Supporting Information

Structural and electronic properties of 3,3'-Azothiophene photo-switching systems.

Patrick R. Huddleston, Victor V. Volkov, Carole C. Perry*

Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom.

PDB file for anti(trans)-trans conformer of 3,3'-azothiophene

HEADER							
HETATM	1	С	2	2	1.697	0.428	0.268
HETATM	2	С	2	2	2.047	1.106	1.482
HETATM	3	С	2	2	1.011	1.129	2.395
HETATM	4	S	2	2	-0.379	0.330	1.777
HETATM	5	С	2	2	0.420	-0.044	0.279
HETATM	6	Ν	2	2	3.335	1.650	1.621
HETATM	7	Ν	2	2	3.563	2.230	2.714
HETATM	8	С	2	2	4.851	2.774	2.853
HETATM	9	С	2	2	5.886	2.751	1.941
HETATM	10	S	2	2	7.277	3.549	2.558
HETATM	11	С	2	2	6.478	3.925	4.056
HETATM	12	С	2	2	5.201	3.452	4.067
HETATM	13	Η	2	2	5.895	2.312	0.956
HETATM	14	Η	2	2	1.002	1.568	3.379
HETATM	15	Η	2	2	7.005	4.468	4.824
HETATM	16	Η	2	2	4.515	3.569	4.896
HETATM	17	Η	2	2	2.383	0.312	-0.561
HETATM	18	Н	2	2	-0.107	-0.588	-0.489

PDB file for *anti(trans)-cis* conformer of 3,3'-azothiophene

HEADER							
HETATM	1	С	2	2	6.418	2.289	0.021
HETATM	2	С	2	2	5.434	2.260	0.988
HETATM	3	С	2	2	5.844	2.887	2.211
HETATM	4	С	2	2	7.115	3.372	2.152
HETATM	5	S	2	2	7.834	3.074	0.597
HETATM	6	Ν	2	2	4.144	1.709	0.894
HETATM	7	Ν	2	2	3.866	1.170	-0.210
HETATM	8	С	2	2	2.580	0.626	-0.296
HETATM	9	С	2	2	2.187	0.012	-1.465
HETATM	10	S	2	2	0.578	-0.585	-1.359
HETATM	11	С	2	2	0.421	-0.007	0.279
HETATM	12	С	2	2	1.552	0.611	0.711
HETATM	13	Η	2	2	2.770	-0.109	-2.366
HETATM	14	Η	2	2	6.377	1.895	-0.982
HETATM	15	Η	2	2	7.679	3.886	2.914
HETATM	16	Η	2	2	5.204	2.959	3.080
HETATM	17	Η	2	2	1.669	1.043	1.694
HETATM	18	Η	2	2	-0.504	-0.165	0.811

PDB file for syn(cis)-cis conformer of 3,3'-azothiophene

IIBADER							
HETATM	1	С	2	2	1.525	-0.501	1.180
HETATM	2	С	2	2	2.152	0.558	1.928
HETATM	3	С	2	2	1.884	0.481	3.274
HETATM	4	S	2	2	0.824	-0.827	3.642
HETATM	5	С	2	2	0.790	-1.324	1.974
HETATM	6	Ν	2	2	3.100	1.515	1.475
HETATM	7	Ν	2	2	3.064	2.066	0.351
HETATM	8	С	2	2	1.967	1.987	-0.550
HETATM	9	С	2	2	0.639	2.174	-0.245
HETATM	10	S	2	2	-0.326	2.259	-1.673
HETATM	11	С	2	2	1.063	2.032	-2.692
HETATM	12	С	2	2	2.209	1.931	-1.963
HETATM	13	Η	2	2	0.181	2.291	0.724
HETATM	14	Η	2	2	2.252	1.133	4.051
HETATM	15	Η	2	2	0.943	2.001	-3.764
HETATM	16	Η	2	2	3.194	1.808	-2.391
HETATM	17	Η	2	2	1.639	-0.649	0.117
HETATM	18	н	2	2	0 228	-2 201	1 689

PDB file for syn(cis)-trans conformer of 3,3'-azothiophene

HEADER							
HETATM	1	С	2	2	0.311	2.811	0.793
HETATM	2	С	2	2	1.511	2.648	0.141
HETATM	3	С	2	2	1.399	2.855	-1.279
HETATM	4	С	2	2	0.134	3.190	-1.652
HETATM	5	S	2	2	-0.944	3.277	-0.290
HETATM	6	Ν	2	2	2.626	2.144	0.860
HETATM	7	Ν	2	2	3.819	2.445	0.612
HETATM	8	С	2	2	4.211	3.500	-0.253
HETATM	9	С	2	2	3.620	4.808	-0.374
HETATM	10	С	2	2	4.350	5.629	-1.177
HETATM	11	S	2	2	5.758	4.833	-1.816
HETATM	12	С	2	2	5.389	3.388	-0.955
HETATM	13	Η	2	2	6.040	2.529	-1.007
HETATM	14	Η	2	2	0.117	2.685	1.847
HETATM	15	Η	2	2	4.154	6.659	-1.434
HETATM	16	Η	2	2	2.718	5.118	0.132
HETATM	17	Η	2	2	2.212	2.734	-1.979
HETATM	18	Н	2	2	-0.240	3.388	-2.645

PDB file for anti(trans)-trans conformer of 3,3'-azothiophene-methoxycarbonyl

HEADER							
HETATM	1	С	2	2	5.245	3.581	3.783
HETATM	2	С	2	2	4.865	2.914	2.583
HETATM	3	С	2	2	5.911	2.779	1.679
HETATM	4	S	2	2	7.373	3.454	2.346
HETATM	5	С	2	2	6.569	3.910	3.801
HETATM	6	Ν	2	2	3.524	2.502	2.428
HETATM	7	Ν	2	2	3.374	1.378	1.907
HETATM	8	С	2	2	2.032	0.966	1.753
HETATM	9	С	2	2	1.653	0.299	0.552
HETATM	10	С	2	2	0.329	-0.030	0.534
HETATM	11	S	2	2	-0.475	0.426	1.990
HETATM	12	С	2	2	0.987	1.100	2.656
HETATM	13	С	2	2	5.888	2.334	0.273
HETATM	14	С	2	2	1.010	1.545	4.063
HETATM	15	Η	2	2	7.123	4.402	4.586
HETATM	16	Н	2	2	4.555	3.773	4.593
HETATM	17	Н	2	2	2.343	0.107	-0.258
HETATM	18	Н	2	2	-0.225	-0.522	-0.251
HETATM	19	0	2	2	7.118	1.964	-0.132
HETATM	20	0	2	2	4.915	2.334	-0.451
HETATM	21	С	2	2	7.259	1.593	-1.521
HETATM	22	Η	2	2	8.307	1.336	-1.644
HETATM	23	Н	2	2	6.625	0.736	-1.748
HETATM	24	Н	2	2	6.992	2.432	-2.164
HETATM	25	0	2	2	-0.220	1.915	4.467
HETATM	26	0	2	2	1.983	1.545	4.786
HETATM	27	С	2	2	-0.361	2.286	5.857
HETATM	28	Η	2	2	-1.409	2.543	5.980
HETATM	29	Η	2	2	-0.094	1.447	6.500
HETATM	30	Н	2	2	0.273	3.143	6.084

PDB file for anti(trans)-cis conformer of 3,3'-azothiophene-methoxycarbonyl

HEADER							
HETATM	1	С	2	2	2.373	-0.542	1.096
HETATM	2	С	2	2	2.754	0.020	-0.163
HETATM	3	С	2	2	2.112	-0.588	-1.239
HETATM	4	S	2	2	1.048	-1.844	-0.690
HETATM	5	С	2	2	1.465	-1.547	0.961
HETATM	6	Ν	2	2	3.707	1.032	-0.356
HETATM	7	Ν	2	2	4.055	1.620	0.698
HETATM	8	С	2	2	5.070	2.578	0.531
HETATM	9	С	2	2	6.199	2.494	-0.275
HETATM	10	S	2	2	7.147	3.950	-0.142
HETATM	11	С	2	2	6.039	4.637	0.989
HETATM	12	С	2	2	5.000	3.798	1.267
HETATM	13	С	2	2	2.159	-0.367	-2.698
HETATM	14	С	2	2	6.737	1.341	-1.022
HETATM	15	Н	2	2	6.224	5.624	1.386
HETATM	16	Н	2	2	4.191	4.030	1.944
HETATM	17	Н	2	2	2.779	-0.209	2.040
HETATM	18	Η	2	2	1.013	-2.145	1.738
HETATM	19	0	2	2	2.798	0.748	-3.057
HETATM	20	0	2	2	1.641	-1.136	-3.489
HETATM	21	С	2	2	2.884	1.008	-4.478
HETATM	22	Н	2	2	3.433	1.942	-4.562
HETATM	23	Н	2	2	3.421	0.201	-4.977
HETATM	24	Н	2	2	1.886	1.108	-4.904
HETATM	25	0	2	2	7.592	1.748	-1.979
HETATM	26	0	2	2	6.493	0.176	-0.793
HETATM	27	С	2	2	8.272	0.713	-2.724
HETATM	28	Н	2	2	8.915	1.239	-3.425
HETATM	29	Н	2	2	8.864	0.092	-2.052
HETATM	30	Н	2	2	7.548	0.097	-3.258

PDB file for *syn(cis)-cis* conformer of 3,3'-azothiophene-methoxycarbonyl

HEADER							
HETATM	1	С	2	2	1.909	1.614	-1.862
HETATM	2	С	2	2	1.625	2.071	-0.541
HETATM	3	С	2	2	0.273	2.281	-0.323
HETATM	4	S	2	2	-0.652	1.861	-1.745
HETATM	5	С	2	2	0.778	1.432	-2.604
HETATM	6	Ν	2	2	2.719	2.424	0.307
HETATM	7	Ν	2	2	2.991	1.866	1.384
HETATM	8	С	2	2	2.307	0.717	1.864
HETATM	9	С	2	2	1.961	-0.431	1.086
HETATM	10	С	2	2	1.477	-1.450	1.854
HETATM	11	S	2	2	1.422	-1.048	3.528
HETATM	12	С	2	2	2.093	0.527	3.223
HETATM	13	С	2	2	-0.469	2.834	0.816
HETATM	14	С	2	2	2.367	1.462	4.325
HETATM	15	Η	2	2	0.706	1.075	-3.621
HETATM	16	Н	2	2	2.911	1.418	-2.218
HETATM	17	Н	2	2	2.097	-0.506	0.018
HETATM	18	Н	2	2	1.146	-2.424	1.526
HETATM	19	0	2	2	2.195	0.863	5.520
HETATM	20	0	2	2	2.707	2.619	4.196
HETATM	21	С	2	2	2.418	1.678	6.691
HETATM	22	0	2	2	0.334	3.272	1.791
HETATM	23	0	2	2	-1.685	2.899	0.854
HETATM	24	С	2	2	-0.307	3.856	2.948
HETATM	25	Н	2	2	2.213	1.027	7.537
HETATM	26	Н	2	2	3.451	2.025	6.718
HETATM	27	Н	2	2	1.740	2.532	6.692
HETATM	28	Н	2	2	0.505	4.099	3.627
HETATM	29	Н	2	2	-0.855	4.753	2.660
HETATM	30	Η	2	2	-0.987	3.137	3.405

PDB file for *syn(cis)-trans* conformer of 3,3'-azothiophene-methoxycarbonyl

HEADER							
HETATM	1	С	2	2	5.236	3.652	-0.876
HETATM	2	С	2	2	4.150	3.583	-0.018
HETATM	3	С	2	2	3.528	4.851	0.193
HETATM	4	С	2	2	4.137	5.847	-0.515
HETATM	5	S	2	2	5.466	5.278	-1.453
HETATM	6	Ν	2	2	3.831	2.426	0.751
HETATM	7	Ν	2	2	2.668	1.992	0.850
HETATM	8	С	2	2	1.610	2.447	0.010
HETATM	9	С	2	2	0.351	2.780	0.480
HETATM	10	S	2	2	-0.753	3.048	-0.839
HETATM	11	С	2	2	0.469	2.676	-1.996
HETATM	12	С	2	2	1.669	2.379	-1.415
HETATM	13	С	2	2	6.147	2.611	-1.366
HETATM	14	С	2	2	-0.150	2.965	1.847
HETATM	15	Н	2	2	3.877	6.895	-0.537
HETATM	16	Н	2	2	2.693	5.009	0.859
HETATM	17	Н	2	2	2.553	2.096	-1.969
HETATM	18	Н	2	2	0.232	2.697	-3.049
HETATM	19	0	2	2	0.827	2.923	2.763
HETATM	20	0	2	2	-1.325	3.143	2.115
HETATM	21	С	2	2	0.423	3.058	4.145
HETATM	22	Н	2	2	1.343	2.988	4.719
HETATM	23	Η	2	2	-0.056	4.024	4.304
HETATM	24	Η	2	2	-0.262	2.255	4.418
HETATM	25	0	2	2	5.766	1.380	-1.001
HETATM	26	0	2	2	7.137	2.846	-2.036
HETATM	27	С	2	2	6.625	0.291	-1.408
HETATM	28	Η	2	2	6.156	-0.606	-1.011
HETATM	29	Η	2	2	6.684	0.243	-2.495
HETATM	30	Η	2	2	7.623	0.420	-0.987

Figure S1. Upper panel: UV-VIS spectra of 3,3'-AT (black line) and 3,3'-ATM (green line) at room temperature under thermal equilibrium. Lower panel: output spectra of warm light LED and Convoy S2+ nichia LED used for photo-switching of azothiophene molecular systems.

Ν	λ (nm)	Strength	CMO involved
1	448.4	0	H-1->L (99%)
2	360.8	0.7039	H->L (98%)
3	320	0.115	H-2->L (95%)
4	315.2	0.0606	H-3->L (97%)
7	243.2	0.1299	H->L+1 (83%)
8	232.7	0.0869	H->L+2 (90%)
13	213.3	0.1268	H-2->L+1 (97%)
14	210.3	0.1562	H-3->L+1 (85%)

Table S1. Contributions of Canonical Molecular Orbitals (CMO) into the most intense UV-VIS optical transitions for *anti(trans)*-cis conformer of 3,3' Azothiophene.

Table S2. Contributions of CMO into the most intense UV-VIS optical transitions for *anti(trans)*-trans conformer of 3,3' Azothiophene.

Ν	λ (nm)	Strength	CMO involved
1	469.9	0	H-1->L (99%)
2	380.3	0.5852	H->L (99%)
3	334.9	0	H-2->L (98%)
4	322.9	0.239	H-3->L (98%)
5	266.6	0	H-4->L (93%)
6	245	0	H-1->L+1 (99%)
8	228.6	0.1497	H->L+2 (93%)
13	212.1	0.348	H-2->L+1 (92%)

Table S3. Contributions of CMO into the most intense UV-VIS optical transitions for *syn(cis)*-trans conformer of 3,3' Azothiophene.

N	λ (nm)	Strength	CMO involved
1	471.4	0.0854	H->L (88%), H-3->L (11%)
2	326.2	0.0032	H-1->L (98%)
3	315.4	0.0036	H-2->L (95%)
4	308.2	0.3579	H-3->L (87%), <mark>H->L (10%)</mark>
5	280.1	0.0457	H-4->L (96%)
6	276	0.0805	H->L+1 (95%)
11	222.9	0.1608	H-1->L+1 (61%), H-2->L+1 (17%), H->L+4 (10%)
12	222.9	0.0621	H-2->L+1 (64%), H-1->L+1 (17%), H-1->L+2 (11%)
13	219.4	0.0248	H-3->L+1 (90%)

Table S4. Contributions of CMO into the most intense UV-VIS optical transitions for *syn(cis)*-cis conformer of 3,3' Azothiophene.

Ν	λ (nm)	Strength	CMO involved
1	472.7	0.0694	H->L (89%)
2	336.7	0.0221	H-1->L (88%)
3	315.2	0.0855	H-2->L (79%)
4	298.8	0.131	H-3->L (81%), H-2->L (11%)
5	289.4	0.0338	H-4->L (80%), H->L+1 (15%)
6	272.4	0.1385	H-4->L (14%), H->L+1 (75%)
7	252.3	0.0375	H->L+2 (92%)
9	230.8	0.1384	H-1->L+1 (77%), H->L+3 (11%)
12	223.2	0.0567	H-2->L+1 (71%)

Figure S2. CMO for the conformers of 3,3' Azothiophene: HOMO at the top, LUMO and the lower states are presented below in descending order

Figure S3. Natural Transition Orbitals (NTO) for the conformers of 3,3' Azothiophene: ELECTRON (receiving) states are shown at the top, HOLE states are presented below in descending order according to the energy gap of the corresponding electron-hole pairs.

Table S5. Contributions of CMO into the most intense UV-VIS optical transitions for *anti(trans)*-cis conformer of 3,3'-Azothiophene-Methoxycarbonyl.

Ν	λ (nm)	Strength	MO involved
1	510.3	0.0517	H->L (73%), H-1->L (17%)
2	371.9	0.2586	H-1->L (79%), <mark>H->L (18%)</mark>
3	343.9	0.2447	H-2->L (87%)
4	341.1	0.1421	H-3->L (94%)
10	259.7	0.2072	H-1->L+1 (68%), H->L+1 (15%)
11	248.9	0.0606	H-2->L+1 (56%), H-7->L (15%), H-3->L+1 (12%)
15	238.5	0.1555	H-1->L+2 (70%), H->L+2 (11%)
19	221.2	0.0885	H-3->L+2 (64%), H-2->L+2 (16%)

Table S6. Contributions of CMO into the most intense UV-VIS optical transitions for *anti(trans)*-trans conformer of 3,3'-Azothiophene-Methoxycarbonyl.

Ν	λ (nm)	Strength	CMO involved
1	468.2	0	H->L (93%)
2	372.1	0.3311	H-1->L (98%)
3	342	0	H-2->L (97%)
4	330.1	0.1904	H-3->L (98%)
5	297.8	0.0793	H->L+1 (93%)
11	253.7	0.1479	H-2->L+1 (87%)
13	241.8	0.3153	H-1->L+2 (85%)

Table S7. Contributions of CMO into the most intense UV-VIS optical transitions for <i>syn(cis)</i> -trans
conformer of 3,3'-Azothiophene-Methoxycarbonyl.

N	λ (nm)	Strength	MO involved
1	477.9	0.0905	H->L (90%)
2	350.1	0.0038	H-1->L (93%)
3	336.9	0.0389	H-2->L (97%)
4	314.8	0.3128	H-4->L (85%)
6	295.5	0.054	H->L+2 (89%)
10	253.3	0.245	H-1->L+1 (95%)
12	245.1	0.1168	H-1->L+2 (78%), H-2->L+1 (12%)
13	241.2	0.0507	H-2->L+2 (93%)
18	227.3	0.0936	H-4->L+2 (85%)

Table S8. Contributions of CMO into the most intense UV-VIS optical transitions for *syn(cis)*-cis conformer of 3,3'-Azothiophene-Methoxycarbonyl.

N	λ (nm)	Strength	CMO involved
1	483.9	0.0489	H->L (91%)
2	349.1	0.0148	H-1->L (85%)
3	333	0.0162	H-2->L (95%)
4	317.7	0.0663	H->L+1 (63%), H-3->L (17%), H-4->L (10%)
5	311.2	0.0793	H-4->L (53%), H-3->L (36%)
6	299.2	0.1631	H->L+2 (37%), H->L+1 (11%), H-3->L (17%), H-4->L (11%)
11	259.7	0.1859	H-2->L+1 (80%), H-1->L+1 (10%)
13	244.8	0.0712	H-1->L+2 (46%), H-4->L+1 (40%)
14	240.9	0.1182	H-4->L+1 (39%), H-1->L+2 (21%), H-7->L (19%)

Figure S4. CMO for the conformers of 3,3'-Azothiophene-Methoxycarbonyl: HOMO at the top, LUMO and lower states are presented below in descending order

Figure S5. NTO for the conformers of 3,3'-Azothiophene-Methoxycarbonyl: ELECTRON (receiving) states are shown at the top, HOLE states are presented below in descending order according the energy gap of the corresponding electron-hole pairs.

Figure S6. Calculated UV-VIS spectra for the four lowest energy conformers of 3,3'-AT (black lines) and 3,3'-AT-NH₂ (red lines).

Figure S7. Comparison of DFT calculated infrared spectra of *syn(cis)-trans* and of *syn(cis)-cis* for 3,3'-AT and 3,3'-ATM as indicated. Frequency and intensity of mode 42 of *syn(cis)-cis* 3,3'-AT are higher and stronger comparing to the frequency and intensity of the same mode 42 of *syn(cis)-trans* 3,3'-AT. At the same time, in Figure 3b in the main text the photo-induced difference FTIR spectrum indicated no strong positive spectral signature at and about 1529 cm⁻¹. This lends additional support, beside the probabilities (see values in brackets in Figure 1 of the main text) according to the energies of *syn(cis)-trans* and of *syn(cis)-cis* conformers, that the *syn(cis)-trans conformer of* 3,3'-AT is a dominant conformer of the photoproduct state for 3,3'-AT.

Figure S8. NH₂ substituted 3,3'-azothiophene (3,3'-AT-NH₂), as the NH₂ side groups are of electron donating character.

Figure S9. Thermodynamic properties. a-c: Potential energies for optimized conformers of 3,3'-AT, 3,3'-ATM and 3,3'-AT-NH₂, respectively, sampled for a series of fixed C₃NN'C'₃ dihedral angles along the path from *syn* to *anti* geometry of the -N=N- moiety.

Figure S10. Mulliken atomic partial charges and geometric properties for the structural moieties of *syn(cis)-trans* 3,3'-AT, 3,3'-ATM, *cis(syn)* azobenzene and *syn(cis)-trans* 3,3'-AT-NH₂. R is either hydrogen or the side group of 3,3'-AT, 3,3'-ATM, respectively. Properties of 3,3'-ATM are provided in brackets.