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Abstract This paper is concerned with estimation of the within-household infection
rateλL for a susceptible→ infective→ recovered epidemic among a population of
households, from observation of the early, exponentially growing phase of an epi-
demic. Specifically, it is assumed that an estimate of the exponential growth rate is
available from general data on an emerging epidemic and more-detailed, household-
level data are available in a sample of households. Estimates ofλL obtained using the
final size distribution of single-household epidemics are usually biased owing to the
emerging nature of the epidemic. A new method, which accounts correctly for the
emerging nature of the epidemic, is developed by exploitingthe asymptotic theory of
supercritical branching processes and proved to yield a strongly consistent estimator
of λL as the population and sampled households both tend to infinity in an appropri-
ate fashion. The theory is illustrated by simulations whichdemonstrate that the new
method is feasible for finite populations and numerical studies are used to explore
how changes to the parameters governing the spread of an epidemic affect the bias of
estimates based on single-household final size distributions.

Keywords Household epidemic model· SIR epidemic· Emerging epidemic·
Parameter estimation· Branching process

Mathematics Subject Classification (2000)92D30· 62M05· 60J85

F. Ball
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
Tel.: +44-(0)115-9514969
Fax: +44-(0)115-9514951
E-mail: frank.ball@nottingham.ac.uk

L. Shaw
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
E-mail: pmxlmsha@exmail.nottingham.ac.uk



2 Frank Ball, Laurence Shaw

1 Introduction

Mathematical models are being used increasingly to inform public health policy con-
cerning control of emerging infections, see, e.g. Fergusonet al. [17] and Fraseret
al. [19] for applications to avian influenza A(H5N1) and swine influenza A(H1N1),
respectively. A key role for such models is to evaluate the effectiveness of possible
strategies for containment of an emerging infection. In order to accomplish this, es-
timates are required of parameters used to define the model inquestion. This paper
considers such estimation from data collected in the early phase of an emerging epi-
demic, using the model of Ballet al. [11] for the spread of an SIR (susceptible→
infective→ recovered) epidemic among a population partitioned into households.

The model of Ballet al. [11] assumes that an infectious individual makes two
types of contacts,local contacts, i.e. with individuals chosen uniformly at random
from the individual’s household, andglobal contacts, i.e. with individuals chosen
uniformly at random from the entire population. Although anoversimplification,
this structure, which includes a departure from homogeneous mixing that is clearly
present in human populations, yields a model that (i) is amenable to considerable
mathematical analysis and (ii) leads to important insightsinto disease dynamics and
control, such as the impact of household structure on the performance of vaccination
strategies (Becker and Dietz [13], Becker and Starczak [14]and Ball and Lyne [9]). A
household component is present in many complex simulation models (see, e.g. Fer-
gusonet al. [17]). Moreover, data at a household level are often collected during
emerging infections; see Cauchemezet al. [16] and Houseet al. [23] for analyses
of such data for influenza A(H1N1) transmission in the UnitedStates and England,
respectively.

For many stochastic models of epidemics with few initial infectives, if the disease
does not die out quickly then, during the early stages of an epidemic, the number of
infectives grows exponentially until saturation effects take over. Early exponential
growth is also seen in many real-life epidemics and there hasbeen a growing interest
in quick inference methods during this stage of an epidemic.Assuming a homoge-
neously mixing population, Wallinga and Lipsitch [32] provided a simple estimate
of the basic reproduction numberR0 (see, e.g. Heesterbeek and Dietz [21]) from an
observed exponential growth rater and knowledge of the generation interval for the
disease. Fraser [18] extended this methodology to a community of households, using
a closed-form approximate method for determining the exponential growth rate of the
households epidemic model. Fraser gives two illustrative applications of his method-
ology, to pandemic influenza and measles, using historical data to obtain estimates of
within-household transmission parameters. As Fraser notes, these transmission pa-
rameters could be quite different for future pandemics, so methods are required for
estimating such parameters from data on an emerging infection.

The following scenario is considered in this paper. It is assumed that the house-
hold size distribution for the population is known (this is usually available from cen-
sus data), an estimate of the exponential growth rater is available from general data
on an emerging epidemic and more-detailed, household-level data are available in a
sample of households. The primary goal is to estimate the local (within-household)
infection rateλL from this information, whilst the epidemic is still in its emerging
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phase. For most of the paper it is assumed, primarily for easeof notation, that there is
no latent period and that the infectious period distribution is known, though both
of these assumptions may be relaxed. For inference based on final outcome data
(e.g. Knock and O’Neill [25] and Ball and Lyne [10]), estimates of infection rates
are (i) invariant to very general assumptions concerning a latent period and (ii) con-
founded with the scale of the infectious period distribution. Neither is true for in-
ference in an emerging epidemic. The partial nature of the assumed available data
renders full maximum likelihood estimation difficult, if indeed feasible; the amount
of unobserved data is such that computationally intensive methods for incomplete
data, such as the EM and data augmentation MCMC, may well be problematic. Thus
an alternative estimation procedure is developed and shownto give a strongly consis-
tent estimator ofλL as the population and sampled households both tend to infinity
in an appropriate fashion.

It is well known that the early stages of an SIR epidemic amonga community
of households may be approximated by a branching process in which individuals
correspond to single-household epidemics. Thus if, for example, the available data
consist of the total number of cases in completed sub-epidemics within households,
it is tempting to estimateλL by fitting the usual final size distribution for a single-
household epidemic (see, e.g. Ball [4]) to such data. However, as illustrated in Sec-
tion 3.2, this leads toλL being underestimated because in an emerging epidemic the
completed single-household epidemics are likely to be the smaller ones. An improved
estimate may be obtained by including single-household epidemics that are still on-
going at the time when estimation is performed, using right-censoring for their size,
but, as also demonstrated in Section 3.2, the resulting estimate is still biased. In or-
der to obtain unbiased estimates, one needs to account correctly for the emerging
nature of the epidemic which produced these data. (Similar issues arise in estimat-
ing the generation time of an infectious disease early in an epidemic [31].) The main
purpose of this paper is to show that this can be achieved by using the theory of Ner-
man [28] concerning the asymptotic behaviour of counts of characteristics associated
with supercritical general (i.e. Crump-Mode-Jagers) branching processes applied to
the above-mentioned branching process which approximatesthe early stages of an
epidemic in a community of households.

The paper is structured as follows. The households epidemicmodel of Ballet
al. [11] is described in Section 2 and the early stages of epidemics in a large popu-
lation is considered in Section 3. The threshold behaviour of the model is outlined
in Section 3.1. Estimation ofλL by fitting the usual final size distribution to single-
household epidemics, both without and with censoring, is considered and shown to be
inadequate in Section 3.2. The new method, which incorporates correctly the emerg-
ing nature of the epidemic is described in Section 4. The theory for the method is
developed in Section 4.1 for the situtations when, at the time the inference is per-
formed, (i) complete knowledge of the numbers of infective and recovered individ-
uals in each household is available, and (ii) (sometimes themore realistic scenario)
only the numbers of recovered individuals in each householdare available. Some ex-
tensions of the theory and implementation issues are considered in Section 4.2. The
theory as developed does not make any assumptions concerning the infectious period
distribution, other than it possesses a moment-generatingfunction, but it does need
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to be specified. However, the method is easy to implement onlyif single-household
epidemic dynamics are Markovian, i.e. if the infectious period follows an exponential
distribution, though phase-type distributions can also beaccommodated. Extensions
to incorporate a latent period and allow for the rate of the exponential distribution
used to model the infectious period to be unknown are discussed briefly, as is allow-
ing λL to depend on household size. Similar theory is developed forin Section 5 for
a households Reed-Frost type model, in which the latent period is constant and the
infectious period is reduced to a single point in time, usingmultitype Galton-Watson
branching process. Simulations depicting how the estimation methodologies devel-
oped in Sections 4 and 5 perform in practice are shown in Section 6, while other plots
in this section illustrate how changes to the parameters governing the spread of an
epidemic affect the bias of the estimates based on single-household final size distri-
butions. Proofs that the estimators derived in Section 4 arestrongly consistent under
suitable conditions are given in Section 7. Finally, some concluding comments are
given in Section 8.

2 Model

The model used is based on that of Ballet al. [11] for describing the spread of an
SIR epidemic in a population that has been partitioned into households. For a pop-
ulation in whichnmax is the size of the largest household, letmn be the number of
households of sizen, for n= 1,2, ...,nmax, so thatm= ∑nmax

n=1 mn andN = ∑nmax
n=1 nmn

are, respectively, the total numbers of households and individuals in the population.
Also, for n= 1,2, ...,nmax, let αn = mn/m be the proportion of households of sizen
andα̃n = nmn/N be the proportion of individuals who reside in households ofsizen.

The epidemic is initiated by a small number of individuals becoming infected at
timet = 0. Once infected, an individual remains in this state for theduration of its in-
fectious period, which for each individual is independently and identically distributed
according to a random variableTI , having an arbitrary but specified distribution. Once
its infectious period is over, an individual is recovered and it plays no further part in
the epidemic. During its infectious period, a given infective makes global contacts
with any other given individual in the population at points of a homogeneous Pois-
son process having rateλG/N and it makes additional local contacts with any given
individual in the same household at points of a homogeneous Poisson process hav-
ing rateλL. All the Poisson processes describing infectious contacts(whether or not
either or both of the individuals involved are the same) and the random variables
describing the infectious periods are mutually independent. Whenever an infective
makes contact with a susceptible individual, the susceptible becomes infected and is
immediately able to transmit infection. Thus there is no latent period, though this can
be relaxed; see Section 4.2. The process continues until there is no infective remain-
ing in the population, at which point the epidemic is deemed to have ceased.
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3 Early stages of an epidemic

3.1 Threshold Parameter

When the number of householdsm is large, the probability of a global infectious
contact in the early stages of an epidemic being with a susceptible in a previously in-
fected household is small. Thus, the initial behaviour of anepidemic in a community
of households can be approximated by a branching process of infected households,
in which each global contact is assumed to be with an individual in a fully suscep-
tible household. LetR∗ be the mean number of global contacts that emanate from a
typical household in this branching process. ThenR∗ is a threshold parameter for the
households epidemic model, in that in the limit asm→∞, the epidemic takes off with
non-zero probability if and only ifR∗ > 1; see Ballet al. [11], where calculation of
R∗ is described.

The remainder of this paper focuses exclusively on epidemics where this con-
dition holds and is concerned with epidemics that do take off. It is assumed that
E[TI ] = 1 as this can be done without loss of generality by rescaling the time axis.

3.2 Basic approach to estimatingλL

Suppose one wishes to estimateλL for an epidemic that is observed whilst it is still
in its initial stages and is therefore still mimicking the infected households branching

process outlined above. Forn= 1,2, ... andx= 0,1, ...,n−1, let p(n)basic(x|λL) be the
probability that a single-household epidemic (without global infection) in a house-
hold of sizen, started by one initial infective, finishes withx susceptibles remaining.

By using Equation (2.5) of Ball [4],p(n)basic(x|λL) (x= 0,1, ...,n−1) can be determined
using the following triangular system of linear equations:

j

∑
i=1

(

n− i
j − i

)

p(n)basic(n− i|λL)φ(n− j)i =

(

n−1
j −1

)

, j = 1,2, ...,n,

whereφ(θ ) = E[exp(−θTI )] (θ ≥ 0) is the moment-generating function ofTI .

Let a(n)x,y be the number of households of sizen containingx susceptibles andy
infectives at the time when the epidemic is observed. By considering only the house-
holds in which the single-household epidemic has ceased (i.e. wherex< n andy= 0),
one can attempt to estimateλL by maximising the pseudolikelihood function

Lbasic(λL|a) =
nmax

∏
n=1

n−1

∏
x=0

p(n)basic(x|λL)
a
(n)
x,0
. (3.1)

This method of estimation, which we callbasic MPLE, is simple but does not
use all of the information available since households in which infectives are still
present are not used. A similar approach using more of the information available is
to use maximum pseudolikelihood estimation but with censoring on households in
which there are still infectives remaining. Forn= 1,2, ...nmax andx= 0,1, ...,n−1,
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let q(n)basic(x|λL) = ∑x
i=0 p(n)basic(i|λL) be the probability that a household of sizen has

at most xsurvivors from a single household epidemic and letb(n)x = ∑n−x
y=1a(n)x,y be

the number of observed households of sizen containing at least one infective and
exactlyx susceptibles. Such households will have at mostx survivors once the single-
household epidemic is completed. We can now use what is referred to as thecensored
MPLE approach for estimatingλL, with left-censoring for the number of survivors
(i.e. right-censoring for the total size), by maximising

Lcensor(λL|a,b) =
nmax

∏
n=1

n−1

∏
x=0

p(n)basic(x|λL)
a
(n)
x,0q(n)basic(x|λL)

b
(n)
x
.

Figure 1 shows how well the basic and censored MPLE methods perform in
practice. For these histograms, epidemics were simulated in a population containing
1 000 000 households, with estimates ofλL taking place after the 1000th recovery
has occurred. Any epidemic not reaching 1000 recoveries wasconsidered not to
have taken off and was ignored. Estimates ofλL were made for the first 1000 epi-
demics to reach the 1000 recovery milestone. A large population was used to en-
sure that the simulated epidemics were still approximatelymimicking a branching
process at the time of estimation. The household distribution α that was used was
[0.29,0.34,0.16,0.14,0.05,0.02], i.e. nmax = 6 andα1 = 0.29,α2 = 0.34, ...,α6 =
0.02, as suggested by Fraser [18], and is based on UK census datafrom 2001 [34].
The infectious period was chosen to be exponentially distributed, the infectious pa-
rameters wereλG = 1 andλL = 1, and all epidemics were initiated by a single indi-
vidual, chosen uniformly at random from the population, becoming infected.
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Fig. 1: Estimates ofλL, with a true value of 1, from 1000 epidemic simulations using
the basic and censored MPLE methods
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It is clear from Figure 1 that the basic MPLE method severely underestimates
λL. Households in which the epidemic spreads locally are more likely to still be in-
fective at the time of observation than households infectedat the same time but in
which the initial infective does not infect any other individual locally. Consequently,
the households that contain less severe local epidemics aremore likely to be included
in the basic MPLE estimate, causing the observed underestimate ofλL. The censored
MPLE approach appears to offer an improvement but repeated simulations with dif-
ferent parameters showed that this method generally overestimatesλL, as is observed
in Figure 1.

In order to obtain a more accurate estimate ofλL one must understand the infected
households branching process in more detail. The basic ideais the following. If the
approximating branching process does not go extinct, then it grows exponentially at
rater, which depends on the parameters of the households epidemicmodel, and as
time t → ∞ the fraction of completed single household epidemics (in the branch-
ing process), in households of sizen, that leavex members susceptible, converges

to a limit p̃(n)x,0(r|λL) (x= 0,1, ...,n−1). Thus we assume that each observed house-
hold in the data has final size that comes from that distribution and estimateλL by

maximising the pseudolikelihood obtained by replacingp(n)basic(x|λL) by p̃(n)x,0(r̂|λL) in
(3.1), where ˆr is an estimate of the growth rater; see (4.5) in the next section, where

calculation of ˜p(n)x,0(r|λL) is explained.

4 A new method

4.1 A more accurate estimator

Consider the approximating branching process introduced in Section 3.1, in which
individuals correspond to infected households and an individual has one offspring
whenever a global contact emanates from the corresponding single-household epi-

demic. Forn = 1,2, ...,nmax, let E(n)
H denote a typical size-n single-household epi-

demic, started by one member of the household being infectedat time t = 0. For

t ≥ 0, let X(n)
H (t) andY(n)

H (t) be respectively the numbers of susceptibles and in-

fectives inE(n)
H at time t. Let T (n) = {(x,y) : x = 0,1, ...,n− 1; y = 0,1, ...,n−

x} and, for(x,y) ∈ T (n), let p(n)x,y(t|λL) = P(X(n)
H (t) = x, Y(n)

H (t) = y) (t ≥ 0) and

p̃(n)x,y(r|λL) =
∫ ∞

0 e−rt p(n)x,y(t|λL) dt (r ≥ 0). Further, letξ (n)
H be the point process de-

scribing times that global contacts emanate fromE(n)
H , so, for t ≥ 0, ξ (n)

H ([0, t]) is

the number of global contacts that emanate fromE(n)
H during [0, t]. For t ≥ 0 let

µ (n)(t) = E[ξ (n)
H ([0, t])] and note that

µ (n)(dt) = λG ∑
(x,y)∈T (n)

yp(n)x,y(t|λL) dt. (4.1)

Let ξH be a mixture ofξ (1)
H ,ξ (2)

H , ...,ξ (nmax)
H with mixing probabilitiesα̃1, α̃2, ...,

α̃nmax. ThenξH is a point process which describes the ages at which a typicalindi-
vidual reproduces in the approximating branching process.Note that this branching
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process is a general (i.e. Crump-Mode-Jagers) branching process; e.g. Haccouet al
[20], Section 3.3. Fort ≥ 0, let

µ(t) = E[ξH([0, t])] =
nmax

∑
n=1

α̃nµ (n)(t). (4.2)

The branching process has a Malthusian parameterr ∈ (0,∞), given by the unique
solution of the equation

∫ ∞

0
e−rt µ(dt) = 1.

Note that, from (4.1) and (4.2),r satisfies

λG

nmax

∑
n=1

α̃n ∑
(x,y)∈T (n)

yp̃(n)x,y(r|λL) = 1. (4.3)

It is convenient to assume that individuals live forever in the branching process,
though of course an individual ceases to reproduce as soon asthere is no infective in
the corresponding single-household epidemic. Forn= 1,2, ...,nmaxand(x,y)∈T (n),
an individual in the branching process is said to be in state(n,x,y) if it corresponds
to a single size-n household epidemic and there arex susceptibles andy infectives in
that epidemic. LetT = {(n,x,y) : n= 1,2, ...,nmaxand(x,y) ∈T (n)}. Fort ≥ 0 and
(n,x,y) ∈ T , letYn,x,y(t) be the number of individuals in state(n,x,y) at timet in the
branching process. Suppose that the Malthusian parameterr is strictly positive. Then
it is easily verified that the conditions of Theorem 5.4 of Nerman [28] are satisfied and
it follows from that theorem that there exists a random variableW ≥ 0, whereW = 0
if and only if the branching process goes extinct, such that for all (n,x,y) ∈ T ,

e−rtYn,x,y(t)
a.s.
−−→ α̃np̃(n)x,y(r|λL)W ast → ∞. (4.4)

Note that∑(x,y)∈T (n) p(n)x,y(t|λL) = 1, so∑(x,y)∈T (n) p̃(n)x,y(r|λL) = 1/r (n= 1,2, ...,
nmax). Thus, if the branching process does not go extinct, ast → ∞ the proportion of

individuals that are in state(n,x,y) converges almost surely tõαnr p̃(n)x,y(r|λL).
Return to the households epidemic model. Recall that for(n,x,y) ∈ T , the num-

ber of households of sizen that containx susceptibles andy infectives when the epi-

demic is observed is denoted bya(n)x,y . Suppose that an estimate, ˆr say, of the growth
rate r is available. Then, provided the epidemic has taken off and it has been run-
ning for a sufficiently short period of time so that the branching process provides a
good approximation but a sufficiently long time so that the above asymptotic compo-
sition of the branching process is applicable,λL can be estimated by maximising the
normalised pseudolikelihood function

L f ull (λL|a, r̂) =
nmax

∏
n=2

∏
(x,y)∈T (n)

p̃(n)x,y(r̂|λL)
a
(n)
x,y . (4.5)

Note that households of size 1 provide no information aboutλL, so they do not con-
tribute toL f ull , and thatL f ull ,Lbasic andLcansor are not true likelihood functions as
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they assume independence between households. In Section 7 we prove that, under
suitable conditions, the estimatorλ̂L = argmaxL f ull (λL|a, r̂) is strongly consistent
as the number of householdsm→ ∞, i.e. thatλ̂L converges almost surely to the true
valueλL asm→ ∞.

Suppose that estimation is based only on completed single-household epidemics,
as in the basic MPLE method. ThenλL may be estimated by maximising

L f inal(λL|a, r̂) =
nmax

∏
n=2

n−1

∏
x=0

p̃(n)x,0(r̂|λL)
a(n)x,0 .

Observe that subject to mild conditions,

p(n)basic(x|λL) = lim
t→∞

p(n)x,0(t|λL) = lim
r→0+

r p̃(n)x,0(r|λL).

It follows that, under appropriate conditions, the basic MPLE method becomes asymp-
totically unbiased as the growth rate tends down to zero.

A key assumption of the estimator based onL f ull is that the exact state of a house-
hold is observable but this is unlikely to be realised in practice. Suppose that only re-

coveries are observed. Forn= 1,2, ...,nmaxand j = 1,2, ...,n let c(n)j be the observed

number of households of sizen with j recoveries, letA (n)
j = {(x,y) ∈T (n) : x+y=

n− j} and let

q̃(n)j (r|λL) = ∑
(x,y)∈A

(n)
j

p̃(n)x,y(r|λL)/(
1
r
− q̃(n)0 (r|λL)),

whereq̃(n)0 (r|λL) =
n

∑
y=1

p̃(n)n−y,y(r|λL). ThenλL may be estimated by maximising

Lrec(λL|c, r̂) =
nmax

∏
n=2

n

∏
j=1

q̃(n)j (r̂ |λL)
c
(n)
j . (4.6)

4.2 Practicalities and extensions

Estimates ofλL based upon theL f ull andLrec pseudolikelihoods are both dependent

on knowingp̃(n)x,y(r|λL) for (n,x,y)∈T , which is not practical in many circumstances.
It is, however, possible if we restrict ourselves to the Markovian case, in which the
infectious periodTI is exponentially distributed, by following a similar argument to
that used in Section 4 of Pelliset al. [29] to calculate real-time growth rates. Under

these circumstances, the single-household epidemicE(n)
H = {(X(n)

H (t),Y(n)
H (t)) : t ≥

0} is a continuous-time Markov chain (CTMC). Figure 2 shows thetransition rates

of E(3)
H as a CTMC and also assigns labels to each state(x,y) ∈ T (3). The exact

assignment of these state labels is unimportant, however itis convenient for the initial
state(n−1,1) to be assigned as state 1 for a size-n household. Note that the state

spaceT (n) of E(n)
H has sizes(n) = |T (n)| = n(n+ 3)/2. Let Q(n)(λL) = [q(n)i j (λL)]
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Fig. 2: Graphical representation of a single-household epidemic for households of
size 3 as a CTMC, where(x,y) denotes the household state and state labels (shown
as superfixes) for the CTMC are assigned as described. The values on the arrows
represent transition rates between states in the single-household epidemic.

be thes(n)× s(n) transition-rate matrix ofE(n)
H , using the assigned labelling. Thus, if

i 6= j thenq(n)i j (λL) is the transition rate ofE(n)
H from the state having labeli to the

state having labelj, andq(n)ii (λL) =−∑ j 6=i q
(n)
i j (λL). Note that if a labeli corresponds

to a household state(x,0), thenq(n)i j (λL) = 0 for all j. If k is the label assigned to state

(x,y) ∈ T (n) then p(n)x,y(t|λL) = (etQ(n)(λL))1k, whereetQ(n)(λL) = ∑∞
l=0(tQ

(n)(λL))
l/l !

denotes the usual matrix exponential. Hence,

p̃(n)x,y(r|λL) =

∞
∫

0

e−rt (etQ(n)(λL))1k dt = ([rIs(n) −Q(n)(λL)]
−1)1k,

whereIs(n) is thes(n)× s(n) identity matrix.
The estimating procedure described in Section 4.1 assumes that the distribution

of the infectious period is known. The theory may be extendedeasily to the setting
where a parametric form is assumed for the infectious perioddistribution, with un-
known parameters that need to be estimated from the data. E.g. if the infectious period
is assumed to follow an exponential distribution with rateγ, then the preceding the-

ory goes through withp(n)x,y(t|λL) replaced in an obvious fashion byp(n)x,y(t|λL,γ) and
(λL,γ) being estimated by maximising the appropriate normalised pseudolikelihood
function. Note that for final outcome data it is impossible toestimate bothλL andγ,
since the final outcome distribution is invariant to rescaling of time. However, that is
not the case in an emerging epidemic setting, as the exponential growth rate is clearly
time-scale dependent.

The assumption of exponentially distributed infectious periods can be relaxed by
using the phase method (e.g. Asmussen (p.71-78) [2]). For example, aJ-stage Erlang
distribution for the infectious period can be accommodatedby splitting the infec-
tious period intoJ stages having independent exponentially distributed durations. The
Markov property is maintained by expanding the state space of a single-household
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epidemic to include the number of infectives in each of theJ stages. This can lead
to an appreciable increase in the size ofT (n). One can also extend the model to an
SEIR (susceptible→ exposed→ infectious→ recovered) model by introducing a
latent period. In the simplest case, both infectious and latent periods follow expo-
nential distributions, in which case the state space of a single-household epidemic
is extended to include the number of exposed (i.e. latent) individuals, but again the
phase method can be used to accommodate more general distributions.

The methodology can be extended to allow the local contact rate to depend on

household size. Forn= 1,2, ...,nmax, let λ (n)
L denote the local contact rate in a house-

hold of sizen. The, provided there are enough households of each size in the sample,

(λ (2)
L ,λ (3)

L , . . .λ (nmax)
L ) can be estimated jointly, e.g. by replacingλL by λ (n)

L in (4.5).

Alternatively, one can assume a specific form forλ (n)
L , Cauchemezet al. [15] use

λ (n)
L = λL/n for influenza, and estimate its unknown parameter (hereλL) in the obvi-

ous fashion.

5 Application to the Reed-Frost model

5.1 The Reed-Frost model

Under the Reed-Frost model, the latent period is assumed to have a constant duration,
which without loss of generality can be taken to be one unit oftime, and the infectious
period is reduced to a single point in time. Consider an epidemic initiated by a small
number of individuals being infected at timet = 0 among a population having the
same structure as that outlined in Section 2. Fort = 0,1, . . . , individuals infected at
time t become infectious at timet +1. Different infectives behave independently of
each other. Consider an individual that is infected at timet. At time t + 1 it makes
global infectious contact with any given susceptible in thepopulation with probability
pG = 1−exp(−µG/N) and, additionally and independently, local infectious contact
with any given susceptible in its household with probability pL. Moreover, contacts
between this infectious individual and distinct susceptible individuals are mutually
independent. Any susceptible individual that is contactedby at least one infective at
time t is infected and becomes infectious at timet +1. The process continues until
there is no infective left in the population.

Again, we consider the case of an emerging epidemic, so it is assumed that,
when the epidemic is observed, the proliferation of infected households still mim-
ics a discrete-time branching process. Note that in the limit as the population size
N → ∞, the mean number of global contacts made by a typical infective isµG. Note
also that upon infection a household of sizen is in state(n,n−1,1) and that in sub-
sequent generations that household contains at least one recovered individual. We
assume that it is possible to observe the geometric growth rate ρ(pL,µG) of the ap-
proximating branching process. The parameterµG increases withρ(pL,µG) for fixed
pL, so for any estimate ofpL, an estimate forµG is pre-determined since it is assumed
thatρ(pL,µG) can be observed directly.
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5.2 EstimatingpL

The local contact probabilitypL can be estimated by approximating the early stages
of a Reed-Frost epidemic with a discrete-time multitype branching processS. Define
the type space ofSasTRF = {(n,n−1,1) : 1≤ n≤ nmax}∪

⋃nmax
n=1{(n,x,y) : x≥ 0,y≥

1,x+ y< n} and label the elements ofTRF as 1,2, ...,k wherek = |TRF| = nmax+

∑nmax
n=2

n(n−1)
2 = nmax(n2

max+ 5)/6 . The type space includes all possible household
states where infection is still present.

Let M be the mean matrix ofS on TRF, so the elementmi j is the expected
number of type-j individuals that a typical type-i individual gives birth to upon death.
Under the Reed-Frost model, a household in state(n,x,y) gives birth to an expected
number ofα̃n′µG households in state(n′,n′−1,1), for n′ = 1,2, ...,nmax, as a result
of global infectious contacts, and to an expected number of

(x
z

)

(1− (1− pL)
y)z(1−

pL)
y(x−z) households in state(n,x− z,z), for z= 0,1, ...,x, from local contacts. Let

Yt = (Yt1,Yt2, ...,Ytk) denote the number of individuals of each type fromTRF alive
aftert generations ofSand letρ(pL,µG) be the maximal eigenvalue ofM . Assume
thatρ(pL,µG)> 1, so the branching process is supercritical. Kesten and Stigum [24]
show that ifu(pL,µG) is the left-eigenvector associated withρ(pL,µG), normalised
so that its components are non-negative and sum to one, then

ρ(pL,µG)
−t
Yt

a.s.
−−→Wu(pL,µG) ast → ∞, (5.1)

whereW is a non-negative random variable such thatW = 0 if and only ifSbecomes
extinct. The eigenvectoru(pL,µG) therefore gives the proportions of individuals of
each type inS ast → ∞, conditional uponS not going extinct. It follows from (5.1)
that

ρ(pL,µG)
−t

t

∑
t′=1

Y
′

t
a.s.
−−→

ρ(pL,µG)

ρ(pL,µG)−1
Wu(pL,µG) ast → ∞. (5.2)

LetZt = (Zt1,Zt2, ...,Ztk), whereZti denotes the number of single-household epi-
demics that terminate beforet generations of the epidemic, for which the last active
household state wasi ∈ TRF. A household in state(n,x,y) at timet ′ has probability
(1− pL)

xy of containing no infectives at timet ′+1. Hence, if(n,x,y) is the household
state associated with a type-i individual inS, it follows from (5.2) and the strong law
of large numbers that, fori = 1,2, ...,k,

ρ(pL,µG)
−tZti

a.s.
−−→W

(1− pL)
xy

ρ(pL,µG)−1
ui(pL,µG) ast → ∞.

Letu(n,x,y) = ui wherei is the label of a type-(n,x,y) individual inS. By noting that
any single-household epidemic finishing the generation after it was in state(n,x,y)
finishes with x susceptibles remaining, define the function
pRF f ull(n,x,y|pL,µG) as follows:

pRF f ull(n,x,y|pL,µG) =











Ku(n,x,y) if y≥ 1,

K
n−x−1

∑
y=1

(1− pL)
xyu(n,x,1)(pL,µG)

ρ(pL,µG)−1
if y= 0,
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whereK is chosen such that

nmax

∑
n=1

[

(n−1

∑
x=0

n−x−1

∑
y=0

pRF f ull(n,x,y|pL,µG)
)

+
(

pRF f ull(n,n−1,1|pL,µG)
)

]

= 1.

One can then estimatepL by performing maximum pseudolikelihood estimation in
exactly the same manner as described usingL f ull in Section 4.1. Note that this es-
timation procedure can be adapted to the case where susceptibles and infectives are
indistinguishable, using the same method as described forLrec in Section 4.1.

6 Numerical Illustrations

6.1 Methods of estimation

We illustrate applications of the preceding theory using simulation studies with pa-
rameter choices loosely based on Fraser’s [18] analysis of varicella data. Simula-
tions are performed on a population ofm= 10 000 households with distribution
α= [0.13,0.30,0.23,0.18,0.09,0.07]. This distribution is based on the 1961 UK cen-
sus data [34] and contains a higher proportion of larger households than the 2001 dis-
tribution used previously, meaning that local infectious contacts should have a greater
effect on the simulated epidemics. The population size is chosen so that it is small
enough to represent a realistic population cluster (e.g. a town) but large enough so
that there is sufficient data to estimateλL whilst the epidemic is still in its emerg-
ing phase. For the sake of simplicity, an exponentially distributed infectious period
with rate 1 is used. Fraser suggests having a within-household susceptible-infectious
escape probability of 0.39, as reported by Hope-Simpson [22], and that infected in-
dividuals be expected to infect 1.21 susceptibles outside of their household. This
implies parameter values ofλG = 1.21, λL = 1.565 (sinceφ(1.565) = 0.39, where
φ(θ ) =E[exp(−θTI )] = (1+θ )−1 andr = 1.762 (recall (4.3)) in the continuous-time
case andµG= 1.21, pL = 0.61(= 1−0.39), ρ(pL,µG)= 2.248 under the Reed-Frost
model. Unless stated otherwise, growth rates are estimatedby fitting a straight line
to the logarithm of the number of recoveries, as a function oftime, using the polyfit
function in MATLAB. The first 20 recoveries are ignored when estimatingr, to en-
able the exponential growing phase of the epidemic to settlein. Note that, while this
is the most common method to estimater, other methods are also considered in the
literature; see, e.g. Maet al. [27].

For illustrative purposes, estimates ofλL in this subsection are given in terms of
the secondary attack rate (SAR), as defined by Longini and Koopman [26]. The SAR
is the probability that an infective infects a given household member, expressed as a
percentage, and is given by 100(1−φ(λL)). (Note that with the continuous-time and
discrete-time models, matching the SAR andλG results in different growth rates.)
The SAR is used since the variance of estimates ofλL, under any of the methods
outlined in this paper, increases greatly as the true value of λL increases, whereas
the variance of the SAR estimates is closer to being constantwhatever its true value.
Note that for a given distribution ofTI , SAR strictly increases withλL.
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It is shown in Sections 3 and 4 that an emerging households epidemic can be
approximated by a Crump-Mode-Jagers branching process (CMJBP), however there
is no indication as to when an epidemic can still be considered to be in its emerg-
ing phase. Figure 3 shows estimates of the SAR throughout thelifetime of a single
simulated SIR epidemic using the parameters outlined above. Estimations ofλL (and
hence of the SAR using the above formula) were made at regularintervals through-
out the epidemic using the basic MPLE, censored MPLE and full-and-recovery-
pseudolikelihood estimation methods (where the latter twouse (4.5) and (4.6) re-
spectively), and an additional estimate was made using the pseudolikelihood method
of Ball and Lyne (2014) [10] (c.f. Section 5.1 of Ballet al. [11]) by considering the
distribution of susceptible individuals in households of all sizes at theendof an epi-
demic. This is referred to as thefinal-sizemethod of estimation. Note that for the
basic MPLE method, it takes some time before the SAR is estimated to be any value
other than zero. This can be explained by the reliance of thismethod on household
epidemics being completed since the basic MPLE method will only pick up any trace
of local infectivity when a completed single-household epidemic with more than one
recovered individual is observed. As would be expected, thefinal-size method ap-
pears to tend to the true SAR value ast → ∞. The initially large estimates from the
final size data can be explained by noting that few householdsare infected at this
time but that recoveries are clustered within households. The former point suggests
a very low value ofλG (considering that the estimator assumes that the epidemic is
complete), so the estimate of the SAR is large to account for the clustering of recov-
ered individuals. Note that the recovery-pseudolikelihood method estimates the SAR
to be 100% as the epidemic approaches completion. In the epidemic outlined above,
with growth rater = 1.762 but with an SAR of 100%, appreciably fewer than half
of all infected households of size 3 and above are expected tocontain only recovered
individuals during the emerging phase. Once the true epidemic (with an SAR of 61%)
is completed, appreciably more than 80% of households of size 3 and above in the
entire population are expected to contain only recovered individuals. This suggests
that there is a threshold, after the epidemic has stopped approximating a CMJBP,
when the number of recovered individuals in infected households exceeds the expec-
tations of even the maximum possible SAR in the recovery-pseudolikelihood estima-
tion method, hence this method will continue to give an MPLE for the SAR as 100%
for the remainder of the epidemic.

Figure 3 shows that once an epidemic has had sufficient time toestablish itself,
there is a window when the both the full and recovery CMJBP methods appear to give
a good estimate of the SAR. Moreover, the length of this window is roughly the same
for both CMJBP methods, although the recovery method gives aless reliable estimate
owing to it using less information. This is confirmed in Figure 4 which shows kernel
density estimates of the distribution of the estimator of SAR for both CMJBP methods
from 1000 simulations of the epidemic outlined above. The plots marked ‘γ known’
use the methodology described in Section 4.1 and those marked ‘γ unknown’ assume
thatγ is also estimated from the data, as described in Section 4.2.Estimations of the
SAR were made from each simulation after 500 recoveries wereobserved for reasons
outlined below. Irrespective of whether or notγ is also estimated, both the full and
recovery methods yield estimates of the SAR that are centredbroadly around the true
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Fig. 3: Estimates of the SAR (true value 61%) through time fora single SIR house-
holds epidemic. The four estimation methods outlined earlier in the paper are shown
along with estimates of the SAR using the final-size method.

value of 61% but the recovery method yields estimates havinga far greater variance.
The variance of the estimates is greater whenγ is assumed unknown than when it is
assumed known but the difference is appreciably smaller than that between the full
and recovery methods. The inset of Figure 4 shows a scatter plot of the estimates
of (SAR,γ) using the full-pseudolikelihood CMJBP method, which indicates that the
estimates of the SAR andγ are positively correlated.

Repeated simulations using different population sizes yielded very similar results
to those seen in Figure 3, in that there appears to be a window once the epidemic
has established itself when a households SIR epidemic can still be considered to be
in its emerging phase and the full-pseudolikelihood estimate is relatively accurate.
The start of this window corresponds to when the the asymptotic behaviour of the
approximating CMJBP kicks in, the timing of which is independent of the total pop-
ulation sizeN, providedN is sufficiently large. Further simulations suggested that
this window ends when approximatelyN2/3 recoveries have occurred, after which
the CMJBP approximation of the households epidemic breaks down. The time taken
for N2/3 recoveries to take place depends on the severity of the epidemic and the
population size. Note that Barbour and Utev [12] prove that ahomogeneously mix-
ing Reed-Frost model can be closely approximated by a branching process up until
orderN2/3 individuals have been infected.

The above points are illustrated in Figure 5 which shows the mean squared error
(MSE) of estimates of the SAR, using the full-pseudolikelihood method and assum-
ing thatγ (= 1) is known, throughout the emerging stages of 1000 simulated epi-
demics among populations with differing numbers of households but with the same
population structureα, growth-rater and SAR as given above. It is assumed that
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the valuer is known, in order that the figure illustrates only when the distribution of
household states in an emerging epidemic conforms to its equivalent branching pro-
cess. It can be seen that it takes approximately 50 recoveries to occur (regardless of
population size) for the MSE to settle to a reasonable value due to the high variance of
SAR estimates when too few households have been infected andthe epidemic is yet
to establish itself in the population. The length of this window then clearly increases
with population size as a result of a higher percentage of fully susceptible households
still being available at this stage of the epidemic. For the population considered in
most of the numerical illustrations, i.e. consisting of 10 000 households, it appears
appropriate to estimate the SAR after approximately 500 recoveries have occurred.

We now consider estimation ofpL in the Reed-Frost model. A single-household
epidemic in a household of sizen can last for at mostn generations. Thus, under
the assumption that all global contacts are with individuals in previously uninfected
households, if the households epidemic is observed in thekth generation, one can
estimatepL by using an adaptation of the basic MPLE method from the continuous
time case as follows. If one wishes to make the estimate in thekth generation then
the single-household epidemics in all households with at least one recovery in the
(k−nmax+1)th generation are certain to have been completed. One can then estimate
pL by using only the latter households and considering the final-size distributions of
single-household epidemics under the Reed-Frost model to perform the basic MPLE
method of estimation in the same manner as before. This circumvents the problem of
uncompleted epidemics in households but at the expense of ignoring the information
aboutpL contained in those single-household epidemics.

Figure 6 gives kernel density estimates ofpL (true value 0.61) for 1000 sim-
ulations of Reed-Frost epidemics with parameters as outlined at the beginning of
this section. Estimates were made in the first generation at which 1000 recoveries
were observed using the full-pseudolikelihood and recovery-pseudolikelihood meth-
ods (i.e. both with and without the ability to distinguish between susceptibles and
infectives) and by using the adapted basic MPLE method outlined above. Note that
all three methods appear to give estimates that are centred roughly around the true
value of pL, however, the adapted basic MPLE method estimates have a farlarger
variance than the other estimates, suggesting that the methods of estimation outlined
in Section 4.1 are preferable, regardless of whether or not infectives are distinguish-
able. Estimates were made after 1000 recoveries had been observed rather than the
500 recoveries used in the continuous-time case, owing to the time it takes for 500
recoveries to occur potentially beingnmax−1= 5 generations.

6.2 Relationship between parameters of the model and bias ofthe basic and
censored MPLE methods

In Section 4 it is established that the new method of estimatingλL in an emerging epi-
demic is unbiased, given an infinite population and assumptions regarding the time
of estimation. It is also seen throughout this paper that thebasic MPLE and censored
MPLE provide inaccurate estimates ofλL for various emerging epidemics. We now
look to establish the extent of the bias of these two methods and how the bias is
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Fig. 6: Kernel density estimates of the distribution of the estimator ofpL (true value
0.61) based on 1000 simulations of Reed-Frost type epidemics;see text for details

affected by various parameters of an epidemic. This is achieved by considering “per-
fect” household data,a, from an emerging epidemic (as determined by its CMJBP
or multitype branching process approximation) and using these data to estimateλL

(or pL if the model is Reed-Frost) using the basic and censored MPLEmethods. We
return to estimatingλL rather then theSARfor this section as theSARestimations
provide no illustrative advantage in this asymptotic context when estimators have
a variance of 0. Households data are considered to be perfectfor an emerging epi-
demic in continuous-time with paramertersλL andr, if the proportion of households

in state(n,x,y) is exactlyα̃nr p̃(n)x,y(r|λL) for all (n,x,y) ∈ T . (Note that with per-

fect data,λ̂L = argmax̃l (∞)
f ull , see equation (7.6) in Section 7.) Similarly, perfect data

for an emerging Reed-Frost epidemic with parameterspL andµG is achieved when
the proportion of household in state(n,x,y) is exactlypRF f ull(n,x,y|pL,µG) for all
(n,x,y) ∈TRF. Note that in both cases, the distribution of household states represent-
ing perfect data is also dependent on the population structureα= (α1,α2, ...,αnmax).

6.2.1 Effect of local contact rate

Figure 7 illustrates the effect ofλL on the bias of the basic and censored MPLE
methods by considering estimates ofpL for emerging Reed-Frost epidemics with ge-
ometric growth rateρ = 2.248 and population distributionα= [0.13,0.30,0.23,0.18,
0.09,0.07], as given in Section 6.1 but with different local contact probabilities. Note
that given perfect data, both estimates converge to the truevalue of pL as pL tends
to 0 or 1. This can be easily explained by noting that all completed single-household
epidemics in households of sizen will have exactly 1 recovery ifpL = 0 and ex-
actly n recoveries ifpL = 1, implying that the issue of less severe single-household
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Fig. 7: Estimates of different valuespL assuming perfect data in emerging Reed-Frost
type epidemics,ρ = 2.248, using the basic and censored MPLE methods

epidemics being more likely to be included in the estimationdata becomes irrelevant
since all single-household epidemics are of the same severity. The basic and censored
MPLE methods appear to be at their most biased in the region 0.3< pL < 0.6 when
the proportion of recoveries from single-household epidemics in households of sizes
3 and 4 (which make up a significant portion of the population)are distributed in a
relatively uniform manner.

6.2.2 Effect of household size

Figure 8 gives two plots showing estimates of λL in
continuous-time epidemics with real-time growth rater = 1.762 assuming perfect
data for populations of equal sized households from 2 to 20. The upper plot con-
siders the case whereλL = 1.565, independent of household size. In this plot the
basic MPLE estimate considerably underestimatesλL regardless of household size
but the bias appears to get marginally worse as household size increases. This can
be attributed to the most severe single-household epidemics taking longer in larger
households and hence fewer of the more severe epidemics are completed by the time
of estimation in larger households. The censored MPLE faresbetter however and
appears to converge towards the true value ofλL as household size increases. Since
λL is a person-to-person contact rate, larger households are far more likely to have
severe epidemics than smaller households with the sameλL, since the number of lo-
cal contacts in a household increases quadratically withn. Therefore, as household
size increases, the proportion of recoveries from single-household epidemics with
the same local contact rate becomes less uniform, leading toless bias in the censored
MPLE estimate (as observed in Figure 7).
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Fig. 8: Estimates ofλL assuming perfect data for emerging epidemics, withr = 1.762,
among populations with equal household sizes using the basic and censored MPLE
methods. The upper plot takesλL = 1.565 for all household sizes. The lower plot

adopts the modelλ (n)
L = λL/n, wheren is household size andλL = 6.75

The lower plot of Figure 8 uses the same real-time growth rateand population
distributions but assumes that the local infection rate depends on household size,

specifically thatλ (n)
L = λL/n with λL = 6.75 (see Section 4.2). This value was chosen

as it gives a value ofλG = 1.21 whenr = 1.762 from the population distributionα as
used previously in this section. Here it can be seen that the basic and censored MPLE
approaches both become more biased as household size increases. In the basic case
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this is for the same reasons as before, whereas in the censored case, the additional
local contacts that come from an increased household size are compensated by the
reduction of the local contact rate, leading to the relatively uniform distribution of
recoveries in a single household-epidemic which causes bias.

6.2.3 Effect of growth rate

Figure 9 shows estimates ofλL in emerging epidemics withλL andα as defined in
Section 6.1. It is clear from the plot that both the basic and censored MPLE estimates
converge to the true value ofλL asr → 0, as is proved in Section 4.1.
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Fig. 9: Estimates ofλL assuming perfect data in emerging epidemics with different
real-time growth ratesr using the basic and censored MPLE methods

7 Strong consistency of estimators

In this section we consider the asymptotic behaviour of the estimators ofλL described
in Section 4 as the number of households in the population tends to infinity. Specifi-
cally we show that, under suitable conditions, the estimators are strongly consistent,
conditional upon the epidemic taking off.

Consider a sequence of epidemicsE(m) (m= 1,2, ...), indexed by the number of

households in the population. Form= 1,2, ... andn = 1,2, ...,nmax, let α(m)
n be the

proportion of households inE(m) that have sizen. The epidemicE(m) is as defined in
Section 2 and has one initial infective, who is chosen uniformly at random from the
population. The infective parameters(λL,λG) and the infectious period distribution
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are all assumed to be independent ofm, as is the maximum household sizenmax. It is

assumed thatα(m)
n → αn asn→ ∞ (n= 1,2, ...,nmax).

Let E(∞) denote the general branching process, introduced in Section 3 and anal-
ysed further in Section 4, which approximates the epidemicE(m) for suitably largem.
Recall that for(n,x,y) ∈T , the number of individuals inE(∞) having state(n,x,y) at

time t is denoted byYn,x,y(t). Form= 1,2, ..., (n,x,y) ∈ T andt ≥ 0, letY(m)
n,x,y(t) de-

note the number of size-n households inE(m) that havex susceptibles andy infectives
at timet. Let TL = {(n,x,y) ∈ T : y≥ 1}. For t ≥ 0, letY(t) = ∑(n,x,y)∈TL

Yn,x,y(t)

denote the number of “live” individuals inE(∞) at timet. Recall thatr denotes the
Malthusian parameter ofE(∞).

Theorem 7.1 Suppose that r> 0. Then there is a probability space(Ω ,F ,P) on
which are defined a sequence of epidemics E(m) (m ≥ 1) and the approximating
branching process E(∞) satisfying the following property. Let A= {ω ∈ R :
lim
t→∞

Y(t,ω) = 0} denote the set on which the branching process E(∞) goes extinct.

Then forP-almost allω ∈ A∁ and any c∈ (0, 1
2r−1),

sup
0≤t≤clogm

max
(n,x,y)∈T

|Y(m)
n,x,y(t,ω)−Yn,x,y(t,ω)|= 0 (7.1)

for all sufficiently large m.

Proof For m= 1,2, ..., let N(m) = m∑nmax
n=1 nα(m)

n denote the total number of individ-
uals in the population among whichE(m) is spreading. Let(Ω ,F ,P) be a proba-
bility space on which are defined the following independent sets of random quan-

tities: (i) a realisation of the branching processE(∞); (ii) χ (m)
k (m= 1,2, ...; k =

1,2, ...), where for eachm, χ (m)
1 ,χ (m)

1 , ... are independent and uniformly distributed
on{1,2, ...,N(m)}.

For m= 1,2, ..., a realisation of the early stages of the epidemicE(m) can be de-
fined on(Ω ,F ,P) as follows. Label the individuals in themth population 1,2, ...,N(m).

The initial infective inE(m) has a label given byχ (m)
1 and corresponds to the ances-

tor in the branching processE(∞). Births of individuals inE(∞) correspond to global
contacts being made inE(m). For k = 1,2, .., the individual contacted inE(m) corre-

sponding to thekth birth in E(∞) has a label given byχ (m)
k+1. If the household in which

χ (m)
k+1 resides has not been infected previously, thenχ (m)

k+1 becomes infected inE(m)

and initiates a new single-household epidemic inE(m) whose course and subsequent
global contacts is given by the life-history of the(k+1)th individual in E(∞). If the

household in whichχ (m)
k+1 resides has been infected previously then the construction

of E(m) needs modifying but such details are not required for the present proof.

Form= 1,2, ..., let M(m) be the smallestk≥ 2 such thatχ (m)
k belongs to the same

household asχ (m)
l for somel = 1,2, ...,k− 1, and letM̂(m) be a random variable,

taking values in 2,3, ..., having survivor function

P(M̂(m) > k) =
k−1

∏
i=1

(1− inmax/N(m)) (k= 2,3, ...).
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Note thatM(m) is stochastically greater than̂M(m), since the maximum household size

is nmax, and (c.f. Aldous [1], page 96)m−1/2M̂(m) D
−→ M̂ asm→ ∞, where

D
−→ denotes

convergence in distribution and̂M has densityf (x)= nmaxxµ−1
H exp(−nmaxµ−1

H x2/2) (x>
0), with µH = ∑nmax

n=1 nαn being the mean household size. (Note thatm−1N(m) → µH

asm→ ∞.)
By the Skorokhod representation theorem, the random variables M̂, M(m) and

M̂(m) (m= 1,2, ...) may be defined on a common probability space so thatP(M(m) ≥

M̂(m), m= 1,2, ...) = 1 andm−1/2M̂(m) a.s.
−−→ M̂ asm→ ∞. Further, that probability

space may be augmented to carry random variablesχ (m)
k (m= 1,2, ...; k = 1,2, ...)

distributed as above and consistent withM(m) (m= 1,2, ...). Thus we may assume
that the random variableŝM(m) (m= 1,2, ...) andM̂ are also defined on(Ω ,F ,P)
and that there existsB∈ F with P(B) = 1, such that, for allω ∈ B,

M(m)(ω)≥ M̂(m)(ω) and m−1/2M̂(m)(ω)→ M̂(ω) asm→ ∞. (7.2)

For t ≥ 0, let T(t) be the number of births inE(∞) during [0, t], including the
ancestor. ThenT(t) = ∑(n,x,y)∈T Yn,x,y(t) and it follows from (4.4) thate−rt T(t)

a.s.
−−→

r−1W ast → ∞. Recall thatW = 0 if and only if the branching process goes extinct.
Thus there existsC∈ F , with C⊆ Ac andP(C) = P(Ac), such that for allω ∈C,

e−rt T(t,ω)→ r−1W(ω) ast → ∞. (7.3)

Let ω ∈ B∩C andc∈ (0, 1
2r−1). Then it follows from (7.3) thatT(clogm,ω) <

2mrcr−1W(ω) for all sufficiently largem. Also, (7.2) implies thatM(m)(ω) >
1
2m1/2M̂(ω) for all sufficiently largem. Hence, sincerc < 1/2, for all sufficiently
largem, every birth inE(∞)(ω) during (0,clogm] corresponds to a global contact
with an uninfected household inE(m)(ω) and (7.1) follows sinceP(B∩C) = P(Ac).

�

We turn now to estimation ofλL. Suppose that the epidemicE(m) is observed at
timet(m), where the sequence(t(m)) satisfies (i)t(m) → ∞ asm→ ∞, (ii) t(m) ≤ clogm
for all sufficiently largem, for somec≤ (2r)−1. Suppose also that an estimator ˆr(m)

of the growth rater is available such that ˆr(m) a.s.
−−→
Ac

r asm→ ∞ where
a.s.
−−→
Ac

means

convergence for P-almost allω ∈ Ac. It is easily verified that one such estimator is
r̂(m) = log[(T(m)(t(m))/T(m)(t(m)/2))]/(t(m)/2), whereT(m)(t) is the total number of

households that have been infected inE(m) by timet. Let λ̂ (m)
L, f ull denote the estimator

obtained by maximising the functionL f ull (λL|a, r̂(m)) defined at (4.5). For ease of
exposition, we assume that all infected households are observed, so, in our present

notation,a(m)
x,y = Y(m)

n,x,y(t(m)) for (n,x,y) ∈ T . The following theorems are easily ex-
tended to the situation when only some infected households are observed; of course,
the number of observed households must tend to infinity asm→ ∞ and the sampling
mechanism must be independent of disease progression within households. In these
theorems, it is convenient to denote the true value ofλL by λ̄L.
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Theorem 7.2 Under the conditions of Theorem 7.1,

λ̂ (m)
L, f ull

a.s.
−−→
Ac

λ̄L as m→ ∞.

Proof First note that from (4.5)

λ̂ (m)
L, f ull = argmax̃l (m)

f ull (λL|Y
(m), r̂(m)), (7.4)

where

l̃ (m)
f ull (λL|Y

(m), r̂(m)) =W−1e−rt (m)
nmax

∑
n=2

∑
(x,y)∈T (n)

Y(m)
n,x,y(t

(m)) log p̃(n)x,y(r̂
(m)|λL).

Observe that,under the conditions satisfied by(t(m)), Theorem 7.1 and (4.4) imply
that, for all(n,x,y) ∈ T ,

W−1e−rt (m)
Y(m)

n,x,y(t
(m))

a.s.
−−→
Ac

α̃np̃(n)x,y(r|λ̄L) asm→ ∞. (7.5)

Hence, since ˆr(m) a.s.
−−→
Ac

r asm→ ∞, we have that for anyλL ∈ (0,∞),

l̃ (m)
f ull (λL|Y

(m), r̂(m))
a.s.
−−→
Ac

l̃ (∞)
f ull (λL|r) asm→ ∞,

where

l̃ (∞)
f ull (λL|r) =

nmax

∑
n=2

α̃n ∑
(x,y)∈T (n)

p̃(n)x,y(r|λ̄L) log p̃(n)x,y(r|λL). (7.6)

Standard arguments, (e.g. Silvey [30], page 75) show that, for n = 2,3,

...,nmax, the functiongn(λL)=∑(x,y)∈T (n) p̃(n)x,y(r|λ̄L) log p̃(n)x,y(r|λL) has a unique global

maximum atλ̄L. Hence, as a function ofλL ∈ (0,∞), l̃ (∞)
f ull (λL|r) has a unique global

maximum atλ̄L.
Fix 0< a< λ̄L < b< ∞. Then

max
a≤λL≤b

|l̃ (m)
f ull (λL|Y

(m), r̂(m))− l̃ (∞)
f ull(λL|r)| ≤

nmax

∑
n=2

∑
(x,y)∈T (n)

max
a≤λL≤b

g(m)
n,x,y(λL) (7.7)

where

g(m)
n,x,y(λL) = |W−1e−rt (m)

Y(m)
n,x,y(t(m)) log p̃(n)x,y(r̂(m)|λL)− α̃np̃(n)x,y(r|λ̄L) log p̃(n)x,y(r|λL)|.

Now
g(m)

n,x,y(λL)≤ ĝ(m)
n,x,y(λL)+ ǧ(m)

n,x,y(λL), (7.8)

where

ĝ(m)
n,x,y(λL) =W−1e−rt (m)

Y(m)
n,x,y(t(m))| log p̃(n)x,y(r̂(m)|λL)− log p̃(n)x,y(r|λL)|

and

ǧ(m)
n,x,y(λL) = |{W−1e−rt (m)

Y(m)
n,x,y(t

(m))− α̃np̃(n)x,y(r|λ̄L)} log p̃(n)x,y(r|λL)|.
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Using (7.5), for all(n,x,y) ∈ T ,

max
a≤λL≤b

ǧ(m)
n,x,y(λL)

a.s.
−−→
Ac

0 asm→ ∞. (7.9)

Further, for anyλL > 0 andr, r ′ > 0,

|p̃(n)x,y(r|λL)− p̃(n)x,y(r ′|λL)| ≤

∫ ∞

0
|e−rt −e−r ′t |dt = |r − r ′|/(rr ′), (7.10)

so, since logx is uniformly continuous on any bounded subinterval of(0,∞) and
r̂(m) a.s.

−−→
Ac

r asm→ ∞, it follows using (7.5) that, for all(n,x,y) ∈ T ,

max
a≤λL≤b

ĝ(m)
n,x,y(λL)

a.s.
−−→
Ac

0 asm→ ∞. (7.11)

Combining (7.4) - (7.9) yields

max
a≤λL≤b

|l̃ (m)
f ull (λL|Y

(m), r̂(m))− l̃ (∞)
f ull (λL|r)|

a.s.
−−→
Ac

0 asm→ ∞, (7.12)

whence, sincẽl (∞)
f ull (λL|r) has a unique global maximum atλ̄L,

argmax
a≤λL≤b

l̃ (m)
f ull (λL|Y

(m), r̂(m))
a.s.
−−→
Ac

λ̄L asm→ ∞. (7.13)

To complete the proof we explore the behaviour ofl (m)
f ull (λL|Y

(m), r̂(m)) asλL ↓ 0
andλL ↑∞. LetX denote the time of the first point in(0,∞) of a homogeneous Poisson

process having rate(n−1)λL. Thenp(n)n−2,2(t|λL)≤ P(X ≤ t) = 1−e−(n−1)λLt , so

p̃(n)n−2,2(r|λL)≤

∫ ∞

0
(1−e−(n−1)λLt)e−rt dt ≤ (n−1)λL/r2. (7.14)

For all n, we have ˜p(n)x,y(r̂(m)|λL)≤ 1/r̂(m) for all (x,y) ∈ T (n), so

log p̃(n)x,y(r̂
(m)|λL)+ logr̂(m) ≤ 0. (7.15)

Let

l (m)
∗ (λL|Y

(m), r̂(m)) =W−1e−rt (m)
nmax

∑
n=2

∑
(x,y)∈T (n)

Y(m)
n,x,y(t

(m))(log p̃(n)x,y(r̂
(m)|λL)+ logr̂(m))

= l (m)
f ull (λL|Y

(m), r̂(m))+W−1e−rt (m)
nmax

∑
n=2

∑
(x,y)∈T (n)

Y(m)
n,x,y(t

(m)) log r̂(m),

and, recalling (7.4), note thatλ̂ (m)
L, f ull = argmaxl (m)

∗ (λL|Y
(m), r̂(m)).

Fix λ0 > 0. Then (7.14) and (7.15) imply that, for allλL ∈ (0,λ0],

l (m)
∗ (λL|Y

(m), r̂(m))≤W−1e−rt (m)
Y(m)

n,n−2,2(t
(m))(log(n−1)+ logλ0− logr̂(m))

a.s.
−−→
Ac

α̃np̃(n)n−2,2(r|λ̄L)[log(n−1)+ logλ0− logr]

(7.16)
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asm→ ∞. Also, using (7.5) and (7.12),

l (m)
∗ (λ̄L|Y

(m), r̂(m))
a.s.
−−→
Ac

l (∞)
f ull (λ̄L|r)+ r−1 logr

nmax

∑
n=2

α̃n asm→ ∞. (7.17)

Choosen such thatαn > 0 andλ0 > 0 such that the right hand side of (7.16) is strictly

less than the right hand side of (7.17). Then, recalling since λ̂ (m)
L, f ull =

argmaxl (m)
∗ (λL|Y

(m), r̂(m)), it follows that for P-almost allω ∈Ac, there existsm0(ω)
such that

λ̂ (m)
L, f ull (ω) 6∈ (0,λ0) for all m≥ m0(ω). (7.18)

Let TI denote the infectious period of the initial infective in a household of sizen.

Thenp(n)n−1,1(t|λL)=E[e−(n−1)λLt1{TI>t}]≤ e−(n−1)λLt , whence ˜p(n)n−1,1(r|λL)≤ 1/((n−
1)λL+ r). Arguing as before shows that there existsλ1 > 0 such that, for P-almost all
ω ∈ Ac, there existsm1(ω) such that

λ̂ (m)
L, f ull (ω) 6∈ (λ1,∞) for all m≥ m1(ω). (7.19)

The theorem then follows from (7.13), (7.18) and (7.19).
�

We now consider estimation ofλL based only on recoveries. Form= 1,2, ...,
n= 1,2, ...,nmax andt ≥ 0, let

Z(m)
n, j (t) = ∑

(x,y)∈A
(n)
j

Y(m)
n,x,y(t) ( j = 1,2, ...,n)

be the total number of size-n households in whichj recoveries have been observed
by time t in the epidemicE(m). Let λ̂ (m)

L,rec denote the estimator ofλL obtained by

maximising the functionLrec(λL|c, r̂(m)) described at (4.6). (In our present notation

c(n)j = Z(m)
n, j (t

(m)).)

Theorem 7.3 Under the conditions of Theorem 7.1,

λ̂ (m)
L,rec

a.s.
−−→
Ac

λ̄L as m→ ∞.

Proof First note from (4.6) that̂λ (m)
L,rec = argmax̃l (m)

rec (λL|Z
(m), r̂(m)), where

l̃ (m)
rec (λL|Z

(m), r̂(m)) =W−1e−rt (m)
nmax

∑
n=2

n

∑
j=1

Z(m)
n, j (t

(m)) logq̃(n)j (r̂(m)|λL).

Using (7.5), forn= 2,3, ...,nmax and j = 1,2, ...,n,

W−1e−rt (m)
Z(m)

n, j (t
(m))

a.s.
−−→
Ac

α̃n(r
−1− q̃(n)0 (r|λ̄L))q̃

(n)
j (r|λ̄L) asm→ ∞, (7.20)
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so, for anyλL ∈ (0,∞), l̃ (m)
rec (λL|Z

(m), r̂(m))
a.s.
−−→
Ac

l̃ (∞)
rec (λL|r) asm→ ∞, where

l̃ (∞)
rec (λL|r) =

nmax

∑
n=2

α̃n(r
−1− q̃(n)0 (r|λ̄L))

n

∑
j=1

q̃(n)j (r|λ̄L) logq̃(n)j (r|λL). (7.21)

Now

|l̃ (m)
rec (λL|Z

(m), r̂(m))− l̃ (∞)
rec (λL|r)| ≤

nmax

∑
n=2

n

∑
j=1

(ĥ(m)
n, j (λL)+ ȟ(m)

n, j (λL)), (7.22)

where ĥ(m)
n, j (λL) = W−1e−rt (m)

Z(m)
n, j (t

(m))| logq̃(n)j (r̂(m)|λL) − logq̃(n)j (r|λL)| and

ȟ(m)
n, j (λL) = |{W−1e−rt (m)

Z(m)
n, j (t

(m))− α̃n(r−1− q̃(n)0 (r|λ̄L))q̃
(n)
j (r|λ̄L)} logq̃(n)j (r|λL)|.

Forn= 2,3, ...,nmaxand j = 1,2, ...,n,

q̃(n)j (r|λL) =
ã(n)j (r|λL)

ã(n)0 (r|λL)
,

whereã(n)j (r|λL) = ∑
(x,y)∈A

(n)
j

p̃(n)x,y(r|λL) ( j = 1,2, ...,n) and ã(n)0 (r|λL) = r−1 −

∑n
y=1 p̃(n)n−y,y(r|λL). Note that|A (n)

j | = n+ 1− j ( j = 1,2, ...,n). It follows from
(7.10) that, forn= 2,3, ...,nmaxand j = 1, ...,n,

|ã(n)j (r|λL)− ã(n)j (r ′|λL)| ≤ (n+1− j)|r − r ′|/(rr ′), (7.23)

for all λL > 0.
Consider a household of sizen. In the limit asλL → ∞, as soon as one individual

in the household is infected, the whole household becomes infected, so the number of
removals in that householdt time units after it was infected follows a binomial distri-
bution with success probabilityP(n)(t) = P(TI ≤ t). It follows that, for j = 0,1, ...,n

andr > 0, lim
λL→∞

ã(n)j (r|λL) ∈ (0, r−1]. Fix a∈ (0, λ̄L). It then follows from (7.20) and

the continuity of ˜a(n)j (r|λL) that forn= 2,3, ...,nmaxand j = 1,2, ...,n,

max
a≤λL<∞

ȟ(m)
n, j (λL)

a.s.
−−→
Ac

0 asm→ ∞, (7.24)

Further, (7.23) and the uniform continuity of logx imply that, forn = 2,3, ...,nmax

and j = 1,2, ...,n,

max
a≤λL<∞

ĥ(m)
n, j (λL)

a.s.
−−→
Ac

0 asm→ ∞, (7.25)

since ˆr(m) a.s.
−−→
Ac

r asm→ ∞. Similar to before, (7.21) implies thatl̃ (∞)
rec (λL|r) has a

unique global maximum atλL = λ̄L. It follows using (7.22), (7.24) and (7.25), that,
for anya∈ (0, λ̄L),

argmax
a≤λL<∞

l̃ (m)
rec (λL|Z

(m), r̂(m))
a.s.
−−→
Ac

λ̄L asm→ ∞. (7.26)
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To complete the proof of the theorem, we obtain a uniform upper bound for

l̃ (m)
rec (λL|Z

(m), r̂(m)) for small λL. Two recoveries can occur in a household only if
the initial infective has made at least one local infection,so, as at (7.14),

â(n)2 (r|λL)≤ λL(n−1)/r2.

Also, there is at least one recovery in a household if the initial infective has recovered,
so

â(n)0 (r|λL)≥

∫ ∞

0
P(TI ≤ t)e−rt dt = φ(r)/r.

Hence, forn= 2,3, ...,nmax andλ0 > 0,

q̃(n)2 (r|λL)≤ λ0(n−1)/(rφ(r)) for all λL ∈ (0,λ0].

Note that log ˜q(n)j (r|λL) < 0 for all n and j. We can now argue as in the derivation
of (7.18) to show thatλ0 can be chosen so that, for P-almost allω ∈ Ac, there exists
m2(ω) such that

λ̂ (m)
L,rec(ω) 6∈ (0,λ0) for all m≥ m0(ω),

which, together with (7.26), completes the proof.
�

We omit the proofs but similar results to Theorems 7.1-7.3 hold for SEIR and
Reed-Frost based models. Theorems 7.2 and 7.3 may also be extended to the case
when the infectious period distribution has a parametric form with unknown param-
eters that need to be estimated. E.g. if the infectious period follows an exponential
distribution with unknown rateγ, it is straightforward to show that, for any compact
subsetK of (0,∞)2, if (λL,γ) is estimated by maximising the relevant pseudolike-
lihood overK then the resulting estimator is strongly consistent. Extending this to
K = (0,∞)2 is more complicated than in the one-dimensional setting of Theorems 7.2
and 7.3 and not considered here.

8 Concluding comments

In this paper we demonstrate that for an emerging SIR epidemic among a population
partitioned into households, basing inference on the usualsingle-household final size
distribution normally leads to a biased estimate of the within-household infection rate
λL and use branching process theory to develop a new estimator which accounts cor-
rectly for the emerging nature of an epidemic. Although the model used is undoubt-
edly simpler than a real-life epidemic, the presence of households is a key departure
from homogeneous mixing for human epidemics, and it seems likely that similar is-
sues will arise in more complex settings when using data collected at a household
level for inference during the exponentially growing phaseof an outbreak. In par-
ticular, such data need to be modelled very carefully to ensure that the effects of a
growing epidemic are incorporated correctly.

The new method is predicated upon the availability of an estimate of the expo-
nential growth rater. How best to estimater for an emerging epidemic is an open
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challenge (Ballet al. [6]) since, as illustrated by Figure 3, the exponentially grow-
ing phase occupies only a narrow time window and consequently care is required in
choosing start and end time points for fitting it. Of course, the method assumes also
that, at the time when estimation is performed, the epidemicis still in its exponen-
tially growing phase and it should be checked that this is a reasonable assumption.

The new method has been shown to be computationally feasibleunder the as-
sumption of no latent period and exponentially distributedinfectious period. Extend-
ing its implementation to models with more realistic disease dynamics is an important
area for research. One approach is via the phase method, see Section 4.2, though
the matrices involved soon become large. Thus it would be worthwhile develop-

ing numerically amenable approximations to the key Laplacetransforms ˜p(n)x,y(r|λL)
((n,x,y) ∈T ). Fraser [18] has developed a closed-form approximate method for cal-
culating the growth rater for quite general households models, which works well if
both the maximum household size and the variance of the generation interval of the
disease are not too large; it may be possible to apply relatedmethods to approximate
the aforementioned Laplace transforms.

It would be useful to attach standard errors to estimates obtained using the new
method. One way of doing this is using a parametric bootstrap, along similar lines
to Figure 4. Another approach is to determine the asymptoticdistributions of the
estimators, which would require central limit (or related)analogues of the almost
sure results in Nerman [28].

The method can be extended to multitype SIR epidemics among acommunity of
households, using the model of Ball and Lyne [8] together with multitype generalisa-
tions of Nerman [28]. This would accommodate age-stratifiedpopulations (e.g. chil-
dren and adults), with age-specific susceptibilities, and also asymptomatic infections
with different transmission parameters for symptomatic and asymptomatic cases.
Note that the setting where all infectious episodes are governed by the same trans-
mission parameters but infections are unobserved independently with a common pa-
rameter may be handled within the single-type framework, since the distribution of
the number of observed cases in a households is obtained easily by conditioning on
the total number of cases in that household and using binomial sampling.

The method can in principle also be extended to situations where information
on the temporal progression of disease within households isavailable. In the Reed-
Frost setting of Section 5, estimation can be generalised tothe case when chains
of infection within households are observed (rather than total number of cases) by
extending the type-space of the approximating discrete-time multitype branching
process to include such information. In the continuous-time setting of Section 4,
suppose that inter-recovery times are observed. Consider the single-household epi-

demicE(n)
H described in Section 4.1, suppose thatk recoveries occur in(0, t], where

k = 1,2, . . . ,n. Let t1 denote the time of the first recovery and lets1,s2, . . . ,sk de-
note thek successive inter-recovery times, wheresk is the time elapsing between

the kth recovery andt. Let f (n)k (t1,s1,s2, . . . ,sn−1|λL) denote the joint-density of
s1,s2, . . . ,sk−1, including the information that no recovery occurs betweenthe kth
recovery and timet. Then using Theorem 5.4 of Nerman [28] shows that the contri-

bution of such a household epidemic to the pseudolikelihoodfor λL is f̃ (n)k (r̂ |λL) =
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∫ ∞
tA

e−r̂t f (n)k (t− tA,s1,s2, . . . ,sn−1|λL) dt, wheretA = s1+s2+ · · ·+sk, thus providing,
at least in principle, a way of estimatingλL.
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