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Abstract 

Our knowledge and understanding of how bacterial pathogens have evolved has been limited 

by inadequate information on the full ecology of these organisms. Large-scale population 

genomic analyses have enabled a high-resolution view of variation at the core and accessory 

genome level, within and between bacterial populations, revealing previously hidden patterns 

of variation among microorganisms. This sheds light on the evolution and maintenance of 

ecologically distinct populations of bacteria and has raised the question of whether the same 

approach can uncover novel information on the ecology of established, clinically important 

pathogens. Yersinia pseudotuberculosis and Escherichia coli represent ‘model’ organisms in the 

study of microbial evolution, but given the high degree of niche overlap in both species, their 

ecology is largely unknown.  

In this study, genomic analyses of Y. pseudotuberculosis strains, obtained from various habitats 

worldwide, revealed a phylogeographic split within the population, with an Asian ancestry and 

subsequent dispersal of successful clonal lineages across the rest of the world. These lineages 

were differentiated by CRISPR arrays and we demonstrated that genetic exchange between 

lineages is restricted. Despite the coexistence of these lineages for thousands of years, the 

discrete lineage structure of the population is maintained due to the restriction of inter-lineage 

genetic exchange. The analyses did not identify a role for ecological barriers in defining the 

distinct lineage structure of the species, suggesting that Y. pseudotuberculosis is a host generalist 

able to succeed in multiple habitats.  

The relative abundance of multidrug-resistant extraintestinal pathogenic E. coli (ExPEC) among 

E. coli inhabiting non-human niches is undetermined, owing to many studies selectively isolating 

resistant bacteria. To compare the population structure of E. coli from non-human environments 

with the well-defined population structure of human-clinical E. coli, unbiased sampling of E. coli 

isolates from river water and retail poultry samples was undertaken. Genomic analysis of 

isolates revealed a low prevalence of clinically-associated sequence types and potential ExPEC 

strains among non-human E. coli when contrasted with human-clinical E. coli, suggesting two 

distinct populations. Comparative genomic analyses further supported this, revealing a 

noticeable difference in accessory genome content between the two populations and low levels 

of genetic exchange between closely related strains. This suggests ecological barriers, resulting 

in gradual genetic isolation, may have contributed to the divergence of these niche-associated 

populations of E. coli. The investigation concluded that the non-human population of E. coli is 

unlikely to contribute significantly to the weight of hospital- and community-acquired 

extraintestinal infections in humans. 
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1. Introduction 

1.1. Unravelling microbial ecology  

Microbial ecology examines the diversity of microorganisms and how they maintain diversity 

through the interaction with each other, and with their environment. Microbial ecological 

studies have traditionally concentrated on two areas: (i) microbial diversity, which encompasses 

the isolation, identification, and quantification of different microorganisms in various habitats; 

and (ii) microbial activity, which pertains to what microorganisms do in their habitats and how 

this contributes to the observed microbial diversity (Xu, 2006). The study of microorganisms 

began in the late 17th century, through the work of Robert Hooke and Antonie van Leeuwenhoek, 

who individually published the first original observations of single-celled organisms (Gest, 2004). 

The diversity of microorganisms in the environment can be measured at various levels such as 

phylogenetic diversity, species diversity, genotypic diversity, and gene diversity (Xu, 2006). 

Microbial populations were traditionally understood at the species level and above solely 

through culture-based techniques, of which less than 1% of microbes are culturable (Amann et 

al., 1990), and typically require numerous physiological and biochemical tests for full 

characterisation. Classical microbiology primarily consisted of isolating microbes, growing them 

as pure cultures, and identifying biochemical properties of these organisms, such as cell wall 

structure by Gram staining, oxygen tolerance, and carbon or nitrogen sources that supported 

their growth. These techniques can be very time-consuming, laborious, and require prior 

knowledge of the organisms of interest to selectively and successfully culture from a complex 

microbial community. There are several limitations to culture-dependent methods, most 

important of which is a bias towards readily cultivable organisms, thus ignoring non-culturable 

bacteria, which comprise the largest proportion of microbes (Xu, 2006). Furthermore, even 

among culturable microorganisms, the true diversity found in nature may not be accurately 

represented by the observed diversity on standard microbiological media. This is because even 

though many different variants of media and growth conditions have been developed over the 

years to culture microorganisms, it is impossible to explore all of the conditions required to 

culture every microorganism. A more accurate estimation of microbial diversity has been 

achieved over the past two decades due to the application of culture-independent genomics 

tools. Immunological methods, such as enzyme-linked immunosorbent assay (ELISA) have been 

used to characterise and identify bacteria from a variety of ecosystems. However, these 

techniques are still limited in assessing functionality and have only been used sparingly due to 

the need for specific antigens/antibodies. Consequently, the focus of many recent microbial 
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ecological studies has turned towards development of molecular approaches for understanding 

these complex communities which, in some cases, eliminates the need for culturing beforehand. 

1.1.1. 16S ribosomal RNA sequencing  

Molecular techniques have superseded traditional microbiological methods due to the ease of 

use, reproducibility, sensitivity and speed of working with nucleic acids that these techniques 

provide. Culture-independent approaches such as DNA cloning and polymerase chain reaction 

(PCR) have been used to detect specific members as well as functional genes within a microbial 

community. Functional genes such as the 16S ribosomal RNA (rRNA) gene and 5S rRNA gene 

have been used as molecular markers for studying phylogenetic relationships. The rRNA gene 

consists of different regions, some of which are highly conserved across all phylogenetic 

domains of life (i.e. bacteria, eukarya, and archaea) and are more resistant to mutations, while 

other regions, called ‘hot spots’, are variable between closely related bacterial species. This 

variability allows for inferring phylogenetic information from microorganisms inhabiting 

different ecosystems (Clarridge, 2004). Another molecular marker would include the recA gene, 

which is essential for the repair and maintenance of DNA in all species, and has been used to 

define the phylogeny of Vibrio cholerae (Stine et al., 2000). In addition, the rpoA gene encodes 

the alpha subunit of RNA polymerase and has also proved useful in determining phylogenetic 

relationships (Fox and Sorhannus, 2003). A new era began with the innovation of Next-

Generation sequencing (NGS) technologies, which transformed the existing gold standard 

techniques of microbial community analysis. NGS allows large sets of sequence data to be 

generated in parallel, utilising phylogenetic markers such as the 16S rRNA gene, inexpensively 

and in considerably less time. The high-throughput (amount of DNA processed per unit time) 

results generated by 16S gene sequencing enables comprehensive analysis of community 

microbiota from various environments, as well as providing insights into the interactions with 

their ecosystems. In general, differentiation between organisms at the genus level across all 

major phyla of bacteria can be achieved through the comparison of 16S rRNA sequence data. 

Although 16S rRNA gene sequencing is highly useful with regards to bacterial classification, this 

technique does carry several limitations and sometimes exhibits low phylogenetic resolution at 

the species level, due to sequence similarities between species that exhibit different 

phenotypes, and in some cases, offers poor discriminatory power for some genera.  

1.1.2. Metagenomics 

A possible solution to these taxonomic problems is to utilise metagenomics, which is another 

high-throughput sequencing technology used to reveal microbial diversity in natural 
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environments. Metagenomics is the culture-independent analysis of the collective microbial 

genomes (termed the metagenome) in an environmental community, using an approach based 

either on expression or sequencing (Riesenfeld, Schloss and Handelsman, 2004). Such microbial 

communities may include a soil or water sample that contains substantially more genetic 

information than is available from the cultured subset. Metagenomic studies usually require the 

cloning of DNA fragments isolated directly from microbial samples, followed by sequencing and 

functional analysis of the cloned fragments, ultimately to make taxonomic assignments to 

characterise the microorganisms. Fully sequencing the DNA within a sample allows investigators 

to study the taxonomic diversity of all microbes within a sample and not just the culturable. 

However, one of the main issues presented by metagenomics is that functional genes are not 

usually analysed. Metagenomics is often limited to taxonomy – analysis of the 16S rRNA gene – 

which is used to identify organisms with the aim of determining the species present in an 

environmental sample. A specific function often cannot be reliably inferred from identification 

of the microorganism. Shotgun metagenomics studies are now starting to present opportunities 

for unravelling microbial community diversity, such as species sub-typing and strain-level 

profiling; however, the genomic resolution of single isolate sequencing is still higher than what 

can be achieved for single organisms in a metagenomics context (Quince et al., 2017). Increasing 

the profiling resolution to the level of single strains would be vital for in-depth population 

genomic analyses and the study of microbial ecology and epidemiology – something which 

currently can only be achieved at a high resolution when using a whole-genome sequencing-

based approach. 

1.1.3. Combining a culture-based approach with whole-genome sequencing 

Before the development of molecular techniques, microbial ecological studies were largely 

reliant upon traditional methods of isolation and identification to probe the structures of 

microbial populations. Culture-based approaches have not disappeared and indeed are still 

used, together with molecular analyses, to fully understand bacterial population dynamics. 

Advances in DNA sequencing technology, starting with the widespread implementation of 

automated DNA sequencing techniques in the 1990s, have revolutionised our understanding of 

microbial processes, from the physiology of single cells to large-scale population biology. The 

last two decades have seen an increase in the use of high-throughput or next-generation 

sequencing technologies, enabling investigations of microbial communities with unprecedented 

resolution, underpinning important research in pathogen epidemiology and evolution. To 

comprehensively characterise the complexity of a population of a particular bacterial species to 

the strain-level of classification, culture-based techniques must be complemented by the vast 
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array of information obtained from culture-independent techniques, such as NGS technology. 

Whole-genome sequencing (WGS) provides more resolution through the generation of genome-

wide information for a cultured microbial population. WGS has emerged as the gold standard in 

bacterial typing, enabling successful tracking of worldwide epidemics, regional outbreaks, and 

foodborne outbreaks, and demonstrating that the fine-scale resolution provided by WGS 

facilitates our understanding of the structure of microbial populations and the spread of 

infectious agents. There are several WGS platforms available that have revolutionised the field 

of microbial ecology, ranging from traditional Sanger sequencing biochemistry to second-

generation (Illumina) and third-generation (single-molecule) sequencing technologies (Schadt, 

Turner and Kasarskis, 2010). 

1.1.4. Advancements in whole-genome sequencing technologies 

The first generation of whole-genome sequencing was initially developed by Sanger and 

colleagues (1975) and in parallel by Maxam and Gilbert (1977), which were termed the ‘chain-

termination method’ and the ‘chemical sequencing method’, respectively. Of the two methods, 

Sanger sequencing ultimately prevailed given that it was less complex and more favourable to 

being scaled up than the chemical sequencing method (Schadt, Turner and Kasarskis, 2010). 

Sanger sequencing typically results in a read length of ∼800 bases, which may be extended to 

above 1,000 bases (Schadt, Turner and Kasarskis, 2010). While fully automated implementations 

of this approach were the mainstay for original DNA sequencing technology, their main 

limitation was the low throughput results, as well as high cost, which resulted in a fundamental 

shift in methodology, leading to second-generation sequencing technologies, also generally 

known as next-generation sequencing (NGS) or high-throughput sequencing technologies.  

Second-generation sequencing technologies are known for extremely high throughput, resulting 

in an overall low cost per identified base. However, the time-to-result for these methods is 

generally long and can take up to several days to complete, due to the requirement of many 

scanning and washing cycles (Schadt, Turner and Kasarskis, 2010). Illumina NGS workflows 

include four basic steps: library preparation, cluster generation, sequencing, and data analysis. 

A sequencing library is prepared by random fragmentation of the DNA sample into short 

fragments, followed by ligation of 5’ and 3’ adaptor sequences to the ends of each fragment. 

For cluster generation, the library is loaded into a flow cell where the fragments attach to a lawn 

of surface-bound oligonucleotides complementary to the library adapter sequences. Each 

fragment is then amplified, using a bridge amplification technique, where copies are generated 

in situ, resulting in distinct clonal clusters of ∼1,000 amplicons of each fragment. Sequencing of 

the templates is carried out using Illumina’s sequencing-by-synthesis (SBS) technology, where 
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all four nucleotides are added to the flow cell simultaneously, along with DNA polymerase for 

the incorporation of bases into the DNA template strands. Each nucleotide is fluorescently 

labelled with a different colour, and each incorporation is a unique event due to the chemical 

blockage of the 3’-OH group after incorporation (Illumina, 2017). The flow cell is imaged after 

each incorporation step and the emission from each cluster is recorded. Each base is identified 

using the emission wavelength and intensity (Illumina, 2017). This cycle is repeated a specific 

number of times to create a read length of n number of bases. Integrated software checks the 

quality of each read and removes any poor-quality reads from the genome construct. 

Bioinformatics software can then align the newly identified sequence reads to a reference 

genome. Following alignment, many different forms of analysis are possible, such as 

identification of single nucleotide polymorphisms (SNPs) or insertions and deletions, read 

counting for RNA methods, phylogenetic analysis, and more. One of the limitations of second-

generation sequencing is the generation of short reads, which leads to highly-fragmented 

assemblies (Schatz, Delcher and Salzberg, 2010).  

The demand for technologies that can operate at higher speeds and produce longer reads 

resulted in the third-generation of sequencing. These sequencing technologies directly target 

single DNA molecules, enabling real-time sequencing where reads are available for analysis as 

and when they have passed through the sequencer (Schadt, Turner and Kasarskis, 2010). In 

2014, Oxford Nanopore Technologies (ONT) released a new third-generation sequencing 

platform, known as the MinION, which is a portable, real-time sequencing device. ONT platforms 

are capable of producing incredibly long reads, with a maximum read length up to a few hundred 

thousand base pairs (Laver et al., 2015). On the other hand, ONT reads have high error rates, 

with accuracy ranging from 65%−88% (Laver et al., 2015). However, due to its small size and low-

costing equipment, the MinION sequencer has attracted considerable interest in the genomics 

community, particularly for pathogen surveillance and clinical diagnostic applications, as these 

areas can best exploit the real-time nature of this sequencing platform. 

1.1.5. Using population genomics to uncover patterns of microbial ecology 

With the development and application of genomic tools, microbial ecology is undergoing a 

resurgence. Genomic tools, which now offer high-quality reads at decreasing costs and high 

throughput, have given us unprecedented access to microbial diversity. Whole-genome 

sequencing is increasingly being utilised as the gold standard approach to study the population 

structure of closely related microbes in place of more traditional molecular techniques such as 

pulsed-field gel electrophoresis (PFGE) and 16S rRNA sequencing. In the past, only single 'type 

strains' were sequenced to reveal information on the genome content of the species in question 
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due to the high costs of WGS (Avasthi et al., 2011). Recent advances have enabled large-scale 

sequencing projects to investigate variation within and between bacterial populations. 

Evolutionary forces of recombination and selection are responsible for shaping microbial 

genomes and maintaining diversity, leaving signatures that can be identified using comparative 

population genomics. Recently, studies have analysed genome sequences – for example to 

identify genes under positive selection – in order to discover ecologically distinct populations of 

bacteria and how they adapt to different niches. Whole-genome sequence data, when analysed 

with the appropriate statistical and computational methods, can provide insights into the 

structure and function of closely-related populations of microbes in their natural habitats. 

Ultimately, these analyses reveal that microbial evolution is usually driven by a divergence in 

populations that are adapted to distinct ecological niches. Lineage distinctness is then 

maintained by barriers to gene flow, which in some cases, are a consequence of ecological 

specialisation (Shapiro et al., 2012). 

The traditional niche theory of evolution would assume that organisms of different species 

occupy different ecological niches due to their species-specific properties and the niches are of 

limited similarities. In contrast to this, the neutral model of evolution assumes that microbial 

species are ecologically and functionally equivalent and that stochastic processes (random drift 

of mutant alleles that are selectively neutral or nearly neutral) are the main factors shaping 

species’ distributions and community structure (Hubbell, 2001). There are at least some 

examples where neutral models are able to reconstruct and predict relative species abundance 

in many environmental microbial communities (Woodcock et al., 2007; Sloan et al., 2006). More 

recent studies however, particularly those on the human and animal microbiome, seem to 

provide more negative cases than positive cases with regards to the neutral model (Nemergut 

et al., 2013). It is perhaps most likely that both niche and neutral mechanisms are in effect in 

microbial communities, but niche effect is often more prevalent than the neutral effect (Jeraldo 

et al., 2012; Dumbrell et al., 2010).Many bacterial lineages have a history of frequent and 

continuous horizontal gene transfer and loss, as evidenced by vast differences in genome 

content, even among isolates that are closely related. The evolution and maintenance of 

ecologically distinct populations of bacteria under such conditions of rapid gene exchange has 

been an area of investigation for many researchers. A review of recent population genomic data, 

by Polz, Alm and Hanage (2013), demonstrated the importance of habitat and niche in directing 

horizontal gene transfer and evolution. This led to a model of ecological speciation through a 

mechanism of gradual genetic isolation as a result of divergent niche-associated populations, 

where subpopulations can evolve through gene exchange within the local gene pool (Polz, Alm 

and Hanage, 2013). This insight provides an explanation for why, despite the potential for free 
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gene flow, bacteria remain genotypically and phenotypically clustered. A population genomics 

study by Shapiro et al. (2012) provides an example of how ecological divergence may drive 

genotypic differentiation of bacteria. Two populations of Vibrio cyclotrophicus, that are almost 

genetically indistinguishable but are ecologically divergent, were subjected to whole-genome 

sequencing to investigate how the populations had diversified. These populations coexist in 

coastal oceans but exhibit differential proclivity for occurring as free-living bacteria or attached 

to zoo- and phytoplankton. Analysis of whole-genome sequence data revealed that in these two 

recently diverged populations, ecological differentiation had occurred through a mechanism of 

gradual genetic isolation in which a few genomic regions, rather than whole genomes, have 

swept through subpopulations in a niche-specific manner (Shapiro et al., 2012). Furthermore, 

analysis of homologous recombination events within and between the populations 

demonstrated that both populations had been actively recombining in the past, however the 

most recent recombination events had become population-specific, suggesting gradual 

separation of the gene pools and independent evolutionary trajectory of these populations 

(Shapiro et al., 2012). These inferences would further support a model explaining genotypic 

cluster formation, in which the ancestral, ecologically uniform, and recombining population of 

bacteria diverges into unique, ecologically distinct subpopulations (Shapiro et al., 2012).  

Genome comparisons in another previous study have shown that several clades 

of Escherichia spp. isolated from predominantly non-host environments are more adapted to 

life outside of hosts, whilst gastrointestinal clades of E. coli possessed genomic features adapting 

them to the human gut environment (Luo et al., 2011). In an approach using the inventory of 

gene functions derived from the human microbiome project (Qin et al., 2010), the authors 

showed that genes that are common in other gut bacteria are also present in the gut-associated 

E. coli, but not in the environmental clades. Furthermore, genome-based analysis of 

recombination rates indicated that these environmental relatives of E. coli have historically not 

shared ecology with E. coli strains that classically inhabit the gastrointestinal tract of humans. 

The authors described frequent recombination among the environmental clades and among 

the intestinal E. coli clades, but not between the environmental and intestinal clades, providing 

evidence for an ecological barrier to recombination (Luo et al., 2011). Further phylogenetic 

analysis of the environmental clades by Cohan and Kopac (2011) confirmed each environmental 

clade to be distinguished as ecologically distinct from the human intestinal E. coli, and that finer 

divisions within each clade suggests that a greater extent of ecological diversity exists among 

these bacteria.  

Given that evidence of population divergence associated with ecological specialisation has been 

described in bacteria previously, it raises the question of whether we can use the same approach 
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to uncover novel information on the ecology of clinically important and well-studied bacterial 

pathogens. The current study proposes a similar whole-genome sequencing-based approach of 

single isolates to conduct population genomic analyses of closely related genomes obtained 

from various environments. Two particular species, Yersinia pseudotuberculosis and Escherichia 

coli, represent ‘model’ organisms for the study of microbial population genomics due to their 

environmental ubiquity and culturability under laboratory conditions. Both Yersinia 

pseudotuberculosis and Escherichia coli will be investigated in the present study to determine 

whether population genomics can provide valuable further insights into the ecological and 

genetic structures of these important human pathogens.  

 

1.2. Yersinia pseudotuberculosis 

1.2.1. The pathogenic Yersiniae 

The genus Yersinia belongs to the Enterobacteriaceae, a large and diverse group of Gram-

negative bacteria that includes many harmless commensals, along with pathogenic organisms 

such as those belonging to the genera Salmonella, Escherichia, Klebsiella, and Shigella. Definition 

of the genus Yersinia is based on classical systematics and biochemical species-classification 

methods, which resulted in the description of Yersinia being a highly diverse genus comprising 

18 distinct species (Savin et al., 2014; Hurst et al., 2011; Murros-Kontiainen et al., 2011a; 2011b; 

Merhej et al., 2008; Sprague et al., 2008; Sprague and Neubauer, 2005; Wren, 2003; Carniel, 

2003). Of these, Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis are the most studied and 

are the only species that cause disease in mammals, including humans. Y. enterocolitica and Y. 

pseudotuberculosis are both zoonotic pathogens that cause self-limiting enteric infections in 

humans, whilst Y. pestis, the causative agent of plague, is a pathogen in fleas and rodents that 

can occasionally be transmitted to humans (McNally et al., 2016b). The further 15 known species 

of the genus are commonly isolated from soil and aquatic environments and are typically non-

pathogenic to mammals. Some Yersinia species however, are pathogenic in other hosts, such as 

Yersinia ruckeri (Sulakvelidze, 2000), which causes red mouth disease in Salmonidae, and 

Yersinia entomophaga, which has insecticidal activity (Hurst et al., 2011). With regards to the 

phylogenetic relation of the pathogenic Yersiniae, Y. enterocolitica represents a distant relative 

of Y. pseudotuberculosis and Y. pestis; their relatedness is often compared to that between 

Escherichia coli and Salmonella species (Achtman et al., 1999). Recent phylogenetic investigation 

based on whole-genome single-nucleotide-polymorphism (SNP)-based analysis of the entire 

Yersinia genus has allowed an accurate assessment of its population structure (Reuter et al., 

2014). This robust sequence-based taxonomy revealed that the genus contains 14 distinct 



 

10 
 

species clusters, which differed from the existing taxonomic description of the genus that was 

largely constructed on the basis of biochemical differences and 16S rRNA gene phylogeny 

(McNally et al., 2016b). The analysis also showed that the mammalian pathogens Y. 

enterocolitica and the Y. pseudotuberculosis–Y. pestis species complex form separate branches 

at opposite ends of the Yersinia phylogenetic tree and do not cluster together as was previously 

believed, and are thus genetically distinct (Reuter et al., 2014). The chromosomal DNA of Y. 

pestis and Y. pseudotuberculosis is extremely similar and global phylogenomic studies have 

identified recent evolution of Y. pestis from a clone of Y. pseudotuberculosis, as a result of gene 

loss and subsequent global dissemination (Reuter et al., 2014; Morelli et al., 2010; Achtman et 

al., 1999). The dispensability of metabolic functions in Y. pestis can be explained by adoption of 

a lifestyle which bypasses the gut infection phase. Proteins necessary for transmission by the 

faecal-oral route would therefore no longer be needed, resulting in the lack of selective pressure 

against mutations in genes such as ure (urease against gastric acid), inv, ail, and yadA (all 

essential for translocation across the intestinal barrier; Achtman et al., 1999). One commonality 

between the three pathogenic species is that they all share a ∼70 kb plasmid that encodes for 

various Yersinia outer proteins (Yops) that are key virulence factors for pathogenesis. The 

enteropathogenic Yersiniae are genetically more diverse than the more recently evolved plague 

bacterium Y. pestis. Y. enterocolitica demonstrates greater diversity and it is categorised into 6 

biogroups and more than 50 different serotypes, whilst Y. pseudotuberculosis has been 

classified into 21 distinct serotypes (Gage, 2012). 

1.2.2. Hidden ecological patterns in the pathogenic Yersiniae 

Large-scale population genomic analyses have previously been carried out for the human 

pathogenic Yersiniae, Y. pestis and Y. enterocolitica (Reuter et al., 2015; Reuter et al., 2014; 

Morelli et al., 2010), enabling a high-resolution understanding of the ecology, evolution, and 

population structure of these organisms. A population genomic investigation of Y. enterocolitica 

was performed in a recent study by our group, which involved carrying out pan-genome analysis 

to examine patterns of recombination in both the core and accessory genomes of the species 

(Reuter et al., 2015). This study highlights a restriction in genetic flow between phylogroups of 

Y. enterocolitica; when gene flow does occur, it is largely unidirectional with one phylogroup 

acting primarily as a reservoir for recombination with the rest of the species. Furthermore, the 

data uncovered hidden ecological patterns suggesting that the genetically distinct phylogroups 

of Y. enterocolitica may be ecologically separated, with phylogroup 1 (PG1) being ubiquitous and 

most commonly isolated from non-human environments, whilst PG2–5 are more commonly 

associated with human disease cases (Reuter et al., 2015). This parallels with a microbial 
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ecological study of the model bacterial species Escherichia coli, where whole-genome 

sequencing revealed that core genome recombination occurs between environmental isolates 

or between human/animal isolates, but never between environmental and human/animal 

isolates (Luo et al., 2011). Within the important multidrug-resistant nosocomial pathogen 

Enterococcus faecium, it has been suggested that subpopulations colonise distinct hospital 

niches, and once adapted to these new environments, these populations become isolated and 

recombination with other populations decline (Willems et al., 2012). The observation of host-

restricted lineages of Campylobacter jejuni in another study (Sheppard et al., 2014) provides 

further supportive evidence of ecological separation playing a major role in limiting genomic 

recombination, and thus shaping the evolution of an important bacterial species through the 

formation of distinct ecotypes. Given the observation of ecologically separated lineages in Y. 

enterocolitica, and considering that Y. pseudotuberculosis is also a member of the 

enteropathogenic Yersiniae and is heterogeneous and ubiquitous in nature, it would be 

reasonable to investigate whether the ecology of this species overlaps with genetic patterns. 

1.2.3. An introduction to the Y. pseudotuberculosis species 

First isolated in 1883 from tuberculosis-like lesions in guinea pigs (Paff, Triplett and Saari, 1976), 

Y. pseudotuberculosis are characterised by Gram-negative rods with rounded ends (coccobacilli) 

and are facultative anaerobes. As with the rest of the genus, they are catalase-positive but 

oxidase-negative, and are relatively slow growing in comparison to other members of the 

Enterobacteriaceae. Much like Y. enterocolitica, Y. pseudotuberculosis is a cold-tolerant species 

that is motile at temperatures below 30 °C but are non-motile at temperatures above 37 °C. One 

feature of the genus Yersinia is that its members are well-adapted to survive in the environment 

with an ability to grow in conditions of minimal nutrients and at temperatures ranging from 4–

43 °C (Brubaker, 1991). Y. pseudotuberculosis and Y. enterocolitica are the most divergent 

species of the genus, and are now thought to have gained pathogenicity independently, 

although they cause very similar gastrointestinal diseases in humans and animals. The two 

organisms also share pathogenicity islands and other virulence-associated genes, which are 

suggested to have been gained independently, perhaps initially from other genera, and then 

later via transfer within the genus (Reuter et al., 2014). As whole-genome sequence data for the 

genus became increasingly available, many strains of bacteria first typed as Y. 

pseudotuberculosis were consequently reclassified into other species that are now included in 

the phylogenetic group known as the ‘Y. pseudotuberculosis complex’ (Laukkanen-Ninios et al., 

2011). This species complex includes Y. pseudotuberculosis/Y. pestis, Y. similis (Sprague et al., 

2008), and the recently characterised Y. wautersii (previously referred to as the ‘Korean group’), 
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which is proposed to have pathogenic potential (Savin et al., 2014). Y. pseudotuberculosis and 

Y. pestis share ≥ 97% nucleotide sequence identity for most of their chromosomal genes (Koskela 

et al., 2015). Due to this close evolutionary relationship with Y. pestis, Y pseudotuberculosis is 

believed to have been the progenitor of the plague bacillus and is considered a model species 

for bacterial evolution (McNally et al., 2016b). Y. pestis is effectively a clone of Y. 

pseudotuberculosis, estimated to have evolved from its ancestor approximately 1,500–6,400 

years ago, in Asia (Achtman et al., 1999).  

1.2.4. Pathogenesis of Y. pseudotuberculosis 

1.2.4.1. Transmission of the bacteria to humans 

Y. pseudotuberculosis causes zoonoses in a wide range of hosts, including both wild and 

domesticated animals and birds (McNally et al., 2016b). With Y. pseudotuberculosis being a 

zoonotic pathogen, it can therefore be transmitted to humans through various routes. Y. 

pseudotuberculosis infection, though less common than those caused by Y. enterocolitica, has 

also been implicated in foodborne disease in humans, which is known as yersiniosis. 

Transmission of the bacterium is usually via the faecal–oral route, and human infection can 

result from ingestion of contaminated food products or water, or possibly through cross-

contamination during food preparation. Typical sources of infection include dairy products, 

inadequately cooked meat, and certain vegetables such as lettuce and raw carrots (Kangas et 

al., 2008; Nuorti et al., 2004). Both Y. pseudotuberculosis and Y. enterocolitica are cold-tolerant 

species that can survive and proliferate slowly at 4 °C, accounting for growth in cold-stored 

foodstuffs. Y. pseudotuberculosis is also found widely in the environment, including soil, and in 

animals it causes tuberculosis-like disease. Pigs, rodents, rabbits, sheep, goats, cattle, horses, 

dogs, cats, deer, and sometimes birds serve as reservoirs for Y. pseudotuberculosis. Person-to-

person transmission has also been reported, though less frequently, as has transmission via 

blood transfusion (Chiles et al., 2002). Most humans can serve as asymptomatic carriers of Y. 

pseudotuberculosis; however, several cases have been linked to handling and close-contact with 

infected animals. Patients exhibiting clear symptoms of infection tend to shed significant 

amounts of bacteria for up to 2–3 weeks. Infected individuals who are left untreated can become 

carriers and shed bacteria for as long as 2–3 months (Gage, 2012). Successful infection of the 

host requires a reasonably large dose of bacteria (median infective dose of 108–109 bacteria), 

and the incubation period is believed to be 3–7 days after ingestion. Although, incubation 

periods of 2–20 days have been seen in sporadic outbreaks, and symptoms typically appear at 

an average time of 4 days after exposure (Gage, 2012). 
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1.2.4.2. Epidemiology of Y. pseudotuberculosis-associated yersiniosis  

Human yersiniosis caused by Y. pseudotuberculosis is usually sporadic and such cases generally 

occur worldwide (Sunahara, Yamanaka and Yamanishi, 2000). The majority of nationwide 

gastrointestinal outbreaks of foodborne infection have been reported in countries of the 

Northern Hemisphere or countries of largely temperate climates. Most cases of Y. 

pseudotuberculosis infection occur in the winter and early spring, a trend which is likely related 

to the enhanced growth characteristics of this pathogen in cold temperatures that occurs during 

long-term storage of vegetables during the winter (Galindo et al., 2011). The first conclusive 

report of a community outbreak of Y. pseudotuberculosis was described in 1984 among 

schoolchildren in Kurashiki, Japan (Inoue et al., 1984). Y. pseudotuberculosis infection in Europe 

would appear to be highly prevalent in Germany, and there is some suggestion that higher meat 

consumption in this country, particularly pork, when compared to other European nations might 

correlate with the higher incidence of yersiniosis in Germany (Galindo et al., 2011). The 

prevalence of Y. pseudotuberculosis infection in the United States is currently unknown. 

Sporadic cases of Y. pseudotuberculosis infection are likely to be underreported because stool 

cultures are not routinely requested for patients presenting with mild, self-limiting clinical 

features, such as diarrhoea. Furthermore, the need for specific differential culture media for 

isolation has restricted the presence of active surveillance in many other countries, including 

those of Africa, Asia, the Middle East, Latin America, the Caribbean, and others.  

A report by Nuorti et al. (2004) at the National Public Health Institute of Finland provided solid 

documentation that Yersinia pseudotuberculosis can be transmitted through food, following a 

nationwide outbreak in 1998 that was detected by routine surveillance for Yersinia species. In 

this widespread outbreak, contaminated iceberg lettuce was strongly implicated as the vehicle 

of Y. pseudotuberculosis serotype O:3 infections, with 71% of case patients reported having 

eaten iceberg lettuce prior to hospitalisation. Prior to this study, Y. pseudotuberculosis was 

presumed to be a possible foodborne pathogen, by virtue of its similarity to Y. enterocolitica, 

but the evidence for this assumption was limited to a few suggestive clusters and to a large 

Canadian outbreak in 1998, which was epidemiologically linked to pasteurised homogenised 

milk and was the first recognised outbreak of Y. pseudotuberculosis serotype O:1b (Nowgesic et 

al., 1999). The investigation in Finland is the first to trace an outbreak of human illness to a likely 

environmental reservoir via contaminated food, and suggests that some cases of yersiniosis, 

which appear to be sporadic, may be part of unrecognised outbreaks caused by contaminated 

fresh produce (Nuorti et al., 2004). In 2004, an outbreak of several cases of gastroenteritis in 

schoolchildren in northern Finland was reported, and at the same time, an increase in Y. 

pseudotuberculosis cases was reported from other parts of the country. Kangas and co-workers 
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(2008) carried out an investigation which provided microbiologic and epidemiologic evidence 

that traced the school outbreak to consumption of raw carrots contaminated at the production 

farm. The long-term storage of raw carrots at cold temperatures would have favoured the 

growth of Y. pseudotuberculosis and thus result in human infection (Kangas et al., 2008). More 

recently, in 2014, a sustained outbreak of yersiniosis due to Y. pseudotuberculosis was reported 

in all of the major cities of New Zealand (Williamson et al., 2016). This study presented one of 

the largest globally reported outbreaks of human Y. pseudotuberculosis infection to date, with 

a total of over 200 laboratory-confirmed cases of infection reported. Prior to our study, the New 

Zealand study had provided the most inclusive genome-scale analysis of a Y. pseudotuberculosis 

population. Genomic and epidemiological analyses indicated a single point-source 

contamination of the food chain, with subsequent nationwide distribution of contaminated 

produce. Furthermore, the analysis carried out in this study involved incorporation of publicly 

available reference genomes within the context of a globally and taxonomically diverse dataset. 

This revealed that Y. pseudotuberculosis is a highly diverse species and that the New Zealand 

strains represented a geographically isolated clade of Y. pseudotuberculosis (Williamson et al., 

2016). This study serves as an example of the exploitation of pathogen genome sequence data 

and the contribution of population genomic analysis to understanding the epidemiology and 

spatiotemporal spread of clinically important bacterial pathogens. 

1.2.4.3. Virulence factors of Y. pseudotuberculosis  

The genomes of the pathogenic Yersiniae, Y. pseudotuberculosis, Y. enterocolitica, and Y. pestis, 

are 97% identical, however the three organisms cause different types of diseases in humans, 

despite sharing a tropism for lymph nodes (Fig. 1.1; Bergsbaken and Cookson, 2009). The 

different routes of infection, types of infections, and severity of disease in humans caused by 

the pathogenic Yersiniae are influenced by the distribution of shared and unique virulence-

associated genes (VAGs). Both chromosomal and plasmid-derived virulence-associated genes  

contribute to the pathogenesis of Yersinia species and the establishment and progression of 

yersiniosis. Recent work by our group, which delineated the phylogeny of the genus Yersinia, 

including 31 isolates of Y. pseudotuberculosis, revealed important information on the population 

structure and collection of virulence genes which define the genus (Reuter et al., 2014). Much 

like the other human pathogenic Yersiniae, the pathogenicity of Y. pseudotuberculosis is 

dependent on the presence of a ∼70 kb virulence plasmid associated with Yersinia virulence, 

pYV (Portnoy and Falkow, 1981). The pYV plasmid differentiates pathogenic strains from non-

pathogenic strains, because it is required for virulence. Although the pYV plasmid is commonly 

thought of as a single entity, it is highly variable between species and strains of species, 
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containing different origins of replication as well as exhibiting variable genetic architecture 

(Reuter et al., 2014; Portnoy and Falkow 1981). However, all pathogenic Yersinia strains harbour 

the large genetic locus encoding the Ysc type III secretion system (T3SS), located on the pYV 

plasmid (Reuter et al., 2014; Portnoy and Falkow, 1981). The Ysc T3SS, which was the first T3SS 

to be fully characterised, functions by mediating the targeted delivery of Yersinia outer protein 

(Yop) effector proteins into host cells. Yops are the key virulence factors in all pathogenic 

Yersiniae; injection of Yops and contact with host macrophages results in the inhibition of the 

pro-inflammatory cytokine response and ultimately, apoptotic death of the infected 

macrophages (Cornelis and Wolf-Watz, 1997). Additional virulence determinants that are 

variably present in Y. pseudotuberculosis include the chromosomal high-pathogenicity island 

(HPI), which is present in almost all European strains of Y. pseudotuberculosis serotype O:1 

(Carniel, 1999). HPI encodes proteins that are involved in the biosynthesis, regulation, and 

transport of the iron uptake system Yersiniabactin. Y. pseudotuberculosis also harbour the 

Yersinia adhesion pathogenicity island (YAPI), which includes a pilin gene cluster, the pil operon, 

encoding a type IV pilus that contributes to pathogenicity (Collyn et al., 2004). The vast majority 

of all Y. pseudotuberculosis strains originating from the Far East of Asia additionally produce one 

of three variants of a chromosomally-encoded novel superantigenic toxin YPM (the Y. 

pseudotuberculosis-derived mitogen), encoded by the ypm gene. The YPMa variant is encoded 

by the ypmA gene (Ramamurthy et al., 1997) and plays a more crucial role in systemic infections 

than in gastroenteritis. YPMb and YPMc are the other two variants of the superantigen, which 

are encoded by the ypmB and ypmC genes, respectively (Ramamurthy et al., 1997). A small 

conserved RNA chaperone protein, known as Hfq, is essential for the full spectrum of virulence 

in a variety of pathogenic bacteria, including both Y. pseudotuberculosis and Y. 

enterocolitica. The Hfq protein plays an important role in the regulation of motility, intracellular 

survival, and production of T3SS effectors in Y. pseudotuberculosis (Schiano, Bellows and 

Lathem, 2010). 

1.2.4.4. Pathophysiology of Y. pseudotuberculosis infection 

After ingestion by humans, Y. pseudotuberculosis pass into the small intestine and adhere to the 

mucosal lining of the ileum, where intracellular infections in Peyer’s patches, mucosal cells, and 

macrophages can occur (Fig. 1.1; Gage, 2012). Invasion of the ileal mucosa is favoured by the 

presence of numerous virulence-associated genes coding for fimbriae, flagellar proteins, and 

adhesins, such as invasin (Inv), YadA, and the attachment invasion locus protein (Ail) (Carniel, 

2003). The invasin protein prompts the internalisation of the bacteria, which translocate across 

the epithelium (Pepe and Miller, 1993). As a result, an inflammatory response occurs causing 
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the characteristic symptoms of fever, abdominal pain, and diarrhoea, which are typical of acute 

gastroenteritis and mesenteric lymphadenitis. Ulcerative ileitis, and extraintestinal conditions 

such as mesenteric adenitis, erythema nodosum, and necrosis within Peyer’s patches can arise 

in more advanced cases (Jalava et al., 2006). If the regional defences of the ileum are broken, 

the bacteria can disseminate and cause sepsis, or even abscesses of the liver or spleen (Kaasch 

et al., 2012). Polyarthritis, a type of arthritis that involves five or more joints and usually 

associated with autoimmune conditions, may also occur at a later stage of illness, particularly in 

human leukocyte antigen (HLA)-B27-positive individuals (Gage, 2012). Bacterial cells that are 

replicating in the intestinal tract can also attack the host lymphoid tissues, much like Y. pestis. 

Invasion of these tissues and resistance against the host defences rely on the possession of the 

pYV plasmid which encodes genes for various Yops and the V antigen (LcrV) (Gage, 2012). The 

products of this plasmid work together to silence phagocytic immune cells as well as reduce 

inflammation, resulting in suppression of the host immune response. This favours persistence 

of these bacteria in the body, allowing them to replicate extracellularly and form aggregates in 

the mesenteric lymph nodes, which can lead to septicaemia (Gage, 2012). 
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Figure 1.1. Routes of transmission and mechanisms of pathogenesis of the human pathogenic Yersinia 

species.  

The routes of transmission for the enteropathogenic Yersinia species, Y. pseudotuberculosis and Y. 

enterocolitica, are usually associated with the consumption of contaminated raw vegetables 

(lettuce/carrots) and undercooked meat (mainly pork). They are ingested via the contaminated food and 

enter the lymphatic system through the M cells in the small intestine. They can then progress to cause a 

localised infection of the liver or spleen, or in rare cases, lead to systemic infection such as septicaemia. 

The main reservoirs of Y. pestis, on the other hand, are rodents and fleas. Transmission of the bacteria to 

humans occurs through the bite of an infected flea resulting in bubonic plague. Pneumonic plague can arise 

when Y. pestis reaches the lungs, via the bloodstream, and is transmitted to other individuals through the 

release and inhalation of respiratory droplets. Figure adapted from Heroven and Dersch (2014).  

M cell: microfold cell.   
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1.2.5. Clinical manifestations of Y. pseudotuberculosis infection 

After an incubation period of around 3 to 7 days, gastroenteritis usually develops, which can be 

difficult to distinguish from Salmonella- or Campylobacter-associated gastroenteritis. Patients 

with Y. pseudotuberculosis-associated infections typically present with clinical syndromes 

characterised by acute mesenteric adenitis with fever, diarrhoea, vomiting, and bloody stools 

(Gage, 2012). Young children are more likely to develop enterocolitis, whilst older children more 

commonly experience acute terminal ileitis, mesenteric adenitis, and systemic disease. Sepsis is 

generally uncommon and is most likely to occur in individuals with pre-existing conditions and 

risk factors such as diabetes mellitus, cirrhosis, immunosuppression, older age, and 

haemochromatosis. Splenic abscesses, meningitis, or endocarditis can develop in septic 

patients, and the mortality rate in these cases is close to 50%. Erythema nodosum is identified 

in about one-third of all patients and in approximately 10% of adults (Gage, 2012). Y 

pseudotuberculosis infections are more common in men than in women. However, post-

infection complications, such as erythema nodosum and reactive arthritis, are more common in 

women. Children aged 5 to 15 years comprise greater than 75% of patients with Y. 

pseudotuberculosis infection. Illness typically lasts 1 to 3 weeks, but symptoms may persist in 

some patients for several months (Gage, 2012). Although fever and self-limiting gastroenteric 

symptoms are the primary clinical manifestations of Y. pseudotuberculosis infection in Europe, 

those occurring in Japan, Korea, and the Far East of Russia include not only symptoms of 

gastroenteritis but also a variety of systemic manifestations such as scarletiniform rash, 

desquamation, and arthritis (Gage, 2012). This disease variant is called Far East scarlet-like fever, 

which is associated with specific superantigen-containing strains of Y. pseudotuberculosis. Two 

research groups have previously reported considerable geographical heterogeneity between 

the Far East of Asia and Europe regarding the prevalence of YPMa-producing strains (Ueshiba et 

al., 1998; Yoshino et al., 1995). The investigators reported an absence of the ypmA gene in 

strains belonging to serotypes O:1 and O:2 from Europe, however this gene was present in 

almost all strains belonging to serotypes O:1, O:2, O:4, and O:5 from Asia, indicating the 

importance of the ypmA gene in strains causing Far East scarlet-like fever (Ueshiba et al., 1998; 

Yoshino et al., 1995). In Russia and Japan, Y. pseudotuberculosis infection is regarded as a 

national health problem and was added to the national notification system in 1988 (Tseneva et 

al., 2012). 

1.2.6. Treatment and prevention 

Antibiotics generally do not improve the course of uncomplicated enterocolitis or mesenteric 

adenitis, and antibiotic treatment regimens are not recommended for intestinal forms of the 
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disease (Bottone, 1997). However, such therapy has been recommended for 

immunocompromised patients, individuals with septicaemia, and those with systemic disease 

or extraintestinal progression of disease. Broad-spectrum cephalosporins, sometimes 

accompanied by aminoglycosides, have resulted in successful outcomes in patients with 

extraintestinal forms of yersiniosis, including septicaemia (Bottone, 1997). Antimicrobial 

resistance is generally less common in Y. pseudotuberculosis than in Y. enterocolitica (Bonardi et 

al., 2016). Prevention of contracting Y. pseudotuberculosis infection relies on measures intended 

to protect individuals from direct contact with contaminated environments, foods, wastes, as 

well as other infected humans and animals. Some of these approaches include using proper 

sewage disposal methods, protecting water supplies from contamination, as well as using 

appropriate food hygiene, preparation, and storage measures (Bottone, 1997). 

1.2.7. Identification and typing of Y. pseudotuberculosis 

1.2.7.1. Serological characterisation of Y. pseudotuberculosis 

Diagnosis of yersiniosis begins with isolation of the causative organism, using selective media, 

from the human host’s stool, blood, or vomit, and sometimes at the time of appendectomy 

(surgical removal of the appendix). Biotyping and serotyping of Y. pseudotuberculosis can 

provide useful epidemiologic information when tracking the source of community outbreaks. 

Classically, identification and typing of Y. pseudotuberculosis is commonly based on the 

lipopolysaccharide (LPS) O-antigen, which is used for the serological characterisation of strains. 

The LPS is a lipoglycan present on the cell surface of most Gram-negative bacteria, and for many 

pathogens including Y. pseudotuberculosis, the LPS represents an important virulence factor (Ho 

et al., 2008). The structure of the LPS is comprised of three key components: lipid A, the core 

oligosaccharide, and O-specific polysaccharide (OPS; also termed the O-antigen). The O-antigen 

serotyping scheme used for Y. pseudotuberculosis involves differentiation of the variable OPS 

subunits (O units) using serology. It has been suggested that the same serotyping scheme can 

be implemented for the identification and typing of all members of the Y. pseudotuberculosis 

complex, which includes Y. pestis, Y. similis, and Y. wautersii (Savin et al., 2014; Laukkanen-

Ninios et al., 2011). Some of the 15 major serotypes (O:1 – O:15) of Y. pseudotuberculosis are 

divided into ten subtypes (O:1a, O:1b, O:1c, O:2a, O:2b, O:2c, O:4a, O:4b, O:5a, O:5b), thus 

resulting in a total of 21 known serotypes (Skurnik, Peippo and Ervela, 2000). The efficacy of 

serotyping in investigating potential outbreaks of Y. pseudotuberculosis in Europe is very limited, 

due to the vast majority of strains isolated from human cases belonging to serotypes O:1 and 

O:3, whereas serotypes O:2 and O:4–O:15 are primarily found in Asia (Fukushima et al., 2001). 

Previous studies have indicated that a large proportion of strains isolated from human cases 
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belong to serotypes O:1a, O:1b, and O:3 (Williamson et al., 2016; Laukkanen-Ninios et al., 2011). 

The application of serotyping methods to Y. pseudotuberculosis therefore provides only low-

level resolution when studying the ecology and diversity of this important human pathogen, 

thus suggesting the need for higher resolution typing methods.  

1.2.7.2. Y. pseudotuberculosis multilocus sequence typing (MLST) 

Population genomic analyses of Y. pseudotuberculosis have revealed greater details about the 

population structure of this species and its relationship to the other closely related species of 

the Y. pseudotuberculosis complex. Sequence-based analysis provides a more detailed 

classification system than biochemical characterisation to differentiate between phenotypically 

indistinguishable strains, as has been demonstrated with the recently described species Y. similis 

(Sprague et al., 2008), which is biochemically similar to Y. pseudotuberculosis. Multilocus 

sequence typing (MLST) is a molecular typing method, developed in 1998, with the aim of 

improving the portability and accuracy of epidemiological and molecular typing information. It 

was proposed to provide a highly discriminating typing system for the unambiguous 

characterisation of isolates of most bacteria and other organisms (Maiden et al., 1998). Soon 

after MLST analysis was first described, a research group led by Mark Achtman developed a new 

MLST scheme for Y. pseudotuberculosis (Laukkanen-Ninios et al., 2011). The MLST scheme was 

based on allele profiling of fragments of seven Y. pseudotuberculosis housekeeping genes: glnA, 

thrA, tmk, trpE, adk, argA, and aroA (Laukkanen-Ninios et al., 2011). The MLST scheme was 

applied to a diverse collection of 417 isolates from 29 countries representing all continents, in 

order to characterise the molecular epidemiology, population structure, and diversity of Y. 

pseudotuberculosis, adding further granularity to the serotype classification method. This 

analysis grouped serotype O:3 strains into a distinct clone designated ST19, which consists of 

single-locus variants ST50 and ST57. It has previously been suggested that these strains are 

associated with lowered pathogenicity (Fukushima et al., 2001); however, these strains harbour 

the pYV plasmid and the chromosomal inv gene and are sometimes responsible for fatal 

diarrhoea in cattle (Martins, Bauab and Falcao, 1998). It was revealed that serotype O:1 strains 

formed a distinct clade of strains which represented a large number of sequence type 

complexes. This indicated a genotypically diverse population of bacteria within the serotype O:1 

group and thus an overall high diversity among disease-causing Y. pseudotuberculosis strains 

(Laukkanen-Ninios et al., 2011).  
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1.3. Escherichia coli 

1.3.1. An introduction to the E. coli species 

The second model organism used in this study to investigate microbial ecology is Escherichia 

coli. The species was first discovered in the late nineteenth century by Theodor Escherich, a 

German-Austrian paediatrician who believed that intestinal diseases in infants were caused by 

the infant gut microbes. Escherich isolated E. coli from the faeces of infants and subsequently 

named the organism ‘Bacterium coli commune’, which was later renamed Escherichia coli after 

Escherich’s death (Hacker and Blum-Oehler, 2007). E. coli is a member of the 

Enterobacteriaceae, which are widespread in nature and are most commonly found in the 

intestinal tracts of mammals, but can also be isolated in high concentrations from soil, water, 

and agricultural land, due to faecal contamination (Winn et al., 2006). The genus Escherichia, 

which contains six distinct species (E. coli, E. albertii, E. fergusonii, E. vulneris, E. hermannii, and 

E. marmotae), is the most commonly encountered genus of the Enterobacteriaceae in the 

clinical setting. Within the genus Escherichia, E. coli is the only member to exhibit pathogenic 

traits, and due to its environmental ubiquity and ability to grow easily under laboratory 

conditions, it is also one of the most extensively studied model organisms in microbial genetics.  

The bacterium is a Gram-negative, rod-shaped, non-sporulating, facultatively anaerobic 

coliform, typically 2 µm in length and 0.5 µm in diameter (Winn et al., 2006). The bacterial cell 

characteristically has peritrichous flagella projecting in all directions, which enable a level of 

motility for the bacterium, a trait which is thought to contribute to bacterial fitness and virulence 

(Lane et al., 2005). Despite the metabolic complexity of E. coli, the species can be distinguished 

from other members of the Enterobacteriaceae based on distinct metabolic characteristics, 

which includes its ability to produce indole from the metabolism of the amino acid tryptophan. 

E. coli can also reduce nitrate to nitrite, and produce pyruvic acid from glucose, which can be 

demonstrated using the methyl-red indicator (Winn et al., 2006). Most strains of E. coli are also 

able to ferment lactose, which is often used as a feature to distinguish E. coli from the closely 

related species Shigella (Winn et al., 2006), and this can easily be demonstrated by a change in 

colour of the indicator on differential culture media, such as CLED (cysteine-, lactose-, and 

electrolyte-deficient) agar and MacConkey agar. The metabolic adaptability of E. coli may 

provide it with a fitness advantage over fastidious organisms, allowing it to survive and multiply 

in nutritionally poor microenvironments, such as the human bladder.  
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1.3.2. Commensal E. coli 

Commensal E. coli are strains which colonise humans and animals, but do not trigger an immune 

response or cause disease in the host. E. coli are one of the first bacteria to colonise the human 

intestine, with initial colonisation occurring during the early stages of infancy. This may be due 

to the transmission of E. coli from the mother to the neonate, or even through nursing staff in 

the hospital (Watt et al., 2003). E. coli are lifelong commensal colonisers of adults, where the 

species has adapted its metabolism very successfully to the nutritional ecological niche of the 

gut, withstanding competition from more than 500 other bacterial species (Tenaillon et al., 

2010). As a consequence of being a gut microbe, E. coli are regularly excreted into the wider 

environment, and despite being intricately adapted to life inside a host, E. coli must also be 

adapted to successfully acclimatise to harsher conditions outside of the host (Savageau, 1983). 

E. coli are able to persist in the environment until the next host consumes viable bacteria in 

contaminated food or water. One of the stress conditions faced by E. coli following ingestion is 

the acidic pH of the stomach, which it survives by evoking protective acid resistance systems 

(Foster, 2004). E. coli must then acquire the nutrients required to proliferate once reaching the 

colon. Successful colonisation of the colon by E. coli depends on competition for nutrients with 

an extremely large and diverse microbiota, penetration of the intestinal mucus layer, ability to 

avoid the host defences, and grow rapidly, beyond the turnover rate of the mucus layer (Conway 

and Cohen, 2015). E. coli persists in the mucus whilst some cells that are sloughed off into the 

lumen of the intestine are eliminated in the host faeces and the cycle repeats with a new host. 

This circle of colonisation and extraintestinal survival represents the life cycle for both 

commensal and pathogenic strains of E. coli. 

In addition to colonising the intestinal systems of humans, commensal E. coli also typically 

colonise the urinary tract and cause a condition known as asymptomatic bacteriuria (ABU), 

which is characterised by the presence of E. coli in urine but the host does not exhibit any of the 

classical symptoms associated with a urinary tract infection (UTI). It was traditionally thought 

that commensal E. coli strains simply did not possess virulence-associated genes in their genome 

and were therefore unable to cause disease (Mabbett et al., 2009). In fact, more recent studies 

of the ABU isolate E. coli 83972 have shown that this strain does possess virulence genes. Rather 

they have become attenuated due to deletion events and are no longer functional. It was 

postulated that this occurred through adaptation to the new environment of the bladder, giving 

avirulent strains the advantage of residing within the host without eliciting the lethal action of 

the immune response (Mabbett et al., 2009). 
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1.3.3. Intestinal pathogenic E. coli (IPEC) 

Despite the fact that E. coli exists as a commensal species in the intestinal microbiota of a variety 

of animals including humans, not all strains are harmless, and some can cause debilitating and 

sometimes life-threatening diseases in humans as well as mammals and birds (Belanger et al., 

2011). Pathogenic E. coli strains are classified into two groups: those that cause intestinal 

infection and those that cause extraintestinal infection. Unlike the intestinal commensal E. coli, 

intestinal pathogenic E. coli strains have acquired virulence-associated genes (VAGs), giving 

them the ability to cause many serious intestinal diseases (Kaper, Nataro and Mobley, 2004). 

Among the intestinal E. coli there are eight recognised pathotypes (Fig. 1.2): enteropathogenic 

E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), enteroaggregative E. 

coli (EHAC), enterohaemorrhagic (Shiga toxin-producing) E. coli (EHEC/STEC), diffusely adherent 

E. coli (DAEC), entero-aggregative-haemorrhagic E. coli (EAHEC), and adherent invasive E. coli 

(AIEC) (Clements et al., 2012). These pathotypes are capable of causing varying severities of 

disease ranging from mild, self-limiting diarrhoea to diseases such as haemolytic uraemic 

syndrome (HUS), which is characterised by haemolytic anaemia, acute kidney failure, and low 

platelet count. The type of disease caused by an intestinal pathogenic strain of E. coli is 

influenced by the types of virulence-associated genes that the strain possesses. The profile of 

VAGs and the type of disease caused by strains is used to broadly classify intestinal E. coli into 

one of the eight pathotypes, which are used to inform diagnosis and treatment of diseases. 

There is increasing crossover between E. coli strains of different pathotypes as a result of 

horizontal recombination, and thus new pathotypes are often proposed, increasing our 

understanding of the evolution of this important pathogen to humans. 

Enteropathogenic E. coli (EPEC) are pathogens that colonise the small intestines and are a 

common cause of severe, watery diarrhoea in infants of developing countries (Trabulsi, Keller 

and Tardelli Gomes, 2002). In industrialised countries, the prevalence of these organisms has 

decreased, but they continue to be an important cause of diarrhoea (Nataro and Kaper, 1998). 

The primary mechanism of EPEC pathogenesis involves attaching and effacing (A/E) lesions, 

which are characterised by microvilli destruction, adherence of the bacteria to the intestinal 

epithelium, pedestal formation, and aggregation of polarised actin and other elements of the 

cytoskeleton at sites of bacterial attachment (Nataro and Kaper, 1998).  

Enterotoxigenic E. coli (ETEC) are strains that colonise the mucosa of the small intestines of 

humans and cause a mild, self-limiting diarrhoeal disease. In immunocompromised hosts, the 

disease may progress to a more severe, longer lasting infection akin to that of cholera. ETEC is 

one of the leading causes of diarrhoea in the developing world, and it is the most common cause 
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of travellers’ diarrhoea, a significant disease in children estimated to be responsible for 

approximately 210 million cases and 380,000 deaths per year (Jelinek and Kollaritsch, 2008).  

Enteroinvasive E. coli (EIEC) is an intracellular E. coli pathotype which is genetically and 

biochemically very similar to Shigella, another genus of enteric pathogen within the 

Enterobacteriaceae. Both EIEC and Shigella possess the ipaH invasive gene (Kaper, Nataro and 

Mobley, 2004) and cause invasive disease which may lead to severe illness in otherwise healthy 

individuals. Since EIEC and Shigella are so closely related it has previously been suggested that 

they should be classified as a single pathotype of E. coli, however Shigella keeps its species 

designation due to the association with the disease shigellosis (Croxen and Finlay, 2010).  

Enteroaggregative E. coli (EAEC) was first described in 1987 in a child suffering from acute 

diarrhoea in Lima, Peru (Nataro et al., 1987). Since its discovery, EAEC have been associated with 

persistent diarrhoea in children living in EAEC-endemic areas (Nataro et al., 1987), individuals 

infected with the human immunodeficiency virus (HIV) (Mathewson et al., 1995), and as a cause 

of diarrhoea in travellers from industrialised countries visiting the developing world. The 

pathogenesis of EAEC is determined by its ability to adhere to intestinal cells, produce 

enterotoxins and cytotoxins, and induce inflammation of the intestinal wall. EAEC are 

characterised by the ability to colonise either the small or large intestinal mucosa, but primarily 

the colon, by aggregative adhesion.  

The diffusely adherent E. coli (DAEC) are considered a diarrhoeagenic class of organisms that 

colonise the small intestines, causing diarrhoea in children between the age of 18 months and 5 

years in developing countries (Mansan-Almeida, Pereira and Giugliano, 2013). These strains are 

characterised by the diffuse adherence pattern on cultured epithelial cells HeLa or Hep-2 

(Croxen and Finlay, 2010). DAEC strains are able to produce finger-like projections that extend 

from the surface of infected Caco-2 or HEp-2 cells (Cookson and Nataro, 1996). These 

projections supposedly “embed” the bacteria, providing some protection against gentamicin but 

without complete internalisation of the cell, however the role for this phenotype in 

pathogenesis has not yet been determined.  

The enterohaemorrhagic E. coli (EHEC) pathotype was first defined in 1983 after two outbreaks 

of gastrointestinal illness characterised by severe abdominal cramps, watery diarrhoea which 

progressed to extremely bloody diarrhoea, and was not accompanied by fever (Riley et al., 1983; 

Karmali et al., 1983). EHEC was defined based on the serological evidence and presence of a 

specific cytotoxin derived from these two outbreaks. EHEC strains comprise a subgroup of the 

Shiga toxin-producing E. coli (STEC), which encompasses EHEC and the lesser virulent/avirulent 

STEC. Owing to their human pathogenicity, some STEC strains are also designated as EHEC 
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(Nataro and Kaper, 1998). The major defining feature of EHEC is the production of phage-

encoded Shiga toxin, Stx1 and/or Stx2, which are responsible for serious disease in humans, such 

as HUS and HC.  

In 2011, an outbreak strain associated with haemolytic-uraemic syndrome and bloody diarrhoea 

in Europe, was identified as an EAEC strain that acquired the prophage-encoded Shiga toxin of 

EHEC, thus combining the virulence potentials of two different pathogens (Denamur, 2011). This 

combination of genomic features, associating characteristics from both EAEC and EHEC, gave 

rise to a new pathotype: the enteroaggregative-haemorrhagic E. coli (EAHEC). This outbreak 

highlighted the ability of E. coli to recombine and produce new combinations of genes, resulting 

in new lineages. The EAHEC outbreak also provided a good example of the application of modern 

sequencing technologies to rapidly and accurately identify causative strains, which in the past, 

relied heavily on low resolution methods such as serotyping of infectious organisms (Denamur, 

2011).  

The adherent-invasive E. coli (AIEC) are a pathotype of E. coli that have been implicated in the 

pathogenesis of Crohn’s disease (Darfeuille-Michaud, 2002). AIEC are unusual among intestinal 

E. coli pathotypes in that they are not associated with diarrhoea. The high prevalence of 

adherent E. coli isolated from the ileal mucosa of patients with Chron’s disease led to the 

characterisation of several strains, which failed to detect any virulence-associated genes that 

are traditionally present in typical pathogenic species. One characteristic of these strains is the 

ability to adhere to and invade intestinal epithelial cells, as well as the ability to replicate within 

macrophages, which discerns them from other varieties of E. coli, including commensals. These 

strains were therefore categorised as the specific pathogenic group known as AIEC (Darfeuille-

Michaud, 2002).  

1.3.4. Extraintestinal pathogenic E. coli (ExPEC) 

Extraintestinal pathogenic E. coli (ExPEC) are facultative pathogens which colonise the 

gastrointestinal tract of many healthy individuals, where they exist as commensals and do not 

cause enteric disease, contrary to the intestinal pathogenic E. coli (IPEC). ExPEC strains colonise 

sites outside of the intestinal tract, such as the urinary tract, bloodstream, and brain (Fig. 1.2). 

ExPEC are considered the primary aetiological agent of urinary tract infections (UTIs), as well as 

a common cause of bacteraemia and sepsis in the community. Other ExPEC strains are 

responsible for surgical wound infections, neonatal meningitis, and neonatal sepsis (Ron, 2010; 

Russo and Johnson, 2003). ExPEC strains which reside in the gastrointestinal tract differ from 

normal commensal strains, in that they possess virulence traits that allow them to colonise more 
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inhospitable environments, such as the urogenital tract (Smith, Fratamico and Gunther, 2007). 

In addition to these bacteria-specific traits, host-specific factors are also required in order to 

cause disease. ExPEC is therefore considered a necessary but not sufficient cause for 

extraintestinal E. coli infection, and as a result, additional factors are required for an infection 

to occur (Singer, 2015). Consequently, ExPEC are considered opportunistic pathogens for 

causing ExPEC-associated disease. When provided with an opportunity in individuals who might 

be susceptible in some way (e.g., compromised immune system), or through the influence of 

specific risk factors, the bacterium can be transferred to the urogenital tract where it can cause 

a UTI (Foxman, 2014). Similar to the intestinal pathogenic E. coli described earlier, ExPEC strains 

are also categorised into pathotypes as defined by the anatomical location of the disease they 

cause and the molecular virulence-associated genes that they carry, although few traits appear 

to be exclusive to one specific ExPEC subgroup. 

1.3.4.1. Avian pathogenic E. coli (APEC) 

Avian pathogenic E. coli (APEC) are responsible for causing systemic extraintestinal infections 

such as aerosacculitis, polyserositis, and septicaemia in avian hosts such as chickens, turkeys, 

and other wild and domesticated birds (Manges, 2016). APEC are typically part of the intestinal 

microbiota of healthy birds and infections typically result from environmental exposures and 

increased host susceptibility. More recently, APEC are also thought to be responsible for 

infections in humans, due to similarities in virulence determinants found in APEC and human 

ExPEC strains (Johnson et al., 2008). For instance, it has been demonstrated that genome 

content, virulence gene profiles, phylogeny, biofilm formation, and in vivo transcriptional 

activation are shared by APEC strains and the human ExPEC serotypes O18:K1:H7, O78, and 

O2:K1:H7 (Bauchart et al., 2010). Other studies of pathogenesis in vivo and in vitro have shown 

that APEC can cause disease in mammalian hosts and conversely, ExPEC isolated from human 

infections can cause disease in avian models (Jakobsen et al., 2012; Tivendale et al., 2010). These 

findings have led to the supposition that APEC is a zoonotic pathogen contributing to the weight 

of ExPEC infections in humans, particularly UTIs, and that consumption of retail poultry may be 

a source of infection (Platell et al., 2011b; Tivendale et al., 2010).  

1.3.4.2. Neonatal meningitis E. coli (NMEC) 

Neonatal meningitis E. coli (NMEC) have the ability to cross the blood-brain barrier (BBB) and 

are the second-leading cause of neonatal meningitis (Heath, Nik Yusoff and Baker, 2003), causing 

high mortality and neurologic sequelae in affected neonates. NMEC commonly inhabit the lower 

gastrointestinal tract, but become niche pathogens upon entry to the bloodstream and central 
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nervous system (CNS). NMEC are able to penetrate the BBB due to their ability to persist in the 

bloodstream by surviving engulfment by macrophages, multiplying in high numbers, and thus 

allowing successful invasion of the meninges of infants and causing meningitis (Kaper, Nataro 

and Mobley, 2004). NMEC are resistant to the host immune response, due to the possession of 

a KI capsule. This capsule is a thick polysialic acid layer that safeguards the bacterium from 

ingestion by phagocytic cells, and also from fusion with intracellular lytic vacuoles. As a 

consequence of the protection that the KI capsule provides, significant numbers of viable 

bacterial cells are transported across the BBB and into the CNS, where they can cause oedema 

and neural damage. It is most likely that these factors contribute to E. coli-associated neonatal 

meningitis carrying the significantly high mortality and morbidity rate (10–30%) associated with 

neonatal meningitis, caused by NMEC during the neonatal period (Kaper, Nataro and Mobley, 

2004).  

1.3.4.3. Uropathogenic E. coli (UPEC) 

The pathotype of E. coli responsible for causing urinary tract infections (UTIs) is referred to as 

uropathogenic E. coli (UPEC). Among the common urinary pathogens associated with the 

development of UTIs, UPEC are the primary cause (Terlizzi, Gribaudo and Maffei, 2017). UPEC 

are defined by their ability to cause extraintestinal infections of the urinary tract (bladder, 

kidneys, ureter, and urethra), and are characterised by a plethora of both structural (fimbriae, 

pili, flagella, capsules) and secreted (toxins, iron-acquisition systems, proteins) virulence factors 

that contribute to their capacity to cause disease. UTIs are globally widespread and affect a large 

proportion of the human population. Approximately 150 million people worldwide develop a 

UTI each year (Flores-Mireles et al., 2015) and roughly 11% of women suffer an episode of UTI 

per year (Foxman, 2014). UPEC are thought to be responsible for up to 80% of uncomplicated 

UTIs in females (Flores-Mireles et al., 2015). UPEC are particularly well-adapted to surviving in 

the urinary tract and possess VAGs enabling them to scavenge iron from the environment and 

catabolise the amino acid D-serine, which is present in urine (Flores-Mireles et al., 2015). 

Additionally, UPEC are also notable for their ability to adhere to host epithelial cells in the urinary 

tract, and this represents the most important determinant of pathogenicity for UPEC. In severe 

cases where a UTI is left untreated, UPEC can ascend the urinary tract to cause infection of the 

kidneys and bloodstream.  

UPEC strains that have invaded the bladder cells may be released and ascend to the kidneys via 

the ureters. Adherence to the kidney epithelial cells is mediated by binding of P-fimbriae to 

digalactoside receptors (Kaper, Nataro and Mobley, 2004). Upon colonisation of the kidney, 

UPEC virulence factors such as haemolysin and secreted autotransporter toxins (SAT) result in 
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damage to the renal epithelium, leading to pyelonephritis. Bacteria that have made it to this 

stage are then able to penetrate the endothelial cells of the proximal tubes and gain access to 

the bloodstream, resulting in bacteraemia (Kaper, Nataro and Mobley, 2004). The process of 

ascending infection from UTI to bacteraemia, involving the bladder, kidneys, and bloodstreams 

is known as urosepsis. The incidence of bloodstream infection is becoming more prevalent and 

is associated with higher rates of mortality. Bacteraemia caused by E. coli infection, which can 

be community or hospital-acquired, is reported with increasing frequency worldwide (Ron, 

2010), accounting for 17–37% of bacteraemia cases globally (Russo and Johnson, 2003). Studies 

have reported that E. coli is the most frequent organism isolated from septicaemia resulting 

from an initial UTI. A UK-based study revealed that E. coli accounts for ~75% of Gram-negative 

bacteraemia cases of urinary origin (Al-Hasan, Eckel-Passow and Baddour, 2010). The 

association of bacteraemia caused by E. coli and UTI origin is therefore significant in the UK. 
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Figure 1.2. Sites of colonisation of the human body by pathogenic strains of Escherichia coli. 

Pathogenic strains of E. coli are able to colonise various parts of the human body and cause subsequent 

disease, an ability that is attributed to the genome plasticity of the species and the carriage of specific 

virulence-associated genes (VAGs). The human extraintestinal pathogenic E. coli (ExPEC) develop infections 

at anatomical sites exterior to the gastrointestinal tract. Neonatal meningitis E. coli (NMEC) have the ability 

of crossing the blood-brain barrier (BBB) into the central nervous system and cause meningitis, whilst 

uropathogenic E. coli (UPEC) colonise and cause infection along various parts of the urinary tract, including 

the bladder and the kidneys, from which they can disseminate to the bloodstream and cause septicaemia. 

The intestinal pathogenic E. coli colonise various parts of the gastrointestinal tract. Enteroinvasive E. coli 

(EIEC), enteroaggregative E. coli (EAEC), and the particularly virulent entero-aggregative-haemorrhagic E. 

coli (EAHEC) and enterohaemorrhagic E. coli (EHEC) colonise the large intestines, whereas 

enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), diffusely adherent E. coli (DAEC), as well as 

adherent invasive E. coli (AIEC) colonise and cause infection in the small intestines. Enteroaggregative E. 

coli (EAEC) have the ability to cause disease in both the large and small intestines. Figure adapted from 

Croxen and Finlay (2010) to include the recently identified pathotypes, EAHEC and AIEC. 

Brain: NMEC 

Bladder: UPEC 

Kidneys: UPEC 

Small intestines: EPEC, ETEC, 

DAEC, EAEC, and AIEC 

Large intestines: EHEC, EIEC, 

EAEC, and EAHEC 

Bloodstream:  
NMEC and UPEC 
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1.3.5. Antibiotic resistance in extraintestinal pathogenic E. coli 

Antibiotic resistance in E. coli is a major problem facing today’s healthcare systems, as it is a 

common cause of nosocomial infection and the leading causative agent of urinary tract infection 

and bacteraemia. The prevalence of antimicrobial resistance has been increasing in 

uropathogenic bacteria in recent times and the management of infections caused by these 

strains has been hampered as a result. The cephalosporins, fluoroquinolones, and 

trimethoprim–sulphamethoxazole drug classes have often been used as first-line antibiotics to 

treat community and hospital-acquired infections caused by E. coli. Increasing resistance to 

these agents is responsible for impediments to the appropriate therapy, resulting in more 

frequent cases of morbidity and mortality (Tumbarello et al., 2007). Up until the late 1990s, 

ExPEC were known to be relatively susceptible to first-line antibiotics, but surveillance studies 

during the 2000s in Europe and North and South America have shown that 20–45% of ExPEC are 

resistant to multiple drug classes, including the cephalosporins, fluoroquinolones, and 

trimethoprim-sulfamethoxazole (Foxman, 2014). β-Lactam antibiotics, in particular the 

penicillins and third-generation cephalosporins, are a major drug class used to treat serious E. 

coli infections acquired in the community or the hospital setting (Livermore and Woodford, 

2006). Among E. coli, β-lactamase production remains the most important cause of β-lactam 

resistance. β-lactamases are usually plasmid-encoded enzymes produced by many Gram-

negative bacteria, that inactivate β-lactam antibiotics by hydrolysing the β-lactam ring of the 

basic penicillin structure, thus deactivating the molecule’s antibacterial properties (Livermore 

and Woodford, 2006). The first β-lactamases to be described were TEM (named after 

Temoneira, a patient in Greece from which TEM-1 was first isolated) in the 1960s, and later the 

SHV (SulfHydryl-Variable) β-lactamase. TEM and SHV β-lactamases are encoded by the blaTEM 

and blaSHV genes, respectively. These enzymes quickly became common in the hospital 

environment and allowed many genera of Gram-negative bacteria to become resistant to the 

commonly used antibiotics at the time.  

The TEM-1 enzyme is the most commonly encountered β-lactamase in Gram-negative bacteria. 

It is thought that up to 90% of ampicillin resistance in E. coli is attributed to the production of 

TEM-1 (Livermore, 1995). Although TEM-type β-lactamases are most often found in E. coli and K. 

pneumoniae, they are also found in other species of Gram-negative bacteria with increasing 

frequency. TEM-1 has the ability to hydrolyse penicillins and early cephalosporins, such as 

cephalothin and cephaloridine (Paterson and Bonomo, 2005). The TEM-3 derivative, originally 

reported in 1989, was the first TEM-type β-lactamase that displayed the ESBL phenotype, but in 

the years since the first report, over 100 derivatives of TEM have been described (Paterson and 

Bonomo, 2005). SHV-1 shares 68% amino acid homology with TEM-1 and has an overall similar 
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structure. The SHV-1 β-lactamase is most commonly found in K. pneumoniae and is responsible 

for approximately 20% of the plasmid-mediated ampicillin resistance in this species. A Klebsiella 

ozaenae isolate was identified in Germany in 1983, which possessed a β-lactamase which 

efficiently hydrolysed cefotaxime, and to a lesser extent ceftazidime (Knothe et al., 1983). 

Sequence analysis of this isolate revealed that the β-lactamase differed from SHV-1, by 

replacement of glycine by serine at position 238. This point mutation accounts for the extended-

spectrum properties of this β-lactamase, which was designated SHV-2 (Paterson and Bonomo, 

2005). Within just 15 years of the discovery of this enzyme, organisms possessing the SHV-2 β-

lactamase were found in every inhabited continent on Earth (Paterson et al., 2003). E. coli is also 

a typical clinical host of SHV-type enzymes, with previous studies reporting a high prevalence of 

E. coli producing SHV-type β-lactamases thought to be a significant cause of community-onset 

infections (Memariani et al., 2015). 

Of importance with regards to ExPEC infections in the community and hospital environment is 

the increasing numbers of isolates developing resistance against newly developed antibiotics. 

These include the plasmid-mediated AmpC β-lactamases (e.g., CMY types), carbapenemases, 

and extended-spectrum β-lactamases (ESBLs). ESBLs are able to hydrolyse third and fourth 

generation cephalosporins, but are catalytically less efficient than the parent enzymes and are 

therefore susceptible to β-lactamase inhibitors, such as clavulanic acid (Paterson and Bonomo, 

2005). To date, over 150 different types of ESBLs have been characterised, with a large 

proportion of ESBLs derived from point mutations in the parent β-lactamases, TEM-1, TEM-2, 

and SHV-1, which alter the amino acid configuration around the active site of these β-

lactamases. This extends the spectrum of β-lactam antibiotics that can be susceptible to 

hydrolysis by these enzymes (Paterson and Bonomo, 2005). An increasing number of ESBLs that 

are not of the TEM or SHV lineage have recently been described, which carry tremendous clinical 

significance. The CTX-M type ESBLs are so named as they preferentially hydrolyse CefoTaXime 

and were first discovered in Munich in 1986 (Pitout et al., 2005). These enzymes, encoded by 

blaCTX-M, are plasmid-mediated and are thought to have evolved separately from the TEM and 

SHV family, as they only have 40% sequence homology to these β-lactamases (Tzouvelekis et al., 

2000). When these enzymes were first discovered they were named TOHO-l, but this was later 

changed to CTX-M (Peirano and Pitout, 2010). CTX-M β-lactamases have mainly been found in 

strains of Salmonella enterica serovar Typhimurium and E. coli, but have also been described in 

other species of Enterobacteriaceae (Bradford, 2001). It is thought that the extended spectrum 

activity of the CTX-M-type β-lactamases is attributed to the serine residue at position 237, which 

is present in all of the CTX-M enzymes (Tzouvelekis et al., 2000). Strains expressing CTX-M-type 

β-lactamases have been isolated from multiple locations around the world, but have most often 
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been associated with focal outbreaks (Bradford, 2001). Since the emergence of the CTX-M family 

of ESBLs in the UK in 2001-02, they have become a major concern in the healthcare setting, 

particularly CTX-M-15 and -14, due to their highly transmissible nature. The production of CTX-

M-15 β-lactamases was first reported in an E. coli isolate in India in 2001 (Karim et al., 2001) and 

they have spread rapidly around the world, becoming an important cause of multidrug-resistant 

hospital- and community-acquired urinary tract infections (Peirano and Pitout, 2010). 

Consequently, CTX-M-15 is now the most globally widespread CTX-M enzyme, due to plasmid-

associated dissemination coinciding with the emergence of a particularly successful E. coli clone, 

O25b:H4 ST131 (Peirano and Pitout, 2010). The impact of ESBL-producing E. coli has spread 

beyond the human-clinical setting. A wide range of ESBL-producing ExPEC isolated from 

domesticated animals has been reported, primarily of CTX-M-1 in chicken and CTX-M-14 in 

cattle, while CTX-M-15 prevails among companion animals (Ewers et al., 2014). Furthermore, 

CTX-M-producing strains of clinically-associated clonal groups of E. coli have been identified in 

surface waters (Gomi et al., 2017b) and retail poultry (Johnson et al., 2017; Leverstein-van Hall 

et al., 2011), suggesting that potential non-human reservoirs of MDR ExPEC may exist. 

The OXA-type enzymes (oxacillinase, encoded by blaOXA) are another evolving family of ESBLs. 

These β-lactamases differ from the TEM, SHV, and CTX-M families (class A) in that they belong 

to molecular class D and functional group 2d (Bradford, 2001). OXA-type ESBLs confer resistance 

to multiple antibiotics, including ampicillin and cephalothin, and are characterised by increased 

hydrolytic activity against oxacillin and cloxacillin, whilst being poorly inhibited by clavulanic 

acid. While most ESBLs have been found in species such as E. coli, Klebsiella pneumoniae, and 

other members of the Enterobacteriaceae, the OXA-type ESBLs are more commonly found in 

Pseudomonas aeruginosa (Bradford, 2001). The most common OXA-type ESBL is OXA-1, which 

has been identified in roughly 1–10% of E. coli isolates. The blaOXA-48 gene encodes a 

carbapenemase class D β-lactamase that was first identified in K. pneumoniae from Turkey in 

2003 (Poirel et al., 2004), followed by subsequent reports of OXA-48 producers in E. coli from 

Israel, Senegal, and North Africa (Poirel et al., 2011a; Moquet et al., 2011; Cuzon et al., 2010). 

Further reports have indicated that OXA-48-producing E. coli have started to spread into the 

community in Europe (Poirel et al., 2011b), and can be an important cause of carbapenem 

resistance in extraintestinal infections. Aside from class D carbapenemases, there are also class 

A carbapenemases (mostly of the KPC type, produced by K. pneumoniae) and the metallo-β-

lactamases of class B (such as NDM). 
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1.3.6. Source attribution 

In nature, E. coli is principally a constituent of the gut microbiome of warm-blooded mammals, 

but it can also be found, albeit less frequently, in the gut microbiome of birds, reptiles and fish, 

as well as ubiquitously in the environment, in soil, water, plants and in food (Dublan Mde et al., 

2014; Berthe et al., 2013; Platell et al., 2011b; Brennan et al., 2010; Tenaillon et al., 2010). Due 

to its ubiquity in nature and agriculture, there is a significant risk associated with transmission 

to humans if the appropriate control measures are not considered. E. coli is a cause of zoonoses 

– infections that can be transferred from animals to humans through a variety of mechanisms. 

Most commonly, human infections with E. coli occur due to poor hygiene, close contact with 

infected animals, or the consumption of contaminated food products (Frank et al., 2011). 

Although not all E. coli strains isolated from the environment are capable of causing disease in 

humans, it is likely that some pathogenic strains can find their way into the food chain (Fig. 1.3). 

E. coli is shed in the faeces of natural hosts into the environment, where it can survive in soil, 

water or on food for several days. The successful habitation of E. coli in these secondary 

environments is reliant on several key factors, such as the availability of nutrients and water, 

temperature, and acidity (van Elsas et al., 2011). Considering that E. coli is a predominantly 

intestinal inhabitant, presence of E. coli in food or water is an indicator of faecal contamination 

or poor hygienic practices. 

Animals are a significant risk factor for the transmission of pathogenic E. coli to humans, due to 

the abundance of these microbes in the intestines of domesticated animals, such as sheep and 

ruminants. A previous study has shown that E. coli is well adapted to survive in the faeces of 

these animals, with an extinction range of 2–9 days, and has highlighted the potential risks 

associated with the contamination of food products by animal manure (Moriarty et al., 2010). 

Several outbreaks have been associated with contaminated or undercooked processed meat 

products such as beef burgers, sausages, and poultry (Vincent et al., 2010). Other studies have 

isolated E. coli from plants and seeds, suggesting that leaching from the soil leads to uptake of 

the organism into the roots where it can be disseminated to the leaves of plants such as lettuce 

and cabbage (Oliveira et al., 2012). Studies have suggested that the survival of E. coli in plants, 

which may be consumed raw or without the necessary washing or preparation, is of particular 

concern in the event of contamination with pathogenic E. coli capable of causing significant 

morbidity and mortality (Frank et al., 2011). Other studies have indicated E. coli outbreaks 

associated with contamination of animal-derived products such as unpasteurised milk and 

cheese (Gaulin et al., 2012). Studies have reported E. coli resembling the ExPEC strains 

responsible for human extraintestinal infection being recovered from waterways and retail 

poultry, leading to the suggestion that multiple non-human reservoirs for human ExPEC exist. 
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Figure 1.3. Illustration depicting the potential ecological habitat and routes of transmission of 

Escherichia coli in a global ecosystem. 

E. coli is a natural constituent of the gut microbiome of warm-blooded mammals, including humans, but it 

can also be found in the gastrointestinal tracts of birds, reptiles, and fish. Non-pathogenic and pathogenic 

E. coli strains alike, when shed in the faeces of natural hosts into the environment, can survive in manure, 

soil, water, or on vegetation for several days. Furthermore, some E. coli in human faeces can survive the 

sewage treatment process and be discharged as effluents into natural waterways such as rivers and 

streams, and bodies of water such as lakes and the sea. If the appropriate control measures are not taken, 

there is a significant risk for transmission of E. coli to humans via the food chain, specifically through the 

consumption of contaminated water or food. The most common food sources for acquisition of E. coli 

would include fresh produce such as raw vegetables, dairy products such as unpasteurised milk, as well as 

undercooked ground beef and poultry that have become contaminated due to the slaughtering and food 

preparation processes. Furthermore, E. coli can be transmitted through direct contact with infected 

animals, as well as between humans, due to poor hygiene and sexual activity. 
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1.3.6.1. Surface waters as an environmental reservoir for ExPEC 

An inevitable consequence of being an intestinal or extraintestinal microbe is to be regularly 

excreted into external environments. Environmental and urban waterways act as a passive 

carrier for coliforms such as E. coli, which is often used as an indicator of faecal contamination 

by water quality testing procedures. The major sources of faecal contamination in various 

watersheds include humans, agricultural and domesticated animals, and wild animals. Surface 

waters across the globe are contaminated with bacteria carrying antimicrobial resistance genes 

(Gomi et al., 2017b; Muller, Stephan and Nuesch-Inderbinen, 2016; Chen et al., 2016; Su et al., 

2012; Dolejska et al., 2011b). Among these bacteria, E. coli are recognised as a contributor to 

the dissemination of antibiotic resistance genes in natural environments. Furthermore, 

freshwater environments are recognised as reactors for the evolution and dissemination of 

antibiotic resistance (Marti, Variatza and Balcazar, 2014). The major source of resistant bacteria 

and resistance genes is human sewage. Most developed countries around the world treat 

human sewage to reduce the bacterial load before releasing effluents into surrounding lakes, 

rivers, and oceans, or spreading it on land. However, previous studies indicate that treated 

sewage effluent, and the water into which it is released, remain heavily contaminated with 

antimicrobial-resistant bacteria (Gomi et al., 2017b; Dolejska et al., 2011b).  

Recent environmental studies, reporting the presence of MDR and pathogenic ExPEC strains of 

E. coli, indicate that surface water is considered to be one of the important non-human 

reservoirs of MDR ExPEC (Gomi et al., 2017b; Muller, Stephan and Nuesch-Inderbinen, 2016). It 

has been suggested that contamination of surface waters by clinically important pathogenic 

clones of E. coli may increase the risk of contracting waterborne diseases (Gomi et al., 2017b). 

One of the factors which link the occurrence of ExPEC in surface waters with an increased risk 

of waterborne disease is the capability of E. coli strains to survive in open environments. Every 

aspect of the external environment, whether it concerns nutrition, temperature, oxygen, 

moisture, pH, and/or the surrounding microbial community, can vary drastically (Savageau, 

1983). The ability to use nutrients and develop methods of overcoming these various stressors 

plays a crucial role in their survival in such environments. E. coli from livestock faeces is known 

to survive on grass pastures for 5 months or more, allowing the opportunity for pathogenic E. 

coli to be recycled by wild and domesticated animals (Avery, Moore and Hutchison, 2004), or to 

be introduced into aquatic environments following rainfall or irrigation. The presence of ExPEC 

in aquatic environments may appear to be a common denominator linking a diverse range of 

transitory habitats and transmission to animals and humans. 
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1.3.6.2. Retail poultry meat as a reservoir for ExPEC 

With the widespread prevalence of E. coli in the environment it is possible that pathogenic 

strains may be introduced into the food chain. Environmental E. coli that resemble the ExPEC 

strains responsible for human extraintestinal infections have been identified in environmental 

and urban waterways, sewage, domesticated and wild animals, soil and other environmental 

samples, suggesting that various non-human reservoirs for human ExPEC may exist (Platell et 

al., 2011a; Ewers et al., 2010). It has also been demonstrated that human-to-human 

transmission of genetically nearly indistinguishable ExPEC occurs between household members 

and sexual contacts (Johnson and Clabots, 2006), indicating that humans are definitely a 

reservoir for ExPEC. The magnitude of the contribution of these various routes to ExPEC 

infection, however, is not known. Given that the foodborne route is arguably the major 

contributor to the transmission of enteric E. coli pathotypes, multiple studies have conducted 

investigations into food-borne transmission routes for human ExPEC (Muller, Stephan and 

Nuesch-Inderbinen, 2016; Bergeron et al., 2012; Platell et al., 2011b; Vincent et al., 2010).  

A number of reports have suggested a high prevalence of ExPEC on retail chicken, beef, and pork 

meat, although recovery of ExPEC has evidently been highest from chicken meat (Jakobsen et 

al., 2010; Johnson et al., 2005a; 2005b). These studies have also suggested that consumption of 

contaminated poultry meat may play a role in human extraintestinal infections. The hypothesis 

that retail poultry meat products may provide a reservoir for human extraintestinal infection is 

based on several lines of evidence. Studies have identified genetic relationships between avian 

pathogenic E. coli (APEC) and human ExPEC (Zhao et al., 2009), and additionally, there are 

experimental studies showing the pathogenic potential of APEC in mammalian models and the 

pathogenic potential of human ExPEC in avian models (Jakobsen et al., 2012; Tivendale et al., 

2010). Furthermore, close genetic relationships between E. coli isolates recovered from human 

extraintestinal infections, poultry, and retail chicken meat have been shown through molecular 

epidemiological data (Johnson et al., 2008; Moulin-Schouleur et al., 2006). E. coli ST131 and 

other pandemic ExPEC lineages (ST69, ST394, ST95, ST10 and ST117) have previously been 

identified in both human extraintestinal infections and in poultry reared for consumption or 

retail meat sources (Bergeron et al., 2012; Vincent et al., 2010). A study in Sweden revealed that 

E. coli sequence types ST69, ST117, and ST10 comprised 50% of the extended-spectrum β-

lactamase (ESBL)-producing E. coli population recovered from domestic chicken meat. It was 

found that a substantial amount of chicken meat and chickens imported into Sweden, that were 

contaminated with ESBL-positive E. coli, had actually spread from imported parent broilers to 

broiler meat (Egervarn et al., 2014). This indicated that the occurrence of these antimicrobial-

resistant ExPEC lineages on chicken meat was due to faecal contamination at slaughter. A study 
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from the Netherlands described four sets of E. coli isolates originating from human and poultry 

or retail chicken meat with indistinguishable ESBL gene types (blaCTX-M-1 and blaTEM-

52), plasmids, and MLST genotypes (ST10, ST58, ST117 and ST10) (Leverstein-van Hall et al., 

2011). The Netherlands study however, much like many previous studies, focussed primarily on 

antimicrobial-resistant ExPEC, specifically ESBL-producing E. coli, and therefore studies of ESBL-

positive ExPEC lineages tend to be over-represented in the literature, and thus the true 

population structure of E. coli from non-human sources has not been accurately represented. 

1.3.7. Population structure of extraintestinal pathogenic E. coli 

1.3.7.1. E. coli phylo-typing  

The first bacterial species for which population genomic techniques were described was E. coli. 

Through a technique known as multilocus enzyme electrophoresis (MLEE), it was revealed that 

certain combinations of alleles had appeared on multiple occasions, leading to the 

interpretation that E. coli is characterised by a clonal population structure with infrequent 

recombination (Milkman, 1973). Further support for this conclusion was achieved through 

subsequent MLEE analyses of thousands of natural and clinical isolates from humans and other 

hosts; 72 of these isolates, known as the E. coli Reference (ECOR) collection, were chosen to 

represent the genetic diversity of the species known at that time (Ochman and Selander, 1984). 

Based on the analysis of the ECOR collection, the E. coli species was traditionally split into four 

main phylogenetic groups: A, B1, B2, and D. Phylogroups B2 and D are largely associated with E. 

coli strains causing extraintestinal infections in humans, including those responsible for UTIs, 

sepsis, and neonatal meningitis. In contrast, phylogroups A and B1 are mainly associated with 

commensal and non-pathogenic strains of E. coli (Clermont, Bonacorsi and Bingen, 2000). 

Phylogenetic analysis of housekeeping gene sequences from the ECOR collection indicated that 

phylogroup D had diverged first, with groups A and B1 being sister groups that separated later 

(Nelson et al., 1997). Subsequent analyses suggest that perhaps phylogroup B2, rather than D, 

is the ancestral group (Escobar-Paramo et al., 2004). In 2000, Clermont and colleagues described 

a phylogrouping technique based on triplex PCR (Clermont, Bonacorsi and Bingen, 2000), 

designed to be a simple and rapid alternative to the traditional phylogrouping methods of MLEE 

and ribotyping, which are both complex and time-consuming techniques. The triplex PCR 

method is of importance in bio-clinical practice and as a biotechnological screening tool for 

elimination of potentially pathogenic strains, given the established link between phylogeny and 

virulence. With the growing body of MLST and phylogenetic analyses based on whole-genome 

sequence data for E. coli, our understanding of the phylogroup structure for this species has 

been refined in recent years. An improved phylo-typing method based on quadruplex PCR was 
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developed by Clermont and colleagues (2013), who described a total of eight recognised E. coli 

phylogroups. Seven of these phylogroups (A, B1, B2, C, D, E, and F) belong to E. coli sensu stricto, 

whereas the Escherichia cryptic clade C-I is considered to be the eighth E. coli phylogroup. Four 

other cryptic lineages of the Escherichia genus (C-II, C-III, C-IV, and C-V) have also been 

described, which are phylogenetically distinct but phenotypically indistinguishable from typical 

E. coli (Clermont et al., 2013). The current generation of enhanced phylo-typing and sequence 

typing methods has revealed that E. coli strains, even within a single pathotype, can vary 

immensely in terms of their evolutionary trajectory, which in turn can affect pathogenic 

potential and fitness of E. coli strains associated with human infection (Wirth et al., 2006). 

1.3.7.2. ExPEC genotyping 

Due to its reproducibility and comparability between different laboratories, MLST is considered 

to be the gold standard for ExPEC genotyping (Tartof et al., 2005). The seven housekeeping 

genes for E. coli are adk, idh, fumC, mdh, purA, gyrB, and recA. The Achtman scheme is the 

established MLST typing scheme for E. coli and the database is available via a publicly accessible 

website (Wirth et al., 2006). Analysis of MLST data can be used to track dissemination of 

pathogenic variants in epidemiological studies. A recent retrospective study by Kallonen and co-

authors (Kallonen et al., 2017) analysed whole-genome sequence (WGS) data for 1509 E. coli 

isolates derived from the national British Society for Antimicrobial Chemotherapy (BSAC) 

collection (n = 1094) and a local collection from Cambridge University Hospital (n = 415). The 

combined collection comprised E. coli isolates associated with cases of bacteraemia between 

2001 and 2012. The 1509 E. coli isolates were resolved into 228 unique STs. The most prevalent 

STs detected in the population were ST73 (17.3%), ST131 (14.4%), ST95 (10.6%), ST69 (5.5%), 

ST12 (4.6%), and ST10 (2.7%) (Kallonen et al., 2017). This study confirmed the findings of several 

genetic studies of E. coli lineages associated with UTIs and/or bacteraemia in England and the 

US, which reported that the most prevalent sequences types are ST131, ST73, ST95, and ST69 

(Alhashash et al., 2013; Adams-Sapper et al., 2013; Gibreel et al., 2012). ST131, in particular, has 

received much scrutiny by investigators following its apparent emergence within the past two 

decades, due to its rapid dissemination across the globe and frequent multidrug-resistant 

phenotype.  

In the mid-2000s, pulsed-field gel electrophoresis (PFGE) analyses were performed on two CTX-

M-15 ESBL-producing E. coli strains that were associated with community- and hospital-onset 

UTI epidemics in the UK and Canada (Pitout et al., 2007; Woodford et al., 2004). Through the 

introduction of MLST typing methods, these strains were revealed to belong to a single sequence 

type, ST131, which were characterised as serotype O25b:H4 and phylogenetic group B2, as 
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determined by multilocus enzyme electrophoresis (MLEE) (Nicolas-Chanoine et al., 2008). 

Infections caused by ST131 are increasingly more frequent and are reported to be associated 

with increased morbidity and mortality (Johnson et al., 2010). Several studies have reported a 

high prevalence of ST131 isolates producing CTX-M-15 among ESBL producers and ST131 was 

significantly associated with fluoroquinolone resistance in a population of ESBL-negative strains 

(Johnson et al., 2010). ST131 is the leading E. coli sequence type causing antibiotic-resistant and 

MDR urinary tract infections in several countries in Europe and Asia, as well as Canada and 

Australia (Kallonen et al., 2017; Peirano and Pitout, 2010). E. coli ST131 are prevalent in both 

community- and hospital-acquired infections, but the source of infection is not well 

characterised. The potential of companion and domesticated animals to transmit this pathogen 

has previously been highlighted (McNally et al., 2016a), as has an association with the food chain 

(Platell et al., 2011b) and the environment (Gomi et al., 2017b).  

ST69 strains have been isolated worldwide from cases of UTI and bacteraemia from both 

community-onset and hospital-acquired infections (Kallonen et al., 2017; Alhashash et al., 2013; 

Croxall et al., 2011b). Most ST69 strains express an MDR phenotype, although they do not 

commonly produce ESBLs (Ajiboye et al., 2009). In a hospital-based study of E. coli bacteraemia 

isolates collected in San Francisco between 2007 and 2010, the ST69 complex was found to be 

the fourth most prevalent ExPEC ST after ST131, ST73, ST95 (Adams-Sapper et al., 2013), parallel 

to a recent UK-based study on E. coli bacteraemia isolates (Kallonen et al., 2017). ST69 strains 

were obtained less than 48 hours after admission from 83% of all cases, which may suggest that 

ST69 is a clonal ExPEC group circulating predominantly in the community as opposed to hospital 

settings. It is also thought that there may be a non-human reservoir for E. coli ST69, with isolates 

having been recovered from retail meats, domesticated animals, and the environment. 

E. coli ST95 strains belong to phylogenetic group B2 and comprise K1 capsular serotypes 

(O1:K1:H7, O2:K1:H7, and O18:K1:H7) that are traditionally linked to neonatal meningitis 

(Tivendale et al., 2010). The ST95 lineage also includes avian pathogenic E. coli strains which are 

responsible for colibacillosis in wild and domesticated birds (Mora et al., 2009). ST95 isolates 

were identified as the second most prevalent clonal group isolated from bacteraemia ExPEC 

infections in the United States (Adams-Sapper et al., 2013), and the third most common ST 

among bacteraemia isolates from UK-based studies (Kallonen et al., 2017; Alhashash et al., 

2013). In a French hospital-based study, the ST95 complex was the most common E. coli lineage 

isolated from blood and ascitic fluid cultures between 1997 and 2006 (Bert et al., 2010). One 

noticeable distinction of ST95 strains is that they are typically characterised by a low frequency 

of multidrug resistance. More than half of all ST95 isolates obtained from a San Francisco 

hospital-based study were susceptible to all antibiotics tested, demonstrating significantly less 
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resistance compared to ST131 isolates obtained from the same study. (Adams-Sapper et al., 

2013). In addition to animal hosts, E. coli ST95 is also commonly reported by environmental 

studies, and the ST95 complex was identified as the most prevalent clinically important clonal 

group (31%) among ExPEC isolates (n = 58) obtained from river water in Japan (Gomi et al., 

2017). 

E. coli ST73 strains belong to phylogenetic group B2 and are only associated with serotype O6:H1 

(Johnson et al., 2008). In the UK, ST73 was identified as the most commonly encountered ST 

among major ExPEC clonal groups isolated from cases of bacteraemia (Kallonen et al., 2017; 

Alhashash et al., 2013) and urinary tract infection (Gibreel et al., 2012), suggesting that the E. 

coli strain O6:H1-B2-ST73 is a leading cause of human extraintestinal infection in this country. 

Other UK-based studies have reported a high prevalence of ST73 strains associated with both 

community-onset and hospital-acquired infections (Croxall et al., 2011b). ST73 has also been 

reported to be one of the predominant ExPEC STs associated with expression of the CTX-M-15 

ESBL (Gibreel et al., 2012). ST73 strains with closely related PFGE types have been isolated from 

humans, dogs, and cats, suggesting cross-species transmission of this clone (Johnson et al., 

2008). It may be the case that ST73 represents a long-standing, human-adapted ExPEC clonal 

group as it has been responsible for causing UTIs in women from widely separated geographic 

locales over a considerable period of time (Manges et al., 2008). 

E. coli ST10 and closely related STs of the ST10 clonal complex belong to phylogenetic group A, 

which is typically associated with commensal colonisation of the human gastrointestinal tract. 

There are numerous serotypes associated with E. coli ST10. Although the ST10 clonal complex is 

commonly encountered as a human intestinal coloniser of low virulence and low antimicrobial 

resistance, it has also been associated with human infections and ESBL production (hospital- and 

community-acquired infections), meat products, and food animals (Peirano et al., 2012; Cohen 

Stuart et al., 2012). E. coli ST10 are also widespread in the environment and are commonly 

identified in surface waters (Gomi et al., 2017b; Jorgensen et al., 2017). In a study carried out in 

the Netherlands, CTX-M-producing ST10 strains were isolated from human blood cultures and 

poultry, and TEM-producing ST10 isolates were recovered from human urine samples as well as 

poultry (Leverstein-van Hall et al., 2011). Furthermore, a study from Canada identified 

multidrug-resistant E. coli ST10 strains from human-clinical samples, chicken faeces, retail 

chicken meat, pig faeces, and pork meat, indicating a strong association of this genotype with 

the food chain (Bergeron et al., 2012). 



 

41 
 

1.4. Aims and objectives 

The primary aim of this study was to carry out population genomic analyses to uncover novel 

information on the ecology of Y. pseudotuberculosis and E. coli. Comprehensive genome-scale 

analyses focussed on the enteric pathogen Y. enterocolitica suggested that distinct phylogroups 

of the species may be ecologically separated, through an exhibition of restricted genetic 

exchange between phylogroups. The dearth of such large-scale population genomic studies for 

Y. pseudotuberculosis means the ecology of this organism is not fully understood. To investigate 

whether similar hidden ecological patterns can be uncovered for this model organism, this study 

offers a high-resolution contribution to the understanding of the ecology, evolution, and 

dissemination of this important human pathogen. A large data set of globally and temporally 

distributed Y. pseudotuberculosis genomes from multiple ecosystems were analysed in this 

study. To identify any genomic signatures associated with the ecology of the Y. 

pseudotuberculosis population, core genome phylogenetic analysis was complemented with a 

pan-genome approach to effectively compare the entire gene contents of multiple genomes 

across the population.  

In addition to Y. pseudotuberculosis, E. coli was also investigated in this study. There are many 

reports in the literature of non-human E. coli resembling the ExPEC strains responsible for 

human extraintestinal infection that have been recovered from environmental and food 

sources, particularly river water and retail chicken meat. This has led to the suggestion that there 

may be several non-human reservoirs for human multidrug-resistant ExPEC. The majority of 

these studies, however, selectively enrich for antimicrobial-resistant isolates, and thus, reports 

of ESBL-producing E. coli tend to be overrepresented in the literature. The relative abundance 

of MDR E. coli and ExPEC strains in the wider non-human population of E. coli is therefore largely 

unknown. In this study, we sought to determine the true population structure of non-human E. 

coli from river water and retail chicken by taking an unbiased culture-based approach to 

sampling and not selectively cultivating resistant isolates. This strategy was combined with 

whole-genome sequencing of single isolates to allow comparative genomic analyses to be 

performed between the non-human population and human-clinical isolates of E. coli, previously 

obtained from the same region. A pan-genome approach was applied to the two populations, 

providing high-resolution genomic comparison to determine the extent of genetic overlap 

between the non-human and human-clinical populations and whether any genetic overlap exists 

between the non-human and human-clinical populations of E. coli in Nottingham, and whether 

non-human sources of E. coli are likely to contribute to the weight of extraintestinal infections 

in this region. 
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The primary objectives of the study were to: 

• Reconstruct the phylogeny of a globally dispersed population of Y. pseudotuberculosis 

from multiple ecological niches and identify any genomic signatures associated with the 

ecology of the Y. pseudotuberculosis population. 

• Investigate the evolutionary history of Y. pseudotuberculosis by performing dating 

analysis to date the phylogeny of the species. 

• Determine whether any patterns of gene flow exist within the Y. pseudotuberculosis 

population by analysing the core and accessory genomes of these strains. 

• Isolate a population of E. coli from non-human (river water and retail chicken meat) 

samples and sequence the genomes of a non-biased representative proportion of the 

population, to generate a snapshot of the population structure of non-human E. coli, as 

determined by in silico multilocus sequence typing and phylogenetic analyses. 

• Detect antimicrobial resistance genes and virulence-associated genes in the non-human 

population of E. coli to create a snapshot of the prevalence of potentially multidrug-

resistant strains as well as human ExPEC strains. 

• Compare the population structures of non-human and human-clinical E. coli isolated 

from the same region, with regards to phylogeny and the prevalence of clinically 

important clonal groups, antimicrobial resistance determinants, and human ExPEC 

strains in both populations. 

• Use phylogenetic analysis to situate representative non-human strains of clinically 

important clonal groups within the wider populations of those clones obtained from 

multiple hosts. 

• Identify genomic signatures of ecological separation by performing comparative 

genomic analysis of all non-human and human-clinical strains of E. coli, using a pan-

genome approach. 

• Determine the extent of gene movement between closely related strains of the human-

clinical and non-human populations of E. coli, by comparing the pan-genomes and 

detected core genome recombination events between strains of clinically important 

clonal groups present in both populations. 
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CHAPTER 2 

Materials and methods 
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2.1. Media and reagents 

2.1.1. Growth and storage media 

Cystine Lactose Electrolyte Deficient (CLED, with Andrade’s indicator) agar was prepared with 

36.2 g of CLED agar powder (CM0423, Oxoid, Basingstoke, UK) per 1 L of distilled water.  

HiCrome™ UTI agar was prepared with 55.4 g of HiCrome™ UTI agar powder (16636, Sigma-

Aldrich, Dorset, UK) per 1 L of distilled water. 

LB agar was prepared with 40 g of LB agar powder, Miller (tryptone 10 g/L, yeast extract 5 g/L, 

sodium chloride 10 g/L; BP1425 Fisher BioReagents, Loughborough, UK) per 1 L of distilled water. 

Tryptone Soya agar (TSA) was prepared with 40 g of TSA powder (CM0131, Oxoid, Basingstoke, 

UK) per 1 L of distilled water. All agar solutions were sterilised by autoclaving at 121 °C for 15 

minutes and then cooled to 50 °C before pouring into sterile Petri dishes. 

Lysogeny broth (LB) was prepared with 40 g of LB broth powder (BP1426, Fisher BioReagents, 

Loughborough, UK) per 1 L of distilled water. 

Buffered peptone water, a broth used for the culture of organisms for detecting indole 

production with Kovac’s reagent, was prepared with 20 g of buffered peptone water powder 

(CM0509, Oxoid, Basingstoke, UK) per 1 L of distilled water. All broth solutions were sterilised 

by autoclaving at 121 °C for 15 minutes. 

A broth used for the storage of bacterial cultures at –80 °C was prepared in a 1 mL cryotube vial 

by suspending a single colony of bacterial culture from a CLED agar plate in 800 μL of LB broth 

with 200 μL (20% v/v) of glycerol (Sigma-Aldrich). 

2.1.2. API identification kit 

Identification of bacterial species was carried out using the API 20 E (20100, BioMérieux, Marcy-

l'Etoile, France) identification system for Enterobacteriaceae and other Gram-negative rods, by 

following the manufacturer's protocol. The API Reagent Kit (20120) was used for tests that 

require the addition of reagents when reading and interpreting the test strip. API Suspension 

Medium (20150) was used for the preparation of the inoculum for the API test strip. The 

McFarland Standard kit (70900) was used to produce a standard inoculum for API testing (0.5 

McFarland standard). Mineral oil (70100) was required to produce anaerobic test conditions for 

certain biochemical reactions within the API test strip. The apiweb identification database 
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(40011, BioMérieux, Marcy-l'Etoile, France) was used to interpret the results and identify the 

species of the test organism. 

2.1.3. Molecular microbiology reagents 

Genomic DNA (gDNA) was prepared using the GenElute™ Bacterial Genomic DNA Kit (NA211O, 

Sigma Aldrich, Dorset, UK), as per the manufacturer's instructions. Polymerase chain reaction 

(PCR) amplification assays were performed using the GoTaq® Flexi DNA Polymerase kit (M8306, 

Promega, Southampton, UK). Agarose gels were prepared using Agarose Molecular Biology 

grade powder (10766834, Fisher Scientific, Loughborough, UK), 50x Tris-acetate-EDTA (TAE) 

buffer (EC-872, National Diagnostics supplied by Fisher Scientific, Loughborough, UK), and 

SYBR™ Safe DNA gel stain (S33102, Invitrogen, Renfrew, UK). PCR amplicons were 

electrophoresed on each gel with a 100 bp DNA Ladder (N3231, New England Biolabs, Hitchin, 

UK).  

2.1.4. NGS reagents and sequencing kits 

Qubit™ dsDNA BR Assay Kit 

Q32850, Invitrogen, Renfrew, UK 

Qubit™ dsDNA HS Assay Kit 

Q32854, Invitrogen, Renfrew, UK 

High Sensitivity D1000 ScreenTape 

5067-5584, Agilent Technologies, Stockport, UK 

High Sensitivity D1000 Reagents 

5067-5585, Agilent Technologies, Stockport, UK 

Agencourt AMPure XP 

A63881, Beckman Coulter, High Wycombe, UK 

Nextera XT DNA Library Prep Kit  

FC-131-1024, Illumina, Cambridge, UK 

Nextera XT DNA Library Index Kit v2 Set A 

FC-131-2001, Illumina, Cambridge, UK 

MiSeq Reagent Kit v2 (500 cycles) 

MS-102-2003, Illumina, Cambridge, UK 
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PhiX Control Kit v3 

FC-110-3001, Illumina, Cambridge, UK 

Sodium Hydroxide 10 M  

10488790, Fisher Scientific, Loughborough, UK 

2.1.5. Buffers and reagents   

0.85% saline solution was prepared by dissolving 1 saline tablet (BR0053, Oxoid, Basingstoke, 

UK) in 500 mL of distilled water. The solution was then sterilised by autoclaving at 121 °C for 15 

minutes to obtain 0.85% (’normal’, physiological, or isotonic) saline solution.  

1M Tris-HCI (pH 8.0) was prepared with 12.1 g of Tris base (BPE 152-1, Fisher Scientific, 

Loughborough, UK) per 80 mL of distilled water. The pH was adjusted to 8.0 using 1M HCl. The 

final volume of the solution was adjusted to 1 L using distilled water. The solution was sterilised 

by autoclaving at 121 °C for 15 minutes and any final pH adjustments were made once the 

solution cooled to room temperature. 

Oxidase discs (70439, Sigma-Aldrich, Dorset, UK) were used to detect oxidase-producing 

organisms. 

Kovac’s reagent for indoles (60983, Sigma-Aldrich, Dorset, UK) was used to detect indole-

producing organisms. 

 

2.2. Y. pseudotuberculosis phylogenomics  

2.2.1. Determining phylogenetic relationships  

A core genome alignment of the strains was constructed from localised co-linear blocks using 

the Parsnp tool (v1.2) from the Harvest suite (Treangen et al., 2014). Parsnp was run with default 

parameters, using the following command-line parsnp -r ! -d <genome_dir> -c where the 

(r)eference genome was set to ‘!’ to pick a random reference from the genome directory, the 

path was specified to the (d)irectory of genomes, and the (c)urated genome directory flag was 

used to force inclusion of all genomes in the directory. Parsnp takes the directory of FASTA files 

to be aligned and generates a maximum-likelihood phylogenetic tree, reconstructed from the 

alignment, based on core genome SNP analysis. Metadata encompassing information on 

isolation (continent, country and host), serotype, and CRISPR motif for each strain were 
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superimposed on the tree as coloured bars, using the Interactive Tree of Life (iTOL) web-based 

tool (Letunic and Bork, 2016). 

2.2.2. Analysis of CRISPR loci 

Katja Koskela (University of Helsinki) had searched the genome assemblies for CRISPR loci with 

BLASTN, using the Y. pseudotuberculosis–specific CRISPR direct repeat sequence (5’-

TTTCTAAGCTGCCTGTGCGGCAGTGAAC-3’), its complementary sequence, the 5’– and 3’–

flanking sequences of the YP1, YP2 and YP3 loci, and their complementary sequences (Koskela 

et al., 2015). Identified sequences were submitted to the CRISPRFinder tool on the CRISPRs Web 

Server (http://crispr.i2bc.paris-saclay.fr/Server/), together with the spacer dictionary compiled 

earlier (Koskela et al., 2015). This analysis increased the number of identified spacers in the Y. 

pseudotuberculosis spacer dictionary from 1902 to 2969. The complete list of strains and spacer 

arrays used for CRISPR spacer clustering is available from 

doi: http://dx.doi.org/10.1099/mgen.0.000133 as supplementary material (Seecharran et al., 

2017).  

2.2.3. Pan-genome and accessory genome analyses 

The Large-Scale Blast Score Ratio (LS-BSR) v3.0 pipeline (Sahl et al., 2014) was used to create 

pan-genomes from genome assemblies of all strains. The post-matrix script 

(filter_BSR_variome.py) was run to isolate the accessory genomes from the pan-genomes. The 

resulting accessory genome matrix was then transposed according to the order of the strains on 

the phylogenetic tree. The output was used to visualise the presence or absence of all accessory 

genes in each individual genome by generating a heat map using the ggplot2 package of the R 

statistical software v3.2.0 (http://www.r-project.org/; R Core Team, 2015; Wickham, 2016). 

Genes with > 90% prevalence, and also those found in fewer than 5 strains, were excluded from 

this analysis. The Python script compare_BSR.py from LS-BSR was used to look for unique coding 

sequences (CDSs) between two defined populations in the pan-genome matrix. Comparisons 

were made between the ‘European’ clade of strains and the ’Asian’ clade, as well as between 

each CRISPR cluster and the rest of the population. Any unique CDSs detected were compared 

to the non-redundant nucleotide database using nucleotide BLAST with default parameters 

(http://blast.ncbi.nlm.nih.gov/) to determine the genes they encode.  

The following analysis was performed by Jukka Corander (University of Oslo). KPAX2 software 

was used to cluster the strains based on their CRISPR spacer profiles (Pessia et al., 2015), 

resulting in 33 identified ‘CRISPR cluster’ labels. Input to the software was a binary matrix with 

http://dx.doi.org/10.1099/mgen.0.000133
http://www.r-project.org/
http://blast.ncbi.nlm.nih.gov/
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columns representing an absence/presence variable for each of the 2,969 spacers in each 

detected CRISPR cassette. KPAX2 was used with default prior hyperparameters and an upper 

bound for the number of clusters equal to 50. Five independent runs of the inference algorithm 

were performed and the clustering solution with the highest posterior probability was chosen. 

All estimation runs converged to a number of clusters well below the chosen upper bound, 

indicating that it was sufficiently large to accommodate the region of high posterior density. To 

analyse the association between CRISPR spacer patterns and the accessory genome content, an 

average accessory genome dissimilarity (Hamming distance normalised by the number of CRISPR 

spacers) matrix was calculated for all detected CRISPR clusters with > 1 strain (18 clusters).  

To assess the significance of the observed dissimilarity pattern, a standard permutation test was 

performed by Jukka Corander. Under the null hypothesis of no association between CRISPR 

clusters and accessory genome content, the cluster label of a strain can be permuted randomly. 

For each of 10,000 random permutations of the label, the average dissimilarity for each cluster 

was recalculated, and it was recorded how often the observed value is smaller than the observed 

dissimilarity in the original data matrix. Under the global significance level of 0.05, 12 out of 18 

CRISPR clusters had a significantly smaller average distance than expected under the null 

hypothesis.   

2.2.4. Detection of core genome recombination events 

Core genome alignments were constructed using Parsnp (Treangen et al., 2014), as previously 

described in section 2.2.1. Core genome recombination events were detected by running the 

software package BratNextGen (v1.0) (Marttinen et al., 2012) on the core genome alignment. 

BratNextGen was run by Alan McNally (University of Birmingham), using the default prior 

settings, 20 iterations of the HMM estimation algorithm and 100 runs executed in parallel for 

the permutation test of significance.  

2.2.5. Dating analysis 

Bayesian Evolutionary Analysis by Sampling Trees (BEAST 2, v2.4.0) (Bouckaert et al., 2014) was 

used to date the phylogeographic split within the species, and the formation of the distinct 

CRISPR clusters. Of the 134 genomes sequenced, isolation dates were available for 46 strains 

which represent the full diversity of the phylogeny. A core genome alignment of the 46 strains, 

constructed using Parsnp (Treangen et al., 2014), was stripped of recombination detected using 

BratNextGen (Marttinen et al., 2012), and the resulting alignment was used as input for BEAST 

2 with all known dates of isolation to date individual taxa. BEAST 2 was run by Alan McNally 
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(University of Birmingham). By assessing ESS (effective sample size) scores for priors, the 

following parameters were chosen for the best fitting model: HKY model of substitution with 

estimated base frequencies and a relaxed molecular clock. The analysis was run for a total of 50 

million iterations with the initial 5 million used as burn-in. From this, a maximum clade credibility 

tree was produced and visualised in Figtree (http://en.bio-soft.net/tree/figtree.html). For the 

Skyline analysis, a stepwise constant variant was selected with the age of youngest tip set to 

zero. 

 

2.3. Non-human E. coli strain collection 

2.3.1 River water sampling 

Nine water samples were collected by Jody Winter (Nottingham Trent University) in July 2015. 

These samples were taken from different sites along rivers/streams and wetlands at 4 

geographically distinct locations within the Trent River basin, in Nottinghamshire and 

Derbyshire: 

1. Giltbrook – Two samples were taken from the Gilt Brook near Giltbrook, 

Nottinghamshire (Fig. 2.1); one sample upstream and one sample downstream of 

Severn Trent Water Ltd waste water and sewage treatment plant.  

2. Erewash Pinxton – Two samples were obtained from the River Erewash near Pinxton, 

Derbyshire (Fig. 2.2); one sample upstream and one sample downstream of Amber 

Valley Water Services wastewater treatment plant. 

3. East Leake – Two samples were extracted from the Kingston Brook near East Leake, 

Nottinghamshire (Fig. 2.3); one sample upstream and one sample downstream of Brook 

Furlong Farm. 

4. Keyworth – Three samples were collected from a tributary of the Fairham Brook near 

Keyworth, Nottinghamshire (Fig. 2.4); one sample upstream and one sample 

downstream of Hillside Farm, and one sample from the wetland area near a cattle field. 

The samples were collected in sterile universal containers at a depth of 0.5 m and were 

transported to the laboratory on the day of collection. The samples were then stored at 4 °C and 

microbiological cultivation was carried out within 24 hours of collection.  
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Figure 2.1. Sample sites upstream and downstream of Severn Trent Water Ltd wastewater treatment 

plant, located on the Gilt Brook near Giltbrook, Nottinghamshire. 

 

 

Figure 2.2. Sample sites upstream and downstream of Amber Valley Water Services wastewater 

treatment plant, located on the River Erewash near Pinxton, Derbyshire. 
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Figure 2.3. Sample sites upstream and downstream of Brook Furlong Farm, located on the Kingston 

Brook near East Leake, Nottinghamshire. 

 

 

Figure 2.4. Sample sites upstream and downstream of Hillside Farm and sample site of wetland area 

near cattle field, located on the Fairham Brook near Keyworth, Nottinghamshire.  
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2.3.2. Retail poultry sampling 

A total of 20 whole chickens, weighing approximately 1.4–1.6 kg, were obtained from 6 major 

retail outlets in the Greater Nottingham area, in October 2015 (Table 2.1). All selected chickens 

were reared in the UK and represent both caged and free-range chickens. The chicken samples 

were kept in their original packaging and transported to the laboratory where they were stored 

at 4 °C and processed within 2 hours, following a previously published protocol (Asensi et al., 

2009). Each whole chicken was hand-rinsed, under aseptic conditions, with 100 mL of 0.85% 

saline solution (Oxoid) in a sterile plastic bag, for 3 minutes. The chicken rinse solution was then 

immediately subjected to microbiological cultivation.  

  

Table 2.1. Numbers of whole chickens obtained from 6 major supermarket chains and a 

snapshot of chicken processing companies in the UK. 

  Poultry processing companies 

Supermarket 
Number of 
chickens 

Faccenda 
Group 

Moy Park 
Ltd 

2 Sisters Food 
Group Ltd 

Cargill 
PLC 

Banham 
Poultry 
Ltd 

Tesco PLC 4  ✓ ✓ ✓ 

Sainsbury's 3  ✓ ✓   

Asda Stores Ltd 3 ✓     

Iceland Food Ltd 4    ✓ ✓

Morrisons 4   ✓  ✓

Aldi 2   ✓  ✓

 

The majority of all retailers source their fresh chicken from the same 4 processing companies that 

predominate the farming and abattoir business, which include the largest supplier in the UK, 2 Sisters Food 

Group Ltd. Asda Stores Ltd is the only major supermarket chain to source fresh chicken from Faccenda 

Group. 
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2.3.3. Isolation and identification of E. coli from non-human samples 

Bacteria were cultivated from river water and chicken rinse samples using standard 

microbiological techniques as follows. A total of 200 µL of each sample was transferred to CLED 

Agar with Andrade’s indicator (Oxoid) and inoculated using the spread plate technique. The 

plates were incubated at 37 °C for 18–24 hours. 

After incubation, the morphologies of single colonies present on CLED agar plates were recorded 

and an initial presumptive identification was made based on the characteristics described in 

Table 2.2. A control strain (E. coli UTI18, obtained from the NTU Pathogen Research Group 

culture collection) was used to test the performance of CLED agar to identify potential E. coli. All 

colonies that were presumptively identified as E. coli were subsequently sub-cultured onto 

HiCrome™ UTI Agar (Sigma-Aldrich), which is a chromogenic differential medium for 

identification and differentiation of microorganisms mainly causing urinary tract infections, 

including Enterobacteriaceae. The plates were then incubated at 37 °C for 18–24 hours and 

colony morphologies were recorded. This additional culture step allowed for purification to 

single colonies and, as a result, isolates that presented with two or more different morphologies 

were regarded as a ’mixed culture’ and were discarded from further testing.  

Pure colonies that exhibited characteristic E. coli morphology on HiCrome™ UTI Agar, as 

described in Table 2.2, were selected for further biochemical testing, which involved performing 

the oxidase test and the indole test. The oxidase test was performed to support the presumptive 

identification of E. coli, which are oxidase-negative organisms. A plastic inoculation loop was 

used to transfer a distinct colony from a fresh culture plate (less than 24 hours old) onto an 

oxidase test disc containing N′,N′-dimethyl-p-phenylenediamine (Sigma-Aldrich). A negative 

reaction was observed, indicated by an absence of colouration after the test was performed. For 

the indole test, a single colony was inoculated into 10 mL of Buffered Peptone Water (Oxoid) 

and incubated at 37 °C for 18–24 hours, with shaking (200 rpm). After incubation, 200 µL of 

Kovac’s reagent (Sigma-Aldrich) was added to the culture broth. If indole was present, the 

surface reagent layer turned red after 1–2 minutes, indicating an indole-positive organism, such 

as E. coli. A negative result was indicated by the surface reagent layer remaining yellow or 

yellow–orange in colour. E. coli strain UTI18 (NTU Pathogen Research Group strain collection) 

was used a control strain for both the oxidase and indole tests.  

Once oxidase-negative and indole-positive isolates had been ascertained, a single colony of each 

isolate was sub-cultured onto LB Agar (Fisher BioReagents) for purity and incubated at 37 °C for 

18–24 hours. Biochemical identification testing was performed from the purity plate using the 

Analytical Profile Index (API) 20 E identification system (BioMérieux, France). This system was 
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developed for the identification of members of the Enterobacteriaceae family of bacteria. 

Bacterial isolates can be identified to the species level based on a profile of 20 biochemical 

reactions, which can be compared to a vast number of taxa on the regularly updated API 

database. For the API 20 E protocol, a bacterial suspension was prepared from the pure culture 

plate by inoculating 5 mL of API Suspension Medium (BioMérieux) with a single colony. The 

bacterial suspension was standardised according to the turbidity of a 0.5 McFarland Standard 

(BioMérieux) and distributed into each cupule on the test strip, rehydrating the biochemical 

substrates that are freeze-dried at the bottom. Some biochemical tests required an overlay of 

mineral oil (BioMérieux) in the cupule to create anaerobiosis, before the test strip was incubated 

in an incubation box at 37 °C for 18–24 hours. The results of the test strip were interpreted by 

referring to the Reading Table provided with the API 20 E kit, which describes a colour or 

turbidity change for positive and negative tests. Some tests required the addition of reagents 

(API Reagent Kit, BioMérieux) to the cupule before a colour change could be revealed. Each 

biochemical test was determined as a positive or negative reaction, allowing a 7–digit numerical 

profile to be built for each bacterial isolate, based on the score for each set of 3 cupules. This 

numerical profile was compared against the apiweb database (BioMérieux, 

apiweb.biomerieux.com) and identification of the bacterial isolates were assigned to the species 

level, along with a confidence interval (%) for the identification. The confidence value for each 

species designation is based upon the percentage of biochemical tests for each strain that gave 

a positive result when the test strips were validated. In this study, identifications of 80% were 

considered as the minimum threshold for an acceptable identification. Strains identified as E. 

coli with confidence values below this threshold were discarded from further analysis. 

All bacterial isolates identified as E. coli, with ≥ 80% confidence, were stored at –80 oC in a 

storage medium of Lysogeny broth (LB, Oxoid) with 20% (v/v) glycerol (Fisher Scientific). Isolates 

were streaked to single colonies and incubated aerobically overnight at 37 °C on LB Agar plates, 

and checked for purity, before performing experiments. Broth cultures of isolates were grown 

in LB Broth (Sigma-Aldrich) with shaking (200 rpm) at 37 °C. 

https://apiweb.biomerieux.com/
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Table 2.2. Identification characteristics used to presumptively identify E. coli from other bacterial species present in non-human samples. 

 

 

Presumptive identifications of E. coli were made based on colony morphologies on a combination of agars: CLED with Andrade’s indicator and HiCrome™ UTI chromogenic agar. 

Presumptive identifications of E. coli were supported by an oxidase reaction and indole test results. These presumptive identifications helped eliminate any non-

Enterobacteriaceae and select for potential E. coli isolates in the original samples. The selected isolates were subjected to confirmatory testing and species designation using 

the API 20 E identification system.

 Colony morphology   

Species CLED with Andrade’s indicator  HiCrome™ UTI Oxidase Indole 

Escherichia coli 
Bright pink semi-translucent colonies with a 
surrounding pink halo in the medium 

Purple to magenta colonies - + 

Proteus mirabilis  Blue-green translucent colonies Light brown colonies - - 

Klebsiella spp. Grey-green mucoid colonies Blue to purple, mucoid colonies - - 

Pseudomonas aeruginosa Small, grey-green, translucent colonies 
Colourless colonies; greenish 
pigment may be observed  

+ - 

Staphylococcus aureus 
Smooth, entire, opaque; bright golden yellow 
colonies. Lactose fermenting 

Golden yellow colonies - - 

Enterococcus faecalis 
Similar to S. aureus but smaller and a much deeper 
orange yellow colour 

Blue-green, small colonies - - 

Streptococcus pyogenes Small opaque grey-green colonies Pale blue/purple, minute colonies - - 
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2.4. Molecular characterisation of non-human E. coli 

2.4.1. Preparation of genomic DNA 

Genomic DNA (gDNA) was prepared using the GenElute™ Bacterial Genomic DNA Kit (Sigma-

Aldrich), as per the manufacturer's instructions. Briefly, 1.5 mL of overnight culture grown in LB 

broth was centrifuged at 12,000 x g for 2 minutes. The resulting pellet was resuspended in 180 

μL of Lysis Solution T, containing 20 μL of RNase A solution. The solution was mixed and 

incubated for 2 minutes at room temperature before the addition of 20 μL of Proteinase K 

Solution and incubation at 55 °C for 30 minutes. 200 μL of Lysis Solution C was then added, 

mixed, and the solution was incubated for a further 10 minutes at 55 °C. The lysis solutions used 

in this extraction kit contain chaotropic salts which ensure the thorough denaturation of 

macromolecules. 200 μL of 100% ethanol was then added to the lysate, mixed, and vortexed 

thoroughly to precipitate the DNA and achieve a homogeneous mixture. The addition of ethanol 

enables the DNA to bind to a pre-prepared spin column as the contaminants are washed 

through. The lysate was transferred to a binding column and centrifuged at 6,500 x g for 1 

minute. The column was then washed twice to remove contaminants; firstly, with centrifugation 

at 6,500 x g for 1 minute, followed by a high-speed spin at 12,000 x g to dry the column and 

remove any excess wash solution. The DNA was then eluted into 50 μL of nuclease-free water 

by a final centrifugation at 6,500 x g for 1 minute. The quantity and quality of eluted gDNA was 

assessed using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific). Only gDNA 

eluates with A260/A280 ratios of ~1.8 and A260/A230 ratios between 2.0 and 2.2 were used as 

templates in the following multiplex PCR protocol, as these values are indicative of 'pure' DNA 

without organic or inorganic contaminants. 

2.4.2. Detection of β-lactamase genes  

All E. coli isolated from non-human samples were tested for the presence of the β-lactamase 

genes blaTEM, blaSHV, blaCTX-M and blaOXA, using a previously published protocol and primer 

sequences (Fang et al., 2008). The primers used in the multiplex PCR assay were synthesised by 

Eurofins Genomics (Ebersberg, Germany). The PCR master mix contained 0.2 μM final 

concentrations of each primer, 2.5 mM MgCl2, 0.2 mM dNTPs (Promega), 1.25 U Taq polymerase 

(Promega), and 2 μL DNA template. The PCR reaction tubes were cycled with the following 

parameters: initial denaturation at 94 °C for 5 minutes, 30 cycles of denaturation at 94 °C for 30 

seconds, primer annealing at 62 °C for 90 seconds, elongation at 72 °C for 60 seconds, followed 

by a final elongation at 72 °C for 10 minutes. The reaction tubes were then put on hold at 4 °C. 

Primer sequences for each set of primers and amplicon size for each target gene are detailed in 
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Table 2.3. The Klebsiella pneumoniae strain UTI448 (NTU Pathogen Research Group culture 

collection), which contained known β-lactamase genes blaSHV, blaTEM, blaCTX-M and blaOXA, was 

included as a positive control, alongside a negative control containing no DNA, in order to 

monitor test performance. Amplification of DNA was performed using a Techne TC-4000 thermal 

cycler. PCR products were electrophoresed on 2% agarose gels, as described in section 2.4.3 

below.  

2.4.3. Agarose gel electrophoresis 

A 2% agarose gel (which was used in all protocols) was prepared with 1 g of agarose (Fisher 

Scientific) per 50 mL of 1 X Tris-acetate-EDTA (TAE) buffer. A concentration of 0.1 µL/mL of 

SYBR® Safe DNA Gel Stain (Invitrogen) was added to the gel solution. The gel solution was then 

poured into a gel casting tray and once set, it was placed into an electrophoresis tank of 1X TAE 

buffer. Aliquots of 5 µL of PCR product were loaded into each well along with 5 µL of the 

appropriate molecular weight marker (100 bp ladder, New England Biolabs) in a separate well. 

Electrophoresis was performed at 90 V for 90 minutes. The gel was then viewed under an 

ultraviolet (UV) light to observe the DNA bands, using the InGenius Gel Documentation System 

(Syngene). 
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Table 2.3. Primer sequences used in this study. 

 

Commonly used and referenced primers for β-lactamase genes were selected from the publication indicated in the reference column. The efficacy of the assay was tested 

using the positive control strain K. pneumoniae UTI448, which was run on each gel, where possible. 

The nucleotide ambiguity codes (IUPAC) are as follows: A, adenine; C, cytosine; G, guanine; T, thymine; K, keto (T or G); R, purine (A or G); S, strong (C or G); Y, pyrimidine (C 

or T). 

Primer 

name 

Primer sequence (5’ – 3’) Target Target gene 

function 

Annealing temperature 

(°C) 

Amplicon size 

(bp) 

Reference 

shvF CTTTATCGGCCCTCACTCAA 

blaSHV β-lactamase 62 237 

(Fang et al., 

2008) 

shvR AGGTGCTCATCATGGGAAAG 

temF CGCCGCATACACTATTCTCAGAATGA 

blaTEM β-lactamase 62 445 
temR ACGCTCACCGGCTCCAGATTTAT 

ctxmF ATGTGCAGYACCAGTAARGTKATGGC 

blaCTX-M ESBL 62 593 
ctxmR TGGGTRAARTARGTSACCAGAAYCAGCGG 

oxaF ACACAATACATATCAACTTCGC 

blaOXA ESBL 62 813 
oxaR AGTGTGTTTAGAATGGTGATC 
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2.5. Whole-genome sequencing  

2.5.1. Quality assessment of genomic DNA  

Genomic DNA samples with A260/A280 ratios of ~1.8 and A260/A230 ratios between 2.0 and 2.2 

were used in the following library preparation protocol for whole-genome sequencing. The 

concentration of double-stranded DNA was determined by using the Qubit™ 3.0 Fluorometer. 

The Qubit™ dsDNA HS Assay Kit (Invitrogen) was used first, as this assay is highly selective for 

double-stranded DNA within a range of 0.2–100 ng/µL. If DNA samples were out of range (i.e. 

too high), then the Qubit™ dsDNA BR Assay Kit (Invitrogen) was used, which can measure DNA 

within the broader range of 2–1000 ng/µL. The Qubit™ working solution was made to a ratio of 

1 µL dye:199 µL buffer for each sample. The Qubit™ 3.0 Fluorometer was calibrated using test 

standards for the specific kit, made to a ratio of 10 µL standard:190 µL Qubit™ solution. After 

calibration, the DNA samples were prepared using a ratio of 2 µL DNA sample:198 µL Qubit™ 

solution. The standards and samples were vortex-mixed in 0.5 mL Qubit™ Assay Tubes 

(Invitrogen), incubated at room temperature for 2 minutes, and then analysed on the Qubit™ 

3.0 Fluorometer. 

2.5.2. Illumina Nextera XT library preparation 

Indexed and paired-end libraries were prepared using the Nextera XT DNA Library Preparation 

Kit and Nextera XT v2 Index Kit set A (Illumina). In this protocol, a fresh hard-shell skirted PCR 

plate was used for each set of 24 libraries. A maximum total of 48 libraries were sequenced on 

a single reagent cartridge, to minimise the likelihood of a reduction in sequencing coverage. 

Before commencing library preparation, a sample sheet (comma-separated values [CSV] file) 

was created, which stores the necessary information required to set up, perform, and analyse a 

sequencing run. The parameters specified in the sample sheet included information on 

experiment name, analysis workflow, read length, and adapter trimming. The library 

preparation process consisted of the following 5 steps: 

Normalisation of gDNA concentrations across samples 

The goal of this step was to normalise the gDNA concentration across samples to achieve 

uniform reaction efficiency in the tagmentation step. Tagmentation is sensitive to the input 

gDNA concentration and the optimal concentration varies depending on the organism, DNA 

type, and the DNA extraction method used. For this protocol, all samples were normalised to an 

input gDNA concentration of 0.2 ng/μL. Quantification of gDNA was performed using the Qubit™ 

3.0 Fluorometer, as described in section 2.5.1. 
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Tagmentation of gDNA 

Input gDNA was tagmented (tagged and fragmented) by the Nextera XT transposome. The 

adaptor sequences tagged onto the ends of the fragmented DNA allow for indexing and PCR 

amplification in the next step. In a hard-shell skirted PCR plate, 10 μL of Tagment DNA (TD) Buffer 

and 5 μL of Amplicon Tagment Mix (ATM) were mixed with 5 μL of normalised gDNA. The plate 

was then sealed and run on a thermal cycler at 55 °C for 5 minutes, after which, 5 μL of Neutralize 

Tagment (NT) Buffer was added to each well before incubating at room temperature for 5 

minutes. 

PCR-mediated adapter ligation and library amplification 

PCR was used to incorporate the Illumina adaptor sequences (Table 2.4 and Table 2.5) to the 

tagmented DNA fragments, which are required for cluster formation on the flow cell. The Index 

1 (i7) and Index 2 (i5) adaptors bind fragments to the flow cell, and the barcodes (N7--, N5--) 

allow for multiplexed sequencing. In the plate containing the tagmented gDNA, 5 μL of each 

Index 1 (i7) adapter was added down each column (1-6) and 5 μL of each Index 2 (i5) adapter 

was added across each row (A-D). Nextera PCR Master Mix (NPM) was added in volumes of 15 

μL to each well containing index adaptors. The plate was sealed and subsequently run on the 

thermal cycler with the following parameters: 72 °C for 3 minutes; 95 °C for 30 seconds; 12 cycles 

of 95 °C for 10 seconds, 55 °C for 30 seconds and 72 °C for 30 seconds; 72 °C for 5 minutes and 

hold at 10 °C.  

Post-PCR clean-up of libraries 

The PCR products were purified with Agencourt AMPure XP magnetic beads (Beckman Coulter) 

to remove short library fragments. In this protocol, 30 μL of homogenised and room 

temperature beads were added to each well, mixed by pipetting, and incubated at room 

temperature for 5 minutes, before placing on a magnetic stand to pellet the beads. The 

supernatant was discarded and the beads were washed 2 times with 200 μL of freshly prepared 

80% ethanol, before air-drying the pellet on the magnetic stand for 5–10 minutes, or until the 

pellet appears “matte” in appearance. The pellet was then resuspended in 52.5 μL of Nextera 

Resuspension Buffer (RSB) and incubated on the magnetic stand for 2 minutes. 50 μL of the 

supernatant, which contained the purified libraries, was transferred to a new plate for the 

subsequent steps.  

Library quality control, normalisation, and pooling 
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Sample concentrations and fragment size distributions were estimated and the quantity of each 

library was normalised to ensure equal library representation in pooled samples. The DNA 

concentration of each sample was measured using the Qubit™ 3.0 Fluorometer as described in 

section 2.5.1 ‘Quality assessment of genomic DNA’. Fragment size (bp) distribution was 

measured for each library, using the Agilent 2200 TapeStation, by following the manufacturer’s 

instructions. Briefly, 2 μL of High Sensitivity D1000 sample buffer (Agilent Technologies) was 

aliquoted into sets of optical tube strips, followed by 2 μL of High Sensitivity D1000 ladder 

(Agilent Technologies) in the first tube, then 2 μL of gDNA library in the subsequent tubes. After 

vortex-mixing at 2,000 rpm for 1 minute, the samples were loaded into the 2200 TapeStation, 

along with the High Sensitivity D1000 ScreenTape and loading tips (Agilent Technologies). The 

analysis was then initiated by launching the Agilent 2200 TapeStation software, resulting in a 

rapid determination of the average fragment size for each gDNA sample. Based on individual 

sample concentrations and the common average fragment length, the DNA molarity of each 

sample was calculated using the following formula: 

𝑚 =
𝑐

𝑤 × 𝑠
 × 1,000,000 

Where 𝑚 = molarity (nM), 𝑐 = concentration of gDNA library (ng/μL), 𝑤 = average molecular 

weight of DNA (taken to be 660 g/mol), 𝑠 = average DNA fragment size of library. 

Each library was then normalised to 4 nM before pooling an equal 5 μL of each library into a 

single microcentrifuge tube.  

2.5.3. Sequencing on the MiSeq 

To prepare libraries for sequencing on the Illumina MiSeq, 5 μL of the 4 nM pooled libraries was 

denatured with 5 μL 0.2 N NaOH. Incubating for 5 minutes at room temperature enabled 

denaturation of the gDNA into single strands. The DNA was then diluted with 990 μL of pre-

chilled Hybridization Buffer (HT1), resulting in a 20 pM library. This was further diluted to 12 pM 

– the recommended concentration for the MiSeq Reagent Kit v2 (Illumina), which was used in 

this protocol. A PhiX control library was prepared by denaturing 2 μL of 10 nM PhiX with 3 μL 

Tris-HCI (pH 8.0) and 5 μL 0.2 N NaOH. The denatured PhiX library was then diluted to 20 pM 

using 990 μL HT1 buffer. This was then further diluted to 12.5 pM and combined with the diluted 

and denatured DNA library at a ratio of 6 μL PhiX:594 μL DNA library. The flow cell was cleaned 

using 80% ethanol and was loaded into the MiSeq along with Incorporation Buffer. The prepared 

libraries were loaded onto the reagent cartridge and sequenced on the MiSeq for 500 cycles, to 

generate 250 bp paired-end reads.  
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Table 2.4. Illumina adapter sequences for Nextera XT Index Kit v2 – index 1 (i7) adapters 

Bases in adapter 
i7 index 
name 

i7 bases for entry on 
sample sheet 

TCGCCTTA N701 TAAGGCGA 

CTAGTACG N702 CGTACTAG 

TTCTGCCT N703 AGGCAGAA 

GCTCAGGA N704 TCCTGAGC 

AGGAGTCC N705 GGACTCCT 

CATGCCTA N706 TAGGCATG 

GTAGAGAG N707 CTCTCTAC 

CAGCCTCG N710 CGAGGCTG 

TGCCTCTT N711 AAGAGGCA 

TCCTCTAC N712 GTAGAGGA 

TCATGAGC N714 GCTCATGA 

CCTGAGAT N715 ACTCGCTA 

CCTGAGAT N716 GGAGCTAC 

GTAGCTCC N718 GGAGCTAC 

TACTACGC N719 GCGTAGTA 

AGGCTCCG N720 CGGAGCCT 

GCAGCGTA N721 TACGCTGC 

CTGCGCAT N722 ATGCGCAG 

GAGCGCTA N723 TAGCGCTC 

CGCTCAGT N724 ACTGAGCG 

GTCTTAGG N726 CCTAAGAC 

ACTGATCG N727 CGATCAGT 

TAGCTGCA N728 TGCAGCTA 

GACGTCGA N729 TCGACGTC 

Oligonucleotide sequences © 2016 Illumina, Inc. All rights reserved. 
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Table 2.5. Illumina adapter sequences for Nextera XT Index Kit v2 – index 2 (i5) adapters 

Bases in adapter 
i5 index 
name 

i5 bases for entry on 
sample sheet 

CTCTCTAT S502 ATAGAGAG 

TATCCTCT S503 AGAGGATA 

GTAAGGAG S505 CTCCTTAC 

ACTGCATA S506 TATGCAGT 

AAGGAGTA S507 TACTCCTT 

CTAAGCCT S508 AGGCTTAG 

CGTCTAAT S510 ATTAGACG 

TCTCTCCG S511 CGGAGAGA 

TCGACTAG S513 CTAGTCGA 

TTCTAGCT S515 AGCTAGAA 

CCTAGAGT S516 ACTCTAGG 

GCGTAAGA S517 TCTTACGC 

CTATTAAG S518 CTTAATAG 

AAGGCTAT S520 ATAGCCTT 

GAGCCTTA S521 TAAGGCTC 

TTATGCGA S522 TCGCATAA 

Oligonucleotide sequences © 2016 Illumina, Inc. All rights reserved.  
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2.6. Analysis of E. coli sequence data 

2.6.1. Genome assembly, annotation, and quality assessment 

The Illumina software MiSeq Reporter performed secondary analysis which involved 

demultiplexing of all indexed reads – dividing all sequenced reads into separate files for each 

indexed tag/sample. The analysis also included generation of FASTQ files, which contained the 

non-indexed reads for each isolate, excluding reads identified as inline controls and reads that 

did not pass filter. FASTQ generation performed quality trimming of the 5’ portion of the adapter 

sequence for all reads, to prevent reporting sequence data beyond the sample DNA. De novo 

assemblies of raw reads into contigs and scaffolds were performed using SPAdes v3.9.0 

(Bankevich et al., 2012). The genome assemblies were annotated using Prokka v1.12 (Seemann, 

2014), by running the python script autoprokka.py 

(https://github.com/stevenjdunn/autoprokka) on the FASTA genome files. The quality of de 

novo assemblies was evaluated by running QUAST v3.2, a bioinformatics quality assessment tool 

for genome assemblies (Gurevich et al., 2013). Any incomplete assembled genomes, i.e. 

assemblies with N50 values < 1,900 bp and genome sizes < 4.3 Mbp were excluded from further 

analyses. The assembled genomes passing these criteria were analysed as described in sections 

2.6.2 – 2.6.7.  

2.6.2. Sequence-typing and clonal complex assignment  

Sequence typing of isolates was carried out by running the multilocus sequence typing (MLST) 

script (https://github.com/tseemann/mlst), which scans the assembled scaffolds against 

PubMLST databases and assigns a sequence type (ST) to each isolate. Closely related STs were 

grouped into ST complexes using the PHYLOViZ v3.0 platform (Francisco et al., 2012). PHYLOViZ 

uses the goeBURST algorithm, a refinement of eBURST (Feil et al., 2004), and its expansion to 

generate a complete minimum spanning tree (MST) of all STs. It achieves this by dividing an 

MLST data set into groups of related isolates and clonal complexes, predicting the ancestral 

genotype of each clonal complex, and computing the bootstrap support for the assignment. 

2.6.3. Detecting antibiotic resistance genes and ExPEC virulence determinants 

Genome sequence files were screened for the presence of acquired antibiotic resistance genes 

by running the bioinformatics tool ABRicate v2.0 (https://github.com/tseemann/abricate), 

which uses the ResFinder database to generate in silico antibiotic resistance profiles for each 

isolate. ABRicate was also run using VFDB – Virulence Factors Database (Chen et al., 2015) – to 
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mass screen contigs for the presence of virulence determinants that define ExPEC strains. All 

redundant isolates (i.e. isolates that were collected from the same sample source, assigned to 

the same ST, and exhibiting the same antibiotic resistance gene profiles) were excluded from 

further genomic analyses.  

2.6.4. Reconstructing phylogenetic trees  

Core genome alignments of strains were constructed from genome assemblies using Parsnp v1.2 

(Treangen et al., 2014), as described in section 2.2.1. One of the output files from Parsnp is a 

maximum-likelihood phylogenetic tree, reconstructed from the alignment, based on core 

genome SNP analysis. Phylogenetic trees were visualised using iTOL (http://itol.embl.de/) 

(Letunic and Bork, 2016) and trees were annotated with coloured bars to display metadata 

encompassing information on isolation source and presence of antibiotic resistance genes and 

virulence-associated genes. Reference genomes belonging to each of the following phylogroups 

(A, B1, B2, D, E, and F) or cryptic clades (clade I to V) were included in the initial phylogenetic 

tree. Reference genomes were selected from the genomes analysed in previous studies (Kaas et 

al., 2012; Luo et al., 2011). Each strain was then assigned to a phylogroup or a cryptic clade 

based on the position in the phylogeny. 

2.6.5. Pan-genome analysis 

Pan-genomes were constructed from the annotated genome assemblies produced by Prokka 

(GFF3 format) using Roary v3.8.2 (Page et al., 2015). Each input file should have a unique locus 

tag for the gene IDs to make it easier to identify where the genes came from. A gene presence 

and absence spreadsheet (CSV file) was produced as an output of Roary, which lists each gene 

and the strains they are present in. The accessory genomes of strains were analysed by excluding 

genes present in ≥ 85% of strains. The gene product functions of excluded genes were evaluated 

and were confirmed to be core genes of the E. coli genome. The query_pan_genome script, 

which takes the annotated GFF files and clustered_proteins output file from Roary, was run to 

identify genes that were either unique or shared between the human-clinical and non-human 

populations of E. coli. Any unique or shared genes were listed with strains in separate CSV files. 

Gene presence and absence matrices were annotated on core genome phylogenetic trees and 

visualised with associated metadata, using the interactive tool Phandango v1.1.0 (Hadfield et 

al., 2018; https://github.com/jameshadfield/phandango).  
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2.6.6. Detection of recombinant genomic regions 

Core genome alignments were constructed using Parsnp (Treangen et al., 2014), as described in 

section 2.2.1. Genomic recombination events between strains were detected by running the 

Gubbins v2.2.0 (Genealogies Unbiased By recomBinations In Nucleotide Sequences) (Croucher 

et al., 2015) algorithm on the core genome FASTA alignment, with default parameters. 

Recombination predictions were output in a GFF file and the recombination blocks were then 

visualised against the core phylogenetic Newick-formatted tree and associated metadata, using 

Phadango (Hadfield et al., 2018). 

2.6.7. Statistical analyses 

In this study, statistical analyses were performed to compare the prevalence of extended 

spectrum β-lactamase genes and sequence types between populations. p-values were 

calculated with two tails using the GraphPad QuickCalcs Fisher’s test calculator 

(https://www.graphpad.com). A p-value of p < 0.05 would indicate a statistically significant 

association. Moreover, p values of p < 0.001 and p < 0.0001 were considered very statistically 

significant, and highly statistically significant, respectively.  

Shannon diversity index values and the Hutcheson t-test were used to compare the diversity of 

the human-clinical and non-human populations of E. coli. These were calculated using a custom 

Excel spreadsheet. 

Comparisons between the observed and expected proportions of genes shared between the 

human-clinical and non-human populations were made by performing a permutation test with 

pseudo-random re-sampling of the population without replacement of genomes. This approach 

considered gene frequencies, and all strain-specific genes were excluded from the analysis. 

Permutations were carried out 1,000 times iterating for each gene category, and each 

permutation involved picking the same number of genomes as there are genes in that category. 

To test the significance of differences between expected and observed frequencies of gene 

sharing, one-tailed empirical p-values were calculated. The permutation script was written by 

Ben Dickins (NTU) and simulated proportions were plotted as histograms, with the observed 

proportions mapped on the graphs for comparison. Graphs were produced using the tidyverse 

package (Wickham, 2017) of the R statistical software v3.5.1 (http://www.r-project.org/; R Core 

Team, 2015). 

 

  

http://www.r-project.org/
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CHAPTER 3 

Ecology and evolution of a global 

population of Yersinia pseudotuberculosis 
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3.1. Introduction 

The genus Yersinia belongs to the Gram-negative Enterobacteriaceae and it constitutes a model 

genus for studying bacterial pathogen ecology and evolution (McNally et al., 2016b). The 

majority of Yersinia species are found widely in the environment, including soil, and do not 

usually cause disease in mammals. There are three main species of Yersinia which are well-

recognised human pathogens: the plague bacillus Yersinia pestis, and the enteropathogenic 

Yersinia enterocolitica and Yersinia pseudotuberculosis (McNally et al., 2016b). Y. 

pseudotuberculosis, which causes infection in a wide range of hosts such as domesticated and 

wild animals, has also been implicated in foodborne infection in humans, which is known as 

yersiniosis. Transmission of the bacterium is usually via the faecal–oral route, and human 

infection can result from ingestion of contaminated food products or water, or alternatively by 

direct contact with an infected animal or human (Savin et al., 2014; Chiles et al., 2002). Although 

Y. pseudotuberculosis is not as frequently associated with human gastrointestinal yersiniosis as 

Y. enterocolitica, both are important pathogens with similar clinical manifestations associated 

with infection. These can include fever, abdominal pain, and diarrhoea. In some uncommon 

cases, extraintestinal symptoms such as reactive arthritis and erythema nodosum can occur 

(Jalava et al., 2006). Additionally, in more severe cases, infection can disseminate to the 

bloodstream and deep tissues (Kaasch et al., 2012).  

Classically, identification and typing of Y. pseudotuberculosis has been based on serotyping of 

the lipopolysaccharide O-antigen, with a total of 21 serotypes identified, including 6 originally 

classified as subtypes of either O:1, O:2, O:4 or O:5 (Skurnik, Peippo and Ervela, 2000). Previous 

studies have indicated that the majority of strains isolated from human cases belong to 

serotypes O:1a, O:1b, and O:3 (Williamson et al., 2016; Laukkanen-Ninios et al., 2011). The 

application of serotyping methods provides only a low-level resolution when investigating 

potential outbreaks of Y. pseudotuberculosis, suggesting the need for higher resolution typing 

methods. The population structure of Y. pseudotuberculosis has been defined by multilocus 

sequence typing (MLST) previously (Laukkanen-Ninios et al., 2011), adding detail to the serotype 

differentiation. It was revealed that serotype O:1 strains formed a distinct clade of strains which 

represented a large number of sequence type complexes, suggesting a highly diverse population 

of bacteria within the serotype O:1 group, and thus an overall high diversity of the Y. 

pseudotuberculosis species (Laukkanen-Ninios et al., 2011). In addition to MLST genotyping, a 

recent study has also analysed clustered regularly interspaced short palindromic repeat (CRISPR) 

loci of a large collection (n = 355) of Y. pseudotuberculosis isolates (Koskela et al., 2015). The 

CRISPR system is an adaptive RNA-based immune system that constitutes a bacterial defence 

against foreign nucleic acids derived from invading bacteriophages or plasmids. CRISPRs are 
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constructed from a chain of 21 to 47 bp repeated sequences called direct repeats (DR), and in 

between DRs are unique spacer sequences, which represent the acquired foreign DNA. One of 

the key findings from the study by Koskela and colleagues (2015) was that despite the genetic 

similarity between Y. pseudotuberculosis and Y. pestis, strains of these species shared very few 

CRISPR spacers, suggesting that CRISPR analysis can be used to inform bacterial evolution. 

Although most infections with Y. pseudotuberculosis are thought to be sporadic (Sunahara, 

Yamanaka and Yamanishi, 2000), this pathogen has been responsible for several nationwide 

gastrointestinal outbreaks of foodborne infection in countries of largely temperate climates, 

such as Finland, Russia, France and New Zealand (Williamson et al., 2016; Kangas et al., 2008; 

Jalava et al., 2006; Nuorti et al., 2004). More recently, in 2014, a sustained outbreak of 

yersiniosis caused by Y. pseudotuberculosis occurred in New Zealand, affecting all the major 

cities of the country (Williamson et al., 2016). With a total of 220 laboratory-confirmed cases of 

infection reported, this outbreak constitutes one of the largest globally reported outbreaks of 

human yersiniosis due to Y. pseudotuberculosis, to date. Prior to the present study, the most 

inclusive genome-scale analysis of Y. pseudotuberculosis focussed on the outbreak in New 

Zealand (Williamson et al., 2016). Genomic and epidemiological analyses in that study suggested 

a single point-source contamination of the food chain, with subsequent nationwide distribution 

of contaminated produce. Additionally, through incorporation of publicly available reference 

genomes within the context of a globally and taxonomically diverse dataset, the study indicates 

that Y. pseudotuberculosis is a highly diverse species and that the New Zealand strains 

represented a geographically isolated clade of Y. pseudotuberculosis. 

Large-scale population genomics studies have been performed on the two other human 

pathogenic Yersinia, Y. pestis and Y. enterocolitica (Reuter et al., 2015; Reuter et al., 2014; 

Morelli et al., 2010), allowing a high-resolution understanding of the ecology, evolution and 

dissemination of these pathogens. Global phylogenomic studies of Y. pestis have identified 

evolution from a clone of Y. pseudotuberculosis, as a result of gene loss and subsequent global 

dissemination (McNally et al., 2016b; Morelli et al., 2010). In contrast, similar global genomic 

studies of Y. enterocolitica have suggested an evolutionary path from a non-pathogenic ancestor 

through gene gain and loss, resulting in apparently ecologically separated clades within the 

species (Reuter et al., 2015; Reuter et al., 2014). A recent study by our group involved population 

genomic analysis of Y. enterocolitica, through means of examining patterns of recombination in 

both the core and accessory genome of the species  (Reuter et al., 2015). The study highlights 

that genetic flow in the species does not occur frequently between phylogroups of Y. 

enterocolitica, and when it does, it is primarily unidirectional with one phylogroup acting largely 

as a genetic reservoir for the rest of the species. Additionally, the data revealed hidden 
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ecological patterns and the analysis suggests that the distinct phylogroups of Y. enterocolitica 

may be ecologically separated, with phylogroup 1 (PG1) being ubiquitous and most commonly 

isolated from non-human environments, whilst PG2–5 are more commonly isolated from human 

disease cases (Reuter et al., 2015). The Y. enterocolitica study draws parallels with a study of 

Escherichia coli where core genome recombination was not observed between environmental 

and human/animal isolates; recombination was only detected between environmental isolates 

or between human and animal isolates (Luo et al., 2011). Furthermore, ecological separation 

within a hospital environment, leading to reduced recombination between isolated 

subpopulations of the nosocomial pathogen Enterococcus faecium has been reported previously 

(Willems et al., 2012). The observation of host-restricted lineages of Campylobacter jejuni 

(Sheppard et al., 2014) is further supportive of ecological barriers playing a major role in 

restricting genetic flow and recombination, and thus leading to the formation of distinct 

ecotypes within a bacterial species.  

3.1.1. Aim and objectives 

Given the observation of ecologically separated lineages in Y. enterocolitica, and considering 

that Y. pseudotuberculosis is a closely related species that is also heterogeneous and ubiquitous 

in nature, it would be beneficial for our understanding of microbial evolution to investigate 

whether similar ecological inferences can be made for Y. pseudotuberculosis. To contribute a 

high-resolution genomic view into the ecology, evolution and dissemination of this important 

human pathogen, a data set of globally and temporally distributed Y. pseudotuberculosis 

genomes, from multiple ecosystems, were analysed in this chapter. This was achieved by 

employing highly discriminatory comparative genomic techniques, such as pan-genome analysis 

and core genome recombination analysis. 

Specific objectives of this chapter were: 

• To reconstruct the phylogeny of a global population of Y. pseudotuberculosis and 

identify any genomic signatures correlated with the ecology of the Y. pseudotuberculosis 

population.  

• To investigate the evolutionary history of Y. pseudotuberculosis by performing dating 

analysis to date the phylogeny of the species. 

• To determine whether any patterns of gene flow exist within the Y. pseudotuberculosis 

population by analysing the core and accessory genomes of these strains.  
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3.2. Materials and Methods 

The key methods, bioinformatic tools and scripts used in this chapter were described previously 

in section 2.2. of chapter 2 ‘Materials and Methods’. A total of 134 Y. pseudotuberculosis 

genomes were analysed in this chapter (Table 3.1), of which 108 were recently sequenced and 

were provided as genome sequence (FASTA) files by Mikael Skurnik (University of Helsinki). 

These isolates were collected over a 46-year time frame from 19 different countries across 6 

continents, and represent the full spectrum of serotypes possible. Additionally, the strains were 

isolated from a wide range of hosts including livestock, wild animals and companion animals, 

human-clinical and environmental sources. Library preparation and sequencing of these isolates 

were performed using the Illumina Nextera kit and Genome Analyzer IIx instrument to create 

150 bp paired-end reads. This was carried out by Mikael Skurnik and Laura Kalin-Mӓnttӓri at the 

FIMM Sequencing unit (Helsinki, Finland). De novo assemblies were achieved using Velvet v1.2.1 

(Zerbino and Birney, 2008) and annotated using Prokka v1.12 (Seemann, 2014). The raw 

sequence reads were deposited to the European Nucleotide Archive (ENA) under project 

PRJEB14064. Additionally, de novo assemblies of all genomes used are available on Enterobase 

(https://enterobase.warwick.ac.uk/species/index/Yersinia), searchable by the strain names or 

ENA accession numbers listed in Table 3.1. Metadata regarding information on isolation 

(continent, country, host, and year), sequence type, serotype, and CRISPR spacer are available 

for the majority of strains. The CRISPR loci were identified by Katja Koskela (University of 

Helsinki) using BLASTN (Koskela et al., 2015). The full list of spacer arrays used for CRISPR spacer 

clustering for the strains analysed in this study are available from doi: 10.1099/mgen.0.000133 

as supplementary material (Seecharran et al., 2017). 

https://enterobase.warwick.ac.uk/species/index/yersinia
http://dx.doi.org/10.1099/mgen.0.000133
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Table 3.1. Y. pseudotuberculosis genomes used in this study. 

Strain Year ST* Serotype CRISPR cluster Host Continent Country Accession number 

1180/95 1995 - 1a 20 - - - ERR1448065 

2384 - 19 3 35 - - - ERR1448071 

CIP 55.85 1952 - 1 11 Turkey - - ERR1447956 

PST25 - 43 - 38 - - - ERR1447955 

2515 - - 2 32 - - - ERR1448073 

P 105 1990 14 - 9 Buffalo - - ERR1448074 

PST2660 - 14 3 9 - - - NC_010465 

PST1813 - 14 4 26 - - - ERR1448070 

YPIII - - 3 9 - - - ERR1448072 

IP32544 - 19 3 - Pig Africa South Africa ERR024924 

488 - - 1a - Salmon Asia Russia ERR024916 

514 - - 1a 20 Salmon Asia Russia ERR1448002 

RU496 - - 1a 20 Reindeer Asia Russia ERR1448001 

489 - - 1a 20 Reindeer Asia Russia ERR1447987 

RU488 - 42 1a 20 Salmon Asia Russia ERR1448003 

N912 - 14 2b - Rabbit Asia China ERR1447986 

H722-36/88 1986 11 6 8 Dog Asia Japan ERR024920 

IP33177 - 26 1 - Cabbage Asia Russia ERR1447974 

DC356 - 33 1b 6 Cat Asia Japan ERR1447962 

Pa3606 - 2 1b 40 Human Asia Japan ERR1447976 

H-1 - 2 1b 12 Human Asia Russia ERR1447977 

H-158 - - 1b 12 Human Asia Russia ERR1447978 

H-2212 - 2 1b 12 Human Asia Russia ERR1447979 

H1647 - - 1b 12 Human Asia Russia ERR1448019 
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H416 - 2 1b 12 Human Asia Russia ERR1448021 

Pa3597 - - 1b 40 Human Asia Japan ERR1448022 

8011-3 - 33 1b 15 Human Asia Japan ERR1448013 

IP31758 1966 37 1b 12 Human Asia Russia NC_009708 

Gifu-liver - 38 1b 13 Monkey Asia Japan ERR1448026 

MW145-2 - 89 1b 40 Freshwater Asia Japan ERR1448014 

H1746 - 2 1b 12 Small mammal Asia Russia ERR1447980 

H2517 - - 1b 12 Small mammal Asia Russia ERR1447981 

H404 - - 1b 12 Small mammal Asia Russia ERR1448020 

Wla352 - - 1b 37 Racoon dog Asia Japan ERR1447975 

1231 1985 2 4b - Small mammal Asia Russia ERR024910 

Soil-4 - 33 1b 15 Environment Asia Japan ERR1447973 

MW Taniguci - - 1b 37 Freshwater Asia Japan ERR1448015 

SP93422 1993 1 15 - Human Asia Korea ERR027412 

D1040 - 44 2b 25 Dog Asia Japan ERR1448036 

Wla708 - 33 1b 40 Duck Asia Japan ERR1447970 

K22 - 40 5a 23 Human Asia Japan ERR1447990 

79136 - 88 1b 16 Human Asia Korea ERR1448017 

Uematu289 - - 1b 2 Human Asia Japan ERR1448028 

Chigamatsu - - 1b 4 Human Asia Japan  ERR1448032 

GS95 - 43 3 1 Human Asia China ERR1448040 

IP33250 - 32 3 - Human Asia Russia ERR024921 

PC94-72 - 44 4a 25 Pig Asia Japan ERR1447989 

TP1039 - - 1b 3 Pig Asia Japan  ERR1448027 

PT682 1987 52 2b 37 Pig Asia Japan ERR024908 

PC504 - 44 2c 2 Pig Asia Japan ERR1448037 

S106 - - 1b 1 Rabbit Asia China ERR1447972 
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J51 - 47 13 31 Rabbit Asia China ERR1447991 

R103-2 - 45 5b 7 Rabbit Asia China ERR1448042 

R104-2 - 46 5b 14 Rabbit Asia China ERR1448043 

OK5586 1990 62 3 - Racoon dog Asia Japan ERR024907 

OK6088 1990 18 10 5 Racoon dog Asia Japan ERR027411 

CN2 - 49 1c 21 Small mammal Asia China ERR1447988 

DD362 - - 1b 29 Dog Asia Japan ERR1447984 

PC708 - 3 1b 6 Pig Asia Japan ERR1447985 

T-469-1 - - 1b 29 Pig Asia Japan ERR1448025 

RD20 - 31 1b 37 Racoon dog Asia Japan ERR1447971 

TE-93181 - 3 1b 29 Racoon dog Asia Japan ERR1448033 

2814/1998 1998 - 1a 20 Hare Europe Finland ERR1448038 

3822/2000 2000 - 1a 20 Hare Europe Finland ERR1448068 

IH111554 - 42 1a - Cat Europe Finland ERR1447982 

103 - 42 1a 20 Small mammal Europe Italy ERR1448016 

PB1 1960 68 1a 10 Small mammal Europe England ERR1448064 

2886 - 42 1a 10 Hare Europe Italy ERR1448029 

2809/1998 1998 - 1a 20 Small mammal Europe Finland ERR1448030 

15193/74 1974 - 1a 20 Human Europe Finland ERR1448031 

Rollier - 42 1a 20 Human Europe Belgium ERR024925 

H655-36/87 1987 42 1a 20 Human Europe Germany ERR1448048 

Y.PT/8 - 42 1a 20 Human Europe Belgium ERR1447966 

921/93 1993 - 1a 20 Human Europe Sweden ERR1448063 

11J - 42 - 20 Human Europe France ERR024923 

IP32953 - - 1b 42 Human Europe France ERR024927 

2800/1998 1998 - 1a 41 Jack daw Europe Finland ERR024926 

104 - 42 1a - Pigeon Europe Italy ERR024930 
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504/72 1972 42 1a 20 Duck Europe Italy ERR1448035 

Y722 1988 19 1 35 Human Europe Germany ERR1448060 

25418L - 9 1a 11 Canary Europe Denmark ERR1448057 

H943-36/89 1989 9 1a 11 Hare Europe Germany ERR1448010 

St.1 - - 1a 11 Human Europe Germany ERR1447963 

H892-36/87 1987 12 1a 39 Human Europe Italy ERR1448069 

H942-36/89 1989 9 1a 11 Human Europe Germany ERR1448062 

2895 - 43 1b 22 Bird Europe Italy ERR1448056 

2817/1998 1998 - 1b 22 Hare Europe Finland ERR1448061 

3858/2000 2000 - 1b 38 Hare Europe Finland ERR1448044 

H749-36/89 1989 43 1b 22 Duck Europe Germany ERR024903 

2887 - 43 1b 38 Hare Europe Italy ERR1448045 

H938-36/89 1989 43 1b 38 Hare Europe Germany ERR1448049 

2497 - 43 1b 38 Hare Europe Italy ERR1448052 

3876/2001 2001 - 1b 22 Hare Europe Finland ERR028208 

2812/79 1979 - 1b 38 Human Europe Finland ERR1447993 

866/81 1981 - 1b 38 Human Europe Finland NC_010634 

36/83 1984 - 1b 38 Human Europe Finland ERR1448008 

Tytgat - 43 1b 38 Human Europe Belgium ERR1448047 

Y.PT/7 - 43 1b 38 Human Europe Belgium ERR1447959 

42/00 2000 - 1b 22 Human Europe Sweden ERR1447996 

G2/77/2 1977 43 1b - Pet bird Europe Denmark ERR1447999 

G798/82/1 1982 43 1b 38 Pet bird Europe Denmark ERR1448004 

8597L - 43 1b 38 Pet bird Europe Denmark ERR1448066 

IP32670 - 43 1 - Pig Europe UK ERR1447954 

2812/1998 1998 - 1b 22 Pigeon Europe Finland NC_006155 

2889 - 43 1b 22 Turkey Europe Italy ERR1448046 
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IP33290 - - 1 38 - Europe France ERR1447992 

IP32463 - 16 5 - Small mammal Europe Switzerland ERR024894 

IP32921 - 16 2 - Hare Europe France ERR1448005 

IP32881 - 16 2 - Monkey Europe Switzerland ERR1447997 

IP33054 - 14 2 - Human Europe Spain ERR1447961 

2884 - 14 2a 2 Rabbit Europe Italy ERR1448000 

1435/8/2004 2004 - 1b 28 Carrot Europe Finland ERR1447998 

2161/13/2006 2006 - 1b 28 Environment Europe Finland ERR1448023 

Marsu 1980 14 3 9 Small mammal Europe Finland ERR1448050 

7616/84 1984 - 1a 9 Human Europe Finland ERR1448053 

2874/2003 2003 - 1b 28 Environment Europe Finland ERR1447983 

2484/2006 2006 - 1b 28 Environment Europe Finland ERR1447965 

3623/13/2004 2004 - 1b 28 Small mammal Europe Finland ERR1448011 

5456/85 1985 - 1b 12 Human Europe Finland ERR1448024 

Y718 1986 2 1b 15 Human Europe Germany ERR1448054 

677/82 1982 - 1b 12 Human  Europe Finland ERR1447957 

260 - 42 1a - Human North America Canada ERR024902 

Y716 - 19 1a 35 Small mammal North America USA ERR024914 

283 - 14 1b 28 Human North America Canada ERR1447968 

284 - 14 1b 4 Human North America Canada ERR1447969 

G5137 - 42 1a 20 Cow Oceania Australia ERR024929 

BB1152 - 42 1a 10 Deer Oceania New Zealand ERR024917 

No.93 - 42 1a 10 Goat Oceania New Zealand ERR1447995 

No.21 - 86 1a 11 Cattle Oceania New Zealand ERR1447994 

H305-36/89 1989 43 1b 22 Deer Oceania Australia ERR1448007 

IP33038 - 43 1 - Small Mammal Oceania Australia ERR1448006 

No.5 - 54 2b - Goat Oceania New Zealand ERR1448012 
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BF-1 - - 1a 35 Buffalo South America Brazil ERR1447967 

IP32938 - 19 3 - Cattle South America Argentina ERR024928 
 

Table 3.1. Y. pseudotuberculosis genomes used in this study. 

Strains underlined in the table were sequenced as part of a previously published study (Reuter et al., 2014). All other strains listed were isolated and sequenced as described in 

section 3.2 and were published recently (Seecharran et al., 2017).  

*ST: multilocus sequence type according to MLST databases at the University of Warwick, Warwick Medical School 

(http://mlst.ucc.ie/mlst/dbs/Ypseudotuberculosis/GetTableInfo_html) (Laukkanen-Ninios et al., 2011).  

http://mlst.ucc.ie/mlst/dbs/Ypseudotuberculosis/GetTableInfo_html
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3.3. Results and Discussion 

3.3.1. Phylogeographic structure of Y. pseudotuberculosis indicates an Asian ancestry 

for the species 

A maximum-likelihood SNP-based phylogenetic tree was reconstructed from a core genome 

alignment of 134 Y. pseudotuberculosis genome sequences built using Parsnp (Treangen et al., 

2014). This analysis revealed that the phylogeny of the Y. pseudotuberculosis population is 

characterised by clades of varying genomic diversity (Fig. 3.1). There is a clade containing high 

levels of diversity, indicated by long branch lengths and a clade containing noticeably lower 

levels of diversity, as shown by much shorter branch lengths. Inclusion of a selection of Y. similis 

and Y. wautersii strains (Appendix 2) on the tree as an outgroup confirmed the highly diverse 

clade to be the ancestral clade for Y. pseudotuberculosis, as indicated by the tree topology 

(Appendix 3). Geographical source of isolation is available as part of the metadata for the 

majority of strains in the population. The phylogenetic tree was annotated with the continent 

of origin for each strain, where available, as illustrated by coloured bars at the branch tips in 

Figure 3.1. With regards to most of the strains isolated from Russia (Table 3.1), it was not entirely 

clear what specific geographical region these isolates were derived from. However, with the 

presence of Siberian isolates in the data set (e.g. strain IP33177), all strains obtained from Russia 

were accordingly categorised as being isolated from Asia. Annotation of continent of origin data 

revealed a very clear geographic split in the phylogeny, with the ancestral highly diverse clade 

containing predominantly Asian origin isolates and the second low diversity clade containing 

predominantly European origin isolates. A small transitional cluster of isolates originating from 

South Africa, North and South America, and Europe can be seen between the two distinct clades. 

The phylogenetic structure of globally dispersed isolates demonstrated in this chapter is 

consistent with an Asian origin for Y. pseudotuberculosis, with two separate migrations into 

Africa and the Americas, and more recently into Europe. An Asian ancestry of the Y. 

pseudotuberculosis species is in line with the postulated ancestry of Y. pestis (Morelli et al., 2010; 

Achtman et al., 1999), which is a clone that recently evolved from Y. pseudotuberculosis within 

the last 3,000 to 6,000 years, shortly before the first known human plague pandemics originating 

from central Asia. The data from the present study, however, appear to show that the greatest 

genetic variation occurs in Japan, not China. This does not appear to be an artefact of the 

geographical sampling in this chapter, however, it cannot be discounted that a more thorough 

and dense genomic sampling may provide a different result. Migration of isolates into Europe is 

consistent with a bottleneck event leading to the successful establishment of a small number of 

clones, as demonstrated by the low genetic diversity exhibited by the European clade of isolates.
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Fig. 3.1. Maximum-likelihood phylogenetic tree of 134 Y. pseudotuberculosis isolates. The phylogeny is derived from a core genome alignment (2,947,945 bp, 1,042,987 

SNPs) constructed using Parsnp and the tree was visualised using iTOL. The scale bar corresponds to the number of nucleotide substitutions per site. Continent of origin is 

superimposed on the tree as coloured bars. Geographic clades are defined by tree branch colouring. There is a clear phylogeographic split in the population, with the ancestral, 

highly diverse clade containing primarily Asian isolates and a second low diversity clade containing primarily European isolates. A small transitional cluster of African, American, 

and European isolates exists between the two clades. 
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3.3.2. Phylogenetic clusters within Y. pseudotuberculosis associate with discrete 

CRISPR cassette patterns 

CRISPR spacer data were available as part of the metadata for the majority of Y. 

pseudotuberculosis strains analysed in this chapter. The CRISPR loci for these strains were 

identified previously by Katja Koskela (University of Helsinki) using BLASTN (Koskela et al., 2015). 

Bayesian clustering of the presence/absence of all 2,969 known Y. pseudotuberculosis CRISPR 

spacers present in the data set (performed by Jukka Corander, University of Oslo) identified a 

total of 33 distinct sequence clusters of CRISPR cassettes (Table 3.1, section 3.2). The CRISPR 

cluster data were used initially to determine any obvious genotypic traits associated with the 

phylogeographic split observed in the Y. pseudotuberculosis population. Each identified CRISPR 

cluster was annotated on to the Y. pseudotuberculosis maximum-likelihood phylogenetic tree as 

coloured bars, using iTOL (Fig. 3.2).  

This analysis revealed the striking observation that CRISPR clusters form phylogenetically distinct 

groups within the Y. pseudotuberculosis population. The highest diversity of CRISPR clusters was 

found in the ‘Asian’ phylogenetic clade, with at least 23 of the 33 identified CRISPR clusters 

represented in this clade. Conversely, the ‘European’ clade exhibited the lowest diversity of 

CRISPR clusters, with isolates belonging primarily to clusters 10, 11, 20, 22, and 38. This 

observation indicates a correlation between diversity of CRISPR clusters and genomic diversity 

within each geographic clade. The phylogenetic distribution of CRISPR cluster cassettes 

observed here may suggest that this clustering could be a result of strains isolated in the same 

short time span or localised source. However, closer examination of the CRISPR cluster pattern 

to isolation year and geographical source of isolation (Table 3.2) suggests that this is not the 

case. For strains with isolation dates available, the temporal sampling indicates that strains of 

these CRISPR clusters were generally isolated in separate time periods. Furthermore, there are 

instances where strains from clusters 9, 11, 12, 20, 22, and 38 have a temporal separation of at 

least a decade or more (Table 3.2).  

To confirm the global geographical distribution of strains belonging to each of the 33 identified 

CRISPR clusters, prevalence of all CRISPR clusters were mapped to their respective countries of 

isolation (Fig. 3.3). The global map shows that CRISPR clusters are widely distributed across the 

world with some correlation to the phylogeographic split observed earlier in Figure 3.1. The 

highest diversity in CRISPR clusters occurs in the Far East of Asia, which is consistent with an 

Asian ancestry of Y. pseudotuberculosis (Achtman et al., 1999). The map also illustrates a clear 

coexistence of multiple CRISPR cluster-type strains in a number of different countries, suggesting 

that the formation of phylogenetically distinct CRISPR clades cannot be attributed to the 
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geographical separation of these strains. Given the previous observation that CRISPR evolution 

in the Enterobacteriaceae, in particular, is controlled by vertical and not horizontal evolution 

(Kupczok, Landan and Dagan, 2015), it is possible that the CRISPR-associated phylogenetic 

lineages observed in this study represent descent rather than due to CRISPRs restricting gene 

flow between strains. Some vertical descent may occur for independent reasons so, while 

CRISPR correlates with phylogeny, this does not necessarily mean that it is causal. This 

warranted further investigation into the formation of these CRISPR clades through phylogenetic 

dating and analysis of gene sharing in sections 3.3.4 and 3.3.5, respectively. 
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Figure 3.2. Maximum likelihood phylogenetic tree of 134 Y. pseudotuberculosis isolates annotated with 

the 33 identified CRISPR clusters. 

CRISPR clusters are determined by Bayesian clustering of concatenated CRISPR spacer sequence arrays and 

are annotated on the phylogenetic tree as coloured bars using iTOL. The tree is rooted by midpoint rooting.
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Figure 3.3. Global map showing the geographical sources of isolation of strains belonging to each of the 33 identified CRISPR clusters.  

Thirty-three unique CRISPR cluster types were identified in the population. The pie charts represent the proportions of each CRISPR cluster type prevalent in each country. The 

map demonstrates a clear coexistence of multiple CRISPR cluster-type strains in a number of countries.
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Table 3.2. CRISPR cluster-type Y. pseudotuberculosis strains with known isolation dates. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For strains with isolation dates available, strains belonging to the same CRISPR cluster were generally 

isolated across different time periods, and in some cases, from separate geographical locales.  

Strain name CRISPR cluster Country Year 

OK6088 5 Japan 1990 

H722-36/88 8 Belgium 1988 

7616/84 9 Finland 1984 

Marsu 9 Finland 1980 

P 105 9 - 1990 

PB1 10 England 1960 

H942-36/89 11 Germany 1989 

H943-36/89 11 Germany 1989 

CIP 55.85 11 - 1952 

677/82 12 Finland 1982 

5456/85 12 Finland 1985 

IP31758 12 Russia 1966 

Y718 15 Germany 1986 

2809/1998 20 Finland 1998 

3822/2000 20 Finland 2000 

2814/1998 20 Finland 1998 

15193/74 20 Finland 1974 

H655-36/87 20 Germany 1987 

504/72 20 Italy 1972 

921/93 20 Sweden 1993 

1180/95 20 - 1995 

H305-36/89 22 Australia 1989 

3876/2001 22 Finland 2001 

2817/1998 22 Finland 1998 

2812/1998 22 Finland 1998 

H749-36/89 22 Germany 1989 

42/00 22 Sweden 2000 

2874/2003 28 Finland 2003 

2161/13/2006 28 Finland 2006 

2484/2006 28 Finland 2006 

1435/8/2004 28 Finland 2004 

3623/13/2004 28 Finland 2004 

Y722 35 Germany 1988 

PT682 37 Japan 1987 

G798/82/1 38 Denmark 1982 

3858/2000 38 Finland 2000 

2812/79 38 Finland 1979 

866/81 38 Finland 1981 

36/83 38 Finland 1984 

H938-36/89 38 Germany 1989 

H892-36/87 39 Italy 1987 

2800/1998 41 Finland 1998 
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3.3.3. Cryptic ecology suggests that Y. pseudotuberculosis is a host generalist 

In addition to the CRISPR cluster data, metadata concerning the serotype, country of origin, and 

host species/source of isolation were available for the majority of the Y. pseudotuberculosis 

population. With regards to O-antigen serotyping of these strains, a large proportion of the 

population comprise the O:1a, O:1b, and O:3 serotypes, which is consistent with previous 

studies indicating that the majority of Y. pseudotuberculosis strains isolated from human cases 

belong to these serotypes (Williamson et al., 2016; Laukkanen-Ninios et al., 2011). Other 

serotypes present in the population include serotypes O:2, O:4, O:5, and O:6, although these 

were lower in prevalence. All additional metadata were annotated onto the phylogenetic tree 

as coloured bars and the ‘Asian’ and ‘European’ clades were defined by tree branch colouring 

(Fig. 3.4). This analysis revealed that the ‘European’ clade is further split into distinct serotype 

O:1a and serotype O:1b phylogenetic clusters, further demonstrating the low diversity of this 

clade and indicating the predominance of these lineages among human-clinical and non-human 

environments in Europe. The ‘Asian’ clade is predominantly composed of strains belonging to 

serotype O:1b, whilst exhibiting the highest diversity of serotypes with O:2, O:4, O:5, and O:6 

also present in this clade. With regards to the geographical distribution of serotypes, this is 

parallel to a previous study that revealed geographic heterogeneity between East Asian and 

Western European strains of Y. pseudotuberculosis (Fukushima et al., 2001). It was observed 

that almost all human-clinical strains from Europe belonged exclusively to serotypes O:1a and 

O:1b, whilst those from the Far East of Asia belonged to serotypes O:1b and a variety of subtypes 

of O:2–6 (Fukushima et al., 2001). Skurnik and co-authors (2000) suggested that the cryptic O-

antigen gene cluster of Y. pestis biovar Orientalis showed that Y. pestis is most closely related 

to, and has evolved directly from, a Y. pseudotuberculosis serotype O:1b strain, isolated from a 

patient in Japan. This suggestion, in conjunction with the high diversity of O:1b strains 

originating from the Far East observed in this chapter (Fig. 3.4), would provide further evidence 

to support an ancestry of the Y. pseudotuberculosis species associated with Asia and the Far 

East, in particular. 

Annotation of host species/isolate source on the phylogenetic tree did not reveal any clustering 

of strains within specific host groups (Fig. 3.4). This is indicative of the widespread ecology of Y. 

pseudotuberculosis across the globe, with isolates obtained from various sources including 

livestock and domesticated animals, wild animals and birds, fish, vegetables, and the 

environment, in addition to human disease cases. Isolates from all non-human sources were 

distributed throughout the phylogenetic tree and did not cluster separately to the human 

isolates, and the human sourced isolates did not cluster either. Although enteropathogenic Y. 

pseudotuberculosis and the closely related Y. enterocolitica are both aetiological agents for 
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human yersiniosis, there are notable differences in the ecologies of both organisms. Infections 

caused by Y. enterocolitica mainly originate from swine (Virtanen et al., 2013), but fresh 

produce, such as iceberg lettuce and raw carrots, has been the primary source for widespread 

Y. pseudotuberculosis outbreaks within recent decades (Kangas et al., 2008; Jalava et al., 2006). 

Despite the frequent presence of Y. pseudotuberculosis in environmental samples, its reservoir 

is considered to be wildlife (Niskanen, Fredriksson-Ahomaa and Korkeala, 2002). This would 

suggest that while Y. enterocolitica is more adapted to its ecological niche of swine, Y. 

pseudotuberculosis is more of a host generalist pathogen and has an ability to thrive and 

multiply in habitats such as the environment, from which it could easily disseminate into the 

food chain as a contaminant. Additionally, it would suggest that Y. pseudotuberculosis is capable 

of frequent host switching, and this is demonstrated in Figure 3.4, by strains belonging to the 

same serotype and CRISPR cluster that are isolated from multiple host species. Y. 

pseudotuberculosis is also common in pork meat, and in this study, isolates from swine samples 

are also prevalent in the population. Several strains obtained from swine samples (PC94-72, T-

469-1, IP32544, and IP32670) have clustered together with strains from other domesticated and 

wild animal samples, in each of the ‘Asian’, ‘Transitional’, and ‘European’ clades of the 

population (Fig. 3.4). This is consistent with a recent study that has demonstrated through 

comparative genomic hybridisation analysis that European Y. pseudotuberculosis strains from 

swine cluster together with strains from human and wildlife samples (Jaakkola, Somervuo and 

Korkeala, 2015). This is further supported by a previous study by Niskanen et al. (2002), who 

reported on the homogeneity of Y. pseudotuberculosis strains isolated from swine samples 

based on pulsed-field gel electrophoresis analysis. Of importance in the population of the 

current study is perhaps the prevalence of human-clinical isolates from multiple countries 

among each geographic clade. This may suggest that human Y. pseudotuberculosis infection 

occurs sporadically, affecting multiple nations in different time periods. Given that Y. 

pseudotuberculosis is widespread among different ecological niches, the distribution of human 

strains across the phylogeny may suggest that human populations, through domestication of 

animals and movement across the globe, have provided a vector for dissemination allowing Y. 

pseudotuberculosis to reach new habitats in Europe and the West. Although the distribution of 

Y. pseudotuberculosis is worldwide, it is clear from the data set that most strains originate from 

regions of the Northern hemisphere, such as Europe, North America, Russia, China, and Japan. 

This may be indicative of under-sampling from countries of the Southern Hemisphere, but the 

emergence and dispersal of successful lineages in Europe and North America would have been 

dependent on the species’ ability to adapt to significantly different conditions compared to 

those of its Asian origin, implying that Y. pseudotuberculosis has evolved to become a cold-

tolerant species.  
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Figure 3.4. Maximum-likelihood phylogenetic tree of 134 Y. pseudotuberculosis isolates annotated with 

all available metadata. Additional metadata regarding host species/source, serotype, and country of origin 

were annotated on the tree as coloured bars using iTOL. No phylogenetic grouping is associated with 

ecological patterns (host species/isolate source). The ‘European’ clade is split into serotype 1a and serotype 

1b clusters. 
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3.3.4. Phylogenetic dating suggests recent geographical divergence 

Of the 134 Y. pseudotuberculosis genomes sequenced, isolation dates were available for 46 

isolates representing the full diversity of the phylogeny. To date the evolutionary split of the 

‘European’ clade of isolates from the ‘Asian’ clade, the BEAST 2 program (Bouckaert et al., 2014) 

was run by Alan McNally (University of Birmingham), analysing only the 46 strains for which 

isolation dates were available. The resulting dated maximum clade credibility (MCC) tree (Fig. 

3.5A) suggests a time to the most recent common ancestor (TMRCA) for the data set of 33,591 

years before the present. Error bars for each node, representing the upper and lower values 

within the 95% HPD (highest probability density) from the BEAST analysis, are displayed in the 

MCC tree of Appendix 4. The tree also suggests that the divergence of the ‘European’ and ‘Asian’ 

clades occurred approximately 12,500 years ago, which in the context of the TMRCA for the data 

set represents a recent phylogeographic split (Fig. 3.5A). With regards to human history, this 

period coincides with the end of the last ice age, during the transitionary period between the 

Neolithic and Mesolithic eras (Achtman, 2017). Migration of ancestral Y. pseudotuberculosis 

from Asia to Europe, and then further dissemination towards the West, would also appear to 

correlate with the beginning of livestock domestication and wheat and barley farming, as human 

populations migrated across the globe during this time period, generally favouring a system of 

nomadic agriculture. Running the BEAST 2 analysis also produced a Bayesian Skyline 

reconstruction of the Y. pseudotuberculosis population (Fig. 3.5B). The Skyline plot suggests that 

the population size remained stable over time but it also supports the possibility of a strong 

bottleneck occurring in the population within the ‘European clade’, in the very recent past (i.e. 

in the last few hundred years), owing to the estimated population size reduction indicated in the 

figure. This is consistent with the reduction in diversity and establishment of only a small number 

of clones in Europe. 

We also sought to determine a TMRCA for the CRISPR-associated clades with isolation dates 

available. The CRISPR cluster patterns identified in Figure 3.2 were annotated onto the dated 

MCC tree (Fig. 3.5A) allowing an estimation of the time for the emergence of these clusters. The 

most recent of these clusters has a TMRCA to the rest of the population of approximately 5,222 

years before present, suggesting that this clustering is not a recent phenomenon, nor is it due 

to any temporal artefacts of the sampling. This corroborates the comparison of the CRISPR 

cluster pattern to isolation years in Table 3.2, and it also indicates that these CRISPR-associated 

clades have existed over a considerable period of time, with the oldest of these clusters being 

of predominantly Asian origin and the more recently emerged clusters largely of European 

origin.  
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Figure 3.5. (A) Dated maximum clade credibility (MCC) tree produced from BEAST 2 analysis performed 

on the 46 Y. pseudotuberculosis strains for which isolation dates are available. (B) Bayesian Skyline 

reconstruction from BEAST 2 analysis. The dating analysis was performed by Alan McNally (University of 

Birmingham), using the BEAST 2 program with all known dates of isolation used to date individual taxa. The 

MCC tree (A) was produced and visualised using FigTree. The tree is annotated with CRISPR clusters as 

determined by Bayesian clustering of concatenated CRISPR sequence arrays. The Skyline plot (B) shows the 

estimated effective population size through time, as inferred by the Skyline demographic model. 
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3.3.5. CRISPR-associated phylogenetic clusters are associated with patterns of 

accessory gene conservation and core genome recombination 

Phylogenetic distinctions were observed between the CRISPR clusters of the Y. 

pseudotuberculosis population analysed in this chapter, based on core genome SNP analysis. 

Further comparative genomic analyses, taking consideration of the accessory and pan-genomes 

of these strains, would provide a high-resolution assessment of the extent of homogeneity 

between strains of the same CRISPR cluster. Considering the role of CRISPR in generating 

acquired immunity to foreign DNA across bacteria, an investigation was carried out to determine 

whether the CRISPR clusters within Y. pseudotuberculosis were associated with any signature of 

gene sharing. Firstly, a pan-genome matrix was created for all 134 genomes using the LS-BSR 

pipeline (Sahl et al., 2014), and then the accessory genomes were extracted from the pan-

genome matrix by running the post-matrix Python script filter_BSR_variome.py, which is 

provided by LS-BSR. Genes prevalent in > 90% of strains, and also those found in fewer than 5 

strains, were excluded as they were not of interest for this analysis. The resulting accessory 

genome matrix was visualised by generating a heat map using the ggplot2 package of the R 

statistical software (http://www.R-project.org/; R Core Team, 2015; Wickham, 2016), allowing 

the presence and absence of every distinct genetic locus in the Y. pseudotuberculosis accessory 

genome to be displayed. The accessory gene presence/absence matrix was then used to 

annotate the core phylogenetic tree alongside the CRISPR cluster patterns (Fig. 3.6). From this 

analysis, it is noticeable that there are clear patterns within the accessory genome profiles which 

are concordant with the pattern of CRISPR clusters on the phylogenetic tree. Some of the most 

discernible patterns are highlighted on the phylogenetic tree, which include CRISPRs 9, 10, 11, 

12, 20, 22, 28, and 35. This observation would suggest that for the majority of CRISPR clusters, 

Y. pseudotuberculosis strains have conserved unique combinations of accessory genes according 

to the CRISPR cluster they belong to. Despite coexisting with other CRISPR cluster-type strains 

in the same ecological niches and in close geographical proximity, where opportunities for gene 

sharing to occur would be frequent, it suggests that horizontal gene transfer between different 

CRISPR cluster-type strains is highly restricted. 

Another interesting observation was made in the accessory gene profiles with respect to the 

clusters of strains representing CRISPRs 22 and 35. These strains exhibit much smaller accessory 

genome profiles when compared to the rest of the population. This observation is exemplified 

by these clusters of strains lacking a number of genes that are present in the majority of the 

population, which can be seen from ~100–300 on the accessory loci index (𝑥–axis). Assembly 

quality analysis of these strains indicate that they are good quality and are complete sequenced 

genomes, with an average N50 of 116,376 bp and average genome size and GC content of 4.5 

http://www.r-project.org/
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Mbp and 47.5%, respectively, which is within the range of what is expected for Y. 

pseudotuberculosis (genome sizes range from 4.3–4.8 Mbp and GC content ranges from 47–

48%). Furthermore, no genomes had dropped-out; all genomes were within the average range 

for genome size, N50 and GC content. The disparity in accessory genome content when 

compared to the rest of the population cannot therefore be due to poor assembly quality. 

Bacterial pathogens often have smaller genomes and fewer genes than their non- or less-

pathogenic relatives. The same pattern is seen within some bacterial species, with repeated 

transitions to higher virulence associated with reductive genome evolution (Weinert and Welch, 

2017). With this in mind, the smaller accessory genomes exhibited by the strains of CRISPR 

clusters 22 and 35 may suggest that these strains have undergone significant accessory gene-

loss events in comparison to the rest of the population, perhaps indicating an evolutionary shift 

to more pathogenic lineages. 

To further investigate the congruence between CRISPR cassette clusters and accessory gene 

patterns, the Python script compare_BSR.py, of LS-BSR (Sahl et al., 2014), was used to identify 

genes unique to any given CRISPR cluster, as well as genes unique to either the ‘European’ clade 

of strains or the ’Asian’ clade of strains. Attempts made to identify any unique genes in each 

CRISPR cluster and geographic clade were largely unsuccessful. Only one unique coding 

sequence (CDS) was detected in the ‘European’ clade of strains and no unique CDSs in the ‘Asian’ 

clade. Of CRISPR clusters that contained more than one representative strain, CRISPR 22 

contained nine unique CDSs relative to all other CRISPR clusters within the population. Other 

clusters include CRISPR 28, with two unique CDSs, and CRISPRs 1, 9, and 11 each with one unique 

CDS, when compared to the rest of the population. Unique genes could not be identified in the 

remainder of CRISPR clusters within the population. Overall, this analysis suggests that each 

distinct CRISPR cluster contains a combination of accessory genes that are unique to that cluster, 

rather than unique individual genes within each cluster. To confirm this, the average accessory 

genome dissimilarity matrix for all detected CRISPR clusters containing more than one strain (18 

out of 33 clusters) was calculated by Jukka Corander (University of Oslo). A standard 

permutation test was then performed to assess the significance of the observed dissimilarity 

pattern. This analysis confirmed that in 12 out of 18 CRISPR clusters, strains have significantly 

more similar gene profiles to strains in the same cluster than to strains in other clusters (p < 0.05 

based on 10,000 random permutations). Based on this evidence, it would suggest that gene 

sharing between strains in the Y. pseudotuberculosis population is largely restricted to within 

individual CRISPR clades.  

To investigate this further, BratNextGen analysis was run on core genome alignments of the Y. 

pseudotuberculosis population to detect recombination events between the core genomes of 
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all strains. The detected recombination events are displayed against the proportion of shared 

ancestry (PSA) tree annotated with CRISPR cluster patterns (Fig. 3.7). This analysis identified a 

distribution of core genome recombination events which is highly concordant with the pattern 

of CRISPR clustering. Despite very high levels of recombination being detected across the data 

set, the recombination occurring is not eroding the CRISPR cluster signal. This would suggest 

that inter-cluster horizontal transfer of genetic material is largely inhibited, or occurs at very low 

frequency compared to intra-cluster recombination events, consistent with the CRISPR cluster 

signature observed in the accessory gene profiles (Fig. 3.6). To support this, the amounts of 

intra-cluster and inter-cluster recombination detected from the BratNextGen analysis were 

quantified (Supplementary Data, doi: 10.1099/mgen.0.000133), and it was revealed that intra-

cluster recombination events generally outweigh the amount of recombination occurring 

between strains of different CRISPR clusters (Seecharran et al., 2017). For example, higher 

numbers of intra-cluster recombination events were detected for various CRISPR clusters when 

compared to the average inter-cluster recombination occurring for those clusters. This includes, 

but is not limited to, CRISPR clusters 12 (intra-cluster = 311, average inter-cluster = 18), 20 (intra-

cluster = 282, average inter-cluster = 14), and 28 (intra-cluster = 274, average inter-cluster = 16). 

Another interesting observation can be made from the BratNextGen analysis (Fig. 3.7), where 

no observable core genome recombination events were detected for a European cluster of 

strains represented by CRISPR clusters 22 and 38. This would suggest that strains of these 

clusters have perhaps ‘locked’ their genomes from transferring and receiving genetic material 

to/from other CRISPR cluster-type strains.  

Overall, determining the accessory gene profiles and core genome recombination events for this 

globally and temporally distributed population of Y. pseudotuberculosis has demonstrated a 

strong association between CRISPR and the restriction of both accessory and core gene 

exchange between different CRISPR clusters. The distinct phylogroup structure of Y. 

pseudotuberculosis is therefore maintained throughout the population over a considerable 

period of time. This is consistent with a previous study which demonstrated that CRISPR systems 

play an important role in shaping the accessory genomes of the model antibiotic-refractory 

pathogen Pseudomonas aeruginosa (van Belkum et al., 2015). Furthermore, phylogenetic 

analysis based on CRISPR sequences of Shigella genomes, carried out by Yang and co-workers 

(2015), revealed a correlation between CRISPR loci and phylogenetic structure, as CRISPR 

sequences were conserved among subtypes of this genus. This is parallel to the observation of 

CRISPR-associated phylogenetic clades of Y. pseudotuberculosis revealed in the present study. 

Additionally, homology analysis of spacers showed that CRISPR might be involved in the 

regulation of virulence transmission (Yang et al., 2015), which would suggest that CRISPR 

https://dx.doi.org/10.1099%2Fmgen.0.000133
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analysis is applicable for investigation of evolutionary relationships of bacterial pathogens and 

the formation of distinct microbial lineages, and this warrants further study across bacteria. 



 

 
 

9
4 

 

Figure 3.6. Distribution of accessory gene profiles for 134 isolates of Y. pseudotuberculosis. The genes (𝑥-axis) have been sorted by their presence/absence pattern (black, 

present; white, absent) across strains (𝑦-axis), which have been sorted according to the maximum likelihood phylogenetic tree, shown on the right. CRISPR clusters, continent 

of origin and serotype are annotated on the tree as coloured bars. The ‘Asian’ and ‘European’ clades are defined by tree branch colouring.
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Figure 3.7. BratNextGen analysis of core genome recombination events for 134 isolates of Y. pseudotuberculosis. BratNextGen was run by Alan McNally. The PSA tree of 134 

isolates is shown on the left. Horizontal coloured bars show the indicated recombination events for each strain (𝑦-axis), at the relative base pair positions (𝑥-axis). Where 

segments are the same colour in vertically overlapping positions, this indicates recombination events that are shared between those strains. The colours of the detected 

segments indicate the cluster in which the segment is most prevalent. CRISPR clusters and continent of origin are annotated on the tree as coloured bars.

Co
nt

in
en

t

CR
IS

PR
 c

lu
st

er

St
ra

in

SP93422
IP33250
No.5
RD20
DD362
T-469-1
TE-93181
PC708
OK5586
Wla708
PT682
Uematu289
Chigamatsu
TP1039
D1040
PC504
PC94-72
OK6088
K22
MW145-2
Pa3606
MWTaniguci
Wla352
Pa3597
Gifu-liver
8011-3
IP33177
Y718
1231
Soil-4
DC356
H404
IP31758
H2517
H1647
H-2212
677/82
H-1
5456/85
H1746
H-158
H416
IP32921
IP32881
2515
IP32463
H892-36/87
YPIII
7616/84
P 105
Marsu
PST2660
PST1813
DD110
284
3623/13/2004
2161/13/2006
283
2484/2006
1435/8/2004
2874/2003
R104-2
R103-2
GS95
S106
J51
CN2
79136
2884
N912
IP33054
IP32544
Y716
Y722
BF-1
IP32938
2384
H938-36/89
G798/82/1
8597L
3876/2001
Tytgat
PST25
2895
2497
H749-36/89
2889
2812/1998
2812/79
H305-36/89
2817/1998
IP33290
IP33038
866/81
3858/2000
2887
42/00
36/83
G2/77/2
Y.PT/7
IP32670
H942-36/89
No.21
St.1
CIP 55.85
25418L
H943-36/89
IP32953
514
G5137
489
2809/1998
2800/1998
RU496
Rollier
504/72
Y.PT/8
1180/95
3822/2000
103
2814/1998
15193/74
104
921/93
11J
488
RU488
IH111554
H655-36/87
PB1
2886
260
No.93
BB1152

CRISPR cluster

1

2

3

4

5

6

7

9

10

11

12

13

14

29

31

32

35

37

38

39

40

41

42

43

Missing data

15

16

20

21

22

23

25

26

28

Continent

Africa

Asia

Europe

North America

Oceania

South America

Missing data



   

96 
 

3.4. Conclusions 

The genus Yersinia has acted as a model for developing our understanding of microbial 

pathogenesis, molecular microbiology, and microbial ecology and evolution (McNally et al., 

2016b). Yersinia was the first bacterial genus to have all representative species sequenced, 

allowing fine-scale analysis of how pathogenesis evolved in the three human pathogenic 

members of the genus (Reuter et al., 2014). This analysis revealed a striking degree of 

parallelism in how human pathogenesis evolved in pathogenic Yersinia (Reuter et al., 2014). 

However, further fine-scale evolutionary genomic studies of Y. pestis and Y. enterocolitica have 

shown very distinct mechanisms of intra-species evolution. Y. pestis is a recently evolved clone 

of Y. pseudotuberculosis, which is globally disseminated and host-restricted with very low levels 

of diversity, allowing fine-scale transmission events to be successfully reconstructed (Morelli et 

al., 2010). In complete contrast to this, pathogenic Y. enterocolitica have evolved from a non-

pathogenic ancestor and have split into ecologically distinct clades, which move rapidly across 

host species (Reuter et al., 2015). To enhance our understanding of the population structure, 

ecological dissemination, and evolutionary events that define the model bacterial species Y. 

pseudotuberculosis, it was imperative to carry out purpose-designed, large-scale global 

population genomic analyses of Y. pseudotuberculosis in this study. 

By sequencing a globally and temporally distributed set of 134 Y. pseudotuberculosis genomes, 

isolated from a wide range of hosts and environments, it can be shown that evolution in this 

species is driven by completely different mechanisms from those seen in the other pathogenic 

Yersiniae. This study revealed that Y. pseudotuberculosis is the only pathogenic Yersinia species 

which shows a clear phylogeographic split in its population. This was once postulated to be the 

case for Y. enterocolitica (Wang et al., 2011) with Old World and New World strains, however, 

comprehensive population genomics have shown this is not the case (Reuter et al., 2015; Reuter 

et al., 2014). The indication of Asian ancestry for Y. pseudotuberculosis is consistent with an 

Asian ancestry of Y. pestis (Morelli et al., 2010; Achtman et al., 1999), though the greatest 

amount of genetic variation was found in Japan rather than China. This is interesting because 

of the fact that a sub-clade of Y. pseudotuberculosis exists which causes Far East scarlet-like 

fever and is associated with Japan and tropical South-East Asia (Eppinger et al., 2007), 

suggesting larger variation in this region and a potential focus of ancestry for the species. 

Although it is difficult to accurately date the phylogeny of a data set with only a relatively small 

number of isolation dates available, the TMRCA for the entire Y. pseudotuberculosis data set is 

in the same range (10,000 – 40,000 years before present) as that estimated for the emergence 

of Y. pestis (Achtman et al., 1999). Based on the evidence from this dating analysis, it is inviting 
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to speculate that the emergence of Y. pestis coincided with a larger population dispersal event 

across Y. pseudotuberculosis.  

Previous work by our research group analysed patterns of accessory gene sharing between 

serotype-specific clades of Y. enterocolitica, and concluded that the species is composed of 

ecologically distinct phylogroups (Reuter et al., 2015). This inference was made on the basis 

that the limited inter-clade sharing of genes could not be due to steric hindrance by the O-

antigens nor genetic exclusion, as no such mechanisms existed. Data from the present study 

also identify clearly distinct phylogenetic subgroups within the geographic clades of Y. 

pseudotuberculosis. These phylogroups have unique combinations of accessory genes with little 

variation in their accessory genomes, and a very similar pattern of core genome homologous 

recombination. Similar to Y. enterocolitica, it is highly unlikely that this might be a result of some 

factor which prevents physical contact between strains, given the limited variety of serotypes 

present in Y. pseudotuberculosis (Savin et al., 2014). Rather, analysis from this study presents a 

strong case for the role of CRISPR clusters in the formation of these phylogroups. The primary 

evidence for the active role of CRISPR in mediating this genetic restriction is the fact that 

different CRISPR cluster-type strains coexist in the same geographical locations. Given that Y. 

pseudotuberculosis is ubiquitous in nature, no active barrier precluding recombination would 

exist between strains occupying the same habitat. Therefore, it would be expected that the 

signal that identifies each CRISPR cluster to be eroded relatively quickly over time (Sheppard et 

al., 2008), resulting in a lack of clear phylogroup signatures (Dearlove et al., 2016; Sheppard et 

al., 2008). This would especially be the case given the high levels of recombination detected in 

the core genome of Y. pseudotuberculosis. However, as the CRISPR-associated phylogenetic 

clusters have coexisted in locations around the world, for approximately 5,000 years or more, 

and continue to display a clear signature of within-cluster similarity, the data suggest that the 

CRISPR system is strongly associated with restricting both accessory and core gene exchange 

between clusters and maintenance of the distinct Y. pseudotuberculosis phylogroups. 

CRISPR has been shown to play a role in shaping the accessory genomes of Pseudomonas 

aeruginosa (van Belkum et al., 2015), and CRISPR analysis correlated with phylogenetic 

structure in a study of Shigella genomes (Yang et al., 2015). However, it is likely that the present 

study provides the first evidence of a possible causative link between CRISPR cassettes and the 

evolution of distinct phylogroups in bacterial pathogens. Bayesian analysis of core genome 

recombination events suggests that the influence of CRISPR is exerted at the level of horizontal 

gene transfer. Data from a previous study have shown that CRISPR evolution in bacteria, 

particularly in the Enterobacteriaceae, is controlled by vertical and not horizontal evolution 

(Kupczok, Landan and Dagan, 2015). When taken together, the data from the current study 
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create a hypothesis for Y. pseudotuberculosis evolution, whereby large population 

perturbations lead to the emergence of geographically isolated clones. During the early 

formation of these clones, exposure to geographically localised exogenous DNA – such as 

genetic elements present in plasmids and phage – creates a CRISPR array of immunity, which 

then tightly regulates the repertoire of genetic material that can be transferred and acquired 

from the gene pool. This can be explained by the CRISPR mechanism, through which, new 

spacers derived from the genome of the invading virus are incorporated into the CRISPR array 

by an unknown mechanism (Barrangou et al., 2007). During the crRNA biogenesis stage, a 

CRISPR precursor transcript is processed by Cas endoribonucleases within repeat sequences to 

generate small crRNAs (Brouns et al., 2008). During the targeting/interference stage, the match 

between the crRNA spacer and target sequences (complementary protospacer) specifies the 

nucleolytic cleavage of the invading nucleic acid. As each of these nascent clones then globally 

disseminate, they encounter other clones of Y. pseudotuberculosis and coexist together in 

geographical isolation, but genetic transfer between different clones is restricted according to 

the CRISPR array of each clone. Clones comprising the same CRISPR array can acquire and 

transfer genes without any restriction. However, transfer of genetic material between different 

clones cannot occur at levels required to erode the clonal phylogenetic structure within the 

population, and consequently, distinct phylogroups of Y. pseudotuberculosis persist in the 

population.  

In reference to the phylogeographic split observed in the Y. pseudotuberculosis population, the 

highest diversity of serotypes and CRISPR clusters was detected among ‘Asian’ strains, in 

contrast to the noticeably lower levels of diversity observed among strains of the ‘European’ 

clade. This would suggest that as the species migrated towards Europe, from its Asian origin, a 

bottleneck event occurring in the recent past would have resulted in the successful 

establishment of a small number of clones in new ecosystems, and thus lead to subsequent 

dispersal of these clonal lineages into Europe and the rest of the world. Analysis of all metadata 

available for the Y. pseudotuberculosis population, indicated that clones which have 

successfully disseminated into Europe belong almost exclusively to serotypes O:1a and O:1b, 

consistent with a previous study (Fukushima et al., 2001), and in addition, these clones are 

largely associated with only a small number of CRISPR loci. A larger sample size of isolates would 

be required in future work, to determine whether similar levels of diversity in geographic clades 

are maintained in the wider population of Y. pseudotuberculosis. With regards to the ecology 

of Y. pseudotuberculosis, this study did not reveal any phylogenetic clustering of strains within 

specific host groups or sources. Isolates from all non-human sources were distributed 

throughout the phylogeny and did not cluster separately from human isolates. This is indicative 



   

99 
 

of the widespread ecology of Y. pseudotuberculosis and its ubiquitous nature in many different 

non-human hosts and environments. The absence of genetic patterns associated with the 

ecology of Y. pseudotuberculosis, revealed in this chapter, is in contrast to previous studies that 

have reported ecological barriers to gene flow and recombination, which exist within 

populations of important bacterial pathogens. Such examples would include Y. enterocolitica 

(Reuter et al., 2015), E. coli (McNally et al., 2013; Luo et al., 2011), and C. jejuni (Sheppard et 

al., 2014), for which, the formation of distinct, ecologically separated lineages have been 

demonstrated. Contrary to these species, which comprise ecotypes formed through restricted 

recombination due to ecological barriers, Y. pseudotuberculosis is a host generalist species, 

capable of frequent host switching and occupation of multiple ecological niches, from which it 

could easily become a contaminant of the food chain. The cryptic ecology of Y. 

pseudotuberculosis may explain the ability of this species to colonise multiple hosts, suggesting 

that host generalism can also be a successful ecological strategy for bacterial pathogens. By 

analysing a set of geographically and temporally dispersed Y. pseudotuberculosis genomes in 

this chapter, the results indicate that the observed phylogenetic structure of the Y. 

pseudotuberculosis population is driven by factors other than those that preclude physical 

contact. The data from this study highlight how CRISPR can be used to infer the evolutionary 

trajectory of bacterial lineages, and they show that the evolution and ecology of Y. 

pseudotuberculosis differs from that seen previously in the other two human pathogenic 

species of the genus Yersinia. 
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4.1. Introduction 

Although Escherichia coli were once thought of as clonal organisms, they are now recognised 

as a bacterial species of extreme heterogeneity – a result of very high levels of recombination 

within the accessory genome (Wirth et al., 2006). E. coli are generally categorised into three 

main groups: commensal E. coli, intestinal pathogenic E. coli, and extraintestinal pathogenic E. 

coli (ExPEC). From this level of classification, E. coli are traditionally further subdivided into 

pathotypes on the basis of their isolation source and the possession of certain ‘virulence-

associated genes’ (VAGs). Intestinal infections, characterised mainly by severe diarrhoea, are 

caused by pathotypes such as enteropathogenic E. coli (EPEC). Within ExPEC, the pathotype of 

E. coli which causes urinary tract infections (UTIs) are termed uropathogenic E. coli (UPEC) on 

the basis that they were isolated from the bladder and possess UPEC-specific VAGs (Janke et 

al., 2001). E. coli causing disease in birds are termed avian pathogenic E. coli (APEC), and those 

causing neonatal meningitis are termed ‘NMEC’. 

For many years, the accepted dogma for E. coli sub-classification was that the combination of 

virulence genes possessed by an organism influences pathogenic potential (Vejborg et al., 

2011). Some studies have shown that there is little correlation between the disease caused by 

E. coli and its genotype. Strains that belong to different phylogroups can occupy distinct 

ecological niches and display diverse properties or ability to cause infections (Clermont et al., 

2013).  Due to the era of enhanced phylo-typing and sequence-typing methods, we now know 

that E. coli strains, even within a single pathotype, can vary immensely in terms of their 

evolutionary descent, which in turn can affect pathogenic potential and fitness in an infection 

(Wirth et al., 2006; Picard et al., 1999). Extraintestinal pathogenic E. coli infections are the most 

common cause of hospital-acquired infections in the UK and also cause significant levels of 

community-acquired infections (Woodford et al., 2004). Human ExPEC strains have often been 

characterised at the sequence type (ST) level and a small number of STs, namely ST69, ST73, 

ST95, and ST131, were found to be the most predominant among cases of UTIs and bloodstream 

infections (Kallonen et al., 2017; Riley, 2014; Alhashash et al., 2013; Croxall et al., 2011b). These 

clonal groups are known to constitute highly antimicrobial-resistant strains. Multidrug 

resistance (MDR) mediated by ESBLs is of increasing global concern in E. coli, because strains 

tend to harbour various resistance genes, in particular CTX-M-15 and 14 (Nicolas-Chanoine et 

al., 2008). These genes are primarily plasmid-borne, which facilitates the transfer of resistance 

determinants to other strains, species, or genera (Woodford, Turton and Livermore, 2011). 

Moreover, infections caused by multidrug-resistant bacteria can lead to inadequate or delayed 

antimicrobial therapy and increased costs associated with treatment (Magiorakos et al., 2012). 
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Using both phenotypic and molecular methods, many previous studies have demonstrated that 

both ExPEC and MDR strains of E. coli can be detected in various environments other than the 

human intestinal tract. These would include rivers and other water sources, soils, various wild 

and domesticated animals, including food animals, as well as raw meat and poultry (Gomi et al., 

2017b; Johnson et al., 2017; Muller, Stephan and Nuesch-Inderbinen, 2016; Vincent et al., 2010; 

Jakobsen et al., 2010). Although most environmental and non-human E. coli strains are thought 

to be harmless, some strains have demonstrated pathogenic potential, and thus contamination 

of surface waters and retail meat by such strains can increase the risk of waterborne and 

foodborne diseases. Also of major concern is the prevalence of antimicrobial-resistant and MDR 

E. coli detected in these non-human reservoirs (Gomi et al., 2017b; Johnson et al., 2017). The 

hypothesis that human ExPEC and MDR E. coli strains may have a non-human reservoir in 

surface waters and food animals has been an area of study by various research groups 

worldwide (Kappell et al., 2015; Dolejska et al., 2011b; Dolejska et al., 2011a). Experimental 

studies reporting shared pathogenicity between human ExPEC and avian pathogenic E. coli 

(APEC) suggests that these extraintestinal E. coli strains may share a common ancestry and 

evolutionary roots with APEC (Logue et al., 2017). Several previous studies have consistently 

reported detection of specific human ExPEC strains in poultry or retail poultry meat products, 

but rarely in other meat products. This would appear to support the hypothesis that a poultry 

reservoir for human ExPEC may exist. These studies have regularly identified E. coli ST131 and 

other human-clinical associated ExPEC lineages, such as ST69, ST394, ST95, ST10 and ST117, in 

cases of human extraintestinal infection as well as in retail meat products and other food 

animals (Bergeron et al., 2012; Vincent et al., 2010). In Sweden, E. coli sequence types ST69, 

ST10, and ST117 represented half of the ESBL-producing E. coli isolated from retail chicken 

meat in this country. Moreover, there are several global environmental studies reporting the 

presence of MDR E. coli and potential pathogenic ExPEC strains in rivers and surface waters, 

which would support the hypothesis that water-related environments may be considered one 

of the important non-human reservoirs of human ExPEC (Gomi et al., 2017b; Muller, Stephan 

and Nuesch-Inderbinen 2016; Kappell et al., 2015). It has been suggested that contamination of 

surface waters by E. coli strains belonging to clinically important clonal groups may increase the 

risk of waterborne disease, because surface waters are used for sources of drinking water, 

irrigation, and recreational purposes (Gomi et al., 2017b). 

Despite evidence from previous studies suggesting that surface waters and retail poultry may 

provide a potential non-human reservoir for human ExPEC, few of these studies have been able 

to determine the prevalence of potential pathogenic human ExPEC and MDR E. coli, in the 

context of the wider population of E. coli found in these sources. Information regarding the fine-
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scale phylogeny, clonal composition and resistance determinant profiles of an unbiased sample 

of E. coli isolated from non-human environments, such as surface waters and retail poultry, is 

lacking in the current literature. The true population structure of the non-human population of 

E. coli in the wider environment has therefore not been adequately characterised. Several 

studies have been conducted addressing the potential for foodborne and waterborne 

transmission of ExPEC, but the majority of these studies are focussed on MDR E. coli, and more 

specifically, ESBL-producing ExPEC (Manges 2016; Lazarus et al., 2015; de Been et al., 2014). 

Numerous environmental studies enrich for antimicrobial-resistant isolates, using selective 

media prior to phenotypic and genotypic characterisation, thus their sampling strategies may 

bias towards MDR and ExPEC strains. Studies of ESBL-positive ExPEC lineages from surface 

waters and retail poultry therefore tend to be over-represented in the literature. To date, only 

one large-scale population study, based on whole-genome analysis of the prevalence of 

antimicrobial-resistant and extraintestinal pathogenic E. coli strains in river water, has been 

conducted (Gomi et al., 2017b). Similarly, a previous study by de Been and colleagues (de Been 

et al., 2014) implemented WGS analyses to study the relatedness of cephalosporin-resistant E. 

coli from humans, retail chicken meat, poultry and pigs. This study provided high resolution 

differentiation between human and poultry-associated isolates and suggested that there is little 

or no overlap between resistant E. coli isolates of human and poultry origin. A review of the 

current global evidence, implicating poultry meat as a potential reservoir for human ExPEC and 

MDR E. coli, has suggested the need for more whole-genome-based and comparative genomic 

analyses of E. coli populations recovered from food animals and retail meat products with 

human-clinical strains (Manges, 2016). 

4.1.1. Aim and objectives 

In order to infer ecological patterns of E. coli from non-host-associated habitats, such as the 

environment and food products, more phylogeny-based population genomic analyses must be 

conducted, similar to what was implemented recently in Y. pseudotuberculosis (Seecharran et 

al., 2017) and the E. coli ST131 lineage (McNally et al., 2016a). The current study employs an 

unbiased sampling procedure, by not selectively isolating antimicrobial-resistant strains. 

Coupling this strategy with whole-genome analysis of E. coli isolated from river water and retail 

chicken meat in the Nottingham area, it allows a snapshot to be constructed of the relative 

abundance of MDR E. coli and ExPEC strains in the wider non-human population of E. coli, which 

is largely unknown. This would provide great insight into determining the true population 

structure of non-human E. coli in aquatic environments and in the food chain. By determining 

the population structure of non-human E. coli isolated specifically from the Greater Nottingham 
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area in this chapter, it would allow for a geographically constrained comparison with the well-

characterised human-clinical population of E. coli, to be conducted in chapter 5. There are 

comprehensive phenotypic and genotypic data available for human-clinical E. coli isolates 

collected in this region over the past decade (Alhashash et al., 2016; Alhashash et al., 2013; 

Croxall et al., 2011b; Croxall et al., 2011a), and therefore, Nottingham provides the ideal 

ecosystem for generating a non-human E. coli data set for comparison with the human-clinical 

population of E. coli. 

Specific objectives of this chapter were: 

• To identify and isolate a population of E. coli from river water and retail chicken meat 

sampled in Nottingham and sequence the whole genomes of a non-biased 

representative proportion of the population. 

• To assess the level of diversity within the non-human population of E. coli, as 

determined by in silico multilocus sequence typing analysis of whole-genome sequence 

data. 

• To reconstruct the phylogeny of the non-human population of E. coli and determine the 

population structure and genotypic diversity, with regards to the prevalence of E. coli 

phylogroups. 

• To detect antimicrobial resistance determinants within bacterial strains isolated from 

river water and retail chicken samples, in order to create a snapshot of the prevalence 

of potential multidrug-resistant strains within the non-human population of E. coli. 

• To determine the prevalence of human ExPEC strains within the non-human population 

of E. coli, as defined by the presence of ExPEC-specific virulence-associated genes.  
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4.2. Materials and Methods 

The key methods, culture media, culturing conditions, and bioinformatics tools and scripts used 

in this chapter were described previously in sections 2.3 – 2.6 of chapter 2. The publicly available 

E. coli reference genomes used in this chapter are listed in Table 4.1.  

Table 4.1. E. coli reference genomes used for phylogrouping analysis of non-human E. coli 

strains. 

Strain Phylogroup ST Country Sample Reference 

TW10509 C-I 747 India Human (Kaas et al., 2012) 

TW15838 C-I - Australia Environment (Luo et al., 2011) 

B1147 C-II - Australia Bird (Walk et al., 2009) 

TW09276 C-III - United States Environment (Luo et al., 2011) 

TW11588 C-IV 2 Puerto Rico Environment (Luo et al., 2011) 

TW14182 C-IV - United States Environment (Luo et al., 2011) 

TW09308 C-V - United States Environment (Luo et al., 2011) 

P12b A 10 - - (Ratiner, 1985) 

DH1 A 1060 - - (Kaas et al., 2012) 

IAI1 B1 1128 France Human (Kaas et al., 2012) 

SE11 B1 156 Japan Human (Kaas et al., 2012) 

55989 B1 678 CAR* Human (Kaas et al., 2012) 

SE15 B2 131 Japan Human (Kaas et al., 2012) 

JJ1886 B2 131 United States Human (Owens et al., 2011) 

536 B2 127 - Human (Kaas et al., 2012) 

UTI89 B2 95 - Human (Kaas et al., 2012) 

MS_85-1 C 88 United States Human (Kaas et al., 2012) 

TW14425 C 23 United States Human (Kaas et al., 2012) 

042 D 414 Peru Human (Kaas et al., 2012) 

UMN026 D 597 United States Human (Kaas et al., 2012) 

EDL933 E 11 United States Food (Kaas et al., 2012) 

Sakai E 11 Japan Human (Kaas et al., 2012) 

IAI39 F 62 France Human (Kaas et al., 2012) 

  

Publicly available genomes were downloaded from the National Center for Biotechnology 

Information (NCBI) website (https://www.ncbi.nlm.nih.gov/genome/). These reference genomes 

belonging to known phylogenetic groups were used to assign E. coli strains from non-human 

samples to one of 7 E. coli phylogroups (A, B1, B2, C, D, E, F) or one of 5 Escherichia cryptic clades 

(C-I, C-II, C-III, C-IV, C-V). Reference strains were selected from the genomes analysed in previous 

studies, indicated in the ‘Reference’ column.  

*CAR: Central African Republic 

  

https://www.ncbi.nlm.nih.gov/genome/
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4.3. Results and Discussion 

4.3.1. Prevalence of E. coli isolated from river water and retail chicken meat  

Nine river water samples were collected in July 2015 from 4 geographically separate locations 

within the Trent River basin (Nottinghamshire and Derbyshire) and were tested for the presence 

of E. coli. Samples were taken from upstream and downstream sites of waste water and sewage 

treatment plants as well as upstream and downstream sites of agricultural land – specifically 

cattle farms. A total of 20 British whole retail chickens, obtained from 6 major supermarket 

outlets in the Greater Nottingham area in October 2015, were also sampled for E. coli (detailed 

information on sampling is provided in sections 2.3.1 and 2.3.2 of chapter 2). E. coli present in 

the collected samples were identified via a process involving subculture onto differential 

chromogenic agar (CLED agar with Andrade’s indicator and HiCrome™ UTI agar) and 

biochemical identification tests (as described in section 2.3.3). E. coli were identified in 6 out of 

9 total river water samples and 11 out of 20 total retail chicken samples that were processed. 

Isolates were selected from the initial CLED plates based on colony morphology which 

resembled that of E. coli (as described in Table 2.3). From the 504 river water isolates that were 

selected from CLED plates, a total of 82 isolates (16%) were formally identified as E. coli. The 

majority of isolates from river water samples selected for identification testing (83%) were 

represented by other species of the Enterobacteriaceae, which were therefore excluded from 

further analyses in this study. Conversely, a high proportion (88%) of the 416 retail chicken 

isolates selected from CLED plates were confirmed as E. coli, and thus only a minority (12%) 

represented other species of Enterobacteriaceae. Because of the high prevalence of E. coli in 

retail chicken samples, the number of isolates to be included in the study population was limited 

to 148. This resulted in a study population of 230 isolates, across 29 river water and retail 

chicken samples, that were identified as E. coli with ≥ 80% confidence, according to the API 20E 

biochemical test system. Specific numbers of E. coli isolates identified from CLED plates for each 

respective sample of river water and retail chicken are given in Table 4.2 and Table 4.3, 

respectively.  

The presence of E. coli in freshwater, such as river water, can indicate contamination by animal 

or human faeces. This is because E. coli colonise the gastrointestinal tracts of a wide range of 

wild and domesticated animals, especially animals raised for human consumption, such as 

chickens. Contamination of retail chicken with pathogens such as E. coli can occur at multiple 

steps along the food chain, including production, processing, distribution, or packaging and 

retail marketing. A previous study had reported that a large proportion of chicken meat 

imported into Sweden that was contaminated with ESBL-producing E. coli, primarily ST10, 
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ST131, and ST69, was found to have spread from imported parent broilers to broiler meat 

(Egervarn et al., 2014). This indicates that the occurrence of these drug-resistant ExPEC lineages 

in chicken meat is likely due to faecal contamination at the slaughterhouse, which is at a very 

early stage of the retail meat production process. In terms of E. coli isolated from river water in 

this study, 70% of the population were obtained upstream and downstream of wastewater 

treatment plants at Giltbrook and Pinxton. This would indicate that treated effluents from 

sewage treatment plants would have a high influence on freshwater contamination by faecal 

pathogens, more so than rural runoff from farmland. A possible explanation for the difference 

in E. coli prevalence observed between retail chicken and river water samples could be due to 

the effectiveness of wastewater treatment processes, in Nottinghamshire and Derbyshire, to 

remove faecal contaminants before releasing effluents into streams and rivers. On the other 

hand, during the process of preparing British chickens for human consumption, from farm and 

abattoir to retail outlet, it would appear that contamination by faecal organisms is much harder 

to control. 

  

Table 4.2. Total number of E. coli isolates identified from river water samples. 

Sample name Number of E. coli isolates 
selected from CLED plates 

Giltbrook upstream 35 

Giltbrook downstream 14 

Erewash Pinxton downstream 2 

Erewash Pinxton upstream 6 

East Leake downstream 0 

East Leake upstream 24 

Keyworth upstream 0 

Keyworth downstream 0 

Keyworth cattle field puddle 1 

Total 82 

The numbers presented in the table correspond to the final count of E. coli isolates that were selected 

from CLED agar plates for each river water sample. A total of 82 E. coli isolates were obtained from river 

water samples. The majority of isolates were obtained from the Giltbrook and Erewash Pinxton samples. 

Giltbrook and Erewash Pinxton are sample sites near to wastewater treatment plants, whilst East Leake 

and Keyworth are sample sites near to cattle farms. 
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Table 4.3. Total number of E. coli isolates identified from retail chicken samples. 

Sample name Number of E. coli isolates 
selected from CLED plates 

Tesco sample 1 18 

Tesco sample 2 0 

Tesco sample 3 10 

Tesco free range sample 10 

Sainsbury's sample 1 0 

Sainsbury's sample 2 10 

Sainsbury's free-range sample 10 

Asda sample 1 0 

Asda free range sample 1 10 

Asda free range sample 2 10 

Aldi sample 1 0 

Aldi sample 2 0 

Iceland sample 1 20 

Iceland sample 2 20 

Iceland sample 3 0 

Iceland sample 4 0 

Morrisons sample 1 0 

Morrisons sample 2 15 

Morrisons sample 3 15 

Morrisons sample 4 0 

Total 148 

The numbers presented in the table correspond to the final count of E. coli isolates that were obtained 

from CLED agar plates for each retail chicken sample. Due to the large number of E. coli being obtained 

from retail chicken samples, a final reduced count of 148 isolates were selected for subsequent analyses. 
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4.3.2. Molecular detection of β-lactamase genes in non-human E. coli 

Due to the reported high prevalence of ESBL-producing E. coli in retail meat products and 

environmental waters, and the hypothesis that these sources could represent reservoirs for 

human ExPEC and MDR E. coli (Gomi et al., 2017b; Manges 2016; Vincent et al., 2010), 

preliminary work on prevalence of β-lactamase and ESBL genes among E. coli isolated from river 

water and retail chicken samples was carried out in this chapter. This involved performing 

multiplex PCR assays to screen for the presence of the β-lactamase genes blaTEM, blaSHV, blaCTX-

M and blaOXA (Fig. 4.1). To put the prevalence of β-lactamase genes in non-human E. coli in the 

context of human-clinical E. coli, percentage prevalence data for β-lactamase and ESBL gene 

carriage in 415 E. coli strains, isolated from human-clinical cases in Nottingham, were included 

in the analysis for comparison (Fig. 4.2). One hundred and fifty of these strains were isolated 

from cases of urinary tract infection and urosepsis in elderly patients (Croxall et al., 2011b); 140 

and 125 strains were isolated from bacteraemia patients and urinary samples, respectively, as 

part of a separate Nottingham-based study (Alhashash et al., 2013). The overall prevalence of 

the β-lactamase gene SHV (0.4%) and the ESBL gene CTX-M (5.2%), detected in E. coli from non-

human samples, was significantly lower than the prevalence of those genes in E. coli from 

human-clinical samples (8.9% and 19.5% respectively; p < 0.0001, two-tailed Fisher’s test). The 

most commonly detected gene in non-human E. coli was the TEM β-lactamase (38.7%), 

although prevalence of this gene is still significantly higher in human-clinical isolates of E. coli 

(52%; p < 0.001, two-tailed Fisher’s test). The high prevalence of the TEM β-lactamase gene in 

non-human and human clinical samples is in agreement with observations that TEM is the most 

frequently encountered β-lactamase in clinical Enterobacteriaceae, as it accounts for around 

80% of all plasmid-encoded β-lactamases (Bajpai et al., 2017; Paterson and Bonomo, 2005). The 

OXA ESBL gene went undetected in the non-human population, whereas this gene was detected 

in 9.9% of human-clinical E. coli isolates (p < 0.0001, two-tailed Fisher’s test). The rationale for 

carrying out molecular detection of β-lactamase and ESBL genes, prior to whole-genome 

sequencing, is that a preliminary snapshot of the prevalence of MDR E. coli in the non-human 

population could be compared to that of the well-characterised human-clinical population. In 

addition, this work gave an insight into the potential prevalence of MDR plasmids within the 

population, which would inform whether in silico analyses of plasmid DNA from WGS data 

should be carried out. Considering the very low prevalence of ESBL genes, particularly of the 

CTX-M type, it is likely that the prevalence of MDR plasmids circulating within the non-human 

population is also very low. Based on this observation, it was decided that comparative plasmid 

analyses for the human-clinical and non-human populations of E. coli would not be carried out 

in this study. 
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Figure 4.1. Electrophoresis gel showing PCR amplicons of β-lactamase genes detected in E. coli isolated 

from non-human samples.  

The genes encoding the SHV, TEM, CTX-M, and OXA β-lactamases were amplified from E. coli isolates from 

river water and retail chicken samples by multiplex PCR, using previously published primers (Table 2.4). 

PCR amplicons were electrophoresed on a 2% agarose gel and fragment sizes were checked against a 100 

bp DNA ladder (New England Biolabs). Lane 1 contains the positive control strain: Klebsiella pneumoniae 

UTI448, blaSHV
+

, blaTEM
+, blaCTX-M

+, blaOXA
+. Lane 2 contains the negative control. Lanes 3–6 contain a 

selection of retail chicken isolates from this study: AFR-6 (lane 3), SFR-9 (lane 4), I2-20 (lane 5), and M3-22 

(lane 6). Lane 7 contains the 100 bp molecular weight marker.  
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Figure 4.2. Percentage prevalence of β-lactamase genes blaTEM, blaSHV, blaCTX-M, and blaOXA in E. coli 

isolates from human-clinical (A) and non-human (B) samples collected in Nottingham.  

The human-clinical population of E. coli presented here (n = 415) comprise 150 isolates from cases of UTIs 

in 150 elderly patients (Croxall et al., 2011b), as well as 140 isolates from cases of bacteraemia and 125 

isolates from urine samples across diverse patient groups (Alhashash et al., 2013). The non-human 

population (n = 230) represent 82 E. coli isolates from river water samples and 148 isolates from retail 

chicken samples obtained in this study. The prevalence of SHV, CTX-M, and OXA genes in E. coli isolated 

from human-clinical samples was significantly higher than the prevalence of those genes in E. coli from 

non-human samples (**human-clinical vs non-human; p < 0.0001, two-tailed Fisher’s test). Although TEM 

was the most commonly detected β-lactamase gene in non-human E. coli isolates, the prevalence of this 

gene is still significantly higher in human-clinical isolates of E. coli (*human-clinical vs non-human; p < 

0.001, two-tailed Fisher’s test).  
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4.3.3. Whole-genome sequencing of non-human E. coli isolates 

To provide insight into the previously undefined population structure of non-human E. coli, as 

well as confirm the presence of putative resistance genes and identify ExPEC-associated 

virulence determinants within the population, whole-genome sequencing was performed on E. 

coli isolated from non-human sources in this study. Due to budget constraints, 180 E. coli 

isolates were sequenced from the population of 230 E. coli sampled from non-human sources, 

so as to represent the full diversity of the study population with regards to sample source. 

Indexed and paired-end libraries were prepared using the Nextera XT DNA Library Preparation 

Kit and the libraries were sequenced using the Illumina MiSeq. De novo assemblies of raw reads 

into contigs and scaffolds were performed using the SPAdes assembler. Assembly statistics 

were obtained from running the QUAST quality assessment tool and details of N50 and L50 

values, genome size, GC content, and number of Ns per 100 kbp are provided in Appendix 5. 

N50 values indicate the length for which the collection of all contigs of that length or longer 

covers at least half an assembly. To eliminate any incomplete assemblies from further genomic 

analyses, N50 values of at least 1,900 bp and genome sizes of at least 4.3 Mbp were considered 

as the minimum criteria for assembled contigs to be used in genomic analyses. The first 12 

assemblies highlighted in red in Appendix 5 indicate genome assemblies that were excluded 

from the study population. In addition to excluding incomplete sequenced genomes, all 

redundant isolates (i.e. identical isolates of the same sequence type, from the same sample, 

with the same antimicrobial resistance gene profiles) were also excluded from further genomic 

analyses. To determine redundant isolates, a multilocus sequence typing (MLST) script 

(https://github.com/tseemann/mlst) and the bioinformatics tool ABRicate (Kleinheinz, Joensen 

and Larsen, 2014) were run on the assembled genomes to assign a sequence type (ST) and 

generate in silico antimicrobial resistance gene profiles for each isolate. The MLST script scans 

the assembled scaffolds against PubMLST databases and assigns an ST to each isolate. All 

isolates, barring one, obtained from the same sample source, assigned to the same ST, and 

defined by the same antimicrobial resistance gene profile were omitted from the study 

population, as these were multiple isolates of a single strain and were therefore considered 

redundant for further genome comparative analyses. The remaining isolates to be included in 

the study population were chosen at random. This resulted in a study population inclusive of 

128 non-redundant E. coli strains (Table 4.4), isolated from non-human sources, which were to 

be subjected to further genomic analyses. A summary of the number of E. coli isolates at each 

stage of the investigation is provided in Figure 4.3. 
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Figure 4.3. Workflow indicating the numbers of E. coli isolates from river water and retail chicken 

samples consolidated at each stage of the investigation. 

The flowchart illustrates the respective numbers of E. coli isolates from river water and retail chicken 

samples at the stages of formal identification of E. coli, multiplex PCR for β-lactamase genes, whole-

genome sequencing, and post-sequencing quality assessment of assemblies. The sample sizes were 

refined accordingly at each stage, resulting in a non-human E. coli study population of 128 strains.   
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4.3.4. Whole-genome-based multilocus sequence typing (MLST) analysis of the non-

human population of E. coli 

One method of determining the level of genetic heterogeneity within the non-human 

population of E. coli, isolated from river water and retail chicken samples in Nottingham, was 

to determine the prevalence of sequence types (STs). The study population was subjected to in 

silico MLST analysis and ST designations were obtained for all 128 strains, by running a MLST 

script which scans the genome assemblies against PubMLST databases, based on the seven E. 

coli housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, recA), and assigns an ST to each 

strain. Closely related STs were then grouped into ST complexes using the PHYLOViZ platform, 

and a complete minimum spanning tree (MST) of all the STs in the population was constructed 

(Fig. 4.4). The sequence types were clustered based on sharing allele types rather than 

weighting SNPs; therefore, the MST illustrates clusters of ‘like-organisms' and does not attempt 

to infer phylogeny. 

Sequence typing analysis revealed that the E. coli population isolated from non-human samples 

in this study is genotypically diverse, with a total of 64 STs identified among all 128 strains (Table 

4.5). Considering the size of this study population, such a variety of different STs being identified 

from these samples would suggest considerable genotypic diversity among non-human E. coli, 

from river water and retail chicken samples. The ST designations are grouped into clonal 

complexes by their similarity to a central allelic profile (genotype). In the study population, 16 

different ST complexes were identified, with 50 strains being grouped into one of the known E. 

coli ST complexes. However, the majority of strains (n = 78) were designated STs which are not 

grouped into larger clonal complexes of closely related STs, further demonstrating the 

genotypic diversity within the population. Determining the sequence types of bacterial strains 

can assist in the production of a population map, which can be used to analyse the genetic 

relatedness of a population of bacteria. The MST (Fig. 4.4) reveals that the river water and retail 

chicken populations of E. coli demonstrate relatively similar levels of diversity with regards to 

ST prevalence, with 38 STs identified among strains isolated from river water samples and 31 

STs from retail chicken samples. Only 5 of the STs identified (ST10, ST93, ST746, ST752, and 

ST1551) were present in both river water and retail chicken samples, whereas 33 STs were 

exclusive to the river water population and 26 STs were exclusive to the retail chicken 

population. This illustrates a genotypic difference between E. coli strains isolated from the two 

sources, and it suggests that separate populations of E. coli exist in each environmental source 

(freshwater versus the food chain).  
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The population map (Fig. 4.4) also suggests that the non-human population of E. coli is not 

dominated by the major STs/ST complexes that are largely responsible for extraintestinal 

infections in human-clinical populations of E. coli (Kallonen et al., 2017; Alhashash et al., 2013; 

Croxall et al., 2011b; Lau et al., 2008). Rather, the non-human population of E. coli would appear 

to be composed largely of a wide variety of different STs, with the ST10 clonal complex emerging 

as the major central genotype, along with closely related STs such as ST93, ST746, ST752, and 

ST1551, which were identified in both types of non-human sources of E. coli analysed. This 

suggests a wider prevalence of these particular STs across the environment and in the food 

chain. The abundance of the ST10 clonal complex across river water and retail chicken samples 

observed in this study is expected as several previous studies have reported ST10 as the most 

prevalent genotype in retail chicken meat, other meat types, and environmental waters (Gomi 

et al., 2017b; Chen et al., 2016; Cohen Stuart et al., 2012; Overdevest et al., 2011). Only one 

instance of the important pathogenic ExPEC lineage, ST131, was observed in the non-human 

population of E. coli in this study. The dearth of this particular sequence type, as well as the lack 

of other well-known ExPEC sequence types, such as ST95, ST73, and ST69, provides an indication 

of the prevalence of human ExPEC strains in the non-human population of E. coli, which appears 

to be very low. It also gives an insight into the phylogenetic structure of the population and 

suggests that the non-human population of E. coli is perhaps predominated by strains that are 

characteristically commensal or non-pathogenic. 
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Table 4.4. Sequence type designations for the 128 sequenced non-human E. coli genomes. 

Strain 
name 

ST ST 
complex 

Sample source Sample name 

AFR-4 10 10 Retail chicken Asda free range 1 

AFR-6 10 10 Retail chicken Asda free range 1 

AFR-12 10 10 Retail chicken Asda free range 2 

AFR-22 10 10 Retail chicken Asda free range 2 

ELU39 10 10 River water East Leake upstream 

ELU103 10 10 River water East Leake upstream 

GU34 10 10 River water Giltbrook upstream 

I1-16 10 10 Retail chicken Iceland 1 

I1-17 10 10 Retail chicken Iceland 1 

I1-19 10 10 Retail chicken Iceland 1 

I1-24 10 10 Retail chicken Iceland 1 

M2-2 10 10 Retail chicken Morrisons 2 

M2-3 10 10 Retail chicken Morrisons 2 

M2-4 10 10 Retail chicken Morrisons 2 

M2-8 10 10 Retail chicken Morrisons 2 

T1-61 10 10 Retail chicken Tesco 1 

GU53 20 20 River water Giltbrook upstream 

I1-21 48 10 Retail chicken Iceland 1 

I2-1 48 10 Retail chicken Iceland 2 

ELU7 58 155 River water East Leake upstream 

ELU21 58 155 River water East Leake upstream 

EPU62 58 155 River water Erewash Pinxton upstream 

I2-20 69 69 Retail chicken Iceland 2 

M3-27 69 69 Retail chicken Morrisons 3 

T3-3 69 69 Retail chicken Tesco 3 

T3-14 69 69 Retail chicken Tesco 3 

EPU17 93 168 River water Erewash Pinxton upstream 

M3-18 93 168 Retail chicken Morrisons 3 

S2-4 93 168 Retail chicken Sainsbury’s 2 

S2-8 93 168 Retail chicken Sainsbury’s 2 

TFR-1 93 168 Retail chicken Tesco free range 

GU48 108 None River water Giltbrook upstream 

M3-24 115 None Retail chicken Morrisons 3 

M3-28 115 None Retail chicken Morrisons 3 

M3-30 115 None Retail chicken Morrisons 3 

M3-34 115 None Retail chicken Morrisons 3 

M3-36 115 None Retail chicken Morrisons 3 

SFR-11 117 None Retail chicken Sainsbury’s free range 

T1-27 117 None Retail chicken Tesco 1 

T1-30 117 None Retail chicken Tesco 1 

T1-39 117 None Retail chicken Tesco 1 

GD45 131 131 River water Giltbrook downstream 

GU50 135 None River water Giltbrook upstream 

GU87 141 None River water Giltbrook upstream 

T1-35 155 155 Retail chicken Tesco 1 
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GU51 201 469 River water Giltbrook upstream 

EPD30 218 10 River water Erewash Pinxton downstream 

I1-11 354 354 Retail chicken Iceland 1 

I1-25 354 354 Retail chicken Iceland 1 

I2-5 354 354 Retail chicken Iceland 2 

I2-6 354 354 Retail chicken Iceland 2 

S2-3 362 None Retail chicken Sainsbury’s 2 

GU15 394 394 River water Giltbrook upstream 

EPU5 399 399 River water Erewash Pinxton upstream 

EPU51 399 399 River water Erewash Pinxton upstream 

GD3 409 None River water Giltbrook downstream 

GD162 410 23 River water Giltbrook downstream 

GU35 446 446 River water Giltbrook upstream 

ELU87 537 14 River water East Leake upstream 

GU82 546 None River water Giltbrook upstream 

ELU65 635 399 River water East Leake upstream 

GU1 635 399 River water Giltbrook upstream 

GD46 642 278 River water Giltbrook downstream 

GD109 644 538 River water Giltbrook downstream 

GD49 648 648 River water Giltbrook downstream 

T1-11 665 None Retail chicken Tesco 1 

GU10 706 None River water Giltbrook upstream 

ELU122 746 None River water East Leake upstream 

SFR-6 746 None Retail chicken Sainsbury’s free range 

T1-1 746 None Retail chicken Tesco 1 

ELU98 752 None River water East Leake upstream 

T1-5 752 None Retail chicken Tesco 1 

T1-25 752 None Retail chicken Tesco 1 

T1-32 752 None Retail chicken Tesco 1 

T1-53 752 None Retail chicken Tesco 1 

T1-57 752 None Retail chicken Tesco 1 

T1-73 752 None Retail chicken Tesco 1 

T1-52 770 None Retail chicken Tesco 1 

GU43 906 None River water Giltbrook upstream 

GU6 929 None River water Giltbrook upstream 

GU77 929 None River water Giltbrook upstream 

EPD5 973 None River water Erewash Pinxton downstream 

I1-5 997 None Retail chicken Iceland 1 

I1-12 997 None Retail chicken Iceland 1 

T3-21 1011 None Retail chicken Tesco 3 

SFR-4 1112 None Retail chicken Sainsbury’s free range 

ELU28 1122 None River water East Leake upstream 

GU24 1125 None River water Giltbrook upstream 

ELU88 1276 None River water East Leake upstream 

SFR-15 1408 None Retail chicken Sainsbury’s free range 

AFR-16 1551 None Retail chicken Asda free range sample 2 

GU52 1551 None River water Giltbrook upstream 

M3-22 1551 None Retail chicken Morrisons 3 

S2-7 1551 None Retail chicken Sainsbury’s 2 
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T1-3 1551 None Retail chicken Tesco 1 

T3-1 1551 None Retail chicken Tesco 3 

T3-7 1594 None Retail chicken Tesco 3 

T3-18 1594 None Retail chicken Tesco 3 

TFR-2 1594 None Retail chicken Tesco free range 

TFR-15 1716 None Retail chicken Tesco free range 

T1-7 1800 None Retail chicken Tesco 1 

GU2 2136 None River water Giltbrook upstream 

GD93 2178 None River water Giltbrook downstream 

GU47 2178 None River water Giltbrook upstream 

M2-1 2309 None Retail chicken Morrisons 2 

M2-5 2309 None Retail chicken Morrisons 2 

I2-18 2459 None Retail chicken Iceland 2 

GU41 2521 None River water Giltbrook upstream 

GU45 2521 None River water Giltbrook upstream 

M3-29 2705 None Retail chicken Morrisons 3 

ELU29 2722 None River water East Leake upstream 

ELU34 3578 None River water East Leake upstream 

GU13 4105 None River water Giltbrook upstream 

GU27 4105 None River water Giltbrook upstream 

GU31 4105 None River water Giltbrook upstream 

GU70 4105 None River water Giltbrook upstream 

GU80 4105 None River water Giltbrook upstream 

S2-5 4243 None Retail chicken Sainsbury’s 2 

S2-10 4243 None Retail chicken Sainsbury’s 2 

T3-19 4243 None Retail chicken Tesco 3 

TFR-6 4937 None Retail chicken Tesco free range 

S2-2 4993 None Retail chicken Sainsbury’s 2 

T1-56 4994 None Retail chicken Tesco 1 

GD138 5236 None River water Giltbrook downstream 

TFR-13 5931 None Retail chicken Tesco free range 

GU5 5995 None River water Giltbrook upstream 

M2-7 6664 None Retail chicken Morrisons 2 

T1-49 6664 None Retail chicken Tesco 1 

 

Table 4.4. Sequence type designations for the 128 sequenced non-human E. coli genomes. 

Of the 180 sequenced E. coli genomes obtained from river water and retail chicken samples, 128 non-

redundant E. coli strains (i.e. strains meeting the minimum assembly quality criteria and are distinct in 

terms of ST or resistance gene profile, if isolated from the same sample) were included in the final study 

population of non-human E. coli. The population represents strains isolated from 5 different river water 

samples and 11 different retail chicken samples. Sequence types were determined for each strain by in 

silico MLST analysis. 
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Figure 4.4. Minimum spanning tree (MST) illustrating STs of the non-human E. coli population isolated from river water and retail chicken samples.  

The MST was produced using Phyloviz v3.0, which uses goeBURST to divide an MLST data set into groups of related isolates and clonal complexes. The size of the nodes reflects 

the number of strains belonging to each ST. Nodes outlined by a yellow-green ring represent ST complexes present in the population. The sample sources from which the strains 

were isolated are overlaid onto the diagram, which reveals a diversity of STs prevalent in both sample types. 
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4.3.5. Defining the phylogeny of the non-human population of E. coli 

To assign each strain to a phylogenetic group, the core genomes of the 128 strains from the 

study population were aligned with those of 23 publicly available reference strains (Table 4.1), 

representing the seven E. coli phylogroups (A, B1, B2, C, D, E, and F) and five cryptic Escherichia 

clades (C-I, C-II, C-III, C-IV, and C-V). The core genome SNP-based phylogenetic tree of the non-

human E. coli population was built using Parsnp, and phylogroup/cryptic clade assignment was 

made based on clustering with the reference strains on the phylogenetic tree (Fig. 4.5). From 

this analysis, it was revealed that 119 strains belonged to six of the seven E. coli phylogroups, 

with phylogroup C not being represented in the population. Furthermore, two strains were 

grouped with the sister Escherichia cryptic clade C-I, whereas the remainder of the strains 

belonged to the more distantly related cryptic clades, C-III (n = 1) and C-V (n = 6). These cryptic 

clades are novel lineages of the genus Escherichia, that are genetically distinct but 

phenotypically indistinguishable from E. coli. C-II and C-IV strains were not identified in the 

population, so the reference strains representing these clades, in addition to phylogroup C, were 

removed from the phylogenetic tree in an attempt to improve the resolution and interpretability 

of the tree. Cryptic clade C-I shares a recent common ancestor with the seven phylogroups 

comprising the majority of the population, illustrating the genetic similarity between this lineage 

and the E. coli phylogroups. In fact, according to the Clermont E. coli phylo-typing method, clade 

C-I is recognised as the eighth E. coli phylogroup (Clermont et al., 2013). This indicates how 

phylogenetically distinct the cryptic clades C-III and C-V are from the rest of the population, and 

they therefore serve as an outgroup for the population under investigation in this study, whilst 

allowing the tree to be rooted, as shown in Figure 4.5. Due to the presence of C-III and C-V strains 

in the population, a very small core genome alignment of 87,981 bp covering the 146 strains was 

achieved using Parsnp (≤ 5% of the reference genome covered by the alignment), however a 

total of 59,317 SNPs were identified across the alignment, further demonstrating the extreme 

genetic diversity that exists in the non-human population of E. coli. 

With regards to the E. coli phylogroups present in the non-human population, it was found that 

the most highly represented group was phylogroup A, with 49 (38%) out of 128 strains belonging 

to this group. This was followed by 27 strains (21%) being grouped in phylogroup D, 18 (14%) in 

phylogroup B1, 10 (8%) in phylogroup E, 9 (7%) in phylogroup B2, and 6 (5%) in phylogroup F. 

Phylogroup B2 strains generally carry more virulence-associated genes than strains belonging to 

the other groups do (Picard et al., 1999), and strains that cause extraintestinal infections are 

predominantly associated with phylogroup B2 and, to a lesser extent, phylogroup D (Picard et 

al., 1999). Several studies have reported phylogroups A and B1 as being chiefly composed of 

commensal strains of E. coli (Picard et al., 1999, Duriez et al., 2001). Based on the phylogroups 



   

121 
 

represented in the non-human population of E. coli in this study, it would appear that the 

majority of the population constitutes largely commensal and non-pathogenic strains, as 

illustrated by the higher prevalence of phylogroup A and B1 strains in the population. 

Phylogroup D was found to be the second-most prevalent group in the population, so the 

presence of extraintestinal pathogenic E. coli (ExPEC) cannot be ruled out; however, due to the 

lack of phylogroup B2 strains in the population, it would be expected that the prevalence of 

ExPEC is low among isolates from river water and retail chicken samples. While there was no 

discernible pattern of phylogenetic grouping associated with source of isolation (i.e. no clear 

phylogenetic split), it was noticeable that certain phylogroups appeared to be dominated by 

strains isolated from a particular source (Fig. 4.5). This would include phylogroups B1, B2, and 

cryptic clades C-III and C-V, which are dominated by river water isolates, and phylogroups D and 

E, which are largely composed of isolates from retail chicken samples. 

ST/ST complex designations representing three or more isolates (as typed by in silico MLST 

analysis) are overlaid onto the phylogenetic tree (Fig. 4.5), in addition to known representatives 

of ExPEC (ST131 and ST648) and EPEC (ST20) within the population, though these are 

represented only by a single isolate each. The distribution of STs across the non-human 

population of E. coli would suggest that phylogroup A comprises the highest diversity of strains, 

with 16 different STs identified within this group; the major sequence types being ST10, ST93, 

ST746, ST752, and ST1594 among them. Other sequence types of note in the population would 

include ST115 (n = 7) and ST117 (n = 4), of phylogroup D, which are both largely associated with 

wild birds and commercial poultry (Cristovao et al., 2017), and are commonly shared by APEC 

and human ExPEC strains (Maluta et al., 2014; Oteo et al., 2010). Close genetic relations have 

been detected in ST117 E. coli strains of animal and human origin, which have been identified in 

large poultry producing countries, such as Brazil (Maluta et al., 2014) and the USA (Danzeisen et 

al., 2013). Also of relevance in phylogroup D is ST69 (n = 5), which has been reported as a highly 

virulent strain in some animal models with a high content of resistance determinants (Cristovao 

et al., 2017; Tartof et al., 2005), and has also been associated with extraintestinal infections, 

such as UTIs and bacteraemia, in clinical case studies (Kallonen et al., 2017; Alhashash et al., 

2013; Croxall et al., 2011b; Lau et al., 2008). Phylogroup F strains are also prevalent within the 

population, which is a group closely related to the ExPEC-associated phylogroups B2 and D 

(Clermont et al., 2013). Prior to its recognition as a distinct phylogroup, its members were 

generally categorised under group D, based on a PCR-based phylo-typing assay that delineates 

only four major E. coli phylogroups (Clermont, Bonacorsi and Bingen, 2000). However, an 

enhanced version of this assay (Clermont et al., 2013), and whole-genome-based in silico MLST 

analysis, enable differentiation of phylogroup F from phylogroup D. Within this group, one 
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instance of ST648 has been identified in the non-human population of E. coli. This genotype is 

reported increasingly as an emerging resistance-associated lineage (Pitout, 2012) and is 

distributed worldwide, occurring as a pathogen and commensal of humans and animals 

(whether food-producing, domesticated, or wild), and in the environment (Muller, Stephan and 

Nuesch-Inderbinen, 2016; Goncalves et al., 2016; Sato et al., 2014; Kang et al., 2013). Though 

the phylogenetic structure of the non-human population of E. coli demonstrates a paucity of 

pathogenic strains, that are predominantly associated with extraintestinal infections in humans, 

the presence of lineages such as ST131, ST69, and ST648 in the non-human population would 

warrant further investigation into the profiles of resistance determinants and virulence-

associated genes that define each strain. This would allow for a determination of the prevalence 

of MDR and ExPEC strains among E. coli isolated from foodborne and environmental water 

sources, which will be compared with that of the human-clinical population of E. coli in chapter 

5.  
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Figure 4.5. Maximum-likelihood phylogenetic tree of 128 E. coli strains isolated from river water and 

retail chicken samples in Nottingham and 18 reference strains.  

The phylogeny was inferred from a core genome alignment of the population (87,981 bp, 59,317 SNPs, 146 

genomes) constructed using Parsnp. Publicly available reference genomes (Table 4.1 and strain names 

marked in red on the tree), belonging to the E. coli phylogroups (A, B1, B2, D, E, and F) and cryptic 

Escherichia clades (C-I, C-III, and C-V), were included in the alignment to assign strains to a phylogenetic 

group based on its position on the tree. The phylogenetic tree was visualised and edited using iTOL. Source 

of isolation is annotated on the tree as coloured bars, as well as STs/ST complexes which define three or 

more strains. ST20, ST131, and ST648, each represented by a single strain, are also indicated on the tree as 

shading behind the isolate’s name. The phylogenetic clades are defined by branch colouring according to 

each phylogroup. The tree reveals that six of the seven phylogroups are represented in the population, 

with the largest proportion of strains belonging to phylogroup A. Strains belonging to cryptic clades C-I, C-

III, and C-V were identified in the population. No strains belonged to phylogroup C or clades C-II or C-IV, so 

these reference strains were removed from the alignment. 
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4.3.6. Distribution of antimicrobial resistance genes among non-human E. coli 

All non-human E. coli genomes were screened for the presence of acquired antibiotic resistance 

genes, by running the bioinformatics pipeline ABRicate, which scans the ResFinder database to 

generate in silico antibiotic resistance gene profiles for each isolate (Fig. 4.6). A total of 46 

different resistance determinants were identified, corresponding to 8 different antibiotic 

classes: aminoglycosides, β-lactams, macrolide-lincosamide-streptogramins (MLS), phenicols, 

rifampicin, sulphonamides, tetracyclines, and trimethoprim. The phylogenetic distribution of 

resistance genes appears to be relatively consistent across the population, with the exception 

of a large proportion of phylogroup B1 represented by river water isolates, which demonstrate 

a clear lack of antimicrobial resistance genes compared to the rest of the population. Among 

these strains, only tet(34) encoding tetracycline resistance was identified, whereas aadA1 

(aminoglycoside), blaTEM-1B (β-lactamase), and sulphonamide resistance genes (sul), though 

possessed by the majority of the population, could not be detected. This is supported by low 

level antimicrobial resistance among phylogroup B1 E. coli isolated from cattle, which has been 

observed previously (Bok et al., 2014). Noticeably, there is also a lack of resistance determinants 

present in cryptic clades C-III and C-V, which is consistent with a previous study which reported 

a low frequency of resistance for the cryptic clades (Ingle et al., 2011), but is in contrast with a 

recent study which has reported antimicrobial resistance among cryptic clade isolates (Blyton et 

al., 2015). Acquired antibiotic resistance genes were most prevalent among strains belonging to 

phylogroup A and phylogroup D, which is in agreement with previous studies of antimicrobial 

resistance among E. coli phylogroups (Pavlickova, Dolezalova and Holko, 2015; Mosquito et al., 

2015). 

Aminoglycoside resistance genes 

Twelve distinct aminoglycoside resistance genes were detected, representing the largest group 

of antimicrobial resistance determinants in the population. The aadA1 gene, which confers 

resistance to streptomycin and spectinomycin, was the most prevalent aminoglycoside 

resistance gene and was detected in approximately 45% of the population, representing each 

phylogroup except for cryptic clades C-III and C-V. Other streptomycin resistance genes included 

strA and strB, which were also detected at relatively high frequencies, and these two genes were 

always detected together. Other than streptomycin resistance, the aac(3)-IId gene, which 

confers resistance to gentamycin and tobramycin, was detected in two isolates. Aminoglycoside 

resistance genes that were unique to retail chicken isolates 

included aadA2, aadA5, aadA12, aadA13, aac(3)-IId, aac(3)-Iva, aph(3’)-Ic, and aph(4)-

Ia, whereas the only unique gene to river water isolates was aph(3’)-Ia. The high prevalence of 
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streptomycin resistance genes in this population is consistent with a previous study, which found 

these genes to be widespread in environmental habitats and often occur on mobile genetic 

elements, which can easily be acquired by different strains and species of bacteria (van 

Overbeek et al., 2002). Notwithstanding this, resistance to streptomycin does not usually define 

multidrug resistance, so phenotypic testing for susceptibility to this agent is not essential 

(Magiorakos et al., 2012), and the prevalence of genes conferring resistance to this antibiotic 

cannot be used as a measure of multidrug resistance in the non-human population of E. coli. 

β-lactam resistance genes 

The in silico antibiotic resistance gene analysis of the 128 sequenced E. coli genomes of the study 

population indicated an even lower prevalence of ESBL genes in the population (Fig. 4.6) than 

what was suggested by the multiplex PCR assays, conducted in section 4.3.2. Among sequenced 

isolates, a total of 9 different genes encoding β-lactamases were identified, with the most 

common being blaTEM-1B (31.5%). The blaTEM family of β-lactamase genes, conferring resistance 

to the penicillin-like antibiotics such as ampicillin, were prevalent in 35.2% of isolates, 

representing 5 different variants of the gene (blaTEM-1A, blaTEM-1B, blaTEM-1C, blaTEM-1D, and blaTEM-

33). This is consistent with several previous studies that have also reported blaTEM as a commonly 

encountered class of antibiotic resistance genes (Bajpai et al., 2017; Jena et al., 2017). Regarding 

the β-lactamase gene blaSHV, and the ESBL genes blaCTX-M and blaOXA, a notable disparity was 

observed between the percentage prevalence data of the in silico antibiotic resistance gene 

analysis when compared to the multiplex PCRs. blaSHV and blaCTX-M could not be detected in the 

sequenced isolates, whereas these genes were amplified by PCR in 0.4% and 5.2% of the 

population, respectively, representing 13 isolates. However, it must be noted that 8 of these 13 

isolates were not included in the population of sequenced isolates, thus possibly contributing to 

the lack of blaSHV and blaCTX-M genes observed in the non-human E. coli population subjected to 

WGS. Furthermore, blaOXA genes, namely blaOXA-1 and blaOXA-10 encoding carbapenem-hydrolysing 

oxacillinases, were identified in 1.6% of sequenced isolates; however, no blaOXA genes could be 

detected by PCR. A possible reason for this disparity could be attributed to the methods used to 

detect antimicrobial resistance genes. Bioinformatic detection of resistance genes from WGS 

data is considered to be more effective in determining the full spectrum of antibiotic resistance 

genes in each isolate, and can generally detect more resistance genes than PCR (Moran et al., 

2017). In contrast to the low prevalence of ESBL-producing E. coli in the population, 5 instances 

of the AmpC-like β-lactamase gene blaCMY were observed. This gene encodes a cephalomycinase, 

which confers extended resistance to many β-lactams, including first-, second-, and third-

generation cephalosporins, as well as cephamycins such as cefoxitin and ceftriaxone (Zhao et 

al., 2001). The presence of variants of blaCMY in the population was unique to E. coli isolated from 



   

126 
 

retail chicken. This is consistent with previous studies that have reported that blaCMY genes are 

commonly present in E. coli and Salmonella isolated from food animals and retail chicken (Zhao 

et al., 2001; Winokur et al., 2001), which have also displayed decreased susceptibility to ceftiofur 

and ceftriaxone. It was noted that a relatively even distribution of β-lactamase genes was 

observed across river water and retail chicken isolates. 

Macrolide-lincosamide-streptogramin B (MLS) resistance genes 

Genes conferring resistance to macrolide, lincosamide, and streptogramin B (MLS) antibiotics 

are widespread in bacteria, including environmental isolates of E. coli (Gomi et al., 2017b). 

Several of these genes were identified in 34 isolates of the non-human population of E. coli, with 

the most prevalent being Inu(F) (11.7%), and others including Inu(B) (8.9%), mph(B) (4.7%), and 

mef(B) (3.1%). The erythromycin resistance gene erm(B) and Isa(A) gene were detected in one 

isolate, respectively, in addition to mph(A), which was identified in two isolates. Inu(B) and Inu(F) 

are recognised as members of the Inu gene family (Achard et al., 2005), which encode 

lincosamide nucleotidyltransferase enzymes responsible for the mediation of specific resistance 

to lincosamides, such as lincomycin and clindamycin. The mph(A) gene, which was also detected, 

encodes a macrolide phosphotransferase shown to confer azithromycin resistance in E. 

coli (Howie et al., 2010). Macrolide resistance genes were also detected in E. coli in a recent 

environmental study (Gomi et al., 2017b). The results of these studies suggest that E. coli may 

represent a major reservoir for macrolide resistance genes which could then be horizontally 

transferred to other bacteria. 

Chloramphenicol resistance genes 

Four different chloramphenicol resistance genes (cmlA1, catA1, catB3, and floR) were detected 

in the population. These same four genes were also detected in chloramphenicol-resistant E. 

coli in two previous studies, which also reported floR as the most prevalent chloramphenicol 

resistance gene (Gomi et al., 2017b). This would suggest that chloramphenicol resistance in E. 

coli is typically encoded by these four main genes. 

Sulphonamide resistance genes 

Resistance to sulphonamides in E. coli results from the acquisition of an alternative 

dihydropteroate synthase gene (sul) (Perreten and Boerlin, 2003). There are three known types 

of sul genes (sul1, sul2, and sul3) described in the literature (Zankari et al., 2012), and all three 

were detected in the present study. These genes were identified in roughly 40% of the 

population of non-human E. coli, and thus a higher reported prevalence of sulphonamide 

resistance genes when compared to the β-lactamase genes. sul1 and sul2 were reported with 
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relatively similar prevalence (25.8% and 21.1%, respectively), whereas sul3 was detected in only 

four isolates. While the detection frequency of these three sul genes is in agreement with some 

previous studies (Gomi et al., 2017b; Kaper, Nataro and Mobley, 2004), it would seem to differ 

among other studies (Su et al., 2012; Hu et al., 2008), demonstrating the diversity of sul gene 

distribution profiles among various regions. 

Tetracycline resistance genes 

Of the 46 distinct tet alleles described to date, three types of tetracycline resistance genes 

[tet(A), tet(B), and tet(34)] were detected in 113 isolates (88.3% of the population). The tet(34) 

gene was the most prevalent tetracycline resistance determinant in the population (78.9%), 

followed by tet(A) (28.1%) and tet(B) (11.7%). A similar observation of higher tet(A) prevalence 

compared to tet(B) prevalence in E. coli recovered from surface waters was reported in a 

previous study (Hu et al., 2008). In the present study, tet(A) was associated with retail chicken 

isolates more so than river water isolates of E. coli, and the tet(B) gene was not detected at all 

in E. coli isolated from river water. Although tetracycline is not used to treat E. coli infections in 

humans, resistance to tetracycline is still common among E. coli (Dominguez et al., 2002). This 

would also appear to be the case in non-human E. coli, as suggested by the high prevalence of 

tetracycline resistance genes reported in this study. 

Trimethoprim resistance genes 

Trimethoprim resistance is mainly attributed to the acquisition of a trimethoprim-insensitive 

dihydrofolate reductase, which is the target enzyme of this agent (Seputiene et al., 2010). More 

than 30 different dihydrofolate reductase (dfr) genes have been identified (Zankari et al., 2012). 

Seven of these dfr genes were detected in the non-human E. coli population of the present 

study, with the dfrA1 resistance gene being the most prevalent variant (16.4%). The prevalence 

of other dfr alleles in the population is low, with the dfrA5 allele detected in only 3 isolates and 

dfrA7, dfrA16, dfrA17, dfrB1, and dfrB4 present in only single isolates, respectively. dfrA17 has 

frequently been found in clinical E. coli isolates (Seputiene et al., 2010), which correlates well 

with the high level of resistance against trimethoprim observed for E. coli isolates of human-

clinical origin in a previous Nottingham-based study (Croxall et al., 2011b). In contrast, the lower 

prevalence of dfr genes identified in non-human E. coli would suggest much lower levels of 

resistance to trimethoprim. This demonstrates the inefficacy of trimethoprim in clinical cases, 

which has traditionally been described for prophylaxis in UTIs. 

Although a diverse range of resistance determinants were detected in the population, 

corresponding to 8 different antibiotic classes, it was not completely determined what 

proportion of the population explicitly expressed a multidrug-resistance phenotype (non-
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susceptibility to antimicrobial drugs belonging to 3 or more classes). Carriage of certain 

antimicrobial resistance genes does not necessarily mean that isolates in possession of those 

genes would express the corresponding resistance phenotype. It is suggested that phenotypic 

antimicrobial susceptibility testing should be performed as part of future work on this study 

population, as such testing was not carried out in this study due to time constraints. The low 

prevalence of ESBL genes detected in the population would indicate that expression of multidrug 

resistance to the extended spectrum of β-lactam antibiotics likely occurs at a very low frequency, 

if at all. Producing an antibiogram for the entire population would provide further insight into 

whether a correlation exists between resistance genotypes and resistance phenotypes, and 

would further our understanding of the prevalence of multidrug resistance in the wider non-

human population of E. coli. Comparisons between the antibiotic resistance gene profiles that 

characterise non-human and human-clinical E. coli will be made in chapter 5. 
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Figure 4.6. Distribution of antibiotic resistance gene profiles across the population of 128 E. coli strains isolated 

from river water and retail chicken samples in Nottingham.  

The genomes of 128 E. coli strains were mass screened for antibiotic resistance gene carriage, by running the ABRicate 

bioinformatics tool against the ResFinder database. Presence of resistance determinants are shown on the 

phylogenetic tree as purple-coloured bars and are grouped by antibiotic class. ST designations, as determined by in 

silico MLST, are also indicated on the tree. The most prevalent antimicrobial resistance genes in the population were 

identified as tet(34), aadA1, blaTEM-1B, and the sul genes. Isolates belonging to cryptic clades C-I and C-V, as well as a 

number of isolates of phylogroup B1, revealed much lower carriage of these genes in comparison to the rest of the 

population. 
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4.3.7. Determining the prevalence of ExPEC strains in the non-human population of 

E. coli  

Multiple research groups around the world have reported a consistent observation of specific 

human ExPEC lineages in poultry or poultry products (Johnson et al., 2017; Jakobsen et al., 2010), 

as well as in river and surface waters (Gomi et al., 2017b; Muller, Stephan and Nuesch-

Inderbinen, 2016). This would apparently provide evidence to support the hypothesis that there 

may be a poultry and environmental reservoir for human ExPEC. For this reason, an investigation 

was carried out to determine the prevalence of ExPEC strains among E. coli isolated from retail 

chicken and river water samples in this study. This involved screening all genomes of the study 

population for the presence of specific virulence-associated genes (VAGs), by running the 

bioinformatics pipeline ABRicate, which scans the Virulence Factors Database (VFDB) to 

generate in silico VAG profiles for each isolate (Fig. 4.7). The definition of ExPEC used in this 

study is based on the presence of five virulence markers, as implemented in previous studies 

(Gomi et al., 2017b; Johnson and Stell, 2000). The ExPEC pathotype was defined by the presence 

of two or more of papA and/or papC, afa/dra, kpsMT II, iutA, and sfa/foc, so therefore only these 

VAGs were considered in the analysis. The most frequently detected ExPEC virulence marker in 

the population (Fig. 4.7) was the iron acquisition gene iutA (61/128), which was more commonly 

detected in retail chicken isolates (90.2%) than in river water isolates of E. coli (9.8%). 

Gene clusters for the S fimbrial adhesin (sfa) and F1C fimbriae (foc) were less frequently 

detected in the population (9/128). Similarly, subunits of the pap operon papA and papC, which 

are associated with adhesion to the upper urinary tract, were detected together in 8 strains, 

with the exception of one strain (AFR-12) which possessed only papC. The afa/dra operons were 

present in only one isolate, whilst the type II capsule marker kpsMT II was not detected at all.  

Contrary to previous studies, the ExPEC virulence gene profiles generated in this study indicate 

that the prevalence of ExPEC strains in the non-human population of E. coli is very low; only 11 

of the 128 non-human E. coli isolates (8.6%) were classified as ExPEC, based on their VAG 

profiles. These ExPEC strains are phylogenetically distinct and are distributed across four 

different phylogroups, with 2 strains belonging to phylogroup D and 3 strains belonging to each 

of phylogroups A, B1, and B2, respectively. Additionally, ExPEC strains were identified in both 

river water (n = 7) and retail chicken (n = 4), indicating a presence of potentially pathogenic 

strains in the environment as well as the food chain. Consistent with a recent environmental 

study by Gomi et al. (2017b), non-human isolates of ExPEC exhibited clonal distribution with 

ST10, STC14, ST69, STC168, ST115, ST131, ST141, STC155 and ST4937 prevalent among these 

isolates. Clinically important clonal groups among these isolates would include ST10, STC14, 

ST69, and ST131. Although the sample size of ST131 isolates found and analysed in the present 
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study is very small (exactly one isolate), this strain did not carry any CTX-M-type ESBLs, which 

may be an early indication that environmental ST131 and human-clinical ST131 strains may be 

different in terms of their phylogenetic distribution, as suggested by a previous study using a 

similar study setting (Gomi et al., 2017b). Further genomic analyses between clinically important 

strains of non-human and human origin will be carried out in chapter 5. It was found that ST58 

isolates, belonging to the ST155 complex of phylogroup B1, were the most commonly 

encountered of all ExPEC isolates detected (27.3%). These isolates were positive for the VAGs 

pacA, papC, iutA, and sfa/foc, exhibiting a similar virulence gene profile to the ST131 strain. STC-

(sequence type complex)-155 was recently reported as a clonal group of animal origin that is 

spreading in humans and is highly drug-resistant (Skurnik et al., 2016). It is therefore interesting 

to note in the present study that STC155 isolates were prevalent in river water as well as retail 

chicken samples, with ExPEC strains of STC155 being exclusive to river water. This is supported 

by previous studies which have also reported STC155 strains in surface waters (Gomi et al., 

2017b; Muller, Stephan and Nuesch-Inderbinen, 2016). Noticeably, however, genes encoding 

multidrug resistance were not identified in STC155 strains isolated in the current study, 

suggesting little clinical relevance. Contamination of surface waters with ExPEC strains belonging 

to clinically important STs would therefore be of little or no concern to human health due to the 

occurrence of these strains at such low frequencies in the environment.  
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Figure 4.7. Distribution of ExPEC virulence-associated genes among the population of 128 E. coli strains 

isolated from river water and retail chicken samples in Nottingham. The genomes were mass screened 

for VAG carriage, by running the ABRicate bioinformatics tool to scan the Virulence Factors Database 

(VFDB). The presence of two or more of the following VAGs were used to define the ExPEC pathotype: papA 

and/or papC; afa/dra; kpsMT II; iutA; and sfa/foc. Presence of VAGs is annotated onto the maximum-

likelihood phylogenetic tree as red-coloured bars and the strains identified as ExPEC are highlighted in 

green. ST designations, as determined by in silico MLST, and isolate sample source are also indicated on 

the tree. The prevalence of ExPEC strains among river water and retail chicken samples is low (8.6%) and 

these pathotypes are distributed among phylogroups B2 and D, as well as phylogroups B1 and A. 
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4.4. Conclusions 

In the present study, E. coli obtained from river water and retail chicken samples in the Greater 

Nottingham area, were successfully characterised by whole-genome sequencing. From the 

initial sampling, E. coli were identified in 6 out of the total 9 river water samples collected, and 

82 of all isolates selected from CLED plates (16%) were formally identified as E. coli, through a 

combination of microbial culture on chromogenic media, biochemical testing, and confirmation 

with the API 20E test system. E. coli were also isolated from 11 out of 20 retail chicken samples 

processed. A markedly higher prevalence of E. coli (88%) was observed from the 416 isolates 

selected from retail chicken sample plates. The presence of E. coli in freshwater and surface 

waters is a strong indication of recent human sewage or animal waste contamination. E. coli is 

a natural coloniser of the gastrointestinal tracts of a wide range of wild and domesticated 

animals, particularly those raised for human consumption, such as chickens. The retail chickens 

sampled in this study may have been contaminated at any of the multiple steps along the food 

chain, from production and processing at the abattoir to distribution and retail marketing in 

Nottingham. The presence of ExPEC lineages in retail chicken samples may indicate some early 

faecal contamination of the chicken meat occurred at the slaughterhouse. The difference in E. 

coli prevalence observed between retail chicken and river water samples in this study could be 

attributed to the wastewater treatment processes within the Trent River basin, which would 

appear to keep the release of effluents under relative control, and thus reducing the 

contamination of streams and rivers by faecal pathogens. Conversely, the numbers of E. coli 

isolated in this study would suggest that contamination of British retail chicken by faecal 

organisms is much harder to control, during the process of preparing chicken for human 

consumption. 

Whole-genome sequences for the study population of 128 non-human E. coli strains were 

analysed by in silico multilocus sequence typing (MLST), and the population was found to be 

extremely clonally diverse, consisting of 64 different sequence types. It was evident from this 

analysis that the non-human population of E. coli is not dominated by the ST complexes that are 

commonly associated with urinary tract and bloodstream infections, such as the ST131, ST95, 

ST73, and ST69 complexes (Kallonen et al., 2017; Alhashash et al., 2013; Croxall et al., 2011b; 

Lau et al., 2008). The non-human population of E. coli analysed in this study comprised a wide 

variety of different STs, with the majority of strains not grouping into larger clonal complexes, 

demonstrating the genotypic diversity within the population. The ST10 clonal complex was the 

most frequently encountered clonal group, representing approximately 15% of the Nottingham 

non-human E. coli population analysed in this study, and was prevalent in both river water and 

retail chicken samples. This is an indication that the ST10 complex is widespread across the 



   

134 
 

environment and in the food chain, consistent with the findings of several previous studies 

(Gomi et al., 2017b; Chen et al., 2016; Cohen Stuart et al., 2012; Overdevest et al., 2011). 

Although current literature has reported the presence of well-known ExPEC sequence types in 

environmental waters and retail poultry, this study pinpoints a lack of such strains in the 

Nottingham population of non-human E. coli, suggesting the overall prevalence of human ExPEC 

strains in populations of non-human and commensal E. coli is very low.  

Whole-genome analysis enabled the detection of 46 different resistance determinants among 

all isolates of the study population. The most frequently encountered resistance determinants 

in the non-human population of E. coli were tet(34), aadA1, sul, and blaTEM-1B, which confer 

resistance to tetracycline, streptomycin/spectinomycin, the sulphonamides and penicillin-like 

antibiotics, respectively. The high prevalence of these resistance genes noted in the current 

study is in agreement with the current literature, which suggests that resistance conferred by 

these genes is widespread among E. coli isolated from environmental habitats (Gomi et al., 

2017b; Bajpai et al., 2017; Kaper, Nataro and Mobley, 2004). Many previous studies have 

reported the presence of MDR E. coli strains in surface waters and water-related environments, 

as well as in retail poultry and food animals, on the basis of phenotypic resistance testing and 

detection of several resistance determinants (Gomi et al., 2017b; Johnson et al., 2017; Muller, 

Stephan and Nuesch-Inderbinen, 2016; Vincent et al., 2010; Jakobsen et al., 2010; Johnson et 

al., 2005a). Multidrug resistance in E. coli is mediated by extended-spectrum β-lactamases 

(ESBLs), mainly of the CTX-M family, particularly CTX-M-15 and 14, and less frequently of the 

SHV and OXA families (Nicolas-Chanoine et al., 2008; Lau et al., 2008). Considering that 

antimicrobial susceptibility testing was not performed in this study, it could not be determined 

what proportion of the population explicitly expressed a multidrug-resistance phenotype (non-

susceptibility to antimicrobial drugs belonging to 3 or more classes). However, in silico antibiotic 

resistance gene analysis enabled a determination of the prevalence of the β-lactamase genes 

blaSHV, blaTEM, blaCTX-M, and blaOXA, more accurately than through multiplex PCR assays. Many 

environmental studies reporting isolates that carry ESBL genes often target resistant isolates in 

their sampling procedures, and therefore do not report an accurate representation of ESBL 

prevalence with regard to the wider non-human and environmental population of E. coli. In this 

study, however, an unbiased sampling strategy was employed, in combination with whole-

genome sequencing of isolates, to reveal that a paucity of ESBL genes exists in the non-human 

population of E. coli, suggesting that multidrug resistance occurs at levels much lower than 

described in human-clinical populations of E. coli. 

Reconstruction of the phylogenetic structure of the population revealed that six of the seven 

known E. coli phylogroups were represented in the population, as well the cryptic Escherichia 
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clades C-I, C-III, and C-V, demonstrating the full spectrum of genomic diversity of E. coli in the 

non-human E. coli study population. The majority of strains (approximately 52%) belonged to 

phylogroups A and B1, which are usually dominated by commensal and non-pathogenic strains 

(Duriez et al., 2001; Picard et al., 1999), whereas roughly 28% of the population were assigned 

to phylogroups B2 and D, which are typically associated with strains that cause extraintestinal 

infections (Johnson and Stell 2000; Picard et al., 1999). This suggests that the non-human 

population of E. coli constitutes a high proportion of commensal strains, with a much lower 

prevalence of ExPEC strains. This was confirmed by in silico VAG profiling of each strain for genes 

that are used to define ExPEC. This analysis revealed that only 8.6% of the non-human E. coli 

population could be classified as ExPEC. Moreover, these strains exhibited clonal diversity and 

only a small number of clinically important clonal groups were identified among these isolates, 

with very low prevalence. Although a small-scale representation of human ExPEC lineages, such 

as ST131, ST69, and ST648, has been determined through phylogenetic analysis in the present 

study, it cannot be overlooked that previous studies consistently reporting the presence of such 

clonal groups in the environment and the food chain would appear to support the hypothesis 

that these sources may serve as reservoirs for human ExPEC infection. However, further 

investigation using methods with higher resolving power would be required to determine the 

genomic relatedness between clinically important E. coli STs, isolated from non-human and 

human-clinical sources, as MLST and phylogenetic analyses only take into account variation 

within sections of the core genome. Any variations within the accessory genome that may 

contribute to virulence would not be detected. This will be addressed in chapter 5, through 

comprehensive comparative genomics, which may offer the discrimination necessary to 

determine if a non-human reservoir of human ExPEC exists and address whether it contributes 

to the burden of human extraintestinal infections. 
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Comparative population genomics of 
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5.1. Introduction 

Multilocus sequence typing (MLST) analysis in chapter 4 demonstrated that the non-human 

population of E. coli in Nottingham is clonally diverse. A very low prevalence of ExPEC strains 

was identified in this population, and additionally, the occurrence of extended-spectrum β-

lactamase (ESBL) genes (and thus potential for multidrug resistance) was negligible. These 

results contrasted with previous studies reporting the presence of specific human extraintestinal 

pathogenic E. coli (ExPEC), and multidrug-resistant (MDR) lineages, in poultry (Johnson et al., 

2017; Jakobsen et al., 2010) and surface waters (Gomi et al., 2017b; Coleman et al., 2013). 

Several previous studies have attempted to attribute transmission of ExPEC in humans to poultry 

or other environmental sources, but the majority of these studies usually selectively culture for 

antimicrobial-resistant bacteria, rather than culturing all bacteria and then quantifying resistant 

strains within that population. These studies, therefore, do not present an accurate snapshot of 

the prevalence of multidrug-resistant E. coli in the environment and food-chain (Manges 2016; 

Lazarus et al., 2015). Many of these studies have used traditional, low-resolution typing methods 

to deduce that these E. coli strains, and genes such as those encoding antibiotic resistance and 

virulence factors, can spread from food-producing animals, via the food-chain, to humans 

(Platell et al., 2011b; Dolejska et al., 2011a), and additionally from environmental sources (Jang 

et al., 2013; Dolejska et al., 2011b). However, these methods may not have provided sufficient 

resolution to reliably assess the relatedness of these strains isolated from non-human and 

human-clinical sources. This highlights the importance of applying whole-genome comparative 

analysis, with the aim of distinguishing between seemingly related strains of bacteria. 

E. coli isolated from different geographical regions and ecosystems have highly heterogeneous 

genomes and may vary in size by up to 1 Mbp (Bergthorsson and Ochman, 1998). The diversity 

between E. coli genomes can be attributed to the deletion or acquisition of mobile genetic 

elements by horizontal gene transfer. In a previous study by Lawrence and Ochman (1998), it 

was found that ~18% of all open reading frames (ORFs) of the E. coli strain MG1655 are 

horizontally acquired, which have conferred properties permitting E. coli to colonise otherwise 

unreachable ecological niches. Horizontal gene transfer is largely responsible for the evolution 

of different E. coli pathotypes, as many virulence-associated genes (adhesins, toxins, invasins, 

and others) and antibiotic resistance genes may be encoded on mobile genetic elements, such 

as pathogenicity islands, plasmids, and transposons. Genes conferring other selective 

advantages, such as niche adaptation and fitness, also make up part of the dispensable 

(accessory) genome and can be readily transferred between strains via methods of horizontal 

gene transfer, such as conjugation and transduction. Whole-genome sequencing has provided a 



   

138 
 

method by which to comprehensively characterise the genetic diversity and evolution of large 

populations of related strains, which had proven very difficult prior to the advent of whole-

genome analysis (Metzker, 2010). The E. coli species, which can range from harmless commensal 

to versatile pathogen, is a model organism for such whole-genome based studies (Tenaillon et 

al., 2010). An application of the comparative genomics approach would include the investigation 

of disease outbreaks and diagnosis of infectious disease agents. One example is the use of 

genome sequencing of environmental E. coli to expand the understanding of the ecology and 

speciation of this model organism, which was achieved in a study by Luo and co-authors (2011). 

Genomic comparisons were conducted between pathogenic/commensal E. coli and 

environmental strains that are phenotypically and taxonomically indistinguishable from 

typical E. coli (commensal or pathogenic). It was found that the commensal genomes, which 

encode for more functions that are important for fitness in the human gut, do not exchange 

genetic material with their environmental counterparts. Due to the high discriminatory ability 

of comparative genomics, it was revealed that genetic exchange between emergent ecologically 

distinct phylogenetic clades of E. coli may not be as pronounced or prolonged as would be 

expected (Luo et al., 2011). 

Phylogenetic analysis of whole-genome sequence data has transformed our understanding of 

the evolution and expansion of many important bacterial lineages, due to the high-resolution 

view it provides. However, many of these analyses do not consider the potential role of the 

accessory genome when inferring evolutionary paths. To be able to accurately determine and 

compare the entire gene contents of multiple genomes, the pan-genome approach was 

developed (Tettelin et al., 2008). The pan-genome is the entire gene set of all strains of a species. 

It consists of a core genome, which represents the genes present in all strains of the species, 

and also a dispensable or variable (accessory) genome, which refers to genes that are not 

present in all of the strains; these include genes present in two or more strains, or even genes 

unique to only single strains (Tettelin et al., 2008). Therefore, on inclusion of every new genome 

in a pan-genome analysis, new strain-specific genes are added and thus, the size of the pan-

genome increases. The core genome typically includes housekeeping genes for cell envelope or 

regulatory functions, while the accessory genome comprises genes which encode for the species 

diversity and provides selective advantages for strains, such as niche adaptation, antibiotic 

resistance, and virulence factors. Pan-genome analysis is therefore beneficial for comparing the 

population structures and mechanisms of adaptation and evolution for different bacterial 

populations, as well as providing targets for vaccines and antibiotic treatment (Tettelin et al., 

2008). Pan-genome analysis can also be used to determine the gene pool of a given species 

(Tettelin et al., 2005), as well as from different species (Gordienko, Kazanov and Gelfand, 2013). 
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The pan-genome approach can also provide a method with which to contrast the gene content 

of strains from the same species, but of different pathotypes or clonal groups.  

A recent study by de Been and colleagues (2014) implemented whole-genome sequencing 

(WGS) analyses to study the relatedness of cephalosporin-resistant E. coli from humans, retail 

chicken meat, poultry and pigs. This analysis demonstrated significant heterogeneity between 

human and poultry-associated isolates and the study failed to provide evidence for recent clonal 

transmission of cephalosporin-resistant E. coli strains from poultry to humans, as had been 

suggested previously based on traditional, low-resolution typing methods. Although this study 

suggested that there is little or no overlap between E. coli isolates of human and poultry origin, 

the study had focussed primarily on ESBL-producing E. coli. Similarly, several previous studies 

have been conducted attempting to address the question of potential for waterborne 

transmission of E. coli to humans from freshwater sources (Ojer-Usoz, Gonzãlez and Vitas, 2017; 

Zhang, Gao and Chang, 2016). However, these studies are usually biased towards ESBL-

producing and MDR E. coli because of selectively culturing for resistant isolates in their sampling 

procedure, and thus the relative abundance of these isolates is largely unknown.  

5.1.1. Aim and objectives 

There is a need for whole-genome-based comparative analyses of E. coli populations from 

poultry and the environment and humans, in which ESBL-producing E. coli are not the sole focus, 

but instead investigated in proportion to their frequency. To address this, comparative genomic 

analysis of WGS data for non-human and human-clinical populations of E. coli, obtained from 

the same geographical region, is performed in this chapter, in order to provide sufficient 

resolution to determine the level of genetic heterogeneity between these populations. The two 

populations compared in this chapter include an unbiased sample of isolates, with regards to 

antimicrobial resistance, obtained from river water and retail chicken meat in the Nottingham 

area (i.e. the non-human population of E. coli defined in chapter 4). Representing the human-

clinical population of Nottingham is a collection of blood and urine-derived isolates of E. coli, 

obtained from hospital- and community-acquired extraintestinal infections. Nottingham 

provides the ideal regional ecosystem for comparison of such populations of E. coli, because of 

the comprehensive phenotypic and genotypic data available for human-clinical ExPEC strains, 

collected by the NTU Pathogen Research Group over the past decade (Alhashash et al., 2016; 

Alhashash et al., 2013; Croxall et al., 2011b; Croxall et al., 2011a). Inclusion of human-clinical 

strains isolated from these Nottingham-based studies allows for a geographically constrained 

comparison between the two populations. By applying a pan-genome approach, in conjunction 

with core genome phylogenetic analyses, this chapter aims to provide high-resolution genomic 
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comparison to determine the extent of genetic overlap between the non-human and human-

clinical populations of E. coli in Nottingham. These comprehensive comparative genomic 

analyses aim to provide sufficient discrimination, to address whether the non-human reservoir 

of E. coli contributes to the burden of hospital- and community-acquired human extraintestinal 

infections in this region. 

Specific objectives of this chapter were: 

• To compare the population structures of human-clinical and non-human E. coli, with 

regards to the prevalence of clinically important STs, as determined by in silico 

multilocus sequence typing. 

• To determine the relatedness of strains from the human-clinical and non-human 

populations of E. coli, by constructing a SNP-based core genome phylogenetic tree. 

• To compare the prevalence of antimicrobial resistance determinants and the prevalence 

of human ExPEC strains between the human-clinical and non-human populations of E. 

coli. 

• To construct phylogenetic trees from core genome alignments, in order to determine 

the relatedness of two non-human representative strains of clinically important STs, 

ST131 (GD45) and ST648 (GD49), to the wider populations of the ST131 and ST648 

lineages, obtained from multiple hosts. 

• To perform comparative genomic analysis of all non-human and human-clinical strains 

of E. coli, using a pan-genome approach to identify the proportions of genomic loci that 

are unique to either population or present in both populations. 

• To determine the extent of gene movement between closely related strains of the 

human-clinical and non-human populations of E. coli, by comparing the pan-genomes 

and detected core genome recombination events between strains of ST69 and ST10 

from both populations.   
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5.2. Materials and Methods 

The key bioinformatics tools, scripts, and methods used in this chapter were described 

previously in sections 2.6.2 – 2.6.7 of chapter 2. The E. coli strains listed in Table 5.1 represent 

the human-clinical population in Nottingham, which were used for comparative genomic 

analyses with the non-human population of E. coli. The E. coli strains used for comparative 

phylogenetic analyses of ST131 and ST648 populations are detailed in Table 5.2 and Table 5.3, 

respectively. 

Table 5.1. One hundred and thirty-six sequenced human-clinical E. coli genomes isolated from 

Nottingham. 

Strain name ST ST 
complex 

Sample 
source 

Disease type Year of 
isolation 

B3 131 131 Blood Bacteraemia 2011 
B5 131 131 Blood Bacteraemia 2011 
B9 10 10 Blood Bacteraemia 2011 
B10 73 73 Blood Bacteraemia 2011 
B14 73 73 Blood Bacteraemia 2011 
B16 131 131 Blood Bacteraemia 2011 
B18 73 73 Blood Bacteraemia 2011 
B20 10 10 Blood Bacteraemia 2011 
B22 131 131 Blood Bacteraemia 2011 
B26 131 131 Blood Bacteraemia 2011 
B29 73 73 Blood Bacteraemia 2011 
B31 69 69 Blood Bacteraemia 2011 
B33 69 69 Blood Bacteraemia 2011 
B34 95 95 Blood Bacteraemia 2011 
B36 73 73 Blood Bacteraemia 2011 
B37 131 131 Blood Bacteraemia 2011 
B38 95 95 Blood Bacteraemia 2011 
B40 73 73 Blood Bacteraemia 2011 
B44 131 131 Blood Bacteraemia 2011 
B46 131 131 Blood Bacteraemia 2011 
B47 131 131 Blood Bacteraemia 2011 
B48 131 131 Blood Bacteraemia 2011 
B51 131 131 Blood Bacteraemia 2011 
B54 131 131 Blood Bacteraemia 2011 
B58 131 131 Blood Bacteraemia 2011 
B65 131 131 Blood Bacteraemia 2011 
B71 131 131 Blood Bacteraemia 2011 
B72 73 73 Blood Bacteraemia 2011 
B73 73 73 Blood Bacteraemia 2011 
B75 131 131 Blood Bacteraemia 2011 
B77 131 131 Blood Bacteraemia 2011 
B83 196 None Blood Bacteraemia 2011 
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B84 73 73 Blood Bacteraemia 2011 
B87 58 155 Blood Bacteraemia 2011 
B89 131 131 Blood Bacteraemia 2011 
B91 73 73 Blood Bacteraemia 2011 
B94 131 131 Blood Bacteraemia 2011 
B95 131 131 Blood Bacteraemia 2011 
B102 73 73 Blood Bacteraemia 2011 
B104 131 131 Blood Bacteraemia 2011 
B107 38 38 Blood Bacteraemia 2011 
B116 133 None Blood Bacteraemia 2011 
B125 131 131 Blood Bacteraemia 2011 
B132 131 131 Blood Bacteraemia 2011 
B133 131 131 Blood Bacteraemia 2011 
B134 73 73 Blood Bacteraemia 2011 
B150 131 131 Blood Bacteraemia 2011 
U1 73 73 Urine UTI 2011 
U2 131 131 Urine UTI 2011 
U5 131 131 Urine UTI 2011 
U7 73 73 Urine UTI 2011 
U12 131 131 Urine UTI 2011 
U18 3451 None Urine UTI 2011 
U19 10 10 Urine UTI 2011 
U21 73 73 Urine UTI 2011 
U22 95 95 Urine UTI 2011 
U24 73 73 Urine UTI 2011 
U30 73 73 Urine UTI 2011 
U36 73 73 Urine UTI 2011 
U42 73 73 Urine UTI 2011 
U44 131 131 Urine UTI 2011 
U48 73 73 Urine UTI 2011 
U50 73 73 Urine UTI 2011 
U58 91 None Urine UTI 2011 
U60 95 95 Urine UTI 2011 
U64 69 69 Urine UTI 2011 
U67 69 69 Urine UTI 2011 
U76 73 73 Urine UTI 2011 
U79 131 131 Urine UTI 2011 
U80 131 131 Urine UTI 2011 
U92 131 131 Urine UTI 2011 
U102 38 38 Urine UTI 2011 
U104 3452 None Urine UTI 2009 
UTI18 131 131 Urine UTI 2009 
UTI24 131 131 Urine UTI 2009 
UTI32 131 131 Urine UTI 2009 
UTI62 131 131 Urine UTI 2009 
UTI188 131 131 Urine UTI 2009 
UTI226 131 131 Urine UTI 2009 
UTI306 131 131 Urine UTI 2009 
UTI423 131 131 Urine UTI 2009 
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UTI587 131 131 Urine UTI 2009 
F14W091968 10 10 MSU UTI 2014 
F14W127020-13 10 10 MSU UTI 2014 
F14W127020-20 10 10 MSU UTI 2014 
F14W131166-20 10 10 MSU UTI 2014 
M14W080122 12 12 MSU UTI 2014 
M14W098595-18 12 12 MSU UTI 2014 
M14W098595-31 12 12 MSU UTI 2014 
M14W101150 12 12 MSU UTI 2014 
M14W102050 12 12 MSU UTI 2014 
M14W107589 12 12 MSU UTI 2014 
F14W098435 58 155 MSU UTI 2014 
F14W125408 69 69 MSU UTI 2014 
F14W138284 69 69 MSU UTI 2014 
M14W071194-25 69 69 MSU UTI 2014 
M14W071194-2 69 69 MSU UTI 2014 
F14W108540 73 73 MSU UTI 2014 
F14W113875-18 73 73 MSU UTI 2014 
M14W127066 73 73 MSU UTI 2014 
M14W118794 80 568 MSU UTI 2014 
F14W114148-3 88 23 MSU UTI 2014 
F14W114148-7 88 23 MSU UTI 2014 
F14W131166-2 95 95 MSU UTI 2014 
M14W138421 95 95 MSU UTI 2014 
F13W143423 131 131 MSU UTI 2014 
F14W104167-24 131 131 MSU UTI 2014 
F14W104167-30 131 131 MSU UTI 2014 
F14W104167-31 131 131 MSU UTI 2014 
F14W104462-19 131 131 MSU UTI 2014 
F14W104462-28 131 131 MSU UTI 2014 
F14W118623 131 131 MSU UTI 2014 
F14W141832 131 131 MSU UTI 2014 
M14W073874 131 131 MSU UTI 2014 
M14W108795 131 131 MSU UTI 2014 
M14W113876 131 131 MSU UTI 2014 
M14W125435 131 131 MSU UTI 2014 
M14W131103-35 131 131 MSU UTI 2014 
M14W131103-5 131 131 MSU UTI 2014 
F14W071693 355 None MSU UTI 2014 
F14W080037 404 14 MSU UTI 2014 
F14W108313 404 14 MSU UTI 2014 
F14W113464-2 648 648 MSU UTI 2014 
F14W113464-40 648 648 MSU UTI 2014 
M14W114085 648 648 MSU UTI 2014 
M14W140076 681 None MSU UTI 2014 
1980_EC 95 95 Blood Neonatal sepsis 2015 
1982_EC 2622 None Blood Neonatal sepsis 2015 

1983_EC 538 538 Blood Neonatal sepsis 2015 

1984_EC 73 73 Blood Neonatal sepsis 2015 
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1985_EC 73 73 Blood Neonatal sepsis 2015 

2113_EC 95 95 Blood Neonatal sepsis 2015 

2114_EC 95 95 Blood Neonatal sepsis 2015 

2286_EC 69 69 Blood Neonatal sepsis 2015 

2297_EC 120 None Blood Neonatal sepsis 2015 

2300_EC 458 73 Blood Neonatal sepsis 2015 

 

Table 5.1. One hundred and thirty-six sequenced human-clinical E. coli genomes isolated from 

Nottingham. 

One hundred and thirty-six E. coli genomes, from the Nottingham Trent University (NTU) Pathogen 

Research Group strain collection, were included in this chapter for comparative genomic analyses with the 

Nottingham non-human population of E. coli, isolated in chapter 4. These strains were previously isolated 

from human-clinical samples (blood and urine cultures), obtained from the QMC hospital in Nottingham. 

Genome sequences and annotations were provided as FASTA files and GFF files from separate PhD studies 

at NTU: Gemma Clark, 2009; Fahad Alhashash, 2011; Ruqaiah Bedawai, 2014; Mohamed Saad, 2015.  

ST: sequence type as confirmed by in silico multilocus sequence typing analysis; MSU: midstream sample 

of urine; UTI: urinary tract infection. 
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Table 5.2. Two hundred and forty-two sequenced ST131 E. coli genomes used for comparative 

phylogenetic analysis in this chapter. 

Strain name Source Sample Year Country 
Reference/ 
Accession number 

JIE186 Human UTI 2005 Australia ERR537636 

B36EC_81 Human UTI 2007 Australia (Petty et al., 2014) 

MS2481_77 Human Bacteraemia 2007 Australia (Petty et al., 2014) 

MS2493_59 Human Bacteraemia 2007 Australia (Petty et al., 2014) 

S104EC_75 Human UTI 2008 Australia (Petty et al., 2014) 

S105EC_73 Human UTI 2008 Australia (Petty et al., 2014) 

S98EC_75 Human Asymptomatic 2008 Australia (Petty et al., 2014) 

S100EC_53 Human Unknown 2009 Australia (Petty et al., 2014) 

S101EC_81 Human Unknown 2009 Australia (Petty et al., 2014) 

S108EC_61 Human Neutropenia 2009 Australia (Petty et al., 2014) 

S109EC_69 Human Asymptomatic 2009 Australia (Petty et al., 2014) 

S110EC_77 Human UTI 2009 Australia (Petty et al., 2014) 

S111EC_69 Human UTI  2009 Australia (Petty et al., 2014) 

S112EC_73 Human UTI 2009 Australia (Petty et al., 2014) 

S113EC_75 Human Unknown 2009 Australia (Petty et al., 2014) 

S65EC_79 Human Unknown 2009 Australia (Petty et al., 2014) 

S79EC_75 Human Unknown 2009 Australia (Petty et al., 2014) 

S99EC_49 Human Asymptomatic 2009 Australia (Petty et al., 2014) 

S102EC_51 Human Unknown 2010 Australia (Petty et al., 2014) 

S103EC_73 Human Pyuria 2010 Australia (Petty et al., 2014) 

S107EC_75 Human Bacteraemia 2010 Australia (Petty et al., 2014) 

S77EC_77 Human UTI 2010 Australia (Petty et al., 2014) 

S114EC_77 Human UTI 2011 Australia (Petty et al., 2014) 

S115EC_75 Human UTI 2011 Australia (Petty et al., 2014) 

19770 DA Cat 2009 Austria ERR264251 

S121EC_81 Human UTI 2000 Canada (Petty et al., 2014) 

S123EC_81 Human UTI 2001 Canada (Petty et al., 2014) 

S125EC_83 Human SWI 2002 Canada (Petty et al., 2014) 

S126EC_79 Human UTI 2002 Canada (Petty et al., 2014) 

S127EC_59 Human UTI 2002 Canada (Petty et al., 2014) 

S131EC_75 Human UTI 2002 Canada (Petty et al., 2014) 

S122EC_81 Human UTI 2003 Canada (Petty et al., 2014) 

S124EC_77 Human UTI 2003 Canada (Petty et al., 2014) 

S128EC_79 Human Primary sepsis 2004 Canada (Petty et al., 2014) 

S129EC_79 Human UTI 2004 Canada (Petty et al., 2014) 

S130EC_83 Human UTI 2004 Canada (Petty et al., 2014) 

S132EC_77 Human UTI 2005 Canada (Petty et al., 2014) 

S133EC_73 Human UTI  2005 Canada (Petty et al., 2014) 

S134EC_81 Human UTI 2005 Canada (Petty et al., 2014) 

S135EC_77 Human BTI  2005 Canada (Petty et al., 2014) 

S120EC_63 Human BTI  2009 Canada (Petty et al., 2014) 

WCE266 Human Ascites fluid 2005 China LSFO00000000 

WCE296 Human Pleural effusion 2005 China LSEZ00000000 

WCE307 Human Bacteraemia 2005 China LSGU00000000 
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WCE208 Human UTI 2006 China LSEX00000000 

WCE233 Human Bacteraemia 2006 China LSEY00000000 

E4 Human Asymptomatic  2011 China LRXB00000000 

J09 Human UTI 2011 China LSEG00000000 

J21 Human Asymptomatic  2011 China LSEH00000000 

M8 Human Asymptomatic  2011 China LSEK00000000 

K0178B Avian Cormorant  2007 CZR LSEI00000000 

HP47 Avian Rook 2010 CZR LRXE00000000 

27678 Avian Rook 2011 CZR ERR264279 

27679 Avian Rook 2011 CZR ERR264280 

27683 Avian Rook 2011 CZR ERR264281 

27684 Avian Rook 2011 CZR ERR264282 

27685 Avian Rook 2011 CZR ERR264283 

27686 Avian Rook 2011 CZR ERR264284 

27690 Avian Rook 2011 CZR ERR264285 

17530 DA Dog 2008 Denmark ERR264240 

18582 DA Dog 2009 Denmark ERR264245 

22233 DA Dog 2010 Denmark ERR264266 

18572 DA Dog 2009 France ERR264244 

23942 DA Dog 2010 France ERR264273 

12520 Avian Chicken 2007 Germany ERR264278 

12556 DA Dog 2008 Germany ERR264289 

18342 DA Dog 2009 Germany ERR264242 

18982 DA Dog 2009 Germany ERR264246 

19001 DA Dog 2009 Germany ERR264247 

19336 DA Dog 2009 Germany ERR264249 

19529 DA Dog 2009 Germany ERR264250 

21176 Human Unknown 2010 Germany ERR264257 

21177 Human Unknown 2010 Germany ERR264258 

21178 Human Unknown 2010 Germany ERR264259 

21181 Human Unknown 2010 Germany ERR264260 

21182 Human Unknown 2010 Germany ERR264261 

21201 Human Unknown 2010 Germany ERR264262 

21514 DA Dog 2010 Germany ERR264263 

22022 Avian Bird 2010 Germany ERR264264 

22186 DA Cat 2010 Germany ERR264265 

22239 DA Dog 2010 Germany ERR264267 

22372 DA Cat 2010 Germany ERR264268 

23511 DA Dog 2010 Germany ERR264269 

23778 DA Dog 2010 Germany ERR264271 

23927 DA Cat 2010 Germany ERR264272 

24089 DA Dog 2010 Germany ERR264274 

24510 DA Dog 2010 Germany ERR264275 

852 Human UTI 2011 Germany LNPW00000000 

972 Human UTI 2011 Germany LNOM00000000 

1011 Human UTI 2011 Germany LRHP00000000 

1019 Human UTI 2011 Germany LRHQ00000000 

1039 Human UTI 2011 Germany LRHR00000000 

1087 Human UTI 2011 Germany LRHS00000000 
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1223 Human UTI 2011 Germany LRHT00000000 

1351 Human UTI 2011 Germany LRHU00000000 

1366 Human UTI 2011 Germany LRVN00000000 

1369 Human UTI 2011 Germany LRVO00000000 

1380 Human UTI 2011 Germany LRVP00000000 

1389 Human UTI 2011 Germany LRVQ00000000 

1402 Human UTI 2011 Germany LRVR00000000 

2963 Human Asymptomatic 2011 Germany LRVS00000000 

2999 Human UTI 2011 Germany LRVU00000000 

3019 Human UTI 2011 Germany LRVT00000000 

3020 Human UTI 2011 Germany LRVV00000000 

3134 Human UTI 2011 Germany LRVW00000000 

3140 Human UTI 2011 Germany LRVX00000000 

24790 DA Dog 2011 Germany ERR264276 

24839 DA Dog 2011 Germany ERR264277 

26368 Livestock Cattle 2011 Germany ERR264288 

IR18E_63 Human UTI 2009 India (Petty et al., 2014) 

IR49_69 Human UTI 2009 India (Petty et al., 2014) 

IR65_69 Human UTI 2009 India (Petty et al., 2014) 

IR68_79 Human UTI 2009 India (Petty et al., 2014) 

MB1074 Human Asymptomatic  2012 Ireland LSEL00000000 

MB14972 Human Asymptomatic  2012 Ireland LSEM00000000 

MB17684 Human Asymptomatic  2012 Ireland LSEN00000000 

MB3298 Human Asymptomatic  2012 Ireland LSEO00000000 

MB3323 Human Asymptomatic  2012 Ireland LSEP00000000 

19017 DA Dog 2009 Italy ERR264248 

19801 DA Dog 2009 Italy ERR264252 

20130 DA Dog 2009 Italy ERR264253 

20441 DA Cat 2010 Italy ERR264255 

20936 DA Dog 2010 Italy ERR264256 
18570 DA Dog 2009 NDL ERR264243 

20402 DA Cat 2010 NDL ERR264254 

23736 DA Dog 2010 NDL ERR264270 

S92EC_51 Human Bacteraemia 2009 NZ (Petty et al., 2014) 

S93EC_79 Human Bacteraemia 2009 NZ (Petty et al., 2014) 

S94EC_63 Human Bacteraemia 2009 NZ (Petty et al., 2014) 

S95EC_75 Human Bacteraemia 2009 NZ (Petty et al., 2014) 

S96EC_53 Human Bacteraemia 2010 NZ (Petty et al., 2014) 

S97EC_73 Human Bacteraemia 2010 NZ (Petty et al., 2014) 

K0198B Avian Cormorant 2007 Serbia LSEJ00000000 

HS115 Avian Rook 2010 Serbia LRXF00000000 

27702 Avian Rook 2011 Serbia ERR264286 

27703 Avian Rook 2011 Serbia ERR264287 
17898 DA Dog 2008 Spain ERR264241 

HVM1147_73 Human Abscess 2010 Spain (Petty et al., 2014) 

HVM1299_69 Human Abscess 2010 Spain (Petty et al., 2014) 

HVM1619_79 Human SWI 2010 Spain (Petty et al., 2014) 

HVM1997_61 Human UTI  2010 Spain (Petty et al., 2014) 

HVM2044_75 Human UTI 2010 Spain (Petty et al., 2014) 
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HVM2289_73 Human UTI  2010 Spain (Petty et al., 2014) 

HVM277_81 Human UTI  2010 Spain (Petty et al., 2014) 

HVM3017_57 Human UTI 2010 Spain (Petty et al., 2014) 

HVM3189_79 Human UTI  2010 Spain (Petty et al., 2014) 

HVM5_47 Human UTI  2010 Spain (Petty et al., 2014) 

HVM52_83 Human UTI  2010 Spain (Petty et al., 2014) 

HVM826_63 Human RTI  2010 Spain (Petty et al., 2014) 

HVM834_75 Human UTI 2010 Spain (Petty et al., 2014) 

HVR2496_77 Human UTI 2010 Spain (Petty et al., 2014) 

HVR83_61 Human UTI 2010 Spain (Petty et al., 2014) 

P53EC_53 Human Asymptomatic 2011 Spain (Petty et al., 2014) 

P56EC_47 Human Asymptomatic 2011 Spain (Petty et al., 2014) 

P146EC_71 Human Asymptomatic 2011 Spain (Petty et al., 2014) 

P189EC_55 Human Asymptomatic 2011 Spain (Petty et al., 2014) 

P50EC_77 Human Asymptomatic 2011 Spain (Petty et al., 2014) 

EC958 Human UTI 2001 UK CAFL01000001 

S39EC_79 Human Unknown 2004 UK (Petty et al., 2014) 

S43EC_81 Human Unknown 2004 UK (Petty et al., 2014) 

S47EC_79 Human Unknown 2004 UK (Petty et al., 2014) 

S53EC_79 Human Unknown 2004 UK (Petty et al., 2014) 

S1EC_81 Human UTI 2007 UK (Petty et al., 2014) 

S2EC_61 Human UTI 2007 UK (Petty et al., 2014) 

S30EC_81 Human UTI 2007 UK (Petty et al., 2014) 

S31EC_81 Human UTI 2007 UK (Petty et al., 2014) 

S32EC_79 Human UTI 2007 UK (Petty et al., 2014) 

S5EC_75 Human UTI 2007 UK (Petty et al., 2014) 

S6EC_73 Human UTI 2007 UK (Petty et al., 2014) 

UTI18 Human UTI 2008 UK ERR062284 

UTI188 Human UTI 2008 UK ERR062289 

UTI226 Human UTI 2008 UK ERR062293 

UTI24 Human UTI 2008 UK ERR062292 

UTI306 Human UTI 2008 UK ERR062295 

UTI32 Human UTI 2008 UK ERR062294 

UTI423 Human UTI 2008 UK ERR062296 

UTI587 Human UTI 2008 UK ERR062291 

UTI62 Human UTI 2008 UK ERR062297 

S10EC_77 Human UTI 2009 UK (Petty et al., 2014) 

S11EC_83 Human UTI 2009 UK (Petty et al., 2014) 

S12EC_79 Human UTI 2009 UK (Petty et al., 2014) 

S15EC_83 Human UTI 2009 UK (Petty et al., 2014) 

S19EC_73 Human UTI 2009 UK (Petty et al., 2014) 

S21EC_59 Human UTI 2009 UK (Petty et al., 2014) 

S22EC_83 Human UTI 2009 UK (Petty et al., 2014) 

S24EC_75 Human UTI 2009 UK (Petty et al., 2014) 

S26EC_69 Human UTI 2009 UK (Petty et al., 2014) 

S34EC_75 Human UTI 2009 UK (Petty et al., 2014) 

S37EC_83 Human UTI 2009 UK (Petty et al., 2014) 

S116EC_77 Human BTI  2011 UK (Petty et al., 2014) 

S117EC_49 Human BTI  2011 UK (Petty et al., 2014) 
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S118EC_69 Human UTI 2011 UK (Petty et al., 2014) 

S119EC_71 Human Bacteraemia 2011 UK (Petty et al., 2014) 

B104 Human Bacteraemia 2012 UK LRWU00000000 

B125 Human Bacteraemia 2012 UK LRWX00000000 

B132 Human Bacteraemia 2012 UK LRWY00000000 

B133 Human Bacteraemia 2012 UK LRWZ00000000 

B150 Human Bacteraemia 2012 UK LRXA00000000 

B16 Human Bacteraemia 2012 UK LRWA00000000 

B22 Human Bacteraemia 2012 UK LRWB00000000 

B26 Human Bacteraemia 2012 UK LRWC00000000 

B3 Human Bacteraemia 2012 UK LRVY00000000 

B37 Human Bacteraemia 2012 UK LRWD00000000 

B44 Human Bacteraemia 2012 UK LRWE00000000 

B46 Human Bacteraemia 2012 UK LRWF00000000 

B47 Human Bacteraemia 2012 UK LRWG00000000 

B48 Human Bacteraemia 2012 UK LRWH00000000 

B5 Human Bacteraemia 2012 UK LRVZ00000000 

B51 Human Bacteraemia 2012 UK LRWI00000000 

B54 Human Bacteraemia 2012 UK LRWJ00000000 

B58 Human Bacteraemia 2012 UK LRWK00000000 

B65 Human Bacteraemia 2012 UK LRWL00000000 

B71 Human Bacteraemia 2012 UK LRWM00000000 

B75 Human Bacteraemia 2012 UK LRWN00000000 

B77 Human Bacteraemia 2012 UK LRWO00000000 

B89 Human Bacteraemia 2012 UK LRWR00000000 

B94 Human Bacteraemia 2012 UK LRWS00000000 

B95 Human Bacteraemia 2012 UK LRWT00000000 

U12 Human UTI 2012 UK LSEQ00000000 

U2 Human UTI 2012 UK LSER00000000 

U44 Human UTI 2012 UK LSES00000000 

U5 Human UTI 2012 UK LSET00000000 

U79 Human UTI 2012 UK LSGT00000000 

U80 Human UTI 2012 UK LSEU00000000 

U92 Human UTI 2012 UK LSEV00000000 

F13W143423 Human UTI 2014 UK Unpublished  

F14W118623 Human UTI 2014 UK Unpublished  

F14W141832 Human UTI 2014 UK Unpublished  

M14W073874 Human UTI 2014 UK Unpublished  

M14W108795 Human UTI 2014 UK Unpublished  

M14W113876 Human UTI 2014 UK Unpublished  

M14W125435 Human UTI 2014 UK Unpublished  

M14W131103-35 Human UTI 2014 UK Unpublished  

F14W104167-31 Human UTI 2014 UK Unpublished  

F14W104167-30 Human UTI 2014 UK Unpublished  

F14W104462-28 Human UTI 2014 UK Unpublished  

F14W104167-24 Human UTI 2014 UK Unpublished  

F14W104462-19 Human UTI 2014 UK Unpublished  

M14W131103-5 Human UTI 2014 UK Unpublished  

GD45 Environment River water 2015 UK Unpublished  
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F283 Avian Crow 2012 USA LRXD00000000 

JJ1886 Human UTI 2012 USA CP006784.1 

 

Table 5.2. Two hundred and forty-two sequenced ST131 E. coli genomes used for comparative 

phylogenetic analysis in this chapter. 

Two hundred and forty-one ST131 E. coli genomes were included in this chapter for comparative 

phylogenetic analysis with the single Nottingham E. coli ST131 strain (GD45), isolated from river water in 

chapter 4. These strains were isolated from various hosts across multiple geographical locations and time 

periods. The ST131 population includes 125 avian (wild birds), domesticated animal (cats and dogs), 

livestock (cattle), and human-clinical isolates, sequenced as part of a recent study by McNally et al. (2016a); 

102 human isolates (clinical and asymptomatic) from a previous phylogenomic study (Petty et al., 2014); 

and 14 human-clinical isolates obtained from the NTU Pathogen Research Group strain collection 

(unpublished). The genomes were provided by Alan McNally as FASTA files and the accession numbers (or 

citation) for these genomes are shown in the table.  

DA: domesticated animal; SWI: surgical wound infection; UTI: urinary tract infection; RTI: respiratory tract 

infection; BTI: biliary tract infection; NDL: The Netherlands; UK: United Kingdom; USA: United States of 

America; CZR: Czech Republic; NZ: New Zealand. 
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Table 5.3. Eighty-nine sequenced ST648 E. coli genomes used for comparative phylogenetic 
analysis in this chapter. 

Strain name CTX-M carriage 

F_12_GNB_311 blaCTX-M-15 

F_30_1_R8 ND 

F_GNB_2781 blaCTX-M-14 

F_GNB_2809 ND 

F_GNB_2838 blaCTX-M-15 

F_GNB_3697 blaCTX-M-15 

F_N13_1_3 blaCTX-M-3 

F_QUC093 blaCTX-M-15 

GD49 ND 

IHIT22921 blaCTX-M-15 

IHIT22927 blaCTX-M-15 

IHIT22988 blaCTX-M-15 

IHIT22990 blaCTX-M-15 

IHIT23010 blaCTX-M-15 

IHIT23044 blaCTX-M-15 

IHIT23167 blaCTX-M-15 

IHIT23176 blaCTX-M-15 

IHIT23177 blaCTX-M-15 

IHIT25637 blaCTX-M-15 

IHIT25686 blaCTX-M-15 

IHIT27893 ND 

IMT12298 ND 

IMT12560 blaCTX-M-1 

IMT13211 blaCTX-M-3 

IMT16316 blaCTX-M-15 

IMT16343 blaCTX-M-15 

IMT16352 blaCTX-M-15 

IMT17438 blaCTX-M-15 

IMT17486 blaCTX-M-14b 

IMT17507 blaCTX-M-15 

IMT17539 blaCTX-M-15 

IMT17576 blaCTX-M-15 

IMT17887 blaCTX-M-15 

IMT17908 blaCTX-M-3 

IMT18337 blaCTX-M-15 

IMT18340 blaCTX-M-15 

IMT18351 blaCTX-M-14 

IMT18984 blaCTX-M-15 

IMT19322 blaCTX-M-15 

IMT20000 blaCTX-M-15 

IMT20607 blaCTX-M-14 

IMT20610 blaCTX-M-14 

IMT21183 blaCTX-M-15 

IMT21409 blaCTX-M-15 

IMT21500 blaCTX-M-15 
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Table 5.3. Eighty-nine sequenced ST648 E. coli genomes used for comparative phylogenetic analysis in 

this chapter. 

  

  

IMT21502 blaCTX-M-15 

IMT21509 blaCTX-M-15 

IMT21529 blaCTX-M-14 

IMT21531 blaCTX-M-15 

IMT22074 blaCTX-M-15 

IMT23463 blaCTX-M-14 

IMT23464 blaCTX-M-14 

IMT23760 blaCTX-M-15 

IMT23775 blaCTX-M-15 

IMT24056 blaCTX-M-15 

IMT24058 blaCTX-M-15 

IMT24081 blaCTX-M-15 

IMT24488 blaCTX-M-15 

IMT24490 blaCTX-M-15 

IMT24495 ND 

IMT24616 blaCTX-M-15 

IMT24817 blaCTX-M-15 

IMT24818 blaCTX-M-15 

IMT24834 blaCTX-M-15 

IMT24837 blaCTX-M-15 

IMT24849 blaCTX-M-15 

IMT26356 blaCTX-M-15 

IMT27014 blaCTX-M-15 

IMT33120 ND 

IMT33123 blaCTX-M-15 

IMT33127 blaCTX-M-15 

IMT33136 blaCTX-M-15 

IMT33143 blaCTX-M-15 

IMT33148 blaCTX-M-15 

IMT33149 blaCTX-M-14 

IMT33150 blaCTX-M-15 

IMT33151 blaCTX-M-15 

IMT33152 blaCTX-M-15 

IMT33159 blaCTX-M-15 

IMT33167 blaCTX-M-15 

IMT33170 blaCTX-M-15 

IMT33171 blaCTX-M-15 

IMT33601 ND 

IMT33602 ND 

IMT33608 blaCTX-M-32 

IMT33613 blaCTX-M-15 

IMT34407 ND 

IMT34408 ND 

NA023 blaCTX-M-15 
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Table 5.3. Eighty-nine sequenced ST648 E. coli genomes used for comparative phylogenetic analysis in 

this chapter.  

The genomes of 88 ESBL-producing ST648 E. coli strains were included in this chapter, for comparative 

phylogenetic analysis with the single Nottingham E. coli ST648 strain (GD49), isolated from river water in 

chapter 4. These strains originated from different hosts including humans, companion animals (cats, dogs, 

and horses), and wild birds, across Western Europe. The genomes were previously sequenced by Sebastian 

Guenther and colleagues (University of Greifswald) and were provided as FASTA files for this study. The 

CTX-M types identified for each strain, as determined by in silico resistance gene screening using ABRicate, 

are provided in the table.  

ND: not detected. 

 

5.3. Results and Discussion 

5.3.1. Comparing the prevalence of STs between the human-clinical and non-human 

populations of E. coli 

In silico MLST analysis in chapter 4 revealed that the Nottingham population of E. coli isolated 

from non-human samples in this study is clonally diverse, with a total of 64 different sequence 

types (STs) identified among 128 strains (section 4.3.4, Table 4.4). The population structure of 

non-human E. coli was comprised largely of a wide variety of different STs, with the ST10 clonal 

complex representing the most predominant central genotype, along with closely related STs 

such as ST93, ST746, ST752, and ST1551, which were prevalent in both retail chicken and river 

water samples. To put the prevalence of sequence types in the non-human E. coli population 

into the context of the human-clinical E. coli population, MLST data for a large collection of E. 

coli strains isolated from human-clinical cases in Nottingham were included in the analysis for 

comparison. Sequence type designations were obtained for 399 human-clinical E. coli strains 

isolated from two previous Nottingham-based studies; 134 of these strains were isolated from 

cases of urinary tract infection and urosepsis in elderly patients (Croxall et al., 2011b); 140 and 

125 strains were isolated from bacteraemia patients and urinary samples, respectively, as part 

of a separate Nottingham-based study (Alhashash et al., 2013). Sequence types were 

determined in these studies by PCR-based MLST and using the typing scheme developed and 

hosted by Mark Achtman and colleagues (Wirth et al., 2006).  

Percentage prevalence data for STs with ≥ 3 representative isolates identified among the 

human-clinical population and ≥ 3 isolates among the non-human population of E. coli, are 

presented in Figure 5.1A and 5.1B, respectively. Considering the larger sample size of isolates 

analysed for the human-clinical population of E. coli, this may explain why a greater number of 
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unique STs (n = 138) were identified. The most prevalent STs identified in the human-clinical 

population were ST131 (17.0%), ST73 (14.3%), ST69 (7.0%), and ST95 (5.8%), which are all largely 

associated with ExPEC infections in humans (Fig. 5.1A). In the non-human population of E. coli, 

on the other hand, the most prevalent STs were ST10 (12.5%), and closely related STs of the 

ST10 clonal complex, ST752 (5.5%), ST1551 (4.7%), and ST93 (3.9%). The ‘other STs’ category 

comprised all STs represented by ≤ 2 isolates in the human-clinical population (Fig. 5.1A) and ≤ 

2 isolates in the non-human population (Fig. 5.1B). This category constituted 30.8% of human-

clinical isolates and 44.5% of non-human isolates. Although more unique STs were detected in 

the human-clinical population, the level of genotypic heterogeneity would appear to be similar 

to that of the non-human population, which revealed a high proportion of isolates belonging to 

the ‘other STs’ category within a comparatively small sample size. This was confirmed by 

calculating the Shannon diversity indices for the abundance of STs in both the human-clinical 

(3.81) and non-human (3.79) populations of E. coli. The Hutcheson t-test was then used to 

compare the diversity of the two populations. The calculated t-value of 0.11 does not exceed 

the critical value of 1.96, indicating that the difference between the calculated diversities of both 

populations is not statistically significant (p < 0.05; 95% confidence interval). In comparison, the 

two populations would appear to differ in terms of population structure, as illustrated by the 

prevalence of STs in Figure. 5.1. The human-clinical population of E. coli is dominated by the four 

main ExPEC-associated STs, ST69, ST73, ST95, and ST131, which together represent around 44% 

of this population. It is well documented in the literature that these four sequence types are 

collectively responsible for a large proportion of E. coli urinary tract and bloodstream infections 

(Kallonen et al., 2017; Doumith et al., 2015; Alhashash et al., 2013; Croxall et al., 2011b; Lau et 

al., 2008). The ST95 complex, which is a prominent ExPEC sequence type complex associated 

with extraintestinal infections in humans and poultry (Vincent et al., 2010), was 

underrepresented in this strain set (5.8% of isolates) in comparison to the other major ExPEC 

STs reported. The relatively low proportion of ST95 strains compared to the overrepresentation 

of ST131 in the Nottingham human-clinical population of E. coli highlights the recent emergence 

of a new dominant clone (Johnson et al., 2017; Kallonen et al., 2017; Clark et al., 2012). The non-

human population of E. coli isolated from this study is not highly represented by the four major 

STs identified in the human-clinical population, and instead the analysis reveals that the ST10 

clonal complex is the most predominant genotype.  

Comparison of the prevalence of the most predominant STs of both populations (ST131, ST73, 

ST69, ST95, and ST10) further demonstrates the disparity in the population structures of human-

clinical and non-human E. coli (Fig. 5.2). While the important multidrug-resistant (MDR) ExPEC 

lineage ST131 was the most commonly encountered ST among human-clinical isolates analysed 
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in this study, only one instance of the same genotype was observed in the non-human 

population of E. coli, indicating a significantly low prevalence in comparison (p < 0.0001, two-

tailed Fisher’s test). Additionally, the well-known human ExPEC sequence types ST73 and ST95 

were prevalent in the human-clinical population, but could not be detected among non-human 

isolates of E. coli. ST69, which is a highly virulent strain associated with human extraintestinal 

infections (Kallonen et al., 2017; Alhashash et al., 2013; Croxall et al., 2011b; Lau et al., 2008), 

as well as some animal models (Cristovao et al., 2017; Tartof et al., 2005), was identified among 

human-clinical E. coli isolates in addition to non-human (retail chicken) isolates (Fig. 5.2). This ST 

represented a higher proportion of human-clinical isolates (7.0%) than non-human isolates 

(3.1%), however, this difference may not be considered to be significant (p = 0.137, two-tailed 

Fisher’s test). ST10 is a common human ExPEC ST that is also associated with food animals and 

retail poultry meat (Aslam et al., 2014; Bergeron et al., 2012; Vincent et al., 2010). It was 

revealed in this study that ST10 dominates in the non-human population of E. coli (prevalent 

among 12.5% of isolates), but comprised a significantly lower proportion (1.5%) of the human-

clinical population of E. coli (p < 0.0001, two-tailed Fisher’s test). This suggests a more 

widespread prevalence of this ST in the environment and food chain than in human-clinical cases 

of extraintestinal infection. The paucity of human ExPEC STs 131, 73, 69, and 95 in the non-

human population of E. coli would suggest that the non-human reservoir of human ExPEC is 

negligible, at least in so far as it has been sampled in this study, and it is unlikely to be responsible 

for the majority of human ExPEC infections in Nottingham. 
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Figure 5.1. Percentage prevalence of E. coli sequence types (STs) among E. coli strains isolated from (A) 

human-clinical and (B) non-human samples collected in Nottingham.  

The human-clinical population of E. coli (n = 399) comprise 259 isolates from cases of UTI and urosepsis in 

elderly patients, and 140 from bacteraemia patients. STs were determined by PCR-based MLST as part of 

previous studies (Alhashash et al., 2013; Croxall et al., 2011b). The non-human population comprises 128 

sequenced strains from retail chicken and river water samples. ST designations were made by in silico MLST 

analysis of WGS data. Percentage prevalence is presented for all STs with ≥ 3 representative isolates, whilst 

the ‘other STs’ category constitutes all STs represented by ≤ 2 isolates, except for STs 20, 131, and 648, 

which are presented independently in chart B. 
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Figure 5.2. Percentage prevalence of the most predominant E. coli sequence types (STs) associated with 

human ExPEC infection in the human-clinical and non-human populations of E. coli in Nottingham.  

Percentage prevalence comparison is presented for STs 131, 73, 69, 95, and 10, detected in the human-

clinical population (n = 399) and non-human population (n = 128) of E. coli. ST131 was the dominant clone 

of the human-clinical population (17.0%), but only one ST131 strain (0.78%) was detected in the non-

human population of E. coli, indicating a statistically significant difference between the two populations 

(**human-clinical ST131 vs non-human ST131; p < 0.0001, two-tailed Fisher’s test). The well-known human 

ExPEC sequence types ST73 and ST95, which were also prevalent in the human-clinical population, were 

not identified among non-human isolates of E. coli (**human-clinical ST73 vs non-human ST73, p < 0.0001, 

two-tailed Fisher’s test; *human-clinical ST95 vs non-human ST95, p < 0.001, two-tailed Fisher’s test). ST69, 

on the other hand, was prevalent in both populations and whilst this genotype represented a higher 

proportion of human-clinical isolates (7.0%) than non-human isolates (3.1%), this may not be considered a 

statistically significant difference (human-clinical ST69 vs non-human ST69; p = 0.137, two-tailed Fisher’s 

test). The prevalence of ST10 was significantly higher in the non-human population (12.5%) than that of 

the human-clinical (1.5%) population (**human-clinical ST10 vs non-human ST10; p < 0.0001, two-tailed 

Fisher’s test). The asterisks represent comparisons made between human-clinical and non-human isolates. 
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The MLST data for both populations were combined and divided into groups of closely related 

isolates and clonal complexes, using the PHYLOViZ platform to construct a complete minimum 

spanning tree (MST) of all the STs in the analysed E. coli population (Fig. 5.3). When comparing 

E. coli isolates from human-clinical and non-human samples, the analysis revealed that the 

majority of these isolates clustered into different sequence types or clonal groups, based on 

their source of isolation. The MST illustrates a noticeable separation in the population structures 

of human-clinical and non-human E. coli. This is demonstrated by a large proportion of roughly 

90% (124/138) of the STs identified among human-clinical E. coli isolates being unique to this 

population (i.e. not found in the non-human population). Similarly, a relatively large proportion 

of around 78% (50/64) of the STs identified among non-human E. coli isolates were unique to 

this population. This meant that out of the total 186 E. coli STs identified among all isolates, only 

14 STs (7.5%) were prevalent in both the human-clinical and non-human populations. This would 

indicate that considerable genotypic differences exist between E. coli strains isolated from the 

two populations, and it suggests that the population of E. coli that exists in the environment and 

food chain is largely distinct from the human-clinical population of E. coli associated with human 

ExPEC infections. Of the 14 STs prevalent in both the human-clinical and non-human 

populations, clinically important ExPEC strains were identified among ST69, ST131, ST141, ST58, 

ST93, and ST10 in the non-human population of E. coli analysed. ST648 is a highly multidrug-

resistant clone observed in human patients globally, and more incidentally in companion 

animals and wild birds (Guenther, Ewers and Wieler, 2011). This ST was also prevalent in the 

human-clinical and non-human populations presented in this study. Other STs present in both 

populations include ST48, ST394, ST409, ST644, ST929, ST1011, and ST2459. The presence of 

sequence types such as ST131, ST141, ST58, ST93, and ST648 in river water samples would 

indicate a relatively small level of contamination of surface waters by E. coli strains belonging to 

clinically important clonal groups, due to direct discharge from wastewater treatment plants 

and agricultural runoff. Human ExPEC strains belonging to ST69 and ST10 were isolated from 

retail chicken meat in this study, which may suggest a link between contaminated food products 

and E. coli strains that cause extraintestinal infection. Overall, the MST (Fig. 5.3) illustrates two 

populations of E. coli in Nottingham which appear to be distinct in terms of population structure 

and do not frequently come into contact with each other. Further genomic analyses would be 

able to determine whether strains of clinically important clonal groups isolated from the non-

human population are the same strains implicated in community-acquired and hospital-

acquired extraintestinal infections.  
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Figure 5.3. Minimum spanning tree (MST) illustrating the E. coli STs isolated from human-clinical and non-human samples.  

The MST was produced using Phyloviz v3. The size of the nodes reflects the number of strains belonging to each ST. Nodes outlined by a yellow-green ring represent ST 

complexes. The sample types (human-clinical, red; non-human, blue) are overlaid onto the diagram, which confirms the predominance of ST131, ST73, ST65, and ST95 among 

human-clinical isolates and the ST10 clonal group among non-human isolates, with a limited number of STs shared between the two populations.
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5.3.2. Comparative phylogenomic analysis of the human-clinical and non-human 

populations of E. coli 

The collection of sequenced isolates from Nottingham-based studies includes the 128 E. coli 

genomes isolated from river water and retail chicken samples in chapter 4, representing the 

Nottingham non-human population of E. coli in this study. Also included are 136 E. coli genomes 

previously isolated from human-clinical samples, collected from the Queen’s Medical Centre 

(QMC) hospital in Nottingham. The human-clinical population encompasses 47 isolates from 

cases of bacteraemia, 79 isolates from cases of UTIs, and 10 isolates from cases of neonatal 

sepsis, obtained from the NTU Pathogen Research Group strain collection (metadata for strains 

are provided in Table 5.1). It should be noted that these sequenced strains do not represent the 

true population structure of human-clinical E. coli in Nottingham, due to a large proportion of 

these genomes being selectively sequenced based on their ST designation and association with 

extraintestinal infections. This would explain the overrepresentation of ST131 and ST73 strains 

in the human-clinical population of E. coli.  

A maximum-likelihood SNP-based phylogenetic tree was constructed using Parsnp (Fig. 5.4), 

which was derived from a core genome alignment, obtained from localised co-linear blocks 

(length = 62,825 bp, total SNPs = 55,677), of all non-human and human-clinical E. coli genomes 

(n = 264). The population included cryptic clade E. coli isolates, which served as the outgroup for 

the tree. With source of isolation annotated on the tree as coloured bars and phylogenetic 

clades defined by coloured branches according to phylogroup, the analysis revealed an 

observable phylogenetic divide between the human-clinical and non-human populations of E. 

coli. There is a clear clustering of isolates according to ST, and due to the overrepresentation of 

ST131, ST73, ST95, and ST12 strains, the human-clinical population is dominated by phylogroup 

B2, with 80.1% (109/136) of the population belonging to this phylogenetic group. In contrast, 

only 7% of the non-human population (9/128) were classified as phylogroup B2, demonstrating 

the lack of classically pathogenic strains in this population. The difference in population 

structures between the two populations is therefore quite evident. Other phylogroups present 

in the human-clinical population of E. coli would include phylogroups F (n = 3), D (n = 10), E (n = 

2), B2 (n = 4), A (n = 7), and additionally, one strain belonging to cryptic clade C-V was also 

identified. Non-human E. coli isolates outnumber the human-clinical isolates present in these 

phylogroups, further illustrating the difference in the two population structures.  

Although there is a bias towards ST131 and ST73 among the sequenced human-clinical E. coli 

genomes included in this analysis, the distribution of STs and clonal complexes demonstrated in 

Figure 5.3 indicates a prevalence of STs which are closely related to the larger clonal groups of 
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ST131, ST73, ST95, and ST69. When this is taken into consideration with the clustering of these 

ST complexes on the phylogenetic tree (Fig. 5.4), it strongly suggests that the wider human-

clinical population of E. coli is largely represented by phylogroups B2 and D. This is consistent 

with previous studies which have indicated that Phylogroup B2 strains are generally more 

virulent than strains belonging to the other groups (Picard et al., 1999; Boyd and Hartl, 1998). 

Additionally, phylogroup B2 and, to a lesser extent, phylogroup D are predominantly associated 

with strains that cause extraintestinal infections (Johnson and Stell, 2000; Picard et al., 1999). 

Conversely, most of the non-human population belong to phylogroups A and B1, suggesting a 

high proportion of largely commensal strains of E. coli, as described by previous studies (Duriez 

et al., 2001; Picard et al., 1999). 
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Figure 5.4. Maximum-likelihood SNP-based phylogenetic tree of 264 E. coli strains isolated from human-

clinical and non-human samples in Nottingham.  

The 128 E. coli genomes isolated from river water and retail chicken samples in chapter 4, representing the 

Nottingham non-human population of E. coli, are presented on the tree in addition to 136 E. coli genomes 

previously isolated from human-clinical samples. The human-clinical population encompasses 47 isolates 

from cases of bacteraemia, 79 isolates from cases of UTIs, and 10 isolates from cases of neonatal sepsis 

(details of strains are provided in section 5.2, Table 5.1). The phylogeny was inferred from a core genome 

alignment of the combined populations (62,825 bp, 55,677 SNPs, 264 genomes) constructed using Parsnp. 

The phylogenetic tree was visualised and edited using iTOL (Letunic and Bork, 2016). Source of isolation is 

annotated on the tree as coloured bars and STs/ST complexes are indicated on the tree as coloured 

segments behind the strain names. The phylogenetic clades are defined by branch colouring according to 

each phylogroup/cryptic clade. 
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5.3.3. Determining the prevalence of ExPEC strains in the human-clinical population 

of E. coli 

The high prevalence of phylogroup B2 strains in the human-clinical population of E. coli would 

be suggestive of a high prevalence of virulence-associated genes (VAGs) (Picard et al., 1999; 

Boyd and Hartl 1998). The population is therefore likely to consist of a high proportion of ExPEC 

strains, due to this phylogroup being predominantly associated with strains that cause 

extraintestinal infections (Johnson and Stell 2000; Picard et al., 1999). In chapter 4, analysis of 

ExPEC VAG profiles indicated that the prevalence of ExPEC strains in the non-human population 

of E. coli is very low, which is in contrast to previous studies that have reported a consistent 

observation of specific human ExPEC lineages in poultry (Johnson et al., 2017; Jakobsen et al., 

2010) and surface waters (Gomi et al., 2017b; Coleman et al., 2013). Only 11 of the 128 non-

human E. coli isolates (8.6%) were classified as ExPEC, based on the possession of two or more 

of the following VAGs: papA and/or papC; afa/dra; kpsMT II; iutA; and sfa/foc. 

In silico ExPEC VAG profiling was also carried out for the 136 sequenced E. coli isolates of the 

human-clinical population (Fig. 5.5). The genomes were screened for the presence of the above-

mentioned VAGs by running the bioinformatics pipeline ABRicate, which scans the Virulence 

Factors Database (VFDB) to generate VAG profiles for each isolate. This allowed the prevalence 

of ExPEC strains in the human-clinical population to be determined and compared with that of 

the non-human population of E. coli. It was found that the pap operons papA and papC, as well 

as the iron acquisition gene iutA, are widespread throughout the human-clinical population, 

whilst the afa/dra operons and S fimbrial adhesin and F1C fimbriae cluster (sfa/foc) were 

detected in a number of phylogroup B2, F, and D strains (Fig. 5.5). Similar to the non-human 

population, the type II capsule marker kpsMT II was not detected in human-clinical isolates. 

Roughly 67% of the human-clinical population (91/136) were defined as ExPEC, representing the 

majority of the population. ExPEC strains were identified predominantly in phylogroup B2, 

however 9 ExPEC strains were also detected within phylogroups D, E, and F. ExPEC strains were 

prevalent among several different sequence types, including STs 131, 73, 95, 12, 404, 648, 88, 

69, and 38, indicating the clonal distribution of ExPEC within the human-clinical population of E. 

coli. The difference between the prevalence of ExPEC in the Nottingham human-clinical and non-

human populations of E. coli revealed in this study is statistically significant (66.9% prevalence 

in human-clinical vs 8.6% prevalence in non-human; p < 0.0001, two tailed Fisher’s test). This 

highlights the possibility that an obvious non-human reservoir of human ExPEC does not exist 

and therefore, the non-human population of E. coli is unlikely to contribute significantly to the 

weight of human ExPEC infections, in comparison to the human-clinical population E. coli. 
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Figure 5.5. Distribution of ExPEC virulence-associated genes among the population of 136 E. coli strains 

isolated from human-clinical samples in Nottingham. Human-clinical E. coli genomes (Table 5.1) were 

mass screened for VAG carriage, by running the ABRicate bioinformatics tool to scan the Virulence Factors 

Database. The presence of two or more of the following VAGs were used to define the ExPEC pathotype: 

papA and/or papC; afa/dra; kpsMT II; iutA; and sfa/foc. VAGs are mapped onto the maximum-likelihood 

phylogenetic tree as red-coloured bars and strains identified as ExPEC are shown in green. ST designations, 

as determined by in silico MLST, are also indicated on the tree. The difference in ExPEC prevalence between 

human-clinical and non-human E. coli is statistically significant (66.9%, human-clinical vs 8.6%, non-human; 

p < 0.0001, two-tailed Fisher’s test). 
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5.3.4. Distribution of antimicrobial resistance genes among human-clinical E. coli  

In chapter 4, in silico antimicrobial resistance gene profiling revealed a diverse range of 

resistance determinants detected in the Nottingham non-human population of E. coli, which 

corresponded to 8 different antibiotic classes (Fig. 4.6; section 4.3.6). However, contrary to 

previous reports of MDR E. coli consistently being reported from the environment and food 

sources, a very low prevalence of ESBL genes was observed in the non-human population of E. 

coli. This suggests that multidrug resistance to the extended spectrum of β-lactam antibiotics 

likely occurs at a very low frequency. To compare the prevalence of antimicrobial resistance 

genes in the human-clinical population with that of the non-human population, all 136 human-

clinical E. coli genomes were also screened for the presence of acquired antimicrobial resistance 

genes. This was achieved in silico, by running the bioinformatics pipeline ABRicate, which scans 

the ResFinder database to generate antibiotic resistance gene profiles for each isolate (Fig. 5.6).  

With regards to the human-clinical population of E. coli, a total of 51 different resistance 

determinants were identified, compared to 46 genes identified in the non-human population. 

These genes corresponded to 11 different antibiotic classes, 8 of which were identified in the 

non-human population, and 3 additional classes: polymyxins, quinolones, and glycopeptides 

(vancomycin). Noticeable similarities between the two populations would include the high 

prevalence of aminoglycoside resistance genes. The streptomycin resistance genes strA, strB, 

aadA1, and aadA5 were detected at high frequencies throughout the human-clinical population. 

Additionally, a high prevalence of β-lactam (blaTEM-1B), sulphonamide (sul1 and sul2), and 

tetracycline (tet(A), tet(B), and tet(34)) resistance genes were reported among human-clinical 

isolates, similar to the non-human population of E. coli. On the other hand, some observable 

differences were also noted between the acquired resistance gene profiles of both populations. 

The human-clinical population revealed a higher prevalence of chloramphenicol resistance 

genes, particularly catA1 and catB3, which were identified in 26.5% of all human-clinical isolates, 

compared to the lower prevalence (3.9%) among non-human E. coli isolates. Furthermore, there 

is a clear contrast between the frequencies of trimethoprim resistance genes observed for both 

populations. The prevalence of dfr alleles, which confer resistance to trimethoprim, was 

generally low for the non-human population, whilst a high prevalence of dfr gene types was 

identified among human-clinical isolates, in particular dfrA17 (33% prevalence), which has 

frequently been reported in clinical E. coli isolates (Seputiene et al., 2010). This correlates well 

with the high level of phenotypic trimethoprim resistance observed for human-clinical isolates 

of E. coli in a previous NTU-based study (Croxall et al., 2011b). Additionally, the macrolide 

resistance gene mph(A), which was detected in only two isolates of the non-human population, 

was considerably more prevalent in the human-clinical population (29.4% of isolates). However, 
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additional macrolide resistance genes (mph(B), Inu(F), Inu(B), and Isa(A)) present in the non-

human population were not detected in the human-clinical population. This may suggest that 

although E. coli are intrinsically resistant to macrolide antibiotics (Gomi et al., 2017b), there is a 

disparity in the type of macrolide resistance genes that are acquired and conserved in both 

populations, perhaps due to the selective pressures that they encounter. A noticeable pattern 

that can be observed from the antimicrobial resistance gene profiles of the human-clinical 

population is the concentration of genes in the ST131 clade of phylogroup B2 (Fig. 5.6). These 

isolates demonstrate a high prevalence of all the major resistance determinants associated with 

this population, in particular aadA1 and aadA5, blaCTX-M-15, blaOXA-1, mph(A), sul1, and dfrA17. 

This may suggest that human-clinical ST131 in this population is likely to be comprised of mainly 

ST131 clade C isolates, which is the most dominant lineage (currently up to 80% of global ST131 

belong to clade C) (Nicolas-Chanoine, Bertrand and Madec, 2014) and is often associated with 

blaCTX-M-15 carriage.  

One of the significant observations made between the two populations is the appreciable 

difference in prevalence of ESBL genes. Results from this study have revealed a very low 

prevalence of ESBL genes in the non-human population of E. coli, through molecular detection 

by multiplex PCR assays of 230 isolates (in section 4.3.2 of chapter 4), and confirmed by in silico 

antimicrobial resistance gene profiling of the 128 sequenced non-human E. coli genomes (in 

section 4.3.6 of chapter 4). While the emergence and dissemination of the CTX-M family of ESBLs 

among E. coli within the community is of particular concern, the blaCTX-M family of genes could 

not be detected in the non-human population of E. coli. By contrast, however, blaCTX-M type ESBL 

genes were identified in 21.3% of all human-clinical E. coli isolates (Fig. 5.6), with blaCTX-M-15 being 

the most prevalent ESBL gene (present in 20.6% of all isolates). Furthermore, blaOXA genes, 

namely blaOXA-1 and blaOXA-10, were identified in only 1.6% of non-human E. coli isolates analysed, 

whereas blaOXA-1 predominated in 21.3% of all human-clinical isolates analysed, indicating a 

significant difference between the two populations (1.6% vs 21.3%; p < 0.0001, two tailed 

Fisher’s test). SHV-type ESBLs, which were not detected in the non-human population, were less 

prevalent than the other ESBLs and were identified in only 2.9% of all human-clinical isolates. 

However, the high prevalence of blaCTX-M and blaOXA genes in the Nottingham human-clinical 

population of E. coli is consistent with previous reports of ESBLs being commonly detected in 

human-clinical isolates (Kallonen et al., 2017; Alhashash et al., 2013; Croxall et al., 2011b; Lau et 

al., 2008), suggesting that these isolates may act as reservoirs for ESBLs. The absence of blaCTX-

M-carrying plasmids in the non-human population of E. coli analysed would indicate that 

horizontal transfer of such genetic elements between isolates from non-human sources occurs 

at low frequencies. This would suggest that non-human isolates of the Nottingham E. coli 
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population do not readily encounter ESBL-producing strains of the human-clinical population, 

and horizontal gene transfer and recombination between the two populations are likely to be 

limited. 

 

 

Figure 5.6. Distribution of antibiotic resistance gene profiles across the population of 136 E. coli strains 

isolated from human-clinical samples in Nottingham.  

The genomes of the 136 human-clinical E. coli strains included in the study population were mass screened 

for antibiotic resistance gene carriage, by running the ABRicate bioinformatics tool using the ResFinder 

database. Presence of resistance determinants are shown on the phylogenetic tree as purple-coloured bars 

and are grouped by antibiotic class. ST designations, as determined by in silico MLST, are also indicated 

next to the taxa on the tree. The human-clinical population showed higher prevalence of chloramphenicol 

and trimethoprim resistance genes, in addition to ESBLs (blaCTX-M and blaOXA), when compared to the non-

human population (section 4.3.6, Fig. 4.5).  
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5.3.5. Phylogenetic analyses of the E. coli lineages ST131 and ST648 

5.3.5.1.  E. coli ST131  

Of the limited number of clinically significant sequence types identified in the non-human 

population of E. coli, only a single strain belonging to the ST131 clonal group was isolated from 

river water samples. The ST131 lineage of extraintestinal pathogenic E. coli has been rapidly 

globally disseminated to become the dominant MDR strain of E. coli from urinary tract and 

bloodstream infections, across the globe (Banerjee and Johnson, 2014). The phylogenetic 

structure of the ST131 lineage consists of three distinct clades (Petty et al., 2014). These are 

defined as clades A, B, and C, of which clade C, also known as H30Rx, is associated with the rapid 

expansion and global dissemination of MDR isolates carrying the blaCTX-M-15 ESBL gene. Core 

genome phylogenetic analysis of the human-clinical and non-human populations of E. coli (Fig. 

5.4) did not provide significant genomic distinction between strains belonging to the same clonal 

group. To gain further resolution between closely related strains found in both human-clinical 

and non-human sources, these strains must be analysed in a wider context of strains within the 

same clonal group.  

To determine the position of the single non-human ST131 isolate from this study in a wider 

population of the ST131 lineage, it was included in a global collection of 242 E. coli ST131 

genome sequences, from multiple ecosystems (Table 5.2). In addition to the river water isolate, 

125 were avian (wild birds), domesticated animal (cats and dogs), livestock (cattle), and human-

clinical isolates, sequenced as part of a recent study by McNally et al. (2016a); 102 were human-

clinical isolates from a previous phylogenomic study (Petty et al., 2014); and the remaining 14 

were human-clinical isolates obtained from the NTU Pathogen Research Group strain collection 

(unpublished). A core genome alignment and maximum likelihood phylogeny was obtained from 

localised co-linear blocks (length = 3,727,932 bp, total SNPs = 287,012) for all 242 genomes, 

which confirmed the 3-clade structure of E. coli ST131, as previously described (Fig. 5.7). This 

analysis revealed that the river water strain (GD45) had clustered with clade B, which appears 

to be the most genetically diverse clade, as indicated by longer branch lengths and all isolate 

sources are represented in this clade (Fig. 5.7). It is therefore important to note that GD45 is not 

a clade C strain, which is the most globally dominant lineage. Global longitudinal studies 

revealed that clade B was predominant among ST131 before the 1990s, however, since the 

2000s clade C has become the most dominant lineage with up to 80% of global ST131 belonging 

to clade C (Nicolas-Chanoine, Bertrand and Madec, 2014). Clade C is mostly fluoroquinolone-

resistant and is often associated with carrying the ESBL gene blaCTX-M-15, whilst clade B is most 

often fluoroquinolone-susceptible and rarely carries plasmids with blaCTX-M-15. This is consistent 
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with the GD45 strain isolated in this study, which is ESBL-negative. Given the position of GD45 

within clade B, it can be deduced that this isolate is not associated with the lineage of ST131 that 

is currently responsible for the majority of extraintestinal infections in humans and is therefore 

unlikely to be of significant concern to human health.  

 

 

 

Figure 5.7. Maximum likelihood SNP-based phylogenetic tree of 242 E. coli ST131 isolates.  

A global collection of ST131 strains isolated from humans, wild birds (avian), dogs and cats (domesticated 

animals), cattle (livestock), and river water are indicated by coloured bars at the tips of the tree. The 

phylogeny was inferred from a core genome alignment of all strains (length = 3,727,932 bp, total SNPs = 

287,012, 242 genomes) constructed using Parsnp. The phylogenetic tree was visualised and edited using 

iTOL. The names of the taxa correspond to those listed in Table 5.2. The phylogenetic clades A, B, and C are 

indicated by colour coding of the branches and the ST131 strain isolated from river water in this study 

(GD45) is highlighted in blue within clade B.  
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5.3.5.2.  E. coli ST648 

ST648 is another ExPEC-associated sequence type, in addition to ST131, which is associated with 

worldwide dissemination of E. coli producing the CTX-M β-lactamase (Pitout, 2012). ST648, 

which belongs to phylogroup F, has been identified previously in livestock and companion 

animals (Ewers et al., 2012). Of particular concern, are ST648 strains with an ESBL phenotype 

which have been observed globally in human patients, and more incidentally from domesticated 

and wild animals in Europe and Asia (Guenther, Ewers and Wieler 2011; Guenther et al., 2010; 

Zong and Yu, 2010; Cortes et al., 2010). The frequent occurrence of CTX-M-15-type ESBLs in 

ST648 isolates, among samples from predominantly companion animals and horses, highlights 

the widespread dissemination of this ESBL-producing genotype, which has been detected in 

livestock, wildlife, and humans. A previous study by Ewers and co-authors (2014) suggested that 

the prevalence of CTX-M-15 – a predominantly human-linked β-lactamase type – among 

companion animal ST648 isolates indicates that a mutual exchange of such strains between 

clinical, community, and environmental surroundings is likely.  

In the present study, only a single isolate of ST648 was identified among the non-human 

population of E. coli analysed. To determine the phylogenetic relation of this strain within the 

context of a wider population of the ST648 lineage, it was included in a European collection of 

89 E. coli ST648 genome sequences, from multiple host sources (Table 5.3). In addition to the 

river water isolate, 88 strains were isolated from different hosts including humans, companion 

animals (cats, dogs, and horses), and wild birds, across Western Europe. A core genome 

alignment and maximum likelihood phylogeny was obtained from localised co-linear blocks 

(length = 4,002,826 bp, total SNPs = 208,172) for all 89 genomes (Fig. 5.8). The phylogeny reveals 

three predominant clades that are observable in the population, with the Nottingham river-

water isolate (GD49) positioned within the population of European isolates (not forming a 

separate branch). Annotation of identified CTX-M types onto the tree exposes a predominance 

of the blaCTX-M-15 ESBL type in the population. An overwhelming majority of approximately 88% 

(78/89) of the population were found to harbour a CTX-M ESBL gene, with blaCTX-M-15 being 

detected in roughly 72% (64/89) of the population. The 14 other CTX-M-positive isolates were 

found to carry blaCTX-M-1, blaCTX-M-3, blaCTX-M-14, and blaCTX-M-32. There were only 11 isolates in the 

population in which CTX-M type ESBLs could not be detected, including GD49 isolated from the 

current study. Interestingly, GD49 clusters with the clade of primarily CTX-M-negative isolates, 

and isolates carrying blaCTX-M-3, blaCTX-M-14, and blaCTX-M-32 were also present, whilst only two 

carriers of blaCTX-M-15 were identified within this clade. The majority of CTX-M-15-producing 

isolates therefore constitute the other two clades within the population. This suggests that a 

level of genetic diversity exists within this population of ST648, where strains have lost their CTX-
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M-associated plasmid or acquired different CTX-M-associated plasmids, perhaps due to 

ecological separation and encountering a change in environment.  

It is also interesting to note that despite the geographical separation between the ESBL-negative 

GD49 strain (isolated from Nottingham) and the rest of the population, consisting of primarily 

MDR isolates from animals (isolated from mainland Western Europe), GD49 still falls within the 

tree indicating its phylogenetic relation to the European population of ST648. This would 

support a widespread dispersion of this sequence type, as has been reported globally (Guenther 

et al., 2012; Cortes et al., 2010; Sidjabat et al., 2009), and it may also imply that the ST648 strain 

isolated from the environment could originate from humans, companion animals, or livestock. 

Based on the association of the blaCTX-M-15 ESBL type in ST648 isolates with human-clinical cases 

observed in previous studies (Zong and Yu 2010; Cortes et al., 2010; Nicolas-Chanoine et al., 

2008), it would seem unlikely that ST648 isolates that do not possess a CTX-M-carrying plasmid, 

in particular blaCTX-M-15, can be attributed to the global expansion of ST648 in humans. Having 

identified an ESBL-negative ST648 strain in the non-human (river water) population of E. coli in 

this study, it may suggest that ST648 strains in this population pose little clinical significance to 

humans. 

 

  



   

172 
 

 

 

Figure 5.8. Maximum likelihood SNP-based phylogenetic tree of 89 E. coli ST648 isolates.  

A European collection of ST648 strains isolated from humans, companion animals (cats, dogs, and horses), 

wild birds, and river water are included in the phylogenetic tree. The phylogeny was inferred from a core 

genome alignment of all strains (length = 4,002,826 bp, 89 genomes) constructed using Parsnp. The 

phylogenetic tree was visualised and edited using iTOL. blaCTX-M carriage, as determined by in silico 

resistance gene screening using ABRicate, is annotated on the tips of the tree as coloured bars. The names 

of the taxa correspond to the strains listed in Table 5.3. The single ST648 strain isolated from river water in 

this study (GD49) is highlighted in blue on the tree. Five different CTX-M types were identified in the 

population: blaCTX-M-1, blaCTX-M-3, blaCTX-M-14, blaCTX-M-15, and blaCTX-M-32. blaCTX-M-15 was found to be the most 

frequently detected CTX-M type, whilst GD49 was one of the few strains that did not possess a CTX-M-

carrying plasmid. 
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5.3.6. Comparative genomic analyses  

5.3.6.1. Pan-genome approach to compare human-clinical and non-human E. coli 

Comparative analyses between the non-human and human-clinical populations of E. coli in this 

study has thus far suggested two distinct populations of E. coli in Nottingham. If this is the case, 

then significant levels of genetic exchange would not be expected between the two populations. 

To be able to accurately determine and compare the entire gene contents of multiple genomes, 

a pan-genome approach was applied when comparing the human-clinical and non-human 

populations of E. coli in this study. Pan-genome analysis offers a higher resolution than core 

genome phylogeny and MLST typing methods, as it analyses the entire bacterial genome (Hall, 

Ehrlich and Hu, 2010). Since there are only a limited number of clinically relevant STs present in 

the non-human population, all strains were included in the pan-genome to look for any patterns 

of gene flow between the two populations. Determination of the core and pan-genomes of all 

264 human-clinical and non-human E. coli strains of the Nottingham study population was 

achieved using the Roary pan-genome bioinformatics pipeline (Page et al., 2015). 

Overall, the pan-genome of the Nottingham E. coli population was composed of 69,645 genes, 

of which, only 596 genes were represented at least once in ≥ 95% of strains (Fig. 5.9A). Despite 

the presence of 10 cryptic clade Escherichia strains in the population, this would indicate a 

species with a large dispensable/accessory genome, reflecting the diversity of E. coli, with only 

a small proportion of core genes conserved for basic biological and phenotypic functions. This 

was confirmed by re-running the pan-genome analysis on all E. coli sensu stricto strains (n = 254) 

by excluding the 10 cryptic Escherichia strains (Fig. 5.9B). The analysis revealed that the number 

of core genes represented at least once in ≥ 95% of strains remained unchanged (596 core 

genes), suggesting a very small core genome for the species. A large number of strain-specific 

genes are therefore present in the E. coli pan-genome, as well as genes encoding species 

diversity and providing selective advantages such as niche adaptation, antibiotic resistance, and 

virulence factors. Of the total number of genes which make up the pan-genome of the study 

population, 29,139 genes were found to be unique strain-specific genes (a gene possessed by 

exactly one isolate), and the frequency of gene occurrence plot for the pan-genome of all 264 

strains (Fig. 5.9A) indicates that a minimal number of core genes are shared by all strains of the 

study population. Determining the level of horizontal gene transfer of dispensable accessory 

genes between the two populations would provide an insight into the frequency of strain 

movement, and thus, whether the human-clinical and non-human populations of E. coli overlap. 

To investigate this, analysis of the accessory genomes of all strains is required. 
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Figure 5.9. (A) Core and pan-genome frequency plots of all 264 E. coli and cryptic clade Escherichia 

strains isolated from human-clinical and non-human samples in Nottingham. (B) Core and pan-genome 

frequency plots of all 254 sensu stricto E. coli strains isolated from human-clinical and non-human 

samples in Nottingham. 

The box and whisker plots display the number of genes on the 𝑦-axis against the number of genomes on 

the 𝑥-axis. The pan-genome was determined using the Roary pan-genome bioinformatics pipeline and the 

plots were generated using the R plots (ggplot2) flag. As the number of genomes increases, the total 

number of genes in the pan-genome increases (shown in red). The pan-genome analysis was first run on 

all 264 E. coli genomes, inclusive of 10 cryptic clade Escherichia strains (A). A total of 69,645 genes were 

identified in the pan-genome of all 264 strains, of which, only 596 genes were represented at least once in 

≥ 95% of strains (shown in blue as ‘conserved genes’). The pan-genome analysis was re-run on the E. coli 

population, excluding the 10 cryptic clade Escherichia strains (B). A total of 66,477 genes were identified in 

the pan-genome of 254 strains, while the number of core genes represented at least once in ≥ 95% of 

strains remained unchanged (596 core genes). 
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5.3.6.2. Comparisons of the accessory genomes of human-clinical and non-human E. coli 

Comparisons between the accessory genomes of all 264 human-clinical and non-human E. coli 

strains would allow for a determination of the proportion of accessory gene clusters or loci 

unique to either population, as well as the proportion that is shared between both populations. 

Comparing the accessory genomes of human-clinical and non-human E. coli isolates would 

provide an insight into whether gene sharing occurs frequently or is restricted between the two 

populations. Additionally, accessory gene sharing between strains of the two populations may 

provide some indication of whether strain movement occurs readily between the two 

populations. For this purpose, genes considered to be core for all strains were excluded from 

this analysis to allow for accessory genome comparisons. Genes present in at least 85% of strains 

conforms to the definition of “soft core” genes (Gordienko, Kazanov and Gelfand, 2013), and it 

was therefore decided to use this as exclusion criteria for this particular analysis. The accessory 

genomes of all strains were obtained by excluding genes present in ≥ 85% of strains from the 

pan-genome matrix, which would result in the removal of primarily core genes from the pan-

genome. To confirm that the excluded genes represent predominantly core/soft core genes of 

the E. coli genome, the gene product functions of these genes were evaluated and their 

proportions are presented in Figure 5.10. It was revealed that the majority of these genes 

encode for basic biological and phenotypic functions, such as DNA replication, lipid biosynthesis, 

cell wall and plasma membrane maintenance, motility, respiration, cell division, hydrolase 

activity, and stress response. The most common gene functions encoded by these genes 

included transport, protein biosynthesis and general metabolism of the cell. Gene functions for 

cell adhesion (1.32%), antibiotic resistance (0.74%), enzyme inhibitors (0.37%), and antibiotic 

biosynthesis (0.16%) were also reported, however these are negligible in comparison to the 

major gene functions identified. This analysis confirmed that the excluded genes predominantly 

encode for the basic biochemical and phenotypic functions associated with the core genome of 

E. coli, justifying the exclusion of these genes from further analysis.  
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Figure 5.10. Functional categories of genes present in ≥ 85% of all 264 E. coli strains isolated from 

human-clinical and non-human samples in Nottingham.  

The graph shows the distribution of functional categories for genes present in ≥ 85% of the 264 genomes 

included in the pan-genome analysis (section 5.3.6.1), with percentage prevalence of genes in each 

category shown on the 𝑥-axis. Genes were identified by creating a pan-genome of all genomes, using the 

Roary bioinformatics pipeline. The graph confirms that these genes predominantly encode for the basic 

biochemical and phenotypic functions associated with core/soft core genes of E. coli, thus justifying the 

exclusion of these genes for accessory genome analyses.  
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The resulting accessory gene presence/absence matrix was analysed using the Roary 

query_pan_genome script, to identify the genetic loci uniquely associated with the human-

clinical population or the non-human population, as well as genes that are associated with both 

populations of strains. The total number of genes unique to either population and the total 

number of shared genes between the two populations are presented in the Venn diagram (Fig. 

5.11). The analysis revealed that removal of “soft” core genes (present in ≥ 85% of strains) 

resulted in an accessory genome comprising 64,835 genes, representing a large proportion of 

the total pan-genome. Of the total number of accessory genes detected, 12,311 genes were 

unique to human-clinical strains and 31,468 genes were identified among non-human E. coli 

strains exclusively, whilst a total 21,056 accessory genes were present in both populations. This 

corresponded to ~40% of genes identified in non-human E. coli and ~63% of genes identified in 

human-clinical E. coli being shared between the two populations. Scanning the gene functions 

of the 21,056 accessory genes shared between the two populations revealed that 150 

antimicrobial resistance genes and 785 phage-associated elements were identified. In the 

context of shared accessory genes, these numbers are relatively high indicating that there is 

likely a high number of mobile genetic elements present in both populations. This suggests that 

gene exchange between the two populations does occur and the extent of this should be 

investigated further. Although numerous accessory genes were identified as being unique to 

either population, the frequency of gene occurrence plots for genes unique to the human-

clinical (Fig. 5.12A) and non-human (Fig. 5.12B) populations indicate a large proportion of strain-

specific genes for each population. Of the 12,311 genes unique to the human-clinical population, 

8,879 genes were strain-specific genes, whilst 20,039 of the 31,468 genes unique to the non-

human population were also strain-specific genes. This equates to 72% and 63% of unique genes 

being strain-specific genes in the human-clinical and non-human populations, respectively. The 

frequency of gene occurrence plot for the 21,056 genes present in both populations (Fig. 5.12C) 

reveals a more even distribution of accessory genes, with the number of shared genes 

decreasing as the number of genomes included increases. This was expected given that these 

genes are, by definition, not strain-specific. The majority of the shared genes would appear to 

be ST- or clade-specific genes, while only 17 common genes are prevalent in a maximum of 209 

out of 264 genomes across the two populations. Due to the high genomic diversity of strains 

included in the study population, the number of unique genes detected in each population is 

skewed towards strain-specific genes, which does not provide a good indicator of how 

genetically distinct human-clinical and non-human E. coli are as populations. On the other hand, 

these observations would suggest that examining the gene set of shared accessory genes 

between the two populations in further detail would provide a higher resolution for genomic 

comparison of strains isolated from human-clinical and non-human sources.  
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Figure 5.11 Comparison of population-unique accessory genes and shared accessory genes between the 

human-clinical and non-human populations of E. coli in Nottingham. 

The Venn diagram displays the number of genes unique to the non-human population of E. coli (left, blue), 

unique to the human-clinical population of E. coli (right, red), and shared between the two populations 

(centre, mauve). The total number of accessory genes comprising the two populations is shown in green. 

The accessory genome was determined by generating a pan-genome matrix using the Roary pipeline and 

excluding genes present in ≥ 85% of all 264 genomes included in the analysis. Unique and shared genes 

were identified by running the Roary query_pan_genome script on the accessory gene presence/absence 

matrix. Of the total 64,835 accessory genes detected, 12,311 genes were unique to human-clinical strains 

and 31,468 genes were identified among non-human E. coli strains exclusively, whilst 21,056 genes were 

identified in both populations. This corresponded to ~40% of genes identified in non-human E. coli and 

~63% of genes identified in human-clinical E. coli being shared between the two populations. 
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Figure 5.12. Frequency of gene occurrence plots for population-unique and shared accessory genes for 

the human-clinical and non-human populations of E. coli in Nottingham. 

The graphs plot the number of genes on the 𝑦-axis against the number of genomes on the 𝑥-axis for 

accessory genes unique to the human-clinical population of E. coli (A), unique to the non-human population 

of E. coli (B), and shared between the two populations (C). The graphs indicate a large proportion of unique 

genes being specific to one or a few genomes in each population. The majority of shared genes may 

represent ST or clade-specific genes, while only 17 genes are prevalent in a maximum of 209 of the 264 

genomes across the two populations. 
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The number of accessory genes identified as present in both populations (21,056) may be 

considered high relative to the numbers of unique genes reported (Fig. 5.11), particularly for the 

human-clinical population, so statistical analysis was performed to investigate this further. The 

probability of a gene being identified from the non-human population is the proportion of 

shared and non-human-unique genes out of the total, which is 81% ([21,056 + 31,468 / 64,835] 

× 100). On the other hand, the probability of a gene being identified from the human-clinical 

population is 51.5% ([21,056 + 12,311 / 64,835] × 100), which corresponds to the proportion of 

shared and human-clinical unique genes out of the total accessory genome. Assuming that these 

two probabilities are independent of one another, the expected probability of encountering a 

gene identified in both populations can be derived by multiplying the two proportions ([81% × 

51.5%] / 100), which gives an expected probability of 41.7% of identifying a gene present in both 

populations. However, the observed frequency of genes shared between the human-clinical and 

non-human populations reported here is 32.5% ([21,056 / 64,835] × 100). Therefore, it can be 

deduced that the observed frequency of shared genes equates to approximately 78% of the 

expected frequency, and the probability of encountering a gene that is present in both 

populations is 9.2% lower than the expected probability.  

The chance of a gene being identified in multiple groups is not independent of the number of 

genomes the gene is in. Therefore, to provide a statistically robust comparison between the 

observed and expected proportions of genes shared between the human-clinical and non-

human populations, a permutation test was carried out with pseudo-random re-sampling of the 

population without replacement of genomes. This approach took into account gene frequencies, 

and all genes that were only present once in each population (i.e. strain-specific genes) were 

excluded from the analysis. Permutations were carried out 1,000 times iterating for each gene 

category, and each permutation involved picking the same number of genomes as there are 

genes in that category. One-tailed empirical p-values were calculated to compare the expected 

frequencies of gene sharing to those of the observed data set. The simulated proportions are 

plotted as histograms on the graphs of Appendix 6, with the observed proportions mapped on 

the graphs for comparison. It is clear from the graphs that the observed data shows far less gene 

sharing than is expected by chance. The majority of gene categories for genes present in up to 

80 genomes show significantly less gene sharing than expected (p = 0). Only when the number 

of genomes is quite high (> 80) does this situation change and the observed proportions 

correlate with those of the simulated data. 

Statistical analysis of the observed data suggests that there is perhaps a restriction in the 

amount of gene sharing that takes place between the human-clinical and non-human 

populations, presumably because of the ecological barriers that exist between the two 
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populations. Environmental selection pressures are likely to play a part in the differences in gene 

content observed between the two populations. Infectious human ExPEC strains that have 

infiltrated the urinary tract and bloodstream are generally believed to originate from the faecal 

flora (Smith, Fratamico and Gunther, 2007). The environmental conditions of the human 

intestines, urinary tract, and bloodstream are considerably different from those encountered by 

E. coli that inhabit the wider environment, such as river and surface waters. These conditions 

would impose different selection pressures on the bacteria and therefore the evolution of E. coli 

in non-human environments is likely to be driven by a need to survive and proliferate under 

extreme environmental stresses, such as desiccation, temperature variation, and osmotic 

pressure, in addition to surviving transit in food and water (Boor, 2006). E. coli strains of the 

non-human population may have acquired many new advantageous genes, via horizontal gene 

transfer, from the large genepool of Enterobacteriaceae in the wider environment, which may 

explain the genetic differences observed between the non-human and human-clinical 

populations of E. coli. Considering that the accessory genome also encodes for the strain 

diversity within a population of bacteria, the observation of non-human E. coli genomes 

possessing more accessory genes than human-clinical strains is consistent with the high level of 

genomic variation of these strains, as revealed through phylogenetic analyses in this study.  

To explore in more detail the distribution of accessory genes detected in both populations, the 

accessory gene presence/absence matrix of shared genes was used to annotate the core 

genome phylogenetic tree, which was visualised with associated metadata using Phandango 

(Hadfield et al., 2018), as shown in Figure 5.13. It is noticeable that there are patterns within the 

accessory gene profiles which appear to correlate with the ST clusters on the phylogenetic tree. 

The patterns are not entirely clear-cut for all STs in the population but are most apparent for STs 

with multiple representative isolates, such as STs 131, 95, 73, 69, 115, 117, 1551, 12, 354, and 

648. On closer inspection of the accessory gene profiles for certain STs, some observable 

differences between strains isolated from human-clinical and non-human samples were noted. 

One example would include ST69, represented by both human-clinical and non-human strains, 

in which three strains isolated from non-human samples (I2-18, M3-27, and I2-20) appear to be 

distinct from the human-clinical strains in this clonal group, as they share fewer accessory genes 

with the human-clinical population. This is demonstrated to a greater extent in the ST10 cluster, 

which not only exhibits the highest diversity of strains among all STs, but also reveals a difference 

in the accessory gene profiles between human-clinical and non-human strains. The majority of 

non-human strains in this clonal group (AFR-12, AFR-22, AFR-6, AFR-4, M2-3, M2-2, M2-8, M2-

4, and I1-24) share fewer genes with the human-clinical population, which may suggest limited 

gene flow due to ecological barriers between the human-clinical and non-human population of 
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E. coli in Nottingham. Lineage-specific pan-genome and recombination analyses of human-

clinical and non-human ST69 and ST10 strains is required to assess the extent of gene sharing 

between the two populations in greater detail. This was undertaken in section 5.3.7.  
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Figure 5.13. Distribution of accessory genes in the human-clinical and non-human populations of E. coli in Nottingham.  

The heat map shows the presence or absence of accessory loci from the pan-genome of all 264 sequenced E. coli strains. The genomes are arranged on the 𝑦-axis, according to 

the maximum-likelihood phylogenetic tree shown on the left, with individual loci on the 𝑥-axis. Blue indicates presence of the locus in a strain and white indicates absence. The 

phylogenetic clades are defined by tree branch colouring and STs and sources of isolation are annotated on the tree as coloured bars.
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5.3.7. Pan-genome and recombination analysis of E. coli lineages ST69 and ST10 

Although there are only a limited number clinically relevant STs that are represented in both the 

human-clinical and non-human populations in this study, multiple representative strains of ST69 

and ST10 have been identified among both populations. E. coli ST10 strains are natural 

colonisers of the human gastrointestinal tract and are widespread in the environment. They are 

usually associated with low virulence and antibiotic susceptibility (Manges and Johnson, 2012), 

however, several recent case studies have identified an association of ST10 isolates with human 

disease, ESBL carriage, and livestock (Peirano et al., 2012; Leverstein-van Hall et al., 2011; Cortes 

et al., 2010). The ST69 clonal group, on other hand, is well established among human ExPEC 

infections and ST69 strains have been isolated worldwide from cases of UTI and bacteraemia, 

from both hospital- and community-acquired infections (Kallonen et al., 2017; Dias et al., 2009). 

The presence of these STs in both the human-clinical and non-human populations of E. coli 

analysed in this study warranted further investigation. Pan-genome analysis and detection of 

core genome recombination events was performed exclusively for ST69 and ST10 strains, to 

further compare the gene content of human-clinical and non-human strains, and assess the level 

of genetic exchange occurring between related strains isolated from the two different 

environments.  

5.3.7.1. E. coli ST69 

The pan-genomes of all 14 ST69 strains, identified among the Nottingham human-clinical and 

non-human E. coli populations analysed in this study, were determined using Roary. The 

resulting gene presence/absence matrix was used to annotate the core genome phylogenetic 

tree of ST69, which was visualised with isolate source data (Fig. 5.14). The pan-genome of this 

clonal group comprised 10,673 genes, 3,299 of which were core genes represented at least once 

in all strains. The number of genes identified for the ST69 population in this study represents a 

strikingly large pan-genome for this clonal group. With less than one-third of the pan-genome 

corresponding to core genes, this would indicate a large accessory or variable genome and thus 

highly diversity among the clonal group. Running the Roary query_pan_genome script on the 

pan-genome matrix had identified 2,957 genes unique to non-human strains, 2,194 genes 

unique to human-clinical strains, and 2,223 accessory (non-core) genes shared between ST69 

strains of both populations. The independent probability expectation for shared genes was 

calculated to test the significance of these numbers. The probability of an accessory gene being 

identified from the non-human population is 70.2%, whilst the probability of a gene being 

identified from the human-clinical population is 59.9%. Assuming that these two probabilities 

are independent of one another, the expected probability of encountering an accessory gene 
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identified in both populations is 42%. However, the observed frequency of accessory genes 

shared between the human-clinical and non-human populations of ST69 is 30.1%. It can 

therefore be inferred that the observed frequency of shared genes equates to approximately 

71.7% of the expected frequency, and the probability of encountering a gene that is present in 

both populations is 11.9% lower than the expected probability. The pan-genome 

presence/absence matrix (Fig. 5.14) confirms the findings of the accessory genome analysis 

(section 5.3.6.2) that outside of the core genome, there are noticeable differences in the gene 

profiles that characterise human-clinical and non-human strains of ST69. Most striking are 

strains M3-27, I2-18, and I2-20 isolated from non-human sources, which possess more accessory 

genes than the human-clinical ST69 strains. Interestingly, gene clusters which are circled in green 

in Figure 5.14 are unique to strains I2-18 and I2-20, and additionally, gene clusters circled in 

orange are unique to strain M3-27, which further demonstrates the disparity between these 

strains and the rest of the ST69 population. The fact that these non-human E. coli strains possess 

more accessory genes, as well as many unique genes, would suggest a high frequency of 

acquisition of advantageous genes, possibly from other environmental/non-human strains of 

the Escherichia genus, or other species of Enterobacteriaceae, which may prove to be beneficial 

for the bacteria to survive and proliferate in different environmental conditions.   

The difference in gene profiles observed between human-clinical and non-human ST69 strains 

may also suggest low levels of homologous recombination, due to ecological barriers between 

the two populations. To investigate this notion, regions of genomic recombination were 

detected by running the Gubbins algorithm (Croucher et al., 2015) on a core genome alignment 

of all ST69 genomes (length = 4,069,033 bp; 14 genomes). Any regions of recombination 

detected were visualised as coloured blocks against the phylogenetic tree constructed by 

Gubbins (Fig. 5.15). Blue blocks indicate recombination events that have occurred in a single 

isolate, while red blocks indicate signatures of recombination shared between multiple isolates. 

The horizontal position of the blocks represents their position in the alignment. It is evident from 

this analysis that recombination events unique to individual ST69 isolates are more prevalent 

than recombination events between multiple isolates across the alignment. Recombination 

between ST69 isolates of the human-clinical and non-human populations is rare, as indicated by 

the red blocks (Fig. 5.15). A cluster of human-clinical isolates (U67, B33, B31, and 2286_EC) 

which exhibit the lowest levels of recombination, shared only a single recombination event with 

non-human isolates (I2-18, T3-14, and T3-3), suggesting that these isolates do not inhabit the 

same place at the same time. Another example of limited gene flow between non-human and 

human-clinical strains would include I2-20 and I2-18, isolated from the same retail chicken 

sample, which do not recombine readily with other ST69 isolates in the strain set. Given the 
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suggestion that human-clinical ST69 may have non-human origins, due to reports of ST69 being 

isolated from pork, chicken, and beef (Vincent et al., 2010; Jakobsen et al., 2010), it would be 

reasonable to expect that opportunities for recombination to occur between non-human ST69 

and human-clinical ST69 isolates would be more frequent. However, from the evidence of the 

current study, it can be inferred that only negligible levels of recombination occur between 

human-clinical and non-human E. coli ST69 strains, which would indicate limited gene flow 

between strains of the two populations. This suggests that chance encounters between ST69 

strains of human and non-human origins in the same habitat do not occur frequently, indicating 

that ecological barriers may play a role in limiting the amount of gene sharing that takes place 

between ST69 strains of the two populations. 
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Figure 5.14. Distribution of gene profiles for ST69 E. coli strains isolated from human-clinical and non-

human samples in Nottingham. The heat map shows the presence or absence of every genetic locus from 

the E. coli ST69 pan-genome of 14 sequenced strains (human-clinical, n = 9; non-human, n = 5). The 

genomes are arranged on the 𝑦-axis according to the maximum-likelihood phylogenetic tree shown on the 

left, with individual loci on the 𝑥-axis. Blue indicates presence of the locus in a strain and white indicates 

absence. Sources of isolation are annotated on the tree as coloured bars. The pan-genome matrix appears 

to be totally concordant with the phylogenetic tree, where similar strains have more similar gene profiles. 

It is noticeable that non-human strains generally share fewer accessory genes with human-clinical strains. 

 

 

Figure 5.15. Distribution of core genome recombination events for ST69 E. coli strains isolated from 

human-clinical and non-human samples in Nottingham. Recombination events were predicted by running 

the Gubbins algorithm on a core genome alignment of all 14 human-clinical and non-human ST69 genomes 

(length = 4,069,033 bp). The phylogeny of ST69, as constructed by Gubbins, is shown on the left with source 

of isolation annotated on the tree. For each isolate, blocks representing the regions identified as 

recombination events by Gubbins are indicated by coloured blocks; blue blocks are unique to a single 

isolate while red blocks are shared by multiple isolates. The horizontal position of the blocks represents 

their position in the alignment. The number of genomes for which each recombination event is detected is 

indicated on the graph at the bottom. 
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5.3.7.2. E. coli ST10  

The pan-genomes of all 27 ST10 strains, identified among the Nottingham human-clinical and 

non-human E. coli populations analysed in this study, were constructed. The resulting gene 

presence/absence matrix was annotated on the core genome phylogenetic tree of ST10 with 

isolate source data (Fig. 5.16). It was found that the ST10 clonal group is composed of 19,642 

genes, of which, 882 were core genes represented at least once in all strains. Quite striking is 

the size of the pan-genome of this clonal group, which is noticeably larger than the ST69 pan-

genome (10,673 genes). While only a small proportion (4.5%) of the ST10 pan-genome 

corresponds to core genes, the vast majority would represent accessory genes, some of which 

may play a role in adaptation to special growth conditions, such as those involved in the 

colonisation of new ecological niches. The large gene repertoire of E. coli ST10 would suggest 

that these strains are widespread in nature and have greater access to the global microbial gene 

pool. Roary query_pan_genome analysis identified 13,092 genes unique to non-human strains, 

while only 978 genes were unique to human-clinical strains, and 4,690 accessory (non-core) 

genes were shared between ST10 strains of both populations. The independent probability 

expectation for shared genes was calculated to test the significance of these numbers. The 

probability of an accessory gene being identified from the non-human population is very high at 

94.8%, whilst the probability of a gene being identified from the human-clinical population is 

only 30.2%. If these two probabilities are independent of one another, the expected probability 

of encountering a gene identified in both populations is 28.6%. However, the observed 

frequency of genes shared between the human-clinical and non-human populations of ST10 is 

25%. Therefore, it can be interpreted that the observed frequency of shared genes equates to 

only 87.4% of the expected frequency, and the probability of encountering a gene that is present 

in both populations is 3.6% lower than the expected probability. The pan-genome 

presence/absence matrix (Fig. 5.16) reveals noticeable patterns in the gene profiles for human-

clinical and non-human ST10 strains, which corroborate the findings for ST69 (section 5.3.7.1) 

that genetic differences exist between human-clinical and non-human strains, perhaps due to 

niche adaptation. This pattern is even more prominent for ST10 where the human-clinical strains 

F14W131166-20, B20, B9, U19, F14W091968, F14W127020-13, and F14W127020-20 all possess 

highly diminished accessory genomes in comparison to the non-human strains of the ST10 strain 

set. This is also demonstrated by non-human ST10 strains possessing more unique genes when 

compared to the human-clinical strains. This would indicate that E. coli ST10 is a genetically 

diverse clonal group, and the larger gene pool of non-human E. coli ST10 would suggest that 

these strains typically comprise more genes encoding niche-specific fitness factors, whereas 
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human-clinical ExPEC strains may have undergone several gene loss events as a trade-off for 

enhanced fitness and survival in the bladder and bloodstream. 

Recombination events were also determined to assess the amount of gene flow that occurs 

between human-clinical and non-human ST10 strains. The Gubbins algorithm was run on a core 

genome alignment of all ST10 genomes (length = 2,049,758 bp; 23 genomes), and any regions 

of recombination detected are shown in Figure 5.17. Overall, significantly more recombination 

events were detected between E. coli ST10 strains when compared to ST69, which would be 

expected considering the genetic diversity of the ST10 clonal group. Most of the recombination 

events shared between multiple isolates were detected between non-human strains, 

particularly in two clusters. On the other hand, recombination events unique to the human-

clinical strains appears at much lower levels, and the overall level of detected recombination is 

lower in ST69 and ST10 strains of human-clinical origin. This was confirmed by quantifying the 

number of bases in the detected recombination events for each strain (Table 5.4). Interestingly, 

a cluster of non-human strains (AFR-12, AFR-6, AFR-22, M2-3, and AFR-4) do not recombine at 

all with the rest of the population, and only a limited amount of recombination occurs between 

these strains, in addition to these strains being more distantly related to the other ST10 strains, 

which may suggest that they form part of a subclade of the ST10 clonal complex. Furthermore, 

the number of SNPs falling within predicted recombination events were quantified (Table 5.4), 

and for the majority of non-human strains, these were generally lower than the number of base 

substitutions falling outside of predicted recombination events (i.e. those arising by point 

mutation), which would perhaps suggest lowered recombination levels between these strains 

and the rest of the population. Considering the high levels of recombination detected within the 

non-human E. coli population of ST10 strains, the amount of recombination observed between 

non-human and human-clinical strains would appear to be reduced. This is most noticeable for 

human-clinical strains F14W091968, F14W127020-13, and F14W127020-20, which exhibited 

much lower levels of shared recombination events with the rest of the strain set (Fig. 5.17; Table 

5.4). Given the common reporting of E. coli ST10 in both community and hospital settings, as 

well as in non-human sources such as food animals and the environment, it would be reasonable 

to expect that human-clinical and non-human strains of this ST may come into close contact by 

chance occurrence, and therefore opportunities for recombination would be more frequent.  
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Figure 5.16. Distribution of gene profiles for ST10 E. coli strains isolated from human-clinical and non-

human samples in Nottingham. The heat map shows the presence (blue) or absence (white) of every 

genetic locus from the pan-genome of 23 E. coli ST10 strains (human-clinical, n = 7; non-human, n = 16). 

The genomes are arranged on the 𝑦-axis according to the phylogenetic tree shown on the left, with 

individual loci on the 𝑥-axis. Sources of isolation are annotated on the tree as coloured bars. Human-clinical 

strains share noticeably fewer accessory genes with the non-human strains of the ST10 strain set. 

 

 

Figure 5.17. Distribution of genomic recombination events for ST10 E. coli strains isolated from human-

clinical and non-human samples in Nottingham. Recombination events were predicted by running 

Gubbins on a core genome alignment of all 23 ST10 genomes (length = 2,049,758 bp). The phylogeny 

constructed by Gubbins is shown on the left, with isolate source annotated on the tree. Regions of 

recombination are indicated by horizontal coloured blocks for each genome. Blue blocks are unique to a 

single isolate, while red blocks are shared by multiple isolates. The number of genomes for which 

recombination events are detected is indicated on the graph at the bottom. 
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Table 5.4. Length of genome of recombinant origin within ST10 E. coli strains isolated from 

human-clinical and non-human samples in Nottingham. 

 

Recombination events were predicted by running Gubbins on a core genome alignment of all 23 ST10 

genomes (length = 2,049,758 bp). The number of bases in recombination blocks is shown for each node, 

which represents the total length of all recombination events, as quantified by the Gubbins algorithm (Fig. 

5.17). The total number of recombination blocks reconstructed onto each branch was also quantified, as 

well as the number of base substitutions reconstructed onto the branch that fall within a predicted 

recombination. For the majority of non-human strains, the number of base substitutions identified within 

recombination events is generally lower than those falling outside of predicted recombination events (i.e. 

those arising by point mutation), which may suggest lowered recombination levels between these strains 

and the rest of the population.  

  

Node 
Bases identified within 

recombination events (bp) 
No. of recombination 

blocks 

No. of SNPs inside 
recombinations 

(out of total SNPs) 

F14W091968 94,307 9 598 (814) 

F14W127020-13 94,795 0 0 (0) 

F14W127020-20 94,795 0 0 (75) 

ELU39 149,857 9 427 (677) 

EPD30 897,655 119 5,942 (10,316) 

I2-1 813,606 0 0 (81) 

I1-21 813,606 0 0 (0) 

T1-61 682,182 46 4,227 (4,806) 

GU34 524,200 0 0 (0) 

F14W131166-20 403,350 25 1,385 (1,637) 

I1-24 441,277 14 355 (857) 

I1-17 422,806 0 0 (0) 

I1-19 422,806 1 4 (46) 

I1-16 422,816 1 7 (46) 

M2-2 454,752 3 73 (713) 

M2-8 477,053 9 204 (1,384) 

M2-4 451,121 0 0 (0) 

ELU103 422,797 0 0 (0) 

U19 241,201 9 1,136 (1,387) 

T1-73 180,500 0 0 (0) 

B20 182,187 0 0 (0) 

B9 182,187 0 0 (0) 

AFR-12 45,881 16 514 (3,517) 

AFR-6 6,264 0 0 (0) 

AFR-22 24,198 11 283 (712) 

M2-3 37,391 0 0 (0) 

AFR-4 59,365 12 266 (1,646) 



   

192 
 

5.4. Conclusions 

What we currently know about the ecology of E. coli is based on data from studies of 

representative isolates. A large amount of data has been collected for antimicrobial-resistant E. 

coli isolated from human-clinical cases. In chapter 4, genomic analyses of a large, unbiased 

population of E. coli isolated from non-human sources revealed a population of significant 

genomic diversity, with a low prevalence of specific human ExPEC and multidrug-resistant 

lineages. The population structure of E. coli responsible for human extraintestinal infection is 

well-described in the current literature. Human-clinical ExPEC strains have often been 

characterised at the sequence type level by MLST, and a small number of STs, namely ST69, 

ST73, ST95, and ST131, were found to predominate among cases of UTIs and bloodstream 

infections (Kallonen et al., 2017; Riley, 2014; Alhashash et al., 2013; Croxall et al., 2011b). 

Previous studies that have attempted to attribute transmission of ExPEC in human infections to 

poultry or environmental sources, have largely focussed on MDR E. coli and ESBL-producing 

strains, using traditional typing methods. These studies are not likely to provide sufficient 

resolution to assess the relatedness of strains isolated from non-human and human-clinical 

sources (Jang et al., 2013; Platell et al., 2011b; Dolejska et al., 2011b; Dolejska et al., 2011a). To 

address this, comparative genomic analyses of WGS data for geographically-constrained non-

human and human-clinical populations of E. coli were carried out, to provide a higher level of 

resolution to determine the extent of genetic overlap that may between these two populations. 

The ST-designations of a collection of 399 human-clinical strains, previously isolated from cases 

of bacteraemia and UTIs in Nottingham (Alhashash et al., 2013; Croxall et al., 2011b), confirmed 

a clonally diverse population dominated by the four major ST complexes: ST131, ST73, ST69, and 

ST95, and an observable presence of the ST10 complex. Comparison of the prevalence of these 

clinically-dominant STs between the human-clinical population and the non-human population 

of E. coli, characterised in chapter 4, further demonstrates a clear disparity in the population 

structures of human-clinical and non-human E. coli. Whilst the important MDR ExPEC lineage, 

ST131, was the most commonly encountered ST among human-clinical isolates analysed in this 

study, only one instance of this genotype was observed in the non-human population of E. coli. 

Additionally, STs 73 and 95, which were prevalent in the human-clinical population analysed in 

this study, could not be detected among non-human isolates of E. coli. ST69 was identified in 

both the human-clinical and non-human populations, and although this ST represented a higher 

proportion of human-clinical isolates (7.0%) than non-human isolates (3.1%), this difference was 

not considered to be statistically significant (p = 0.137, two-tailed Fisher’s test). ST10 is a 

common human ExPEC ST that is also associated with food animals and retail poultry meat 
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(Manges 2016; Aslam et al., 2014; Bergeron et al., 2012; Vincent et al., 2010). It was revealed in 

this study that ST10 was the dominant lineage in the non-human population of E. coli (12.5%) 

and was significantly more prevalent than human-clinical ST10 isolates (1.5%; p < 0.0001, two-

tailed Fisher’s test). This suggests a more widespread prevalence of this ST in the environment 

and the food chain than in human-clinical cases of ExPEC. The paucity of human ExPEC STs 131, 

73, 69, and 95 in the non-human population of E. coli would indicate that the non-human 

reservoir of human ExPEC is negligible and is unlikely to be responsible for the majority of human 

ExPEC infections. The distinct nature of the population structures that define human-clinical and 

non-human E. coli in Nottingham, in addition to the lack of shared STs, would suggest that the 

two populations do not frequently encounter each other despite existing within a 

geographically-constrained ecosystem.  

A core genome phylogenetic tree, encompassing 136 whole-genome sequenced human-clinical 

strains (isolated from cases of bacteraemia, UTI, and neonatal sepsis in Nottingham) and the 128 

non-human E. coli genomes from chapter 4, provided an insight into the phylogroup 

composition of the two populations. Due to the overrepresentation of ST131 and ST73 strains, 

the human-clinical population was dominated by phylogroup B2 (80.1%), while in contrast, only 

7% of the non-human population were classified as phylogroup B2. This would demonstrate a 

lack of classically pathogenic strains in the non-human population, according to previous 

observations that phylogroup B2 strains are generally more virulent than strains belonging to 

the other phylogroups (Picard et al., 1999; Boyd and Hartl, 1998). On the contrary, the non-

human population of E. coli is largely composed of phylogroup A and B1, indicating a high 

proportion of largely commensal strains of E. coli, as reported by previous studies (Duriez et al., 

2001; Picard et al., 1999). Considering that the human-clinical E. coli study population consisted 

of isolates primarily from elderly patients and neonates with suspected urinary and bloodstream 

infections, the lack of human-clinical isolates from classical commensal phylogroups suggests 

that pathogenic E. coli may be more likely to opportunistically colonise patients with 

compromised immune systems. This is supported by the significantly higher prevalence of ExPEC 

strains identified in the human-clinical population when compared to the non-human 

population of E. coli, as determined by in silico VAG profiling (human-clinical, 66.9% vs non-

human 8.6%; p < 0.0001, two tailed Fisher’s test). Another disparity noted between the two 

populations is the prevalence of potentially MDR strains of E. coli. In silico antimicrobial 

resistance gene profiling of all strains revealed a higher prevalence of ciprofloxacin, 

trimethoprim, and macrolide resistance genes among human-clinical isolates when compared 

to non-human isolates of E. coli, corroborating the levels of phenotypic resistance observed for 

these antibiotic classes in human-clinical E. coli previously (Kallonen et al., 2017; Alhashash et 
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al., 2013; Croxall et al., 2011b). More importantly, however, was the appreciable difference in 

prevalence of ESBL genes observed between the two populations. The blaCTX-M family of ESBL 

genes, responsible for the majority of MDR infections worldwide (Nicolas-Chanoine et al., 2008; 

Lau et al., 2008), were identified in 21.3% of all human-clinical E. coli isolates, while such genes 

could not be detected in the non-human population. Furthermore, a significantly higher 

prevalence of blaOXA genes were detected in human-clinical isolates (21.3%), when compared to 

non-human E. coli isolates (1.6%; p < 0.0001, two tailed Fisher’s test). When taken together, the 

low prevalence of human ExPEC and MDR strains in the non-human population of E. coli may 

suggest that strains of the non-human population of E. coli in Nottingham do not readily 

encounter strains of the human-clinical population, thereby lowering the frequency of 

horizontal transfer of ESBL and virulence-associated genes between the two populations.  

Of the limited number of clinically important sequence types identified in the non-human 

population of E. coli analysed in this study, only a single ST131 strain (GD45) and a single ST648 

strain (GD49) were isolated from river water samples. GD45 was included in a core genome 

phylogenetic tree of a global collection of 242 E. coli ST131 genomes, obtained from multiple 

ecosystems, to determine the relatedness of the non-human ST131 strain to a wider population 

of the ST131 lineage. Of the three known E. coli ST131 subclades, GD45 was revealed to be a 

clade B strain, and is therefore not related to the clade C lineage of ST131, which is often 

associated with carrying the ESBL gene blaCTX-M-15 and is currently responsible for the majority of 

extraintestinal infections in humans (Nicolas-Chanoine, Bertrand and Madec, 2014). Given the 

position of GD45 in clade B and its lack of a CTX-M-carrying plasmid, it would suggest that this 

particular non-human ST131 strain is unlikely to be implicated in human ExPEC infections, and 

perhaps indicates limited overlap between non-human and human-clinical populations of E. coli. 

However, to determine whether a low prevalence of clade C ST131 strains is true for the majority 

of non-human populations of E. coli, deeper genomic sampling from additional non-human and 

environmental sources would be required in future work. Similar phylogenetic analysis was 

performed for the non-human ST648 strain (GD49), which was included in a core genome 

phylogenetic tree of 89 European E. coli ST648 genomes, from multiple host sources. Despite 

the geographical and ecological separation between GD49 (isolated from river water in 

Nottingham) and the rest of the population (isolated largely from companion animals in 

mainland Western Europe), GD49 still falls within the phylogenetic tree, indicating its relation to 

the European population of ST648. This would support a widespread dispersion of this ST as 

previously reported globally (Guenther et al., 2012; Cortes et al., 2010), and it may also suggest 

that environmental ST648 strains originate from humans, companion animals, or livestock. 

However, of importance is the fact that GD49 lacks a CTX-M-carrying plasmid, which is contrary 
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to the overwhelming majority of the ST648 population (88%), which were found to harbour a 

CTX-M gene. Based on the association of blaCTX-M-15 in ST648 isolates with human-clinical cases 

observed in previous studies (Zong and Yu, 2010; Cortes et al., 2010; Nicolas-Chanoine et al., 

2008), it would seem unlikely that ST648 isolates lacking this ESBL type can be attributed to the 

global expansion of ST648 and ExPEC infections in humans. A broader sample size of ST648 

isolates from environmental and foodborne sources should be studied in future work to 

determine whether these isolates follow a general trend of lacking the blaCTX-M-15 ESBL. The 

Nottingham E. coli study population includes other instances of STs prevalent in both 

populations, such as ST10 (human-clinical, n = 7; non-human, n = 16) and ST69 (human-clinical, 

n = 9; non-human, n = 5). However, it was decided that phylogenetic comparative analysis would 

not be carried out for the non-human E. coli ST10 strains within the wider population of ST10, 

because aside from a small clade that are largely CTX-M-1 producers (Leverstein-van Hall et al., 

2011), ST10 is a very diverse clonal complex associated with low virulence and antibiotic 

susceptibility (Manges and Johnson, 2012). Pan-genome analysis would therefore provide the 

appropriate method to distinguish between non-human and human-clinical strains. Regarding 

ST69, there was simply not a large enough genome collection from multiple sources to carry out 

a substantial phylogenetic reconstruction of the wider ST69 population.  

A pan-genome approach was taken in this study, as it offers a much higher resolution than core 

genome phylogenetic and MLST analyses, because it takes into consideration the entire bacterial 

genome (Hall, Ehrlich and Hu, 2010). The pan-genome analysis of all 264 human-clinical and non-

human E. coli strains of the Nottingham study population revealed a highly heterogeneous 

genomic data set, where only 596 of the total 69,645 genes were represented at least once in ≥ 

95% of strains. The analysis also indicated a vast number of strain-specific genes (29,139) 

present in the pan-genome, suggesting a large accessory genome which encodes for the strain 

diversity and selective advantages for virulence, antibiotic resistance and niche adaptation 

(Tettelin et al., 2008). This prompted further analysis of the accessory genomes to determine 

proportions of accessory gene clusters or loci that are unique to either the human-clinical or 

non-human population, as well as the proportion of genes shared between both populations. It 

was found that 12,311 genes and 31,468 genes were unique to the human-clinical and non-

human populations, respectively, however the majority of these genes corresponded to strain-

specific genes. It was therefore the number of genes shared between the two populations (n = 

21,056) which was of interest for comparing the two populations. Statistical analysis revealed 

that the probability of encountering a gene that is present in both the human-clinical and non-

human populations of Nottingham is 9.2% lower than expected. This would perhaps be 

indicative of a restriction in the amount of gene sharing that takes place between the human-
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clinical and non-human populations of E. coli, presumably because of the ecological barriers and 

difference in environmental selection pressures that exist between the two populations.  

Pan-genome analysis and detection of core genome recombination events were also carried out 

specifically for strains of ST69 and ST10, as multiple representative strains were identified for 

these STs in both the human-clinical and non-human populations. ST10 is a diverse lineage and 

several recent studies have reported an association of ST10 isolates with human disease, ESBL 

carriage, and livestock (Bergeron et al., 2012; Peirano et al., 2012; Leverstein-van Hall et al., 

2011; Cortes et al., 2010). ST69 is one of the more recognised clonal groups implicated in human 

ExPEC infection worldwide (Kallonen et al., 2017; Dias et al., 2009; Johnson et al., 2009). 

Identification of these clinically relevant STs in both the human-clinical and non-human 

populations of E. coli therefore warranted further genomic comparisons to assess the level of 

genetic flow between closely related strains of the two populations. Noticeable differences in 

the gene profiles of human-clinical strains compared to non-human strains were observed for 

both the ST69 and ST10 strain sets, though these were more prominent for ST10. The non-

human strains shared few accessory genes with the human-clinical strains, and the non-human 

strains possessed more accessory genes, perhaps due to these strains requiring more genes 

encoding niche-specific fitness factors for adaptation and survival in the environment. Lowered 

levels of recombination events were detected between human-clinical and non-human strains 

of ST69, which is concordant with the divergent gene profiles of human-clinical and non-human 

strains. This observation is consistent with previous studies reporting reduced genetic flow 

between environmental and enteric E. coli (Luo et al., 2011), and additionally between poultry 

and human-clinical isolates of E. coli (de Been et al., 2014), suggesting that human-clinical and 

non-human E. coli form two distinct populations. To further investigate the level of genetic 

overlap between human-clinical and non-human strains, additional sequence type-specific pan-

genome and recombination analyses should be carried out in future work. 

Overall, the results of this investigation revealed that there are clear differences in the 

population structures of E. coli isolated from human-clinical and non-human sources, with 

regards to the major STs that comprise these populations. At the phylogenetic level, a small 

number of clinically important, clonally-related strains such as ST131, ST648, ST69, and ST10 

were identified in both populations. However, comparative analyses at the whole genome level 

revealed a low prevalence of potential MDR and ExPEC strains in the non-human population 

compared to the human-clinical population. Furthermore, gene sharing between E. coli ST69 

strains of the human-clinical and non-human populations is limited, suggesting that ecological 

barriers may contribute to reduced levels of recombination between the two populations. 

Further lineage-specific specific analyses, encompassing additional non-human sources of E. coli 
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would be required to confirm this. Collectively, these results lead to the conclusion that an 

obvious non-human reservoir of human MDR E. coli and ExPEC strains does not exist, and 

therefore, it is unlikely that the non-human population of E. coli contributes significantly to the 

burden of hospital- and community-acquired extraintestinal infections. 
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CHAPTER 6 

Conclusions and future directions 
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6. Conclusions and future directions 

Accessing information on the full ecology of bacterial pathogens has previously been a 

deficiency of many microbial ecological studies, and consequently, has hindered our 

understanding of the evolution and dissemination of these organisms, which cause many 

debilitating and life-threatening diseases in humans. Before the advent of whole-genome 

sequence-based analysis, the study of microbial ecology was largely restricted to low-resolution 

and subjective molecular and biochemical techniques. To effectively probe the structures of 

microbial populations and fully appreciate species diversity, sequencing of single isolates must 

be employed to achieve the genomic resolution required (Quince et al., 2017). Using this 

approach, the current study aimed to elucidate the unknown ecology of two important 

pathogens to humans, Y. pseudotuberculosis and E. coli. Previous genome-scale analyses 

revealed hidden ecological inferences for the enteric pathogen Y. enterocolitica (Reuter et al., 

2015; Reuter et al., 2014), which warranted further investigation to determine whether similar 

hidden patterns may exist in Y. pseudotuberculosis.  

Phylogenetic analysis of globally and temporally distributed Y. pseudotuberculosis genomes 

from multiple ecosystems identified a clear phylogeographic split in the population, which was 

previously undetected for pathogenic Yersinia species. This was characterised by an ancestral 

clade of strains of primarily Asian origin and a second low diversity clade of mainly European 

strains. This phenomenon was once postulated for Y. enterocolitica with Old World and New 

World strains (Wang et al., 2011), however, recent population genomics studies by our group 

have shown this is not the case (Reuter et al., 2015; Reuter et al., 2014). The Asian ancestry of 

Y. pseudotuberculosis is consistent with the estimated ancestry of Y. pestis (Morelli et al., 2010; 

Achtman et al., 1999). Phylogenetic dating provided an estimated TMRCA for the entire Y. 

pseudotuberculosis data set, which is in the same range (10,000–40,000 years before present) 

as that estimated for the emergence of Y. pestis (Achtman et al., 1999). Based on this evidence, 

we could argue that the emergence of Y. pestis coincided with a larger population dispersal 

event across Y. pseudotuberculosis. Additionally, the dating analysis indicated a recent 

geographical divergence of the European and Asian clades occurring ~12,500 years before 

present. It would be tempting to suggest that a bottleneck event occurring in the recent past 

may have resulted in the establishment of a small number of successful clones in new 

ecosystems, leading to subsequent dissemination of these clonal lineages into Europe and the 

rest of the world. Mapping serotype designations onto the Y. pseudotuberculosis phylogeny 

indicated that successfully established clones in Europe belong almost exclusively to serotypes 
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O:1a and O:1b, consistent with previous studies reporting a predominance of these serotypes in 

Europe, whilst greater serotype diversity exists in Asia (Fukushima et al., 2001).  

One of the limitations of the phylogenetic dating analysis was the availability of only a relatively 

small number of isolation dates (n = 46) representing the full diversity of the phylogeny. This 

made it difficult to accurately date the phylogeny of the entire data set. A greater accuracy of 

dating would have been achieved had there been more isolation dates available. Furthermore, 

it would be suggested that a more thorough and dense genomic sampling should be considered 

for further analysis of Y. pseudotuberculosis. This would reveal whether the levels of diversity 

observed in geographic clades in this study are maintained in the broader population of Y. 

pseudotuberculosis. Significantly more isolates from Africa and the Americas should be included 

in further analyses, as these isolates were noticeably underrepresented in the population 

analysed in this study. This should provide stronger evidence to support a separate migration of 

the species into Africa and the Americas, as evidenced by the small transitional cluster of strains 

between the Asian and European clades. 

Further genomic analysis of the Y. pseudotuberculosis population identified clearly distinct 

phylogenetic subgroups within each clade. These phylogroups have unique combinations of 

accessory genes, with little variation in their accessory genomes, and they share very similar 

patterns of core genome homologous recombination. Similar phylogroup signatures were 

identified from analysis of accessory gene sharing between serotype-specific clades of Y. 

enterocolitica, in a previous study by our group (Reuter et al., 2015). It was concluded that the 

restricted gene sharing between clades was due to ecological separation. In Y. 

pseudotuberculosis, however, the observation of phylogenetic subgroups, which are intimately 

connected to the CRISPR spacer designations, presents a strong case for the role of the CRISPR 

system in the formation of these phylogroups. The inference of CRISPR playing a role in 

mediating this genetic restriction is supported by the observation that different CRISPR cluster-

type strains coexist in the same geographical habitat, and several clusters appear in samples 

separated by at least a decade. Moreover, it would be expected that the CRISPR cluster signature 

would be gradually eroded over time (Dearlove et al., 2016), especially considering that Y. 

pseudotuberculosis is widespread in nature, and no active barrier would prevent recombination 

between strains coexisting in the same ecological niche. As a result, clear phylogroup signatures 

should not be observed within the population (Sheppard et al., 2008), given the high levels of 

core genome recombination detected for Y. pseudotuberculosis. However, it can be concluded 

from the data that the CRISPR system is strongly associated with restriction of both accessory 

and core gene exchange between tightly maintained Y. pseudotuberculosis phylogroups. To our 

knowledge, this study provides the first evidence of a possible causative link between CRISPRs 
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and the evolution of distinct phylogroups in a bacterial species. The data suggest that large 

population perturbations led to the emergence of geographically isolated clones. These clones 

encounter geographically localised exogenous DNA, creating a CRISPR array of immunity which 

controls the range of genetic material that can be exchanged with other clones of Y. 

pseudotuberculosis. Clones comprising the same CRISPR array can freely exchange genes 

without any restriction; however, horizontal gene transfer between different clones is not 

sufficient to erode the clonal phylogenetic structure, and thus distinct phylogroups of Y. 

pseudotuberculosis persist within the population. 

Whilst a strong correlation between CRISPRs and restriction of genetic flow exists in the Y. 

pseudotuberculosis population, this study did not reveal any phylogenetic signature associated 

with the ecology of the species. Isolates from different hosts/ecosystems were distributed 

throughout the phylogeny and did not cluster separately from each other. This is indicative of 

the ability of Y. pseudotuberculosis to colonise many different non-human hosts and 

environments, suggesting a broad and widespread ecology for the species. Although several 

previous studies have reported a role for ecological barriers, in shaping distinct ecotypes within 

populations of important bacterial pathogens (Reuter et al., 2015; Sheppard et al., 2014; 

McNally et al., 2013; Luo et al., 2011), the present study has demonstrated that Y. 

pseudotuberculosis is a host generalist species with an ability to occupy multiple ecological 

niches, from where pathogenic lineages can easily be transferred to humans. Our findings 

indicate that evolution of Y. pseudotuberculosis is driven by factors other than those that 

prevent physical contact. The study therefore creates a new window of research for microbial 

ecology and evolution where CRISPR can be used to investigate how distinct ecotypes may 

emerge for important human pathogens. 

Comprehensive population genomic analyses were also performed on E. coli, another model 

organism used to investigate microbial ecology in this study. Multiple reports exist of E. coli, 

isolated from environmental waters and retail chicken meat, that resemble strains responsible 

for human extraintestinal infections. This has led to the suggestion that there may be a non-

human reservoir for human multidrug-resistant ExPEC. Many of these environmental 

microbiological studies tend to bias towards resistant isolates in their sampling procedure, thus 

leading to an overrepresentation of MDR – specifically ESBL-producing – E. coli strains in the 

literature (Hussain et al., 2017; Manges, 2016; Lazarus et al., 2015; de Been et al., 2014). Given 

the shortcoming of past studies, it was imperative to determine the population structure of non-

human E. coli from river water and retail chicken samples in this study. This was achieved using 

an unbiased culture-based approach, to sample all isolates in order to achieve a more accurate 

snapshot of the prevalence of MDR and pathogenic E. coli. An E. coli population, consisting of 
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128 sequenced genomes, was obtained from river water and retail chicken samples in 

Nottingham and subjected to whole-genome analysis. To put this population in the context of 

E. coli causing human extraintestinal infection, comparative population genomics was 

performed with previously isolated human-clinical E. coli strains from urinary and bloodstream 

infection cases in Nottingham, allowing for high-resolution examination of any genetic overlap 

between the two populations.  

In silico MLST analysis revealed that the non-human E. coli population is not dominated by the 

STs that are frequently associated with urinary tract and bloodstream infections; ST131, ST73, 

ST69, and ST95. Rather, the non-human population of E. coli is comprised of a wide variety of 

different STs, with most strains not grouping into larger clonal complexes, demonstrating the 

genetic diversity within the population. The ST10 clonal complex emerged as the most 

frequently encountered clonal group, representing approximately 15% of the non-human E. coli 

population analysed in this study. These findings represent a clear disparity in the population 

structures of non-human and human-clinical E. coli. The lack of STs associated with human 

extraintestinal infection in the non-human population would suggest that the environmental 

and foodborne risk for human extraintestinal infection, specifically through contaminated water 

and retail chicken meat, is very low. The limited number of clinically associated STs identified 

may also be indicative of a limitation in the non-human sampling. Isolates were only obtained 

from river water and retail chicken samples in this study. To access the full diversity of E. coli in 

the environment and food chain, future work should consider a much deeper sampling of non-

human sources, such as slurry, plants, wild and domesticated animals, other retail meats, and 

dairy products. 

Phylogenetic analysis of the non-human and human-clinical populations of E. coli provided an 

insight into the phylogroup composition of the two populations. An overrepresentation of 

human-clinical E. coli genomes belonging to ST131 and ST73 meant that this population was 

dominated by phylogroup B2 strains (~80%), while by contrast, only 7% of the non-human 

population were classified as phylogroup B2. This demonstrated a lack of classically pathogenic 

strains in the non-human population, according to previous reports that phylogroup B2 strains 

are generally more virulent than strains belonging to other phylogroups (Picard et al., 1999; 

Boyd and Hartl, 1998). On the other hand, the non-human population of E. coli was largely 

composed of phylogroup A and B1 strains, indicating a predominance of largely commensal and 

non-pathogenic strains of E. coli (Duriez et al., 2001; Picard et al., 1999). To confirm the 

distribution of pathogenic strains between the human-clinical and non-human populations of E. 

coli, in silico VAG profiling was performed for all strains to identify the virulence factors 

associated with ExPEC. A significantly higher prevalence of ExPEC strains in the human-clinical 
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population (66.9%) was revealed when compared to the non-human population of E. coli (8.6%). 

Given that the human-clinical E. coli population analysed in this study was largely derived from 

elderly patients and neonates diagnosed with urinary and bloodstream infections, the high 

prevalence of ExPEC would indicate that pathogenic E. coli strains are more likely to cause 

opportunistic infection in immunocompromised hosts. Therefore, the non-human population, 

with a very low prevalence of ExPEC, presents little or no significance to cases of human 

extraintestinal infection in Nottingham. It must be noted that the definition of ExPEC used in this 

study is based on the presence of five virulence markers, but that the actual pathogenicity of 

strains cannot be determined just by the presence/absence of these five markers. Furthermore, 

the human-clinical genomic data set analysed in this study does not reflect an accurate 

representation of the prevalence of pathogenic strains in the population. The genomic data set 

consists of sequenced E. coli genomes from human-clinical samples, from Nottingham, that were 

available at the time of this study; however, the population is largely overrepresented by ST131 

and ST73 strains, which were selectively sequenced as part of previous projects by our group 

(Alhashash et al., 2016; Clark et al., 2012). To accurately compare the phylogroup structure and 

prevalence of ExPEC in non-human and human-clinical populations of E. coli in future work, a 

similar approach should be taken with human-clinical samples, where isolates are sequenced to 

represent the full spectrum of diversity in the population. Another important difference noted 

between the two populations would be the prevalence of potential MDR strains of E. coli. The 

blaCTX-M family of ESBL genes, which is associated with the majority of MDR infections worldwide 

(Nicolas-Chanoine et al., 2008; Lau et al., 2008), was identified in 21.3% of all human-clinical E. 

coli isolates, while these genes were not present among non-human E. coli strains. The low 

incidence of ESBL gene carriers and ExPEC strains, in the non-human population of E. coli, 

reflects a genuine representation of the prevalence of potential MDR and/or pathogenic strains, 

in the natural environment and in food products. This contrasts with previous studies that have 

selectively enriched for antimicrobial-resistant isolates and have reported an increasing 

occurrence of ESBL producers (Hussain et al., 2017; Manges, 2016; Lazarus et al., 2015; de Been 

et al., 2014). The lack of phenotypic characterisation of the non-human E. coli isolates in this 

study is noted. Future work may consider performing antimicrobial susceptibility testing on 

these isolates, as well as assays for physiological virulence factors such as adhesins, capsule 

production, flagella, and toxins, to assess the virulence potential of these isolates in vitro. 

Given the paucity of E. coli sequence types associated with human extraintestinal infection in 

the non-human population (namely ST131, ST73, ST95, and ST648), producing pan-genomes 

specific to these STs was not feasible. Therefore, a pan-genome of all 264 human-clinical and 

non-human E. coli strains of the Nottingham study population was constructed, which revealed 
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a highly heterogeneous genomic data set sharing only a small proportion of core genes; a result 

of the inclusion of distantly related strains representing the full spectrum of phylogenetic 

diversity across the species (Rasko et al., 2008). The analysis also revealed a vast number of 

strain-specific genes present in the pan-genome, indicating the high level of genome plasticity 

in the E. coli accessory genome, which encodes for the strain diversity and selective advantages 

for virulence, antibiotic resistance, and niche adaptation (Tettelin et al., 2008). This led to 

subsequent investigation of the accessory genome, to determine the number of accessory genes 

that are unique to either the human-clinical or non-human population, as well as the number of 

genes shared between both populations. This uncovered a noticeable difference in the number 

of accessory genes unique to either population, though these numbers largely represented 

strain-specific genes. Closer scrutiny of the number of genes shared between the two 

populations revealed that the probability of encountering a gene that is present in both the 

human-clinical and non-human populations is 9.2% lower than expected. This indicates that 

there could be ecological barriers limiting the amount of gene sharing that takes place between 

the two populations. A restriction in genetic flow may also indicate limited movement of MDR 

plasmids between strains of the two populations. Given the very low prevalence of ESBL-carrying 

plasmids in the non-human population, it was decided that comparative analyses of plasmid 

DNA with human-clinical strains would not be carried out in this study, and thus, the pan-

genome approach was employed to provide an indication of gene flow. The limitation of 

constructing a pan-genome of both combined populations is that the reported number of genes 

unique to either population may be misleading, due to the overrepresentation of strain-specific 

genes. Constructing pan-genomes specific to each of the dominant E. coli STs responsible for 

human extraintestinal infection would perhaps give a clearer indication of movement of mobile 

genetic elements between the two populations. Genome sequencing of additional non-human 

E. coli ST131, ST73, ST95, and ST648 strains, from the same geographical region, would therefore 

be required for further genomic comparison with human-clinical strains of the same STs. 

Only single representative isolates of the clinically important ST131 (GU45) and ST648 (GD49) 

strains were detected in the non-human population of E. coli. SNP-based core genome 

phylogenetic trees were constructed to situate the ST131 and ST648 strains within wider 

populations of their respective STs. The ST131 isolate obtained from this study was situated 

within clade B of the ST131 phylogeny, comprising globally dispersed ST131 genomes from 

multiple ecosystems. The clade C lineage of ST131 is most often associated with carriage of the 

ESBL gene blaCTX-M-15 and is currently recognised as the major cause of human extraintestinal 

infections (Nicolas-Chanoine, Bertrand and Madec, 2014). The absence of clade C, CTX-M-15-

producing E. coli ST131 strains in the non-human population analysed in this study would 
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suggest that ST131 in the environment poses very little concern to human health. Subclones of 

ST131 clade C have recently been identified among ESBL-producing E. coli, in wastewater from 

treatment plants and hospitals in Japan (Gomi et al., 2017a), suggesting dissemination of 

clinically important lineages into the environment. However, to determine the prevalence of 

clade C ST131 clones within the context of the non-human E. coli population of Nottingham, a 

much more thorough and dense genomic sampling of isolates from additional non-human 

sources in this region, would be required in future genomic analyses. The single non-human E. 

coli ST648 strain recovered from this study was situated phylogenetically within a European 

population of ST648, isolated mainly from companion animals. Despite the phylogenetic 

relatedness of GD49 to the rest of the population, this strain did not harbour the blaCTX-M-15 ESBL 

gene, whilst the vast majority (88%) of the ST648 population was associated with blaCTX-M 

carriage. Given the worldwide prevalence of ST648 strains possessing the blaCTX-M-15 ESBL gene, 

and the implication of these strains in human-clinical cases (Zong and Yu 2010; Cortes et al., 

2010; Nicolas-Chanoine et al., 2008), it would be reasonable to suggest that ST648 strains lacking 

a CTX-M-carrying plasmid, from non-human sources, are unlikely to contribute to the global 

expansion of ST648 in human extraintestinal infections. A broader collection of non-human 

ST648 isolates would be required in future genomic studies, to determine whether ST648 from 

the wider non-human/environmental population in Nottingham generally lack the blaCTX-M-15 

ESBL gene.  

Pan-genome analysis was also performed specifically for ST69 and ST10, owing to multiple 

representative strains of these STs in both the human-clinical and non-human populations of E. 

coli. The non-human strains possessed more unique genes than those shared with human-

clinical strains, suggesting a greater repertoire of genetic material acquired from the gene pool, 

such as those encoding niche-specific fitness factors for adaptation and survival in the 

environment. Recombinant regions within the core genomes of ST69 and ST10 strains were 

detected to assess the extent of genetic exchange between non-human and human-clinical E. 

coli. Negligible levels of recombination were detected between human-clinical and non-human 

ST69 strains, suggesting limited opportunity for genetic exchange, likely due to these strains not 

coexisting in the same space at the same time. Significantly more recombination events were 

shared between human-clinical and non-human ST10 strains, however, indicating genetic 

exchange between these strains. Given the widespread, diverse nature and frequent isolation 

of E. coli ST10 in community, hospital, and environmental locales, it would be expected that 

opportunities for recombination would be more frequent due to chance encounters. While 

strains of the same ST from human-clinical and non-human sources are phylogenetically related, 

there is a clear difference in gene content between non-human and human-clinical strains. This 
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would suggest that these strains once shared a recent common source, but have since diversified 

and become more adapted to the surrounding environment they presently inhabit. Further 

sequence type-specific investigations into the pan-genomes and core genome recombination 

events between non-human and human-clinical strains are required, to confirm the level of 

genetic overlap between clinically associated lineages of the two populations.  

In summary, the work detailed in this thesis was achieved through whole-genome sequence 

analyses, providing a high-resolution view of the population structures, ecology, and evolution 

of Y. pseudotuberculosis and E. coli. Through in-depth phylogenetic analysis, this study yielded 

definitive evidence of a phylogeographic split of a globally dispersed population of Y. 

pseudotuberculosis with an Asian ancestry, and subsequent dissemination of successful clonal 

lineages into Europe and the rest of the world. This study provides the first evidence of a possible 

causative link between CRISPR cassettes and the evolution of these distinct lineages in Y. 

pseudotuberculosis. Bayesian analysis of core genome recombination revealed that restriction 

of genetic exchange maintains the discrete lineage structure in the population, despite 

coexistence of lineages for thousands of years. The study did not identify a role for ecological 

barriers in defining the distinct lineage structure of this species, suggesting that Y. 

pseudotuberculosis is a host generalist pathogen with an ability to persist in multiple niches. The 

use of CRISPR in providing evolutionary insights into the emergence of bacterial lineages 

warrants further investigation in other important human pathogens. Comparative population 

genomics of E. coli uncovered clear differences in the population structures of E. coli isolated 

from human-clinical and non-human sources. A snapshot revealing a low prevalence of clinically-

associated sequence types, multidrug resistance, and potential ExPEC strains among non-human 

E. coli when compared to human-clinical E. coli would suggest two distinct populations within 

the region. This was supported by a clear difference in accessory genome content between the 

two populations and only minimal levels of genetic exchange between closely related strains, 

such as ST69, suggesting ecological barriers to recombination may play a role in driving evolution 

within E. coli. The evidence gathered from this study led to the conclusion that the non-human 

population of E. coli is unlikely to contribute significantly to the burden of hospital- and 

community-acquired extraintestinal infections in humans. 
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Appendix 

Appendix 1. Full printed copy of the published journal article containing information and data 

from chapter 3 (provided in pocket at the end of the thesis): 

Title:  

Phylogeographic separation of sexually discrete lineages in a global population of Yersinia 

pseudotuberculosis 

Authors:  

Seecharran T., Kalin-Manttari L., Koskela K., Nikkari S., Dickins B., Corander J., Skurnik M., 

McNally A. 

Journal: 

Microbial Genomics. 2017;3 (10): e000133. http://doi.org/10.1099/mgen.0.000133 
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Appendix 2. Y. similis and Y. wautersii genomes used for the outgroup in Appendix 3. 

Strain 
name 

Species Year ST Host Continent Country Accession 
number 

R819 Y. similis 1988 75 Mouse Asia Japan ERR024895 

Y233 Y. similis 1991 75 Mole Asia Japan ERR024899 

Y719 Y. similis 1991 75 Human Europe Germany ERR024904 

OK3108 Y. similis - - River Asia Japan ERR1448034 

Y228 Y. similis 1990 92 Rabbit Europe Germany ERR024898 

MW109-2 Y. similis 1990 71 Water Asia Japan ERR024915 

N916Ysi Y. similis - - Animal Europe Finland ERR027410 

Y252 Y. similis 1990 71 Mole Asia Japan ERR024900 

WP-931201 Y. wautersii 1993 21 Water Asia Korea ERR024893 

4008/2002 Y. wautersii 2002 - Hare Europe Finland ERR1448055 

Y428 Y. wautersii - 96 Badger Europe Germany ERR024901 

 

Eight Y. similis and three Y. wautersii genomes were included as an outgroup on the phylogenetic tree of 

the Y. pseudotuberculosis study population (Appendix 3). De novo assemblies of Y. similis and Y. wautersii 

genomes are available on Enterobase (https://enterobase.warwick.ac.uk/species/index/yersinia), 

searchable by the strain name or accession number indicated in the table. 

  

https://enterobase.warwick.ac.uk/species/index/yersinia
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Appendix 3. Maximum-likelihood phylogenetic tree of 134 Y. pseudotuberculosis, 3 Y. wautersii, and 8 

Y. similis isolates annotated with all available metadata. Y. wautersii and Y. similis are separate species 

of the Y. pseudotuberculosis complex and were included in the phylogenetic tree as an outgroup. Inclusion 

of these genomes (accession numbers shown in Appendix 2) indicated that the “Asian” clade represents 

the ancestral clade for the study population. 
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Appendix 4. Dated maximum clade credibility (MCC) tree produced from BEAST 2 analysis performed on the 46 Y. pseudotuberculosis strains for which isolation dates are 

available. The tree was visualised and manipulated using FigTree. Error bars are displayed at each node representing the upper and lower values within the 95% HPD (highest 

probability density) from the BEAST analysis.
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Appendix 5. Assembly statistics for the 180 sequenced non-human E. coli genomes. 

Strain N50 (bp) L50 (bp) Genome size 
(bp) 

GC content 
(%) 

Number of N's per 
100 kbp 

I2-15 1,107 951 3,359,765 50.28 8.04 

I2-8 1,135 894 3,276,310 50.51 15.26 

AFR-38 1,226 819 3,334,302 50.49 15.9 

I1-29 1,263 829 3,311,016 50.09 25.67 

I2-7 1,367 895 3,884,517 50.36 18.74 

AFR-26 1,426 826 3,801,326 50.53 18.41 

M3-26 1,462 821 3,930,731 50.86 32.49 

TFR-7 1,528 722 3,690,087 50.81 25.47 

AFR-36 1,555 733 3,827,893 51.31 19.04 

I1-6 1,640 726 3,743,495 50.5 28.05 

AFR-28 1,814 779 4,627,632 50.32 23.9 

AFR-34 1,863 654 4,241,859 50.4 30.36 
M3-24 1,939 712 4,514,416 50.91 31.45 
M2-8 2,163 610 4,349,702 51.48 33.54 
I2-6 2,188 632 4,804,256 50.48 16.86 
AFR-4 2,206 625 4,722,035 51.07 35.66 
I1-33 2,285 601 4,399,093 50.77 32.05 
AFR-12 2,309 599 4,741,109 50.77 27.21 
AFR-20 2,403 486 4,467,222 51.03 25.07 
M3-31 2,458 500 4,631,908 51 7.77 
T3-18 2,512 543 4,616,073 50.92 21.01 
AFR-16 2,532 588 4,854,746 50.85 36.97 
M3-30 2,628 560 4,902,181 51.18 35.07 
AFR-18 2,790 528 4,941,315 50.86 57.84 
TFR-6 2,993 454 4,624,797 51.04 30.68 
GU1 3,207 394 4,433,701 50.83 2.26 
I1-11 3,326 450 5,181,407 50.16 21.62 
AFR-22 3,346 465 5,200,256 50.7 50.42 
M2-6 3,647 434 5,111,765 50.93 40.59 
M2-2 3,696 402 4,905,557 51.02 27.52 
AFR-14 3,755 421 5,235,395 50.70 33.73 
M3-36 4,047 385 5,328,946 50.85 26.27 
M2-3 4,080 398 5,334,950 51.03 41.26 
T1-53 4,149 371 5,525,329 50.87 31.4 
M3-23 4,231 394 5,697,090 50.42 33.96 
AFR-30 4,480 338 5,164,501 50.68 20.14 
M2-9 4,785 316 4,990,196 51.37 14.83 
T3-21 4,819 317 5,435,770 50.34 25.13 
I2-18 5,422 318 5,610,195 50.55 19.59 
GU2 6,468 219 4,898,346 50.60 3.06 
AFR-10 6,675 254 5,756,792 50.52 20.06 
M2-7 6,694 263 5,466,211 50.76 16.28 
GD138 7,567 189 4,785,679 50.67 2.93 
M2-5 7,946 218 5,606,004 50.60 16.05 
I1-5 8,208 196 5,038,692 50.37 13.61 
T3-1 8,235 194 5,569,609 50.78 20.47 
M3-21 8,262 214 5,808,794 50.75 27.17 
I1-24 8,272 201 5,238,932 50.80 13.93 
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M2-1 8,539 199 5,474,492 50.61 15.11 
M3-27 8,644 198 5,585,928 50.77 7.88 
I2-20 8,857 201 5,781,737 50.46 13.3 
TFR-2 8,869 160 5,265,664 50.72 5.32 
M3-29 8,894 158 4,797,545 50.71 13.34 
AFR-40 9,378 181 5,598,833 50.87 48.62 
M3-22 9,745 175 5,457,271 50.84 16.68 
T1-7 10,079 154 4,995,381 50.76 13.41 
AFR-32 10,583 151 5,365,379 50.76 15.66 
M3-25 10,645 157 5,634,273 50.71 10.65 
M3-20 11,200 141 5,593,407 50.59 19.31 
I1-25 11,346 160 5,913,968 50.34 41.28 
M3-34 11,788 148 5,689,566 50.60 7.73 
AFR-8 12,613 131 5,396,156 50.71 8.9 
I1-15 12,990 117 5,018,581 50.57 11.34 
AFR-24 13,191 121 5,370,200 50.85 10.8 
T3-7 13,614 114 5,151,232 50.61 10.72 
T1-11 14,911 101 5,015,163 50.65 13.06 
I2-5 14,954 117 5,588,523 50.30 9.3 
M2-4 14,989 107 5,521,688 51.01 44.03 
S2-5 17,101 102 5,585,248 50.56 4.83 
M3-28 18,091 97 5,754,056 50.55 9.54 
T3-19 19,015 95 5,856,858 50.62 12.96 
T1-52 20,742 84 5,700,106 50.31 24.61 
AFR-2 20,861 85 5,752,069 50.69 41.95 
M2-10 22,332 75 5,582,390 50.93 35.4 
GD109 22,711 67 4,905,714 50.47 1.2 
I2-1 23,125 68 5,632,497 50.89 65.64 
S2-10 25,291 63 6,002,178 50.66 12.1 
M3-18 27,148 47 4,800,461 50.77 9.73 
S2-7 27,148 64 5,852,125 50.75 37.63 
T1-49 28,588 57 6,028,358 50.78 1.82 
AFR-6 28,746 58 5,636,541 50.57 10.88 
S2-8 29,947 56 6,014,939 50.5 25.7 
T1-9 35,181 44 5,123,419 50.69 12.49 
SFR-6 36,805 44 5,024,664 50.65 16.54 
TFR-15 39,555 40 4,704,649 50.89 19.7 
M3-32 39,818 45 5,995,208 50.44 18.35 
ELU65 46,408 35 4,893,644 50.65 10.3 
T1-27 48,560 32 5,339,120 50.97 8.52 
GU77 50,825 34 5,600,130 51.21 31.55 
ELU103 51,772 34 5,629,601 50.78 19.18 
I1-21 52,253 29 5,664,842 50.92 36.19 
T1-32 52,361 33 5,362,438 50.47 9.75 
T1-73 55,462 29 5,089,386 50.58 27.96 
M3-19 56,424 28 4,866,004 50.56 11.04 
EPU5 56,609 30 4,875,919 50.83 30 
T1-56 57,551 30 5,761,442 50.4 17.32 
I1-16 57,612 32 5,404,494 50.72 18.65 
EPU62 58,039 27 4,979,186 50.73 0.8 
GU15 59,632 31 5,437,433 50.56 16.53 
GU41 60,562 26 5,019,387 50.75 14.56 
ELU7 63,109 25 4,972,394 50.73 1.41 
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GU13 65,278 23 4,777,286 50.47 3.24 
I1-28 66,591 26 5,420,730 50.76 33.21 
GD3 69,188 25 5,096,017 50.85 22.27 
T1-30 70,461 22 5,423,956 50.63 23.27 
I1-12 70,756 26 5,170,047 50.44 15.40 
SFR-11 76,811 22 5,227,403 50.66 31.99 
T3-6 80,594 22 5,433,335 50.7 27.00 
GU27 80,995 19 4,913,402 50.51 28.09 
ELU71 82,060 20 4,979,055 50.74 0.4 
TFR-1 82,704 23 5,629,233 50.67 65.6 
I1-19 84,958 22 5,385,365 50.73 15.39 
ELU98 85,575 21 5,411,422 50.39 9.68 
T3-3 87,089 19 5,186,480 50.65 26.61 
EPD5 87,284 21 5,404,635 50.56 28.46 
ELU17 87,482 19 4,978,547 50.74 0.4 
ELU67 87,606 19 4,977,900 50.74 0.8 
EPU22 88,228 20 5,156,329 50.76 18.71 
EPU51 90,598 18 4,964,100 50.69 11.18 
GD131 91,113 15 5,230,245 50.57 90.38 
T3-4 91,242 22 5,708,849 50.62 39.52 
GU53 92,610 19 5,406,222 50.48 9.53 
S2-4 96,735 20 5,519,072 50.43 19.99 
T1-57 100,004 18 5,415,934 50.37 19.33 
I1-17 100,097 20 5,392,204 50.74 18.69 
ELU122 100,420 17 4,967,713 50.69 28.26 
T1-25 102,293 18 5,408,044 50.35 26.65 
T1-3 103,224 17 5,858,729 50.65 42.94 
ELU88 103,785 17 4,976,742 50.59 10.13 
T1-1 103,939 16 4,946,744 50.68 28.46 
T1-61 104,032 18 5,121,170 50.67 8.98 
ELU21 104,242 18 4,974,449 50.73 0.2 
EPD30 104,925 15 4,787,052 50.75 0.21 
ELU24 105,056 14 4,981,484 50.72 15.38 
GU80 106,390 16 5,211,996 50.37 67.15 
EPU17 106,671 15 4,923,598 50.68 9.22 
ELU39 107,069 14 4,730,043 50.62 9.01 
ELU72 107,272 17 4,858,247 50.69 10.27 
GU34 107,488 15 4,846,293 50.78 0.41 
T1-39 107,683 16 5,400,960 50.62 7.54 
ELU28 108,043 14 4,745,339 50.89 2.84 
T3-14 109,000 12 5,199,403 50.63 23.75 
ELU22 109,377 15 4,979,149 50.72 0 
T1-5 109,634 13 4,748,761 50.68 9.6 
I1-32 110,485 16 5,190,226 50.37 13.64 
ELU20 111,954 16 4,980,229 50.73 0 
S2-2 112,253 15 5,289,074 50.25 0.19 
GU47 114,419 12 4,846,073 50.7 14.84 
SFR-4 114,470 15 4,975,197 50.78 0.20 
SFR-15 114,554 14 4,754,370 50.58 12.85 
GU45 117,001 16 5,319,647 50.79 20.7 
ELU16 119,583 13 4,980,732 50.72 0 
S2-3 122,183 16 5,236,836 50.72 8.13 
T1-35 123,140 14 4,908,868 50.63 11.53 
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GU39 124,074 12 4,948,309 50.33 11.24 
TFR-13 126,831 16 5,742,821 50.67 34.48 
GU49 128,774 13 5,219,251 50.77 21.02 
GU51 135,819 11 5,057,578 50.66 0 
GU24 142,610 12 5,004,195 50.71 20.48 
ELU87 152,411 11 5,253,977 50.45 20.61 
GU35 154,804 10 5,063,753 50.61 10.64 
GU46 163,299 12 5,218,231 50.72 53.03 
GD46 179,117 10 5,154,659 50.66 0 
GU48 180,109 12 5,334,803 50.5 23.45 
ELU29 188,138 10 4,861,206 50.69 9.94 
GU70 189,883 9 5,009,043 50.26 10.62 
GU10 200,504 8 4,931,939 50.62 8.23 
GU5 203,129 9 4,673,999 50.86 10.38 
GD49 209,107 8 5,154,459 50.63 26.21 
GU82 220,014 7 4,482,513 50.38 21.37 
GD93 227,685 7 4,784,503 50.67 0 
GU6 234,263 8 5,218,733 50.49 26.88 
GU43 243,045 7 4,856,399 50.58 0 
GU52 248,372 9 5,236,603 50.72 24.58 
GU31 252,882 8 4,950,178 50.27 20.10 
GD162 257,260 7 4,788,765 50.64 0 
GD45 340,187 5 5,097,407 50.6 12.34 
GU87 348,597 6 5,115,851 50.5 21.03 
GU50 367,693 4 4,869,944 50.61 9.26 
ELU34 401,570 5 4,991,917 50.55 9.76 

 

Appendix 5. Assembly statistics for the 180 sequenced non-human E. coli genomes. 

One hundred and eighty E. coli isolates were selected for sequencing, so as to represent the full diversity 

of sampled isolates. Assembly statistics were obtained from running the QUAST quality assessment tool 

(Gurevich et al., 2013). N50 values indicate the length for which the collection of all contigs of that length 

or longer covers at least half an assembly; L50 is the minimal number of contigs that cover half of the 

assembly; GC content refers to the total number of G and C nucleotides in the assembly, divided by the 

total length of the assembly; number of N’s per 100 kb is the total number of uncalled bases per 100,000 

assembled bases. The first 12 strains highlighted in red in the table, with N50 values < 1,900 bp and genome 

sizes < 4.3 Mbp, were excluded from further genomic analyses as they represent incomplete assembled 

genomes. Genome sizes ranging from ∼4.4 Mbp to ∼6.0 Mbp within the study population represent the 

average E. coli genome size of 5.19 Mbp and an average GC content of ∼50% would be within the narrow 

range that is normal an Escherichia genome (Mann and Chen, 2010). 
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Appendix 6. Observed and expected proportions of genes shared between the human-clinical and non-

human populations of E. coli. 
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Appendix 6. Observed and expected proportions of genes shared between the human-clinical and non-

human populations of E. coli.  
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Appendix 6. Observed and expected proportions of genes shared between the human-clinical and non-

human populations of E. coli. The expected proportions were determined by carrying out a permutation 

test with random re-sampling of the population without replacement of genomes. Strain-specific genes 

were excluded from the data set. Permutations were run 1,000 times repeating for each gene category. 

The simulated proportions are plotted as histograms and the observed proportions are mapped onto the 

graphs for comparison. The permutation script was written by Ben Dickins (NTU) and the graphs were 

generated using the tidyverse package of the R statistical software. 


