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Abstract This paper is concerned with estimation of the within-hdwde infection
rateA_ for a susceptible~ infective — recovered epidemic among a population of
households, from observation of the early, exponentialbywing phase of an epi-
demic. Specifically, it is assumed that an estimate of th@eeptial growth rate is
available from general data on an emerging epidemic and-ohetagled, household-
level data are available in a sample of households. Estinudite obtained using the
final size distribution of single-household epidemics aseally biased owing to the
emerging nature of the epidemic. A new method, which aceootrectly for the
emerging nature of the epidemic, is developed by explottiegasymptotic theory of
supercritical branching processes and proved to yieldomgly consistent estimator
of AL as the population and sampled households both tend to yniimé#n appropri-
ate fashion. The theory is illustrated by simulations wtdelmonstrate that the new
method is feasible for finite populations and numerical istsidire used to explore
how changes to the parameters governing the spread of agneigidffect the bias of
estimates based on single-household final size distrifsitio
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1 Introduction

Mathematical models are being used increasingly to infauisip health policy con-
cerning control of emerging infections, see, e.g. Ferguetaal. [17] and Fraseget
al. [19] for applications to avian influenza A(H5N1) and swinéiuenza A(H1N1),
respectively. A key role for such models is to evaluate tliectifeness of possible
strategies for containment of an emerging infection. Ireotd accomplish this, es-
timates are required of parameters used to define the modeleistion. This paper
considers such estimation from data collected in the edrgse of an emerging epi-
demic, using the model of Badit al. [11] for the spread of an SIR (susceptible
infective — recovered) epidemic among a population partitioned intssbbolds.

The model of Ballet al. [11] assumes that an infectious individual makes two
types of contactdpcal contacts, i.e. with individuals chosen uniformly at random
from the individual's household, anglobal contacts, i.e. with individuals chosen
uniformly at random from the entire population. Although ewersimplification,
this structure, which includes a departure from homogeseuning that is clearly
present in human populations, yields a model that (i) is abknto considerable
mathematical analysis and (ii) leads to important insightts disease dynamics and
control, such as the impact of household structure on tHeqmeance of vaccination
strategies (Becker and Dietz [13], Becker and Starczakdthd]Ball and Lyne [9]). A
household component is present in many complex simulatiodets (see, e.g. Fer-
gusonet al. [17]). Moreover, data at a household level are often cadéaturing
emerging infections; see Cauchenwezl. [16] and Houseet al. [23] for analyses
of such data for influenza A(H1N1) transmission in the Unistdtes and England,
respectively.

For many stochastic models of epidemics with few initiakitives, if the disease
does not die out quickly then, during the early stages of aseepic, the number of
infectives grows exponentially until saturation effec&e over. Early exponential
growth is also seen in many real-life epidemics and therdoban a growing interest
in quick inference methods during this stage of an epideAssuming a homoge-
neously mixing population, Wallinga and Lipsitch [32] pided a simple estimate
of the basic reproduction numbBp (see, e.g. Heesterbeek and Dietz [21]) from an
observed exponential growth rateand knowledge of the generation interval for the
disease. Fraser [18] extended this methodology to a contyneitiouseholds, using
a closed-form approximate method for determining the egptial growth rate of the
households epidemic model. Fraser gives two illustraip@ieations of his method-
ology, to pandemic influenza and measles, using historatal b obtain estimates of
within-household transmission parameters. As Frasersntitese transmission pa-
rameters could be quite different for future pandemics, sthads are required for
estimating such parameters from data on an emerging iofecti

The following scenario is considered in this paper. It isuassd that the house-
hold size distribution for the population is known (this sually available from cen-
sus data), an estimate of the exponential growthréevailable from general data
on an emerging epidemic and more-detailed, household-date are available in a
sample of households. The primary goal is to estimate thed [@dthin-household)
infection rateA. from this information, whilst the epidemic is still in its emging



Estimating the within-household infection rate in emeggapidemics 3

phase. For most of the paper it is assumed, primarily for ebgetation, that there is
no latent period and that the infectious period distributi® known, though both
of these assumptions may be relaxed. For inference basedanofitcome data
(e.g. Knock and O’Neill [25] and Ball and Lyne [10]), estireatof infection rates
are (i) invariant to very general assumptions concernirggent period and (ii) con-
founded with the scale of the infectious period distribntidleither is true for in-
ference in an emerging epidemic. The partial nature of tiserasd available data
renders full maximum likelihood estimation difficult, ifdeed feasible; the amount
of unobserved data is such that computationally intensieéhods for incomplete
data, such as the EM and data augmentation MCMC, may welldid@gmatic. Thus
an alternative estimation procedure is developed and shmgine a strongly consis-
tent estimator ofA| as the population and sampled households both tend to ynfinit
in an appropriate fashion.

It is well known that the early stages of an SIR epidemic amamgmmunity
of households may be approximated by a branching processichvindividuals
correspond to single-household epidemics. Thus if, fongta, the available data
consist of the total number of cases in completed sub-epasanithin households,
it is tempting to estimatd, by fitting the usual final size distribution for a single-
household epidemic (see, e.g. Ball [4]) to such data. Howeaeeillustrated in Sec-
tion 3.2, this leads td, being underestimated because in an emerging epidemic the
completed single-household epidemics are likely to berttaler ones. An improved
estimate may be obtained by including single-householdezpics that are still on-
going at the time when estimation is performed, using riggnisoring for their size,
but, as also demonstrated in Section 3.2, the resultintnastiis still biased. In or-
der to obtain unbiased estimates, one needs to accounttprie the emerging
nature of the epidemic which produced these data. (Singkrds arise in estimat-
ing the generation time of an infectious disease early inpéghegnic [31].) The main
purpose of this paper is to show that this can be achievedihy tise theory of Ner-
man [28] concerning the asymptotic behaviour of counts afatteristics associated
with supercritical general (i.e. Crump-Mode-Jagers) bhamg processes applied to
the above-mentioned branching process which approxintagesarly stages of an
epidemic in a community of households.

The paper is structured as follows. The households epidemidel of Ball et
al. [11] is described in Section 2 and the early stages of epickemia large popu-
lation is considered in Section 3. The threshold behaviduh® model is outlined
in Section 3.1. Estimation of, by fitting the usual final size distribution to single-
household epidemics, both without and with censoring, saered and shown to be
inadequate in Section 3.2. The new method, which incorpsm@rrectly the emerg-
ing nature of the epidemic is described in Section 4. Therthéar the method is
developed in Section 4.1 for the situtations when, at the tihe inference is per-
formed, (i) complete knowledge of the numbers of infectind aecovered individ-
uals in each household is available, and (ii) (sometimesrbee realistic scenario)
only the numbers of recovered individuals in each housetw@dvailable. Some ex-
tensions of the theory and implementation issues are ceregidn Section 4.2. The
theory as developed does not make any assumptions congénriimfectious period
distribution, other than it possesses a moment-generhitirggion, but it does need
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to be specified. However, the method is easy to implementibslpgle-household
epidemic dynamics are Markovian, i.e. if the infectiouspefollows an exponential
distribution, though phase-type distributions can alsatmmmodated. Extensions
to incorporate a latent period and allow for the rate of thepomential distribution
used to model the infectious period to be unknown are disclissefly, as is allow-
ing AL to depend on household size. Similar theory is developeihfSection 5 for
a households Reed-Frost type model, in which the latenbg@ési constant and the
infectious period is reduced to a single point in time, usmgtitype Galton-Watson
branching process. Simulations depicting how the estonatiethodologies devel-
oped in Sections 4 and 5 perform in practice are shown in @e6tiwhile other plots
in this section illustrate how changes to the parametersming the spread of an
epidemic affect the bias of the estimates based on singledimld final size distri-
butions. Proofs that the estimators derived in Section &tomgly consistent under
suitable conditions are given in Section 7. Finally, somechading comments are
given in Section 8.

2 Model

The model used is based on that of Betllal. [11] for describing the spread of an
SIR epidemic in a population that has been partitioned iotaskholds. For a pop-
ulation in whichnpay is the size of the largest household, taf be the number of
households of size, for n = 1,2, ...,Nmax SO thatm = y™*m, andN = ¥ mnmy,
are, respectively, the total numbers of households andithdils in the population.
Also, forn= 1,2, ...,Nmax let an = my/m be the proportion of households of size
anddn = nm,/N be the proportion of individuals who reside in householdsinén.

The epidemic is initiated by a small number of individualsdming infected at
timet = 0. Once infected, an individual remains in this state fordhetion of its in-
fectious period, which for each individual is independgatid identically distributed
according to a random variablg having an arbitrary but specified distribution. Once
its infectious period is over, an individual is recovered #rplays no further part in
the epidemic. During its infectious period, a given infeetmakes global contacts
with any other given individual in the population at poinfsachomogeneous Pois-
son process having rafe; /N and it makes additional local contacts with any given
individual in the same household at points of a homogeneoiss®& process hav-
ing rateA_. All the Poisson processes describing infectious con{adigther or not
either or both of the individuals involved are the same) drme random variables
describing the infectious periods are mutually indepehdéhenever an infective
makes contact with a susceptible individual, the susckptibcomes infected and is
immediately able to transmit infection. Thus there is neaperiod, though this can
be relaxed; see Section 4.2. The process continues unél ibiao infective remain-
ing in the population, at which point the epidemic is deentekave ceased.
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3 Early stages of an epidemic
3.1 Threshold Parameter

When the number of householdsis large, the probability of a global infectious
contact in the early stages of an epidemic being with a stibden a previously in-
fected household is small. Thus, the initial behaviour oépidemic in a community
of households can be approximated by a branching procesdeatéd households,
in which each global contact is assumed to be with an indalidua fully suscep-
tible household. LeR, be the mean number of global contacts that emanate from a
typical household in this branching process. TRetis a threshold parameter for the
households epidemic model, in that in the limitas» c, the epidemic takes off with
non-zero probability if and only iR, > 1; see Ballet al. [11], where calculation of
R, is described.

The remainder of this paper focuses exclusively on epidemitere this con-
dition holds and is concerned with epidemics that do take lbf assumed that
E[T] = 1 as this can be done without loss of generality by rescaliadiine axis.

3.2 Basic approach to estimating

Suppose one wishes to estimatefor an epidemic that is observed whilst it is still
in its initial stages and is therefore still mimicking thédoted households branching
process outlined above. For=1,2,... andx=0,1,....n— 1, let pg;)sic(XML) be the
probability that a single-household epidemic (withoutlglbinfection) in a house-
hold of sizen, started by one initial infective, finishes wikrsusceptibles remaining.
By using Equation (2.5) of Ball [4pk(3r23ic(x|)\|_) (x=0,1,...,n—1) can be determined
using the following triangular system of linear equations:

I /n—i (n) ) . (n-1 -
iZ(j_i>pbasic(n—||/\L)§0(n—J) = (j_l>, j=12,...,n,

where@(08) = E[exp(—0T,)] (6 > 0) is the moment-generating function §f

Let a&f‘} be the number of households of sizeontainingx susceptibles ang
infectives at the time when the epidemic is observed. By idenisig only the house-
holds in which the single-household epidemic has ceasad\(fnerex < nandy = 0),
one can attempt to estimate by maximising the pseudolikelihood function

Ponex1 —1 (n) ain())
Lbasic()\L|a) = |_| pbasic(x|)\L) T (31)
n=1x=

This method of estimation, which we cdlasic MPLE is simple but does not
use all of the information available since households inchhinfectives are still
present are not used. A similar approach using more of thegnrdtion available is
to use maximum pseudolikelihood estimation but with ceimgpon households in
which there are still infectives remaining. Foe 1,2,...nmaxandx=0,1,...n—1,
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let ol (X|AL) = %o . (i|AL) be the probability that a household of sizdﬂas

at most xsurvivors from a single household epidemic andhﬁ S 1aXy be
the number of observed households of gizeontaining at least one infective and
exactlyx susceptibles. Such households will have at masirvivors once the single-
household epidemic is completed. We can now use what igeefey as theensored
MPLE approach for estimating,, with left-censoring for the number of survivors
(i.e. right-censoring for the total size), by maximising

Nmaxn—1 a)(("()) " b)((”)
LeensofAL|a, b) = |_| pba5|c (X[AL) ™ qbasic(XM'—)
n=1x=

Figure 1 shows how well the basic and censored MPLE methoderpein
practice. For these histograms, epidemics were simulatagbpulation containing
1 000 000 households, with estimatesipftaking place after the 1080recovery
has occurred. Any epidemic not reaching 1000 recoveriesasasidered not to
have taken off and was ignored. Estimatesipfwere made for the first 1000 epi-
demics to reach the 1000 recovery milestone. A large populatas used to en-
sure that the simulated epidemics were still approximatgiyicking a branching
process at the time of estimation. The household distobuti that was used was
[0.29,0.34,0.16,0.14,0.05,0.02), i.e. nmax= 6 anda; = 0.29,a, = 0.34,...,05 =
0.02, as suggested by Fraser [18], and is based on UK censufaat2001 [34].
The infectious period was chosen to be exponentially thsted, the infectious pa-
rameters werdg = 1 andA_ = 1, and all epidemics were initiated by a single indi-
vidual, chosen uniformly at random from the population,dmemng infected.
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Fig. 1. Estimates oA, with a true value of 1, from 1000 epidemic simulations using
the basic and censored MPLE methods



Estimating the within-household infection rate in emeggapidemics 7

It is clear from Figure 1 that the basic MPLE method severeigarestimates
AL. Households in which the epidemic spreads locally are nikedylto still be in-
fective at the time of observation than households infeatetthe same time but in
which the initial infective does not infect any other indiuial locally. Consequently,
the households that contain less severe local epidemicsa@elikely to be included
in the basic MPLE estimate, causing the observed undera#tiofid, . The censored
MPLE approach appears to offer an improvement but repeatedations with dif-
ferent parameters showed that this method generally awm@ssA, as is observed
in Figure 1.

In order to obtain a more accurate estimat&,obne must understand the infected
households branching process in more detail. The basidsdbe following. If the
approximating branching process does not go extinct, thgrows exponentially at
rater, which depends on the parameters of the households epidgeodel, and as
timet — o the fraction of completed single household epidemics (& kihanch-
ing process), in households of singthat leavex members susceptible, converges

to a limit ﬁf(fg(r|/\|_) (x=0,1,...,n—1). Thus we assume that each observed house-
hold in the data has final size that comes from that distidousind estimatd, by
maximising the pseudolikelihood obtained by replagmil,(X|AL) by Fig(FIAL) in
(3.1), where is an estimate of the growth ratgsee (4.5) in the next section, where
calculation ofpf(fg(rML) is explained.

4 A new method
4.1 A more accurate estimator

Consider the approximating branching process introdueeseiction 3.1, in which
individuals correspond to infected households and an iddatl has one offspring
whenever a global contact emanates from the correspondigteshousehold epi-

demic. Forn = 1,2, ..., Nmay let E,S”) denote a typical size-single-household epi-
demic, started by one member of the household being infeattdienet = 0. For

t >0, let X,(f) (t) and Y,S,”) (t) be respectively the numbers of susceptibles and in-
fectives inEﬁ,n> at timet. Let 7 = {(x,y): x=0,1,...,n—1; y=0,1,...,n—

x} and, for(x,y) € 70, let p{fy(t]AL) = PXV(t) =%, Y\ (t) =) (t > 0) and

B (rAL) = [ et pify(t|AL) dt (r > 0). Further, letg” be the point process de-
scribing times that global contacts emanate frﬁﬁl?, so, fort > 0, E,ﬂ”)([o,t]) is

the number of global contacts that emanate frE,EF? during [0,t]. Fort > O let
p™(t) =E[£"(0,1])] and note that

pOA) =Ae Y ypl(tIAL) ot (4.2)
(xy)e7m

Let & be a mixture off\”, &2, ..., £ with mixing probabilitiesdy, &y, ..,
Onnae Thenéy is a point process which describes the ages at which a tyipidal
vidual reproduces in the approximating branching proddese that this branching
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process is a general (i.e. Crump-Mode-Jagers) branchoueps; e.g. Haccoet al
[20], Section 3.3. For > 0, let

Nmax

p(t) =E[En([0,t]) zanu (4.2)

The branching process has a Malthusian parantetef0, ), given by the unique
solution of the equation

/ e tu(dt) = 1.
0
Note that, from (4.1) and (4.2),satisfies

AeS @ Y yRY(rA) =1 (4.3)

It is convenient to assume that individuals live forevertia branching process,
though of course an individual ceases to reproduce as sabe&sis no infective in
the corresponding single-household epidemic.iFerl, 2, ..., nmaxand(x,y) € 7"
an individual in the branching process is said to be in state y) if it corresponds
to a single sizex household epidemic and there arsusceptibles anginfectives in
that epidemic. LetZ = {(n,x,y): n=1,2,...,nmaxand(x,y) € 7™}. Fort > 0 and
(n,x,y) € 7, letYaxy(t) be the number of individuals in stafe, x,y) at timet in the
branching process. Suppose that the Malthusian paramistetrictly positive. Then
it is easily verified that the conditions of Theorem 5.4 of Idan [28] are satisfied and
it follows from that theorem that there exists a random \ade®/ > 0, wheréN =0
if and only if the branching process goes extinct, such thiaall (n,x,y) € 7,

& Woxy(t) 22 @B (AW ast — o, (4.4)

Note that. - »m Py (t1AL) =1, 503y om By (A =1/r (=1,2,..,
Nmax). Thus, if the branching process does not go extinct,-aso the proportion of
individuals that are in stat@, x,y) converges almost surely for ﬁ&"} (r|AL).

Return to the households epidemic model. Recall thatrfot y) € .7, the num-
ber of households of sizethat containx susceptibles anginfectives when the epi-

demic is observed is denoted b&@ Suppose that an estimatesdy, of the growth
rater is available. Then, provided the epidemic has taken off amés$ been run-
ning for a sufficiently short period of time so that the brainghprocess provides a
good approximation but a sufficiently long time so that thevebasymptotic compo-
sition of the branching process is applicallie can be estimated by maximising the
normalised pseudolikelihood function

Nmax )

Ltun (ALla,T) |_L By (FAL) . (4.5)
(xy)eT M

Note that households of size 1 provide no information aldguso they do not con-
tribute toLy, and thatl ¢y, Lbasic and Lcansor are not true likelihood functions as
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they assume independence between households. In Sectienpfowe that, under
suitable conditions, the estimatér = argmaxLty (AL|a,f) is strongly consistent

as the number of households— o, i.e. thatA| converges almost surely to the true
valueA asm— oo,

Suppose that estimation is based only on completed sirmglsdinold epidemics,
as in the basic MPLE method. Thap may be estimated by maximising

Nmaxn—1

Ltinal (AL|a, ) I_L erxO rML

Observe that subject to mild conditions,
PhasXAL) = fim P (tAL) = lim rp5(r[AL).

Itfollows that, under appropriate conditions, the basid EPnethod becomes asymp-
totically unbiased as the growth rate tends down to zero.

A key assumption of the estimator based. gy, is that the exact state of a house-
hold is observable but this is unlikely to be realised in ficac Suppose that only re-

coveries are observed. FoE= 1,2, ...,npaxandj =1,2,...,n Ietc be the observed

number of households of sizawith j recoveries, Iewj = {(x,y) e 7MW x4y=
n—j}andlet

) ) 1
q"r = Y B0/ - a0 rIA),
(x,y)eg/m)

n
where (r|/\|_ z f)ffl)y’y(r|/\|_). ThenAL may be estimated by maximising
y=1
Nmax N
Lrec AL|C I’ = |_IZI_I1 I’|/\|_ . (46)

4.2 Practicalities and extensions

Estimates ofA_ based upon thes andLec pseudolikelihoods are both dependent
on knowingpﬁ?}(rML) for (n,x,y) € .7, which is not practical in many circumstances.
It is, however, possible if we restrict ourselves to the Meaikn case, in which the
infectious periodT, is exponentially distributed, by following a similar argent to
that used in Section 4 of Pellet al.[29] to calculate real-time growth rates. Under
these circumstances, the single-household epid&iic= {(X\"t),Y,\" (1)) : t >

0} is a continuous-time Markov chain (CTMC). Figure 2 showstthaesition rates
of E,(f) as a CTMC and also assigns labels to each gtaty ¢ .7(®). The exact
assignment of these state labels is unimportant, howelgardinvenient for the initial
state(n—1,1) to be assigned as state 1 for a sizheusehold. Note that the state

space7(™ of E\{” has sizes™ = | 7| = n(n+3)/2. Let QW(A) = [qi(jn)(/\L)]
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Fig. 2: Graphical representation of a single-householdeic for households of
size 3 as a CTMC, wher,y) denotes the household state and state labels (shown
as superfixes) for the CTMC are assigned as described. Thesvah the arrows
represent transition rates between states in the singlsefold epidemic.

be thes™ x s transition-rate matrix oE[”, using the assigned labelling. Thus, if

i # theanj”) (AL) is the transition rate oEﬁ,") from the state having labélto the
state having labgj, andqfi”) (AL) = =Y jxi qu”) (AL). Note that if a label corresponds
to a household stafe, 0), thenqi(jn) (AL) =0for all j. If kis the label assigned to state

(xy) € 7O thenpl{y(t|AL) = (62" )y, wheredQ" M) = v 1QM (L)) /I!
denotes the usual matrix exponential. Hence,

[ee]

(n _
I = [ e (@9 M)t = ([l o — Q@ (AL)) Pk
0

wherel gy is thes™ x s identity matrix.

The estimating procedure described in Section 4.1 assumethe distribution
of the infectious period is known. The theory may be exterekesily to the setting
where a parametric form is assumed for the infectious petistlibution, with un-
known parameters that need to be estimated from the dataf theginfectious period
is assumed to follow an exponential distribution with rgt¢hen the preceding the-
ory goes through Witrp@ (t|AL) replaced in an obvious fashion k;lb(['} (t|AL,y) and
(AL, y) being estimated by maximising the appropriate normalisedigolikelihood
function. Note that for final outcome data it is impossiblestimate bothA_ andy,
since the final outcome distribution is invariant to restgf time. However, that is
not the case in an emerging epidemic setting, as the exgahgrawth rate is clearly
time-scale dependent.

The assumption of exponentially distributed infectiougqus can be relaxed by
using the phase method (e.g. Asmussen (p.71-78) [2]). Fonple, al-stage Erlang
distribution for the infectious period can be accommoddtgdplitting the infec-
tious period intal stages having independent exponentially distributedtiurs The
Markov property is maintained by expanding the state sp&eesingle-household
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epidemic to include the number of infectives in each of dl&tages. This can lead
to an appreciable increase in the size®f". One can also extend the model to an
SEIR (susceptible» exposed— infectious— recovered) model by introducing a
latent period. In the simplest case, both infectious anehlaperiods follow expo-
nential distributions, in which case the state space of glesihousehold epidemic
is extended to include the number of exposed (i.e. latedfyituals, but again the
phase method can be used to accommodate more generaludistri

The methodology can be extended to allow the local contaettcadepend on

household size. Far=1,2,...,Nmax Iet)\,fn) denote the local contact rate in a house-
hold of sizen. The, provided there are enough households of each size Bathple,

(A2 23 A["mad) can be estimated jointly, e.g. by replacihgby A" in (4.5).
Alternatively, one can assume a specific form kéP), Cauchemeszt al. [15] use

)\,Em = A_/nfor influenza, and estimate its unknown parameter (Agyén the obvi-
ous fashion.

5 Application to the Reed-Frost model
5.1 The Reed-Frost model

Under the Reed-Frost model, the latent period is assumealdconstant duration,
which without loss of generality can be taken to be one uriteé, and the infectious
period is reduced to a single point in time. Consider an apidénitiated by a small
number of individuals being infected at timme= 0 among a population having the
same structure as that outlined in Section 2.t~er0,1,..., individuals infected at
timet become infectious at timie+ 1. Different infectives behave independently of
each other. Consider an individual that is infected at tim&t time t + 1 it makes
global infectious contact with any given susceptible ingbpulation with probability
pc = 1—exp(—Us/N) and, additionally and independently, local infectiousteaoh
with any given susceptible in its household with probapifit . Moreover, contacts
between this infectious individual and distinct suscdptibdividuals are mutually
independent. Any susceptible individual that is contattgdt least one infective at
timet is infected and becomes infectious at time 1. The process continues until
there is no infective left in the population.

Again, we consider the case of an emerging epidemic, so isssiraed that,
when the epidemic is observed, the proliferation of infddteuseholds still mim-
ics a discrete-time branching process. Note that in the lmithe population size
N — oo, the mean number of global contacts made by a typical iMedius. Note
also that upon infection a household of sizis in state(n,n—1,1) and that in sub-
sequent generations that household contains at least ooeered individual. We
assume that it is possible to observe the geometric growgtpr(a, , Uc) of the ap-
proximating branching process. The paramgtemcreases withp(py, Ug) for fixed
pL, so for any estimate g, an estimate fogs is pre-determined since it is assumed
thatp(pL, Ug) can be observed directly.
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5.2 Estimatingp,

The local contact probabilitp, can be estimated by approximating the early stages
of a Reed-Frost epidemic with a discrete-time multitypenbhang procesS. Define

the type space @asJxrr = {(n,n—1,1) : 1 < N < Nmay} UU“"‘aX (n,x,y) :x>0,y>

1 x+y < n} and label the elements dfgr as 12, ...,k wherek = | Irr| = Nmax+
s Y — nax(N2ax+5)/6 . The type space includes all possible household
states where infection is still present.

Let M be the mean matrix 06 on Jrr, so the elemenin; is the expected
number of typej individuals that a typical typéindividual gives birth to upon death.
Under the Reed-Frost model, a household in state y) gives birth to an expected
number ofd,y g households in statg’,n’ — 1,1), forn’ = 1,2,...,Nmax as a result
of gIobaI infectious contacts, and to an expected numbéf)él — (1 — p.)Y)*(1—

pL)Y*~2 households in statgn,x— z,z), for z= 0,1, ...,x, from local contacts. Let
Y: = (Y1, Y2, ..., Yik) denote the number of |nd|V|duaIs of each type frofge alive
aftert generations o6 and letp(p., Ug) be the maximal eigenvalue @#f. Assume
thatp(pL, Ug) > 1, so the branching process is supercritical. Kesten agdiat[24]
show that ifu(pL, Ug) is the left-eigenvector associated witlip, , Us), normalised
so that its components are non-negative and sum to one, then

P(pL. He) 'Y 22 Wa(pL, )  ast — o, (5.1)

whereW is a non-negative random variable such tat 0 if and only if Sbecomes
extinct. The eigenvectat(pL, Us) therefore gives the proportions of individuals of
each type irSast — o, conditional uport not going extinct. It follows from (5.1)
that

t
)ty vy as, PIPLHG) ) ast s e, (5.2
p(PL, M) tzl t p(pLjo) —1 u(pL, Hg) (5.2)

Let Zy = (41, Zi2, ..., Zik), WhereZ; denotes the number of single-household epi-
demics that terminate befotgyenerations of the epidemic, for which the last active
household state wase Jge. A household in statén, x,y) at timet’ has probability
(1— pL)™ of containing no infectives at tinté+ 1. Hence, if(n, x,y) is the household
state associated with a typ&dividual in S, it follows from (5.2) and the strong law
of large numbers that, for=1,2, ...k,

(1-p)¥
P(PL; Ha) —

Letuy, xy) = Ui wherei is the label of a typén, x,y) individual inS. By noting that
any single-household epidemic finishing the generaticer dfwas in staten,x,y)
finishes  with x  susceptibles remaining, define the  function

Prr full (N, X,Y|PL, Ha) as follows:

p(pL, He) 'Zi Z2H W JUi(PL He)  ast — o,

KUmnxy) ify>1,

Unx1) (pL,IJG)

PR full (N, X, Y| PL, He) = anxfll_ xy ify=0
y;( P p(pL; Ha) — =5
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whereK is chosen such that

n=1 X

Nmax | ,N—=1n—x—1
Z [( Z) Z) pRFfUII(naX7y|pL7UG)) + (pRFfuu(n,n—1,1|pL,uG))] =1
= Jv=

One can then estimatg by performing maximum pseudolikelihood estimation in
exactly the same manner as described using in Section 4.1. Note that this es-
timation procedure can be adapted to the case where sudesgnd infectives are

indistinguishable, using the same method as describdddoin Section 4.1.

6 Numerical lllustrations
6.1 Methods of estimation

We illustrate applications of the preceding theory usimgudation studies with pa-
rameter choices loosely based on Fraser’s [18] analysismn€ella data. Simula-
tions are performed on a population wf= 10 000 households with distribution
o =[0.13,0.30,0.23,0.18,0.09,0.07]. This distribution is based on the 1961 UK cen-
sus data [34] and contains a higher proportion of larger élooisls than the 2001 dis-
tribution used previously, meaning that local infectioastacts should have a greater
effect on the simulated epidemics. The population size éseh so that it is small
enough to represent a realistic population cluster (e.gwa} but large enough so
that there is sufficient data to estimalte whilst the epidemic is still in its emerg-
ing phase. For the sake of simplicity, an exponentiallyrdiated infectious period
with rate 1 is used. Fraser suggests having a within-holdshsceptible-infectious
escape probability of.@9, as reported by Hope-Simpson [22], and that infected in-
dividuals be expected to infect2l susceptibles outside of their household. This
implies parameter values ag = 1.21, A, = 1.565 (sincep(1.565) = 0.39, where
©(8) =E[exp(—0T))] = (1+60) L andr = 1.762 (recall (4.3)) in the continuous-time
case angic =1.21, p. =0.61(=1-0.39), p(pL, Us) = 2.248 under the Reed-Frost
model. Unless stated otherwise, growth rates are estintgtditting a straight line
to the logarithm of the number of recoveries, as a functiotinoé, using the polyfit
function in MATLAB. The first 20 recoveries are ignored whestimatingr, to en-
able the exponential growing phase of the epidemic to settiote that, while this
is the most common method to estimatether methods are also considered in the
literature; see, e.qg. Met al.[27].

For illustrative purposes, estimatesXfin this subsection are given in terms of
the secondary attack rate (SAR), as defined by Longini anghKam [26]. The SAR
is the probability that an infective infects a given houddhmember, expressed as a
percentage, and is given by 1A0- ¢(A.)). (Note that with the continuous-time and
discrete-time models, matching the SAR ahgresults in different growth rates.)
The SAR is used since the variance of estimate3 gfunder any of the methods
outlined in this paper, increases greatly as the true valug dncreases, whereas
the variance of the SAR estimates is closer to being conathatever its true value.
Note that for a given distribution @i, SAR strictly increases with,_.
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It is shown in Sections 3 and 4 that an emerging householdiespc can be
approximated by a Crump-Mode-Jagers branching procesgBE) however there
is no indication as to when an epidemic can still be constiewebe in its emerg-
ing phase. Figure 3 shows estimates of the SAR throughouifétiene of a single
simulated SIR epidemic using the parameters outlined alisteénations ofA; (and
hence of the SAR using the above formula) were made at regutawals through-
out the epidemic using the basic MPLE, censored MPLE andafull-recovery-
pseudolikelihood estimation methods (where the latter is®e (4.5) and (4.6) re-
spectively), and an additional estimate was made usinggeedwlikelihood method
of Ball and Lyne (2014) [10] (c.f. Section 5.1 of Badt al. [11]) by considering the
distribution of susceptible individuals in households lbs&es at theend of an epi-
demic. This is referred to as thHmal-sizemethod of estimation. Note that for the
basic MPLE method, it takes some time before the SAR is egtitita be any value
other than zero. This can be explained by the reliance oftigihod on household
epidemics being completed since the basic MPLE method wijl pick up any trace
of local infectivity when a completed single-householddgmnic with more than one
recovered individual is observed. As would be expectedfiti@-size method ap-
pears to tend to the true SAR valuetas> «. The initially large estimates from the
final size data can be explained by noting that few houserarielsnfected at this
time but that recoveries are clustered within householts. férmer point suggests
a very low value ofAg (considering that the estimator assumes that the epidemic i
complete), so the estimate of the SAR is large to accounhfoclustering of recov-
ered individuals. Note that the recovery-pseudolikelthowthod estimates the SAR
to be 100% as the epidemic approaches completion. In thempicbutlined above,
with growth rater = 1.762 but with an SAR of 100%, appreciably fewer than half
of all infected households of size 3 and above are expecteattizin only recovered
individuals during the emerging phase. Once the true epc@mith an SAR of 61%)
is completed, appreciably more than 80% of households ef3iand above in the
entire population are expected to contain only recoverdiVitiuals. This suggests
that there is a threshold, after the epidemic has stopperbgippating a CMJBP,
when the number of recovered individuals in infected hoakihexceeds the expec-
tations of even the maximum possible SAR in the recoveryisikelihood estima-
tion method, hence this method will continue to give an MPbEthe SAR as 100%
for the remainder of the epidemic.

Figure 3 shows that once an epidemic has had sufficient tinestablish itself,
there is a window when the both the full and recovery CMJBFhods appear to give
a good estimate of the SAR. Moreover, the length of this wmgroughly the same
for both CMJBP methods, although the recovery method gilessareliable estimate
owing to it using less information. This is confirmed in Figur which shows kernel
density estimates of the distribution of the estimator oRSér both CMJBP methods
from 1000 simulations of the epidemic outlined above. Tteegparked y known’
use the methodology described in Section 4.1 and those chgrkeknown’ assume
thaty is also estimated from the data, as described in Sectiorc4tEnations of the
SAR were made from each simulation after 500 recoveries aleserved for reasons
outlined below. Irrespective of whether or npts also estimated, both the full and
recovery methods yield estimates of the SAR that are cebneatlly around the true
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Fig. 3: Estimates of the SAR (true value 61%) through timeafsingle SIR house-
holds epidemic. The four estimation methods outlined eaiti the paper are shown
along with estimates of the SAR using the final-size method.

value of 61% but the recovery method yields estimates hawifiag greater variance.
The variance of the estimates is greater whénassumed unknown than when it is
assumed known but the difference is appreciably smallar that between the full
and recovery methods. The inset of Figure 4 shows a scatieopthe estimates
of (SARYy) using the full-pseudolikelihood CMJBP method, which iredes that the
estimates of the SAR andare positively correlated.

Repeated simulations using different population sizelglggevery similar results
to those seen in Figure 3, in that there appears to be a windoe the epidemic
has established itself when a households SIR epidemic dhbestonsidered to be
in its emerging phase and the full-pseudolikelihood ednis relatively accurate.
The start of this window corresponds to when the the asynepb@haviour of the
approximating CMJBP kicks in, the timing of which is indeplent of the total pop-
ulation sizeN, providedN is sufficiently large. Further simulations suggested that
this window ends when approximatel?/3 recoveries have occurred, after which
the CMJBP approximation of the households epidemic breaksmdThe time taken
for N2/3 recoveries to take place depends on the severity of the mjidend the
population size. Note that Barbour and Utev [12] prove thabaogeneously mix-
ing Reed-Frost model can be closely approximated by a bmaggrocess up until
orderN?/3 individuals have been infected.

The above points are illustrated in Figure 5 which shows teamsquared error
(MSE) of estimates of the SAR, using the full-pseudoliketid method and assum-
ing thaty (= 1) is known, throughout the emerging stages of 1000 simulgped e
demics among populations with differing numbers of housshbut with the same
population structurex, growth-rater and SAR as given above. It is assumed that
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Fig. 4: Kernel density estimates of the distribution of tlstimator the SAR (true
value 61%) based on 1000 simulations of the outlined epidersing the full and
recovery CMJBP estimation methods, both with and withoeirédcovery rate (true
value 100) being also estimated. Inset: Scatter plot of estimatéSARYy) for the
full-pseudolikelihood ¥ unknown) method.
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Fig. 5: MSE of estimates of the SAR using the full-pseuddiii@d method. See
text for details.
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the valuer is known, in order that the figure illustrates only when th&tritbution of
household states in an emerging epidemic conforms to itva&gut branching pro-
cess. It can be seen that it takes approximately 50 receverieccur (regardless of
population size) for the MSE to settle to a reasonable valedathe high variance of
SAR estimates when too few households have been infectetharapidemic is yet
to establish itself in the population. The length of this eamv then clearly increases
with population size as a result of a higher percentage bf fulsceptible households
still being available at this stage of the epidemic. For tbpdation considered in
most of the numerical illustrations, i.e. consisting of XiDthouseholds, it appears
appropriate to estimate the SAR after approximately 500veges have occurred.

We now consider estimation @i in the Reed-Frost model. A single-household
epidemic in a household of sizecan last for at mosh generations. Thus, under
the assumption that all global contacts are with individualpreviously uninfected
households, if the households epidemic is observed irkithgeneration, one can
estimatep. by using an adaptation of the basic MPLE method from the naptis
time case as follows. If one wishes to make the estimate irkthgeneration then
the single-household epidemics in all households with astlene recovery in the
(K—Nmax+ 1)th generation are certain to have been completed. One cangtisrate
pL by using only the latter households and considering the-&izal distributions of
single-household epidemics under the Reed-Frost modelrfonm the basic MPLE
method of estimation in the same manner as before. Thisroirents the problem of
uncompleted epidemics in households but at the expenseafiigy the information
aboutp, contained in those single-household epidemics.

Figure 6 gives kernel density estimates mf (true value 061) for 1000 sim-
ulations of Reed-Frost epidemics with parameters as aatlat the beginning of
this section. Estimates were made in the first generationhathan 000 recoveries
were observed using the full-pseudolikelihood and regopseudolikelihood meth-
ods (i.e. both with and without the ability to distinguishtlween susceptibles and
infectives) and by using the adapted basic MPLE methodredlabove. Note that
all three methods appear to give estimates that are cerdtgghly around the true
value of p_, however, the adapted basic MPLE method estimates havelardgr
variance than the other estimates, suggesting that theonhetif estimation outlined
in Section 4.1 are preferable, regardless of whether ontietiives are distinguish-
able. Estimates were made after 1000 recoveries had beervetdgather than the
500 recoveries used in the continuous-time case, owingetdite it takes for 500
recoveries to occur potentially beimg,ax— 1 =5 generations.

6.2 Relationship between parameters of the model and bih® dfasic and
censored MPLE methods

In Section 4 it is established that the new method of estimgali in an emerging epi-
demic is unbiased, given an infinite population and asswmgtiegarding the time
of estimation. It is also seen throughout this paper thabt#teic MPLE and censored
MPLE provide inaccurate estimates Af for various emerging epidemics. We now
look to establish the extent of the bias of these two methodsstew the bias is
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Fig. 6: Kernel density estimates of the distribution of tiséraator ofp, (true value
0.61) based on 1000 simulations of Reed-Frost type epideseestext for details

affected by various parameters of an epidemic. This is aeHiby considering “per-
fect” household datag, from an emerging epidemic (as determined by its CMJBP
or multitype branching process approximation) and usimgé¢hdata to estimatg

(or p. if the model is Reed-Frost) using the basic and censored MR&taods. We
return to estimating\, rather then th&SARfor this section as th& ARestimations
provide no illustrative advantage in this asymptotic cahtghen estimators have

a variance of 0. Households data are considered to be péofeah emerging epi-
demic in continuous-time with paramertéisandr, if the proportion of households
in state(n,x,y) is exactly&nrﬁﬁf‘}(rML) for all (n,x,y) € 7. (Note that with per-
fect data;\L = argmaxjfa)l, see equation (7.6) in Section 7.) Similarly, perfect data
for an emerging Reed-Frost epidemic with paramepgrand L is achieved when
the proportion of household in state, x,y) is exactly prrsui(n, X, y|pL, Ug) for all
(n,x,y) € Jgre. Note that in both cases, the distribution of househol@stetpresent-
ing perfect data is also dependent on the population streiote= (a1, 02, ..., Onypay) -

6.2.1 Effect of local contact rate

Figure 7 illustrates the effect of. on the bias of the basic and censored MPLE
methods by considering estimatesppffor emerging Reed-Frost epidemics with ge-
ometric growth rat@ = 2.248 and population distributiom = [0.13,0.30,0.23, 0.18,
0.09,0.07], as given in Section 6.1 but with different local contacthmbilities. Note
that given perfect data, both estimates converge to thevalue of p. asp. tends

to 0 or 1. This can be easily explained by noting that all catgu single-household
epidemics in households of sizewill have exactly 1 recovery ipp. = 0 and ex-
actly n recoveries ifp. = 1, implying that the issue of less severe single-household
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Fig. 7: Estimates of different valugs assuming perfect data in emerging Reed-Frost
type epidemicsp = 2.248, using the basic and censored MPLE methods

epidemics being more likely to be included in the estimatiata becomes irrelevant
since all single-household epidemics are of the same $gVEhie basic and censored
MPLE methods appear to be at their most biased in the reg®a @_ < 0.6 when
the proportion of recoveries from single-household epidenm households of sizes
3 and 4 (which make up a significant portion of the populateme) distributed in a
relatively uniform manner.

6.2.2 Effect of household size

Figure 8 gives two plots showing estimates ofA_. in
continuous-time epidemics with real-time growth rate: 1.762 assuming perfect
data for populations of equal sized households from 2 to 2@ Upper plot con-
siders the case wheg = 1.565, independent of household size. In this plot the
basic MPLE estimate considerably underestimaiesegardless of household size
but the bias appears to get marginally worse as househadrsireases. This can
be attributed to the most severe single-household epidetaliing longer in larger
households and hence fewer of the more severe epidemiceramated by the time

of estimation in larger households. The censored MPLE faegter however and
appears to converge towards the true valug ods household size increases. Since
AL is a person-to-person contact rate, larger householdsaradre likely to have
severe epidemics than smaller households with the gafsnce the number of lo-
cal contacts in a household increases quadratically witfherefore, as household
size increases, the proportion of recoveries from singleskhold epidemics with
the same local contact rate becomes less uniform, leadiegsdias in the censored
MPLE estimate (as observed in Figure 7).
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Fig. 8: Estimates ok, assuming perfect data for emerging epidemics, withl.762,
among populations with equal household sizes using the laasi censored MPLE
methods. The upper plot takds = 1.565 for all household sizes. The lower plot

adopts the mode‘,f") = AL/n, wheren is household size ank| = 6.75

The lower plot of Figure 8 uses the same real-time growth aatk population
distributions but assumes that the local infection rateeddp on household size,
specifically thatz\L(") = AL/nwith AL = 6.75 (see Section 4.2). This value was chosen
as it gives a value ofg = 1.21 whenr = 1.762 from the population distribution as
used previously in this section. Here it can be seen thatdbieland censored MPLE
approaches both become more biased as household sizesewréathe basic case
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this is for the same reasons as before, whereas in the censase, the additional
local contacts that come from an increased household sizenpensated by the
reduction of the local contact rate, leading to the rel&ivmiform distribution of
recoveries in a single household-epidemic which causes bia

6.2.3 Effect of growth rate

Figure 9 shows estimates af in emerging epidemics with. anda as defined in
Section 6.1. Itis clear from the plot that both the basic atbored MPLE estimates
converge to the true value af asr — 0, as is proved in Section 4.1.
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Fig. 9: Estimates oA assuming perfect data in emerging epidemics with different
real-time growth rates using the basic and censored MPLE methods

7 Strong consistency of estimators

In this section we consider the asymptotic behaviour of gtienators ofA| described
in Section 4 as the number of households in the populatiastéminfinity. Specifi-
cally we show that, under suitable conditions, the estinsadoe strongly consistent,
conditional upon the epidemic taking off.

Consider a sequence of epidemie§) (m= 1,2, ...), indexed by the number of

households in the population. For=1,2,... andn = 1,2,...,Nmax let arﬁ“” be the
proportion of households iB(™ that have size. The epidemi€&™ is as defined in
Section 2 and has one initial infective, who is chosen unifgrat random from the
population. The infective parametgts ,Ag) and the infectious period distribution
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are all assumed to be independentrpfs is the maximum household sizgax. It is
assumed that" — apn asn — o (n= 1,2, ..., Nmay).-

Let E(*) denote the general branching process, introduced in $e&@md anal-
ysed further in Section 4, which approximates the epiddfilt: for suitably largem.
Recall that for(n, x,y) € .7, the number of individuals i&®) having statén, x, y) at
timet is denoted byfhxy(t). Form=1,2,..., (n,x,y) € 7 andt > 0, IetYrs,rQ{,(t) de-
note the number of sizehouseholds ifE(™ that havex susceptibles anglinfectives
attimet. Let. 5L = {(n,x,y) € 7 : y>1}. Fort > 0, letY(t) = ¥ nxyjcz Ynxy(t)
denote the number of “live” individuals i&(*) at timet. Recall thatr denotes the
Malthusian parameter &(®).

Theorem 7.1 Suppose that 1> 0. Then there is a probability spag&?,.#,P) on
which are defined a sequence of epidemi¢® Em > 1) and the approximating
branching process ) satisfying the following property. Let A {w € R :
tlm Y(t,w) = 0} denote the set on which the branching proce&¥ oes extinct.

Then forP-almost allw € Al and any c= (0, %r*l),

sup  max YA (t, @) — Ynxy(t, )| =0 (7.1)

o<t<clogm (nNXy)€7
for all sufficiently large m.

Proof Form=1,2,..., letN(™ = nggafnaérm denote the total number of individ-

uals in the population among whide(™ is spreading. LetQ,.%,P) be a proba-
bility space on which are defined the following independents ®f random quan-
tities: (i) a realisation of the branching proces$”); (ii) xﬁm) (m=1,2,...; k=
1,2,...), where for eactm, xim),xim), ... are independent and uniformly distributed
on{1,2,..,NM},

Form=1,2,..., a realisation of the early stages of the epideB{® can be de-
fined on(Q,.%,P) as follows. Label the individuals in te" population 12, ..., N,

The initial infective inE(™ has a label given b)(i”1> and corresponds to the ances-

tor in the branching proce$s®). Births of individuals inE(*) correspond to global
contacts being made (™. Fork = 1,2, ., the individual contacted i&™ corre-

sponding to thé!" birth in E(*) has a label given bxé?l. If the household in which

Xéﬂ resides has not been infected previously, tb(éﬂ becomes infected i (™

and initiates a new single-household epidemi&i®’ whose course and subsequent
global contacts is given by the life-history of tile+ 1) individual in E(*). If the

household in whicb(lif)l resides has been infected previously then the construction
of E(M needs modifying but such details are not required for thegureproof.

Form=1,2,..., letM(™ be the smallest > 2 such tha}xém> belongs to the same
household as(l(m) for somel = 1,2,....k— 1, and letM™ be a random variable,
taking values in 23, ..., having survivor function

P(M™ > k) = kri(l_ iNmay/N™)  (k=2,3,...).
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Note thatM(™ is stochastically greater thah™  since the maximum household size
iS Nmax and (c.f. Aldous [1], page 96) %2V (™ 25 M asm — o, where2: denotes
convergence in distribution amd has densityf (X) = NmaxxXt; * €Xp(—Nmaxi X2/2) (x>
0), with uy = Y™*nay being the mean household size. (Note tmatN™ — piy
asm-— .)

By the Skorokhod representation theorem, the random vesah, M(™ and
M(™ (m=1,2,...) may be defined on a common probability space soRlist™ >
MM m=12_.)=1andm ¥2M™ 2% N asm — w. Further, that probability
space may be augmented to carry random variaigﬁ@s(m =12,..,;k=12.)
distributed as above and consistent with™ (m=1,2,...). Thus we may assume
that the random variabled(™ (m=1,2,...) andM are also defined otQ,.%,P)
and that there exisB € .# with P(B) = 1, such that, for alto € B,

MM (@) > MM (w) and mY2M™(w) - M(w) asm— . (7.2)

Fort > 0, let T(t) be the number of births i&( during [0,t], including the
ancestor. Thefl (t) = ¥ nxy)e7 Ynxy(t) and it follows from (4.4) thae " T (t) as,
r~IW ast — . Recall thaW = 0 if and only if the branching process goes extinct.
Thus there exist€ € .#, with C C A® andP(C) = IP(A®), such that for altv € C,

e "T(t,w) —r W(w) ast— . (7.3)

Letw e BNC andc e (O, %r*l). Then it follows from (7.3) thal (clogm, w) <
2m°r'W(w) for all sufficiently largem. Also, (7.2) implies thatM(™ () >
%ml/zl\ﬁ(w) for all sufficiently largem. Hence, sincec < 1/2, for all sufficiently
large m, every birth inE(*)(w) during (0,clogm] corresponds to a global contact
with an uninfected household B(™ (w) and (7.1) follows sinc&®(BNC) = P(A°).

(|

We turn now to estimation of_. Suppose that the epidenfi™ is observed at
timet(™, where the sequen¢e™) satisfies (i} (™ — w0 asm— oo, (i) t(™ < clogm
for all sufficiently largem, for somec < (2r)~1. Suppose also that an estimat6P) "
of the growth rate is available such that™ % rasm-— co Where% means

convergence for P-almost ald € A°. It is easily verified that one such estimator is
F(M = log[(TM (M) /TM (™ /2))]/(t(M /2), whereT (M(t) is the total number of
households that have been infectedifl! by timet. Let)\ﬁ%n denote the estimator

obtained by maximising the functidby (A_|a,?(™) defined at (4.5). For ease of
exposition, we assume that all infected households arenadxbeso, in our present
notation,ag;) = rg,r)g)y(t(m)) for (n,x,y) € 7. The following theorems are easily ex-
tended to the situation when only some infected househotdstzserved; of course,
the number of observed households must tend to infinity as o and the sampling

mechanism must be independent of disease progressiommitiseholds. In these

theorems, it is convenient to denote the true valu& dfy A, .
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Theorem 7.2 Under the conditions of Theorem 7.1,

/\ |—>A|_ as m— oo,

Proof First note that from (4.5)

Al = argmand () (AL [y (™ F(m), (7.4)
where

Nmax
—1 —rt(m N
T Ay ™, fm) —wte ; T YR ™) log B (F™[AL).
(xy)ezm

Observe that,under the conditions satisfiecatW), Theorem 7.1 and (4.4) imply
that, for all(n,x,y) € 7,
m)

YAy (M) 2%, n B (r[AL)  asm—s co. (7.5)

W™ 1 7I’t
Hence, since(™ i—? r asm— o, we have that for an_ € (0, ),

?ull (ALY ™, 7)) % mu (ALlr)  asm— oo,

where
Nmax

(AL = gan S B rIA)log By (r(AL). (7.6)
=2 (xyesm

Standard arguments, (e.g. Silvey [30], page 75) show that,nf= 2,3
.-, Nmayx the functiorg,(AL) = z(xy>€ Z0) p)((}(rML) log pxy(r |AL) has a unique global
maximum atA_. Hence, as a function af_ € (0, ), ﬂull (AL]r) has a unique global

maximum atA_.
Fix0<a< AL <b< o, Then

Nmax
max. T ALy (™) p(m)) fu.|<AL|r|<z > max gy(A)  (7.7)
2(xy)e 7M™

where
gimey(AL) = W e T YIR ) log 5 (P [AL) — G By (r[AL) log B (r[AL)|.
Now

g™ (ML) < 6 (AL) + Gy (AL), (7.8)
where

Giey(AL) =W e MY () log 50 (™ AL ) — log B (1] AL )|

and

m)

Gey(AL) = [{W e M YR (t ™) — G iy (r|AL) }log B ([AL) |-
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Using (7.5), for all(n,x,y) € 7,

max gnxy()\L) —> 0 asm-— . (7.9)
a<A <b

Further, for anyA\,. > 0 andr,r’ > 0,
YO - B < [ et e d=r-rl/ar), (7.20)
0

s0, since log is uniformly continuous on any bounded subinterval(@feo) and
F(m) % r asm— oo, it follows using (7.5) that, for alin,x,y) € .7,

max M) 20 asm— 7.11
a<}\L<bany( L) AC *- ( )

Combining (7.4) - (7.9) yields
max ||fu||(/\L|Y Py ) ()| é;—j>0asm—> ®, (7.12)

a<AL<

whence, sincé?j” (AL|r) has a unique global maximum A,

argmaxfu”(/\L|Y Fm) 25, AL asm— oo, (7.13)
a<A <b A
To complete the proof we explore the behaviour@I ALY ™ ¢M) asA |0
andA_ 1 . LetX denote the time of the first point {9, «) of a homogeneous Poisson
process having rat@ — 1)A.. Then p,ql)z’z(t|/\|_) <P(X<t)=1—e (DAL g0

Bloa(fh) < [ (A-e e td < (- DAL (7.04)
? 0

For alln, we havep{(y (F(™|A.) < 1/f(M for all (x,y) € 7™, so
log Py (7™ AL) + logr(™ < 0. (7.15)
Let

Nmax
~ —1 —rt(m
WAy ™ ) = wle > 3 Yasy(t™) (log By (F™ AL) + logr™)
(xy)e7m

m) Nmax

™ Ay ™ )y - le ! YA (™) log ™

uII
N=2(xy)e7 M

and, recalling (7.4), note tha}f il = = argmat™ (A |y (M p(m)y,
Fix Ag > 0. Then (7.14) and (7.15) imply that, for &ll € (0,Aq),

(m)

Ay ™, 7 ™) <Wle MY M) (log(n — 1) + logAo — logF™)

?anpn 22(r|/\L)[Iog(n 1) +logAp — logr]

(7.16)
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asm— . Also, using (7.5) and (7.12),

Nmax

™ ALY ™ ) E) 1= (AL|r) +r~tlogr %&n asm— o, (7.17)
=

Choosen such thatr, > 0 andAg > 0 such that the right hand side of (7.16) is strictly
less than the rlght hand side of (7.17). Then, recalling e;n’kéfu” =
argmax* ()\L|Y ,F(M), it follows that for P-almost allo € A%, there existsny(w)
such that

A (@) € (0,40)  for all m> my(cw). (7.18)

Let T, denote the infectious period of the initial infective in aisehold of size.
Thenpl™, ; (t}AL) = Ele™ MDA 1] < e (DAt whencep™, , (r|AL) < 1/((n—
1)AL+r). Arguing as before shows that there exists> 0 such that, for P-almost all
w € A°, there exists (w) such that

A (@) & (A,)  forallm> my(c). (7.19)

The theorem then follows from (7.13), (7.18) and (7.19).
O

We now consider estimation df. based only on recoveries. For= 1,2, ...,
n=12,...,nmaxandt > 0, let

o=y Ynxy (j=1.2..n)
(xy) eA

be the total number of sizehouseholds in whicl) recoveries have been observed

by timet in the epidemicE(™. Let )\,Ergc denote the estimator of_ obtained by

maximising the functiorrec(AL |, F(™) described at (4.6). (In our present notation
W =z ¢(m)y )

| nj
Theorem 7.3 Under the conditions of Theorem 7.1,
/A\ETQC i—} AL as m— .
Proof First note from (4.6) thaAL rec = = argmasies (AL| Z(™,F(M), where

Nmax N

f}gg (/\|_|Z(m>,f(m>) _ Wflefrt(m) ZZ Z Z|'(1I:T) (t(m)) |qu~5n)(f(m) |/\L)
=1

Using (7.5), fom=2,3,....nmaxandj = 1,2,....n,

W te ™z ¢ ™) E2 Gn(r ! ~ @ (rA)E" (AL asm— e, (7.20)
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s0, for anyA € (0,c0), 57 (A| 2™ 7(m)) % e/ (ALlr) asm— oo, where

Nmax n

I??Q(Mr):;an( —a"(rAL) Z (A logd™ (1AL, (7.21)
n—=

Now

Nmax N

e (AL Z ™, 7)) — ied( AL|r|<zzz YA +RT ), (7.22)

where AT (AL) = wle ™z ¢(m |IogqJ (FMIAL) — Iogqjn (r|)\|_)| and
A () = [{w-Te " 2z ><t<m>> Gl - 6" (r1A))d” (r|A) Hogd” (r[A).

n,j

Forn_2 3,...,Nmaxandj =1,2,.

BY(rIAL)  (j=1,2,...n) and&" (r[A) =r 1

Wherea J(rAL) = (XWG&% () p>(<y(

Sy-1 ﬁn,y’y(rML) Note that|,a% | =n+ 1 i (i =12,..,n). It follows from
(7.10) that, fom=2,3,. nmaxandj =1,.

& (A —é§”><r’|AL>| < (n+1-j)lr—r|/(m), (7.23)

forall AL > 0.

Consider a household of sireln the limit asA_ — o, as soon as one individual
in the household is infected, the whole household beconfiested, so the number of
removals in that householdime units after it was infected follows a binomial distri-
bution with success probabili®™ (t) = P(T; <t). It follows that, forj = 0,1, ...,n
andr > 0, I|m a (r|/\|_ (0,r Y. Fixae (0,A.). It then follows from (7.20) and

the contmwty ofafn (r|AL) thatforn=2,3,...,nmaxandj =1,2,....n,

max R J(/\L) 25,0 asm— o, (7.24)
a<A <o AC
Further, (7.23) and the uniform continuity of legmply that, forn = 2,3, ..., Nmax
andj=1,2,...,n,
max AM™(AL) 250 asm— w, (7.25)
asA <o ) AC

sincertm i—j> r asm — co. Similar to before, (7.21) implies th&&2 (A_|r) has a

unigue global maximum at_ = )TL. It follows using (7.22), (7.24) and (7.25), that,
foranyac (0,AL),
argmatal (AL| 2™, 7 M) 2% X asm — co. (7.26)
a<A <o A°
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To complete the proof of the theorem, we obtain a uniform ugymind for

9 (AL|Z™ #(M) for small AL. Two recoveries can occur in a household only if
the initial infective has made at least one local infectem,as at (7.14),

aV (r|AL) < AL(n—1)/r2

Also, there is at least one recovery in a household if thainitfective has recovered,
S0

&t > [ P(T <tedi— o)
0
Hence, fom= 2,3, ...,nmaxandAq > 0,

4" (r| M) < Ao(n—1)/(re(r)) forall AL € (0,Ao].

Note that Iogq@(r|/\|_) < 0 for all nandj. We can now argue as in the derivation
of (7.18) to show thadg can be chosen so that, for P-almostalE A®, there exists
my(w) such that

AToc(w) & (0,20)  for all m> mo(w),

which, together with (7.26), completes the proof.
O

We omit the proofs but similar results to Theorems 7.1-7.18 ior SEIR and
Reed-Frost based models. Theorems 7.2 and 7.3 may alsoéwledtto the case
when the infectious period distribution has a parametnimfaith unknown param-
eters that need to be estimated. E.g. if the infectious ddalbows an exponential
distribution with unknown rate, it is straightforward to show that, for any compact
subsetk of (0,)?, if (A_,y) is estimated by maximising the relevant pseudolike-
lihood overK then the resulting estimator is strongly consistent. Edireg this to
K = (0,0)? is more complicated than in the one-dimensional settinghefofems 7.2
and 7.3 and not considered here.

8 Concluding comments

In this paper we demonstrate that for an emerging SIR epilambng a population
partitioned into households, basing inference on the w8ogle-household final size
distribution normally leads to a biased estimate of the wititousehold infection rate
AL and use branching process theory to develop a new estimhtohaccounts cor-
rectly for the emerging nature of an epidemic. Although traded used is undoubt-
edly simpler than a real-life epidemic, the presence of bbakils is a key departure
from homogeneous mixing for human epidemics, and it sedwalylthat similar is-
sues will arise in more complex settings when using dataectt at a household
level for inference during the exponentially growing phasen outbreak. In par-
ticular, such data need to be modelled very carefully to enthat the effects of a
growing epidemic are incorporated correctly.

The new method is predicated upon the availability of ameste of the expo-
nential growth rate. How best to estimate for an emerging epidemic is an open
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challenge (Ballet al. [6]) since, as illustrated by Figure 3, the exponentiallgvgr
ing phase occupies only a narrow time window and consequeate is required in
choosing start and end time points for fitting it. Of course, inethod assumes also
that, at the time when estimation is performed, the epidésnstill in its exponen-
tially growing phase and it should be checked that this issasaable assumption.
The new method has been shown to be computationally feasitger the as-
sumption of no latent period and exponentially distributédctious period. Extend-
ing its implementation to models with more realistic digedgnamics is an important
area for research. One approach is via the phase methodgesdens4.2, though
the matrices involved soon become large. Thus it would bethmdrile develop-

ing numerically amenable approximations to the key Laptmnsformsp@(rML)
((n,x,y) € 7). Fraser [18] has developed a closed-form approximateaddtr cal-
culating the growth rate for quite general households models, which works well if
both the maximum household size and the variance of the geoeiinterval of the
disease are not too large; it may be possible to apply retatttiods to approximate
the aforementioned Laplace transforms.

It would be useful to attach standard errors to estimatesimdd using the new
method. One way of doing this is using a parametric bootstakgmg similar lines
to Figure 4. Another approach is to determine the asymptbstributions of the
estimators, which would require central limit (or relategjalogues of the almost
sure results in Nerman [28].

The method can be extended to multitype SIR epidemics amenganunity of
households, using the model of Ball and Lyne [8] togetheh witltitype generalisa-
tions of Nerman [28]. This would accommodate age-stratfigplulations (e.g. chil-
dren and adults), with age-specific susceptibilities, dsd asymptomatic infections
with different transmission parameters for symptomatid asymptomatic cases.
Note that the setting where all infectious episodes are paeeby the same trans-
mission parameters but infections are unobserved indeplydvith a common pa-
rameter may be handled within the single-type frameworigesithe distribution of
the number of observed cases in a households is obtaindy leasionditioning on
the total number of cases in that household and using biraamapling.

The method can in principle also be extended to situationsrevinformation
on the temporal progression of disease within householdgasable. In the Reed-
Frost setting of Section 5, estimation can be generalisgdidacase when chains
of infection within households are observed (rather thaal toumber of cases) by
extending the type-space of the approximating discrete-tinultitype branching
process to include such information. In the continuousetsetting of Section 4,
suppose that inter-recovery times are observed. Congidesihgle-household epi-
demicES‘) described in Section 4.1, suppose tkagcoveries occur iif0,t], where
k=1,2,...,n Lett; denote the time of the first recovery and $is,...,s de-
note thek successive inter-recovery times, whexeis the time elapsing between
the kth recovery and. Let flin) (t1,51,%,..-,5-1|AL) denote the joint-density of
s1,%,---,% 1, including the information that no recovery occurs betwésnkth
recovery and timé. Then using Theorem 5.4 of Nerman [28] shows that the contri-
bution of such a household epidemic to the pseudolikelitfood, is ﬂE”)(ﬂ/\L) =
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jiA egft flin) (t—ta,S1,9,--.,Sn-1|AL) dt, whereta =51+ S+ - - - + &, thus providing,
at least in principle, a way of estimatidg.
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