive” 
compounds and a residual distribution of “active” compounds. The latter were not normally distributed, 
overlapped inactive distributions – on both sides –, and were larger than typically assumed. As such, 
a large number of compounds are being misclassified as “inactive” or are invisible to current methods 
which could become the next generation of drugs. Although applied here to HTS, it is applicable to data 
sets with a large number of samples measured a small number of times.

One of the most important measurements currently made is the assessment of the “activity” of drug candidates 
toward an assay target. These measurements have been made millions of times as part of routine high through-
put screening (HTS) activities for drug discovery. In a now classic paper, Zhang, Chung and Oldenburg1 pro-
vided the Z and Z′ metrics for assessing assay suitability for HTS. The general approach articulated in this paper 
has remained a cornerstone of thinking in HTS and there have been a number of excellent subsequent papers 
advancing practices for identifying active compounds2–5. Zhang et al. assumed most compounds have “little or 
no activity”. This means that a histogram of screening measurements should show a main distribution having a 
width representing measurement error and a small number of “active” compounds. Accepting this means that the 
position of a particular measurement of compound activity within its distribution is almost never meaningful. 
Unlike the distribution of human heights6 where each height measurement meaningfully places an individual into 
a useful position within the overall distribution, HTS cannot do this except in extreme cases.

A range of procedures have been described to control spatial effects in plates2,5,7,8, and further guidance exists 
for many aspects of hit detection7,9. Presentation of the problem of HTS as discriminating compounds into a 
distribution called “inactive” and another called “active” can be found in many papers on HTS often illustrated 
with two normal distributions1,2,9. The usual procedure for assigning a compound as “active” is by consideration 
of mean or median values (for N > 1) or by comparison of single measurements with a mean or median value 
(N = 1). This is, however, only one of many valid ways to make a statistical inference. Detection of differentness 
can also be done by comparison of variance10. To do either effectively, measurement error must be well under-
stood. In addition, use of screening data in cheminformatics11,12 requires methods that detect active compounds 
well or presents their probability of being active clearly. Importantly, there may be no “active” distribution, it may 
be several distributions, and it may be fundamentally different in shape and characteristics from the “inactive” 
distribution.

In primary screens, it is not uncommon for measurements of the responses generated by candidate mole-
cules to be made only one or two times. In publicly released data sets where two replicate measurements were 
made, “reproducibility values” are often presented representing the correlation cosine between paired replicate 
measurements and the vector [1, 1]4,13,14. This information is sometimes used to decide whether a compound is 
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“active”13. For this to be a valid metric, the histogram of such values should be compared to expectations from the 
distribution of “inactive” compounds.

Statistical procedures do not classify single compounds as “active”. Rather they place compounds into groups 
based on difference from some proposed model. Thresholds can be used to set the estimated likelihood of a false 
positive to a desired value when designating a compound as “active”. A better view of this activity is to state the 
“inactive” model, test the validity of that model, and assign the likelihood a particular compound’s measurement 
conforms to that model. This can remove thresholds entirely from experimental design and presentation.

Due to a range of imprecise language, it is easy to equate a compound designated as “active” due to some 
statistical test with “useful lead compound”. Clear warnings may be found in the literature of “frequent hitters”15 
and Pan-Assay Interference compoundS (PAINS)16,17. These compounds have a range of behaviors leading them 
to generate responses during multiple primary screens and without care, follow up work can result in expensive 
and fruitless efforts16,18. A range of structural motifs associated with these compounds have been identified and 
tools are available to test for known features19,20. There is also clear evidence that “undesirable” features should 
not dismissed out of hand21 and PAINS motifs have been useful in some instances22–24. In all studies to date, there 
are no direct measures that might identify PAINS and promiscuous compounds from single screens. Problematic 
compounds have been inferred from cross referencing multiple studies.

The distribution of standard deviations25,26 (DSD) is a useful framework for understanding variability in 
large data sets containing a large number of samples measured N times. Its shape depends only on N. It is well 
described for the normal distribution and can be extended to log-normal data. In this context, the DSD can pro-
vide evidence for the existence of a single normally distributed process generating a set of varying mean values. 
Combined with evidence for heteroscedasticity from fluctuation scaling methods10,27,28 a clearer understanding 
of HTS data sets can be obtained.

To better understand the behaviour of HTS, publicly available data sets were assessed using histograms, the 
distribution of standard deviations, fluctuation scaling, and analysis of residuals. Although it can detect high var-
iability “active” compounds, the purpose of the study was to better understand the distribution of “inactive” com-
pounds and the characteristics of measurement error in these HTS data sets. The goal was to develop methods to 
determine the standard deviation of the measurement process, the behaviour of inactive compounds, and detect 
signs of bias at the measurement stage where possible. This exercise also investigates whether data are consistent 
with normal distributions, whether they are homoscedastic, and if skewed whether this is from measurements or 
the behaviour of candidate compounds.

To avoid confusion, “active” will be used here to describe a group of compounds that is different from a main 
group of compounds based on a statistical model applied to the results of a large scale primary screen. Such 
“active” compounds may or may not be useful for follow up drug development.

theory
Screening data sets are especially amenable to good statistical analysis due to the expectation that 300,000+ 
measurements should converge to “true” behaviour. If the compounds represent a mix of “active” and “inactive” 
compounds a histogram of measured activities is insufficient to decide if measurements follow a normal distri-
bution or to make good decisions about compound activity. Evidence of skewing of the distribution of measured 
activities or the existence of long tails may lead to an incorrect conclusion that the data are inconsistent with a 
normally distributed homoscedastic process. The “inactive” distribution may be normally distributed and all the 
data may be generated by a single Gaussian process despite any observed skewing. The characteristics of “inactive” 
compounds and the generating process are more important for deciding if a compound is likely to be active than 
a mean and standard deviation computed on all measured values. One approach to assess normality of the gener-
ating process is to investigate the DSD25,26]. The DSD is well defined for a normal distribution and can be adapted 
for log-normal data. This distribution can be used to assess whether a set of non-normally distributed average 
values are consistent with a single homoscedastic normally distributed process. This is useful in HTS because a 
wide range of meaningful mean values may exist but the DSD depends only on the number of replicates, N, used 
to make a single assessment of “activity”.

Using the convention that = ∑ −=s x x( )p N i
N
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2 , the DSD for a given value of N is given by eq. 125,26.
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 and Γ represents the gamma function. This family of distributions has a shape (Fig. 1) that is 

dependent on N and scaled versions of the function can be fit to a histogram from an experimental data set. This 
describes the expected behaviour of a data set arising from multiple trials sampling a normal distribution or a 
single homoscedastic normally distributed process. In the latter case, it is not necessary that the measurements 
themselves belong to the same normal distribution with the same value of μ. It is also worth noting that the 
expected proportion of measurements appearing with standard deviations greater than 3s is very small. Further, 
due to the maximum as standard deviation approaches 0 for N = 2, a high proportion of paired measurements 
from normally distributed processes are expected to be close together.

It is important to appreciate the relevance of this family of distributions to HTS where a large number of 
trials are run to sample a distribution a small number of times. Understanding the expected variability can aid 
interpretation of metrics routinely reported with some screens and the effect of thresholds. Examples include: 
the reproducibility cosine transform (RCT) which is sometimes referred to as the correlation cosine4 (see 
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supplementary information (SI), section S.1) and the use of double thresholds applied to replicate measurements 
(see SI, section S.2).

Specifying thresholds based on 95% (or other related) expectations from a normal (or other) distribution of 
inactive compounds imposes an assumption that drug like compounds are rare and extreme in their activity (e.g. 
always distant from inactive ones). If this is not the case, arbitrarily setting criteria based on a multiple of the 
standard deviation will not be as effective as the ratio of all compounds within an interval to the number expected 
based on a model of the distribution of inactive compounds.

Not all measurement systems exhibit homoscedasticity. Indeed, such systems are rare. Fluctuation scaling 
methods10,27,28 can be used to assess this and understand the relationship between mean and standard deviation. 
Many measurements show heteroscedasticity and some exhibit standard deviations that scale with the mean 
following power laws:

β= αs x (2)

where α and β are constants. For a homoscedastic process that can generate many different mean values, α = 0. 
For heteroscedastic processes, α ≠ 0. Due to the range of data transformations applied, the relatively low number 
of replicates, and the existence of negative numbers in HTS, meaningful fluctuation scaling plots can be difficult 
to construct. However, understanding heteroscedasticity is critical for making sensible decisions about “active” 
vs. “inactive” compounds. This is particularly true when “active” compounds are rare. This can be modeled by 
considering there to be two distributions of compounds, one “inactive” with a standard deviation defined by 
measurement error and the other “active” with a standard deviation which may or may not be equal to that of the 
“inactive” distribution (see SI section S.3).

In the primary screens considered here, 1,325,382 compound assays were performed with 4583 deemed 
“active” (~0.3%). If this is taken as the “true” fraction of “active” compounds, a compound must be 3.4σ away 
from the mean of the “inactive” distribution before it has 50% likelihood of not being an “inactive” compound in 
a homoscedastic system. However, if the “active” distribution has a standard deviation 10% lower than the inac-
tive distribution, there is no interval over which “active” compounds are present with 50% likelihood unless the 
mean difference between “active” and “inactive” distributions exceeds 1.47σ. If the “active” distribution has a 10% 
greater standard deviation, 50% likelihood zones can appear on both sides of the “inactive” distribution. These 
considerations are presented in more detail in Section S.3 of the SI.

For the purposes of developing models of inactive and active compounds the following analyses were carried 
out. (1) The histogram of average values was constructed to see if the data appear normally distributed and to 
obtain means and standard deviations. (2) A best fit scaled normal distribution was fit to the data to obtain a sep-
arate value of mean and standard deviation. (3) To assess conformity of the measured values to a single normally 
distributed process, the histogram of standard deviations was constructed and compared to equation 1. (4) A 
histogram of RCT values was compared to a histogram of normally distributed random numbers having the mean 
and standard deviation obtained from best fit normal distributions (see SI section S.1). (5) To estimate the shape 
of “active” distributions, residual plots of the histogram of average values minus the best fit normal distributions 
were generated. (6) Where data were available for N = 2, 3, and 4, histograms of standard deviations were gener-
ated for comparison with the predictions of equation 1. (7) Screens were pooled to obtain a set of “high variability 
active” compounds which were examined to look for structural similarities.

Results and Discussion
the distribution of means and the DsD. A single homoscedastic normally distributed process will gen-
erate multiple normal distributions having different mean values but the same standard deviation. The distri-
bution of all mean values from such a process may not appear to be normally distributed but the distribution 
of standard deviations is expected to conform to a single normally distributed process. To test HTS data for 

Figure 1. DSDs for a normally distributed data set or from a single homoscedastic normally distributed process 
based on three values of N. The curves correspond to N = 2 (solid line), N = 3 (dashed line), and N = 4 (dotted line).
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homoscedasticity and consistency with normal statistics, the average and standard deviation were computed 
for each compound in three sets of HTS results and histograms constructed (Fig. 2). These included screens 
for inhibitors of E. Coli (AID 1053175, 329,176 compounds), for inhibitors of the prion protein 5′ UTR mRNA 
(AID488862, 335,011 compounds), and for disruptors of the interaction between Gαi and GIV (AID1224905, 
206,873 compounds).

The AID 1053175 screen for inhibitors of E. Coli, gave x  = 0.6881 a.u. and s = 0.0414 a.u. with a histogram of 
mean values inconsistent with a normal distribution (Fig. 3a). The observed distribution may be bimodal or mul-
timodal and/or skewed. The histogram of standard deviations, however, showed excellent correspondence to a 
single Gaussian process (Fig. 3b). A small number of compounds exhibited excess standard deviations. In the 
region with divergence from equation 1, 331 compounds were found with 194 (0.06% of the total) outside expec-
tations of a single normally distributed process. This indicates that with the exception of 0.06% of all compounds 
any lack of correspondence to a normal distribution is due to compound activity variability and not from an 
inherently skewed statistical process.

The standard deviation estimated from a fit to the DSD (0.0296 a.u.) was slightly lower than obtained from the 
best fit normal distribution (μ = 0.6894 and σ = 0.0332 a.u). Both were lower than computed from all the mean 
values (σ = 0.0414 a.u.) indicating that many procedures for setting thresholds may be unintentionally excluding 
active compounds due to overestimation of the relevant standard deviation. The DSD provides a useful alternative.

Figure 2. Histogram of mean values (a,c,e) and histogram of standard deviations (b,d,f) for the three 
screens representing 871,060 assays compounds with N = 2. The histogram of mean values was fit to normal 
distribution (solid lines in panels, a, c, and e). The histograms of standard deviations were fit to equation 1 (solid 
lines in panels b, d, and e). The AID1053175 data set (panels (a) and (b)) gave a poor fit to a normal distribution 
(a) but excellent correspondence to a normally distributed process (b). The histograms of average values from 
the AID488862 (c) and AID1224905 (e) data sets both exhibited some correspondence to a normal distribution 
with broad asymmetric tails. Correspondence to a single normally distributed process is more limited in these 
(d,f) than for AID1053175.
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In this case, the class of compounds having mean values below 0.590 (the μ − 3σ cut off) contains 2390 com-
pounds of which 1905 are expected to be “active” and 485 “inactive”. This is higher than the number found in the 
original screen which used a somewhat different set of criteria for assigning “active” compounds.

Similar considerations were applied to the AID 488862 screen (Fig. 2c,d) for inhibitors of the prion protein 5′ 
UTR mRNA and the AID 1224905 screen (Fig. (2e,f) for small molecules disrupting the interaction between Gαi 
and GIV (Gα-interacting vesicle-associated protein). The AID 488862 screen also reported the correlation cosine 
metric but did not use it in decision making (see SI section S.1). Both histograms of mean values exhibited some 
conformity to a normal distribution with additional broad asymmetric tails on both sides (Fig. 2c,e). The best fit 
normal distributions (AID 488862: μ = −12.28, σ = 13.10%; AID 1224905: μ = 103.6% and σ = 4.9) gave similar 
standard deviations to that obtained from the best fit DSD (AID 488862 σ = 14.3% & AID 1224905 σ = 5.2%) and 
both were lower than the standard deviations of the whole data sets. However, the distributions of standard devi-
ations (Fig. 2d,f) showed less conformity with single normally distributed processes than did the screen for inhib-
itors of E. Coli (Fig. 2a,b). The AID 488862 data gave least agreement and 4620 compounds were observed with 
standard deviations greater than 2σ (28%) where only 1730 would be expected from a single normally distributed 
process. This may indicate a heteroscedastic process but due to the position of the mean (−12.281%) simple 
fluctuation scaling approaches to assess this were unsatisfactory. If the assumption that the inactive distribution 

Figure 3. Residual histogram plots (a,c,e) after subtraction of the best fit normal “inactive” distributions and 
resulting probability plots for finding “active” compounds in a particular interval. The dotted lines in (c) and (e) 
are to guide the eye through a region that is probably being distorted by fitting the normal distribution to what 
is a more complex system. The AID1053175 data set (panels (a) and (b)) gave a residual distribution reminiscent 
of the original distribution and was the closest approximation to a normal distribution. The residual histograms 
from the AID488862 (c) and AID1224905 (d) data sets showed no evidence of being normally distributed. All 
the data sets contained thousands of compounds in the residual distributions. The “active” distribution extended 
to both sides of the “inactive” distribution and observations on both sides have a high likelihood of being active 
(b,d,f). Panels (b,d,f) may be a useful alternative to a receiver operating characteristic curve7,29.
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was from a single normal distribution is correct, the value of σ (13.10%) from the best fit normal distribution 
is best for setting thresholds. When applying this assumption, the consequences of heteroscedasticity need to 
be appreciated (see SI section S.3) and the DSD can assist. These results make clear that a sub-population exists 
which belongs to a different process with excess variability (high standard deviation) and that the majority of 
measurements can be explained by paired trials sampling a single normal distribution.

Residual distributions. As noted, presentations of “active” compound selection usually present well-spaced 
normal distributions or roughly equal size (see SI section S.3). To test the assumption that “active” compounds 
(those not belonging to the best fit normal distribution) follow normal distributions and to estimate their charac-
teristics, the residual histograms were computed (Fig. 3a,c,e). Modelling the data in this manner also allows the 
ratio of “active” to “inactive” compounds to be computed for each position along the response axis (Fig. 3b,d,f). 
This approach was applied to the three screens considered previously (Fig. 2). The residual distribution from the 
AID 1053175 data contained ~27,000 compounds but did not show an obvious center (Fig. 3a). The maximum 
appeared approximately 1.5–1.7 σ below the center of the “inactive” distribution depending on whether the σ was 
from the best fit normal (1.5) or DSD (1.7). Based on the shape, the “true” center may be closer to the inactive 
distribution but in the absence of better models of “active” distributions and “inactive” behavior this remains 
speculative. The AID 488862 data set gave a nearly symmetric residual distribution (Fig. 3c) containing ~25,000 
compounds having a maximum ~2.4σ below the center of the “inactive” distribution and no resemblance to a 
normal distribution. The AID 1224905 data gave a residual distribution (Fig. 3e) containing around 14,000 com-
pounds with a maximum ~2σ above the center of the inactive distribution. The residuals showed no resemblance 
to a normal distribution. Consideration of the probability plots (Fig. 3b,d,f) suggests that “active” compounds 
may appear on both sides of the inactive distribution.

These results support three clear conclusions. 1) Compounds not contained in a single “inactive” distribution 
were not rare (~66,000 in these three data sets) and represented 6.7–8.2% of compounds tested. 2) “Active” and 
“inactive” distributions were not always well-spaced and a large number of “active” compounds were hidden 
under the wings of the “inactive” distributions. In the absence of better measurements, it is impossible to identify 
these compounds. 3) Compounds not contained in the “inactive” distribution do not resemble normal distri-
butions and exhibit a variety of shapes. In the absence of knowledge of the position, scale, and shape of “active” 
compounds it is difficult to set reasonable thresholds. This pool of ~66,000 compounds represents an enormous 
opportunity currently lost in the noise of current methods.

Follow up data. The AID 504592 screen was a follow up study of 1121 compounds assigned as “active” in 
the AID 488862 screen (Figs 2c,d and 3c,d). The follow on data set indicated that roughly 50% false positives 
were generated by the procedures applied to the primary screening data. In the original processing of the follow 
on screen (1121 compounds, 540 active, 525 inactive), three outcomes were indicated: i) if both measurements 
exceeded 50% it was declared “active”, if only one value was above 50% then the compound was deemed “incon-
clusive”, and if both values were below 50% it was declared “inactive”. A histogram of the average values (Fig. 4a) 
exhibited a peak showing reasonable correspondence to a normal distribution (μ = −4.5% and σ = 12.4) having a 
standard deviation close to that of the original screen. More importantly, this follow on screen had much poorer 
correspondence to a single normally distributed process and the best fit to a single DSD (Fig. 4b) gave a marginal 
fit with s = 7.37. The follow on screen was enriched in compounds exhibiting excess standard deviation (Fig. 4b). 
If a standard deviation >10% is considered as the threshold where the distribution of standard deviations begins 
to diverge from the expectations of a single process, a subgroup of 322 compounds are found (of which only 
16 were assigned as active in the original study). Of these 255 are expected to be true high variability active 
compounds with 67 false positives. This high variability subgroup was heavily enriched and made up 23% of all 
compounds in the follow up study. If “active” is defined as a compound exhibiting either an average greater than μ 
+3σ (μ = −4.5% and σ = 12.4) and/or a standard deviation greater than 20%, a total of 721 compounds is found. 
Although unclear from the histograms, compounds deemed as “active” in the original assessment of the data set 

Figure 4. Histogram of mean values (a) and histogram of standard deviations (b) for the 504592 data set 
(1121 compounds with N = 2). The histogram of mean values (left panel) was fit to two distributions (solid 
line) to account for the bimodal behavior. The clear bimodal behaviour allows the high mean “active” group 
to be separated from other compounds. The distribution of standard deviations indicates enrichment of high 
variability compounds and less resemblance to a normally distributed process than the primary screen.
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show a high degree of bias toward compounds with low standard deviations. This is due to the 100% upper bound 
in the measurements. These results add further support to the idea that a subpopulation of compounds exists 
exhibiting high variability. It also demonstrates that these compounds are enriched in this pool of compounds 
deemed active in the primary screen. In addition, data sets with an imposed upper or lower bound will deviate 
from simulations using widely held assumptions (see SI section S.3).

special cases: lognormally distributed data and indicators of bias. Two of the data sets were con-
sidered special cases due to signs of unintentional bias (AID 540333 and AID 651654) and lognormally distrib-
uted data (AID 540333). Histograms of the averages and standard deviations reported for the AID 540333 screen 
for inhibitors of the Dengue fever virus (10240 compounds; 318 active) exhibited no correspondence with a 
normal distribution (Fig. 5a) or a single normally distributed process (Fig. 5b). Attempts were made to introduce 
additional DSDs but these did not provide satisfactory results (Fig. 5b). A fluctuation scaling plot (Fig. 5c) of the 
measurements exhibited heteroscedasticity with the overall plot showing bias in the form of an upper level cut off. 
Further inspection of the data set revealed 3591 compounds that had zero average response, 2809 compounds had 
only a single non-zero measurement, and only 3840 out of 10240 compounds had two non-zero measurements. 
The bias in the fluctuation scaling plot may be due to an unspecified instrumental cut-off setting “outliers” to 
zero when they were found outside a particular range. Restricting the data to only the 3840 compounds having 
two valid non-zero measurements left a scaling plot still exhibiting signs of bias (not shown). Figure 5c suggested 
power law fluctuation scaling (equation 2) with an exponent near one, however due to the bias in the data set this 
is speculative. These observations aside, this data set was remarkable as the only one suggesting power law scaling 
law and was unique in this regard.

The data exhibited better correspondence to a log-normal distribution (Fig. 5d) and a log normally distributed 
process (Fig. 5e). From the lognormal histogram there was no evidence that any compounds could be assigned 
as active. Instead, there was evidence of under populated wings in the distribution, an effect ascribed to the pre-
viously noted bias in the data set. The data did not belong to a single log-normally distributed process (Fig. 5e); 
however, the shape of the histogram of standard deviations has been affected by the loss of 6760 compounds. If 
Fig. 5e is taken as correct, there were 446 compounds having log-standard deviation ≥0.7. Of this set, 248 are 
expected to be excess variability “active” and 198 false positives. At present there is no theory for how to assign 
hits in a heteroscedastic system following an exponential dispersion model. Were it not for the bias apparent in 
the data, this data set might have been an opportunity to test strategies.

The AID 540333 data set makes clear that the characteristics of the inactive distribution and the statistical 
process must be well understood to set meaningful thresholds (including for instrumental parameters and outli-
ers). In the original screen, compounds were classed as active when the value was 3 s greater than the mean 
(x  = 1.49; s = 3.92). These criteria probably resulted in 100% false positives.

The histogram of standard deviations (Fig. 5f) obtained from the AID 651654 screen for compounds causing 
lysis of C. neoformans (361009 compounds tested; 735 active) exhibited a prominent peak between 50–100%. 
Considering Fig. 1, it is clear that no combination of scaled DSDs based on any set of normal processes with N = 2 
can produce such a shape. Normal distributions only show a peak in the DSD when N ≥ 3. It is also doubtful there 
are any reasonable alternatives to the normal distribution capable of producing such a shape. Similar to AID 
540333, the AID 651654 data contained a large number of compounds (78,305) missing a second measurement. 
It is likely that the mechanism causing their absence introduced bias into the data set such that a section of the 
histogram of standard deviations was under-populated.

Both AID 540333 and AID 651654 showed signs of bias probably produced by a combination of missing 
data, “outlier” trapping, instrument saturation, and extreme value deletion. Whatever the causes, it resulted in 
under-populated wings of a log normal distribution in one study and an impossible histogram of standard devi-
ations in another. This may be causing valuable lead compounds to be missed. The observed bias is almost assur-
edly unintentional but the mechanisms creating it need to be better understood.

the distribution of standard deviations for N = 2, N = 3, and N = 4. A screen having a number 
of compounds measured 4 times was considered (AID 1053188). This cell based screen for inhibitors of CD40 
signalling tested 83,073 compounds and assigned 780 as “active”. Within this set, 1512 compounds were meas-
ured four times; a further 1525 measured three times; 1233 had a single measurement; and the remainder were 
measured twice although 14,962 of these were measured at a higher concentration. Here the full set of 66,878 
compounds measured twice at the same concentration were considered (Fig. 6a) along with the 1512 compounds 
whose behaviour could be compared by considering N = 2, N = 3, and N = 4 (Fig. 6b). In this comparison, the 
N = 2 set was the first two measurements, the N = 3 set was the first 3, and the N = 4 considered all 4 measure-
ments. The recovered best fit standard deviations were 7.35%, 9.17%, 10.99%, and 10.18% for the N = 2 (66878 
compounds), N = 2 (1512 compounds), N = 3 (1512 compounds), and N = 4 (1512 compounds) cases, respec-
tively. Qualitatively, the predictions of equation 1 were observed with a maximum appearing in the distribution 
for N > 2 and the height of the maximum increasing with the number of measurements. All the histograms exhib-
ited a long tail which was not affected by increasing N. The long tail of the distribution may be due to increased 
variance at larger values (Fig. 5c) possible suggesting a heteroscedastic measurement process.

High variation active compounds. The compounds with high standard deviations were aggregated 
into a single set of 1189 compounds. To select this group a threshold of 3 standard deviations was set for inclu-
sion resulting in 533, 484, 147, and 25 compounds being included from the AID 1224905, 488862, 1053175, 
and 540333 screens, respectively. These were clustered by Tanimoto distance30,31 with single connectivity using 
two approaches. In the first approach, the compound list was pre-sifted by binning them into groups based on 
Tanimoto values > 0.5. The four largest groups consisting of clusters of 55, 49, 11, and 10 compounds were then 
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evaluated and presented as a heatmap with dendrogram (Fig. 7). Within this set, there were clearly defined 
compound groups with a high degree of structural similarity. Examples included: 11 compounds similar to 
the isoxazol-6-one (compound 1)32,33, 12 substituted ethyl-2-[(phenyl)methylidene]-5-(phenyl)-7-methyl-
3-oxo-5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxylates (compound 2), 13 substituted 5-phenylpyrrol-2-ones 
(compound 3), and eight substituted 3-(phenyl)-2-(phenyl)-5-[(phenyl)methylidene]imidazol-4-one compounds 
(compound 4). A sift of this subset found 72 (57.6%) considered to be PAINS indicating that the most structurally 
similar compounds are likely to be problematic for additional reasons16,34–36. In the second approach, all 1189 
compounds were included (Figure S4) and of these 245 (21%) were classed as PAINS.

What is clear from both approaches is that many of the compounds showing high variability in four dissim-
ilar HTS screens exhibit a high degree of structural similarity. It is unclear if the properties of these compounds 
make them inherently difficult to screen leading to highly variable results and/or all the screening methods have 
inherent heteroscedasticity and these are active compounds exhibiting increased variation. In either case, they 
deserve further scrutiny.
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Figure 5. Histogram of means (a) and standard deviations (b) for the 540333 data set (10,240 compounds with 
N = 2). The histogram of mean values showed no signs of Gaussian behaviour (solid line). The histogram of 
standard deviations was fit to 1 (solid line), 2 (dashed line) and 3 (dotted line) distributions of standard 
deviations, none of which were satisfactory. The fluctuation scaling plot (c) represents the average and standard 
deviation obtained from 2 replicate measurements as a single point (x , s). The line is an approximation to the 
upper bound in the relationship indicating some type of bias in the data set. The histograms of means (d) and 
standard deviations (e) showed reasonable correspondence to a log-normal distribution. (f) Histogram of 
standard deviations for the AID 651654 data set.
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Conclusion
This study has demonstrated the application of the DSD to large scale HTS measurements consisting of a large 
number of samples measured a small number of times. The DSD can provide insight when there is variation in 
sample mean values such that a histogram of means produces a range of distribution shapes. If the data sets exam-
ined here are representative of HTS generally, a number of conclusions apply.

 (1) The view of discrimination of “active” compounds as the problem of separating two well-spaced normal 
distributions is false, at least most of the time. The “active” distribution may have its center under the wings 
of a main distribution of “inactive” compounds and its tails may extend to both sides of the “inactive” 
distribution.

 (2) There is no evidence that “active” distributions are normally distributed or follow other well known statis-
tical models. The residual plots provide considerable evidence to the contrary. This makes chemical sense 
because chemical “activity” as currently understood depends on compound structure, dynamics, and shape 
relative to some target structure, dynamics, and shape. Variation in chemical structures is discrete in nature 
and fundamentally discontinuous. As such, a normal distribution will always be an approximation.

 (3) There appears to be a subset of compounds, designated here as high variability “active”, that are not well 
served by current HTS methods. Because they have high variability, it is also likely they have mean values 
with large magnitude (see Figs 5c and 6c). It is important to try to identify these compounds and if multi-
ple screens show particular classes of compounds to be in this category, they should be further investigated 
and if necessary alternative methods developed. Based on the current work, many of these compounds 
were PAINS.

 (4) There are a large number of “active” compounds hidden under the measurement noise of “inactive” 
compounds and as a result not being identified (see Fig. 3a,c,e). This suggests the current state of the art in 
measurement science is fundamentally limiting the discovery of drugs, at least in publicly available data 
sets. Better measurements are needed. In the meantime, practitioners of HTS should reconsider how they 
class compounds as “active”. The distribution of compound measurements is not a good way to characterise 
σ for the purpose of setting thresholds. If a large number of “active” compounds are present and they lie 
close to the “inactive” distribution, defining “active” by expected true positive to total compound ratio in 
an interval is a better approach both for deciding which compounds to study further and for providing a 
more nuanced set of inputs for machine learning algorithms and cheminformatics37,38.

Figure 6. Histogram of standard deviations for the 66878 compounds measured with N = 2 under similar 
conditions (a), overlay histograms of standard deviations (b) for N = 2 (◆, fit solid line), N = 3 (▴, fit dashed 
line), and N = 4 (▪, fit dotted line), and a three dimensional representation of the N = 3 subset (c) with the three 
replicate measures plotted as (x, y, z).
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Overall, this study makes clear that many lead compounds for future drugs may be lost in current HTS. 
With a high degree of likelihood the following are clear: (i) compounds are getting lost due to biased decision 
making (e.g. missing data, excluded results, arbitrary thresholds, etc.); (ii) compounds are getting lost due to not 
being able to separate measurement error from variability in compound response; (iii) compounds are not being 
detected due to noisy measurements; and (iv) compounds are getting lost because they are inherently difficult to 
screen.

This represents considerable opportunity. As an example, in the search for new antibiotics options are limited. 
Discovery of inexpensive weakly antibiotic compounds sufficient for use to promote animal growth could remove 
the incentive to use more potent ones for this purpose. Chemists able to discover the weakest and cheapest com-
pounds suitable for this purpose would be doing a great service. Such compounds are not going to be found by 
current methods and represent a useful challenge. Finally, the interest of synthetic chemists and data miners in 
HTS outcomes are not well served by a binary “active”/“inactive” designation. A marginally active compound for 
a chemist is a synthetic challenge and opportunity.

Materials and Methods
The following data sets were obtained via PubCHEM39,40: AID 488862, AID 504592, AID 540333, AID 1053175, 
AID 1224905, AID 1053188, and AID 651654. These screens were selected for replicate measurements (N ≥ 2), 
the size of the reported compound library, to represent a range of assay formats, and to illustrate a range of behav-
iours. As a group, they included 4 cell based assays, 2 organism assays, and 1 biochemical assay. There were 3 

Figure 7. Heatmap with dendrograms generated from the four largest groups of compounds having Tanimoto 
values > 0.5. The numbers on the diagonal indicate the locations of compounds similar to compounds 1, 2, 3, 
and 4.

https://doi.org/10.1038/s41598-018-36722-4


www.nature.com/scientificreports/

1 1Scientific RepoRts |          (2019) 9:1268  | https://doi.org/10.1038/s41598-018-36722-4

studies with gene reporters, one cell viability assay, one displacement assay, one functional assay, and one coupled 
enzyme assay. All but one was measured using some form of luminescence with the exception using absorb-
ance. One of the data sets (AID 504592) was a follow up study to a primary screen (AID 488862). For context, 
a PubCHEM search for assays restricted to “screening” returned 1027 results. Roughly half of these fell into the 
categories “cell-based” (281) and “biochemical” (215) with 481 apparently unclassified. Related searches of the 
ChemBL41,42 assay data base for “assay” returned 185,885 records. Restricting this to “HTS” yielded 1216 data sets. 
Of these, 827 were from PubChem, 302 from the Scientific Literature, and the remainder from GSK, Novartis, and 
BindingDB43. The 1216 records were classified by assay format: 208 were cell-based, 143 were organism based, 18 
were biochemical, 10 were small molecule physicochemical, 7 were tissue based, and the remainder (830) unclas-
sified. Separately they were also classified by assay type with most being considered as either functional (962) or 
binding assays (228). Other routes into PubCHEM and ChemBL will give different numbers of records, however, 
these data give a rough picture of the importance of different assay types in publicly available HTS data sets.

AID 488862 was a primary screen carried out by the Broad Institute for compounds inhibiting the prion 
protein 5′ UTR mRNA using a cell based (H4), reporter gene assay read out by bioluminescence44. The data set was 
from 2010 and covers 335,011 compounds were screened with 1169 deemed active. AID 504592 was a follow on 
screen of compounds assigned as active from AID 488862 using the luciferase reporter and luminescent readout. 
The data set is from 2011 and included 1,122 compounds with 540 deemed active.

AID 540333 was a screen carried out by the Southern Research Institute Specialized Bio-containment 
Screening Center for inhibitors of the Dengue fever virus using cells (BHK21 (C-13)) treated with Dengue virus 
2 which were subsequently read out with a luminescent cell viability assay45. The PubCHEM bioassay annotations 
classed this as a cell based, cytotoxicity assay, read with luminescence. The data set is from 2011 and reports results 
from 10,240 compounds with 318 deemed active.

AID 1053175 was a screen carried out by the ICCB-Longwood Screening Facility for molecules inhibiting 
the growth of E. coli using measurements of absorbance at 600 nm on cultures46,47. Bioassay annotations were 
missing from the PubCHEM description, however, based on the protocol this was classed as an organism based 
functional assay read using light absorbance. The data set from 2016 provides results from 329,176 compounds 
with 702 deemed active.

AID 1224905 employed a polarization assay involving displacement of a short FITC labelled GIV peptide to 
screen for small molecules disrupting the interaction between Gαi and GIV (Gα-interacting vesicle-associated 
protein)48. Bioassay annotations were missing from the PubCHEM description, however, based on the protocol 
this was classed as a biochemical displacement assay read using fluorescence polarization. The study was carried 
out by the ICCB-Longwood Screening Facility. The data set is from 2017 and includes 206,873 compounds with 
879 deemed active.

AID 1053188 was carried out by the Broad Institute using a cell based luciferase reporter assay read out by 
luminescence to screen for inhibitors of the cell surface receptor CD40. Bioassay annotations were missing from 
the PubCHEM description, however, based on the protocol this was classed as a cell-based (BL2), gene reporter 
assay read using bioluminescence. The data set from 2015 reports the results from 83,073 compounds with 780 
deemed active. This screen was included due to 1512 compounds having 4 replicates.

AID 651654 was carried out by the Broad Institute to search for anti-cryptococcal compounds detected by 
release of adenylate kinase. The PubCHEM bioassay annotations classed this as an organism based, coupled 
enzyme activity assay, read with chemiluminescence. The data set from 2012 reports the results from 361,009 
compounds with 735 deemed active.

statistics and cheminformatics. Descriptive statistics, histograms, and distribution fitting were done 
using MS Excel. Structural clustering analysis and visualization were done using R (Version 3.4.4)49 with the 
ChemMineR (Version 2.30.2) package50–52. Compounds were filtered for PAINS using FAF-Drugs436 on the RBPS 
Web Portal34,35.

Data Availability
All the data analysed here are freely available via PubChem and may be obtained by following the links pro-
vided. AID 488862: https://pubchem.ncbi.nlm.nih.gov/bioassay/488862; AID 504592: https://pubchem.ncbi.
nlm.nih.gov/bioassay/504592; AID 540333: https://pubchem.ncbi.nlm.nih.gov/bioassay/540333; AID 1053175: 
https://pubchem.ncbi.nlm.nih.gov/bioassay/1053175; AID 1224905: https://pubchem.ncbi.nlm.nih.gov/bio-
assay/1224905; AID 1053188: https://pubchem.ncbi.nlm.nih.gov/bioassay/1053188; AID 651654: https://pu-
bchem.ncbi.nlm.nih.gov/bioassay/651654.
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