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Abstract 

The project aimed to increase the phytoavaiablilty of calcium (Ca), iron (Fe) and zinc (Zn) in order to 

fortify tubers for human consumption to aid the reduced global micronutrient malnutrition (MNM). 

Simultaneously improve quality of tubers (dry mass), reduction of disease occurrence (soft rot), and 

uniformity of tuber size.  

There are three strategies commonly adopted to improve plant fortification: enhanced fertilisers, 

breeding and nutritional genetic modification. While genetic modification has produced some 

interesting results, the commercialisation is hindered by public perception and legislation, therefore 

selective breeding programmes are now being developed to circumvent these issues and help address 

the global issue of micronutrient malnutrition. This programme of work adopts a more holistic 

approach, whereby a plant food additive has been developed that can be fed to all varieties of crop 

without the need to develop new strains through breeding or genetic modification. 

The work here in produced a number of key findings: 

• Increase in mineral content of tubers from skin to pith in all applications 

• Increased foliar growth rate and tubers >30mmm 

• Iron increased the consistency of tuber size 

• Retention on minerals in growth media, decreasing leaching and increasing phytoavailability. 

Also beneficial to decreasing the minerals realised in the environment. 

Using patented technology, the reactor allows accurate and consistent size production of 

nanoparticles metal oxide nanoparticles with a production rate of 1 kg per hour whereas previous this 

rate was approximately 5 grams a day. The bulk production allows nanoparticles to be applied in 

numerous ways that were previously unfeasible. 

Sustainable application of iron fortification that retains in the soil strata for a longer period of time 

than conventional applications Coating of amino acid to the nanoparticle increases the efficiency of 

nitrogen assimilation, in turn increasing the metabolism of the plant and accumulation of other 

minerals present in the soil or fertiliser. Costing less than current Fe-chelated with less requirement 

for application. 

Significant increases in the mineral content of the tubers means a more nutritional food for human 

consumption. Increases in weight, yield and faster maturity can mean a solution to sustaining 

agriculture for a fast growing population. 
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The fortification method can be added to current fertiliser applications, requiring no drastic changes 

to current methods. 

The implications of the project are summarised in the below figure. 
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Abbreviations 

 

  

AHDB Agriculture and Horticulture Development Board 

CaFeNP Calcium ferrite nanoparticle (CaFe2O4) 

CaFeNP+His Calcium ferrite nanoparticle (CaFe2O4) coated with histidine 1:1, w/w 

CaNP Calcium oxide nanoparticle (CaO) 

CaNP+His Calcium oxide nanoparticle (CaO) coated with histidine 1:1, w/w 

CFU Colony forming unit 

CSRC Crop Storage Research Centre. AHDB Potatoes, Sutton Bridge, Lincolnshire 

d.a.p days after planting 

DM% Dry mass percentage 

FeNP Iron oxide nanoparticle (Fe3O4) 

FeNP+His Iron oxide nanoparticle (Fe3O4) coated with histidine 1:1, w/w 

FTIR Fourier-transform infrared spectroscopy 

H1 Alternative hypothesis 

His Histidine 

HNS Hydroponic nutrient solution 

Ho Null hypothesis 

ICP-OES inductively coupled plasma optical emission spectrometry 

MONP Metal oxide nanoparticle 

MONP+His. Metal oxide nanoparticle coated with histidine 1:1, w/w 

NP Nanoparticle 

SDR Spinning disc reactor 

SEM Scanning electron microscope 

W.a.p. Weeks after planting 

XRD X-ray powder diffraction 

ZnNP Zinc oxide nanoparticle (ZnO) 

ZnNP+His Zinc oxide nanoparticle (ZnO) coated with histidine 1:1, w/w 
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1 Introduction 

 

1.1 Nanoparticle synthesis 
 

Research into the use of nanoscale science and technology, enables the characterisation and 

manipulation of synthesised structures (Schmid, 2010), has intensified in the last years due to increase 

in realisation of potential or improved chemical novel applications and productivity (Parak et al., 2008; 

Schmid, 2010; Khot et al., 2012; Sirvastava et al., 2013).  Particles measuring less than 100 nm, in one 

dimension are classified as nanoparticles, NP, see figure 1.1. (Mamalis, 2007; Nair et al., 2010; Hasany 

et al., 2012; Sirvastava et al., 2013). Nanoparticles are found in the natural environment in forms of 

dust particulates, volcanic ash, some pollens and antibodies (Parak et al., 2008). Due to the nano size, 

particles properties have been investigated for the unique ability to improve function, performance 

and increase cost-effectiveness in engineered materials resulting in an extremely diverse research 

field. 

 

Figure 1.1: Schematic comparing the nm range. Adapted from Amin et al. (2014) 

 

Previously nanotechnology has evolved from the scientific fields of physics, chemistry and molecular 

biology, material science and micro electrons (Malalis, 2007; Parka et al. 2008) in order to manipulate 

structures to nano size, to enhance and improve functionality. Primarily nanotechnology 

developments have focused on applications in electronics (microchip technology), medicines and life 
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sciences (drug delivery) and energy (Parak et al., 2008; Mamalis, 2007; Niar et al., 2010). The synthesis 

and isolation of monodispersed NP, with an emphasis on the control over size, shape and composition 

are of increased importance when synthesising nanoparticles especially when scaling up for 

commercial production (Parak et al. 2008; Schmid, 2010 Khot et al., 2012). 

There are two approaches to nanomaterial formulation (Parak et al., 2008) as represented in figure 

1.2. Top down production uses physical mechanical methods such as bore mills to reduce the size of 

the particles, i.e. in the production of corn flour, pharmaceuticals and utilised in the micro electrical 

industry (Parak et al., 2008). The second approach is known as ‘bottom up’, involving the synthesis of 

precursor solutions, resulting in a precipitation reaction. Many synthesis techniques involve solutions 

of metal salt or salts with a controlled addition to a base in excess.  

 

 

Figure 1.2: Bottom up and top down approaches to the formation of nanoparticles 
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A number of synthesis techniques have been developed to satisfy the growing demand for 

nanomaterial, such as iron (III) oxide nanoparticles, FeNP (Roth et al., 2015),  with size controlling 

techniques such as sol-gel synthesis (Albornoz and Jacobo, 2006), hydrothermal reactions (Wan et al., 

2005), sonochemcial procedures  (Kim et al., 2005), hydrolysis and thermolysis of precursors (Limata 

et al., 2003), electrospray synthesis (Baska et al., 2007),  and synthesis forming microelmulsions (Chin 

and Yaacob, 2007).  Nanoparticles are generally synthesised in a controlled environment where 

oxygen concentration (and other gases i.e. nitrogen in excess) and pressure are regulated along with 

precursor solutions used in precipitation techniques of monodisperse NP, were the following factors 

are varied to produce the required nanoparticles (Laurent et al., 2008): 

• pH 

• Temperature 

• Concentration of precursor solutions 

• Rates and ratio of precursor solutions 

• Degree of suspension 

Variation in the synthesis conditions are critical to obtain the desired nanoparticle characteristics, 

however, the ripening process in which larger particles grow known as Ostwald ripening (figure 1.3) 

and uncontrolled growth through nucleation, are problematic as this can increase the particles size 

beyond the nano range. This is an implication to metal oxide nanoparticle (MONP) synthesis as they 

are formed as a dispersant in a medium, which renders them unstable with respect to agglomeration 

to a more stable bulk form.  

 

 

 

 

 

 

 

The top down approach is commonly used in large-scale production as it can economically mass 

produce NP in contrast to bottom up approaches that are still laboratory based, low yielding and not 

cost efficient as the mechanical top down approaches. However, with developments focused on the 

>100 nm 

Figure 1.3: Ostwald ripening of NP. 
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bottom up approach as these techniques yield narrow range of particulate sizes and increase the 

formation control resulting in increased control over the final product. Formation of MONP's in this 

project used bottom up approach, where two precursor solutions formulate a coprecipitation reaction.  

A widespread method in the absence of a stabilising surfactant agent, is the co-precipitation of metal 

salts within an alkali environment (Roth et al., 2015), known as the Massart process (Morrison et al., 

2004; Sun et al., 2004). The reduction of transition metal salts with in an aqueous solution is a widely 

practiced form of MONP synthesis (Schmid. 2010). Iron NP and ZnNP (Srivastava et al., 2013) are 

commonly formed this way, with stoichiometric mixture of ferrous and ferric salts forming the metal 

salt precursor for the co-precipitation synthesis of FeNP (Laurent et al., 2008).  

There are sixteen phases of pure iron oxide (Laurent et al., 2008; Carvalho et al., 2013; 

Ramimoghadam et al., 2014), the most synthesised is the cubic ferromagnetic magnetite (Fe3O4) which 

contains oxidation states of Fe2+ and Fe3+. The superparamagnetic properties of Fe3O4 are utilised due 

to ease of particle size manipulation for that applications of magnetic resonance imaging (MRI) 

contrast reagents, drug delivery, magnetic data storage and magnetic ink jet printing (Laurent et al., 

2008; Carvalho et al., 2013; Ramimoghadam et al., 2014). 

A second bulk synthesis of NP that requires a longer retention time uses a sol-gel / polymeric precursor 

method involves the development of networks through an arrangement of colloidal suspension (sol) 

and gelation to form a system in continuous liquid phase (gel) (Srivastava et al., 2013; Ramimoghadam 

et al., 2014). A sol gel is a dispersion of polymetrix precursors developed by Pechnini (Pechnini, 1967; 

Candeia et al., 2004) consisting of the formation of a metallic citrate polymerization using ethyl glycol 

as the basis of sol-gel reactions (Morrison et al., 2004; Candeia et al, 2004; Khanna and Verma, 2013). 

Depending on the nature of the precursors, may be divided into two classes namely inorganic 

precursors (chlorides, nitrates, sulfides, etc.) and alkoxide precursors.  The sol gel procedure has been 

developed to produce NP on a bulk scale that require a greater precursor retention time without the 

requirement for heat or alternations to atmospheric pressure. In the formation of calcium oxide 

nanoparticles (CaNP) (Safaei-Ghomi et al., 2013) and calcium ferrite (CaFeNP) calcium nitrate was used 

and iron nitrate when synthesising CaFeNP (Candia et al., 2004; Khanna and Verma, 2013). Citric acid 

was added to provide fuel for the combustion (Khanna and Verma, 2013), especially for CaFeNP 

synthesis, which in turn served as a chelating agent to form complexes with metal ion (Khanna and 

Verma, 2013) preventing the precipitation of hydroxylated compounds (Thant et al., 2010), with 

metallic cations homogeneously distributed throughout the matrix (Candeia et al., 2004). 
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To exploit novel applications of NP requires the preparation and isolation of monodispersed, stable 

metal nanoparticles with a great degree of control over size, shape and composition (Schmid, 2010) 

in significant quantities (Parak et al., 2008; De Caprariis et al., 2012; Khot et al., 2012) that is replicable. 

The Spinning disc reactor, SDR (figure 1.4) developed and patented by Dr G.W.V. Cave, WO 

2017033005A1, (Cave, 2017) is based upon a continuous flow system allowing large quantities of 

MONP to be synthesised at any one time thus allowing the application of MONP as a fertiliser via 

adaptation of co-precipitation and sol-gel synthesis. The rotation of the disc, seen in figure 5, creates 

a high centrifugal force that promotes film flow (De Caprariis et al., 2012).  The stepped surface on the 

disc and the bowl shape; wall height, diameter of disc, bowl shape, gives rise to mixing and control 

over NP size synthesised. The precursor solutions are fed into the reactor (figure 1.4) and dispersed 

onto the disc via peristaltic pumps on the top of the rotating disc (figure 1.5).  The feed rates and 

ration of the disc are controlled via a control panel, therefore altered to a specific MONP requirements 

and size formation. 

 

Figure 1.4: SDR allows bulk production of uniform sized nanoparticles 
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Figure 1.5: SDR disc, demonstrating the morphology of the disc effecting the mixing of the precursor solutions  

 

Control over mixing intensification to precipitation formation is to reduce mixing time, leading to a 

decrease reaction time and nucleation resulting maximised monodispersed MONP synthesis.  

When NP precipitation takes place (figure 1.6), the size distribution of the NP formed are mainly 

determined by a two-step process, nucleation and aggregation (De Caprariis et al., 2012). Complete 

macromixing between the two precursor solutions, almost all of the supersaturation is consumed 

during aggregation, therefore producing uniformed sized particles (De Caprariis et al., 2012) figure 1.6, 

to avoid further aggregation and the occurrence of Ostwald ripening (figure 1.3).  

When formed, the centrifugal force disperses the NP onto the side of the reaction vessel, figure 1.6. 

A short interparticle distance allows the interaction of two particles via van der Waals forces. In the 

absence of repulsive forces to counteract the attraction Ostwald ripening occurs (Schmid, 2010) once 

the MONP are suspended. With the aid of washing and gravitational force, the NP moves towards the 

collection tap and into the collection vessel where the NP solution is quickly filtered and dried 

accordingly to avoid Ostwald ripening. 
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Figure 1.6: Synthesis of CaNP on the SDR 

To counteract the particle attraction and aid MONP suspension, two methods are used 1) electrostatic 

stabilization 2) steric stabilization (De Caprariis et al., 2012). In this instance the electrostatic coating 

of the amino acid histidine patented by Cave and Mundell (2014), WO 2013136082 A3, prevents 

agglomeration of particles into larger particles (> 100 nm) and the suspension of MONP in an aqueous 

solvent. 

In summary, the SDR enables the increased production of narrow ranged NP that can be tailor 

synthesised to specific requirements using coprecipitation and sol gel methods. This enables new 

materials to be developed which require mass produced nanomaterial applying nanotechnologies 

ethos of improved material efficiency into areas such as agriculture. The use of silver NP has been 

successfully transferred from medical applications as an antifungal and anti-bacterial agent (Singh et 

al., 2008; Panacek et al., 2009), to a pathogen control in the prevention of fungal diseases (Jo and Kim, 

2009) like powdery mildew (Park et al., 2006).  

 

1.2 Minerals: Fortification of food 

 

The work herein focused on the biofortification of plants using Ca, Fe and Zn minerals although other 

minerals are required in addition to oxygen, carbon dioxide and water. Generally, plants require at 
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least fourteen mineral elements to maintain growth and production of crops (Marschner, 1995; 

Mengel et al., 2001). A depletion in phytoavailable elements results in deficiency, consequently 

reducing plant growth, yields and increases the plants susceptibility for disease. If the crop is deficient 

in a mineral, this will pass onto the consumer (Kelling and Schilte, 2008; Gupta and Gupta, 2014), 

causing micronutrient malnutrition, MNM (Hirschi, 2004) also known as ‘Hidden hunger’. MNM is a 

globe issue (FAO, 1996; Hirschi, 2004; Kelling and Schilte, 2008) with in ever-increasing population 

placing greater pressure on land to provide food as well as housing and amenities, therefore emphasis 

is placed on food security (Kalpana et al., 2011). 

Food security is achieved when food systems operate such that; ‘all people, at all times, have physical 

and economic access to sufficient, safe and nutritious food to meet their dietary needs and food 

preferences for an active and healthy life’ (FAO, 1996; Kalpana et al., 2011). There are three 

components to food system to achieve security: (i) food availability (production, distribution and 

exchange) (ii) food access (affordability, allocation and preference) and (iii) food utilization; nutritional 

value, social value and food safety, (Gregory et al., 2005). Food security status is diminished, or a state 

of food insecurity occurs, when any one of the three components of the food system deteriorates 

(Kalpana et al., 2011). 

 

The human body requires 22 minerals to maintain health which can be obtained from a varied diet 

(table 1.1) (Welch and Graham, 2002; Welch and Graham, 2005; White and Broadley, 2005a; White 

and Broadley, 2009; Saltzman et al., 2013).  The mineral elements most commonly lacking in human 

diets are Fe, Zn, I, Se, Ca, Mg and Cu (White and Broadley, 2009; Stein, 2010). Mineral nutrition in 

humans is defined as the process by which substances in foods are transformed into body tissues and 

provide energy for the full range of physical and mental activities that make up human life (Bouis et 

al., 2011; Saltzman et al., 2013). The most abundant global plant-based foods (rice, wheat cassava and 

maize) are nutritionally inadequate to sustain human health (Hirschi, 2004). Cereal grains have 

inherently low concentrations of micronutrients such as Zn and Fe. Translocation of Fe from senescing 

leaves to the grain, particularly when cultivated in nutrient deficient soils, is particularly poor (Grusak 

and Dellapenna, 1999). A majority of population cannot obtain such a varied diet and as a 

consequence 60% of the world population are Fe deficient, over 30 % deficient in Zn and majority of 

the developing world deficient in Ca (Fossard et al., 2000; Welch and Graham, 2002; Welch and 

Graham, 2005; Grusak and Cakmak, 2005; Rude and Gruber, 2005; Thacher et al., 2006). Everything 

fluctuates in content and concentration of minerals; however, the crop can only provide minerals that 

are derived from the soil unless a fertiliser is applied (Hirschi, 2009). It is also recognised that the 
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growing reliance upon cereals as a stable food inhibits absorption of Fe, Zn and Ca due the presence 

of phytic acids that are prolific in the composition of cereal based food, contributing to MNM (Frossard 

et al., 2000). 

 

   
Sources Functions RDA 

Calcium Milk, cheese, yogurt, sardines, 

canned fish with bones 

Structural in bones and teeth, signal 

transduction 
1500 – 2000 mg 

Iron Meat, fish, poultry, firm tofu, 

dried beans, peas, like soybeans, 

chickpeas, split pea, lentils, nuts 

and seeds, organ meats such as 

liver and heart; blackstrap 

molasses 

Oxygen transport, signal 

transduction, energy production 

and immune defence. 
18 - 30 mg 

Zinc Yogurt, milk, cheese; dried beans 

like kidney, navy, pinto and 

soybeans, lentils, pumpkin seeds 

and sunflower seeds, liver, meat, 

poultry, fish and seafood 

Cofactor for enzymes, growth and 

development; immune function 

30 - 50 mg 

Table 1.1 Ca, Fe and Zn sources from food. Adapted from Cole and Kramer (2016). RDA data source Bach and Bach (2000). 

 

Iron deficiency leading to iron deficient anaemia is the most common dietary deficiency globally 

(Akhter et al., 2005; Paesano et al., 2010). Low iron reduces the production of haemoglobin (blood 

oxygen carrier). Low concentrations of hemoglobin, adversely affect cognitive and motor 

development and cause fatigue and low productivity (Balarajan et al., 2011).  Due to the recent decline 

in the consumption of red meat, the UK gains 5% of Fe intake from potatoes reasoning that agrimony 

biofortification is an attractive strategy to increase Fe in the diet (White, 2017). Calcium like iron, is an 

abundant mineral and therefore should be easily available to dietary intake. However, 75 million 

people worldwide suffer from osteoporosis, a disease in which bones of the skeleton become fragile 

and more likely to fracture due to low bone density caused by loss of calcium minerals (Vavrusova and 

Skinsted, 2014). It is estimated that only 50–60% of post-menopausal women consume the adequate 

intake of dietary calcium per day (Breitman et al., 2003). This deficiency can be controlled by 

maintaining the daily calcium intake to the adequate level (Soto et al., 2014). Improved calcium 

absorption would probably have a major role on the reduction of bone fractures and osteoporosis in 

the body. 
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In 2012, the 65th World Health Assembly approved an action plan and global targets for maternal, 

infant, and child nutrition, with a commitment to halve anemia prevalence in women of reproductive 

age by 2025, from 2011 levels. As such, attention to nutritional interventions, such as the ‘Scaling Up 

Nutrition’ initiative, has increased with global projects by the World Health Organization (WHO) (WHO, 

2002) with HarvestPlus initiative. Founded in 2003, HarvestPlus is part of the CGIAR Research Program 

on Agriculture for Nutrition and Health (formally Consultative Group for International Agricultural 

Research), coordinated by the International Centre for Tropical Agriculture (CIAT) and the 

International Food Policy Research Institute (IFPRI) (Chugh and Dhaliwal, 2013). The program uses 

biofortification to breed higher amounts of vitamins and minerals in staple foods, including bean, 

cassava, orange sweet potato, rice, maize, pearl millet, and wheat (WHO, 2002; White and Broadley, 

2009; Chugh and Dhaliwal, 2013).  Biofortification, the process of breeding and / or supplying nutrients 

into food crops (White and Broadley, 2009; Bouis et al., 2011; Saltzman et al., 2013), aims to provide 

an economically viable and sustainable method of delivering micronutrients. Over the past forty years, 

agricultural development has focused on the increase in yield, particularity on staple crops such as 

cereals (Bouis et al., 2011; Saltzman et al., 2013), to meet the demand to feed a growing global 

population. Genetic engineering approaches have been also deemed successful for biofortification of 

a few traits in cereals (Naqvi et al., 2009; Wirth et al., 2009; Masuda et al., 2012). Introduction of genes 

that code micronutrient-binding proteins, overexpression of storage proteins (i.e. ferritin) (Chugh and 

Dhaliwal, 2013) and / or increased expression of proteins that are responsible for micronutrient uptake 

into plants (Lonnerdal, 2003). Exhale of a successful program of biofortification through GM is the 

Golden Rice Project, which has been genetically engineered to produce β-carotene, to control vitamin 

A deficiency (Ye et al., 2000; Stein et al., 2008). 

Introduction of crops genetically modified or bred to increase mineral uptake may be deemed success 

full, however, research has demonstrated that cultivation of genotypes of high yielding grains, 

coincided with the mineral content decline (Jarrell and Benerly, 1981; Loladze, 2002; Thomas, 2003; 

White and Broadley, 2005b; Fan et al., 2008). The long running Broadbalk Wheat Experiment at the 

Rothamsted Research Facility, published data on the mineral content of the semi-dwarf high yielding 

wheat, (Triticum aestivum L.) (Fan et al., 2008). Observation on yield has been taken since 1843, with 

the introduction of the modern variety, T. aestivum L., in 1968 with mineral content analysis of 

harvested dried grain (Fan et al., 2008). Decline in the Fe, Zn and Cu minerals in the grain were 

observed since the experiment commenced to present day suggesting the exhaustion of 

phytoavailable minerals (Thomas, 2003; White and Broadley, 2005b). These results reflect what other 

studies have found using other high yield crops, Sorghum bicolor (Reddy et al., 2005), leading to the 
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conclusion that new agronomic strategies are required to increase mineral concentration in edible 

tissues rather than focusing on yield (White and Broadley, 2005a; White and Broadley, 2005b; Reddy 

et al., 2005; White and Broadley, 2009). In 2002 the World Health Organisation highlighted the 

inadequacies of crops in mineral content, leading to malnutrition, health implications and detrimental 

economic impacts (Welch and Graham, 2005; Bouis et al., 2011).  

 

1.3 Plant mineral uptake 

 

The uptake of mineral elements by plant roots/tubers and their subsequent distribution within the 

plant have been the subject of studies for many decades (Marshner, 1995; Mengal et al., 2001; Karley 

and White, 2009; Miller et al., 2009; Miwa et al., 2009; Puig and Peñarrubia, 2009; White and Broadley, 

2009).  

There are several barriers that impede mineral uptake and not just the phytoavailability of minerals 

at the root to soil, or tuber to soil interface (i.e. rhizosphere) (Welch and Grahmam, 2005). Free metal 

ions that are released via weathering of parent material, decomposition of organic matter or added 

via fertiliser (Evans, 1989; White, 2001; Kelling and Schilte, 2008), the ions interact with the charged 

particulates that may form weak complexes through cation exchange or strong bond through ligand 

exchange. Elements may precipitate immediately or remain in a solution depending on the ionic 

potential (Salisbury and Ross, 1991). The associations these ions form largely depends on the nature 

of the ion and absorbing surface (Evans, 1989). Metal ions of calcium, iron and zinc (Ca2+, Fe3+, Fe2+, 

Zn2+) are taken up by the root system in a solution form (Mousavi, 2011), are unavailable as they form 

strong bonds with clay and organic matter in the form of oxides and hydroxides binding the metals 

into the soil / compost matrix (Mousavi, 2011). Insoluble complexes are unable to move through the 

matrix to the rhizosphere where reduction in the pH enables chelation and uptake, see figure 1.7. The 

mobility of metals within the soil are conditions are influenced by a number of factors; irrigation (via 

precipitation or application), pH (varying from 4.0-9.0, exerting a strong influence over free ion 

concentration) (Marschner, 1993; D’Imperio et al., 2016), CO2, temperature, organic matter content, 

microorganism activity, metal species present and aeration (Oviedo and Rodríguez, 2003; Welch and 

Graham, 2005). Species and variety of crop also determines mineral acquisition as the complex nature 

of the highly regulated homeostasis governing metal absorption, translocation within the plant, 

regulating transportation and redistribution (thus control over the prevention of toxic accumulation) 

may impede accumulation (Welch and Graham, 2005). Interactions between the mineral cations and 
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anions are rare but there is influence indirectly through membrane potential, protein electrical 

gradient or via feedback regulation through the rate of plant growth or metabolism (Marschner, 1993). 

 

Figure 1.7: Summery of factors effecting uptake of minerals (Marschner, 1993; Hirischi, 2004; Welch and Graham, 2005). 

 

Ca, as with many elements is abundant in the parent rocks of the soil, however a majority of Ca 

compounds are insoluble, reducing mobility in the soil and consequently to the root system of the 

plant (Fossard et al., 2000).  Calcium ion, Ca2+ is a large divalent cation in contrast to Fe and Zn ions 

(Hirischi, 2004) and moves in conjunction with water when free, however, this a rare occurrence as it 

forms a tight bond with particulates so much that Ca leaching through the soils strata does not 

normally occur (White, 2001; Hirschi, 2004). Unlike other minerals such as Fe and Zn, Ca2+ passively 

diffuses into the root / tuber via a gradient caused by transpiration in the leaves (Hirischi, 2004; Kelling 

and Schilte, 2008; Palta, 2010). Calcium is less mobile in the plant and is retained in the root or tuber 

upon acquisition (Marschner, 1995; Kelling and Schilte, 2008). The xylem delivers Ca2+ to transpiring 

leaf tissues, where it is taken up from the apoplast by specific cell types (Hirschi, 2004). Translocation 

of Ca2+ to non-transpiring or xylem-deficient tissues, occurs via the phloem (Palta, 2010). 

Iron is essential nutrient to photosynthetic organisms as it has numerous metabolic functions and 

functions as a co-factor in photosynthetic and electron transport chains (Carmel et al., 2014). There 

are two strategies for Fe uptake known as strategy I and strategy II. Both employ an up-regulation 

under Fe deficiency to increase Fe availability. Strategy I, used by dicotyledons and non-grass 

monocotyledons, yeast and most algae (Kelling and Schilte, 2008; Raven, 2013; Carmel et al., 2014), 

thus including the potato, tomatoes and chillies. The acidification by the release of organic acids and 
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phenolic compounds, increase the concentration of Fe3+ in the soil solution, further chelated to Fe2+ 

by ferric reductase, which is taken up by an iron transporter as seen in figure 1.8 (La Fontaine et al., 

2002; Kim and Guerinot, 2007).  

 

Figure 1.8: Strategy I uptake of iron as used by potato plants. Adapted from La Fontaine et al. (2002). 

 

Strategy II including grasses, microalgae and cyanobacteria. Muginieic acid family of 

phytosiderophores bind Fe3+ in the rhizosphere which is recognised by the plant and thus taken up as 

well as Fe2+ (La Fontaine et al., 2002). Strategy II increases the efficiency of Fe uptake compared to 

strategy I, allowing grass species to grow in areas of Fe-deficiency (Hirschi, 2004).  

Free Zn ions are bound in the soils matrix similarly to Fe (Salisbury and Ross, 1991) and thus highly 

dependent in the pH of the growth media. Normality the Zn content of non-polluted soils is 

approximately 3 x 10-8 – 5 x 10-7 M (Tegeder, 2012) with 15 – 30 % as free ions. Zinc acts similarly to Fe 

ions with release in the rhizosphere due to decrease of pH are a result of proton pump (Ghasemi et 

al., 2012), figure 1.9. 
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Figure 1.9: Simplified proton pump mechanism. 

 

Zinc is taken up as Zn2+ or Zn-phytosidphore complexes across the plasma membranes of the root 

membranes from the rhizosphere (Grotz and Guerinot, 2006). It is commonly assumed to be 

transported across the root to the xylem (Colangelo and Guerinot, 2006; Broadley et al., 2007). As 

with Fe uptake, ZIP family of IRT1 (Iron-regulated transporter) (Guerinot, 2000). 

1.4 Forms of fortification for propagation 
 

The three main constituents in fertilisers are nitrogen, phosphorous and potassium (N, P and K). N 

promotes leaf growth, formation of proteins and chlorophyll. P promotes flower, fruit development 

and root growth. K is involved in the synthesis of proteins and contributes to health of the stem and 

root too (Corradini et al., 2010). Modern agricultural methods have been successful in meeting needs 

of the population with the focus on cereals as they are the primary consumed and produced globally 

(Bouis, 2000; Welch and Graham, 2002; Bouis, 2003; Hirschi, 2004; Welch and Graham, 2005). 

However, in recent year’s fortification of micro and macro nutrients in order to improve human health 

has been brought to the forefront of research in the content of micronutrient malnutrition (MNM) 

(Mayer et al., 2008), also termed hidden hunger.  

There are three main methods of fortification; enhanced fertilisers, conventional breeding and 

nutritional genetic modification (GM). Conventional breeding for desirable characteristics takes a 

number of seasons / years to produce a crop for commercial, along with expert knowledge and cost 

this method is not usually a feasible option but is used in developing countries. Genetic modification 
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has focused on genes to accelerate Fe acquisition. Initiatives such as HarvestPlus, (Hirschi, 2009; Bouis 

et al., 2011; DellaValle et al., 2013) and the Golden Rice Project (Ye et al., 2000; Painem et al. 2005) 

has seen success, however the negative image of GM in the developed world has prevented 

widespread use of GM crops in the developing world where such crops are needed (Ye et al., 2000; 

Painem et al. 2005; Hirschi, 2009; Bouis et al.,2011; DellaValle et al., 2013). Biofortification relies on 

the plant’s capacity to produce or accumulate biosynthetic (vitamins) or physiological (minerals) 

nutrients (Mayer et al., 2008). 

Manipulation to diversify the genetic spectrum enables the plant to increase Ca, Fe or Zn uptake, 

however if the deficient mineral is unavailable in the soil, no accelerated increase will occur (Bouis et 

al., 2011). 

Fertilising arable land has taken place for thousands of years and it is the widest spread technique in 

fortification. Costs, reapplication and transportation have negative impacts on fertiliser use globally. 

Unfortunately, 40 – 70% of N, 80 – 90 % of P and 50- 70% of K content are lost to the environment 

therefore unavailable to the plant to utilise (Trenkel, 1997; Saigusa, 2000). Therefore, application of 

mineral fertilisers must ensure stability and retention in the soil for long term availability to maintain 

a sustainable supply of nutrients without the requirement for frequent application.  

Calcium is the third-most important nutrient element available in soil and is an essential element for 

the plants (D’Imperio et al., 2016). From weathering of the soil parent material Ca is available in 

various sources including feldspar, apatite, limestone and gypsum (Frossard et al., 2000; D’Imperio et 

al., 2016). The concentration of Ca2+ in neutral and calcareous soils solution (between 0.1 and 20 x 10-

3 M) deemed adequate for cultivation (Frossard et al., 2000), however these condition impede the 

uptake of Fe and Zn.  It is well documented that high content of Ca in calcareous soil limits the 

reduction of Fe3+ and uptake of Fe2+ coursing the deficiency chlorosis (Kelling and Schilte, 2008). The 

high pH of calcareous soils reduces the solubility of iron oxides by reducing H+. This also effects uptake 

of other minerals including Zn, K and Mg (Bouis et al., 2011). 

Most Ca compounds are generally insoluble and thus making the Ca unavailable to plant therefore 

application of Ca compounds such as Ca carbonate, Ca phosphate, Ca sulfate, Ca gluconate, Ca chloride 

and others to increase phytoavailability (Pilbeam and Marley, 2006). Due to implications associated 

with the transport of this element to phloem-fed tissue, Ca fertiliser has limited success, (Karley and 

White, 2009; D’Imperio et al., 2016). Foliar Ca application in the form of lime (CaO, CaCO3), gypsum 

(CaSO4) calcium nitrate calcium phosphate is commonly applied in horticulture to fortify seeds and 

fruits (White, 2005; Bouis et al., 2011). 
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Iron is Fe is one of the most abundant elements in soil only small amounts are phytoavailable as Fe 

shows a low mobility in soil as Fe2+is rapidly bound to soil particles and converted into Fe3+ becoming 

unavailable to the plant (Carvalho and Vasconcelos; 2013), resulting in a global nutritional disorder 

(Grusak and Dellapenna, 1999; Hirschi, 2004; Chatterjee et al., 2006; Kim and Guerinot, 2007; White 

and Broadley, 2009; Winkler, 2011). Iron uptake is in accordance to the plants requirements, 

maintaining a Fe concentration of 10-9 – 10-4 M to achieve optimal growth (Abadía et al., 2011). 

Iron fertilisers can be grouped into three classes; inorganic Fe compounds (sulphates, oxides and 

hydroxides), synthetic Fe-chelates (ethylenediamine tetraacetic acid (EDTA), and natural form of Fe 

complexes (humate and amino acids) (Abadía et al., 2011). Commercial fertilisers utilise Fe in the forms 

of FeSO4.7H2O and synthetic Fe-chelate such as Fe-EDTA (ethylenediamineteraacetic acid) HEDTA, 2-

hydroxyethylenediaminetriacetic acid; DTPA, diethylenetriaminepentacctic acid; EDDSA, 

ethylenediaminediscuccinic acid and IDSA, iminodisuccinic acid (Schaider et al., 2006; Wagner and 

Baran, 2010; López-Rayo et al., 2015) that are applied either as a foliar or root solution to increase Fe 

availability. Salts are extremely soluble and easily leached through the soil (Lucena, 2006), therefore 

only used as a sort-term delivery. Chelates are also highly soluble, but are more retentive in the soil 

than Fe-salts, however, prove costly and unobtainable for farmers where Fe fortification is in demand 

(White and Broadley, 2009; Ghasemi et al., 2012).  

Plants display Zn deficiencies in calcareous or alkaline soils, particularly in sandy soils, i.e.  Turkey, 

China, Western Australia and in Central and Western Africa (Marschner, 1993; Alloway, 2004; White 

and Broadley, 2009; Abadía et al., 2011; Mousavi, 2011; Winkler, 2011).  Concentration of Zn ranges 

from 10-8 to 10-6 M in non-polluted soils (Stein et al., 2005; White and Broadley, 2009). The 

concentration of Zn in the soil solution decreases from 10-4 to 10-10 M with an increase from pH 5 to 

pH 8 (Kiekens, 1995). Zn is applied as inorganic sources , ZnO, ZnC03, ZnS04, Zn(N03)2 and ZnCI2, with 

ZnSO4 as the most commonly used (Alloway, 2004). Chelated forms of Zn are also applied, majority as 

ZnEDTA, Na2Zn-ethylenediamine tetra-acetate, however, as reflected by Fe-chelates, cost implication 

favour the Zn salts (Hotz and Brown, 2004). 

 

1.5 Use of metal oxide nanoparticles as a mineral supply 
 

Current agronomic strategies rely on mineral fertiliser application to increase the mineral content in 

edible tissues of the crop with increasing focus on the stabilisation and phytoavailability of the mineral 

(White and Broadley, 2005a; White and Broadley 2005b; White and Broadley, 2009). The novel 

application of MONP+His as a form of fortification, hypothesises that the size of the NP can penetrate 
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through the cell wall pores (5 to 20 nm) (Fleischer et al., 1999; Navarro et al., 2008; Nair et al., 2010) 

allowing nanoparticles and nanoaggregates less than the pore size to pass passively into the plant 

without chelation (Navarro et al., 2008). The histidine coating of the nanoparticles, increases mobility 

through the strata due to the ability to suspend the nanoparticle and move with water. This allows 

passive diffusion into the tuber/root membrane through a concentration gradient. The amino acid 

coating provides a barrier, reducing the MONP to complexing with ligands in the compost that would 

otherwise decrease phytoavailability. The MONP+His. is a sustainable application of mineral 

fortification, due to the increase in retention capabilities in the soil strata over conventional metal 

salts and chelates, consequently decreasing the requirement for repeated applications and having a 

positive economic impact. The application of FeNP+His. allows the delivery of both Fe3+ and Fe2+ as a 

stoichiometric ratio of 2:1 (Fe3+/Fe2+) (Laurent et al., 2008) allowing a duel delivery of Fe that is 

phytoavailable immediately (Fe2+) and a more stable Fe supply (Fe3+) (White and Broadley, 2009) that 

will not be as readily complexed as Fe2+ but available to the plant when Fe3+ is reduced in the 

rhizosphere via a proton pump mechanism (Sánchez  et al., 2005; White and Broadley, 2009). 

An additional benefit of MONP+His application is the coating of amino acid, histidine. Sánchez, et al., 

(2005) reported that the use of amino acids in nutrient solutions improves Fe uptake by crops. The 

presence of the amino acid increases the efficiency of nitrogen assimilation (Ghasemi et al., 2012), in 

turn increasing the metabolism of the plant and accumulation of other minerals present in the soil or 

fertiliser (Tegeder, 2012). Amino acids have highly diverse and essential roles in plants, by being the 

building blocks for enzymes and proteins, they provide important components for plant metabolism 

and structure (Fischer et al., 1998; Gupta and Gupta, 2004), therefore providing an additional benefit 

to the application of MONP+His. 

  

1.6 Potato history and consumption 
 

Since the introduction of the potato (Solanum tuberosum) to Europe in the mid-16th century (Lisinska 

and Leszczynsk, 1989), the vegetable has become a staple in the global diet, becoming the fourth 

largest crop cultivated with 318 million tonnes produced in 2014 (CIP, 2017). China produces 2.50 % 

of the global total (9.5 million tonnes in 2014) and is the long-standing highest producer. United 

Kingdom contributes 0.15% in 2014 with 591,100 tonnes over 1.9 million ha involved in production in 

2014 (FAO, 2016), figure 1.10, with a global production exceeding 300 million metric tonnes produced 

from 155 countries, considered a staple food for more than a billion people (CIP, 2017). 
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Figure 1.10: Highest produced global crops, data obtained from FAO-stat (FAO, 2016). 

  

In the early 1990’s Europe and Northern America were the primary growers and consumers. In recent 

times the increased global trend in potato production (figure 1.11) has seen a substantial increase 

from Asia, Africa and Latin America. In the 1960’s Asia, Africa and Latin America produced 30 million 

tonnes, increasing to 165 million tonnes by 2014 (FAO, 2016).  

 

 

Figure 1.11: Taken from Potato Council 2015 Yearbook and Buyers Guide (FAO, 2016). 
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Figure 1.12:Data from FAO displaying the global potato production over a 14-year period (CIP, 2017). 

 

In 2005, a landmark event in global potato production occurred as developing countries out produced 

the developed world (figure 1.12). In 2013, China produced the most potatoes with 89 million tonnes, 

equivalent to 24 % of the global production and twice as many as the next highest producer (Kolbe 

and Stephan-Beckmann, 1997; Potato council, 2015). The UK market yields 5.58 million tonnes of 

potato a year (table 1.2), with an increasing import into fresh potatoes, table 1.3 (Potato Council, 2015; 

FAO, 2016) showing a local and global importance of the potato. 
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Crop Produced in United Kingdom 2013 (Tonnes) 

Wheat 11921000 

Sugar beet 8000000 

Barley 7092000 

Potatoes 5580000 

Rapeseed 2128000 

Oats 964000 

Carrots and turnips 696200 

Cabbages and other brassicas 271800 

Cauliflowers and broccoli 155700 

Peas, green 152570 

Tomatoes 93600 

Leeks, other alliaceous vegetables 35220 

Rye 33000 

Chillies and peppers, green 23500 

 

Table 1.2 UK crop yield, 2013 (FAO, 2016). 

 

 

 

 

 

United Kingdom potato export and imports (Tonnes) 

 

2009 2010 2011 2012 

Fresh 

 Import  281839 248841 267081 465206 

 Export 256180 336699 384622 287623 

Frozen     

Import 501942 501022 524712 524222 

Export 37084 26812 32290 39967 

Table 1.3: UK import and export of fresh and frozen potatoes (FAO, 2016). 
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1.7 Propagation and mineral composition of potato. 
 

The potato plant has a short life span ranging from 80 to 150 days from planting to maturity, with 

variation between varieties (Lisinska and Leszczynski, 1989; Kolbe and Stephan-Beckmann; 1997). Its 

developmental stages are often described in terms of tubulisation and tuber development (Gray and 

Hughes, 1978; Lisinska and Leszczynski, 1989), with life cycle of a potato tuber is characterised by 

initiation and growth followed by a period of dormancy and finally sprouting resulting in the next 

(vegetative) generation (Gray and Hughes, 1978; Kolbe and Stephan-Beckmann; 1997), figure 1.13. 

 

 
 

Figure 1.13: Generic growth cycle of potato. Adapted from Obidiegwu et al. (2015). 

 

Stages 1 and 2 last from 30 to 70 days depending on planting date, soil temperature and other 

environmental f actors, the physiological age of the tubers (Lisinska and Leszczynski, 1989; Johnson, 

2008), and the characteristics of particular cultivars. 

Sprouting tuber Growth stage 1; the onset of sprout appearance at break of dormancy, also known as 

‘chitting’ (Lisinska and Leszczynski, 1989). Possible application of MONP as a spray coating to promote 

sprouting. Also a ‘drench’ application can be applied at planting, whereby a highly concentrated 

solution of MONP is applied in the soil surrounding the seed potato. Vegetative Growth stage 2; The 

plant is established, seeing the formation of leaves, branches, roots and solons. Tuber initiation 
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Growth stage 3; approximately 30-60 days after the seed tuber is planted, tuber formation begins. 

Tubers are derived from lateral underground buds developing at the base of the main stem that when 

kept underground develop into stolon due to diagravitropical growth (Gray and Hughes, 1978; Lisinska 

and Leszczynski, 1989). When the conditions are favourable for tuber initiation, the elongation of the 

stolon stops, and cells located in the pith and the cortex of the apical region of the stolon first enlarge 

and then later divide longitudinally (Gray and Hughes, 1978; Lisinska and Leszczynski, 1989; Johnson, 

2008). At this stage, fertiliser with increased N is applied. The FeNP+His. application at this stage would 

benefit chlorophyll production and growth with addition Fe and the assimilation of N from the 

presence of His. developing tuber Growth stage 4; during enlargement tubers become the largest sink 

of the potato plant storing massive amounts of carbohydrates (mainly starch) and also significant 

amounts of protein (Gray and Hughes, 1978; Johnson, 2008). Furthermore, tubers decrease their 

general metabolic activity and as such behave as typical storage sinks. MONP+His. would benefit the 

loading of potatoes and assist in the fortification of the tubers for human consumption and plant / 

crop development.  

Mature tuber Growth stage 5; potato tubers are harvested from 90 to 160 days after planting and this 

may vary with cultivars, production area, and marketing conditions. Starch the typically represents 20% 

of the fresh weight of mature tuber. After potato vines die back the skin of tuber thickens and hardens, 

which provides greater protection to tubers during harvest and blocks entry of pathogens to the tuber 

(Gray and Hughes, 1978; Lisinska and Leszczynski, 1989). MONP+His application has the potential to 

regulate starch content, therefore produce a consistent starch content, an attribute that is of interest 

to the potato processing industry (Lulai and Orr, 1979). At dormancy, defined as ‘absence of visual 

growth’ (Lisinska and Leszczynski, 1989), cellular rates are supressed (Kolbe and Stephan-Beckmann; 

1997), with tuber meristems are arrested (Obidiegwu et al., 2015). 

 

Initially consumed for medicinal proposes by the aristocracy (Lisinska and Leszczynski, 1989), and 

recently implicated in contributing towards diabetes and obesity due to high glycaemic index, it seems 

to be forgotten the potatoes provision as a staple crop preventing malnutrition over the centuries in 

many countries (Camire et al., 2009). The tuber provides the consumer with highly digestible 

carbohydrate, nutritionally complete protein and excellent source of essential nutrients with the 

exception of Fe, Cr, and Cu, although specific cultivars may provide significant contributions to the 

intake of several elements (Lisinska and Leszczynski, 1989; White and Broadley, 2005a, Suttle, 2008). 

In areas of the world the vitamin C content is an important constitute of the diet together with several 

B vitamins (folic acid, niacin, pyridoxine, riboflavin, and thiamine) plus pyridoxine (vitamin B6) (Camire 

et al., 2009).  With all crops, the mineral content, yield, dry matter %, storage feasibility and disease 
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resistance are somewhat dependant on the genic features which can fluctuate within the same variety 

(Lisinska and Leszczynski, 1989). Mineral content can further depend on age of tuber at time of 

consumption, storage technique, environmental conditions, disease and soil composition without the 

influence of chemical’s. It has been long associated the mineral content of crops are influenced by the 

soils mineral content, particularly those with close proximity such as the potato. Due to the potato’s 

stability as a staple food, an increase in uptake of essential trace elements may be a desired when 

considering that half of the world’s population is estimated to affected by microelement deficiencies 

(Zhoa and MCGarth, 2009). Trace elements occur in low quantities in the environment, typically 

below 1 g/kg (Kabata-Pendias, 2010).  

Initiatives calls have been made to promote the nutritional value and cooking methods of potatoes in 

order to increase in the fresh market sector. The year 2014 marked the tenth anniversary of the ‘Grow 

Your Own’ which has reached 2.1 million British school children (71 % primary schools). In 2015 the 

Potato Council lunched ‘More than a bit on the side’ campaign to highlight the diversity of the potato 

in the diet (Potato Council, 2015). 

1.8 Other crops in the Solanaceae family 
 

Other members of the deadly nightshade family Solanum lysopersicum, which potatoes are a member, 

includes chilli pepper and tomatoes. Tomato is popular worldwide fruit and the second most produced 

and consumed in the western countries (Willcox et al., 2003). The tomato fruit is a sink organ and 

provides an excellent source of many nutrients and antioxidants including vitamin C, lycopene and 

phenolic acids (Bressy et al., 2013; Verma et al., 2015). Chilli peppers are fruits of plants from the 

genus Capsicum of which are several domesticated species of chili peppers, among them Capsicum 

annuum, C. frutescens and C. chinense, which include many common varieties. These various peppers 

are widely used in many parts of the world and are particularly noted for their pungency, due to the 

unique presence of chemicals from the antioxidant capsaicinoid family of fatty acids (Arora et al., 2011, 

González-Zamora et al., 2013).  

It was of interest in the application of MONP to observe the translocation and storage of minerals 

applied as MONP to fruit as well the effect to other constituents (i.e. capsacinoids).  This would 

substantiate the MONP as a non-phytotoxic source that is potentially utilised by other varieties of crop 

such as brassicas and cereals as a method of sustainable fortification.  

 

 



Biofortification of potato (Solanum tuberosum) using metal oxide nanoparticles 
 

44 
 

2 Nanoparticle synthesis and functionalisation 

 

To allow nanoparticles to be utilised in a commercial application such as a fertiliser, the synthesis must 

be formulated to large-scale production, allowing control over the particle size. 

The aims of the following synthesis: 

• Bench top reactions converted to SDR. 

• Consistent synthesis of narrow range nanoparticles. 

• Synthesis to take place at ambient temperature under normal atmosphere 

• Efficient precursor chemicals. 

• Maximise yield by increasing the efficiency of the reaction. 

To allow the suspension and uptake of the MONP by the plant, coating and compatibility tests carried 

out to improve availability and coating efficiency. Seed germination rate and percentage allowed to  

 

2.1 Materials and methods 
 

The following co-precipitation and sol gel synthesise were adapted for the SDR, patent WO 0013136082 

A1 unless stated (Cave, 2017). 

All chemicals supplied by Sigma-Aldrich unless stated otherwise. Ammonia, acids and solvents used in 

the following synthesis obtained from Fisher Scientific (laboratory, analytical or HPLC grade) without 

prior purification. Characterisation carried out by XRD (powder X-ray diffraction microscopy) and FT-

IR with average particle size analysed via TEM. Metal content of coated MONP suspensions analysed 

via inductively coupled plasma optical emission spectrometry (ICP-OES), Perkin Elma ICP-OES Optima 

2100 DV. 

 

2.1.1 Calcium oxide nanoparticle synthesis via a sol gel method. 
 

The following bench top synthesis was adapted from Safaei-Ghomi, (2013) for the SDR. A solution of 

calcium nitrate tetrahyrate, Ca(NO3)2.4H2O (1 M dm-1, 118.07 g,) in ethylene glycol (500 mL) was 

consistently used in each reaction. A separate base solution of sodium hydroxide (3 M dm-1, 60 g) in 

distilled water (500 mL) added to the SDR. These concentrations found to form a white precipitate 

instantaneously when tried on a 100 mL scale on the bench therefore ideal to transfer into the SDR. 
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The two precursor solutions fed into the SDR as a 1:1 ratio, 60 ml/s, via peristaltic pumps at room 

temperature. The disc rotational speed was a) 2000 rpm then b) 3000 rpm. The CaNP instantaneously 

formed for the both rotational speeds, however the 2000 rpm prevented free flow of the CaNP, 

coursing blockages and potential interference of particulate size through the prolong exposure to 

surplus precursor materials. The 3000 rpm disc speed allowed free flow of the CaNP through the 

reactor later collected and filtered using a grade 2 sintered glass funnel by vacuum filtration, washed 

with distilled water (3 x 200 mL) then with ethanol (2 x 200 mL) while the CaNP collected in situ in the 

funnel. The nanoparticles collected from the funnel, dried in a vacuum oven at 60oC for 12 hours, 

followed by calcination of the NP at 500oC for 5 hours.  

It was found necessary to use ethylene glycol as the viscosity (1.113 g/mL at 25 °C) increased retention 

time between the two precursor solutions necessary for instant particle formation. The method using 

water-based precursor solutions, the particles failed to form even at low disc speeds (500 rpm) and 

increased solution concentrations. 

The process of heating to a constant temperature for a period of 2 hours, calcination, removed 

remaining ethylene glycol remaining from washing. The formation of the CaNP as formulated in 

equation 1. 

Equation 1: formation of CaO 

Ca(NO3)2.4H2O + 2NaOH → Ca(OH)2 + 2NaNO3 + 4H2O  (Step1) 

Heating at 5000C →  CaO + H2O     (Step 2) 

 

2.1.2 Synthesis of iron oxide nanoparticles (Fe3O4) 
 

A precursor solution of Fe2+ and Fe3- was prepared using FeCl2.4H209 (0.05 mol-1, 9.94 g) dissolved in 

distilled water (1000 mL) with FeCl3.6H2O (0.10 mol-1, 27.03 g). Ammonia 8’80 (1000 mL) was used as 

the base precursor in the synthesis as adapted from previous reported reactions (Chatterjee et al., 

2003; Laurent et al., 2008; Khalil, 2015). The two precursor solutions (at room temperature) added at 

equal volume via separate peristaltic pumps at a flow rate of 60 ml / s, combining at the surface of the 

spinning disc (rotating at 2000 rpm). The co-precipitation reaction formed a black precipitate upon 

the disc. The rotation and ridges on the disc allow the two precursor solutions to mix, with centrifugal 

force of the rotation dispels the crude FeNP onto the sides of the reactor where crude FeNP flows into 

a Duran bottle, 2.5L. The crude FeNP was formulated as in equation 2. 
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Equation 2: Formation of Fe3O4 

Fe2++ 2Fe3+ + 8OH− → Fe3O4 + 4H2O    (step 1) 

Fe3O4 + 2H +→ γFe2O3 + Fe2+ + H2O   (step 2; in the presence of oxygen 

forming γFe2O3)  

Once the precursor solutions have been processed through the SDR, the reactor was washed (2 x 250 

mL) with distilled water to collect any residual crude FeNP, as it was found to accumulate around the 

reactors surface. The crude FeNP was initially decentred with the use of magnets (2 x 25mm dia x 20 

mm thick, N52 neodymium with 24 kg pull) purchased from first4magnets.com, positioned at the base 

of the collection vessel. Using magnets exploits he superparamagnetic nature of FeNP (Laurent et al., 

2008). The magnets pull the crude FeNP towards the base of the Durnan bottle, 2 L, enabling solution 

to be decanted. Some nanomaterials maybe lost due to mishandling, or lack of magnetic field, so 

caution must be taken to prevent loss of yield.  Removal of the magnets from the base of the Duran 

enabled the resuspension of the nanomaterial. To remove excess precursor material, a further wash 

(3 x 500 mL) with distilled water, using the magnets to separate the nanomaterial from the washing 

each time. The FeNP was filtered using a 1 Litre sintered glass funnel, (grade 3), and finally washed 

with ethyl acetate (1 x 200 mL). The FeNP was dried for 6 hours under vacuum to air (at room 

temperature) before being transferred to an oven at 60oC for 24 hours.  

To suspend the FeNP in a solution for application, the FeNP were coated using amino acid histidine 

hydrochloride, 1:1, w/w (patent 20150027050) ground together to form an electrostatic bond with a 

pestle and mortar.  

2.1.3 Synthesis of zinc oxide nanoparticles, water based: ZnNP method 1 
 

Incorporating synthesis methods from Srivastava, et al., (2013), and Akbar and Anal (2014), a synthesis 

technique was optimised to incorporate the SDR. 

Using an aqueous solution of zinc chloride (ZnCl2) and base solutions (ammonia hydroxide,  and 

sodium hydroxide), a number of variations in molarity of both precursor solutions, feed ratio and rpm 

of the disc were made to maximise instantaneous formation of zinc oxide nanoparticle output from 

the SDR (table 2.1). 
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Zinc chloride 

molarity 

(mol-1) 

Base 

Base 

molarity 

(mol-1) 

Feed ratio 

Zn: base 

(mLs / s)) 

SDR speed 

(rpm) 

Percentage yield 

(%) 

1 0.2 NaOH 0.5 60:30 500 
No instant 

formation 

2 0.2 NH4 Conc 60:30 500 
No instant 

formation 

3 0.5 NaOH 0.5 60:30 500 
No instant 

formation 

4 1 NaOH 0.5 60:60 500 77.6 

5 1 NaOH 0.5 60:60 1000 
No instant 

formation 

 

Table 2.4: Variation in synthesis conditions, using water as the solvent in the translation of ZnO synthesis to SDR. 

After a number of alterations, a solution of sodium hydroxide (0.5 M, 40 g) in deionised water (2000 

mL) added to a solution of zinc chloride (1 M, 272.63 g) in deionised water (2000 mL). The two 

colourless precursor solutions fed onto the spinning disc at a feed rate of 1:1, on the SDR at a 1:1 feed 

rate of 60 mL/s with a disc rotation of 1000 rpm, resulting in the formation of a white precipitate. 

The nanoparticles were filtered under vacuum using 15 cm dia. grade 2 sintered glass funnel and 

washed with distilled water (4 x 250 mL) once with ethanol (200 mL), drying for 24 hours in a vacuum 

oven at 40oC.  The nanoparticles were calcined at 200oC for 12 hours (Akbar and Anal (2014), to 

remove excess water to obtain ZnO as in equation 3.  

 

Equation 3: Formation of ZnO 

 

ZnCl2 +NH4OH → Zn(OH)2 + NH4Cl  (step 1) 

Zn(OH)2 → ZnO + H2O    (step 2) 
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2.1.4 Synthesis of zinc oxide nanoparticles using methanol and acetone: ZnNP method 2 

 

The ZnNP synthesis adapted further to remove the requirement for calcination and presence of NaCl. 

Removal of water as the precursor solvent to be replaced by methanol and acetone (technical grade) 

was adopted from Zak, et al. (2011), using ZnCl2 (0.4 M, 27.26 g) dissolved in methanol (500 mL) as 

the metal precursor solution. In a separate solution, NaOH (0.8 M, 48 g) dissolved in acetone (1500 

mL) as the base precursor solution. The two precursor solutions were fed into reactor 1:3 ratio (ZnCl2: 

NaOH). A white precipitated was instantly formed when mixed on the spinning disc. The ZnO was 

filtered using vacuum filtration with a 15 cm dia. sintered glass funnel (grade 3) and washed acetone 

(3 x 200 mL). Dried in oven at 50oC for 4 hours.  

 

2.1.5 Synthesis of calcium ferrite nanoparticles 

 

The synthesis of calcium ferrite (CaFe2O4) was carried out using a conventional Sol-gel method 

employing a polymetirc precursor solution as in the Pechini method (Pechini, 1967; Candeia et al., 

2004). The process is based on metallic citrate polymerization using ethylene glycol (Livage et al., 

1989; Khanna and Verma, 2013). Citric acid or another hydrocarboxylic acid, is used in an aqueous 

solution to act as a chelating agent to form complexes with the metal ions, in this instance iron and 

calcium, preventing a hydroxilated compound from being hydrolysed. Secondarily citric acid provides 

fuel for combustion in the Sol-gel auto-combustion process (Pechini, 1967; Livage et al., 1989; Candeia 

et al., 2004; Wu et al., 2006; Wu and Wang, 2011; Khanna and Verma, 2013) initiating oxidation-

reduction which in turn provides energy to form the ferrite nanocrystallites (Wu and Wang, 2011; 

Khanna and Verma, 2013). The oxidising nature of the nitrate salts of calcium and iron contribute to 

the oxidation of the metals as well as providing cation sources (Hwang et al., 2004). The addition of a 

polyalcohol, such as ethylene glycol, leads to the formation of an organic ester. Heating promotes 

polymerisation and results in a homogeneous resin in which metal ions are uniformly distributed 

(Candeia et al., 2004). Residual citric acid that had not been used in the combustion stage can be 

removed by thermal treatment without effecting the properties of calcium ferrite. The process results 

in the formation of a spinel structure RO.R2O3, by association of a trivalent oxide (acid character) with 

a bivalent oxide (alkaline character) which usually leads to a high thermal stability Candeia et al., 2004).  

A conventional sol-gel method was used for the synthesis, using ethylene glycol as the basis of this 

process as used by Khanna and Verma, (2013) with modifications. Initially a 10 mL solution of calcium 
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nitrate (1 M, 23.62 g) was mixed with 10 mL solution of ferric nitrate (2 M, 80.80 g) in a 250 mL pyrex 

beaker. Citric acid (2 M, 38.42 g) 10 mL, was added to the solution along with 7 ml ethylene glycol. 

The solution with consciously stirred with a magnetic stirrer and heated between 90-100 oC to 

evaporate water and to form a gel. After ca. 30 mins heating, the gel becomes very viscous and 

increases in viscosity as the combustion continues. The auto-combustion stage is signified by the 

liberation of a brown gas (CO2, H2O, N2) and the appearance of crystals of CaFe2O4, equation 4. At this 

stage, the temperature increased to 200oC to compete the combustion. Once the gel has completely 

converted to a brown powder signalling the completion of the auto-ignition process. The brown 

powder was washed with ethanol (2 x 100 mL) via a glass-sintered funnel (grade 1) via vacuum. The 

powder was then dried overnight in an oven at 60oC.  

Equation 3: Formation of CaFe2O4 

CaO + Fe2O3 → CaFe2O4 

 

2.2 Nanoparticle coating 
 

Metal oxide nanoparticles do not suspend or dissolve in an aqueous solution. To enable MONP 

suspension a coating is required that is soluble in water but also creates an electrostatic attachment 

to the MONP in question, figure 2.1 (Cave and Mundell, 2014). 

 

Figure 2.1: Coating of a MONP: Electrostatic charge is aided H+ bond via the addition of HCl and the patented coating 
technique ensures the MONP is stable. 
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2.2.1 Hydrolysing amino acid  
 

To ensure an electrostatic attraction between the amino acid and the MONP, the H+ bond was 

increased by hydrolysation. Amino acid, 50g, was dissolved into 100 mL of hydrochloric acid, 4 M. The 

water was evaporated using a rota evaporator until a slurry was obtain, then using the continuous 

mode an off-white crystalline solid was obtained (42 g, 84% yield). 

 

Starting weight = 50.00 g 

End weight = 42.05g 

Percentage Yield = (42.05/50)100 = 84.1 % 

 

2.2.2 Coating MONP 
 

 

The amino acid and MONP was ground using a pestle and mortar with a w/w ratio of 1:1, and ground 

for 10 minutes. For larger scale trials (CB2015, PFT2015 and PFT2016), the amino acid and MONP was 

ground using a KitchenAid KCG0702ER Burr Coffee Grinder, purchased from Amazon.co.uk (Cave and 

Mundell, 2014). 

To ensure coating method was successful, MONP+His (0.001g) was suspended in to distilled water (10 

mL). The suspension was filtered through a 20 µL syringe to remove excess MONP+His. Using a round 

bottom flask (50 mL) the suspension was evaporated (Buchi R-210 rotary evaporator) till the dry thus 

retrieving coated MONP+His. The powder was then analysed on the FT-IR to show the presence of the 

MONP and His. 

To establish an effective coating, coatings applied to FeNP 1:1, w/w as described above.  The following 

coating were tested: ascorbic acid, citric acid, ethylenediaminetetraacetic acid (EDTA), folic acid and 

hydrolysed amino acids histidine, leucine, lysine, threonine, phenylalanine and valine. The amount of 

FeNP suspended by the coating was determined by suspending 100 mg in to 10 mL of distilled water 

and sonicated at 40oC for 15 mins. The solutions were then filtered with a 20 µl syringe filter then 

analysed via the ICP-OES. 
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2.2.3 Determining amino acid for FeNP application, AAFeNP 

 

Using tomato seed, variety Gardeners Delight (purchase from Simply Seeds, Nottingham), a trail was 

conducted to establish an effective amino acid to allow suspension but one that would not affect the 

physiosology of the plant to allow the observation of the effect of the application the MONP. 

The seeds were sown directly in Jiffy compost plugs in propagators, 400 x 250 x 180 mm (purchased 

from LBS Horticulture, Lancashire) and germinated at ambient temperature under greenhouse 

conditions (average 26 oC) with no additional heat or light. Eighteen seeds were sown per cohort; one 

seed per plug. The Jiffy plugs were hydrated in an amino acid (100 mg / L), solution (100 mL) and 

watered (10 mL of 100 mg / L) with the designated solution every two days. A record of shoot 

emergence (appearance of plumlar hook / hypocotyl above the surface) and height (soil and stem 

intercept to shoot tip, figure 2.2) taken once a week for a period of 14 days. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Height 
measured 

Hypocotyl  
(stem) 

Compost surface 

Cotyledons  
(first leaves) 

Plumlar 
hook 

Figure 2.2. Measuring emergence and shoot height to ascertain amino acid suitable for the observation of the effect of 
MONP application. 



Biofortification of potato (Solanum tuberosum) using metal oxide nanoparticles 
 

52 
 

2.3 Results of nanoparticle synthesis and functionalisation 
 

2.3.1 Synthesis of calcium oxide nanoparticles 
 

Calcium oxide (CaNP) nanoparticles average size was 3.62 – 20.18 nm with an average of 16.6 nm 

(n=20) (figure 2.3), showing some NP synthesised below the reported size of 30-40 nm by Safaei-

Ghomi, et al., (2013) and the size Tang, (2008) reported, between 14 and 18 nm. Both methods used 

precursor solutions with similar concentrations and drip feed rates to that used when translating the 

synthesis to the SDR. The large size distribution considered the result of using ethylene glycol in the 

SDR system. The Ethylene glycol enables to extend the retention between the base and calcium nitrate 

solution that is beyond the remit of the SDR allowing CaO nanoparticle formation. However, this 

synthesis technique allows some uncontrolled Ostwald ripening to occur in the reaction vessel, 

resulting in the wide range of particle size. Further adaptation of the synthesis method to reduce the 

retention will enable a narrow nanoparticle range to be obtained.  

 

 

  

 

 

 

 

 

 

 

Theoretical yield at step 1 = 37.046g per 500 mL, giving 0.5 mol-1 

Percentage yield at step 1 (none calcined): a = 81.01 %*, b = 91.43 %   

Theoretical yield after Step 2 (calcinated) = 28.085g 

Percentage yield at step 2: a = 78.89 %**, b = 81.97 % ** 

Figure 2.16 Average dimensions of CaO nanoparticles (n=25). Inserted is the TEM of CaO, depicting the 
nanoparticles spherical shape. 
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* loss of product due to smaller particles lost during washing and retention in sintered filter and 

retention of CaNP in reactor due to viscosity of product. 

** Some yield loss due to fine particulates in the atmosphere 

FT-IR of step 1 confirmed Ca(OH)2  peaks: 871.737 cm-1
, 1037.749 cm-1, 1082.617 cm-1, 1209.383 cm-1, 

1341.588 cm-1, 1407.702 cm-1, 1595.917 cm-1, 2123.767 cm-1, 2217.617 cm-1, 2711.311 cm-1, 2874.943 

cm-1, 3307.073 cm-1, 3340.2 cm-1, 3642.648 cm-1.  

FT-IR of step 1. CaO (calcinated CaNP) peaks; 703.532 cm-1, 873.779 cm-1, 950.673 cm-1, 1407.206 cm-

1, 1776.076 cm-1, 2180.493 cm-1, 2511.294 cm-1. 

From the FT-IR obtained (figure 2.4a), the uncalcined CaNP are characteristic of calcium hydroxide 

nanoparticles (Lui et al., 2010; Mirghiasi et al., 2014) with a sharp peak at 3642 cm-1 of O-H stretching 

in the Ca(OH)2 crystals (Liu et al., 2010). The board peak around 3340-3307 cm-1 indicates the presence 

of physisorbed (Darroudi et al., 2016) OH which is reduced when calcined (figure 2.5). The absorption 

peaks in figure 2.4 a 1407.702 and 871.737 cm-1 indicates the C–O bond related to carbonation of CaO 

published by Darroudi et al., (2016) (1421 – 1433 and 877 cm-1, figure 2.4 b) and Lui et al., (2010),1460 

and 874 cm−1. 

 

Figure 2.4 Comparison of FT-IR of none calcined calcium oxide nanoparticles; a) CaNP synthesised from SDR, b) 
published by Darroudi et al., 2016. 
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When calcined, the presence of H2O in the form of OH bond decreases (peak 3340 cm-1 figures 2.5a 

and 2.5b, to form CaO as in the following equation:  

 

 

 

 

Figure 2.5 Comparison of calcined CaO NP; a) CaO synthesised via SDR and calcined at 500oC; b) reproduced from FT-IR 
published by Patel et al, 2009. C-O = bonds of calcite highlighted matching those published with OH bond showing a 
depreciation of water when heated, figure 2.4.  

 

The transformation of uncalcined CaO (Ca(OH)2) to CaO, was supported by XRD data. XRD of Ca(OH)2, 

2theta potential lines (figure 2.6); 18.1 o2Ө, 28.9 o2Ө, 34.0 o2Ө, 47.2 o2Ө, 50.8 o2Ө, 62.6 o2Ө, 64.3 o2Ө, 

84.7 o2Ө. Upon calcination XRD of CaO, 2theta potential lines (figure 2.7a and 2.7b); 23.0 o2Ө, 29.5 

o2Ө, 32.1 o2Ө, 37.3 o2Ө, 39. o2Ө 5, 43.2 o2Ө, 47.5, o2Ө 48.5 o2Ө 53.9 o2Ө, 57.5 o2Ө, 61, 63.3 o2Ө, 64.6 

o2Ө, 67.4 o2Ө, 70.3 o2Ө, 74 o2Ө, 77.2 o2Ө, 79.6 o2Ө, 81.5 o2Ө. 
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Figure 2.6:  XRD of none calcined CaO (Ca(OH)2). Published XRD of Ca(OH)2, a) (Mirghiasi et al., 2014) overlaid with particles 
synthesised from SDR, b). * represents the corresponding peaks between the two spectra, confirming Ca(OH)2.. Blue lines 
indicate Ca(OH)2 peaks obtained via High Score software (Malvern Panalytical) data library. 

 

Figure 2.7  XRD of calcined CaNP.  XRD of calcium oxide nanoparticles publish by Ramos et al., 2015, a); overlaying calcined 
CaNP synthesised by SDR, b). * represents corresponding peaks between the two spectra. Blue lines indicate CaO peaks 
obtained via High Score software (Malvern Panalytical) data library. 
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Figure 2.6 shows the reference peaks Ca(OH)2 (High Score Plus ref: 01-084-1263), with a 66% certainty 

respectively. After calcination the CaO nanoparticles XRD, there is an absence of peak 18.190o, 

identified in the standard Ca(OH)2 as a 59% certainty of CaO present in the calcined CaNP, with no 

matches of that peak in CaCO3 and Ca(OH)2 (figure 2.7a and 2.7b). Published XRD of Ca(OH)2 and CaO 

nanoparticles are shown in figure 4.5 and 4.7. The published XRD of Ca(OH)2 by Mirghiasi et al., (2014) 

confirms the uncalcined CaO is more likely to be Ca(OH)2 as the presence of the peaks at 18.190o and 

50o. Figure 2.7b presents cubic CaO XRD as published by Ramo et al., (2015) were as the calcined CaO 

nanoparticles synthesised by the SDR, figure 2.7a, are spherical as determined by the SEM (figure 2.3). 

The absence of strong peaks above 70o are noted in the SDR CaNP and the published CaO (Tang et al., 

2008; Safaei-Ghomi et al., 2013; Ramos et al., 2015). 

 

2.3.2 Synthesis of iron oxide nanoparticles (Fe3O4) 
 

Adapted co-precipitation synthesis of iron oxide nanoparticles (Chatterjee et al., 2003; Laurent et al., 

2008; Khalil, 2015) via the SDR, produced a NP ranging from 3 to 7.6 nm with an average of 4.732 nm 

(n- 20) (figure 2.8) as confirmed by TEM.  

Theoretical yield = 11.58 g 

Percentage yield =86% 

In comparison to the commercially available Fe3O4, figure 2.9 (Chatterjee et al., 2003), the range is 

decreased and smaller when synthesised on the SDR. 

 

 

Figure 2.8 FeNP synthesised via SDR (left) and size range (right) produced by SDR (TEM). 
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Figure 2.9 Reproduced from Chatterjee, J. et al., 2003; the TEM and size distribution of commercial (supplier 
undisclosed) Fe3O4. 

 

 

Figure 2.10 FT-IR spectra of FeNP synthesised via SDR, a. Published FT-IR of Fe3O4 from Khalil,2015 

 

The FT-IR spectrum for uncoated Fe3O4, FT-IR peaks of FeNP: 531.94 cm-1,1419.92 cm-1, 1618.31 cm-1, 

3180.06 cm-1, coordinates with that of published FTRI as seen figure 2.10 (Khalil, 2015) displaying a 

stretching vibration at 3180 and cm−1, which incorporates the contributions from both symmetrical 

and asymmetrical modes of the O–H bonds, which are attached to the surface iron atoms (Luo et al., 
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2007). The bands at low wave numbers (≤ 700 cm−1) come from vibrations of Fe–O bonds of iron oxide, 

in which for the bulk Fe3O4 samples appear at 570 and 375 cm−1 (Kassaee et al., 2011). The presence 

of an adsorbed water layer is confirmed by a stretch for the vibrational mode of water found at 

1620 cm−1.  

 

Figure 2.11 XRD of FeNP. Blue lines indicate peaks of Fe3O4 obtained by software, High Score, library data. 

 

The FeNP synthesised by the SDR was further confirmed to be Fe3O4 via the XRD, figure 2.11, as 

prominent peaks are in conjunction with library data obtained from the High Score software. 

2.3.3 Synthesis of zinc oxide nanoparticles 
 

The zinc oxide nanoparticles synthesised using water as a solvent for the precursor solutions as 

described in section 2.1.3, (Srivastave et al., 2013; Akbar and Anal, 2014) produced particle averaging 

8.39 nm with a range of 7.03 to 15.41 nm displaying a hexagonal wurtzite structure (figure 2.12) 

further confirmed by XRD in figure 4.15  

Theoretical yield of Zn(OH)2 = 99.423 g 

Percentage yield = 78.050 % 

Theoretical yield of ZnO = 82.4117g 
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Percentage yield of ZnO = 78.51 % 

FT-IR peaks ZnO: 717.855 cm-1, 902.892 cm-1, 1041.579 cm-1, 1141.810 cm-1, 1246.666 cm-1, 1342.355 

cm-1, 1412.040 cm-1, 1448.817 cm-1, 1586.035 cm-1, 1627.660 cm-1, 3484.952 cm-1 

ZnO nanoparticles synthesised with solvents methanol and acetone (Zak et al., 2011) achieved a 

narrower range of 2.277 to 6.376 n with an average of 4.099nm (n = 20) which also displayed a 

hexagonal wurtzite structure (figure 2.13). 

 

Figure 2.12 Nanoparticle size range and TEM (insert) of zinc nanoparticles synthesised via SDR with techniques adapted 
from Srivastava et al., (2013) and Akbar and Anal (2014). 
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Figure 2.13 Size range of ZnO nanoparticles synthesised from method adapted from Zak, et al. (2011) [15] with 

insert of TEM.  

 

The FT-IR spectra of the samples measured in the range of 4000–400 cm−1 are presented in figure 

2.14. The as-prepared ZnO shows IR peaks at 457 cm−1, 1063 cm−1, 1390 cm−1, 1602 cm−1 and 3423 

cm−1. The sharp peak positioned at 457 cm−1 is attributed to the Zn–O stretching bonds. The IR bands 

shown are in the region of 1700–600 cm−1 and correspond to C=O, C–O and C–H vibrations 

respectively (Vazquez-Arenas et al., 2012). Remaining peaks are due to the O–H stretching vibrations 

and bending modes of the adsorbed water. With the increase of temperature, the intensity of peaks 

centred at 1063 cm−1, 1390 cm−1 and 1602 cm−1 are deteriorated and at 500 ℃ these peaks are 

almost disappeared. It indicates that organic species are completely removed at 500 ℃ (Long et al., 

2009; Babu et al., 2013). 
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Figure 2.14 FT-IR of a) ZnO nanoparticles synthesised with water as the precursor solvent, b) ZnO nanoparticles synthesised 
with methanol and acetone as the precursor solvent. * indicates peaks matching zinc hydroxychloride (Rao and Roa, 2015) 

 

The FT-IR also confirm the removal of the hydroxychloride and the completion of the reaction when 

using the modified method of ZnO synthesis using methanol and acetone as the solvent for NaOH and 

ZNCl2 precursor solution. 

The XRD of ZnO nanoparticles synthesised in H2O display a number of peaks below 20o which were 

initially through to be NaCl. Comparing the XRD with reference XRD provided by High Score Plus 

software, the XRD of NaCl, ref: 01-071-3741 (figure) does not match the peaks below 20o XRD. In an 

attempt to remove the material, the number of washes were increase two fold together with 

calcination at 160oC for 4 hours (figure 2.15). The modification failed to move the peaks.  Upon 

investigation, the synthesis using H2O as precursor solvent did not complete the reaction with the 

ZnCl2 due too insufficient NaOH, thus forming zinc hydroxychloride in the presence of excess H2O 

formed as follows:  

4ZnO + ZnCl2 + 5H2O ⎯→ Zn5 (OH)8Cl2.H2O 



Biofortification of potato (Solanum tuberosum) using metal oxide nanoparticles 
 

62 
 

The solvent the precursor materials modified to acetone and methanol (Zak et al., 2011) with a 1:2 

molecular ratio of ZnCl2 to NaOH as in the previous method. 

 

Figure 2.15 Two XRDs of ZnO synthesised from method adapted from Srivastava et al. (2013) and Akbar and Anal (2013); a) 
with four distilled water washes, and b) with eight distilled water washes and heated to 160oC for 4 hours in an unsuccessful 
attempt remove NaCl. Blue lines high light reference XRD of NaCl obtained from High Score software showing no peaks below 
20o. 

As observed in the XRD of the ZnO nanoparticles synthesised by the modified method, (figure 2.16) 

the peaks below 20o are removed and gave a comparable XRD to those published by Vazquez-Arenas 

et al. (2012), Rao and Rao (2015), Vanaja et al. (2016) and, displaying the distinctive ZnO peaks at 31.51, 

34.658, 36.453, 47.74, 56.78, 62.99, 66.38, 68.06, 69.16 and 79.96. The XRD’s suggest a completion of the co-

precipitation reaction to form purer ZnO nanoparticle that will not require a calcination when the 

presence of water is kept to a minimum.  
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Figure 2.16 Published XRD of ZnO confirming the modified SDR synthesis produced ZnO a) Vanaja et al. (2016), b) Vazquez-
Arenas et al. (2012), c) Rao and Rao (2015), d) Modification of the ZnO synthesis. The crude nanoparticles, washed three 
times in acetone with no calcination. Blue lines high light reference XRD of ZnO obtained from High Score software. 

 

2.3.4 Synthesis of calcium ferrite nanoparticles 
 

Calcium ferrite nanoparticles synthesised as reported by Khanna and Verma (2013). The results from 

TEM, figure 2.17, show a large range of nanoparticles (11.83 – 25.3 nm, average 13.47 nm, n = 20). Co-

precipitation methods that do not use the SDR, result in a broad range of nanoparticle produced. 

Results from the ICP showed a ratio of 1:2, Fe to Ca respectively. An EDX of the CaFeNP only recorded 

the Fe content (figure 2.18), concluding the Ca is encapsulated by Fe (Pirouz et al., 2015). Cu, Co and 

B are part of the instrument’s element. 
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Figure 2.17 Calcium ferrite nanoparticles (TEM) produced by sol-gel and thermal decomposition method. 

 

Figure 2.18 EDX of calcium ferrite, synthesised via sol-gel method (Khanna and Verma, 2013). 

 

 

Due to the presence of Fe, a clear XRD was not obtained, regardless of alterations to configuration, 

therefore unable to compare with published XRD, figure 2.19.  
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Figure 2.19 a) published XRD (Khanna and Verma, 2013), b) XRD from calcium ferrite synthesised using adapted sol-gel 
method. Blue lines high light reference XRD of ZnO obtained from High Score. 

 
 

To identify the different bond formations in the sample of CaFeNP an FT-IR was performed.  The 

synthesised and published FT-IR spectra contain bands at 3400 -3000 cm1 bands that correspond to 

O–H stretching vibration, that diminish with heating, figure 2.20. Absorption due to stretching in nitro 

compounds (containing NO2 group) results in a strong band in the region 1661–1410 cm-1 as observed 

in figure 2.20, the conjugation further lowers the frequency of bands resulting in absorption E1550 

cm-1 (Khanna and Verma, 2013; Khanna and Verma, 2013b; Pirouz et al., 2015). The stretching 

vibrations of C–O were detected at bands 1295 and 1289 cm-1 but were only present in the not 

calcined calcium ferrite figure 2.20a (Khanna and Verma, 2013). The bands at 560 and below are in 

correspondence to correspond to the stretching vibrations of the metal oxygen bonds i.e., Ca–O and 

Fe–O bonds (Rana and Philip, 2010; Khanna and Verma, 2013b; Pirouz et al., 2015). The spectra 

obtained for the adapted synthesis, displayed a band at 870 and 874 cm-1, possibly indicating the 

presence of starting material (i.e. citric acid or ethylene glycol) that remained after calcination at 300oC, 

further investigation into the removal and transfer onto the SRD is required to increase productivity 

and to decrease particle range. 
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Figure 2.20 FT-IR of calcium ferrite not calcined (a) and calcinated at 300oC (b) shows the removal of O-H bonds after 
calcination. The presence of bonds C-Cl at 872 – 875 cm-1 (circled in red) are residue from starting material. 

 

2.3.5 Coating technique 
 

Hydrolysed histidine with a 1:1, w/w ratio was found to be adequate to coat MONP of Ca and Fe. With 

trial and error, ZnNP required an increase in coating to 2:1 (His.: ZnNP) for successful and maintained 

suspension. Uncalinated CaFeNP was found to suspend without requirement for coating, however 

when calcined, the residual starting material and O-H removed, coating was required as a 1:1 to be in 

accordance with Ca and Fe. The initial use of a pestle and mortar was very subject to the user and 

impropriate for large quantities required, therefore the use of a KitchenAid KCG0702ER Burr Coffee 

Grinder removed human error and provided an increased output of coated material with an increase 

in coating uniformity.  

As initial trials focused upon FeNP, the coating suitability was primary established for this MONP with 

subsequent trails using the same coating for continuity. From the ICP results, table 2; ascorbic acid, 

citric acid, EDTA proved most efficient at suspending the FeNP. The use of EDTA, is cost effective but 

locks the FeNP / MONP in to a complex, figure 2.21, limiting availability for plant uptake. 

Ascorbic and citric acid also bind tighly to FeNP, with increased H+. This decreases the pH of the 

solution from pH 6.8 to 4.8, potentially coursing harm / inference to the uptake mechanisms of the 

plant.  
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Coatings of FeNP                  Fe mg / L 

Ascorbic acid 25.98 

Citric acid 41.2 

EDTA 21.87 

Folic acid 0.489 

Histidine 1.589 

Leucine 1.871 

Lysine 0.359 

Threonine 0.384 

Phenylalaine 0.379 

Valine 0.394 

Table 2.5 ICP-OES results of coating materials for FeNP. 

 

 

Figure 2.21 Fe-EDTA complex. The metal ion, Fe forms 6-valent coordination complexes with the EDTA, 4 bonds negatively 
charged oxygen and 2 bonds to a lone pair of nitrogen atoms.  

 

Trials into the effect of suspension in an aqueous solution required further investigation into the 

agglomeration and longevity of NP suspension, particularly on a range of potential coating materials, 

(e.g. lysine, ascorbic acid and sugars) and a range of pH that the solution may be added to in potential 

commercial applications (hydroponic proration or as an antibacterial agent). 
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2.3 The effect of MONP on seed emergence 

 

The ideal coating for MONP will not significantly increase or decrease the germination or growth rate 

of the seedlings to permit the observation of the effect of the MONP. Using the statistical analysis 

ANOVA and t-test unequal variances, a significant difference (sig. dif.) between the control and tested 

amino acid seedling heights was observed as seen in figure 2.22. Amino acids with the mean steam 

heights similar to that of the control seedlings, 23.63 mm were identified as; histidine (23.44 mm), 

valine (23.00 mm), cysteine (22.14 mm) and phenylalanine (22.67 mm), with histidine the closest to 

control measurement. These amino acid treatments did not significant effect the growth rate of the 

seedlings. 

 

Figure 2.22 Results from tomato trial with essential amino acids. Using Excel, statistical analysis using ANOVA single factor 
(a) and t-test (*) was performed. The significant difference was ranked according to Duncan multi comparison (Duncan, 1955). 
<p=0.05, a; <p=0.01, aa and <p=0.005, aaa. Highlighted in red is the control and His. No significant difference in growth was 
found therefore highlighting His. as a good coating as it would have no significant influence in the tomato plant growth. 

 

The influence of the amino acid on the emergence rate of the seedlings was taken into consideration. 

As for the growth rate, the percentage emerged would ideally be approximately that of the control 

seeds, 33.33%, table 2.3. Collaborating the results, it was concluded to use histidine (His) as the MONP 

coating. 
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Test solution Percentage emergence (%) 

Control 33.33 

Alanine (Ala) 77.78 

Arginine (Arg) 50.00 

Asparagine (Asn) 55.56 

Aspartic acid (Asp) 27.78 

Cysteine (Cys) 77.78 

Glutamic acid (Glu-NH2) 44.44 

Glutamic acid (Glu-OH) 16.67 

Glycine (Gly) 33.33 

Histidine (His) 50.00 

Isoleucine (Ile) 44.44 

Leucine (Leu) 66.67 

Lysine (Lys) 44.44 

Methionine (Met) 33.33 

Phenylalanine (Phe) 27.78 

Proline (Pro) 16.67 

Serine (Ser) 27.78 

Threonine (Thr) 27.78 

Tyrosine (Tyr) 16.67 

Valine (Val) 11.11 

 

Table 2.6 Results from tomato trial with essential amino acids, percentage of tomato seeds emerged. The amino acids are 
highlighted in red as those identified as to having the closest growth rates as the control seedlings. 
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3 Potato trials 

As a key compliant in the global diet, the potato also provides an ideal candidate to for fortification 

via a soil or foliar applied MONP. The tubers proximately to the soil allowed the analysis of MONP 

behaviour in the growing media, uptake and utilisation of the metals provided by the MONP. 

A number of growing conditions used to substantiate the use of MONP as fortification method. Using 

a hydroponic propagation system to initially eliminate environmental efforts such as light fluctuations, 

extremes of temperature and influence of growing media that would affect the physiology of the 

plants the nutrient requirement, plus the availability of the MONP. When establishing the optimal 

concentration of MONP with hydroponic system, the propagation was then moved to greenhouse / 

poly tunnel with the introduction of multi-purpose compost as a growing media, without addition 

lighting and some protection against temperature extremes. The data collated from these trials 

enabled experimental propagation to move to a field environment, where the uptake of the FeNP was 

observed in conditions of commercial application and propagation.  

To substantiate the claims found from the previous trials of increased availability and plant utilisation 

plus an increase in the sustainability in the compost, a head to head trail was conducted using the 

radioactive isotope 59Fe against the principle commercial source of Fe, Fe-EDTA. 

3.1 Materials and methods 
 

3.1.1 Growth pattern of stem; potato trials 
 

The growth pattern of the potatoes grown in Clifton and Brackenhurst were recorded. Measurement 

of the height of a stem was taken from the based at the substrate level to the upper shoot apex. The 

height of three allocated stems per plant was recorded from two weeks from planting (when the 

MONP was introduced), to week 5. In the growth cycle of the potato plant, this period of time is 

focused on the development of the plants foliage, hence essential in monitoring effects the MONP’s 

may have on the development. 

 

3.1.2 Yield and harvested weight: Potato crop 

 

At the point of harvest the fresh weights (2 d.p.) and numbers for trials conducted in Clifton and 

Brackenhurst were obtained and divided into two categories, >30mm and <30 mm.  



Biofortification of potato (Solanum tuberosum) using metal oxide nanoparticles 
 

71 
 

Branston Ltd provided the number and average harvested weights for Field2015, divided into sizes 

<20, 20-40, 41-65 and <65mm. Field2016, physical data was not deemed essential to the trial. 

3.1.3 Dry mass percentage (DM%); potato tubers 
 

Previously, dry matter obtained by specific gravity, first developed in mid-19th century (Lisinska and 

Leszczynski, 1989). This determination of matter produced large discrepancies; therefore, a slow 

drying method to remove water without determination of the material was developed and adopted 

as the standard method, (Lisinska and Leszczynski, 1989). 

For trials Sax2015, Sax2016, Feload2016 and Fieldrep2016, the DM% of Dry mass of a similar sized 

tubers (100 mm length, 30 g) were selected (n >10 per application). Using this regulatory system 

enabled tubers of similar age / growth stage to be analysed. Branston supplied the tubers from 

Field2015 (n=8 per treatment) and Field2016 (n=10 per treatment). 

Each tuber was washed with distilled water twice, patted dry and left to dry at room temperature for 

30 mins. A central core of a potato taken (diameter 15mm) using a cork border from the bud end to 

the stem end (figure 3.1) and immediately weighed. The sample was then place in dehydrator at 65oC, 

and reweighed until a consistent dry weight was obtained (10-15 hours). 

 

Figure 3.23 Sampling a potato tuber for DM%. 
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3.1.4 Determination of mineral content of potato tubers 
 

Soil particles could interfere with mineral content analysis therefore contamination was avoided by 

toughly washing the tubers in deionised water twice, patted dry and left to dry at room temperature 

for 30 mins.  Using a cork border (diameter 15mm), a core sample taken from the bud end to the stem 

end (figure 3.1) used in DM% was use to give an over view of the mineral content of the whole tuber. 

The autotomy of the potato as identified in figure 3.2. Two horizontal core samples were taken and 

divided into three parts central core of a potato was taken (figure 3.3). Each sample was dried as 

previously described for DM%. All samples where ground to a fine powder using a Tefal GT203840 

Coffee Grinder.  

 

 

 

 

 

 

 

 

 

 

Digestion of dried potato tubers was carried out using ETHOS UP High Performance Microwave 

Digester System using the pre-set methodology ‘Dried plant material’, figure 3.4. 

Figure 3.37 Constituent parts of potato (Lisinska and Leszczynski, 1989). 

https://www.amazon.co.uk/Tefal-GT203840-Grinder-Stainless-Capacity/dp/B008J22GF8/ref=sr_1_54?ie=UTF8&qid=1489406856&sr=8-54&keywords=grinder+electric
https://www.amazon.co.uk/Tefal-GT203840-Grinder-Stainless-Capacity/dp/B008J22GF8/ref=sr_1_54?ie=UTF8&qid=1489406856&sr=8-54&keywords=grinder+electric


Biofortification of potato (Solanum tuberosum) using metal oxide nanoparticles 
 

73 
 

 

Figure 3.25 Samples taken to for ICP analysis for constituent parts of the tuber to observe the distribution of Fe, Ca and Zn 
through the tuber. 

 

 

 

Figure 3.26 ETHOS UP program for digestion of dried plant material’, left using the EHTOS UP high performance digester, 
right. www.milestonesrl.com 

 

 Chemicals used for the digestions purchased from Sigma-Aldrich (hydrogen peroxide) and Thermo 

Fisher (Nitric acid, 36 %, analytical grade). The mineral content of the samples was obtained by Perkin 

Elma ICP-OES Opmtima 2100 DV, using calibrated using serially diluted standards purchased from 
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Fluker by a factor of ten. The fully digested material solution diluted to 20% for ICP analysis, to avoid 

nitric acid corroding the feed lines. 

 The mineral content was then calculation to 1g of dried sample. The data was statically analysed using 

ANOVA single factor, SD <p=0.05. 

 

3.1.5 Hydroponic: Trials H2014 and H2015 
 

Nutrients Mr mol L-1 g L-1 

KNO3 101.1032 0.0025 0.252758 

Ca(NO3)2 164.088 0.00 0.41022 

KH2PO4 136.086 0.0005 0.068043 

H3BO3 61.83 9.50E-06 0.000587385 

MnCl2.4H20 197.9052 7.40E-06 0.001464498 

ZnSO4.7H2O 287.5799 9.60E-07 0.000276077 

CuSO4.5H2O 249.6861 5.20E-07 0.000129837 

(NH4)6Mo7O24 1235.873 1.00E-08 1.23587E-05 

Table 3.7 Nutrient soluation formulation adapted from Wheeler, 2003. Used in trials Hydro2014 and Hydro2015. 

 

An Atami Wilma 8 pot hydroponic drip feed system (purchased from NPK Technology, Liverpool) 

consisting of eight 11 L pots was used with a clay particle substrate (Dutch Pro) in pots, supplied by a 

70 litre nutrient feed tank (120 x 60 cm), where the nutrient solution was recirculated and replaced 

every 2 weeks. The nutrient solution used was adapted from Wheeler, (2006) with an N:P:K, 7.5:0.5:3 

mol L -1, with removal of Ca, Fe and Zn constituents when equivalent MONP where tested. (table 3.1). 
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One chitted tuber per pot was planted a third down of the way down the pot, and wrapped in mineral 

wool to maintain moisture immediately around the tuber (figure 3.5). Natural light and temperature 

fluctuations were limited by insulation of 0.5 mm polystyrene (radiator reflector foil), purchased from 

Screwfix, UK. Diurnal length was twelve hours (6.00 am to 18.00 light and 18.00 to 6.00 darkness) with 

two periods of feeding comprising of two, six-hour periods (6.00 till 13.00 and 18.00 till 1.00). Lighting 

provided by Philips 600W HPS Grow Master Son-T PIA Green Power lights at a 1.5 M distance from the 

top on the pots. The lights provided a full spectrum, illuminating 1.5 M2 and providing 86500 lumens 

(www.lighting.philips.co.uk).  Test solutions added to individual tanks with maintenance of the EC, pH 

and additional MONP levels.  

Trials conducted under hydroponic conditions, tested FeNP, CaNP and ZnNP, as seen in table 3.2. All 

MONP’s used in the following trials were coated with hydrolysed histidine. Each trial lasted 12 weeks 

or until the plants showed signs of senescence. The Saxon cultivar was used as the plant grew to a 

shorter height and tuber size is small to accommodate for height restrictions of the room and small 

dimensions of the hydroponic pots. The potatoes where provided from AHDB Potato, Sutton Bridge 

Crop Storage Research Centre, to ensure all were grown and stored in the same conditions at the same 

Figure 3.40 Schematic of the Wilma drip feed hydroponic system used in hydro2014 and hydro2015 trials. 
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time. The seed potatoes where allowed to chit until a shoot height of 2-3cm was produced. The seed 

potatoes planted into the clay particulate with a mineral wool jacket, with one shoot per potato.  

Trial Application Concentration of MONP (mg/L) Number of tubers 

 

H2014 

 

Control  0 8 

Fe-EDTA 8 8 

His. 8 8 

His. 20 8 

 

H2015 

Control  0 8 

CaNP+His 12 8 

CaNP+His 32 8 

FeNP+His 8 8 

FeNP+His 12 8 

FeNP+His 26 8 

ZnNP+His 8 8 

ZnNP+His 16 8 

 

Table 3.8 Applications and concentrations used in H2014 and H2015 trials. 

 

Growth rates noted on a weekly basis during propagation. Due to the restriction on tuber formation 

in the pots, only the Fe, Ca and Zn content of the tubers harvested were analysed via ICP-OES. 

 

3.3.2 Saxon trials: Sax2015 and Sax2016 
 

Greenhouse trials conducted at Clifton campus and poly-tunnel trials conducted at Brackenhurst 

campus, followed the same strategy: three chitted seed tubers, planted in an equal lateral triangle 20 

cm apart. The plants were cultivated in 40 L sacks (purchased for LBS Horticulture), planting a third of 

the way down.  

The growth medium was a peat based Erin Multipurpose compost. The growing sacks were laid out 

50 cm, Sax2016 and 15 cm apart, Sax2015 (accordance to field propagation) so the foliage did not 

impinge on the adjacent sack (figure 3.6). Test solutions were applied once a week after two weeks 

from planting, unless stated otherwise. Dosage per plant of allocation treatment (500 mL) was applied 

directly at the base of the plant avoiding foliar contact. All plants were watered at the same time at 

twice a week between applications’, although this increased in June and July to four times a week 
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watering. For all greenhouse / poly-tunnel, trials the planning took place in April and lasted 14 weeks 

for Saxon and 10 weeks for Swift, this was in accordance to the varieties growth pattern.  

 Where fertiliser was used, the organic granular slow release Chempak Potato fertiliser (N:P:K, 4-6-

12+4MgO) was applied as directed by the manufacture. Table 3.3 summarises the applications of 

MONP in the trials. 

 

Observation of stem growth, harvest number and weights, were taken along with Dry mass (DM%) of 

similar sized tubers (100 mm length, 30 g) were selected. The Ca, Fe and Zn content of the tubers, and 

soil obtained via ICP-OES and statistically analysed. The Saxon cultivar as used previously in the 

hydroponic trials and transferred to the larger greenhouse / poly-tunnel investigations for continuity. 

The tubers were supplied by AHDB Potatoes, Sutton Bridge Research Facility, Lincolnshire. Planting for 

both trials took place in the second week in April and lasted 14 weeks, figure 3.6 

Trial Application 
Concentration of 

MONP (mg/L) 

Chempak applied 
Number of tubers 

 

 

 

 

Sax2015 

 

 

 

 

Control  0 Y 21 

CaNP+His 12 Y 9 

CaNP+His 36 Y 9 

CaFeNP+His Fe:12  Ca:24 Y 9 

FeNP+His 8 Y 21 

FeNP+His 12 Y 21 

FeNP+His 16 Y 21 

ZnNP+His 8 Y 9 

ZnNP+His 16 Y 9 

 

 

 

 

Sax2016 

 

 

 

 

Control (water only) 0 N 18 

Control with Chempak 0 Y 18 

CaNP+His 32 Y 18 

CaNP+His 64 Y 18 

FeNP+His 16 Y 18 

FeNP+His 32 Y 18 

His. 16 Y 18 

His. 32 Y 18 

His. 64 Y 18 

Table 3.9 MONP solutions tested in trials using the potato cultivar 'Saxon' for trials Sax2015 (conducted under unheated 
greenhouse conditions at Clifton Campus ) and Sax2016 (conducted in poly-tunnel, Brackenhurst Campus). All applications, 
including control, had an application of Chempak, apart from control (water only) Sax2016 where no additional feritlers 
were applied. 
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Figure 3.28 Right Sax2015 trial under greenhouse conditions at Clifton Campus. Left, Sax2016 under poly-tunnel conditions 
at Brackenhurst campus, allowing more space and increase in sample number. 

 

3.3.3 Optimising Fe application using ‘Swift’ (FeLoad2016) 
 

Seed potatoes, ‘Swift’ obtained from Hollybeck Nursery, Southwell. The potatoes were cultivated as 

described in section 3.3.2, in the absence of Chempak, in the poly-tunnel at the Brackenhurst Campus.  

 

 

Application with FeNP+His, 32 mg / L 

  Control L1 L2 L3 

Week 1        

Week 2        

Week 3        

Week 4        

Week 5        

Week 6        

Week 7        

Week 8        

Week 9        

Week 10        

Week 11        

Week 12        

Week 13 Harvested 

Table 3.10 Timetable of loading trial. Loading 1 (L1) commenced from week 2, with weekly applications thereafter to coincide 
with foliar growth. Loading 2 (L2), commenced from week 5 with weekly applications thereafter to coincide with tuber 
development. Loading 3 (L3), application commenced from week 8, with weekly applications thereafter to coincide with 
nutrient loading of the tubers. 
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The Fe application timetable is summarised in table 3.4, consisting of 15 plants per trial. Weekly 

applications of FeNP+His 32 mg / L were administrated from when indicated, with an application of 

500 mL per plant, and irrigated as for Sax2015 and Sax2016 trials. Height was recorded for 3 weeks, 

harvest data obtained as in previous Sax2015 and Sax2016 trial DM % and mineral content. 

3.3.4 Field trials in collaboration with Branston Limited (Field2015, Field2016) 
 

Field trials carried out in collaboration with Branston Limited. Growth period Field2015 was conducted 

on a singular site near Branston, Lincolnshire 53°09'30.9"N+0°26'32.4"W using the red variety ‘Mozart’. 

The second trial, Field2016, conducted on number of sites around Lincolnshire, propagating ‘Inca Bella’ 

and the commercially leading ‘Maris Piper’. All sites are regarded as iron enriched and have not been 

treated for iron deficiency in the past. The FeNP+His was supplied to Branston as a solution for 

Field2015 and as a solid for Field2016 with application instructions for the desired concentration of 

Fe. 

 Field2015 FeNP+His application methods used are summarised in table 3.6 and segregated into a grid 

system of nine plants per replicate, table 3.5.  T2 applied a solution of FeNP+His at a concentration of 

30 mg / L directly around the seed potato tubers at the time of planting. T3 and T4 applied Fe+HisNP 

solution as a foliar application at a concentration of 30 mg / L. For both of the foliar applications the 

initial spray carried at 7 weeks after planting when the potato plants foliage has achieved 50 % growth. 

T4 treatment was applied twice, same time as T3 and 4 weeks thereafter at week 11, the areas for 

both field trials in to a grid system as seen in figure 3.7.  

 

In field2016 trial, only the drench application method used with FeNP+His. 50 mg / L. Both field trials 

were harvested at week 21. 

At harvest, the mean height of the steams collected from potatoes grown Field2015, along with tuber 

number and weights. A selection of potatoes was received from the trials for Fe content analysis 

 
Application 

Weeks since planting 

(planting = week 0) 

T1 Control - no iron N/A 

T2 Drench 0 

T3 Drench + 1 foilar 0 + 7 

T4 Drench + 2 foliar 0 + 7 + 11 

Table 3.11 Details of Fe+HisNP application for Field2015 trial, using Mozart cultivar. T1 donates the first foliar application at 
50% foliar growth. For Mozart cultivar this was 7 weeks after planting. 
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(Field2015 and Field2016). Soil samples were also analysed for Fe content. All Fe analysis was obtained 

using ICP-OES. 

 

 

3.3.5 Replication of field trials (FieldRep2016) 
 

The cultivar ‘Swift’ used to replicate the field trial conducted in collaboration with Branston Limited, 

section 3.3.4. All applications commenced with a drench application at planting, FeNP+His., 50 mg/L, 

(coinciding with Field2016, section 3.3.3) with foliar application at week 5, FeNP+His., 50 mg/L 

(Field2015). In order to protect the surrounding plants from contamination the plants where 

protected by two layers (1 mm thick) of plastic sheeting screen. A Hozelock 4122 Spraymist 1.25L, 

purchased from B&Q, was used to apply 1L FeNP+His., 50 mg/L, to each bag consisting of three potato 

plants. The chitted tubers were cultivated as in previous trials, at the Brackenhurst Campus, consisting 

of 15 tubers per treatment. At week 13, the tubers were harvested. This trial was used to observe the 

growth rate response to the Fe applications. 

3.3.5: Observation of Fe uptake using radioactive isotope 59Fe. (59Fe trial) 

 

To directly compare the uptake of Fe from FeNP+His. and commonly used iron delivery method of Fe-

EDTA, both iron compounds were synthesised using the radioisotope 59Fe, 1 mCi, purchased from 

Perkin Emler. The isotope allows tracking of the iron through the plant as well as quantity of iron 

utilised through the plant. Thirdly, the retention of iron in the soil can be observed. Chemicals for Fe-

EDTA synthesis were purchases from Sigma Aldrich and the precursor chemicals for the FeNP+His 

synthesis was purchased as for pervious method.    

Figure 3.42 Grid layout of both field trials conducted in collaboration with Branston Ltd. 
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The synthesis of this trial was adapted from Lauret et al. (2008) 59Fe solution (10 mL) was added to a 

solution of iron (III) chloride (0.1 mol-1, 30 mL) and iron (II) chloride (0.05 mol-1, 30 mL), a 2:1 ration by 

molarity. This mix was added by continuous drip via a pressure equalising funnel, into sodium 

hydroxide (3 mol-3, 60 mL). The sodium hydroxide was heated to 60oC with continuous stirring at 500 

rpm in a 250 mL a round bottom flask for 1 hour. The black nanoparticles were filtered through a grade 

2 glass sintered funnel via vacuum filtration and washed with deionised water (3 x 50 mL) then ethanol 

(20 mL) and left to dry over night before in fume hood being ground for further use. Equal weight of 

histidine monochloride to iron oxide nanoparticle was ground using a pestle and mortar. The 

59FeNP+His., (3.30 g) was suspended into distilled water (1000 mL) making a stock solution. The stock 

solution (66.6 mL) was diluted to into distilled water (433.4 mL) before application to the plants. 

The synthesis of Fe-EDTA (Stiener and Van Winde, 1970) involved the preparation of two precursor 

solutions; Solution A: Disodium EDTA (1.9g) into a solution of sodium hydroxide (1 mol-1, 5 mL); 

Solution B: Iron (III) chloride hexahydrate (1.25 g) into distilled water (2.5 mL). Solution A was added 

to solution B with continual stirring and heated to 60 OC until a yellow precipitate formed. The 

precipitated was obtained by filtration and washed with ice cold water (2 x 50 mL) and once with 

ethanol (20 mL). No coating method was required as Fe-EDTA is soluble. Fe-EDTA (4.64 g) into distilled 

water (1000 mL). The stock solution (66.6 mL) was diluted with distilled water (433.4 mL) before 

application to plants. 

The treatment (500 mL) was added once a week to the potato plants (planted in multipurpose 

compost as in previous trials) and watered every other day with tap water for six weeks. Three 

replicates of each application were cultivated. Samples of the compost, tuber and stem (lower, mid 

and upper) were taken and analysed for gamma radiation activity using a Hidex AMG Gamma Counter. 

 

 

 

 

 

 

 

 



Biofortification of potato (Solanum tuberosum) using metal oxide nanoparticles 
 

82 
 

3.2 Results and discussion 
 

3.2.1 H2014 and H2015 growth rate 
 

From the data collected in trial H2014, figure 3.8 and table 3.6, it is observed the 8 ppm FeNP+His 8 

mg / L and His. 8 mg / L has the optimal growth. Overall, the Zn+HisNP treated potatoes significantly 

suppressed by the presence of ZnNP with increases of 13.73 mm and 13.18 mm, ZnNP+His 8 and 16 

mg / L respectively. 

 p-Value 

Control against ZnNP+His 8 mg / L 1.81x10-9 

Control against ZnNP+His 16 mg / L 1.4x10-9 

 

Table 3.12 p-value of stem heights (trial H2015) at week 5 of cultivation showing significant (<p=0.05) decrease in heights 
using ANOVA single factor analysis. 

 

Ca+HisNP 12 mg / L did not grow as rapidly as expected with a height increase of 31.43 mm when 

compared to the increase of 216.63 mm obtained by Ca+HisNP 32 mg /L (figure 3.9a). 

The tubers treated with His 8 mg / L significantly increase in height (p = 1.09x10-4) compared to the 

increase in height gained by control plants, figure 3.8. The height increase gained by His. 20 mg / L. 

although an increase over control was not significant.   

 

Figure 3.30 Growth rate of potatoes in trial H2015. Control plants increased by av. 304.22 mm, Fe-EDTA by 237. 22, His. 8 
mg /L by 368.94 and His. 20 mg / L by 340.17 mm. 
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Figure 3.31 The growth rates of plants treated with CaNP+His (a) and ZnNP+His (c), have suppressed growth when 
compared to control. FeNP+His 8 mg / L (b) is the only treatment in the trial that demonstrated an increase in growth rate 
over control plants. 

 

3.2.2 Saxon trials: Sax2015 and Sax2016 

 

There was no sig. dif. when comparing the increase in height between weeks 3 and 5 (in conjunction 

with H2015) in Sax2015, figure 3.10 A percentage increase in height over control plants can be 

observed for treatments FeNP+His 16 mg / L, 9.90 %, CaFeNP+His., 5.40 % and ZnNP+His. 16 mg / L.  

Potato stem heights after six weeks from planting, a 2.98 % increase over control gained by plants 

treated with FeNP+His. 12 mg / L and 0.26%, with plants treated with FeNP+His. 16mg / L, these 

increases were not found to be of significance, table 5.3.  Plants fed with CaNP+His. 12 mg/ L gained 

7.03 % increase over control height but was not found to be significant. However, CaFeNP+His and 

ZnNP+His 8 mg / L gained significant difference over control height stems, table 3.74. It was observed 

that between week 5 and 6 (figure 3.11) the control plants growth rate reduces as the plant 

commences the tuber filling stage (40 + days after planting). Plants treated with CaNP, FeNP and 

CaFeNP sustained growth rates during this period. 
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Figure 3.32 Average height increase of potato stems between weeks 3 to 5 after planting. p-values attained from ANOVA 
single factor comparing control heights and treated plant stem heights at six weeks of growth. A p value < 0.05 was 
deemed significantly different against control ‘a’. 

 

 
 

Mean height (mm) 

at 6 weeks 

Percentage + or - in 

height against 

control 

p value using 

ANOVA single 

factor 

Control 1198.73 N/A N/A 

FeNP+His 8 mg / L 1140.47 -4.86 0.2023 

FeNP+His 12 mg / L 1234.40 2.98 0.2023 

FeN+His 16 mg / L 1201.87 0.26 0.9246 

CaNP+His 12 mg / L 1283.00 7.03 0.0501 

CaNP+His 36 mg / L 1164.70 -2.84 0.2982 

Ca.FeNP+His 1318.00 9.95 0.0210 

ZnNP+His 8 mg / L 1300.80 8.51 0.0201 

ZnNP+His 16 mg / L 1169.50 -2.44 0.7160 

 

Table 3.13 Height (mm) of potato stems, percentage of height increase or decrease when compared to control six weeks 
after planting. 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

H
ei

gh
t 

(m
m

)

Treatment 

Sax2015: Average height increase of stems

a 

a 



Biofortification of potato (Solanum tuberosum) using metal oxide nanoparticles 
 

86 
 

 

 

 

 

600

700

800

900

1000

1100

1200

1300

1400

2 3 4 5

H
ei

gh
t 

(m
m

)

wap

a) Sax2015: Stem growth rate of Ca treated plants

Control Ca 12 mg/L Ca 36 mg/L CaFeNP+His

600

700

800

900

1000

1100

1200

1300

1400

2 3 4 5

H
ei

gh
t 

(m
m

)

wap

b) Sax2015: Stem growth rate of Fe treated plants

Control Fe 8mg/L Fe 12 mg/L Fe 16 mg/L CaFeNP+His



Biofortification of potato (Solanum tuberosum) using metal oxide nanoparticles 
 

87 
 

 

Figure 3.33 Average growth of potato stems during trial Sax2015. Observation suggests the presence of ZnNP (c) does not 
supress the growth of the potato stems as seen in the previous trial H2015 

 

Growth rate data collected from trial Sax2016 showed sig. dif. of stem heights gained between week 

3 to 5, figure 3.12, CaNP+His 32 and 64 mg / L has a significant increase in height over control, Chempak 

and the His. equivalent suggesting an influence in the presence of CaNP.  This is supported by figure 

5.7a where there in an increase in growth rate in stems treated with CaNP+His 32 mg /L. 

His. only applications increase the growth rate of the stems as observed in figure 3.13, with a greater 

significance at lower concentrations. 
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Figure 3.35 Average growth rates of potato stems in trial Sax2016. Control and those treated with commercial fertiliser, 
Chempak has a reduced height in stems than those treated with amino acid histidine or MONP’s. 

 

3.2.3 FeLoad2016 

 

There was a significant difference between stem heights between control and L1 (p=0.006566) 

although the height increased between 4 to 6 weeks after planting (w.a.p) in the same applications 

were similar, control increase by 204.67 mm and L1, 202.44 mm, figure 3.14. No significant difference 

in time period was found between control and L2 growth, p=0.54231 and control against L3 growth, 

p=0.54231 but this was to be expected. 
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Figure 3.49  Average growth rate of potato stems during weeks 4 to 6 after planting. L3 was not represented in the 
graph as no application had been applied at this time. 
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3.2.4 FieldRep 2016 

 

From the average stem growth rates (figure 3.15) the growth rate of the stem is sustained into the 

tuber loading phase of the potato plants growth cycle. Using ANOVA single factor there is a sig. dif., 

p=0.000109, between ‘control’ and ‘Drench + 5-week app.’ 

 

Figure 3.37 Average growth rates of potato stems in FieldRep2016 trial 

 

3.3 The effect of MONP on yield  

 

3.3.1 Saxon trials: Sax2015 and Sax2016 

 

When comparing percentages variations, a 10 % increase or decrease was taken to be of significance 

with a H0 ; “applications of MONP do not influence the number of tubers harvested or  the physiological 

maturation of the tubers”. This Ho was used when performing a Chi Squared statistical analysis, X2. 

The average number of tubers harvested per plant in Sax2015 were observed to increase over control 

when treated with FeNP+His 8 mg / L (10.31 %), CaNP+His 32 mg / L (25.83 %) which can be deemed 

as significant. FeNP+His 12 mg / L yield was not significantly less than control, however, FeNP+His 16 

mg / L produced a significantly lower yield (-17.05 %) compared to control. The higher CaNP+His 

application had the opposite effect the 32 mg / L had on yield, with a significant loss of 33.59 %. 
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Although other FeNP and CaNP treatments obtained a lower number of tubers, when comparing 

growth data (FeNP+His 16 mg / L gained increased stem height, surmising there is no overall negative 

effect of Fe or CaNP application. 

It was observed in figure 3.16 a, the application of ZnNP+His and CaFe+His had a significant negative 

effect on the number of tubers, producing a 15.14% and 13.74 % reduction in tuber tubers from 

ZnNP+His 8 and 16 mg / L respectively. The application of CaFeNP+His obtained the least number of 

tubers with a reduction of 33.59 %. 

Sax2016 trial control (no champak or MONP) gained a higher yield than those treated with Chempak 

by 2.95 concluding that the Chempak did not significant impact on yield. Those treatments that gained 

a higher yield than Chempak where FeNP+His 16 mg / L (3.49 %) and His. 64 mg / L (12.44 %). Yield 

loss compared against control ranged from 22.19 to 6.36 % ad loss of 17.91 to 3.49 % against champak. 

Sax2015 losses had a more significant and wider range of percentage loss of 33.59 to 4.33 %. 

In figure 3.16 b, it was observed a lower variance of ± 3.39 (n) was achieved in Sax2016, compared to 

Sax2015 ± 4.64 (n). Comparing FeNP+His. 16 mg / L application yields between Sax2015 and Sax2016 

are inconsistent leading to question the influence of viability of seed potato and environmental 

conditions. Variations of this kind are due to environmental and genetic variation within the cultivar 

(Lisinska and Leszczynski, 1989; Genet, 1992) as the strata, time of year and treatment application was 

identical in both trials. Sax2015 were subjected to higher temperatures, due to the nature of the 

greenhouse conditions were as the Sax2016 plants were in a well ventilated poly-tunnel Increasing 

the sample number, repetitions and a focus on temperature and light fluctuations would establish the 

impact on such influences. 

An observation of any correlation between the number of tubers harvested (figure 3.16) and the 

proportion of tubers that are above 30 mm and below the 30 mm commercial grade. Taking control 

(Sax2015) and Chempak (Sax2016) data as a reference point, a relationship was found to the total 

number of tubers and the percentage of >30 mm. Sax2015, those treatments obtaining a yield below 

control (n = 7.86) all acquired a larger percentage of >30 mm, whereas Sax2016 treatments all 

obtained higher percentages of > 30 mm tubers than Chempak. 

The Ho for the percentages of > 30 and < 30 mm of harvested tubers were tested using X2 with < p = 

0.05. A sig. dif. between control and His. applications in trial Sax2015. Further sig. dif. was found in 

Sax2015, figure 5.20A, between FeNP+His 12 mg /L and CaFeNP+His; FeNP+His. and ZnNP+His 16 mg 

/ L; CaNP+His 12 mg / L and CaFeNP+His. thus rejecting the Ho and recognising the treatments have 

an impact on the size of tubers harvested.  The analysis was also carried out for data collated from the 
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harvest of Sax2016, were sig. dif. against champak was found between, control and all other 

treatments apart from FeNP+His 16 mg / L as observed in figure 5.20A. His. 16 mg / L significantly 

 

 

Figure 3.38 Average number of tubers harvested per plant. Comparing Sax2015 (A) and Sax16 (B) trials using Saxon cultivar. 

 

increased the proportion of > 30 mm tubers when compared to the MONP equivalent application of 

FeNP+His. 16 mg/ L.  
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Figure 3.39 Segregation of tubers into commercial acceptable size (> 30 mm) and < 30 mm. Sax2015 (a) indicates sig.dif. 
analysed via Chi Squared and ranked * p=0.05>, ** p=0.01, *** p=0.005. ‘a’ indicates a sig. dif. Between control and treatment; 
‘*a’, FeNP+His 12 against CaFeNP+His; ‘*b’, FeNP+His 16 mg / L against ZnNP+His 16 mg / L and ‘*c’ CaNP+His 12 mg / L 
against CaFeNP+His. Saxon2016 (B) using the ranking system as in A, ‘a’ indicated sif. dif against control, ‘b’ against Chempak 
and ‘c’ against MONP equivalent. 
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Comparing harvested data statistically via ANOVA single factor analysis, from trial Sax2015, a 

significant increase between control plants overall average weight (OAW) in grams, and treatments, 

CaNP+His 12 mg / L (p = 0.01), CaFeNP+His (p = 1.43 x 10-4), ZnNP+His. 8 mg / L (p = 3.21 x 10-5) was 

found. 

No sig. dif. was found in the data collected at the time of harvest between control harvested weights 

of > 30 mm. It was observed that CaNP+His. 32 mg / L and FeNP+His 8 mg / L produced 25.86 and 

10.30 % more tubers per control plant respectively.   

The tubers harvested measuring under the commercial acceptable level of 30 mm, had a significant 

difference in weight against control were FeNP+His 8, 12 and 16 mg /L. Treatments CaFeNP+His and 

both ZnNP+His did not produce any sub 30 mm tubers. Due to the harvest occurring at 14 weeks, 

approximately 20 days short of commercial harvest, the occurrence of <30 mm tubers would be 

expected as these tubers would go onto to produce ‘salad’ crop. The absence of these bud tubers (sub 

30 mm) indicated the plant has halted tuber initiation early into the growth cycle. The presence of 

ZnNP or CaFeNP did not supress the vegetable development of the treated plants, nor did individual 

application of FeNP and CaNP supress development as previous discussed. This anomaly required 

further investigation in the form of repetition of the trial on a larger scale and investigation in to 

possible suppression of signalling pathways involved in tuber formation. 

Data collated form the trial Sax2016 display a repletion of no sig. dif. (< p = 0.05) found between 

control / Chempak treatments and MONP’s repeated in Sax2016, for OAW of the tubers.  Treatment 

CaNP+His 32 mg / L displayed a 15.68 % weight increase when compared to champak, and a 15.60% 

increase against control; which is contradictory to Sax2015 results of control against CaNP+ His 32 mg 

/ L of a 10.78 % loss. 

As in Sax2015, there was a sig. dif.  comparing < 30 mm between control (Sax2015) and Chempak 

(Sax2016) against FeNP+His 16 mg / L: p = 0.0239 in Sax2015 and a higher significance of p = 3.38 x 10-

6 in trial Sax2016.  In the Sax2015, control treated with Champak, as was the MONP treatments in both 

trials; subsequently the ‘Chempak’ treatment in Sax2016 is the equivalent to Sax2015 ‘control’. 

 

3.3.2 FeLoad2016 

 

The data collected from Feload2016 enabled the observation of the effects the application of 

FeNP+His. 32 mg / L had on the tubers physiological and chorological maturation (Lisinska and 
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Leszczynski, 1989; Lemaga and Caesar, 1990). Using control potatoes, cultivated with no additional 

N:P:K other than that provided by the compost, aimed to demonstrate correlation to the application 

of FeNP+His. to yield and tuber size distribution. 

With a Ho, “The application of FeNP+His. 32 mg / L has no effect on yield number or weight” would 

have to be accepted as no significant difference was found when applying X2 statistical analysis. Taking 

≥10 % as a significant percentage increase / decrease, it can be stated the application of FeNP+His. 32 

mg / L significantly decreased the average number of tubers per plant for Loading 2 (5 w.a.p), - 18.76 % 

and Loading 3 (8 w.a.p), - 15.11 % (figure 3.18 a). Loading 1 (2 w.a.p) significantly increased > 30 mm 

tubers (22.53 %), as did application Loading 2, 15.94 %). As seen in figure 3.18 b, Loading 3 application 

produced tubers of a similar size distribution as control, although producing a lower yield. Application 

of FeNP+His. 32 mg / L at Loading 1 and 2 produced lower yield but higher number of commercially 

viable tubers. 
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Figure 3.40 Average number of tubers harvested, (a) and the tuber size distribution (b) from trial Feload2016. 

 

 

 

 

 

 

 

 

 

 

Using ANOVA single factor statistical analysis, no sif. dif was found when overall all average weights, 

however, significant increases in percentage fresh weight (> 10%) were found; loading 1 = 26.85 %, 

Loading 2 = 30.74 and Loading 3 = 27.36 %. From figure 3.19 loading 2 and 3 produced significantly 

higher number of > 30 mm tubers than control using ANOVA analysis, p = 0.0068 and p = 0.0038 

respectively. Loading 2 obtained a p = 0.057, therefore a t-Test one tail was performed and found a 

sif. dif. of p = 0.0283 against control. 
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Figure 3.54 Comparison of fresh weights obtained from FeLoading2016 trial. Significant differences found using ANOVA 
analysis ‘*’. Significant difference found with t-Test ‘t’. Difference ranked as previously described. 
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3.3.3 Field2015 

 

Using a Ho “The application of FeNP+His. 30 mg / L would not influence the yield; number of tubers, 

size distribution and weight.”  This was tested using AVOVA, X2 and percentage increase/ decrease 

using levels of significance previously used. 

 

 

 

 

 

 

 

 

 

 

Figure 3.43 Harvested weights of tubers cultivated in trial Field2015 and segregated in to sizes. 
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Figure 3.55 Number of tubers harvested from trial Field2016 in collaboration with Branston Ltd, cultivated in Lincolnshire. The 
“ aa ” indicates the level of sig.dif. obtained via X2 statistical analysis between ‘Control’ and ‘Drench + 2 foliar” application of 
FeNP+His  30 mg/L. 
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Comparing the total number of tubers harvested per application, no significant difference was found 

using ANOVA single factor or percentage increase / decrease. Using X2 to distinguish changes to tuber 

size distribution instigated by application of FeNP+His. 30 mg / L, a significant change was found 

between ‘Control’ and application ‘Drench + 2 foliar’, figure 3.20. This was supported with significant 

decrease in the number of tubers 20-40mm (-31.96%) and number of tubers 40-65mm (-31.43%) 

concluding a second application of FeNP had a detrimental effect on yield but not on the weight of 

the tubers, figure 3.20. 

 

3.3.4 Field rep 2016 

 

To replicate the loading of the FeNP+His. used in the Field2015 trial, a concentration of 50 mg / L was 

applied at planting as a ‘drench’ for both ‘L1’ and ‘L2’. A second foliar application was applied at 8 

w.a.p for ‘L2’ application, sooner than in the field trials as a rapid cultivar Swift was used for trial ‘Field 

rep 2016’, therefore shortening the growth period and bringing forward the midway foliar application 

as seen in Field2015. No addition fertiliser was used for control. Due to unforeseen circumstances the 

trial was harvested five weeks earlier than planned, therefore an increased number of bud tubers (< 

30 mm) than usual were harvested. For this reason, figure 5.27 presents the average number of tubers 

per plant without size segregation.  

Using the H0
1; The application of FeNP+His. 50 mg / L had no effect on the number of tubers harvested” 

and a second null hypothesis Ho
2; “the application of FeNP+His. 50 mg / L had no effect on the tuber 

size distribution”. Figure 3.22 represents the average number of tubers prematurely harvested at 10 

w.a.p. L1, drench at planting only, produced 70.18 % more tubers than the control plants with L2, 

drench and a second foliar application at 8 w.a.p, producing 30.83 %. It can be said the application of 

FeNP+His. 50 mg / L increased the number of tubers produced thus Ho
1 can be rejected as both ‘L1’ 

and ‘L2’ > 10%. 
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Figure 3.44 Average number of tubers harvested, Field rep 2016. 

 

Figure 3.45 Harvested weights of tubers from 'Field rep 2016. ‘a’ represents sig. dif. between control and L1; ‘b’ sif dif 
between L1 and L2. 

 

No sig.dif was found between overall weights, however a significant decrease in tubers < 30 mm can 

be observed in figure 3.23, between ‘Control’ and ‘L1’ (p = 0.0250, t-Test one way), ‘L1’ and ‘L2’ 

(p=0.0282, ANOVA single factor).  A pattern of increased Fe concentration producing less < 30mm can 

also in observed in trials Sax2015 and Sax2016, figures 5.20, 5.21 and 5.23 (Feload2016) where the 

increased exposure of Fe (loading 1) decrease the <30mm tubers. The < 30mm harvested in ‘L2’ are 

not credible in the accounting for effect of the second foliar application, as only 2 weeks had preceded 

since application, not allowing time for the tubulisation / loading response to be observed. 
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3.4 The effect of MONP on Dry matter (%) 

 

3.4.1 Saxon trials: Sax2015 and Sax2016 

 

The DM % results from Sax2015 trial, presented a sig.dif. decrease when compared to control against 

treatments FeNP+His. 12 mg / L (p = 1.5 x 10-3), CaFeNP+His. (p = 1.26 x 10-2) and both ZnNP+His 

applications (8 mg / L, p = 1.28 x 10-2; 16 mg / L, p = 0.05) when using ANOVA single factor analysis. It 

was also noted that the standard deviations for DM% was higher than control in treatments FeNP+His. 

8 and 12 mg / L and CaNP+His. 32 mg / L, table 3.8. Treatments that have similar DM % to control 

(36.67% ± 3.33) are FeNP+His.  16 mg / L (33.03 % ± 2.32) and CaNP+His. 32 mg / L (36.29 % ± 3.60). 

FeNP+His. 16 mg / L treatment gain a similar yield to control 6.52 tubers per plant to 7.86, whereas 

the CaNP+His. 32 mg / L gained a significant 25.83 %, concluding that this treatment would be 

preferable for fry processing and long term storage.  

 

 

The industry requires a reliable high DM % ,20-25% (Lulai and Orr, 1979) in order for an optimise 

production and continuity of product quality. Tubers below DM = 20 % increase in bruising during 

harvest, disintegrate during cooking and take more time and energy to process resulting in darker 

product which is less desirable by the consumer. Those with a good DM absorb less oil when frying 

with a higher chip yield (Pritchard and Scanlon, 1997), desirable texture and flavour. Both trials are 

Treatments Sax2015 Average % DM (± SD) 

Control (with Chempak) 36.67 ± 3.33 

FeNP+His 8 mg / L 35.69 ± 3.35 

FeNP+His 12 mg / L 32.67 ± 4.24 aa 

FeNP+His 16 mg / L 35.03 ± 2.32 

CaNP+His 12 mg / L 35.24 ± 2.45 

CaNP+His 32 mg / L 36.29 ± 3.60 

CaFeNP+His (24:12) 33.44 ± 2.14 a 

ZnNP+His 8 mg / L 33.39 ± 2.85 a 

ZnNP+His 16 mg / L 34.17 ± 2.01 a 

Table 3.14 Dry mass of tubers (n = 10) harvested from Sax2015, ± SD. Significant difference found using single factor ANOVA 
are indicated and ranked by ‘a’ against control. 
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produced tubers above 25 % as the tubers did into undergo prolonged storage, thus retaining matter 

that would normally degrade. 

 

Treatments Sax2016 Average % DM (± SD) 

Control 39.59 ± 3.87 

Chempak 38.08 ± 3.19 

FeNP+His 16 mg/L 38.95 ± 2.53 

FeNP+His 32 mg/L 37.87 ± 2.79  

CaNP+His 32 mg/L 35.61 ± 3.08 aaa b 

CaNP+His 64 mg/L 39.67 ± 2.64 

His 16 mg/L 36.69 ± 4.04 a 

His 32 mg/L 37.72 ± 2.71 aaa 

His 64 mg/L 49.92 ± 5.45 b 

 

Table 3.15 Dry mass of tubers (n = 10) harvested from Sax2016, ± SD. Significant diffrences using ANOVA are indicated by 
‘a’ against control and ‘b’ against Chempak. Differences are ranked as previously described. 

 

The DM % data collected form Sax2015 ranged from 32.67 % (FeNP+His. 12 mg / L) to 36.67% (Control), 

4% difference; where as Sax2016 ranges from 35.61 % (CaNP+His. 32 mg / L) to 49.92 % (His. 64 mg / 

L), a 14.31 % difference, table 3.9.  

Significant differences were found, but as significant decreases in all treatments apart from His. 64 mg 

/ L. Chempak obtained a slightly lower DM than control but this could be due to a number of factors. 

DM % can vary between tubers from the same plant, between cultivar, storage conditions, location, 

mineral composition of strata and tuber (Lulai and Orr, 1979; Lisiniska and Leszczynski. 1989). 

Locational changes affect DM, yield and growth rates are concerned with soil, large altitude range, 

weather influenced i.e. temperature and rainfall, strata composition and mineral availability. To 

eliminate these influences, the same cultivar was used from the same seed potato producer, brand of 

compost, time of year, as well as containers with the application and watering regime. The DM 

samples were taken from tubers of similar size, to ensure similar chronological age and taken within 

72 hours of harvest thus reducing storage influence.  Location changes between trials were minimal 

as Clifton greenhouse coordinate are; 52.90594N, 1.19332W, altitude 53 m; Brackenhurst poly-tunnel 

53.06321N. 0.96585W, altitude 72 m.  
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3.4.1 FeLoad2016, DM % 

 

No sig.dif was found using ANOVA or t-test. Percentage increase and decreases were also found to be 

insignificant. It can be concluded that with a Ho “The application as no effect on the dry mass 

percentage of tubers” is to be accepted, table 3.10. 

 

 

 

5.4.3 Field2015 and Field2016 
 

The DM % of tubers exponentially increase after tuber initiation occurring 30 – 40 days after planting 

at a liner increase until a foliage senescence at approximately 90-120 days (Lisinska and Leszcaynski, 

1989; Kolbe and Stephan-Beckmann, 1997). This rate is influenced by genetic and environmental 

variations. Comparing data with that published by Kolbe and Stephan-Beckmann, 1997, the DM % loss 

at harvest was comparable, figure 3.24. When comparing the two data sets, Kolbe and Stephan-

Beckmann (1997) use d.a.e (days after emergence) which commences on the day the seed tubers are 

taken out of storage and allowed to chit. A period of 14 days is allocated until the seed tuber is planted, 

therefore in order to compare two data sets, 2 weeks is added to the data collected from trial 

Field2015 where the period of time is measured in weeks after planting (w.a.p.).  

 

FeNP+His 32 mg / L application Average % DM (± SD) 
Percentage difference against 

‘control’ (%) 

Control 38.56 ± 3.22  

Loading 1 37.01 ± 3.95 - 4.02 

Loading 2 37.93 ± 2.81 - 1.63 

Loading 3 39.44 ± 3.68 2.28 

Table 3.16 DM % obtained from tubers harvested from trial Feload2016. 
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Figure 3.46 Development of dry matter percentage in potato tuber over time. Adapted from Kolbe and Stephan-Beckmann, 
1997. 

 

Using the following null hypothesis Ho
1 “The application of FeNP+His. 30 mg / L does not affect the 

DM % of the tuber at harvest”; and an alternative hypothesis H1
 “The application of FeNP+His. affect 

the DM % loss.” which will be signified by the lack of sig.dif. DM % decrease. 

Published data collated over two seasons (Kolbe and Stephan-Beckmann, 1997) demonstrating the 

DM % variations throughout the tubers growth stage (figure 3.24) with a decreased of 6.25 % from 

optimal dry weight (378 g, 24 %) at 105 days after emergence (17 w.a.p.) until harvest at 135 days 

after emergence (21 w.a.p), 356 g (22.5 % DM). 

A number of tubers were collected at 12 w.a.p, n = 20, during trial Field2015. Using ANOVA single 

factor statistical analysis, there was a very high sig. dif. (<p=0.001) of DM % loss between DM % 12 

and 22 w.a.p for ‘Control’, ‘Drench’ and ‘Drench + 2 foliar’ (figure 3.25). The application ‘Drench + 1 

foliar’ attained a lower DM% loss of 3.45 %. All applications of FeNP+His. reduced the DM % loss 

compared to ‘Control’. Therefore, H1 is accepted for the application ‘Drench + 1 foliar’ due to the lack 

of significant decrease in DM %. 
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From table 3.10, no sig.dif. between ‘Control’ and other applications of FeNP+His. 30 mg / L at 12 w.a.p 

in Field2015. There was a significant increase in DM %. between ‘Drench’ application and ‘Drench + 1 

foliar’ and Drench + 2 foliar’ indicating an increase in tuber growth rate when FeNP+His. 30 mg / L was 

applied at planting thus rejecting Ho
1. At harvest, 22 w.a.p, all applications were found to have a sig. 

dif. higher DM % than that achieved by ‘Control’ plants, therefore rejecting Ho
1, table 3.11. It was 

noted that SD was constantly lower for ‘Control’ plants and greatest for ’Drench + 1 foliar’ which 

attained the lowest DM % and percentage loss.  

 

 

Dry mass percentage from Field2016 obtained insignificant different data, apart from Maris piper from 

the second site, table 3.12 (p=0.0160, ANOVA single factor). It was observed the Fe applications from 

Treatment 
Average DM % ± SD 

at 12 weeks 

Average DM % ± SD 

At harvest 

Control - no Fe 39.94 ± 2.69 34.36 ± 2.97  

Drench 41.06 ± 3.52 36.97 ± 3.41 aa 

Drench + 1 foliar 38.82 ± 3.05 bb 37.48 ± 4.73 a 

Drench + 2 foliar 40.76 ± 3.45 bb 37.04 ± 3.99 aa 

Table 3.17 DM % obtained from trial Field2015. Sif. dif is depicted against ‘control’ by ‘a’ and between application ‘Drench + 
1 foliar’ and other applications as ‘b’. 
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all Fe treatments across the two sites produced tubers with a slight increase in DM % than the 

commercial controls. 

 

Variety and treatment Site 1 Site 2 

Maris piper -  Control 39.49 ± 3.62 36.86 ± 3.50 

Maris piper - Treated 39.91 ± 3.31 38.87 ± 3.79 a 

Inca bella - Control 38.38 ± 2.19 39.13 ± 1.94 

Inca bella Treated 39.06 ± 2.01 39.71 ± 2.18 

Table 3.18 DM % from Field2016. Control tubers were cultivated with commercial fertilisers, with ‘treated’ applied with an 
additional drench application of FeNP+His at planting, replicating Field2015 application ‘Drench’. 

 

Comparing ‘drench’ application from Field2015 and Field2016 trials, an increase in DM% of 7.59 and 

5.45 % were consistently found with a fluctuation of 0.38 SD. 

 

3.4.4 Field rep 2016 

 

From table 3.13 below, applications ‘L1’ and ‘L2’ produce tubers higher in DM than those from control. 

Only ‘L1’ application of FeNP+His. 50 mg / L produced tubers with a sig. dif. increase in DM% (p=0.0438, 

ANOVA single factor). Using H0; “application of FeNP+His. does not affect the DM% of tubers” can be 

rejected for ‘L1’. 

 

Application of 

FeNP+His. 50 mg / L 
Average DM %  

Control 28.61 ± 2.91  

L1 32.56 ± 4.97 a 

L2 31.35 ± 4.84 

Table 3.19 DM % data from trial replicating applications from Field2015 under poly-tunnel conditions. 

 

Unlike data collected from Field2015, the second application using application via foliar spray, there 

was no influence of FeNP+His. 50 mg / L. As discussed in section 5.3.4, the time between foliar 
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application and harvest was not sufficient for a response to be determined, however, both L1 and L2 

saw a 66.32 to 70.79 % increase.  

 

3.5 The effect of MONP on mineral content of crop 

 

3.5.1 Ca fortification in potato tubers hydroponic and compost propagation: H2015, Sax2015, 

and Sax2016. 

 

Under hydroponic conditions, CaNP+His. 12 mg / L obtained a sig. dif. increase in Ca content compared 

to control and the higher Ca application of 32 mg / L, which tubers contained similar amounts of Ca to 

the control tubers. This pattern was repeated in Sax2015 trial, with significant decrease obtained using 

ANOVA single factor analysis. Using a null hypothesis, Ho; “application of CaNP does not influence the 

content of Ca in potato tubers”, is rejected for applications of CaNP+His. 32 mg / L in H2015 and 

Sax2015. The Ho is again rejected for the application if CaFeNP, as the Ca content of the tuber is 

significantly higher than other CaNP applications and control. Comparing Ca fortification of 

concentrations 12 and 32 mg / L, the average concentration of 221.45 mg / L from the tubers fortified 

with calcium ferrite suggested the presence of Fe, increases Ca uptake resulting in fortification of the 

whole tuber. It has been published that the uptake of Ca2+ is not only regulated by the available Ca2+ 

in the rhizosphere but also by the presence of other ions, including Fe (Lisinska and Leszcaynski, 1989; 

Mäder et al., 2002). 
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Figure 3.48 Ca content of whole tuber a) H2015; influence of MONP in a hydroponic system on the mineral content of tubers. 
Sig.dif. found between Ca applications ‘a’ against control, ‘b’ bwteen Ca applicationsa. b) Sax2015; calcium content of tubers 
propagated in greenhouse conditions in multipurpose compost. Sig. dif. indicated by the following: a = against control, b  = 
against 12 mg / L, c = against 32 mg / L. c) Sax2016; Ca of tubers cultivated under poly-tunnel conditions in multipurpose 
compost. Sig. dif. indicted by: a = against control, b = against Chempak, ct = CaNP+His. 32 mg / L, d = CaNP+His. 64 mg / L, e 
= His. 32 mg / L. Sig. dif. obtained via ANOVA, where indicated by ‘t’ the sig. dif. obtained via t-Test two sample. 

 

Sax2015 and H2015 results (figures 3.26a and 3.26b) suggested the optimal Ca fortification feed would 

be 12 mg / L in the absence of Fe. This was not repeated in Sax2016 (figure 3.26c) as the results display 

a significant increase between control and ‘CaNP+His. 32 mg / L’, p = 0.0202, and a significant decrease 

in Ca content between Ca concentrations 12 and 32 mg / L when analysed using t-Test, p = 0.0374. 

There was no significant increase or decrease in the Ca content when compared to ‘control’ or 
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‘Chempak’, therefore accepting Ho for this application. The influence of histidine was investigated and 

found to achieve Ca concentrations that are of no significance (His. 32 mg/ L) or a significant loss, 

indicating the presence of calcium oxide nanoparticles have successfully increased the content of the 

potato tubers. 

Fluctuations in uptake (i.e. preference in Ca concentration) are possibly due too climatic (extremes of 

heat) and genetic conditions (Lisinska and Leszcaynski, 1989; Tekalign and Hammes, 2005; White and 

Bradshaw et al., 2009) that are beyond the remit of these trials and present the possibility of further 

investigation. 

To observe Ca uptake, the samples were segregated as previous described in section 3.1.4.  A high 

concentration of Ca is retained in the skin than in the flesh of the tuber, figure 5.40. It is expected that 

the skin of the tuber will contain a higher proportion of Ca compared to the rest of the tuber as this is 

the interactive surface to the rhizosphere. The second highest area would be the pith as this area of 

the tuber contains the xylem, where the Ca2+ is exclusive transported with transpiration as the main 

driving force for transportation (Kirby and Pilbeam, 1984; Busse and Palta, 2006). It has been published 

that the main uptake of calcium occurs via the stolon root system and tuber rather than the main root 

system due to a more established xylem system (Kirby and Pilbeam, 1984), however Ca retention in 

the tuber is relatively low due to low transpiration rates as tubers are surrounded by moist soil, 

therefore low transpiration rate occurs in the tuber (Busse and Palta, 2006). 

Figure 3.27a and 3.27b, show the concentration of Ca through the tuber with table 3.14, representing 

the percentage of Ca distributed through the tuber. Displaying percentage of mineral distribution 

allows observation of the transfer factor (TF) of the MONP (Bradfield et al., 2017). The TF allows to 

establish the ability of the CaNP to fortify the tuber (Ebbs et al., 2016; Bradfield et al., 2017). 

Significant increase in Ca concentration in the skin was found in tubers fed with calcium ferrite. These 

tubers also gained significant amount of Ca in the flesh of the tuber and other Ca applications. As 

previously observed in figure 3.27b, the amount of Ca is significantly lower than other applications, 

leading to the suggestion that the Ca concentration is at a phytotoxic level and retained in the skin to 

avoid cellular damage. Sax2016 trial contradicts this, as the Ca concentration in the flesh areas of the 

tuber obtain significant increases in Ca over ‘control’ and ‘Chempak’ treatments, especially in the 

perimedulla / medulla region where transportation to the rest of the plant occurs (Lisinska and 

Leszcaynski, 1989). 
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Figure 3.62 Ca content of areas of tuber. a) Sax2015 Sig. dif. indicated by the following: a = against control, b = against 12 mg 
/ L, c = against 32 mg / L. b) Sax2016 Sig. dif. indicted by: a = against control. Sig. dif. obtained via ANOVA. 
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Skin  / 

cortex 
Tuber 

Parenchyma / vascular 

ring 

Perimedulla / 

medulla 

Control: Sax2016 69.05 30.95 13.59 17.36 

Chempak: Sax2016  70.64 29.36 12.16 17.20 

Control: Sax2015 (equiv. 

chempak2016 
51.73 48.27   

CaNP+His. 12 mg / L: Sax2015 59.60 40.40   

CaNP+His 32 mg/L :Sax2016 63.97 36.03 12.51 23.52 

CaNP+His. 32 mg / L: Sax2015 62.98 37.02   

CaFeNP+His. (24:12 mg / L): 

Sax2015 
70.58 29.42   

CaNP+His 64 mg/L: Sax2016 64.30 35.70 16.55 19.15 

His 32 mg/L:Sax2016 74.72 25.28 9.23 16.06 

His 64 mg/L: Sax2016 59.34 40.66 21.27 19.38 

 

Table 3.20 Calcium distribution (percentage) and comparison between trials Sax2015 and Sax2016. 

 

Observing the percentage Ca distribution through the tuber, it becomes clear the application of 

CaNP+His. 32 mg / L, has the same distribution of Ca in consecutive years, therefore a consistent TF. 

It was also noted the His. 32 mg / L tubers had a higher Ca distribution in the skin than the CaNP 

counterparts. Amino acids increase the assimilation of minerals from the rhizosphere into the root / 

tuber, > 90 % are chloride, nitrates and other organic salts (Lisinska and Leszcaynski, 1989). From this 

data, it can be suggested that the calcium oxide nanoparticle offers a more bioavailable Ca as is it 

transported more freely through the tuber into the flesh, particularly into the perimedulla / medulla 

region, where it is then transported throughout the plant. 

 

3.5.2 Fe fortification in potato tubers hydroponic and compost propagation; H2015, Sax2015, 

Sax2016, Field2015 and Field2016. 

 

From the data obtained from hydroponic and compost propagation, a discrepancy of optimal 

concentration of FeNP application was observed, figure 3.28. Tubers propagated with FeNP+His. 12 

mg / L under hydroponic conditions obtained an increase of 55.60 %, with a significant decrease of Fe 

when fed with FeNP+His. 16 mg / L, suggesting a detrimental effect to the plant as the growth rate is 



Biofortification of potato (Solanum tuberosum) using metal oxide nanoparticles 
 

112 
 

decrease at this concentration. Sax2015 application of FeNP+His. 12 mg / L saw an insignificant 

increase of Fe content using ANOVA signal factor analysis nonetheless obtained a 26.71 % increase. A 

significant increase of Fe was found in the 16 mg / L, figure 3.28b, against all other applications 

including 12 mg / L (p = 6.95 x 10-6). This significant increase was repeated in the Sax2016 trial when 

compared against control plants and a 6.85 % increase against Chempak (comparable to ‘control 

Sax2015’). Both trials using compost as the cultivation media (Sax2015 and Sax2016), there was a 

noted tolerance to the higher FeNP+His concentration. The composition of the compost media 

enables a retention of the Fe due to varying number of composites (i.e. sand, clay and organic matter) 

found in soil and compost. These constituents differ in negative charge, which attracts the positive 

charge of the Fe2+ and Fe3+, thus enabling a buffering effect to the tuber and root system (Hinsinger, 

1998). In a hydroponic environment, the reduced retention ability of the pebbles, exposes the tuber 

and root system to more readily to the nutrients, in theory enabling increased uptake. 
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Using a Ho  “the application of FeNP did not affect the Fe content of the tubers”, the Fe content of 

tubers treated with FeNP+His and His equivalent concentration. From figure 3.28c, it is shown the 

FeNP have a significantly increased amount of Fe, (16 mg / L, p = 6.81 x 10-7 and 32 mg / L, p = 0.0148), 

concluding the FeNP has fortified the tuber and not the increased mineral assimilation amino acids 

can induce (Sánchez et al., 2005; Tegeder, 2012). With these results the Ho is rejected. 

The tubers treated with calcium oxide nanoparticles where also analysed for their Fe content to 

compare / observe any suppression of Fe. From 3.28, the data shows a significant suppression of Fe 

when the CaFeNP+His was applied, although a significant increase in Ca content was obtained. 

Data from segregated areas of the tuber displays the translocation and potential utilisation of Fe 

sources from the nanoparticle throughout the plant. Figure 3.29a, demonstrates the high proportion 

of Fe is retained in the skin (Lisinska and Leszcaynski, 1989). The application of ‘FeNP+His. 16 mg / L’ 

in both trials significantly increased the Fe concentration in skin and tuber over ‘control’ and ‘Chempak’ 

concluding the FeNP+His. is passing thought the pores in the cell wall, however, when the data is 

displayed in percentage distribution to observe TF. A decrease in the amount of Fe in the tuber areas 

differs between trials. This is possibly due to variation in climatic conditions or genetic variation 

(Lisinska and Leszcaynski, 1989) that are beyond the control of the trial conditions. 
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Figure 3.63 Fe content of whole tuber. a) H2015; influence of MONP in a hydroponic system on the mineral content of tubers. 
Sig. dif. between ‘Control’ and ‘FeNP+His.16 mg / L’ = a. b) Sax2015; Fe content of tubers propagated in greenhouse conditions 
in multipurpose compost. Sig. dif. indicted by: a = against control, b = against Chempak, c = FeNP+His. 16 mg / L, d = FeNP+His. 
32 mg / L, e = CaNP+His. 32mg / L, f = CaNP+His. 64 mg / L, g = His. 16 mg / L, h = His. 32 mg / L. Sig. dif. obtained via ANOVA. 
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Iron concentration in the tubers treated with His. displayed a high concentration retention of Fe in the 

skin, 16 mg / L = 134.54 mg / L and 32 mg / L = 118.06 mg / L (figure 3.29b) with 59.07 to 54.73 %. Due 

to the nanoparticles ability to passively enter the skin via the pores in the cell wall (Navarro, et al., 

2008), plus amino acids increase the assimilation of nitrogen and chelation of metal present in the 

rhizosphere, increases uptake of FeNP in the skin (Sánchez et al., 2005; Tegeder, 2012). Due to the 

high Fe+2 intake, it is possible that the excess Fe is retained as the protein ferritin to prevent cellular 
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Figure 3.64 Fe concentration in areas of tubers. a) Sax2015; sig dif indicated by; a = control, b = FeNP+His. 8 mg / l, c = 
FeNP+His. 12 mg / L, d = FeNP+His. 16 mg / L. b) Sax2016; sif. dif indicated by; a = control, b = Chempak, c = FeNP+His. 16 
mg / L, d = FeNP+ His. 32 mg / L. Sig. dif. obtained via ANOVA. 
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oxidation damage until it is chelated and transported via protein transported to organelles that utilise 

the Fe2+ (Marschner, 2011; Zhang et al., 2014). 

The distribution observed from ‘FeNP+His. 32 mg / L’ displays a phenomenon among the percentage 

distribution as the total tuber percentage, 54.24 % is higher than skin, concluding a high TF. This data 

also displays a high proportion of the Fe located in the centre of the tuber (perimedulla / medulla), 

31.31 % when applied at 32 mg / L.  

It is well documented that high content of Ca in calcareous soil limits the reduction of Fe3+ and uptake 

of Fe2+ coursing the deficiency chlorosis (White and Broadley, 2009; Marschner, 2011). The high pH of 

calcareous soils reduces the solubility of iron oxides by reducing H+. Ca may be transferred by mass 

flow into the tuber / root system and accumulates in the rhizosphere, consequently calcium carbonate 

precipitation, with the formation of bicarbonate when increased CO2 is produced by a developing root 

system (Hinsinger, 1998; White and Broadley, 2003; Pradsad and Djanaguiraman, 2017).  

CaCO3 + CO2 + H2O →Ca2+ + HCO3
- 

Plants suffering from chlorosis display stunted growth, yellowing of the vein area of young leaves and 

a significant reduction in yield. No yellowing or discolouration of the leaves treated with CaNP or 

CaFeNP where observed. Average height increase was 9.95% above control, showing no detrimental 

effect to the plant when fed CaFeNP. There was a decrease in the average number of tubers per plant, 

however, the average tuber weight was significantly higher than control and as previously mentioned, 

tuber initiation was shortened, signified by the lack of < 30 mm when harvested. Therefore, with these 

number of contrasting results it is difficult to say without further investigation that the application of 

CaFeNP would course chlorosis or be an application to further improve the Ca fortification. 

Fortification of tubers propagated in collaboration with Branston (Field2015 and Field2016) show an 

increase in Fe content, figures 3.30 and 3.31. 

Statistical comparison to control (T1) in trial Field2015 showed no significant difference for data 

obtained from midway (12 weeks after planting) and harvested (21 weeks). When ICP data from 

midway T2 tubers (drench only application), the T2 tubers were found to contain highly significantly 

lower than T3 (p = 7.88x10-6) and T4 (p = 1.25x10-3). However, at the end of the trial, T2 tubers gained 

a highly significant increase in Fe content over T4 (p = 6.16x10-3). 

Highly significant Fe fortification where found in all treatments when comparing midway Fe content 

and harvested Fe content (figure 3.30). Generally, the foliar applications gained a reduced amount of 

Fe in tubers at the end of harvest (T3 = 67.58 mg / L and T4 = 55.57 mg / L) compared to drench only 
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applied FeNP+His, 50 mg / L, T2. The foliar applications appear to inhibit the Fe uptake from the soil 

source suggesting the Fe from the foliar application it utilised by the leaves in the process of 

chlorophyll production, reducing the requirement to take up Fe via the root system thus reducing the 

amount of Fe passing and stored within the tuber. 

 

 

 

 

 

 

 

 

 

 

 

As the drench only (T2) application of FeNP+His, Field2015 was deemed a successful fortification 

method, the trial was repeated in two separate sites (A and B) within 5-mile radius, but site A 

contained an increase in loam than B. Both sites were not labelled as Fe deficient as with the previous 

site used in trial Field2015.  

Two different varieties of potato were cultivated in both sites to observe the difference in response 

to an increased Fe availability Lisinska and Leszcaynski, 1989. Figure 3.31a.  Both varieties of tuber 

increase in Fe content when exposed to FeNP+His, 50 mg / L, at planting through a drench application 

with Maris piper gaining a significant increase (p = 0.0108, 36.95% increase) with Inca bella gaining 

6.41 % increase in Fe content. 

From figure 3.31b, the influence in soil composition had an effect on the Fe content of the tubers, 

although with the application of FeNP+His., similar concentrations of Fe were obtained in both 

varieties. The increased loam at site A, increased the Fe in the control tubers in the Inca bella tubers, 

(6.38 mg / L, 13.27 %), but decreased the Fe content when compared to the sandy soil site B Maris 
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Figure 3.65 Fe content of tubers from trial Field2015, propagating the red variety Mozart. Significant difference against 
drench application = a, between midway and harvest Fe content = b. 
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pipers, (18.00 mg / L, 30.31 %) observing the preference of varieties to differing soil environments, 

table 3.15 Lisinska and Leszcaynski, 1989. 

 
Percentage increase in Fe content (%) 

 
Site A Site B 

Inca bella 1.61 11.85 

Maris piper 68.56 14.91 

 

Table 3.21 Percentage increase in the content of Fe between control and FeNP+His. application from trial Field2016 
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Figure 3.66 Field2016 ICP data showing the Fe content of tubers. a) Average Fe content collated from both sites comparing 
control and FeNP+His. treated. b) Comparison of tuber Fe content between sites, treatments and variety. Significant 
differences between control and treatment are indicated by a. 
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3.5.3 Zn fortification in potato tubers hydroponic and compost propagation: H2015, Sax2015, 

and Sax2016. 

 

In both trials, H2015 and Sax2015 gained significant increases in Zn content. The 16 mg / L 

concentration produces a significant increase in Zn content in trial H2015 and a significant decrease 

was obtained in Sax2015.  

The significant increase in Zn content in tubers increased with increasing ZnNP+His. application was 

noted in H2015 suggesting a successful fortification application however, the foliar growth was 

severely stunted then treated with ZnNP+His. leading to question the phytotoxic effect of ZnNP in a 

hydroponic system. In Sax2015 trial, figure 3.32a, contained greater amount of Zn compared to H2015 

tubers with no detrimental effect to growth rate. This is due to the additional Zn present in the 

compost as the only source of Zn in the hydroponically propagated tubers was ZnNP+His. The decrease 

of Zn content at 16 mg / L in Sax2015 could be explained by published investigations into the uptake 

in ZnO nanoparticles presented the rapid aggregation of ZnO in an aqueous solution when in the 

nutrient solution is not continually agitated as in a hydroponic system (Lisinska and Leszcaynski, 1989). 

The increased size of aggregated ZnNP into the m range, decreases the bioavailability as the particles 

are larger than cell wall pores (Sondi and Salopek-Sondi, 2004; Brayner at al., 2006; Navarro et al., 

2008) Nano-scale pores 5 – 20 nm (Lin and Xing, 2007; Navarro et al., 2008)] located in the cell wall, 

allow the passive transportation of small molecules (< pore) while limiting the passage of larger 

modules (Lina and Xing, 2007). Zinc oxide nanoparticles also bind strongly with various organic ligands 

present in compost and soil, as Fe (Clemens, 2014), therefore, an increased concentration of ZnNP+His. 

along with the effects of nanoparticle aggregation, may have contributed towards the decrease in 

fortification of the tuber as observed in figure 3.32b. 
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Figure 3.67 Average Zn concentration of tubers. A) H2015, hydroponic propagation; ‘a’ indicated the sig. dif. between 
control and ZnNP+His. applications. B) Sax2015, under greenhouse conditions with multi-purpose compost. Sif. dif. against 
control, a; between Zn applications, b. Statistical analysis via ANOVA single factor and ranked by p value as previously 
described. 
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Figure 3.55 Zn content of areas of tuber from Sax2015. Sif. dif. against control, a, between Zn applications, b. Statistical 
analysis via ANOVA single factor and ranked by p value as previously described. 

 

A significant increase in Zn concentration by means of ZnNP+His. application, by passive or active 

transportation, figure 3.33, with optimal fortification at 8 mg / L was found within the tubers Sax2015. 

Figure 3.33 shows a low TF as the tuber percentage is lower than the control 43.72 % by 14.57 – 

12.14 %, therefore the TF is low possibly due to the tubers low tolerance to Zn.  

The application of ZnO nanoparticles have a positive effect on the bofortification of tuber due to 

significant increase from application ZnNP+His. 8 mg / L in both hydroponic propagation and in a 

compost media. Investigation in to the retention and aggregation of Zn in a compost / soil media is 

required as the interaction between ZnO and organic ligands in order to develop Zn fortification with 

ZnO nanoparticles. 
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4 Tracing iron up take with 59Fe: FeNP against Fe-EDTA 
 

Due to the low mobility of Fe in soils due to the nature of Fe being readily oxidised to form salts and 

highly insoluble oxides and hydroxides as follows (Shenker and Chen, 2005): 

 Fe3+ + 3(OH)- ⇋ Fe(OH)3 (solid) 

Manly Fe applications use salts, such as FeSO4.7H2O and Fe-chelates to increase soluble Fe and hence 

the availability to plants particularly in calcareous conditions. Salts are extremely soluble and easily 

leached through the soil (Shenker and Chen, 2005), therefore only used as a sort-term delivery. 

Chelates have been used since the early 1950’s, as they have a high affinity constant to form a highly 

stable complex, delivering Fe at a reduced rate than FeSO4.7H2O (Oviedo and Rodríguez, 2003; 

Shenker and Chen, 2005; Wagner and Baran, 2010; López-Rayo et al., 2015).  

Ethylenediamineteraacetic acid (EDTA) is a potentially hexadentate chelating ligand (figure 4.1) with 

each N contains a free pair of electrons and the molecule possesses four acidic hydrogens (Schaider 

et al., 2006; Wagner and Baran, 2010). Other chelating agents include HEDTA, 2-

hydroxyethylenediaminetriacetic acid; DTPA, diethylenetriaminepentacctic acid; EDDSA, 

ethylenediaminediscuccinic acid and IDSA, iminodisuccinic acid that are applied either as a foliar or 

root solution to increase Fe availability (Lucena, 2006). EDTA along with other chelates are used as a 

metal ‘stripping agents’, in the form of a treatment method to remove heavy metals from water 

courses due to its rapid strong chemical bond (Liu et al., 2016).  

 

Figure 4.56 Schematic structure of ethylenediaminetetraacetic acid (H4EDTA). 

 

 

Published data from Shenker and Chen (2005) observed Fe-EDTA had an increased stability constant 

(Kapp) above other Fe-chelates, table 6.1, especially for Fe2+ is the most commonly used chelating agent. 

However, 81% of soil applied Fe-EDTA has been shown to leach and lost the surrounding environment, 

rendering the availability of Fe as poor (Boxma and De Groot, 1971).  
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Fe-Chelate 
Log Kapp 

Fe2+ Fe3+ 

EDTA 22.3 11.4 

HEDTA 20.3 9.5 

EDDHA 24.9 5.3 

Table 4.22 Adapted from Shenker and Chen, 2005; comparison of Fe-chelates and stability constant (Kapp). 

 

Although the Fe uptake mechanism, strategy I, involves the chelation of Fe2+ to enable transportation 

thought the plant and to avoid cellular damage from oxygenation damage of Fe2+ , this as a remedial 

ligand that is not as tightly bound as EDTA, therefore can be precipitated at the target site 

(Trampczynska et al.,2006; Kim and Guerinot, 2007). 

The FeNP is consist of Fe3+ and Fe2+ as a stoichiometric ratio of 2:1 (Fe3+/Fe2+) (Laurent et al., 2008) 

allowing a duel delivery of Fe that is phytoavailable immediately (Fe2+) and a more stable Fe supply 

(Fe3+) (White and Broadley, 2009). The amino acid coating prevents the formation of insoluble 

complexes with retention in the growth media to allow slow delivery of bioavailable iron. 

Using the radioactive isotope 59Fe, FeNP+His. and FeEDTa were synthesised and applied to the 

compost as a solution at a concentration of 12 mg / L. Using seral dilutions of the stock solution of the 

FeNP and FeEDTA, MBq was converted into mg / L. 

 

4.1 Methods and materials 
 

To directly compare the uptake of Fe from FeNP+His. and commonly used iron delivery method of Fe-

EDTA, both iron compounds were synthesised using the radioisotope 59Fe, 1 mCi, purchased from 

Perkin Emler. The isotope allows tracking of the iron through the plant as well as quantity of iron 

utilised through the plant. Thirdly, the retention of iron in the soil can be observed. Chemicals for Fe-

EDTA synthesis were purchases from Sigma Aldrich and the precursor chemicals for the FeNP+His. 

synthesis was purchased as for pervious method.    

The synthesis of this trial was adapted from Lauret et al. (2008) 59Fe solution (10 mL) was added to a 

solution of iron (III) chloride (0.1 mol-1, 30 mL) and iron (II) chloride (0.05 mol-1, 30 mL), a 2:1 ration by 
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molarity. This mix was added by continuous drip via a pressure equalising funnel, into sodium 

hydroxide (3 mol-3, 60 mL). The sodium hydroxide was heated to 60oC with continuous stirring at 500 

rpm in a 250 mL a round bottom flask for 1 hour. The black nanoparticles were filtered through a grade 

2 glass sintered funnel via vacuum filtration and washed with deionised water (3 x 50 mL) then ethanol 

(20 mL) and left to dry over night before in fume hood being ground for further use. Equal weight of 

histidine monochloride to iron oxide nanoparticle was ground using a pestle and mortar. The 

59FeNP+His, (3.30 g) was suspended into distilled water (1000 mL) making a stock solution. The stock 

solution (66.6 mL) was diluted to into distilled water (433.4 mL) before application to the plants. 

The synthesis of Fe-EDTA (Stiener and Van Winde, 1970) involved the preparation of two precursor 

solutions; Solution A: Disodium EDTA (1.9g) into a solution of sodium hydroxide (1 mol-1, 5 mL); 

Solution B: Iron (III) chloride hexahydrate (1.25 g) into distilled water (2.5 mL). Solution A was added 

to solution B with continual stirring and heated to 60 OC until a yellow precipitate formed. The 

precipitated was obtained by filtration and washed with ice cold water (2 x 50 mL) and once with 

ethanol (20 mL). No coating method was required as Fe-EDTA is soluble. Fe-EDTA (4.64 g) into distilled 

water (1000 mL). The stock solution (66.6 mL) was diluted with distilled water (433.4 mL) before 

application to plants. 

The treatment (500 mL) was added once a week to the potato plants around the base of the stem, 

watering with tap water every other day. Erin Multipurpose compost, purchased from LBS Horticulture, 

was used as the propagation media, to emulate previous trials. Three replicates of each application 

were cultivated. Samples of the compost, tuber and stem (lower, mid and upper) were taken and 

analysed for gamma radiation activity using a Hidex AMG Gamma Counter. 

 

4.2 Results and discussion 

 

Calibration graphs see app. 55, section 11.5 

Using ANOVA single factor statistical analysis, with a p ranking as follows; < p = 0.05 *, < p = 0.01 ** 

and < p = 0.001 ***, all data collected from FeNP+His showed a ‘***’ of significance over Fe-EDTA 

concluding that the nanoparticle retained in the compost at a highly increased amount than the Fe-

EDTA., figure 4.2a Figure 4.2b, demonstrates a 578.4 fold increase in the amount of iron in the tubers 

propagated in the trial treated with FeNP+His application over Fe-EDTA. The amount of Fe distributed 

through the stem of the plant, figure 4.2c, was significantly higher for the application of Fe from the 
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nanoparticle over the chelate. The Fe-EDTA distribution shows a decline in Fe content progressing up 

the potato plant stem. The Fe content of the stems from application of FeNP+His display a high Fe 

content at the lower stem like the Fe-EDTA, however, the top of the stem contains 109.07 % (1.33 mg 

/ L) more Fe than mid stem. Due to radioactive regulations limiting the contact with the radiation and 

plants, the growth rates were unable to be observed. The increased Fe concentration suggests the 

escalated production of chlorophyll, which Fe plays a key part, suggesting new leaf development. 

 Repetition of the experiment to include other Fe-chelates over a larger sample number would enable 

a comprehensive view of the increased uptake, utilisation and retention the iron oxide has above Fe-

chelates and FeSO4. It was noted that during the experiment that the foliage of all participating plants 

where suppressed or damaged due to the strength of the gamma and beta radiation produced from 

59Fe. The initial dosage of 1 mCi was deemed to be too strong even with the occurrence of two half-

lives (28 days), due to laboratory and personnel availability, it is deemed that a stock sample from 

which the FeNP and Fe-chelated would be synthesised would be 500 µCi.  
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Figure 4. 57 Comparison of the Fe content recorded from the MBq reading produced from 59Fe isotope and converted into mg 
/ L per gram of sample. a) Fe content from the growth media, multi-purpose compost, after the trial was completed) Fe 
content from tubers propagated in trial and c) areas of stem sampled at the end of the trial. ‘a’ indicates the level of significant 
difference. 
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5 Tomato trials  

 

Previous potato trials established a successful fortification of tubers using MONP. In ordered to 

understand that the fortification occurring in the potato trial was due to physiological processes and 

not passive transpiration in to the root system and tubers by diffusion. 

The tomato (Lycopersicon esculentum) plant belongs to the deadly nightshade family Solanum 

lysopersicum of which other crop plants derive from such as the potato and chili. Tomato is popular 

worldwide fruit and the second most produced and consumed in the western countries (Willcox et al., 

2003 and Toor et al., 2006). The tomato fruit is a sink organ and provides an excellent source of many 

nutrients and antioxidants including vitamin C, lycopene and phenolic acids (Bressy et al., 2013 and 

Chen et al., 2013). 

Fertilisers are used to improve the quality and quantity of the tomato crop. The three main nutrients 

in fertilisers are nitrogen, phosphorous and potassium (N, P and K). N promotes leaf growth, formation 

of proteins and chlorophyll. P promotes flower, fruit development and root growth. K is involved in 

the synthesis of proteins and contributes to health of the stem and root too (Corradini et al., 2010). 

The surface of the tomato seeds, figure 5.1, provide an ideal surface for MONP coating, for a 

instantaneous supply of Fe at germination, or promoting germination as the nanoparticle enters the 

seed via diffusion. 

 

Figure 5.58: SEM of tomato seed used in trial. The irregular surface allows particle attachment and immediate contact with 
the FeNP the seed coating provides.  
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5.1 Materials and method 
 

The following trials took place under glasshouse conditions, without additional heating and lighting. 

The variety Gardeners Delight was used throughout purchased from ++++ seeds, batch ****. During 

propagation, side shoots where not removed, as is common practice to encourage flowing, and 

supported by canes when necessary. 

The synthesis and coating of the FeNP+His used in the following trials are synthesised as previously 

described. 

To observe FeNP application effects the growth rate of the plants stems (Growth rates, yield and DM % 

recorded to observe the effect of the seed coating and FeNP application 

 

5.1.1 Tomato ‘Gardeners Delight’; FeNP application effects on plant growth rate and fruit 

production (T2014) 
 

Seeds (purchase from Simply Seeds, Nottingham) sown on 17th February 2014, using rehydrated Jiffy 

peat pellets (Purchased from LBS Horticulture, UK) allocating one seed sown per pellet. Those seeds 

began treatment from sowing were planted in a pre-soaked pellet of the test solution (100 mL) as 

allocated in table 5.1. The seedlings germinated in individual non-heated propagators (purchased from 

B&Q). Once a week the seedlings were fed of the designated test solution (15 mL per pellet), increasing 

at week 4 (25 mL) and further increased (50 mL) due to demand by the plants, figure 5.2, at 8 w.a.p. 

Treatment When treatment began Number of seeds 

sown 

 

Control (water only) Sowing 8  

 

All treatments applied 

weekly with 500 ml of 

allocated feed. 

 

 

 

 

Commercial (MircleGro) From flowering* 8 

FeNP+His 6 mg / L Sowing 8 

FeNP+His 12 mg / L Sowing 8 

FeNP+His 24 mg / L Sowing 8 

His 6 mg / L Sowing 8 

His 12 mg / L Sowing 8 

His 24 mg / L Sowing 8 

Table 5.23 Summery of trial conditions, T2014. *As recommended by manufacture. 
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Figure 5.59 'Gardeners Delight' in trial T2014. Plants were randomly distributed thought the greenhouse bay to ensure all 
treatments were subjects to variants that maybe present, i.e. shading or draft. 

 

After 6 weeks, the seedlings transferred into 30 cm diameter pots containing all-purpose compost. 

Feeding regime continued on a weekly basis with one litre of treatment per plant throughout the trial. 

Application of Miracle Gro All Purpose feed began when flowering commenced, as recommend by the 

company; feed rate was the same as the rest of the treatments. Previously these plants where treated 

as control plants, no additional fertiliser or feed applications Control plants continued the trial. 

 

5.1.2 FeNP applied as a seed coating (TSC2014) 

 

A solution of FeNP+His, 200 mg/L, 100 mL, was compared to a coating using the hydroponic nutrient 

solution (HNS) as described previously described, plus an equal combination of FeNP+His, 200 mg/L 

and nutrient solution FeNP+HNS 200 mg / L, 100 mL (1:1). A pump spray, allowing drying in-between 

each application, applied three applications of the solutions. Eight seeds were planted into separate 

Jiffy plug, cultivated in propagators as in previous trials and watered when required. No further 

application was given during propagation.      
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5.2 Results and discussion 
 

5.2.1 The effect of MONP on germination rate 

 

The seeds coated with hydroponic fertiliser solution (coating: HNP), FeNP+His 200 mg/L (coating: 

FeNP+His) and a combination of hydroponic fertiliser solution and FeNP+His 200 mg/L (coating: 

FeNP+His+HNP). From table 5.2, the coating application have an inhibitory effect on emergency of 

sedlings as the emergence percentage is 18.75 % lower for coating HNS and 6.25 % for FeNP and 

FeNP+HNS when compared to control. Furthermore, the data from the percentage of plant that went 

on to produce fruit are less likely to with an application of HSN coating. During the cultivation of these 

plants, it was noted at six weeks in after sowing, the seedling was likely to bolt, causing stem weakness 

and ultimately death. This condition was observed in the application of FeNP+His. 24 mg/L where 

33.33% of plants went onto produce fruit, as seen in table 5.2. Applications of FeNP+HIS and His. 6 

and 12 mg / L increased the likelihood of the plant to achieve fruit production. 

 

 

Application 
Percentage 

emerged after 4 weeks (%) 

Percentage survived to 

produce fruit (%) 

Control 43.75 73.33 

HNS 25 25.00 

FeNP 37.5 66.67 

FeNP+HNS 37.5 0.00 

FeNP+His 6 mg / L 25 100.00 

FeNP+His 12 mg / L 25 100.00 

FeNP+His 24 mg / L 25 33.33 

His 6 mg / L 25 66.67 

His 12 mg / L 62.5 100.00 

His 24 mg / L 87.5 100.00 

Table 5.2: Emergence of seeds treated from sowing by solution application or coating. 
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5.2.2 The effect of FeNP on the growth rate. 

 

From figure 5.3a, the effect of the application of the commercial fertiliser, Miracle Gro, are observed 

after 8 weeks after sowing (w.a.s.) as the increase in N, increases the growth rate; however, this is not 

significant against control. Tomatoes treated with FeNP+His. 24 mg / L observed to have an increased 

growth rate over other applications, figure 5.3c. Those treated with His. 24 mg / L quickly preceded in 

an increased growth rate with a significant difference in height over control, weeks 4 to 13, Miracle 

Gro in 7, and 10 w.a.p. Other applications of His. 6 and 12 mg / L also increase growth rate over control 

and significantly over Miracle Gro treated plants. It was also observed those plants treated with His. 

gained taller plants as the concentration of His. increased. 

Application of FeNP+His. 6 mg / L significantly gained taller plants when compared against other 

FeNP+His and His. 6 mg / L treated plants (figure 5.3a), suggesting the presence of FeNP promotes 

growth rate.  
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Figure 5.60 Average growth rate of tomato plants 'Gardeners Delight' cultivated in trial T2014. Each plant was cultivated 
from seed and treated from the onset. Application of Miracle Gro began at 8 w.a.p. as indicated in a). 

 

In figure 5.3b, the treatment His 12 mg / L at week 7 has significantly increased in height than the 

FeNP counterpart, indicating the possibility of a threshold to the positive effect the FeNP has on foliar 

development at certain periods of the plants life cycle.  This theory is supported by the reduced growth 

rate exhibited by FeNP+His. 24 mg / L, although the height gained by FeNP+His 24 mg / L at week 13 

was significantly greater than plants treated with Miracle Gro (figure 5.4). The tomato plants fed with 

His, demonstrated similar or greater growth than control as observed in figures 5.3 a,b and c. Again 

suggesting the presence of FeNP 12 and 24 mg/L may supress foliar development as the His. equivalent 

promotes growth. Tomato plants treated with FeNP+His. display no phytotoxic effects of excess Fe as 
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shown in figure 5.5. Toxicity caused by excess Fe courses magnesium (Mg) deficiencies as well as free 

radical damage, (Chatterjee et al., 2006; Abadía et al., 2011). This is displayed by bronzing and 

stripping of the leaves at are similar to chlorosis under Fe deficiencies. Fe toxicity is suggested to stunt 

growth, which is suggested by figure 5.12. (Chatterjee et al., 2006; Abadía et al., 2011).  

 

 

Figure 5.61Average height of tomato plants after 13 weeks since sown. Using ANOVA single factor statistical analysis, p-
values were ranked; * p=0.05>, ** p=0.01, *** p=0.005. Letters; ‘a’, against Control; ‘b’, against Miracle Gro; ‘c’ between the 
FeNP+His applications; ‘d’, between His treatments; ‘e’ FeNP+His against His equivalent. 

 

Application of FeNP as a seed coating, no significant difference found between the growth rate of 

control against HNS, FeNP and FeNP+HNS plants cultivated from coated seeds. From figure 5.7, the 

HNS plants had an increased height of 142.00 mm over control plants, 123.14 mm, and an increase of 

15.31 % 10 weeks from being sown. HNS coated also gained a 22.81 % and 32.71 % increase in height 

over control at week 4 and 7. 

Plants propagated from seeds coated with FeNP+HNS, did not survive past week 6 (figure 5.6) due to 

stem bolt leading to weakness and death. It is also observed that the presence of FeNP 200 mg/L had 

no beneficial effect at the time of germination. 
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Figure 5.75 T2014 Example of plants cultivated in T2014. Seven weeks since sown. 

 

 

 

 

 

 

 

 

Figure 5.63 Average growth rate of tomato plants cultivated from coating seeds. The arrow indicates the demise of all 
seedling propagated from FeNP+HNS coated seeds  
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Figure 5.64 Height comparisons at allotted times for tomato plants cultivated from seed coatings in trial TSC2014. 

 

5.2.3 Effect of MONP on yield 

 

Ripening of tomatoes fluctuated greatly in a commercial greenhouse hydroponic environment (Adams) 

even with stringent control of N:P:K, EC levels and addition nutrients, it has been published that 

temperature is the main determinate in ripening (Verkerk, 1955; Hurd and Graves, 1985; Adams et al., 

2001). Constancy of yield is required by the grower to supply the increasing demands of the market 

under current commercial pressure (Adams et al,. 2001; Smith 2013). 

Data collected from T2014 and TSC2014 displayed the inconstant ripening of fruit, figure 5.9. It would 

be of commercial interest to provide a methodology to assist in the production of consistent rate of 

ripening of a good quality.  
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 Figure 5.65 Average fresh weight (g) of tomatoes harvest during trials T2014 (a to d) and TSC2014 (e), harvested HP. T2014 
graphs compare control FW with FeNP+His and His of comparative concentration.  

 

Comparing average fresh weights obtained during the harvest period (HP), control plant gradually 

produced tomatoes decreasing in weight, figure 5.8a. A similar harvest pattern was observed in figure 

5.8c, although this data displayed an anomaly of increased harvest weight, FeNP+His. 12 mg/L mid HP 

where as other treatments produced a decrease in fruit weight or no ripe fruit. This suggests the 

application of FeNP+His and His. at a concentration of 12 mg / L has enabled the plants to buffer 

against the environmental factor (i.e. decrease in temperature) (Verkerk, 1955; Hurd and Graves, 1985; 

Adams et al., 2001; Smith, 2013) that reduced the ripening rate in the other treated plants. The 

FeNP+His treatment was of particular interest as the ripened fruits increased in weight in this period 

and subsequently produced 146.38 % more tomatoes than control and 41.67% more than Miracle Gro. 

In comparison to His. 12 mg / L yield, it can be concluded that the concentration of 12 mg / L FeNP has 

a positive effect on the number of tomatoes produced and the ripening of the fruits. 

Treatments of Miracle Gro, FeNP+His. 6 mg/ L and 24 mg / L, plus His. 24 mg / L and TSC2014 treatment 

(figure 5.8e) took a longer time for the fruit to ripen after the environmental stress occurred. 

Comparing percentage difference of number of fruits harvested when compared against ‘Control’ and 

‘Miracle Gro’ plants, was defined to be above or below 10%. 
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Figure 5.66 Average number of tomato fruits per plant from trials T2014 and TSC2014. Seed coatings (TSC2014) indicated in 
orange. 

 

Figure 5.67 Average fresh weights (g) of tomatoes from trials T2014 and TSC2014. Significant differences were found using 
ANOVA single factor analysis and rank by p value as previously described. Analysis against Control,’a’; against Miracle Gro, 
‘b’, against FeNP+ His. 6 mg / L ‘c’ and against FeNP+His. 12 mg / L ‘d’. 
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Results of FW suggested that the lower concentration of FeNP+His 6 mg / L produced a significantly 

heavier crop, figure 5.9 and 5.10, which corresponds to publish data reported by Ejrari, (2013). The 

published results show an increase of Fe from 287.21 g per ‘control’ plant to 501.08 g when treated 

with a considerably low dose of 0.8 mg / L of chelated Fe (undisclosed chelating agent) using Hoglands 

solution under hydroponic conditions. The hydroponic conditions alone would increase yield (Sardare 

and Admane, 2013; Touliatos et al., 2016) and alter dynamics of the rhizosphere and the absorption 

of Fe. Navrot and Banin, (1975) observed the application of Fe from several sources (FeCl3, FeSO4, 

FeEDDHA and FeEDTA) in a hydroponic system and a Fe impregnated clay. None of the Fe applications 

were found to significantly increase FW, therefore the application of MONP influences FW than Fe 

counter parts (Navrot and Banin, 1975). 

 

5.2.4 Effect of FeNP+His on DM % 

 

As previously discussed in section 5.3.5 a number of factors course fluctuation in the quality of tomato 

crop (Adams et al., 2001). In contrast to potatoes, tomatoes consist of approximate 90 % water with 

50 % of the remaining DM composed of carbohydrates (Ho et al., 1987; Adams et al., 2001). Using Ho
1; 

“application of FeNP+His has no effect on the DM% of tomatoes”, and Ho
2; “application of His. has no 

effect on the DM% of tomatoes”; it can be said that the Ho
1 is rejected as there is a significant decrease 

in DM% in fruit harvested from plants treated with FeNP+His. as the fruit contained a higher amount 

of water. This can be said for the application of His. (figure 5.11) therefore rejecting Ho
2. 
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Figure 5.68 DM% of tomatoes harvested in trials T2014 and TSC2014 (orange). Significant differences were found using 
ANOVA single factor. ‘a’ indicates significant difference against control, 'b' against Miracle Gro, 'c' against FeNP+His. 6 mg / 
L, 'd' FeNP+His. 12 mg / L and ‘e’ FeNP+His. 24 mg / L. 

 

The application of FeNP decreased the DM% of the fruit. In figure 5.11 it is observed the DM% obtained 

from His. 6 mg / L is significantly higher (p=1.24 x 10-3) than the FeNP counterpart. This is also reflected 

in the 12 and 24 mg / L applications, p=7.80 x 10-3 and p=3.69 x 10-3 respectively.  This signifies the 

increase uptake of water by the plant possibly due to stress induced by the presence of the iron. 

 

5.2.5 The effect of FeNP+His on mineral content of the crop 

 

A significant increase in Fe was achieved by all three FeNP applications, with the greatest increase 

obtained by the concentration 6 mg / L, figure 5.12. It was noted the increasing amount of FeNP+His. 

saw a decrease in TF from roots to fruit, suggesting an optimal concentration for FeNP around 6 mg / 

L, as growth rate was significantly increased over control, Miracle Gro and other applications of FeNP 

(figure 5.12), suggesting the utilisation of FeNP through the plant including an increase in the average 

fresh weight of tomatoes harvested. Investigations into the amount of ferritin occurrence in areas of 

the plant i.e. Roots, leaves and fruit, would substantiate the possible Fe overload leading to 

phytotoxicty, the other FeNP+His present. 
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Figure 5.69 The average Fe content of tomatoes propagated in T2014. Level of significant difference determined by ANOVA 
single factor analysis, ‘a’ against control, ‘b’ against Miracle Gro, ‘c’ against FeNP+His 24 mg/L application. 

 

Tomatoes fed with the application of FeN+His 6 mg / L, can be suggested as a method of increasing 

consumer Fe in diet. The FeNP+His 6 mg / L contained a higher content of water that (decrease in 

DM%), that would decrease the fruits value for processing. As UK produced tomatoes are mainly sold 

as fresh produce 85% (Caspell et al., 2006; FAO, 2014), a product such as the this, could be marketable. 

Investigations into FeNP tomato shelf life longevity, brix testing for sugar content and effect of FeNP 

on the vitamin concentration would be valuable in order to pursue marketability. 

 

 

 

 

 

 

 

 

 

 

 



Biofortification of potato (Solanum tuberosum) using metal oxide nanoparticles 
 

142 
 

6 Chilli pepper trials 

 

Chillies are the fruits of plants from the genus Capsicum and belong to the family Solanaceae. There 

are several domesticated species of chili peppers, among them Capsicum annuum, C. frutescens and 

C. chinense, which include many common varieties. These various peppers are widely used in many 

parts of the world and are particularly noted for their pungency, due to the unique presence of 

chemicals from the antioxidant capsaicinoid family of fatty acids (Arora et al., 2011; González-Zamora 

et al., 2013). There are five naturally occurring capsaicinoids: capsaicin, dihydrocapsaicin, 

nordihydrocapsaicin, homodihydrocapsaicin and homocapsacin (see figure 6.1) of which the two most 

prevalent in peppers are capsaicin (8-methyl-N-vanillyl-trans-6-nonenamide) and dihydrocapsaicin, 

together constituting about 90% of the capsaicinoids in chilli fruit, with capsaicin accounting for ~71% 

of the total capsaicinoid in most of the pungent varieties (Luo et a., 2011; Othman et al., 2011; 

González-Zamora et al., 2013) .  

 

 

Figure 6.70 The chemical structure of the five main capsaicioids. 
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Isolated capsaicin is also reported to have anti-bacterial properties and medical applications in pain 

relief (Deal et al., 1999; Luo at al, 2011). Chillies may contain significant amounts of vitamins and 

antioxidants, including vitamins A, B6 and C and various carotenoids (Fray and Fray, 2012). The levels 

of these nutrients vary widely depending on the cultivar and growing conditions. Chillies contain the 

highest amounts of vitamin C of any plant, with levels as high as three times that of citrus fruit; as such, 

they can be an important dietary source of this vitamin (Cruz-Rus et al., 2012). In order to further 

improve growth and increase the nutritional value of the edible fruit, numerous studies have been 

undertaken to examine the nutritional uptake of chilli plants under diverse conditions (Rahman and 

Inden, 2012; Kenie at al., 2013) and with the addition of various organic or inorganic additives (Kasar 

at al., 2010) or in the presence of symbiotic microorganisms (Christinal and Tholkkappian, 2013). This 

study focuses on the effects of iron (Fe) fortification in order to improve yield and growth rate together 

with an increase in the capsaicin and iron content of the chilli peppers. 

 

6.1 Materials and methods 
 

The synthesis and coating of the FeNP+His used in the following trials are synthesised as previously 

described. The growth rates, yield and DM% was recorded as de. The peppers were analysed for Fe 

content via ICP -OES. 

 

6.1.1 Chilli pepper trial with FeNP (C2014)  

 

Seedlings of the cultivar ‘Cayenne’ (6 x Capsicum annnum var. annuum) were purchased (Hollybeck 

Nursey, Nottingham), at 4 weeks’ post germination and used for the trial, C2014. The seedlings were 

transferred to 15 cm / 5 Ltr pots filled with Erin multipurpose compost (LBS Horticulture) and placed 

on a pot saucer to insure no contamination from other applications. All propagation took place under 

glass house conditions without additional lighting or heating. Control plants were watered with tap 

water with no feed. Experimental plants were treated with FeNP+His solution at concentrations of 6 

and 12 mg/L. In contrast, a cohort of chilli plants was treated with histidine (His) solution at 

concentrations of 6 and 12 mg/L to observe the influence of Fe and His independently. A number of 

plants were allocated a commercial fertiliser, Chilli Focus by Growth Technology (NPK: 3:1:4.4). All 
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experimental plants were fed the allocated solutions once a week 250 mL per plant to replicate the 

suggested treatment regime of the commercial fertiliser Chilli Focus.  

The growth rates, yield and DM% was recorded as previously described. The peppers were analysed 

for Fe content via ICP -OES. 

 

6.1.2 Collaboration with Chilli Bobs Chilli Farm and Doff Garden Products (CB2015) 

 

In collaboration with Chilli Bob’s Chilli Farm, Fiskerton, Nottinghamshire, a commercial trial was 

sponsored by Doff Garden Products. Three cultivars of Capsicum chinense were used; Scotch bonnet, 

Red habanero and Jamaican; plus, a variety from the species C. annuum var. glabriusculum, Pequin. 

Quadruplets of each treated were obtained using control, Fe+HisNP 6 and 12 ppm for each variety in 

the trial. The plants where cultivated from cuttings taken from previous years’ plants supplied by Chilli 

Bob (2014). The plantlets had an establish root system (6 weeks after cutting) before treatment of 

Fe+HisNP was applied. The plants were propagated in an Autopot system under greenhouse 

conditions at the chilli farm (figure 6.2) using Gold Label 60/40 (60% coir, 40% clay particulates).  

 

Figure 6.71 Autopot system (Source www.autopot.co.uk). 

The Autopot system uses a reservoir of feed solution that is supplied under the plant. Each reservoir 

tank (50 L) fed 40 plants. The wicking system, supported by a valve, allowing 20 mm of nutrient 

solution to be available in the feed tray on the underside of the plant at all times.  The feed solution 

https://en.wikipedia.org/wiki/Capsicum_chinense
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was changed once a week using a commercial hydroponic feed by Canna (CannaAqua) with the 

addition of FeNP at the allocated concentrations throughout propagation. No additional lighting or 

heat was provided in the Kelda Greenhouse 

6.1.3 Capsaicin analysis 
 

Dried fruit, 1g was suspended in ethanol, 2.5 mL and heated to 80ºC for 2 hours. After cooling to room 

temperature, the sample was then centrifuged at 5000 rpm for 5 mins. The supernatant was replaced 

with ethanol, 2.5 mL and the procedure repeated to obtain an ethanolic extract (5 mL). HPLC analysis 

was used to measure the capsaicin and dihydrocapsaicin content of the solution by comparison with 

calibration curves.  

The calibration curve was produced by accurately weighing 50.0 mg of a mixture of 

capsaicin/dihydrocapsaicin (4:1) and making up a 400/100 ppm solution using distilled water (100 mL). 

Parallel serial dilution was used to produce solutions at the following concentrations: 400, 320, 250, 

200, 160, 125, 100, 80, 50, 40, 25, 20, 12.5, 10, 6.25 and 5 ppm of capsaicin, dihydrocapsaicin and 

nonhydrocapsaicin. HPLC analysis of these solutions was performed with an isocratic elutant of 

acetonitrile/water (1:1) and formic acid (0.1%), a 10 μL sample injection and UV detection wavelength 

of 222 nm. Capsaicin, dihydrocapsaicin and nondihydrincapsaicin were observed to elute at 

approximately 6 and 7.5 minutes respectively and calibration curves used to correlate the areas of the 

HPLC peaks with concentration, figure 

 

6.2 Results and discussion 
 

6.2.1 The effect of FeNP+His on growth 

 

As shown in figure 6.3, the FeNP+His 6 mg / L treatment produced the tallest plants with an increase 

of 70 mm between week 1 to 5 since treatment began. Comparing the height obtained by FeNP+His 6 

m g / L to the increase of control and ‘Chilli Focus’ fed plants, 56 and 60 mm respectively. Performing 

the statistical analysis Z-Test with a 95 % confidence, there was no significant difference found 

between control and FeNP+His 6 mg / L, as the CI value was greater than 1 (CI = 1.96). Figure 6.3 

suggests the other weekly treatments have not attained an improved or diminished height compared 

to control to note. Table 6.1, depicts the percentage difference in heights from the first week after the 

initial application to the fifth week. The applications ‘Chilli Focus’, FeNP+His 6 mg / L and His 12 mg / 

L gained a greater percentage in height increase than the control.  
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Figure 6.72 The average gain in stem height of chilli plants between the 1st and 5th week of treatment. 

 

 

 

The growth rate of plants in trial C2014, had steady gain in heights comparable to control, figure 6.4a. 

Treatment FeNP+His 6 mg / L increased rate in growth from week 3. His 12 mg / L appear to increase 

growth rate between week 4 to 5, contrasting to the tapering rate noted in control and treatments of 

‘Chilli Focus’, His 6 mg / L. The treatment of FeNP+His 12 mg / L fluctuates in growth rate with increases 

in weeks 1 to 2 and 4 to 5 (figure 6.4b). 
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Treatment 

Percentage (%) increase between week 1 

to 5, since the application of treatment 

Control 96.30 

Chilli Focus 110.87 

FeNP+His 6 mg / L 145.83 

FeNP+His 12 mg / L 85.19 

His 6 mg / L 88.33 

His 12 mg / L 134.21 

Table 6.24 Increase in height gained between first and fifth week of the allocated weekly treatment. 
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Figure 6.73 Rate of growth of 'cayenne' chilli pepper plants in trial C2014, comparing against control plants, Chilli Focus fed 
and; a) 6 mg/L FeNP+His and His; b) 12 mg/L FeNP+His and His. 

 

Heights achieved by chilli pepper plants in trial CB2015, were observed to acquired taller plants when 

treated with of FeNP+His 12 mg / L compared to control; Habanero Red, 5.44 %; Jamaican, 9.28 %; 

Scotch Bonnet, 10.50 % and Pequin, 27.80 % (figure 6.5). Only Pequin chilli plants treated with 

FeNP+His 6 mg / L gained an increase in height (25.5 %) when compared to control. Despite the 

percentage increases, there was no significant difference found with ANOVA single factor. There were 

significant differences, <p=0.05, found between treatments with Pequin plants for both 

concentrations of FeNP+His using statistical a F-Test, plus a significant difference with t-Test assuming 

equal variances, one-tail (12 mg / L against control). 
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Jamaican chilli pepper plants, FeNP+His 12 mg /L, achieved a significant increase in height against 

control using f-Test analysis (p=0.0110), however a significant decrease in height was found when 

comparing Jamaican FeNP+His 6 mg / L against control (p=0.0401).  

 

Figure 6.74 Average height gained by chilli pepper plants cultivated in CB2015 trial in a hydroponic Autopot propagation 
system. Significant difference, < p = 0.05 from F-Test, ‘a’ and t-Test: Two-Sample Assuming Equal Variances, one tail, ‘b’ are 
represented on the graph. 

 

6.2.2 The effect of FeNP+His on yield 
 

Comparing total FW (g) per plant and average FW (g) per chilli pepper, a pattern was observed 

indicating higher FW obtained per plant reduces FW per chilli. Treatments’ Chilli Focus’ and ‘FeNP+His 

6 mg / L’ obtained FW per plant 100.89 and 109.14 g, average weight per chilli pepper, ‘Chilli Focus’ 

peppered average 0.64 g and ‘FeNP+His 6 mg / L’, 0.66 g. Concluding in an increase of 38.34 and 49.65 % 

per plant comparing against ‘control’ (‘Chilli Focus’ and ‘FeNP+His 6 mg / L’, respectively) with a 

decrease of -19.82 and -17.96 % when compared against control data. Contrasting data from 

treatment His 12 mg / L displayed an increase of 6.03 %, 77.33g total FW per plant and an average of 

0.86 g per chilli, similar to that obtained by control (0.80 g).  
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Figure 6.75 FW obtained from C2014 trial. ANOVA statistical analysis performed on average FW per chilli and ranked as 
with pervious data. Statistical difference against ‘Control’= a, against’ Chilli Focus’ = b and FeNP+His 12 mg / L against His 
12 m g / L = c. 

The presence of FeNP+His appears to decrease FW per plant but increases FW per chilli pepper as 

observed in figure 6.6. The treatment ‘His 12 mg / L’ produced significantly heavier chillies that the 

FeNP. counterpart (p = 0.0263). These results indicate the FeNP induces a slight stress response 

(Rahman and Inden, 2012; Kehie et al., 2013) resulting in an increase in fruit production.  

Variations of FW between cultivars and sub species of C. annuum in response to the presence of 

FeNP+His, are observe in figure 6.7. The three C. chinense varieties (Habanero Red, Jamaican and 

Scotch Bonnet) produced more FW (g) per plant at 12 mg / L than the control counterparts (figure 6.7). 

Using a Ho: “The application of FeNP+His 6 or 12 mg / L does not have an effect on the harvested FW”, 

was tested with ANOVA. At a concentration of 6 mg / L Habanero Red and Jamaican both produced 

significantly more FW (g) than control, (Habanero p = 5.13 X 10-3, Scotch Bonnet p = 5.09 x 10-4), thus 

rejecting Ho. From the statistical analysis, it was also noted that a large significant difference between 

applications of FeNP+His 6 and 12 mg /L were obtained for C. chinense varieties, disregarding Jamaican, 

as the FW for FeNP+His 6 mg / L were significantly lower than control. 
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In contrast Jamaican chilli plants at 6 mg / L produced significantly lower FW than ‘Control’.  Comparing 

growth data, figure 6.5, a reduction in height obtained by Jamaican plants fed with FeNP+His 6 mg / L 

is observed leading to the conclusion that the application of 6 mg / L has a detrimental effect to the 

cultivation and production of fruit. Pequin cultivar also obtained significantly lower FW for both 

applications of FeNP+His leading to the suggestion that C. annuum sub species have a low tolerance 

to the presence of Fe. As only one cultivar of the C. annuum was propagated in this trial this is 

inconclusive. 

Comparing average FW from trials C2014 and CB2015 (Habanero Red and Jamaican), figures 6.6 and 

6.7, it is observed that a repetition of an increased FW obtained per plant coincides with increase 

amount of FeNP+His fed with no effect to vegetative growth. 

 

6.2.3 The effect of FeNP+His on the DM% 

 

Comparing average DW from C2014, obtained per plant (figure 6.4a) reflects the data collated for the 

FW (figure 6.6) with sig. dif. found between control and Chilli Focus (p = 7.18 x 10-3), control and 

FeNP+His 6 mg / L (p = 0.0186).  

From figure 6.4b, ‘Control’ chillies produced the highest DM % with the applications of His producing 

significantly lower DM than ‘Control’, ‘Chilli Focus’ and applications of FeNP+His Using Ho “Application 

of FeNP+His has no effect on the DM % of chilli peppers”, the hypothesis can be accepted. DM % is 
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Figure 6.89 Average FW of chilli peppers harvested per plant from trial in collaboration with Chilli Bob's Chilli Farm, CB2015. a, 
indicates a sig.dif.  against control plants;b, between FeNP+His applications, p-values ranked as previously described. 
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important to commercial production of chilli peppers in regard in economy of drying the fruit. In this 

instance the application of FeNP+His would not benefit commercial production economically nor 

would it be detrimental. 

 

 

Figure 6.77 Cayenne chilli, C2014. Average DW obtained per plant (a) and DM % average per chilli (b). Significant 
differences indicated as follows; a, against control; b, Chilli Focus; c, FeNP+His compared against His counterpart. 
Differences were ranked as previously described. 

The DM % obtained from Habanero red and Scotch bonnet chillies from trial CB2015, produced similar 

results to the C2014 trial with regards to the application of FeNP+His 6 mg / L obtaining no sif. dif. 

although C2014 FeNPHis 6 mg / L produced a 1.37 % increase, CB2015 Scotch bonnet 6 mg / /L = 5.33 % 

increase, figure 5.38. In contrast, CB2015 Habanero 6 mg / L produced a decreases of 4.99 %. Other 

application of FeNP+His 6 mg / L produced sig. dif.  increase of DM % (Pequin p = 4.90 x 10-6), rejecting 
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Ho with a sig.dif. decrease of DM % (Jamaican p = 5.43 x 10-5) therefore accepting Ho. All C. chinense 

varieties had significant decreases in DM % when treated with 12 mg / L, possibly causing a phytotoxic 

effect, however, without further investigation this cannot be conclusive. This detrimental effect was 

not observed in C2014, suggesting the compost substrate in which the cayenne peppers were 

cultivated, retained FeNP thus buffered the plant against overload of Fe.  

 

Figure 6.78 Average DM % of chilli pepper fruit from CB2015. significant differences found using ANOVA single factor 
analysis and ranked as before. Significant differences are indicated as follows; a, against control; b, between FeNP+His 
applications. 

 

6.2.4 The effect of FeNP+His on the iron content of the crop 

 

Data collected from the two chilli trials (C2014 and CB2015), conducted in consecutive years, 

demonstrates the variation in variety and sub species response to the presence of Fe. 

From the hydroponic propagated varieties of c. chinense, figure 6.11, all three varieties gained a 

significant increase in Fe content when fed with FeNP+His 6 mg / L against control fruits Fe content. 

Jamaican and Scotch bonnet gained greater Fe fortification from FeNP+His 12 mg / L with significant 

increase over control fruits and FeNP+His 6 mg / L application. The variety pequin, c. annuum var. 

capsicum, appears to present sensitivity to Fe. Pequin plants gained significant increase in height over 

control, with increasing concentration of FeNP+His, figure 6.5. The detrimental effect of increasing Fe 

availability appears to be with yield and the TF of Fe to the fruit. Pequin peppers, unlike the c. chinense, 

are tall, small leaved bush plants. The iron seems to have been utilised for foliar growth. 
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The concentration of Fe determined from C2014 pepper is lower than that of the CB2015, figure 6.10 

and 6.11. The C2014 cayenne peppers were cultivated in a compost media increasing the binding of 

the FeNP to organic ligand present. This has a positive effect as the retention of Fe enables supply of 

bioavailable Fe (Ebbs et al., 2016; Sawicka et al., 2016) but decreases the amount available to the plant 

due to Fe strong bond potential (Marschner, 2011). This can buffer the plant from hyper accumulation 

(Navarro et al., 2008), however when compared to hydroponically propagated chilli peppers, FeNP 

has a higher TF than in compost. Due to the small sample size in both trials this theory cannot be 

certain. 

 

Figure 6.79 Fe content of Cayenne chilli pepper fruits after FeNP+His application during trial C2014. 
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Figure 6.80 Iron content of chilli peppers from trial CB2015. Statistical analysis performed by ANOVA is illustrated by a, 
against control and b, between iron treatments. 

 

6.2.5 FeNP fortification effects on the level of capsaicin, CB2015. 
 

Using standards of capsaicin, dihydrocapsaicin and nordihydrocapsaicin from Sigma Aldrich to 

construct calibration graphs, (app.86) where by the concentrations of capsaicioids could be 

determined, mg / L per gram. Capsaicin data (mg / L) were finally converted into Scoville units (SHU) 

(table 6.2) to determine the ‘heat’ of the chilli peppers harvested by multiplying by 16 as 1 mg of 

capsaicin has a pungency of 16 million Scoville units (Islam et al., 2015). 
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Figure 6.81 Capsaicinoid content of the four varieties of chilli pepper treated with FeNP+His during trial CB2015. Significant 
difference between control and FeNP+His application = a, between FeNP+His applications = b. 
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Scoville unit (SHU) 

 
Habanero red Jamaican Scotch bonnet Pequin 

Control 57750.2 423895.90 66772.65 663.41 

FeNP+His 6 mg / L 2086.65 72576.29 92329.81 * 1312.08 ** 

FeNP+His 12 mg / L 17189.97 541025.82 * 103521.94 ** 1357.87 ** 

 

Table 6.25 Scoville units (SHU) of chilli peppers cultivated in CB2015. * = SHU increase above 25% over control, ** = SHU 
increase above 50 % over control. 

 

Using a null hypothesis; Ho, “application of FeNP+His does not influence the capsaicioid content / SHU”, 

the following observations were made. From the Fe content of the chilli peppers collected via ICP, the 

nordihydrocapsiacin content of the chilli peppers increases with the FeNP+His application, as observed 

in figure 6.12a to d where the greatest concentration of nordihydrocapsaicin are obtained from those 

peppers treated with 12 mg / L. Scotch bonnet peppers increased in fortified Fe correlating with 

increase in the FeNP applied, figure 6.12; the correlation of fortification to capsaicioid content also 

followed this trend. No Signiant differences, using ANONA single factor analysis, was found therefore 

Ho was accepted but rejected when comparing the percentage increase of SHU over control, table 6.2 

(sig. dif. >25%). The Pequin peppers obtained SHU increase over control content, even though the Fe 

content of the peppers was found to be significantly lower than control.  

Jamaican peppers favoured 12 mg / L for increase in Fe fortification (figure 6.11) and the increase in 

nordihyrdocapsaicin and capsaicin content (mg / L), figure 6.12b, and increase in heat (SHU) table 6.2. 

The application on FeNP+His 6 mg / L to Habanero red and Jamaican chillies, appears to have a 

detrimental impact on the capsaicinoid content of the peppers, figure 6.12a and 6.12b, with instances 

of significant decreases against control.  

The application of FeNP+His 12 mg / L may induce stress to the plant that increases capsaicinoid 

content. An increase in capsaicinoid content has been proven to be a response in terms of water stress 

(Estrada et al., 1999; Ruiz-Lau et al., 2011) and saline conditions (Arrowsmith et al., 2012). To examine 

this response a more comprehensive trial with a larger number of plants, preferably taken form 

cuttings to reduce the genetic variation, with a much larger sample number and the inclusion of more 

varieties due to the range of response the data has shown. The use of hydroponic propagation would 

be advantageous as it reduced the great variation of mineral content provided from growth substrates 

of soil and compost. 
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7 Foliar transfer of FeNP+His  

 

An alternative to current commercial applications of Fe, iron oxide nanoparticles have been used in 

variety of applications over a number of years due the in the ability to improve function, performance 

and increase cost-effectiveness in engineered materials. This novel application in agriculture observes 

the uptake of Fe3O4 when applied as a foliar application rather than to the soil. Currently foliar Fe 

application is problematic due to the mineral uptake mechanisms of the leaf and current commercial 

formulations. Treatments are limited when iron deficiency occurs, chlorosis, as it is deemed that plants 

will not take up or utilize Fe when they are not under stress. 

 

Figure 7.82 Summary of factors effecting the diffusion of Fe when applied as a foliar solution 

Foliar application of Fe in the form of FeS04 or Fe-chelate for the rapid alleviation of, chlorosis, coursed 

by the calcareous soils and increased pH [9-11]. Using a foliar application eliminates the obstruction 

soil based fortification poses. Due to the cost implications, FeSO4 is predominantly used for rapid 

application as it is a cheaper alternative than Fe-chelates and more soluble, resulting in more 

instantaneous ‘greening’ of the foliage (Fernández and Ebert, 2005).  Due to the sulphates high 

solubility potential, foliar applications are regarded as an environmentally friendly approach to 

fortification as the contact with the soil is reduced (El-Jendoubi et al., 2014) subsequently reducing 
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leaching of FeSO4. Efficiency of a foliar application depends on many conditions; therefore, the uptake 

of Fe is complex, as illustrated in figure 7.1. 

7.1 Materials and methods 

 

The strawberry plants, variety Elsanta, were kindly supplied by S&A, Spalding, UK and cultivated in 

Erin multipurpose compost, individually planted in 1L pots purchased from LBS horticulture. The 

synthesis and coating of the FeNP+His used in the following trials are synthesised and coated as 

previously described. Statistical analysis was carried out using ANOVA single factor, Microsoft Excel 

and ranked in significance using the p-values obtained. 

 

7.1.1. Foliar application of iron nanoparticles 

 

This trial used one-year-old strawberry plants used to observe the translocation of Fe through the 

plant via foliar application of a water based FeNP+His, 60 mg / L. Each plant held a total of six tri-

compound leaves with identical watering regimes with both cohorts had five replicated receiving no 

further fertiliser or feed during the trial period. The five plants only receiving water acted as controls. 

One tri-compound leaf was allocated for the application of FeNP+His per plant in the treated cohort. 

The solution (2 mL) to be applied on a weekly basis via a brush to ensure no cross contamination due 

to airborne particles.  

 

7.1.2. Analysis of iron content and dry matter percentage 

 

Foliage samples were washed in deionized water three times before being dried at room temperature 

for 30 min. Each sample’s weight was recorded before drying in a vacuum oven at until the samples 

weight loss stabilized, obtaining DM %.  A Milstone Ethos UP High Performance Microwave Digester 

was used to fully digest the foliage samples in a solution of nitric acid and hydrogen peroxide as 

suggested in the Milstone pre-set methodology ‘Dried plant material’. The solution obtain was diluted 

to 20 % and converted to mg / L per gram sample using a Perkin Elma ICP-OES Optima 2100 DV. 
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7.2. Results and discussion  

 

Leaves directly applied with FeNP+His, 60 mg / L, contained significantly higher amount of iron than 

control leaves and leaves untreated from the same plant (values) as observed in table 7.1. Interestingly, 

leaves from the treated plants that were not treated themselves, also contained significantly higher 

amounts of iron than control leading to the conclusion that the iron nanoparticle was successfully 

taken up and transported through the plant. 

 

 

 

 

 

 

 

 

 

 

From figure 7.2, the leaves that were directly applied with FeNP+His, 60 mg / L, contained significantly 

higher amount of iron than control leaves and leaves untreated from the same plant. Interestingly, 

leaves from the treated plants that were not treated themselves, also contained significantly higher 

amounts of iron than control leading to the conclusion that the iron nanoparticle was successfully 

taken up and transported through the plant. 
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Figure 7.96 Iron content of leaves from control plant leaves and leaves from the FeNP+His foliar applied plants.  Level of 
significant difference against control = a; between application leaf and  non-application leaf = b. 
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Figure 7.3 represents the dry mass percentage (DM%) of leaves sampled from control (no iron 

application), direct application leaves and leaves from treated plant that were untreated. The leaves 

that had the FeNP+His. directly applied increased in DM % by 3.65 %, however the non-treated leaves 

from the Fe fortified plant did increase significantly (p = 0.0284) in DM over control, leading to the 

conclusion the increased Fe content has had an impact on the physiology of the plant. 

The FeNP+His, 60 mg / L solution was applied to upper and lower epidermis using a brush to ensure 

no cross contamination to surround leaves that would be tested for Fe transfer. Repetition of this trial 

would be recommended as the sample number (n = 8) was small. It would also be of interest to 

perform foliar application on leafy crops such as spinach or a variety of lettuce, where the positive 

influence the application of FeNP+His had had on the DM% would increase the crop value. Further to 

investigations, the concentration used in this trial, 60 mg / L was used to maximise uptake and to 

observe any detrimental effect a high FeNP would have on leaves applied with the solution. No leaf 

discolouration was observed, therefore it would be of interest to investigate the maximum and 

minimum FeNP concentration required to fortify leaves. 

The dry mass percentage (DM %) of leaves sampled from control (no iron application), direct 

application leaves and leaves from treated plant that were untreated. The leaves that had the 

FeNP+His directly applied increased in DM % by 3.65 %, however the non-treated leaves from the Fe 

fortified plant did increase significantly (p = 0.0284) in DM% over control, leading to the conclusion 

the increased Fe content has had an impact on the physiology of the plant. 
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Figure 7.97 DM% of leaves in foliar application trial. Level of significance against control = a. 
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Caution into the use of a spray has been raised due concerns of nanomaterial increasing penetration 

and increased reactivity (through increased surface areas to volume ratio) (Nel et al., 2006) especially 

in contact with mucus membranes (lungs, nasal cavity) (The Royal Society, 2004). This is an ongoing 

investigation and discussion throughout nanomaterial research community. Regarding application of 

MONP as a spray, legislation in PPE (personal protective equipment) and guidelines for pesticide and 

fertiliser applications are already in place in the agricultural and horticultural industry that would safe 

guard users. Preliminary environmental assessments on the retention in the soil / compost and effects 

of MONP in an aquatic environment have been conducted in this project, however, in-depth studies 

across the metal oxide nanoparticle range at various concentrations is greatly required to give an 

indication into the behaviour of MONP in the environment. 
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8 Metal oxide nanoparticles in the environment. 

 

The mineral content of soil is dependant of pH, organic matter and clay content, weather conditions 

and composition of parent material and exist as free ions or complexed with minerals or organic 

surfaces, soluble compounds or as precipitates (Evans, 1989; White, 2001; Kelling and Schilte, 2008; 

Schulte, 2008; Mousavi, 2011). Free metal ions that are released or added via fertiliser, the ions 

interact with the charged particulates that may form weak complexes through cation exchange or 

strong bond through ligand exchange. The associations these ions form largely depends on the nature 

of the ion and absorbing surface (Evans, 1989). Metal ions of calcium, iron and zinc (Ca2+, Fe3+, Fe2+, 

Zn2+) are unavailable as they form strong bonds with clay and organic matter in the form of oxides and 

hydroxides binding the metals into the soil / compost matrix (Marschner, 1993). Insoluble complexes 

are unable to move through the matrix to the root / tuber to compost interface where reduction in 

the pH enables chelation and uptake. 

 The histidine coating of the nanoparticles, increases mobility through the strata due to the ability to 

suspend the nanoparticle and move with water. This allows passive diffusion into the tuber/root 

membrane through a concentration gradient. The amino acid coating provides a barrier to limit the 

mineral to complexing with ligands in the compost that would otherwise decrease availability. 

However, increased mobility and reduced ability to complex may lead to leaching of the MONP to the 

lower level (30 cm) From section 5.5 it was observed there is fortification from the application of 

MONP. With this in mind, two null hypothesis formed:  

Ho
1; the amount of mineral at the depth of 5 cm is less than at 30 cm due to leaching when MONP+His.  

applied. 

Ho
2; there will be no significant change in the concentration of minerals when MONP+His applied when 

compared to control at depths of 5 and 30 cm due to increased assimilation of minerals from compost. 

With increased mobility, it was question if excess nanoparticle will be leached through the strata with 

possible effects to the environment, in particular to watercourses, hence the requirement for the 

folloing observations of MONP+His retention in soil. 

The high mobility of the FeNP due it the histidine coating, plus nano-size particles, allows the passive 

movement of Fe into the cell like Ca2+. The coating provides a barrier to This feature has the potential 

to leach through the strata. 
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With the potential of MONP entering water systems through soil or foliar application, an aquatic 

ecotoxicology study was performed to observe potential effects. G Pulex used as a bioindicator species 

in freshwater systems for chemical stressors for a number of years (Chaumot et al., 2015). The shrimps 

inhabit the silt of water courses and feed from organic matter. If the MONP where to enter a water 

course or if organic matter treated with a foliar application of MONP where to come into contact with 

aquatic life, it is more likely the MONP will accumulate in the silt layer. 

 

8.2 Methods and materials 
 

Hydrochloric acid, 37 % and Nitric acid, 36 %, purchased from Fisher Scientific. Hydrogen peroxide 30% 

wt. in H2O purchased from Sigma Aldrich UK. All chemicals used without further purification. Erin 

multipurpose compost was purchased from LBS Horticulture, UK and used as the propagation media 

in potato trials Sax2015 and Sax2016. 

 

8.2.1 Determination of MONP retention in compost  
 

Compost samples from the greenhouse trials where taken at depths of 5 and 30 cm to give an 

indication of transport of the MONP through the strata at the end of the propagation trial, Sax2015 

and Sax2016 (figure 8.1). 

 

Figure 8.85 Sampling of compost in trials Sax2015 and Sax2016. 
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Samples were dried at dried in dehydrator at 65oC for 20 hours, ground to a fine powder using a Tefal 

GT203840 Coffee Grinder. Digestion of compost and soil samples carried out using ETHOSUP High 

Performance Microwave Digester System using the pre-set methodology ‘BSC 300 (soil)’, figure 8.2. 

All organic material was fully digested using nitric acid, 36 %, 10 mL apart from sand particulates. The 

fully digested material solution was diluted to 20% for ICP-OES analysis. 

 

 

 

 

 

 

 

 

8.2.2 Aquatic toxicology of MONP 
 

Based upon paper published Vellinger et al.  (2012), adult G. pulex (n = 8 per rep.) housed in opaque 

square containers (50 x 50 mm, 60 mm high, 200 mL capacity) with of test solution (100 mL) and 10 

glass pebbles (thoroughly washed in distilled water) for the duration of the 96 hours. The G.pulex  

were not fed during the assessment, therefore the pebbles act as  refuge to limit cannibalism. Each 

test solution will have three replicates and changed every 24 hours and kept at a constant temperature, 

15oC (Vellinger et al., 2012). The MONP solutions were diluted with dechlorinated tap water as distilled 

water is low in oxygen and will affect the welfare of the shrimps. A control was tested against FeNP+His, 

6, 12 and 24 mg / L; ZnNP+His 6 and 24 mg / L. 

At the end of the trial the number of remaining alive G. pulex were recorded and washed with ultra-

pure water, dabbed dry with filter paper and frozen. For mineral analysis, the shrimps were dried at 

50 oC for 12 hours and the dry weight recorded before being fully digested in aqua regia, 5 mL (1:3 

nitic acid 36% to hydrochloric acid 37%) for 12 hours and diluted to 10% by the addition of ultra-pure 

water. Mineral content was determined via ICP-OES and SEM-EDX. 

 

Figure 8.99 BSC 300 soil digestion program for ETHOS UP. www.milestonesrl.com. 
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8.3 Results and Discussion 
 

8.3.1 MONP retention in growing media 
 

Ca2+is a large divalent cation in contrast to Fe and Zn ions (Hirschi, 2004) and moves in conjunction 

with water when free, however, this a rare occurrence as it forms a tight bond with particulates so 

much that Ca leaching through the soils strata does not normally occur (Kelling and Shcilte, 2008). 

Unlike other minerals such as Fe and Zn, Ca2+ passively diffuses into the root / tuber via a gradient 

caused by transpiration in the leaves (Hirschi, 2004; Kelling and Shcilte, 2008; Palta, 2010). 

 

 

Figure 8.87 Ca content in compost after harvest Sax2015. Using ‘a’ to signify the sig.dif. between Ca concentrations at 
depths 5 and 30 cm with in the application using ANOVA single factor. 

 

Data obtained for the growth media during the harvest of Sax2015 trial, the high organic matter 

composition of the multi-purpose compost naturally has a lower of pH of 5.5 than soils (e.g. from 

Branston field trial a pH of 6.5 was obtained). Due to an increase in organic acids from the increased 

organic material, minerals increase in phytoavailability via microbial decomposition (Schulte, 2008).  

From figure 8.3, there was not a sig. dif. between Ca concentrations at 5 and 30 cm, with a decrease 

of 1895.9 mg / L, nor between the Ca concentration between control and compost before the trial 

commenced (accepting Ho
2). The nature of the compost with reduced pH and increase of organic acids 

that increase the uptake of calcium, as with other minerals, are responsible for the reduction at 30 
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cm. The control propagation fed with Chempak, as was the other Ca applications in Sax2015, thus 

increasing N and possible Ca phytoavailability. 

There was no sig. dif. between control and Ca applications, however as figure 8.3 depicts, a sig dif. 

between 5 and 30 cm was found for applications CaNP+His 12 and 32 mg / L, therefore rejecting Ho
1. 

The application CaNP+His. 32 mg / L, increased Ca concentration at 5 cm by 25.60 % compared to 5 

cm control. The application of calcium ferrite nanoparticles gained the highest concentration of Ca in 

the tubers harvested from Sax2015 than the application CaNP+His. 32 mg / L with a lower 

concentration of 12 mg /. There was a higher TF between in the skin of the tubers and compost which 

allows the conclusion that the reduced amount of Ca in the compost strata has increase the 

phytoavailability of Ca and thus taken up in the tuber.  

The application of FeNP+His. allows the delivery of both Fe3+ and Fe2+ as a stoichiometric ratio of 2:1 

(Fe3+/Fe2+) (Laurent et al., 2008), allowing a duel delivery of Fe that is phytoavailable immediately (Fe2+) 

and a more stable Fe supply (Fe3+), that will not be as readily complexed as Fe2+ but available to the 

plant when Fe3+ is reduced in the rhizosphere via a proton pump mechanism (Schulte, 2008; White 

and Broadley, 2009). 

 

 

 

 

 

 

 

 

 

 

From data observing the whole tuber maximum uptake of Fe was with the application FeNP+His 16 

mg / L with 12 mg / L producing the highest concentration in the skin giving an indication that FeNP+His 

successfully fortifies the tubers, whether from the nanoparticle supplied the Fe, and / or increased 
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Figure 8.101 Fe content in compost after harvest Sax2015. Using ANOVA single factor significant differences where 
indicated; a = between depths 5 and 30 cm within application, b = against compost (control only tested), c = against control 
counterpart. 
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assimilation with the presence of histidine. This notion was supported by the significant decreases 

found when comparing control concentrations at 5 and 30 cm with the FeNP+His counter parts 

concluding to reject Ho
2. 

A significant higher concentration at a depth of 5 cm than 30 cm found with control with a significant 

decrease at 30 cm of the control against compost before application (figure 8.4). The decrease at 30 

cm indicates the uptake of Fe around the tubers from the compost. Application of 8 mg / L produced 

an exception to the results obtained throughout this study, with a significant reduction of mineral 

content at 5cm.Due to significantly lower Fe concentration in the 5 cm when compared to control and 

compost before the trial, this suggests Fe released from complexes in the soil and subsequent leaching 

into the lower strata. The Fe content increases by 33.57 mg / L at 30 cm, accumulating around the 

areas of the tubers, concluding the acceptance of Ho
1.  There was no notable increase in Fe 

concentration in the tuber. A possible explanation for the increased leaching of Fe could possibly due 

to a balance of the amino acid, histidine and the FeNP. Histidine could increase nitrogen assimilation 

and metabolism of the root and tuber, thus increasing mineral availability (Ghasemi et al., 2012; 

Tegeder, 2012). The concentration of iron released and Fe supplied by the FeNP is inadequate, or 

possible leached into lower strata (> 30 cm), to gain significant increase over control tubers. Another 

possible explanation could be due to the nature of the compost. Compost varies in composition and 

to overcome the differentials ten replicate were taken per sample. In hindsight, more replicates are 

required with increased samples taken in a border range of the strata. 

Applications 12, 16 mg / L and CaFeNP+His. show Fe retention throughout the strata of the compost. 

From figure 5.42 B, the FeNP+His. application 16 mg / L tubers contained the most Fe (72.22 mg / L) 

with 12 mg / L application retained a significant amount in the skin. This was reflected in the compost 

Fe content as the applications of 12 and 16 mg/ L decreased in 30 cm compared to the 5 cm 

concentration, indicating retention of Fe at 5 cm and utilisation of minerals in the tuber region. These 

concentrations were lower than control counterparts, reaffirming uptake of Fe from the compost. 

Concentration results from CaFeNP+His compost, shows a decrease over control and compost before 

applications. A significant decrease in the amount of Fe in the tubers due to the presence of Ca as 

previously discuss. 

Free Zn ions are bound in the soils matrix similarly to Fe (Marschner, 1993) and thus highly dependent 

in the pH of the growth media. Normality the Zn content of non-polluted soils is approximately 3 x 10-

8 – 5 x 10-7 M (Barber, 1984) with 15 – 30 % as free ions. Zn acts similarly to Fe with release in the 

rhizosphere due to decrease of pH are a result of proton pump (White and Broadley, 2009). In figure 
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8.5, the pattern is repeated (with exception of FeNP+His. 8 mg / L) that has been found in applications 

of Ca and Fe, higher mineral contractions at 5 cm with a lower concentration obtained at 30 cm, the 

region of tuberisation and development. 

 

 

Figure 8.89 Zn content in compost after harvest Sax2015. Using ANOVA single factor significant differences where 
indicated; a = between depths 5 and 30 cm with in application, b = against compost (control only tested), c = against control 
counterpart. 

 

Comparing the Zn content of tubers from figure 5.45 and compost Zn data, figure 8.5, the application 

of 8 and 16 mg / L produced significantly fortified tubers over control. The concentration of Zn through 

the application of zinc oxide nanoparticles resulted in a significant increase of Zn at the depths of 5 

and 30 cm depth, therefore rejecting Ho
2. The data collected indicated highly significant decrease in 

the content of Zn at 5 than 30 cm following the pattern found for Ca and Fe concentration, 

withexception of FeNP+His. 8 mg / L thus rejecting Ho
1. 

 

6.2 Aquatic toxicology using Common fresh water shrimps (Gammerus Pulrex)  

 

From the below tables (8.1 and 8.2) it is concluded that the ZnNP have a higher mortality rate 

throughout the trial when compared to FeNP and control. Zinc oxide is harmful to aquatic life, classified 

according to Regulation (EC) no 1272/2008, acute aquatic toxicity (category 1), H400 and chronic 

aquatic toxicity (category 1), H410. The data collected in the trial observed toxic effect even at the low 
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concentration of 6 mg / L. It can also be concluded that increase concentration of FeNP+His trends with 

the increase in mortality (table 6.2 and 6.3). This can also be said for ZnNP, although the survival rate 

after 72 hours of treatment is higher in those treated with FeNP. Further observation conclude the 

MONP was readily taken up by the shrimps as figures 6.6 A and B show, which also correlated with 

mortality rate and increase in MONP concentration given.  

 

 

 

 

 

 

 

Using ANOVA single factor statistical test in Microsoft Excel, significant increases over Fe content of 

control shrimps where found in all Fe applications, figure 8.6a. Significant uptake of Fe was also 

observed over ascending concentrations for FeNP+His. applications. The Zn application of 24 mg / L 

was found to significantly increase the Zn content when compared to control shrimps. 

 The data collected in this trial correlated with those found using other indicator species such as 

muscles, Mytulus galloprovincialis (Taze et al., 2016), Zebrafish, Danio rerio (Xiong et al., 2011), plus 

 

Start of test 
(number) 

Alive end of test 
(number) 

Percentage 
mortality (%) 

Percentage survival 
(%) 

Control (tap 
water) 

25 24 4.00 96.00 

FeNP+His. 6 mg / 
L 

25 18 28.00 72.00 

FeNP+His.  12 
mg / L 

26 5 80.77 19.23 

FeNP+His. 24 mg 
/ L 

24 3 87.50 12.50 

ZnNP+His.  6 mg 
/ L 

24 0 100.00 0.00 

ZnNP+His. 24 mg 
/ L 

26 2 92.31 7.69 

Table 8.26 Mortality of shrimps at end of trial. 

 
Mortality rate % 

After 24 hours After 48 hours After 72 hours 

Control (tap water) 4.17 0 0 
FeNP+His. 6 mg / L 12 9.1 10 
FeNP+His.  12 mg / L 19.23 47.62 57.55 
FeNP+His. 24 mg / L 16.67 75 40 
ZnNP+His.  6 mg / L 29.17 88.24 100 
ZnNP+His. 24 mg / L 69.23 75 0 

Table 8.27 Mortality rate of shrimps. 
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the bivalve Dresissena polymorpha and another shrimp G. roeseli (Garaud et al., 2015). Muscles where 

found to show toxicity stress at 10 and 50 mg / L of iron oxide nanoparticle (Taze et al., 2016), whereas 

zebrafish gained a 100 % mortality at 30 mg / L when subjected to zinc oxide nanoparticles at 30 mg / 

L (Xiong et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A reputation of this experiment based on Vellinger et al.  (2012) would involve the inclusion of 

different biomarkers to provide an improved knowledge of the effect the presence of MONP would 

have upon an aquatic ecosystem (Garaud et al., 2015). The reactive oxygen species (ROS) of the 
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Figure 8.103 Analysis of Fe (a) and Zn (b) content of G. pulrex to substantiate uptake of MONP. Using ANOVA single factor, 
significant differences were ranked; * = <0.05, ** = < 0.01 and *** = < 0.001, with a indicating sig.dif. against control, b = 
between 6 mg/L, c = against 12 mg/l. 
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nanoparticle species disrupts anti-oxidant system and intercellular metabolic activities (Xiong et al., 

2011) causing oxidative stress. Gammarid and zebrafish gills suffer oxidative stress whereas the 

digestive tract membranes of crustaceans are damaged (Xiong et al., 2011; Garaud et al., 2015; Taze 

et al., 2016). The concentrations at which the MONP is applied also requires review as Xiong et al. 

(2011) rationalised that a more realistic level of ZnO NP would be around 3.6 mg / L rather than the 

30 mg / L tested, which in turn calls for a review of water courses content in minerals relating to 

possible application sites of MONP. Through the investigation of aquatic fatality of zinc oxide, it was 

found to have a significant effect on Escherichia coil, leading to an antibacterial effect (Xiong et al., 

2011). Due to a number of unknowns and multiple chemical and environmental influences, a number 

of investigations are required into the durability and interactions of MONP in aquatic environment. 
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9 MONP effect upon bacterial 
 

Understanding the effect that MONP potentially have on the in terrestrial and aquatic ecosystems 

extending to bacteria, particularly in the infection of Pectobacterium carotovorum, PCA in potato 

tubers when in storage. The soil dwelling bacterium PCA has a broad host worldwide and 

characteristically produce cell-wall-degrading enzymes, allowing infiltrations and macerations of plant 

tissue upon which they feed, known as soft rot when effecting potato tubers under storage (Barras et 

al., 1994). The term black leg refers to PCA infection in the potato stems, causing blackening during 

propagation (AHDB, 2013). During prolonged storage (>9 months), soft rot causes a large economic 

loss as the bacteria quickly spread between tubers when infected tubers go undetected. 

Following data collected in previous trails (Sax2015 and Sax2016 in particular), the fortification of 

tubers and increased foliage growth thought the application of MONP, suggests a potential in 

suppressing PCA infection. The following work focuses on the anti-bacterial properties of MONP as a 

method of supressing soft rot in storage.  

9.1 Methods 
 

The following work was conducted at The AHDB Crop Storage Research Facility (CSRF), Sutton Bridge, 

Lincolnshire, UK. 

Nutrient agar and broth was purchased from Fisher Scientific, UK and prepared as directed by the 

supplier. PCA inculcation used derived from AHDB with MONP synthesised as previously descried. 

Methodologies here in are developed by AHDB and used in quality control checks at CSRF. 

Statistical analysis was conducted via Microsoft Excel, single factor ANOVA. 

 

9.1.1 Antibacterial properties of CaNP+His solution (CaO and CaFe2O4) 
 

Wash water (3 ltr) from potato washing was collected from Produce World, Sutton Bridge, and used 

as a general bacterial source. Buffered solutions of MONP+His (CaNP and CaFeNP) and His only 

solution (100 mg / L, 20 mL per rep) were inoculated with wash water (500 µL) and incubated for 2 

hours at room temperature. The pH of the solutions was measured using a HI-98103 pH tester, to 

ensure the pH range ± 0.5. If pH was found to measure outside the range, the MONP was suspendered 

in pH7 buffer, purchased fromFisher Scientific, table 9.1. 
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 The solutions where diluted x106 and spread onto nutrient agar plates with further incubation (24 

hours at 17 oC). The colonies forming units (CFU) were then counted,  

 Previous pH pH with buffer 

Control pH 7 7.5 

CaHisNP pH 9 7.5 

CaFeHisNP pH 5 7 

His pH 4 7 

Table 9.28 CFU and pH of solutions to observe the antibacterial effect of two forms of CaNP 

 

9.1.2 Inoculation of potatoes (variety Maris piper) with pectobacteria pre-treated with 

MONP+His soak 
 

 Eight Maris piper potatoes where washed in a commercial washer (figure 9.1) and place in the wash 

water at ambient temperature for two hours to inoculate the potatoes with PCA. The potatoes where 

sampled by skin swabs and peel. A 25 mm2 area of skin was swabbed in three areas and a peel sample 

was taken, figure 9.2. Peel samples were obtained with the use of a food grater, from the radius 

around the tuber (diameter of 10 mm) from apical to bud end until 2.5 g of skin was obtained. The 

peeling was homogenised with sterilised water (5 mL) and filtered gravitationally through a grade 1 

filter paper. 

 

Figure 9.91 Maris pipers washed in a commercial washer, Sutton Bridge Crop Storage Research Centre. 
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The skin swabs and peel samples were diluted (skin, 100 x and peelings 1000 x) through serial dilution 

and with sterilised distilled water. Samples were spread onto nutrient agar plate with two replicates 

of each sample. The plates were incubated at 17oC for 24 hrs. The pectobateria colonies leave wells in 

the agar which were counted to obtain a concentration figure of the bacteria and quoted as CFU in 

mL. 

3.11.3 Inoculation of potatoes with pectobacteria (PCA). 
 

Initial testing using variety Maris piper used three tubers per test. Two treatments were applied, 

calcium oxide (CaNP), 200 mg/ L and calcium ferrite (CaFeNP), Ca concentration of 200 mg / L both 

coated in amino acid histidine to aid dissolution in deionised water (2000 cm3 di. Water per treatment).  

• Test 1: No pre-treatment 

Nine tubers were washed in a commercial washer until clean (c.a. 5 mins) then divided into the 

following treatments: Control (no treatment), CaNP+His and CaFeNP+His. These were left to soak at 

ambient temperature for 24 hours, figure 9.3. The tubers were removed from the solution then placed 

into PCA solution (106 concentration) for two hours at ambient temperature to induce inoculation via 

skin pores. 

Figure 9.105 Skin swabbing process of tubers with the use of guide. 
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Figure 9.93 Tubers soaking in treatment solutions of MONP before inoculation of PCA. 

• Test 2: Produce wash 

Tubers (x 8) were washed in Produce Wash in a dilution of 1:200 as recommended by the manufacture. 

The tubers were divided into three per treatment and treated and inoculated as in test 1, see table 

9.2. 

The skin swabs and peel samples were diluted (skin, 100 x and peelings 1000 x) through serial dilution 

and with sterilised distilled water. Samples were spread onto nutrient agar plate with two replicates 

of each sample. The plates were incubated at 17oC for 24 hrs. The PCA colonies leave wells in the agar 

which were counted to obtain a concentration figure of the bacteria and quoted as CFU in mL.  

 
Conditions Washing Treatment (24 hr soak)  

@ RT 

PCA soak 2 hours @RT 

Swab and peel 
samples taken 
onto LB plates 

(2 reps per 
sample) 

1 Control Water Water 
2 Water/CaNP+His. Water CaNP+His 

3 Water/CaFeNP+His. Water CaFeNP+His 

1a PW/ no treatment PW Water 
2a PW/CaNP+His. PW CaNP+His. 
3a PW/CaFeNP+His. PW CaFeNP+His. 

 

Table 9.29 Washing applications and post-wash treatment with application of CaNP+His. and CaFeNP+His. 

 

9.2 Results and discussions 
 

Pectobacterium spp.  (PCA) characteristically produce large quantities of pectolytic enzymes (Ngadze 

et al., 2014) that are cell wall specific (Czajkowski et al., 2011) which macerate plant tissue thus 

allowing infiltration and further tissue maceration (Barras et al., 1994). PCA are one of a number of 
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bacteria that cause a storage disease known as soft rot. Contamination from PCA occurs from soil 

during propagation and at harvest (Barras et al., 1994; De Boer, 2002), plus pot-harvest handling, 

washing and packaging (Czajkowski et al., 2011) through damage or poor storage. 

A number of publications have reported (Pérombelon and Kelman, 1980; McGuire and Kelman, 1984; 

Schöber and Vermeulen, 1999) on the increase in Ca content of tubers increasing the resistance to 

tissue maceration via bacterial pathogens. Calcium enhances the structural integrity of cellular walls 

and membranes (Pagel and Heitefuss, 1989; Ngadze et al., 2014), therefore increased strength 

through via Ca application through fertiliser or as a post-harvest treatment offers an alternative to 

current chemical applications that are under scrutiny (Pérombelon and Kelman, 1980). 

 

9.2.1 Antibacterial properties of CaNP+His solution (CaO and CaFe2O4) 
 

To establish the antibacterial effects of Ca upon a range of bacteria, a sample of wash water from a 

potato processor, Produce World, Sutton Bridge was used as the source. From figure 9.4, it can be 

observed that the His and CaFeNP+His gained significantly lass bacteria (CFU / mL) that control and 

CaNP+His. The treatment of CaNP had a very slight decrease in the nuber of CFU / mL observed, 

however, the addition of the Fe element may increase the antibacterial properties of calcium (McGuire 

and Kelman, 1984; Pagel and Heitefuss, 1989), thus requiring further investigation. The solutions 

where buffered prior to the waste wash water, therefore eliminating the acidic influence of the amino 

acid, histidine. 

 

 

 

 

 

 

 

 

 

Figure 9.107 The antibacterial effect of two forms of Ca nanoparticle as an antibacterial against against soil bacteria. Sig. dif 
indicated between control = a, against CaNP+His = b. 
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9.2.2 Tuber inoculation using PCA soak to tubers pre-soaked with MONP.  
 

A number of tubers from were collected from same storage conditions at CSRF, washed in water, dried 

then soaked in CaNP+His and CaFeNP+His. 100 mg / L, table 9.3, with 3 repetitions from each tuber. 

During periods of prolonged contact with moisture, the pores of the tuber open allowing the passage 

of PCA into the tuber. Utilising this period, a ‘soak’ method of fortification with the calcium oxide and 

calcium ferrite was utilised. The nano size of the particulates will increase the transfer into the tuber 

as they are sub size of the membrane pores (Livage et al., 1989). When membrane pores dilate in the 

soak, this will increase the uptake of nanoparticles but also increase the permeation of the bacteria 

into the cortex and parenchyma. Increased Ca concentration of the cells of the treated tuber will 

counteract any bacterial infection via the enhance structural integrity of cell walls and membrane 

(Candeia et al., 2004) preventing cellular damage from bacterial colonisation. 

 

 

 

 

 

 

 

 

 

 

 

 

Soak treatment No. tubers per test Length of soak period PCA soak 

inoculation 

Samples 

No soak 

5 

 

N/A 

2 hours 

Swab & peel            

3 reps of each 

On LB plates (3 

plate reps per 

sample) 

Dist H20 

Soak period of 24 

hours 

CaNP+His. 

CaFeNP+His. 

FeNP+His 

His 

Table 9.30 Conditions for the comparison of MONP against coating for antibacterial properties against PCA. 
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Figure 9.108 Antibacterial effects of MONP and histidine on PCA. Significant differences obtained from ANOVA single factor 
statistical test between non-soaked and other treatments are allocated= a , against water = b, against His. = c  and swab against 
peel counterpart = d. 
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As on observed from figure 9.5, no significance was found between ‘no soak’ and other treatments 

even though the average PCA CFU / mL is considerably higher that other data collected. The action of 

the soak in itself will decrease the surface bacteria resulting in the reduction of CFU / mL from 6.90x105 

(none) to 1.20x105 (water soaked).  As expected the action of soaking the tuber enabled the bacteria 

to transport into cortex and parenchyma region of the tuber, as the peel data increase from 3.83x105 

CFU / mL (none) to 5.42x105 (water soaked), figure 9.5.  

CaNP+His. treated tubers gained a moderate significant increase in PCA in the skin swabs (p = 4.98x10-

3) against control, however, the peel PCA CFU / mL gained significantly less (p = 2.58x10-2). The positive 

charge of the CaNP may ‘attract’ the bacteria to the skin surface and restrict bacterial progression into 

the cortex as a supplementary effect to the increased integrity of the cellular structures (Livage et al., 

1989; Candeia et al., 2004; Zak et al., 2011). 

Treatments CaFeNP+His, FeNP+His and His., all gained highly significant decreases in PCA 

concentration against water soak. Fe causes oxidative stress to the bacteria even if magnetite (Fe3O4) 

is fully oxidised to maghemite (γ-Fe2O3) (Wu et al., 2006; Wu and Wang, 2011; Khanna and Verma, 

2013) resulting in the decrease of PCA on the surface of the skin. The absence of Ca in the FeNP+His. 

treatment saw an increase in the PCA CFU / mL on the peel sample from 1.75x105 (CaNP+His.) to 

5.67x105 (FeNP+His). The application of His. observed a highly significant decrease in PCA on the 

skin surface suggesting the acidic nature of His. may be responsible for the CFU / mL decrease. 

 

9.2.3 Comparison of the effect of MONP treatment on tubers; with and without PW. WH2O 

used as a bacterial source.  
 

The potential anti-bacterial effect of MONP; CaNP+His. and CaFeNP+His. (200 mg/L) were compared 

against the commercial antibacterial application, Produce wash (PW), table 9.3. A second investigation 

observed the interaction of PCA with tuber treated with MONP when previously washed with PW, 

table 9.4. 

For control tubers ‘1’ and ‘1a’, soaking in distilled water to be in conjunction with ‘soak treatment’ of 

CaNP and CaFeNP. During periods of prolonged contact with moisture, the pores of the tuber open 

allowing the passage of PCA into the tuber. Utilising this period, a ‘soak’ method of fortification with 

the calcium oxide and calcium ferrite was utilised. The nano size of the particulates will increase the 
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Figure 9.109 Comparison of PCA (CFU per mL) obtained from skin swab and peel to observe the action of CaNP and CaFeNP with 
the application of Produces wash before application. a = against 1,1a. b = against ‘a’ counterpart. 

transfer into the tuber as they are sub size of the membrane pores (Srivastava et al., 2013). When 

membrane pores dilate, this could increase the uptake of nanoparticles. Treatment applied to 1 - 3 is 

a repetition of conditions with adjustments to the concentration (100 to 200 mg / L) and excluding 

FeNP+His. and His. as the commercial focus would preferably be on a Ca application. 

 
Conditions Washing Treatment (24 hr soak)  

@ RT 

PCA soak 2 hours @RT 

Swab and peel 
samples taken 
onto LB plates 

(2 reps per 
sample) 

1 Control Water Water 
2 Water/CaNP+His. Water CaNP+His 

3 Water/CaFeNP+His. Water CaFeNP+His 

1a PW/ no treatment PW Water 
2a PW/CaNP+His. PW CaNP+His. 
3a PW/CaFeNP+His. PW CaFeNP+His. 

 

Table 9.31 Washing applications and post-wash treatment with application of CaNP+His. and CaFeNP+His. 

 

 

 

 

 

 

 

 

 

 

   

 

With a two null hypothesise; Ho
1= “the use of Produce wash does not decrease the amount of PCA, CFU 

per mL” Ho
2 = “application of CaNP+His. or CaFeNP+His. does not decrease the amount of PCA, CFU per 

mL”. Using the statistical analysis test, ANOVA single factor and ranking the p value (< p = 0.05, *; < p 

= 0.01, **; < p = 0.001, ***) the data was analysed. 

There was a significant increase in the concentration of PCA in swab samples taken from potatoes that 

were washed with water only (figure 9.6) indicating the use of PW reduces the presence of PCA on the 

potato skin surface, rejecting Ho
1. No significant difference was found in the peel data, concluding the 
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PW or nanoparticles have any reduction in the passage of PCA into the tuber, accepting both null 

hypothesise. 

Application ‘2’ obtained a significant increase in the amount of PCA on the skin swab but no difference 

was found between peel control, ‘1a’ or ‘3a’ suggesting the PCA does not transfer through the skin. 

Ho
1 is rejected for application ‘2’ due the significant increase was obtained, and Ho

2 is accepted for 

application ‘2a’ as there was not a significant difference obtained when compared to ‘1a’. 

The application of CaFeNP+His., ‘3’ and ‘3a’ did not gain any significant difference when compared to 

controls, ‘1’ and ‘1a’, although a significant decrease (p = 0.0248) was found when PW was used. 
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10 Conclusion and further work 

 

Increasing the production volume and reduced size range of MONP, was the criteria for the transferal 

of bench top MONP synthesis to the SDR. If successful, the applications of nanomaterial open a vast 

number of applications related to the understanding and manipulation of materials at the atomic, 

molecular, and macromolecular scale via the enhanced surface area per mass compared with larger-

sized particles of the same chemistry (Oberdorster et al., 2005; Kalpana-Sastry et al., 2013).  

Applications of nanotechnology are conceded to provide solutions to some of the current challenges 

of food security concerns and can provide the needed tools to catalyse the entire agriculture and food 

value chain (Kalpana-Sastry et al., 2011). Formulating applications on a nanoscale can expected to 

revolutionize both agro-technology resulting in multiple benefits (Lane and Kalil, 2005). 

10.1 MONP synthesis and scale up. 

 

Successfully synthesis adaptation to the SDR were obtained of CaO, Fe3O4 and ZnO NP as the 

comparison with published data showed. Some further work is required for CaFe2O4 due to the 

combustible process involved. The SDR produced smaller nanoparticles when compared to published 

data as reviewed in section 2.3. Adaptation of ZnO NP synthesis to replace water with methanol and 

acetone, decreased the size range and sodium chloride content that become problematic in the first 

adaptation the ZnO NP synthesis to SDR. 

Development of the SDR is required to incorporated a heated disc, or a disk that will retain the 

precursor mixing for a prolonged period of time. With the use of a 3D printer, Mackebot Replicator+, 

conditions of the disc are being investigated. Example of discs in development are shown in figure 

10.1. Investigations into the depth, ridge frequency and disc diameter require further investigation 

into the effect these conditions have on the efficacy material synthesis and particle size. An 

introduction to a heated disc will enable more sol-gel based synthesis to be adapted to the SDR as 

these formulations require latent heating throughout synthesis. 
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Coating method of a 1:1 with a hydrolysed amino acid proved successful in the suspension of the 

nanomaterial with FTIR spectra confirming a chelation between the MONP and histidine allowing 

drying a resuspension of MONP+His particle. Results from the fortification trials would not have shown 

a significant increase in mineral content if the MONP was not transported in the soil / compost solution 

in order to reach the rhizosphere.  

For MONP+His to increase in production ‘bottlenecks’ in the process must be resolved in order to 

increase production to commercial level. Through the synthesis methods herein the bottlenecks were 

identified as: 1) filtration and sufficient washing of the crude MONP slurry, 2) Drying, and 3) coating. 

Filtration of FeNP is easier to overcome, due to the magnetic nature of the NP. A magnetised flatbed 

filtration system will retain the FeNP while surplus filtrate is disposed, figure 10.2. The collected FeNP 

can be washed in a similar way as the primary collection. 

 

Figure 10.02: Electromagnetic flatbed design to aid the efficient collection and washing of FeNP. 

 

 

Figure 10.01: changing the conditions of the disc to increase efficiency of the MONP synthesis. 
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The filtration of CaNP and ZnNP requires more knowledge in the available / possible commercial 

techniques that can be adapted especially when collecting nanomaterial. 

A resolution to overnight drying of the uncoated NP is a spray dryer as used in the production of instant 

coffee or freeze drying as published by Abdelwahed et al. (2006).  

The electrostatic coating currently using the coffee mill can be transfer to extruders, which are 

currently in the top-down production of nanomaterials for oral drug delivery systems (Baumgartner 

et al., 2014). 

Collaboration within the pharmaceuticals industry, particularly concerning spray drying, would be 

beneficial to the continuous flow process. An immediate drying after formation of the particles would 

provide a solution to ripening and interaction of excess precursor solutions after formation. 

 

10.2 Effects of MONP on crop development. 

 

The application of MONP+His had various effects in the growth rate in relation to MONP+His 

concentration and crop applied. FeNP+His. 16 mg / L optimised potato growth rate, whereas tomatoes 

favoured 6 mg / L. Growth rate response to the application of FeNP+His differed among chilli varieties. 

Increase in height was obtained with FeNP+His. 12 mg/ L, with little or lower growth rate (compared 

to control) with FeNP+His. 6 mg / L within the C. chinense varieties, whereas C. annuum var. 

glabriusculum, Pequin increased height with both 6 and 12 mg / L.  

Interestingly the application of FeNP+His in the trial ‘Field rep 2016’, observed an increase in growth 

rate shortly after application, indicating an influence of the FeNP+His. Further investigation in the 

effect the FeNP+His or His has upon the growth rate and the timing of application (in the life cycle) is 

required in line with yield and DM%, speculating that increased energy going into vegetative 

production could hamper the tuber formation and loading.  

The hydroponic application of ZnNP+His treated potatoes are significantly suppressed by the presence 

of ZnNP with increases of 13.73 mm and 13.18 mm, ZnNP+His 8 and 16 mg / L respectively. Ca+HisNP 

12 mg / L did not grow as rapidly as expected with a height increase of 31.43 mm when compared to 

the increase of 216.63 mm obtained by Ca+HisNP 32 mg /L (figure 5.3 a). Compared to application to 

compost significant difference of stem height. Application of CaNP+His 32 and 64 mg / L has a 

significant increase in height over control, Chempak and the His. equivalent suggesting an influence in 
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the presence of CaNP.  This is supported by an increase in growth rate in stems treated with CaNP+His 

32 mg /L. 

Yield analysis’s using ANOVA single factor analysis, from trial Sax2015, a significant increase between 

control plants overall average weight (OAW) in grams, and treatments, CaNP+His 12 mg / L (p = 0.01), 

CaFeNP+His (p = 1.43 x 10-4), ZnNP+His 8 mg / L (p = 3.21 x 10-5) was found. Treatments CaFeNP+His 

and both ZnNP+His did not produce any sub 30 mm tubers where as FeNP+His did. 

Treatments CaFeNP+His and both ZnNP+His did not produce any sub 30 mm tubers. Due to the harvest 

occurring at 14 weeks, approximately 20 days short of commercial harvest, the occurrence of <30 mm 

tubers would be expected as these tubers would go onto to produce ‘salad’ crop. The absence of these 

bud tubers (sub 30 mm) indicated the plant has halted tuber initiation early into the growth cycle. The 

presence of ZnNP or CaFeNP did not supress the vegetable development of the treated plants, nor did 

individual application of FeNP and CaNP supress development as previous discussed. This anomaly 

required further investigation in the form of repetition of the trial on a larger scale such as a field trial 

to observe an increase in environmental factors supress or increase this response.  Investigation in to 

possible suppression of signalling pathways involved in tuber formation from the increased 

concentration of Zn, Ca or Fe in the rhizosphere, or the gene signalling involved in the uptake and 

transport in the plant, i.e. the expression of ZIP genes and ferritin (Guerinot, 2000; Tegegder, 2012).  

The influence of FeNP+His upon the yield of larger tubers (<30 mm) was found to be significant in 

Sax2015, Sax2016, Feload2016 and an increase in the number of tubers harvested in Fieldrep2016. 

Field trials 2015 and 2016 did not observe any significant yield increases or decreases, but increase 

the DM %, which is of more economic importance to potato producers and production (Kolbe and 

Stephan-Beckmann, 1997; Pritchard and Scanlon, 1997). The application of CaNP+His at 12 and 32 mg 

/ L, gained similar DM % as control, whereas the application of CaFeNP+His. (24:12 mg / L), ZnNP+His, 

8 and 16 mg / L gained significantly less DM%. The application of ZnNP+His. 16 mg/ L did increase DM % 

over 8 mg / L; therefore, it would be of interest that investigations included increased concentrations 

of ZnNP+His to investigate increasing the DM% to improve the fusibility of a Zn fortified potato in the 

commercial environment. 
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10.3 MONP application as a fortification 

 

The trials conducted here in found an increase in mineral content when applied to potato, tomato and 

chilli crops when treated with MONP+His. The optimal concentration of MONP+His differed between 

crops and with different trial environments. Fluctuations in uptake (i.e. preference in Ca concentration) 

are possibly due too climatic (extremes of heat, hydration) and genetic variation (Lisinska and 

Leszczynski, 1989; Tekalign and Hammes, 2005; Kelling and Schilte, 2008) that are beyond the remit 

of these trials. Increased collaborative work with commercial growers over a number of seasons would 

substantiate the influence of the environment (i.e. field trials) and delivery methods (hydroponic 

systems for tomato production, pellet or solution delivery in commercial potatoes cultivation).  

More work is required in the uptake of other mineral influenced by the application of Fe, Ca and Zn, 

as previously documented that high content of Ca in calcareous soil limits the reduction of Fe3+ and 

uptake of Fe2+ coursing the deficiency chlorosis (Kelling and Schilte, 2008). 

 

10.4 MONP in the environment. 

 

Due the nanometre scale, particles properties have been investigated for centuries in the ability to 

improve function, performance and increase cost-effectiveness in engineered materials resulting in 

an extremely diverse research field. Many of the properties are dependent on the particle size 

therefore increased importance when synthesising nanoparticles especially when scaling up for 

commercial production (Lane and Kalil, 2005; Kalpan-Sastry et al., 2011). For these reasons, there is 

concern that nanomaterials will be unpredictable in the environment. Compost analysis and the use 

of 59Fe observed the significant increase in the retention of MONP in the soil preventing leaching into 

the water system and increasing the mineral content of the substrate. Aquatic ecotoxicology test using 

G. pulrex did not highlight any increased hazards or increased accumulation that are not already 

documented already.  

Increasing work with commercial sector has conclude to apply the MONP as a solution so to reduce 

airborne particulates that could potentially irritate and pass through mucus membranes, or as a pellet 

formation. Health and safety regulations that require applicants to wear PPE (personal protective 

equipment) can be utilised to NP. 
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It is accepted that a great deal of further work is required to understand the fate of NP through 

different soil strata, especially the micro fauna and flora. The aquatic ecotoxicology trial here in should 

be repeated with a large sample number with the inclusion of different biomarkers (Garud et al., 2015). 

10.5 MONP application post-harvest 
 

The application of CaNP is of great economic interest as a prevention of soft rot bacterial infection 

cause by pecobacteria. The application of CaNP and FeNP controlled / retained the PCA from entering 

the tuber, thus reducing infection rate and potentially reduce crop loss while in storage. An application 

at the washing stage at harvest could be incorporated in the current process as obverted at Produce 

World, Sutton Bridge. Further collaborative work would provide an opportunity to maximise 

application especially concerning refinement of TG2 activity analysis as observed in appendix 11.3, 

incorporating post-harvest application of CaNP or MONP that will supress TG2 and sprouting would 

be of economic interest with investigations into prolonging storage in the face of CIPC (isopropyl-N-

(3-chlorophenyl) carbamate) restrictions. 
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11 Appendix 
 

11.1 H2014 and H2015 statistical analysis 
 

                                            Average height (mm) ± SD 
 

Trial Week 3 Week 4 Week 5 

p -value against 

control (for 

corresponding 

year) week 5 

Control 2014 H2014 524 ± 76.75 556.21 ± 92.95 578.08 ± 91.82 N/A 

Control 2015 H2015 481 ± 152.14 613.79 ± 183.81 757.141 ± 91.82 N/A 

CaNP+His 12 mg / L H2015 35.57 ± 23.22 48.29 ± 22.26 66.00 ± 39.59 3.29x10-7*** 

CaNP+His 32 mg / L H2015 185.44 ± 117.08 284.44 ± 120.90 402.06 ± 119.63 1.15x10-5*** 

FeNP+His 8 mg/L H2015 477.2 ± 125.94 625.53 ± 96.33 791.40 ± 134.98 0.6308 

FeNP+His  12 mg/L H2015 444.64 ± 166.59 573.62 ± 159.06 736.69 ± 188.29 0.8058 

FeNP+His  16 mg/L H2015 390.35 ± 120.30 493.82 ± 108.83 654.41 ± 124.23 0.1783 

Fe EDTA 8 mg/L H2014 426.33 ± 133.54 441.06 ± 135.75 473.17 ± 150.57 0.0340* 

ZnNP+His 8 mg / L H2015 56.36 ± 41.40  60.91 ± 43.58  70.09 ± 41.69 1.81x10-9*** 

ZnNP+His 16 mg / L H2015 49.18 ± 28.03 51.73 ± 27.65 62.36 ± 36.93 1.40x10-9*** 

His 8 mg/L H2014 675.17 ± 977.77 728.75 ± 103.08 727.64 ± 129.68 3.27x10-3** 

His 20 mg/L H2014 634.67 ± 149.31 677.33 ± 151.42 721.09 ± 161.12 0.0123* 

App. 1 H2014 and H2015 growth data and statistical analysis 

 

 
Ca content 

(mg / L per gram of sample) 

p-value against 

control 

p-value against CaNP+His. 12 

mg / L 

Control 2015 346.86 N/A N/A 

CaNP+His 12 mg / L 480.04 0.0385 N/A 

CaNP+His 32 mg / L 308.71 0.3621 6.31x10-3** 

App. 2 ICP analysis data of Ca content of tuber with statistical analysis 

 

 

 

 

 



Biofortification of potato (Solanum tuberosum) using metal oxide nanoparticles 
 

189 
 

 Fe content 

(mg / L per 

gram of sample) 

p-value 

against 

control 

p-value against 

FeNP+His 8 mg / L 

p-value against 

FeNP+His 12  mg / L 

Control 2015 17.86 N/A N/A N/A 

FeNP+His 8 mg/L 13.09 0.2781 N/A N/A 

FeNP+His  12 mg/L 27.79 0.5602 0.3868 N/A 

FeNP+His  16 mg/L 7.24 0.0147* 0.0703 0.2295 

 

App. 3 ICP analysis data of Fe content of tuber with statistical analysis 

 

 

 Zn content 

 (mg / L per gram of 

sample) 

p-value against control  p-value against 

ZnNP+His. 8 mg / L 

Control 2015 1.21 N/A N/A 

ZnNP+His 8 mg / L 5.05 7.42x10-4*** N/A 

ZnNP+His 16 mg / L 5.58 2.19x10-7*** 0.5816 

App. 4 ICP analysis data of Zn content of tuber with statistical analysis 

 

11.2 Sax2015 and Sax2016 statistical analysis 
 

 
Average height (mm) ± SD 

Week since planting 

2 3 4 5 6 

Control 325.01 ± 30.24 665.63 ± 29.91 919.95 ± 52.32 1138.87 ± 41.17 1198.73 ± 15.07 

CaNP+His 12 mg / L 357.60 ± 88.61 742.40 ± 94.71 1005.60 ± 108.04 1184.40 ± 28.76 1315.20 ± 45.54 

CaNP+His 36 mg / L 321.27 ± 39.74  689.07 ± 63.26 964.13 ± 40.13 1145.00 ± 23.84 1164.70 ± 46.81 

Ca.FeNP+His 355.80 ± 20.54 648.93 ± 48.72 902.60 ± 53.79 1147.73 ± 31.34 1318.00 ± 46.10 

FeNP+His 8 mg / L 336.95 ± 62.19 671.51 ± 59.27  944.53 ± 71.06 1142.85 ± 97.18 1027.04 ± 64.50 

FeNP+His 12 mg / L 337.14 ± 52.16 683.63 ± 76.54 960.77 ± 32.12 1152.66 ± 37.08 1234.40 ± 41.58 

FeNP+His 16 mg / L 331.48 ± 57.20 672.24 ± 49.95 986.09 ± 14.12  1192.34 ± 42.39 1350.60 ± 51.73 

ZnNP+His 8 mg / L 335.19 ± 99.22 675.79 ± 69.33 963.80 ± 56.76 1147.75 ± 28.41 1130.72 ± 37.05 

ZnNP+His 16 mg / L 339.40 ± 52.00 697.87 ± 64.21 990.67 ± 9.98 1187.13 ± 57.07 1169.50 ± 137.04 

App. 5 Sax2015 growth rate over a 5-week period 
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Average height (mm) ± SD 

Week since planting 

3 4 5 6 

Control (water only) 84.71 ± 66.85 442.89 ± 62.30 572.78 ± 32.26  637.83 ± 42.01 

Chempak 207.75 ± 70.77 492.61 ± 101.48 622.61 ± 65.87 689.61 ± 56.76 

CaNP+His 32 mg / L 116.06 ± 67.11 555.56 ± 76.58 700.39 ± 49.84 1175.22 ± 78.65 

CaNP+His 64 mg / L 100.28 ± 62.62 550.78 ± 81.38 731.28 ± 40.55 806.06 ± 73.01 

FeNP+His 16 mg / L 107.88 ± 69.85 496.94 ± 100.07 695.06 ± 38.64 736.17 ± 54.61 

FeNP+His 32 mg / L 116.06 ± 54.54 510.44 ± 115.26 718.50 ± 85.48 819.33 ± 58.63 

His 16 mg/L 104.73 ± 63.55 459.47 ± 106.76 676.88 ± 71.17 783.53 ± 60.05 

His 32 mg/L 130.44 ± 48.11 499.67 ± 110.86 647.78 ± 95.42 776.56 ± 80.57 

His 64 mg/l 127.56 ± 69.13 492.44 ± 101.49 636.33 ± 54.83 766.11 ± 41.50 

App. 6 Sax2015 growth rate over a 5-week period 

 

 

 

Sax2015 p-value against 

control 

Sax2016 p-value against 

control 

p-value against 

Chempak 

CaNP+His 12 mg / L 0.2023 Chempak 3.76x10-3** N/A 

CaNP+His 36 mg / L 0.2023 CaNP+His 32 mg / L 6.27x10-7*** 2.00x10-3** 

Ca.FeNP+His 0.9246 CaNP+His 64 mg / L 6.77x10-10*** 6.17x10-6*** 

FeNP+His 8 mg / L 0.0501 FeNP+His 16 mg / L 7.31x10-7*** 0.0171* 

FeNP+His 12 mg / L 0.2982 FeNP+His 32 mg / L 2.13x10-12*** 9.46x10-8*** 

FeNP+His 16 mg / L 0.0210* His 16 mg/L 1.18x10-9*** 3.77x10-5*** 

ZnNP+His 8 mg / L 0.0201* His 32 mg/L 2.08x10-7*** 6.72x10-4*** 

ZnNP+His 16 mg / L 0.7160 His 64 mg/l 0.0219* 0.2764 

App. 7 p-values of ANOVA single factor analysis of heights obtained at week 6 after planting. 
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Percentage difference in height between 

week 3 and 6 (%) 

Sax2015 

Control 80.09 

CaNP+His 12 mg / L 77.16 

CaNP+His 36 mg / L 69.03 

Ca.FeNP+His 103.10 

FeNP+His 8 mg / L 52.95 

FeNP+His 12 mg / L 80.57 

FeN+His 16 mg / L 100.91 

ZnNP+His 8 mg / L 67.32 

ZnNP+His 16 mg / L 67.58 

Sax2016 

Control (water only) 653.00 

Chempak 231.94 

CaNP+His 32 mg / L 912.61 

CaNP+His 64 mg / L 703.82 

FeNP+His 16 mg / L 582.43 

FeNP+His 32 mg / L 605.96 

His 16 mg/L 648.12 

His 32 mg/L 495.35 

His 64 mg/l 500.58 

App. 8 Percentage difference in height of stems between weeks 3 and 6 from trials Sax2015 and Sax2016, propagated in 
Erin multipurpose compost. 
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Per plant 

Total 

number 

harvested 

Number 

of >30mm 

Number of 

<30 mm 

% 

>30mm 

% 

<30mm 

Sax2015 

Control 7.86 165 115 50 69.70 30.30 

CaNP+His 12 mg / L 7 182 129 53 70.88 29.12 

CaNP+His 36 mg / L 9.89 157 109 48 69.43 30.57 

Ca.FeNP+His 5.56 138 95 43 68.84 31.16 

FeNP+His 8 mg / L 8.67 60 60 0 100.00 0.00 

FeNP+His 12 mg / L 7.48 61 61 0 100.00 0.00 

FeN+His 16 mg / L 6.57 63 47 16 74.60 25.40 

ZnNP+His 8 mg / L 6.57 89 60 29 67.42 32.58 

ZnNP+His 16 mg / L 6.67 50 48 2 96.00 4.00 

Sax2016 

Control 11.50 207 140 67 67.63 32.37 

Chempak 11.17 201 112 90 55.72 44.28 

FeNP+His 16 mg/L 11.56 208 133 75 63.94 36.06 

FeNP+His 32 mg/L 9.17 165 114 51 69.09 30.91 

CaNP+His 32 mg/L 9.72 175 128 47 73.14 26.86 

CaNP+His 64 mg/L 9.61 173 129 44 74.57 25.43 

His. 16 mg/L 9.67 174 130 44 74.71 25.29 

His 32 mg/L 10.78 194 133 61 68.56 31.44 

His. 64 mg/L 12.56 226 158 68 69.91 30.09 

App. 9 Harvested number and segregation in to >30 mm and < 30 mm tubers 
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  Overall 

average 

weight (g) 

Average 

weight (g) 

> 30 mm 

Average 

weight (g) 

< 30 mm 

Sax 2015 Control 39.81 55.01 4.83 

CaNP+His, 12 mg / L 49.09 63.82 5.82 

CaNP+His, 32 mg / L 35.52 50.36 4.81 

CaFeNP+His 24:12 mg / L 62.98 62.98 0.00 

FeNP+His 8 mg / L 41.71 55.87 7.23 

FeNP+His 12 mg / L 43.2 59.23 7.54 

FeNP+His 16 mg / L 40.46 55.37 6.73 

ZnNP+His 8 mg / L 49.67 49.67 0.00 

ZnNP+His 16 mg / L 55.43 55.43 0.00 

Sax 2016 Control 29.81 41.51 5.36 

Chempak 29.79 48.21 6.55 

CaNP+His 32 mg/L 34.46 45.09 5.51 

CaNP+His 64 mg/L 33.89 43.93 4.45 

FeNP+His 16 mg/L 28.79 42.82 3.91 

FeNP+His 32 mg/L 31.45 43.34 4.88 

His. 16 mg/L 32.89 42.37 4.89 

His 32 mg/L 29.11 40.39 4.52 

His. 64 mg/L 29.03 39.04 5.77 

App. 10 Harvested weights from trials Sax2015 and Sax2016, average tuber weight and average weight when segregated 
into >30mm and <30mm. 
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Control >30 

mm 
0.1328 0.2953 0.1572 0.8495 0.3658 0.9568 0.2838 0.9756 

Control <30 

mm 
0.1001 0.4134 N/A 0.0117 0.0032 0.0239 N/A N/A 

App. 12 Statistical analysis of tuber weight average when segregated into size. Trial Sax2015 
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CaNP+His  
12 mg / L 

0.0100 N/A N/A N/A N/A N/A N/A N/A 

CaNP+His  
32 mg / L 

0.4479 0.1519 N/A N/A N/A N/A N/A N/A 

Ca.FeNP+His 1.43x10-4 0.0330 8.32X10-3 N/A N/A N/A N/A N/A 

FeNP+His 
 8 mg / L 

0.6359 0.1112 0.6910 9.78x10-4 N/A N/A N/A N/A 

FeNP+His  
12 mg / L 

0.2816 0.0104 0.9567 5.83x10-3 0.5363 N/A N/A N/A 

FeN+His  
16 mg / L 

0.9573 
0.0104 

 
0.4601 1.13X10-4 0.6838 0.3167 N/A N/A 

ZnNP+His 
 8 mg / L 

3.21x10-5 0.1240 
 

5.56X10-3 0.5860 2.14x10-4 1.59X10-3 3.23X10-5 N/A 

ZnNP+His 16 
mg / L 

0.8992 
0.0162 

 
0.3757 

 
6.69X10-5 0.8610 1.59x10-3 0.6554 1.71x104 

App. 11 Statistical analysis p-values comparing tuber weights from overall average harvested weight (g). Trial Sax2015 
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Chempak 0.9576 N/A N/A N/A N/A N/A N/A N/A 

CaNP+His 32 mg/L 0.1236 0.1635 N/A N/A N/A N/A N/A N/A 

CaNP+His 64 mg/L 0.1704 0.2147 0.8700 N/A N/A N/A N/A N/A 

FeNP+His 16 mg/L 0.7131 0.7862 0.0781 0.1088 N/A N/A N/A N/A 

FeNP+His 32 mg/L 0.5597 0.5842 0.3668 0.4578 0.3820 N/A N/A N/A 

His. 16 mg/L 0.2655 0.3155 0.6310 0.7565 0.1700 0.6366 N/A N/A 

His 32 mg/L 0.7947 0.8631 0.0875 0.1215 0.9098 0.4238 0.1825  N/A 

His. 64 mg/L 0.7725 0.8403 0.0816 0.1147 0.9325 0.4124 0.1825 0.9763 

App. 13 p-values comparing average tuber weight of all tuber harvested in trial Sax2016 

 

 

Chempak 
FeNP+His 
16 mg/L 

FeNP+His 
32 mg/L 

CaNP+His 
32 mg/L 

CaNP+His 
64 mg/L 

His. 16 
mg/L 

His 32 
mg/L 

His. 64 
mg/L 

 

Control 

>30 mm 

0.0784 
 

0.6858 
 

0.5626 
 

0.3020 
 

0.4724 
 

0.7768 
 

0.7123 
 

0.415074 
 

Chempak 

>30 mm 
N/A 0.1969 0.2450 

0.4791 
 

0.3211 
 

 
0.1451 

 
0.0490 

0.018389 
 

Control 

<30 mm 

0.0585 
 

0.0020 
 

0.4128 
 

0.7983 
 

0.1542 
 

0.4361 
 

0.114179 
 

0.852794 
 

Chempak 

<30 mm 
N/A 

3.38x10-6 
 

0.0150 
 

0.1361 
 

0.0051 
 

0.0219 
 

0.001276 
 

0.689115 
 

App. 14 Statistical analysis of tuber weight average when segregated into size. Trial Sax2015 
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Trial Treatment DM % ± SD 

Sax2015 

Control 36.67 ± 3.33 

CaNP+His 12 mg / L 35.24 ± 2.45 

CaNP+His 36 mg / L 36.29 ± 3.60  

Ca.FeNP+His 33.44 ± 2.14 

FeNP+His 8 mg / L 35.69 ± 3.50 

FeNP+His 12 mg / L 32.67 ± 4.24 

FeN+His 16 mg / L 35.03 ± 2.32 

ZnNP+His 8 mg / L 33.39 ± 2.85 

ZnNP+His 16 mg / L 34.17 ± 2.01  

Sax2016 

Control 39.59 ± 3.87 

Chempak 38.08 ± 3.19  

FeNP+His 16 mg/L 38.95 ± 2.53  

FeNP+His 32 mg/L 37.87 ± 2.79 

CaNP+His 32 mg/L 35.61 ± 3.08 

CaNP+His 64 mg/L 39.67 ± 2.64 

His 16 mg/L 36.69 ± 4.04 

His 32 mg/L 37.72 ± 2.71 

His 64 mg/L 49.92 ± 5.45 

App. 15 Percentage of dry matter (DM%) Sax2015 and Sax2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p-values 
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CaNP+His  
12 mg / L 

0.2595 N/A N/A N/A N/A N/A 

CaNP+His  
32 mg / L 

0.7830 0.4823 N/A N/A N/A N/A 

Ca.FeNP+His 0.0126 0.1155 0.0582 N/A 0.6109 N/A 

FeNP+His 
 8 mg / L 

0.3607 N/A N/A N/A N/A N/A 

FeNP+His  
12 mg / L 

1.54x10-3 N/A N/A 0.0159 N/A N/A 

FeN+His  
16 mg / L 

0.0725 N/A N/A 0.4776 0.0308 N/A 

ZnNP+His 
 8 mg / L 

0.0467 N/A N/A N/A N/A N/A 

ZnNP+His 16 mg / L 0.4776 N/A N/A N/A N/A 0.4545 

App. 16 p-value between DM % Sax2015 
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p-vlaues 
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Chempak 0.1867 N/A N/A N/A N/A N/A N/A 

CaNP+His 32 

mg/L 
9.24x10-4 0.0175 N/A N/A N/A N/A N/A 

CaNP+His 64 

mg/L 
0.9355 0.0937 N/A N/A N/A N/A N/A 

FeNP+His 16 

mg/L 
0.5427 0.3442 N/A N/A N/A N/A N/A 

FeNP+His 32 

mg/L 
0.1150 0.8245 N/A 0.2055 0.0269 N/A N/A 

His. 16 mg/L 0.0264 0.2377 N/A 0.0411 N/A N/A N/A 

His 32 mg/L 0.0857 0.7072 N/A 
N/A 0.8705 0.3501 N/A 

His. 64 mg/L 1.85x10-8 1.76x10-10 2.06x10-9 
N/A  7.13x10-11 2.91x10-3 

App. 17 p-value between DM % Sax2016 

 

DM% comparison p-value 

FeNP+His. 16 mg / L 7.32E-06 

CaNP+His. 32 mg / L 0.6085 

Control with Chempak Sax2016 0.1737 

App. 18 Comparison of DM % between same applications between trials Sax2015 and Sax2016 

 

 Ca content 

(mg / L per gram) 
 

Whole tuber Skin Tuber flesh 

Control 115.82 121.95 113.77 

CaNP+His. 12 mg / L 145.60 191.99 130.14 

CaNP+His. 32 mg / L 49.58 84.39 49.58 

CaFeNP+His. (24:12 mg / L) 221.45 393.58 164.08 

App. 19 Concentration of Ca from tubers harvested from trial Sax2015, treated with MONP+His. 
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p-values 
Sax2015 

Whole tuber 

CaNP+His. 
12 mg / L 

CaNP+His. 
32 mg / L 

CaFeNP+His. (24:12 mg / 
L) 

Control 0.0192 2.62x10-16 4.3x10-9 

CaNP+His.  
12 mg / L 

N/A 1.03x10-11 2.97x10-4 

CaNP+His.  
32 mg / L 

N/A N/A 2.47x10-9 

App. 20 Figure 3.26: Statistical p-values for the comparison of whole tuber Ca content of Sax2015 tubers 

 

p-values 
Sax2015 

Skin  

CaNP+His. 
12 mg / L 

 

CaNP+His. 
32 mg / L 

 

CaFeNP+His. (24:12 mg / 
L) 
 

Control 
0.4046 

 
0.0461 

 
2.57x10-6 

 

CaNP+His.  
12 mg / L 

N/A 
0.0557 

0.0278 *  
 

6.54x10-5 
 

CaNP+His.  
32 mg / L 

N/A N/A 
4.28x10-4 

 

p-values 
Sax2015 
Tubers 

CaNP+His. 
12 mg / L 

 

CaNP+His. 
32 mg / L 

 

CaFeNP+His. (24:12 mg / 
L) 
 

Control 
0.0127 1.95x10-19 

1.16x10-9 
 

CaNP+His.  
12 mg / L 

N/A 8.92x10-15 1.48x10-3 

CaNP+His.  
32 mg / L 

N/A N/A 5.24x10-17 

App. 21 Statistical p-values for the comparison of skin and tuber content of Ca from trial Sax2015. * p-value of one-way t-
test. 

 

 Fe content 

(mg / L per gram) 
 

Whole 

tuber 
Skin Tuber 

Control 26.53 29.17 25.65 

FeNP+His. 8 mg / L 23.56 27.91 22.11 

FeNP+His. 12 mg / L 31.39 76.06 16.50 

FeNP+His. 16 mg / L 36.11 48.82 31.87 

CaFeNP+His. (24:12 mg / L) 15.72 12.48 1.71 

App. 22 Concentration of Fe from tubers harvested from trial Sax2015, treated with MONP+His. 
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p-values 
Sax2015 

Whole tuber 
FeNP+His. 8 mg / L FeNP+His. 12 mg / L FeNP+His. 16 mg / L 

CaFeNP+His. (24:12 
mg / L) 

Control 0.3686 
 

0.5746 
 

5.60X10-3 

 
4.11x10-18 

 
FeNP+His. 8 mg / L 

N/A 
0.320828 

 
0.001641 

 
1.28x10-22 

 
FeNP+His. 12 mg / L 

N/A N/A 
0.0559 

0.0280 * 
 

4.31x10-6 
 

FeNP+His. 16 mg / L 
N/A N/A N/A 

2.93x10-7 
 

App. 23 Statistical p-values for the comparison of whole tuber Fe content of Sax2015 tubers. * p-value of one-way t-test. 

 

 

p-values 

Sax2015 

Skin 

FeNP+His. 8 mg / L FeNP+His. 12 mg / L FeNP+His. 16 mg / L 
CaFeNP+His. (24:12 

mg / L) 

Control 0.8716 0.0845 0.1471 0.1812 

FeNP+His. 8 mg / L 
N/A 

0.0656 

0.0328* 

0.0648 

0.0324* 
7.00x10-4 

FeNP+His. 12 mg / L N/A N/A 0.3302 0.1171 

FeNP+His. 16 mg / L N/A N/A N/A 0.0430 

p-values 

Sax2015 

Tuber 

FeNP+His. 8 mg / L FeNP+His. 12 mg / L FeNP+His. 16 mg / L 
CaFeNP+His. (24:12 

mg / L) 

Control 0.0198 7.88x10-7 0.0935 7.1710-24 

FeNP+His. 8 mg / L N/A 7.43x10-4 7.96x10-3 2.58x10-25 

FeNP+His. 12 mg / L N/A N/A 6.95x10-5 1.72x10-11 

FeNP+His. 16 mg / L N/A N/A N/A 1.09x10-7 

App. 24 Statistical p-values for the comparison of skin and tuber content of Fe from trial Sax2015. * p-value of one-way t-
test. 
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p-values 

Sax2015 

Whole tuber 

ZnNP+His. 8 mg / L ZnNP+His. 16 mg / L 

Control 
8.65x10-8 2.19x10-20 

ZnNP+His. 8 mg / L 
N/A 9.30x10-3 

App. 26 Statistical p-values for the comparison of whole tuber Zn content of Sax2015 tubers. 

 

 

p-values 

Sax2015 

Skin 

ZnNP+His. 8 mg / L ZnNP+His. 16 mg / L 

Control 2.84x10-5 7.65x10-12 

ZnNP+His. 8 mg / L N/A 0.0251 

p-values 

Sax2015 

Tuber 

ZnNP+His. 8 mg / L ZnNP+His. 16 mg / L 

Control 1.98x10-4 8.60x10-19 

ZnNP+His. 8 mg / L N/A 0.0720 
0.0232* 

App. 27 Statistical p-values for the comparison of skin and tuber content of Fe from trial Sax2015. * p-value of one-way t-
test 

 

 

 Zn content 

(mg / L per gram) 
 

Whole tuber Skin Tuber 

Control 7.91 9.50 7.38 

ZnNP+His. 8 mg / L 145.08 243.38 112.31 

ZnNP+His. 16 mg / L 36.09 61.38 25.25 

App. 25 Table 3.31: Concentration of Zn from tubers harvested from trial Sax2015, treated with MONP+His. 
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Ca content (mg / L per gram) 

 
Whole tuber Skin / cortex Parenchyma / vascular ring Perimedulla / medulla 

Control  242.41 58.84 11.58 14.79 

Chempak  267.51 66.10 11.38 16.09 

FeNP+His 16 mg/L  N/A 100.98 14.75 28.88 

FeNP+His 32 mg/L  N/A 76.27 20.51 20.27 

CaNP+His 32 mg/L  290.93 77.57 15.17 28.52 

CaNP+His 64 mg/L 243.88 65.99 16.98 19.66 

His 16 mg/L N/A 73.35 14.46 22.21 

His 32 mg/L 250.99 87.17 10.76 18.73 

His 64 mg/L 140.77 45.91 16.46 15.00 

App. 28 Concentration of Ca from tubers (and constituent parts) harvested from trial Sax2016, treated with MONP+His. 

 

p-value of 
whole tuber Control Chempak 

CaNP+His 32 
mg/L 

CaNP+His 64 
mg/L 

His 32 mg/L 

Chempak 1.06x10-5 N/A N/A N/A N/A 

CaNP+His 32 
mg/L 

0.0203 
0.2572 

 
N/A N/A N/A 

CaNP+His 64 
mg/L 

0.9323 
 

0.1820 
 

0.0790 
 

0.0395* 
 

N/A N/A 

His 32 mg/L 0.6487 0.3874 0.1490 N/A N/A 

His 64 mg/L 4.19x10-24 8.31x10-26 N/A 3.74x10-7 5.05x10-7 

App. 29 p-value of Ca content of whole tuber analysis from Sax2016 trial. * p-value of one-way t-test 

 

p-values of Ca content 
Sax2016 Skin / cortex 

Parenchyma / vascular 
ring 

Perimedulla / medulla 

Chempak 2.41x10-9 0.0705 1.75x10-6 

CaNP+His 32 mg/L 1.12x10-13 1.75x10-8 1.62x10-13 

CaNP+His 64 mg/L 2.24x10-10 8.48x10-10 1.49x10-10 

His 32 mg/L 1.20x10-13 4.77x10-4 4.41x10-10 

His 64 mg/L 1.24x10-11 2.84x10-9 0.1253 

App. 30 Statistical p-values for comparison of Ca content of tuber constituents from trial Sax2016. 
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Fe content (mg / L per gram) 

 

Whole tuber Skin / cortex 
Parenchyma / 

vascular ring 
Perimedulla / medulla 

Control  165.24 170.55 82.67 88.22 

Chempak  182.21 167.03 71.93 103.11 

CaNP+His 32 mg/L  142.69 224.84 89.99 102.78 

CaNP+His 64 mg/L  136.13 156.36 96.38 100.90 

FeNP+His 16 mg/L  194.70 171.92 75.94 93.93 

FeNP+His 32 mg/L  150.48 148.96 74.62 101.91 

His 16 mg/L  136.12 269.09 81.96 104.49 

His 32 mg/L  127.99 236.12 93.10 102.29 

His 64 mg/L  84.78 141.34 99.45 93.73 

App. 31 Concentration of Fe from tubers (and constituent parts) harvested from trial Sax2016, treated with MONP+His. 

 

 Control Chempak FeNP+His 

16 mg/L 

FeNP+His 

32 mg/L 

CaNP+His 

32 mg/L 

CaNP+His 

64 mg/L 

His 16 mg/L His 32 mg/L 

Chempak 0.01256 

 

N/A N/A N/A N/A N/A N/A N/A 

FeNP+His 

16 mg/L 

0.0011 

 

0.1695 

 

N/A N/A N/A N/A N/A N/A 

FeNP+His 

32 mg/L 

0.0886 

 

1.70x10-3 

 

2.12x10-4 

 

N/A N/A N/A N/A N/A 

CaNP+His 

32 mg/L 

1.62x10-5 

 

1.45x10-7 

 

N/A 0.3304 

 

N/A N/A N/A N/A 

CaNP+His 

64 mg/L 

8.35x10-7 

 

6.85x10-11 

 

N/A N/A 0.1886 

 

N/A N/A N/A 

His 16 

mg/L 

0.0041 

 

2.40x10-5 

 

6.81x10-7 

 

N/A N/A N/A N/A N/A 

His 32 

mg/L 

2.21x10-5 

 

2.57x10-8 

 

N/A 0.0148 

 

0.0655 

 

N/A 0.2766 

 

x 

His 64 

mg/L 

1.94x10-21 1.65x10-23 

 

N/A N/A N/A 1.09x10-20 

 

9.36x10-12 

 

1.54x10-11 

 

App. 32 p-value of Ca content of whole tuber analysis from Sax2016 trial. 
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Skin / cortex Control Chempak FeNP+His 16 mg/L FeNP+His 32 mg/L 

Chempak 
0.0562 N/A N/A N/A 

FeNP+His 16 mg/L 
0.5612 0.0141 N/A N/A 

FeNP+His 32 mg/L 
7.49x10-9 1.53x10-11 4.90x10-9 N/A 

His 16 mg/L 
1.20x10-15 3.65x10-17 0.77x10-15 N/A 

His 32 mg/L 
1.49x10-14 2.80x10-17 N/A 2.80x10-18 

App. 33 Statistical p-values for comparison of Fe content of tuber skin / cortex from trial Sax2016. 

 

 

Parenchyma / vascular 

ring 
Control Chempak FeNP+His 16 mg/L FeNP+His 32 mg/L 

Chempak 4.09x 10-12 N/A N/A N/A 

FeNP+His 16 mg/L 8.58x10-7 2.16x10-4 N/A N/A 

FeNP+His 32 mg/L 2.22x10-9 5.49x10-4 1.02x10-6 N/A 

His 16 mg/L 0.0690 1.54x10-13 0.1542 N/A 

His 32 mg/L 3.20x10-14 2.29x10-14 N/A 6.57x10-13 

App. 34 Statistical p-values for comparison of Fe content of tuber parenchyma / vascular ring from trial Sax2016. 
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Perimedulla / medulla Control Chempak FeNP+His 16 mg/L FeNP+His 32 mg/L 

Chempak 8.95x10-10 N/A N/A N/A 

FeNP+His 16 mg/L 1.43x10-7 1.09x10-6 N/A N/A 

FeNP+His 32 mg/L 3.93x10-9 0.4001 7.10x10-6 N/A 

His 16 mg/L 9.49x10-5 0.2207 1.97x10-10 N/A 

His 32 mg/L 2.33x10-13 0.4676 N/A 0.7412 

App. 35 Statistical p-values for comparison of Fe content of tuber perimedulla / medulla from trial Sax2016. 

 

11.3 FeLoad2016 statistical analysis 
 

 
Average height (mm) ± SD 

 
Week 4 Week 5 Week 6 

Control 379.44 ± 19.63 519.89 ± 41.57 584.11 ± 48.05 

L1 438.22 ± 39.88 572.00 ± 25.31 640.67 ± 25.38 

L2 386.33 ± 38.44 519.78 ± 27.25 597.00 ± 39.34 

L3 361.44 ± 19.72 531.22 ± 31.65 607.33 ± 23.83 

App. 36 Average growth rates ± SD from FeLoad2016. 
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Control L 1 L2 L3 

Per plant 12.44 11.33 10.11 10.56 

Total number of tubers >10 mm 112.00 102.00 91.00 95.00 

Number of >30mm 69.00 77.00 65.00 63.00 

Number of <30 mm 43.00 25.00 26.00 32.00 

Percentage of >30mm 61.61 75.49 71.43 66.32 

Number >30mm scab 12 4 6 1 

Number >30mm virus 2 2 0 0 

Soft rot 0 0 1 0 

Total effected 14 6 6 1 

Percentage virus or scab effected from > 30mm 49.11 69.61 64.84 65.26 

Total harvested weight (g) 2820.44 3253.14 2995.44 3046.20 

Total harvested weight >30mm (g) 2263.43 3120.93 2870.30 2882.93 

Total harvested weight <30mm (g) 557.01 132.21 125.14 163.27 

Percentage >30mm weight 80.25 95.94 95.82 94.64 

Average harvested weight >30mm 32.80 41.09 44.16 45.76 

Average harvested weight <30mm 12.95 5.29 4.81 5.10 

Overall SD 39.24 26.82 27.49 29.52 

SD >30mm 23.07 25.41 24.71 27.40 

SD<30mm 54.40 2.54 2.84 2.85 

App. 37 Harvest data from FeLoad2016 trial 

 

p-values 
All tubers weights 

L1 L2 L3 

Control 0.1495 0.1135 0.1615 
L1 na 0.7940 0.9659 
L2 Na na 0.9796 

> 30 mm L1 L2 L3 

Control 0.057358 0.0068 0.0038 
L1 na 0.3923 0.2443 
L2 Na na 0.7287 

< 30 mm L1 L2 L3 

C 0.4852 0.4498 0.4182 
L1 na 0.5321 0.7985 
L2 na na 0.7015 

App. 38 p-values from comparison of harvest data from tubers harvested from trial FeLoad2016. 
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Average DM % 

± SD 

ANOVA p-values One way / Two-way t-test 

Against 

control 

Against 

L1 

Against 

L2 

Against 

control 

Against 

L1 

Against 

L2 

Control 38.56 ± 3.22 N/A N/A N/A N/A N/A N/A 

L1 37.01 ± 3.95 0.3494 N/A N/A 
0.1747/ 

0.3494 
N/A N/A 

L2 37.93 ± 2.81 0.6476 0.5562 N/A 
0.3238/ 

0.6476 

0.2781/ 

0.5562 
N/A 

L3 39.44 ± 3.68 0.5745 0.1713 0.3154 
0.2872/ 

0.5745 

0.0857/ 

0.1713 

0.1578/ 

0.3154 

App. 39 DM % and statistical analysis of tubers harvested from trial FeLoad2016 

 

 
Content of Fe  

(Mg/ L per gram) 
p-value 

Against control Against L1 Against L2 

Control 7.74 ± 0.8658 N/A N/A N/A 

L1 6.06 ± 0.4533 0.005082 N/A N/A 

L2 5.60 ± 0.4860 0.001341 0.156358 N/A 

L3 7.31 ± 0.7118 0.423434 0.010781 0.002162 

App. 40 Fe content of whole tubers from FeLoad2016 with p-vaules. 

 

11.4 Field2015 and Field2016 statistical analysis 
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1 2.78 0.00 0.00 24.25 0.97 17.50 1.75 0.00 0.00 

2 3.14 0.00 0.00 24.00 0.94 21.00 2.12 0.00 0.00 

3 2.99 0.00 0.00 24.25 0.99 19.00 1.87 0.00 0.00 

4 3.08 0.00 0.00 24.00 0.94 20.50 2.00 0.00 0.00 

App. 41 Harvest data collated by Branston Plc for Field2015 
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Treatment 1 

(control) 
Treatment 2 Treatment 3 Treatment 4 

DM% ± SD 
Midway 39.94 ± 2.69 41.06 ± 3.52 38.82 ± 3.05 40.76 ± 3.45 

At harvest 34.36 ± 2.97 36.97 ± 3.41 37.48 ± 4.73 37.04 ± 3.99 

Fe content (mg / L) 
Midway 20.07 9.00 26.03 20.58 

At harvest 66.17 81.93 67.58 55.57 

App. 42 Comparison of DM% and Fe content (mg / L per gram) midway (12th week after planting) and at harvest (21.5 
weeks). 

 

 p-values of DM% midway p-value of DM% at harvest 

 Against 

control (T1) 
Against T2 Against T3 

Against 

control (T1) 
Against T2 Against T3 

T2 0.1578 N/A N/A 1.79x10-3 N/A N/A 

T3 0.1229 8.37x10-3 N/A 0.0250 0.6276 N/A 

T4 0.2940 0.7298 0.0200 3.47x10-3 0.9458 0.6894 

App. 43 Statistical comparison of DM% midway through trail and at harvest. Field2015. 

 

 p-values between DM% midway and at harvest 

T1 6.41x10-11 

T2 1.38x10-5 

T3 0.1814 

T4 1.73x10-4 

App. 44 p-values of the comparison of DM% with in treatment midway and at harvest 

 

 

 p-values of Fe content midway p-value of Fe content at harvest 

 Against 

control (T1) 
Against T2 Against T3 

Against 

control (T1) 
Against T2 Against T3 

T2 0.0369 N/A N/A 0.1787 N/A N/A 

T3 0.1263 7.88x10-6 N/A 0.8872 0.1728 N/A 

T4 0.8763 1.25x10-3 0.0541 0.2300 6.16x10-3 0.0952 

App. 45 p-values of Fe content midway through trial (week 12) and at harvest (week 21). 
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 p-values between Fe content midway and at harvest 

T1 5.75x10-7 

T2 1.34x10-4 

T3 1.68x10-5 

T4 5.30x10-10 

App. 46 p-values comparing the Fe content of tubers midway (week 12) and at harvest (week 21) with in treatments. 

 

Against control (T1) 
Number of tuber 

(p-value) 

weight of tubers 

(p-vaules 

T2 >0.25 >0.25 

T3 >0.25 0.0005 

T4 0.005 >0.25 

App. 47 chi-squared analysis against Treatment 1 (control), 20-40 mm and 40-65 mm distribution in number and weight 
(kg). 

 

 

Against 

control (T1) 

Total no. of 

tubers 
Total weight 

No. of tubers 

20- 40 mm 

Wt. of tubers 

20-40 mm 

No. of tubers 

40-65 mm 

Wt. of tubers 

40-65 mm 

T2 0.8443 0.9363 1.0000 0.8575 0.8623 0.8133 

T3 0.8362 0.5556 0.8356 0.7383 0.9442 0.8646 

T4 0.7563 0.9344 0.2012 0.2899 0.4659 0.6169 

App. 48 p-values from ANOVA one-way statistical analysis of tuber numbers and weights from Field2015. 

 

 p-values of Fe content midway p-value of Fe content at harvest 

 Against 

control (T1) 
Against T2 Against T3 

Against 

control (T1) 
Against T2 Against T3 

T2 0.7800 N/A N/A 0.6942 N/A N/A 

T3 0.9281 0.6818 N/A 0.1480 0.2780 N/A 

T4 0.2127 0.1071 0.2074 0.9780 0.6938 0.0808 

App. 49 p-value of soil samples before and after trial, Field2015. 
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 p-values between Fe content midway and at harvest 

T1 3.16x10-3 

T2 0.0410 

T3 3.70x10-3 

T4 1.89x10-3 

App. 50 p-value from the comparison between Fe content of soil before and after trial, Field2015 

 

 

Variety and treatment Site 1 Site 2 

Maris piper -  Control 39.49 ± 3.62 36.86 ± 3.50 

Maris piper - Treated 39.91 ± 3.31 38.87 ± 3.79  

Inca bella - Control 38.38 ± 2.19 39.13 ± 1.94 

Inca bella Treated 39.06 ± 2.01 39.71 ± 2.18 

App. 51 DM % ± SD obtained from Field2016 trial comparing the effect of variety, treatment and location. 

 

 Site 1 Site 2 

Maris piper 0.5925 0.0157 

Inca bella 0.1547 0.2095 

App. 52 p-values of DM% of treatment against control. 

 
  

Fe content 
 (mg / L per gram)    

Control Treatment 

Inca Bella 

Site A 54.45  55.32  

Site B 48.07 53.77 

Maris piper 
Site A 41.38  69.76 

Site B 59.38 68.24  

Inca Bella Overall av. 51.26  54.55 

Maris piper Overall av. 50.38 69.00 

App. 53 Fe content of tubers segregated into different locations to compare uptake of Fe in different soils and varieties of 
potato. 

 

 

 

. 
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p-value 

Inca Bella 
Site A 0.8567 

Site B 0.1155 

Maris piper 
Site A 0.0167 

Site B 0.3002 

Inca Bella Overall av. 0.2766 

Maris piper Overall av. 0.0108 

App. 54 Fe content of tubers across both locations. 

 

11.5 59Fe statistical analysis 
 

 

 

App. 55 Calibration of radioactive 59FeNP and 59Fe-EDTA to determine Fe content using Hidex AMG Gamma Counter 
measuring the gamma reading (MBq). 
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Av. 59Fe (MBq) Av .Fe conc (mg / L per gram) 

FeNP+His 

 Soil 398.00 96.68 

 Tuber 33.00 0.98 

 Stem lower 13.00 12.99 

 Stem mid 3.00 1.22 

 Stem top 16.00 2.55 

Fe-EDTA 

 Soil 24.29 4.52 

 Tuber 0.22 0.00 

 Stem lower 21.67 4.70 

 Stem mid 10.67 0.92 

 Stem top 5.83 0.62 

App. 56 Data collected from trial 59Fe initially read in MBq then converted to Fe content via calibration graph. 

 
 

Fe-EDTA against 59FeNP+His 

p-value 

 Soil 1.14x10-9 

 Tuber 1.17x10-8 

 Stem lower 1.61x10-8 

 Stem mid 9.12x10-5 

 Stem top 7.94x10-5 

App. 57 p-values of Fe content (mg / L) comparing 59Fe-EDTA to 59FeNP+His data. 

 

11.6 T2014 statistical analysis 
 

Application % emerged after 4 weeks 
Percentage survived to produce 

fruit (%) 

Control 43.75 73.33 
FeNP+His 6 mg / L 25 100.00 
FeNP+His 12 mg / L 25 100.00 
FeNP+His 24 mg / L 25 33.33 
His 6 mg / L 25 66.67 
His 12 mg / L 62.5 100.00 
His 24 mg / L 87.5 100.00 

App. 58 Effect of FeNP+His and His on the emergence and development of tomato seedlings and plants. 
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Average height (mm) ± SD 

 
Week 4 Week 7 Week 10 Week 13 

Control 24.43 ± 11.23 53.50 ± 12.57 123.14 ± 51.20 410.71 ± 121.83 

Miracle Gro 25.25 ± 9.81 42.00 ± 9.19 85.00 ± 12.73 319.00 ± 49.50 

FeNP+His 6 mg / L 34.00 ± 5.66 83.50 ± 8.39 205.50 ± 17.68 617.50 ± 123.74 

FeNP+His 12 mg / L 16.50 ± 4.95 47.33 ± 22.63 78.67 ± 7.23 323.33 ± 49.96 

FeNP+His 24 mg / L 32.50 ± 21.95 49.00 ± 8.49 73.50 ± 2.12 454.00 ± N/A 

His 6 mg / L 44.50 ± 2.12 78.00 ± 8.49 192.50 ± 2.12 563.50 ± 12.02 

His 12 mg / L 36.00 ± 4.90 69.60 ± 2.88 159.20 ± 11.30 528.00 ± 12.71 

His 24 mg / L 44.43 ± 11.22 89.57 ± 13.92 236.57 ± 32.08 561.29 ± 120.84 

App. 59 Growth rate of tomatoes plants from trial T2014. 

 

 

 p-value of heights against control. 

 Week 4 Week 7 Week 10 Week 13 

Miracle Gro 0.9059 0.3100 0.3513 0.3504 

FeNP+His 6 mg / L 0.2981 0.0725 0.0691 0.0726 

FeNP+His 12 mg / L 0.3807 0.6149 0.1854 0.2765 

FeNP+His 24 mg / L 0.4738 0.7806 0.2328 0.7509 

His 6 mg / L 0.0475 0.1290 0.1108 0.1353 

His 12 mg / L 0.0582 0.0958 0.1575 0.0605 

His 24 mg / L 5.98x10-3 1.27x10-3 3.27x10-4 0.0387 

App. 60 p-values of growth rates when compared against control. 

 

 p-values 

Week 13 against Miracle Gro 

FeNP+His 6 mg / L 0.0210 

FeNP+His 12 mg / L 1.68x 10-4 

FeNP+His 24 mg / L 0.0323 

His 6 mg / L 0.0210 

His 12 mg / L 1.68x10-4 

His 24 mg / L 0.0323 

App. 61 p-values at week 13 comparing average heights at week 13 to FeNP+His and His. applications. 
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 Fresh weight per plant (g) Average number of fruits per plant 
Average fresh 

weight per fruit 

Control 172.85 9.20 18.79 

Miracle Gro 214.06 16.00 13.81 

FeNP+His. 6 mg / L 119.95 6.67 17.14 

FeNP+His. 12 mg / L 254.65 22.67 12.96 

FeNP+His. 24 mg / L 83.85 7.00 11.98 

His. 6 mg / L 94.46 5.67 16.67 

His. 12 mg / L 147.55 15.67 15.71 

His. 24 mg / L 150.36 14.00 16.45 

App. 62 Harvest data collated from T2014. 
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Miracle Gro 

6.24x10-5 N/A N/A N/A N/A 

FeNP+His. 6 mg / L 

0.2788 0.01590 N/A N/A N/A 

FeNP+His. 12 mg / L 

2.22x10-13 3.10x10-3 8.30x10-7 N/A N/A 

FeNP+His. 24 mg / L 

3.12x10-3 0.2265 
 

0.0302 
 

0.6259 
 

N/A 

His. 6 mg / L 

0.17753 0.0271 0.7904 N/A N/A 

His. 12 mg / L 

3.63x10-3 0.1651 
 

N/A 5.47x10-6 N/A 

His. 24 mg / L 

4.73x10-4 0.2514 N/A N/A 0.1376 

App. 63  p-values obtained when comparing fresh weights from trial T2014. 
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 DM ± SD 

Control 10.91 ± 0.52 

Miracle Gro 11.06 ± 0.40 

FeNP+His. 6 mg / L 8.27 ± 0.28 

FeNP+His. 12 mg / L 7.71 ± 0.70 

FeNP+His. 24 mg / L 11.43 ± 0.40 

His. 6 mg / L 9.50 ± 0.92 

His. 12 mg / L 10.77 ± 0.35 

His. 24 mg / L 9.56 ± 0.55 

App. 64 DM % with SD of tomato fruit from trial T2014 
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Miracle Gro 
3.99x10-14 

N/A N/A N/A N/A 

FeNP+His. 6 mg / L 
0.0168 

 
2.71x10-13 N/A N/A N/A 

FeNP+His. 12 mg / L 
0.1953 

 2.22x10-18 0.1741 
 

N/A N/A 

FeNP+His. 24 mg / L 
3.24x10-5 0.2053 

 
3.79x10-8 5.07x10-6 N/A 

His. 6 mg / L 
0.1879 

 
5.71x10-7 1.24x10-3 N/A N/A 

His. 12 mg / L 

0.2355 8.89x10-17 N/A 7.77x10-3 N/A 

His. 24 mg / L 

0.0340 1.17x10-11 N/A N/A 3.37x10-3 

App. 65 -value of DM % obtained from tomatoes propagated in trial T2014. 
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 Fe content of tomatoes (mg / L per gram) 

 Start (25/07/2014) Mid (09/08/2014) End (28/08/2014) Harvest average of all fruit 

Control 26.32 14.28 15.65 18.75 

Commercial 16.93 26.83 39.56 27.78 

Fe+His 6 ppm 52.84 67.48 89.43 69.92 

Fe+His 12 ppm 46.14 49.97 51.22 49.11 

Fe+His 24 ppm 26.42 55.98 53.09 45.16 

App. 66 Fe content of tomato fruit. average over harvest and during harvest. 

 

 p-value against control Fe content 

 
Start (25/07/2014) Mid (09/08/2014) End (28/08/2014) 

Harvest average of 

all fruit 

Miracle Grow 0.1816 0.2783 0.1406 0.1711 

Fe+His 6 ppm 0.2585 0.0111 4.53x10-3 3.52x10-5 

Fe+His 12 ppm 0.0546 0.0430 0.0205 3.53x10-5 

Fe+His 24 ppm 0.9940 0.1085 0.1619 0.0248 

 p-value against Miracle Grow Fe content 

 
Start (25/07/2014) Mid (09/08/2014) End (28/08/2014) 

Harvest average of 

all fruit 

Fe+His 6 ppm 0.1575 0.0446 0.0176 8.06x10-4 

Fe+His 12 ppm 0.0284 0.1813 0.4625 9.19x10-3 

Fe+His 24 ppm 0.5280 0.2484 0.6081 0.1566 

App. 67 p-values from the ICP data of Fe content of tomatoes through the harvest period and overall average content. 
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11.7 TSC2014 Data and statistical analysis 
 

 

 
Average height (mm) 

obtained after ‘n’ weeks after planting 
 

1 2 3 4 5 6 7 8 9 10 

Control 0.00 5.00 16.50 24.43 39.86 43.43 53.50 66.43 82.43 123.14 

HNS 0.00 0.00 8.50 30.00 55.00 57.50 71.00 79.00 95.00 142.00 

FeNP 7.00 15.00 16.00 30.00 47.30 49.70 51.50 54.50 61.00 86.00 

FeNP+HNS 0.00 6.00 8.00 22.70 39.70 43.00 
 

App. 68 Growth rate of plants propagated from coated seeds. 

 

 

 Week 4 Week 7 Week 10 

 HNS FeNP FeNP+HNS HNS FeNP HNS FeNP 

Control 0.5256 0.5098 0.8050 0.4211 0.8980 0.7422 0.3854 

HNS N/A 1 0.1230 N/A 0.5332 N/A 0.4762 

FeNP N/A N/A 0.4093 N/A N/A N/A N/A 

App. 69 p-values of growth rate of plants propagated form coated seeds. TSC2014 

 

 

Weight of harvest 

per plant 

(g) 

Average number of fruits 

per plant 

(n) 

Average fresh 

weight per fruit 

(g) 

p-value of fresh 

weight of 

tomatoes against 

control 

Control 172.85 9.20 18.79 N/A 

HNS 127.01 7.00 14.11 0.0221 

FeNP 111.39 8.00 13.92 2.47x10-3 

App. 70 Fresh harvest data collected from trial TSC2014 with p-vales against control comparing average fresh weights of 
tomato. 
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DM % ± SD 

Control 10.91 ± 0.52 

HNS 9.71 ± 6.93 

FeNP 9.17 ± 3.79 

App. 71 Dry matter (%) of tomatoes from trial TSC2014. 

 

 p-values 

 against control against Miracle Gro HNS against FeNP 

HNS 0.0560 3.79x10-3 

0.1860 
FeNP 0.6435 4.24x10-8 

App. 72 p-values comparing DM% of tomatoes from trial TSC2014 

 

11.8 C2014 data and statistical analysis 
 

 

Height (mm) after ‘n’ weeks into trial 

 

Height gained 

between weeks 1 

to 5 (mm) 
 

1 2 3 4 5 

Control 54 71 78 94 106 52 

Chilli focus 46 59 69 87 97 51 

FeNP+His. 6 mg / L 48 72 79 97 118 70 

FeNP+His. 12 mg / L 54 69 75 84 100 46 

His. 6 mg / L 60 82 88 102 113 53 

His. 12 mg / L 38 52 63 72 89 51 

App. 73 Growth rates of Cayenne plants in the first five weeks in the trial with weekly applications of the designated 
treatments. 
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Total number of 

red chillies per 

plant 

Average fresh 

weight (g) ± SD 

Average % dry 

matter (DM %) 

 ± SD 

Control 91 0.8014 ± 0.58 28.17 ± 4.69 

Chilli Focus 157 0.6426 ± 0.39 27.00 ± 2.67 

FeNP+His. 6 mg / L 166 0.6575 ± 0.38 27.38 ± 3.67 

FeNP+His. 12 mg / L 117 0.7185 ± 0.43 27.40 ± 3.82 

His 6 mg / L 113 0.7478 ± 0.44 25.13 ± 3.66 

His 12 mg / L 90 0.8592 ± 0.47 25.58 ± 2.35 

App. 74 Harvest data and DM % of chilli peppers propagated in preliminary trial C2014 

 

 

 p-values of fresh weight (C2014) 
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Chilli Focus 
0.0105 0.7287 0.1286 0.0392 1.35x10-4 

FeNP+His. 6 mg / L 
0.0165 N/A N/A 0.0672 N/A 

FeNP+His. 12 mg / L 
0.2354 0.2065 N/A N/A 0.0263 

His. 6 mg / L 
0.4512 N/A N/A N/A 0.0839 

His. 12 mg / L 
0.4616 N/A N/A N/A N/A 

App. 75 p-values comparing fresh weights of chilli peppers harvested from trial C2014 
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 p-values of DM % (C2014) 
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Chilli Focus 0.0125 0.2946 0.2962 2.09x10-6 3.77x10-5 

FeNP+His. 6 mg / L 0.1325 N/A N/A 9.19x10-7 N/A 

FeNP+His. 12 mg / L 0.1966 0.9398 N/A N/A 8.93x10-5 

His. 6 mg / L 4.78x10-7 N/A N/A N/A 0.3152 

His. 12 mg / L 5.29x10-6 

 
N/A N/A N/A N/A 

App. 76 p-values comparing DM % of chilli peppers propagated C2014. 

 

 

 
 

Fe content (mg / L) of cayenne peppers C2014 ± SD 

Control 8.24 ± 7.27 

Chilli focus 7.00 ± 3.24 

FeNP+His 6 mg / L 4.58 ± 1.66 

FeNP+His. 12 mg / L 5.23 ± 3.28 

His. 6 mg / L 5.68 ± 3.36 

His. 12 mg / L 5.11 ± 2.56 

App. 77 Fe content of chilli peppers, Cayenne, from trial C2014 
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 p-values of Fe content (C2014) 
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Chilli Focus 
0.6236 0.5945 0.7212 0.3710 0.6422 

FeNP+His. 6 mg / L 
0.8455 N/A N/A 0.4972 N/A 

FeNP+His. 12 mg / L 
0.8835 0.7084 N/A N/A 0.9557 

His. 6 mg / L 
0.8216 N/A N/A N/A 0.7888 

His. 12 mg / L 
0.9081 N/A N/A N/A N/A 

App. 78 p-values of Fe content of cayenne peppers propagated in trial C2014. 

 

11.9 CB2015 Data and statistical analysis 
 

 Average height (mm) gained by chilli plants ± SD  

 Control FeNP+His. 6 mg / L FeNP+His. 12 mg / L 

Habanero red 647.67 ± 46.05 624.33 ± 40.67 715.67 ± 184.33 

Jamaican 569.67 ± 51.19 561.67 ± 41.02 600.67 ± 22.55 

Scotch bonnet 606.25 ± 31.18 570.50 ± 102.78 662.50 ± 163.67 

Pequin 1023.33 ± 145.66 1186.00 ± 416.01 1207.67 ± 15.04 

App. 79 Average height (mm) gained by chilli peppers curing trial CB2015. 

 

 p-vales of heights against control CB2015 

 FeNP+His. 6 mg / L FeNP+His. 12 mg / L 

Habanero red 0.8430 0.3915 

Jamaican 0.5304 0.5245 

Scotch bonnet 0.5466 0.5689 

Pequin 0.5575 0.0947 

App. 80 p-values of heights obtained from chilli peppers propagated in trial CB2015 
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Average harvested weight per 

plant (g) ± SD 

Number of chillies 

total per plant (n) 

Habanero red 

Control 401.63 ± 8.06 213 

FeNP+His. 6 mg / L 445.85 ± 11.13 205 

FeNP+His. 12 mg / L 646.58 ± 40.38 329 

Jamaican 

Control 520.60 ± 6.53 153 

FeNP+His. 6 mg / L 391.43 ± 15.93 143 

FeNP+His. 12 mg / L 603.41 ± 6.37 182 

Scotch Bonnet 

Control 93.89 ± 5.17 46 

FeNP+His. 6 mg / L 149.08 ± 7.55 62 

FeNP+His. 12 mg / L 189.73 ± 0.71 98 

Pequin 

Control 55.27 ± 3.21 343 

FeNP+His. 6 mg / L 38.60 ± 1.74 284 

FeNP+His. 12 mg / L 43.08 ± 5.68 295 

App. 81 Harvest data from trial CB2015 

 

 

 p-vales of harvested weights per plant, against control CB2015 

 FeNP+His. 6 mg / L FeNP+His. 12 mg / L 
Between FeNP+His 

treatments 

Habanero red 5.14x103 5.01x10-4 1.15x10-3 

Jamaican 2.37x10-4 9.55x10-5 3.11x10-5 

Scotch bonnet 5.09x10-3 5.82x10-6 0.5719 

Pequin 1.28x10-3 0.0311 0.2625 

App. 82 p-values of harvested weights from trial CB2015 
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Fe content (mg / L per gram) ± SD 

Habanero red 

Control 26.67 ± 5.25 

FeNP+His. 6 mg / L 25.34 ± 3.41 

FeNP+His. 12 mg / L 23.82 ± 4.04 

Jamaican 

Control 30.34 ± 4.55 

FeNP+His. 6 mg / L 25.71 ± 3.62 

FeNP+His. 12 mg / L 25.28 ± 5.74 

Scotch Bonnet 

Control 34.88 ± 6.04 

FeNP+His. 6 mg / L 36.74 ± 5.33 

FeNP+His. 12 mg / L 25.60 ± 5.32 

Pequin 

Control 72.05 ± 8.84 

FeNP+His. 6 mg / L 82.14 ± 6.48 

FeNP+His. 12 mg / L 72.12 ± 9.53 

App. 83 Average DM % of chillies from trial CB2015. 

 

 

 p-vales of DM%, against control CB2015 

 FeNP+His. 6 mg / L FeNP+His. 12 mg / L 
Between FeNP+His 

treatments 

Habanero red 0.2482 0.0217 0.1209 

Jamaican 5.43x10-5 3.70x10-4 0.7274 

Scotch bonnet 0.2124 4.15x10-8 4.26x10-11 

Pequin 4.90x10-6 0.9795 1.31x10-5 

 

Table 3.98: p-values of DM% of chillies from CB2015 

 

 

 

 

 

 

 

 

 

 
  

Fe content of chilli peppers (mg / L per gram) 
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Habanero red 

Control 54.90 ± 9.55 

FeNP+His 6 mg / L 146.24 ± 65.83 

FeNP+His 12 mg / L 251.64 ± 129.42 

Jamaican 

Control 78.49 ± 23.83 

FeNP+His 6 mg / L 94.58 ± 31.12 

FeNP+His 12 mg / L 122.62 ± 35.79 

Scotch bonnet 

Control 40.21 ± 25.20 

FeNP+His 6 mg / L 88.93 ± 43.84 

FeNP+His 12 mg / L 176.93 ± 87.02 

Pequin 

Control 165.77 ± 84.79 

FeNP+His 6 mg / L 67.25 ± 58.77 

FeNP+His 12 mg / L 84.00 ± 29.94 

App. 84 Fe content of chilli peppers from trial CB2015. 

 

 

 p-vales of Fe content, against control CB2015 

 FeNP+His. 6 mg / L FeNP+His. 12 mg / L 
Between FeNP+His 

treatments 

Habanero red 1.65x10-3 7.51x10-4 
0.0592  

0.0296* 

Jamaican 0.2651 0.0116 0.1167 

Scotch bonnet 0.0164 7.80x10-4 0.0229 

Pequin 0.0172 0.0222 0.0172 

App. 85 p-value of Fe content of chilli peppers CB2015. * t-test one-way p-value. 
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App. 86 Calibration of HPLC standards for the determination of capsaicinoids concentration, mg / L per gram of fruit. 
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  Capsaicinoid content (mg / L per gram) Scoville 

unit (SHU) 
 

Nordihydrocapsaicin Dihydrocapsaicin Capsaicin 

Habanero 

red 

Control 741.24 1823.32 3609.39 57750.20 

FeNP+His. 6 mg / L 493.03 91.71 130.42 2086.65 

FeNP+His. 12 mg / L 2596.67 1310.80 1074.38 17190.10 

Jamaican 

Control 37356.25 45442.71 26493.49 423896 

FeNP+His. 6 mg / L 414.90 818.12 4536.02 72576.30 

FeNP+His. 12 mg / L 60748.10 35737.00 33814.11 541026.00 

Scotch 

Bonnet 

Control 1799.67 961.97 4173.29 66772.60 

FeNP+His. 6 mg / L 1908.06 1036.19 5770.61 92329.80 

FeNP+His. 12 mg / L 3547.24 5788.38 6470.12 103522.00 

Pequin 

Control 24.51 137.15 41.46 663.41 

FeNP+His. 6 mg / L 53.87 236.63 82.00 1312.08 

FeNP+His. 12 mg / L 57.03 135.49 84.87 1357.87 

App. 87 Capsaicinoid content and conversion to SHU (Collins et al., 1995) 

 

(*Against control) 

p-values of capsaicinoid 

 

N
o

rd
ih

yd
ro

ca
p

sa
ic

in
 

D
ih

yd
ro

ca
p

sa
ic

in
 

C
ap

sa
ic

in
 

Habanero 

red 

*FeNP+His. 6 mg / L  0.5751 0.0159 0.1511 

*FeNP+His. 12 mg / L 0.0522 0.3617 0.1460 

Between FeNP+His. treatments 0.0413 2.15x10-5 0.0310 

Jamaican 

*FeNP+His. 6 mg / L  1.34x10-3 2.93x10-6 2.92x10-4 

*FeNP+His. 12 mg / L 0.3091 0.3643 0.6286 

Between FeNP+His. treatments 0.0177 1.09x10-3 0.0947 

Scotch 

Bonnet 

*FeNP+His. 6 mg / L  0.8865 0.8186 0.1487 

*FeNP+His. 12 mg / L 0.4647 0.2002 0.6090 

Between FeNP+His. treatments 0.3268 0.0699 0.8195 

Pequin 

*FeNP+His. 6 mg / L  0.0801 0.4442 0.1870 

*FeNP+His. 12 mg / L 0.0374 0.9622 0.0259 

Between FeNP+His. treatments 0.8742 0.4074 0.9236 

App. 88 Statistical analysis of capsaicinoid data from HPLC using ANOVA. 
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11.10 FoliarFe Data and statistical analysis 
 

  Average Fe content 

(mg / L per gram) ± SD 

Control leaf (Separate control plant) 19.65 ± 2.97 

FeNP+His. applied leaf 98.45 ± 11.77 

Non treated leaf (from same plant as Fe application) 26.58 ± 1.99 

App. 89 Average Fe content obtained from leaves in trial FoliarFe 

 

(* against control) p-value comparing average Fe content 

FeNP+His. applied leaf 2.50x10-3 

Non treated leaf (from same plant as Fe application) 4.96 x10-7 

Treated against non-treated on same plant 8.86 x10-7 

App. 90  p-values comparing Fe content in leaves from trial FoliarFe. 
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11.11 MONP in the environment data and statistical analysis 

 
 

Ca conc. at 5 

cm (mg/L) 

Ca conc. at 30 

cm 

(mg / L) 

p-value 

between 5 and 

30 cm 

Compost before application 7717.24 N/A 

Control 7970.50 6074.60 0.0763 

CaNP+His. 12 mg / L 7126.11 5213.85 9.65x10-5 

CaNP+His. 32 mg / L 9771.83 4781.88 3.90x10-5 

CaFeNP+His. (24:12) mg / L 7078.92 5638.41 0.0715 
 

Fe conc. at 5 

cm (mg/L) 

Fe conc. at 30 

cm  

(mg / L) 

p-value 

between 5 and 

30 cm 

Compost before application 267.45 N/A 

Control 262.45 243.31 4.41x10-3 

FeNP+His. 8 mg / L 180.85 214.42 5.51x10-4 

FeNP+His. 12 mg / L 242.07 235.89 0.3996 

FeNP+His. 16 mg / L 220.30 211.18 0.2347 

CaFeNP+His. (24:12) mg / L 234.62 236.87 0.8629 
 

Zn conc. at 5 

cm (mg/L) 

Zn conc. at 30 

cm  

(mg / L) 

p-value 

between 5 and 

30 cm 

Compost before application 42.52 N/A 

Control  37.01 17.54 0.0139 

ZnNP+His. 8 mg / L 259.18 100.14 3.88x10-8 

ZnNP+is. 16 mg / L 321.34 36.45 3.73x10-5 

App. 91 ICP results from the retention of MONP from ICP of compost form trial Sax2015 with p-value comparing mineral 
concentrations between depth 5 and 30 cm. 

 

CaNP 5 cm 30 cm 

Compost before app. 0.8140 0.2252 

CaNP+His. 12 mg / L 0.2126 0.2300 

CaNP+His. 32 mg / L 0.0537 0.1035 

CaFeNP+His. (24:12) mg / L 0.3583 0.5088 

App. 92 p-value of CaNP retention in compost Sax2015 against control. 
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FeNP 5 cm 30 cm 

FeNP+His. 8 mg / L 1.86x10-6 8.81x10-5 

FeNP+His. 12 mg / L 0.0246 0.1159 

FeNP+His. 16 mg / L 2.64x10-4 2.88x10-4 

CaFeNP+His. (24:12) mg / L 0.0684 0.0630 

App. 93 p-value of FeNP retention in compost Sax2015 against control. 

 

ZnNP 5 cm 30 cm 

Compost before app. 0.5963 7.45x10-3 

ZnNP+His. 8 mg / L 1.92x10-9 4.18x10-10 

ZnNP+is. 16 mg / L 3.52x10-5 0.0545 

App. 94 p-value of ZnNP retention in compost Sax2015 against control. 

 

 

 

 

 

 

 

 
Start of test 

(number) 
Alive end of test 

(number) 
Percentage mortality 

(%) 
Percentage survival 

(%) 

Control (tap water) 25 24 4.00 96.00 
FeNP+His. 6 mg / L 25 18 28.00 72.00 
FeNP+His.  12 mg / 

L 
26 5 80.77 19.23 

FeNP+His. 24 mg / 
L 

24 3 87.50 12.50 

ZnNP+His.  6 mg / 
L 

24 0 100.00 0.00 

ZnNP+His. 24 mg / 
L 

26 2 92.31 7.69 

App. 95 Mortality of shrimps at end of trial 
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MONP content ± SD 

 
Fe 

(mg / L per gram) 

Zn 

(mg / L per gram) 

Control 15.38 ± 0.49 5.40 ± 0.80 

FeNP+His. 6 mg / L 22.73 ± 0.06 N/A 

FeNP+His. 12 mg / L 47.16 ± 0.22 N/A 

FeNP+His. 24 mg / L 52.11 ± 0.05 N/A 

ZnNP+His. 6 mg / L N/A 6.03 ± 0.09 

ZnNP+His. 24 mg / L N/A 40.45 ± 0.72 

App. 97 Fe and Zn content of shrimps remaining after 72 hours. 

 

 

 p-values of Fe and Zn content in shrimps 

 

Fe
N

P
+H

is
. 

6
 m

g 
/ 

L 
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N

P
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L 
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N

P
+H
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. 
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4
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g 

/ 
L 

Zn
N

P
+H

is
. 

6
 m

g 
/ 

L 

Zn
N

P
+H

is
. 

2
4

 m
g 

/ 
L 

Control 1.36x10-5 5.59x10-8 2.19x10-9 0.1691 8.81x10-10 

FeNP+His. 6 mg 
/ L 

N/A 5.44x10-9 3.57x10-11 N/A N/A 

FeNP+His. 12 
mg / L 

N/A N/A 3.13x10-6 N/A N/A 

ZnNP+His. 6 mg 
/ L 

N/A N/A N/A N/A 9.40x10-11 

App. 98 p-values comparing Fe and Zn content of shrimps exposed to MONP's over 72 hours. 

 

 
Mortality rate % 

After 24 hours After 48 hours After 72 hours 
Control (tap water) 4.17 0 0 
FeNP+His. 6 mg / L 12 9.1 10 

FeNP+His.  12 mg / L 19.23 47.62 57.55 
FeNP+His. 24 mg / L 16.67 75 40 
ZnNP+His.  6 mg / L 29.17 88.24 100 

ZnNP+His. 24 mg / L 69.23 75 0 

App. 96 Mortality rate of shrimps 
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11.12 MONP as an antibacterial application for storage; date and statistical 

analysis 
 

11.12.1 Antibacterial properties of CaNP+His solution (CaO and CaFe2O4) 

 

 Previous pH pH with buffer Average CFU / mL 

Control pH 7 7.5 8.62E+06 

CaHisNP pH 9 7.5 8.30E+06 

CaFeHisNP pH 5 7 1.65E+05 

His pH 4 7 1.50E+05 

App. 99 CFU and pH of solutions to observe the antibacterial effect of two forms of CaNP. 

 

 Control CaHisNP CaFeHisNP 

CaHisNP 0.8815 N/A N/A 

CaFeHisNP 0.0228 0.0276 N/A 

His 0.0228 0.0276 0.8517 

App. 100 p-values comparing CFU / mL using Ca nanoparticles as an antibacterial in waste wash water. 

 

11.12.2 Inoculation of potatoes (variety Maris piper) with pectobacteria pre-treated with 

MONP+His soak 
 

Soak 
Skin swab 

(CFU / mL) 

Peel 

(CFU / mL) 

None 6.90E+05 3.83E+05 

Water 1.20E+05 5.42E+05 

CaNP+His 1.87E+05 2.92E+05 

CaFeNP+His. 7.50E+03 1.75E+05 

FeNP+His. 2.08E+04 5.67E+05 

His 6.67E+03 2.92E+05 

App. 101 CFU / mL obtained from MONP soak treated tubers to observe the antibacterial effect of the application. 
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 p-values of swab data p-values of peel data 

 No soak Water His No soak Water His 

Water 0.4012 N/A N/A 0.1169 N/A N/A 

CaNP+His 0.4568 4.98x10-3 5.30x10-7 0.1531 0.0258 * 

CaFeNP+His. 0.3185 8.78x10-7 0.8583 0.0139 5.10x10-3 0.1793 

FeNP+His. 0.3276 3.79x10-6 0.0241 0.3549 0.9046 0.1852 

His 0.3179 1.29x10-6 N/A 0.2024 0.0352 N/A 
App. 102 p-values of swab and peel CFU / mL when MONP+His and His appled as a soak to tubers. * both sets of data 
contained the same sum and average rendering an ANOVA to be performed, using a T-test one tail p = 0.5, T-test two tail p 
= 1. 

11.12.3 Inoculation of potatoes with pectobacteria (PCA). 
 

 
Skin swab 

(CFU / mL) 

Peel 

(CFU / mL) 

1 6.17E+04 1.42E+05 

2 3.50E+06 3.00E+05 

3 5.40E+04 3.25E+05 

1a 1.44E+04 2.09E+05 

2a 1.14E+05 2.58E+05 

3a 1.79E+04 1.93E+05 

App. 103 CFU / mL obtained from MONP pretreated with PW (na) and not PW tubers to observe the antibacterial effect of 
the application. 

 

 

 p-values of swab data p-values of peel data 

 2 3 1a 2a 2 3 1a 2a 

1 6.87x10-4 0.4918 1.72x10-5 N/A 0.1467 0.0801 0.2887 
N/A 

2 N/A 6.88x10-4 N/A N/A N/A 0.8337 N/A N/A 

2a 4.30x10-5 N/A 1.81x10-3 N/A 0.6800 N/A 0.4039 
N/A 

3a N/A 0.0248 0.5754 2.33x10-3 N/A 0.2888 0.8677 0.5300 

App. 104 p-values to compare the effect of MONP and PW 
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11.13 Tissue printing onto nitrocellulose Sample preparation 

 

The following methods were refined from Cassab and Varner, (1989). A comparison of two transfer 

techniques of proteins onto nitrocellulose paper. 

Method 1: Electrophoretic transfer 

Method 2: Pressing transfer 

 A potato was cut in half vertically through the centre of an eye region. Slices 2 mm thick were then 

cut from the potato, and wedges were then cut from the slice, so that the eye region was in the centre 

of the wedge. 

12 pieces of 3 mm filter paper, (40 x 35 mm) and two pieces of nitrocellulose paper (35 x 30 mm) in 

size were cut for each sample. All pieces were soaked in continuous transfer buffer (consisting of 0.19 

M glycine, 20mM tris base, 0.1% SDS and 20% methanol). The electroblotter was moistened with 

continuous transfer buffer, and was loaded as shown in app. 105. 

A glass rod was used to roll over the filter paper and the nitrocellulose once in position to ensure the 

exclusion of air bubbles. 

Two samples were set up in the electroblotter which was run at 50mA (25mA per sample). One sample 

was removed after 1 hour and the second was allowed to run for 2 hours. After these time intervals, 

the pieces of nitrocellulose were removed to trays for further processing.  

For the second method, twelve pieces of 3 mm filter paper, (40 x 35 mm) and two pieces of 

nitrocellulose paper (35 x 30 mm) in size were cut for each sample. All pieces were soaked in 

continuous transfer buffer as in method one. 

Six pieces of the moistened filter paper were placed on a glass plate (see app. 106). A piece of 

nitrocellulose was placed on top, followed by the potato wedge. A second piece of nitrocellulose was 

placed on top of the potato sample, and a glass rod was rolled over the nitrocellulose to remove the 

air bubbles (app. 105). 
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App. 105 Top; Set up of electroblotter for the transfer of proteins onto nitrocellulose paper. Bottomt; samples of potato 
prepared for transfer. 
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A further six pieces of moistened filter paper was placed on the top and a second glass plate was 

placed on top of this. A 3 Kg weight was then placed on the top of this, and left for 20 minutes. The 

procedure was repeated, leaving the weight in position for 1 hour. At the end of these time intervals 

the nitrocellulose was removed to trays for further processing. 

The nitrocellulose from the blotting and from the pressing were all treated in the same manner. 

Blocking solution of 5% (w/v), BSA in 150mM PBS (5 mL) was added to each piece of nitrocellulose. 

This was shaken at room temperature for 1 hour. After discarding the blocking solution, 5ml of a 1 in 

10 dilution of primary monoclonal antibody was added, and was shaken at room temperature for 2 

Filter paper soaked 
inPBS 

Filter paper soaked 
inPBS 

Nitrocellulose paper Potato tuber 
sample 

Glass plate 

Glass 
plate 

3 kg weight 

App. 106 Top; sematic of pressure transfer. Botom; in use in the lab 
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hours. The primary antibody used was ID10 which was raised against guinea pig liver transglutaminase 

and it was diluted in 5% (w/v) BSA in 150mM PBS. The nitrocellulose was then washed in blocking 

solution for 10 minutes, followed by 3 times for 10 minutes each in tris buffered saline (TBS). After 

washing, the secondary antibody was added. This was an anti-mouse antibody raised in sheep 

conjugated to horseradish peroxidase, and it was diluted 1 in 2000 in 5% (w/v) BSA in 150mM PBS 

before use. This was shaken at room temperature for 2 hours. The nitrocellulose was then washed 4 

times for 10 minutes each in TBS, followed by once for 1 minute in distilled water. An addition of 5ml 

of substrate (3’3’ diaminobenzidine (DAB)) was then added. This is specific for peroxidase and the 

development of a brown colouration denotes the presence of the enzyme. Colour development can 

take between 30 minutes and 2 hours. At the end of this time the nitrocellulose was washed 

thoroughly in distilled water. The experiment was repeated using the pressing technique only, the 

sample being pressed for 20 minutes. Three controls were also set up, these were: (a) No antibody 

control, (b) No primary antibody control (c) No secondary antibody control. 

The experiment was further repeated incorporating an additional blocking step. This step was carried 

out after blocking with the 5% (w/v) BSA in 150mM PBS, the blocking solution consisting of a 1:1 

mixture of 5%(v/v) foetal calf serum and 5% (v/v) sheep serum, and was carried out for 1 hour. 

Modifications were also made in the use of the primary and secondary antibodies. In the first 

modification the nitrocellulose paper was shaken with the primary antibody overnight instead of for 

2 hours. In the second modification, anti-mouse Ig G alkaline phosphatase conjugate raised in sheep 

was used instead of the horseradish peroxidase conjugate. The substrate mixture used for the 

detection of alkaline phosphatase consisted of 33µl of 50mg ml-1 5-bromo-4-chloro-3-indolyl 

phosphate(BCIP) and 44 µl of  75 mg ml -1 nitroblue tetrazolium (NBT) in 20 ml substrate buffer (0.75M 

Tris pH 8.5). Both the BCIP and NBT were dissolved in dimethylformamide (DMF). Colour development 

can again take between 30 minutes and 2 hours.  

 

11.13.1 Investigation into the distribution of TG2 
 

The results obtained from the adapted method from that published by Cassab and Vaner (1989), 

app.107, produced a visual indication to the TG2 content of sprouting and non-sprouting eyes in the 

tubers. 

From app. 107, using no anti-body displayed a higher content of TG2  
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 Sprouting Non sprouting 

Control 

 

 

No anti body 

 

 

No primary anti body 

 

 

No secondary anti 
body 

 

 

App. 107 Results from pressure transfer technique 

 

 

Transglutaminases (TGases; EC 2.3.2.13) are a family of enzymes that catalyse the posttranslational 

modification of proteins by inserting an isopeptide bond within or between the polypep- tide chains 

(Chen and Mehta, 1999). When Ca2+ is –present an exchange of primary amine either a protein-bound 

lysine residue or other polyamine molecules, for ammonia at the g-carboxamide group of glutamine 

residues (Chen and Mehta, 1999, Pietsch et al., 2013). 



Biofortification of potato (Solanum tuberosum) using metal oxide nanoparticles 
 

237 
 

Although there are a number of different transglutaminases, transglutaminase 2 (TG2), responsible 

for cell death and cell differentiation, matrix stabilization and an adhesion protein was investigated in 

the role of sprouting in potatoes (Griffin et al., 2002). 

Higher the concentration of TG2 the darker the grey scale. Red areas indicate saturation. The control 

samples indicate clearly the areas of the sprout, periderm, cortex and vascular ring. More specific 

blocking is required to accurately detect TG2 activity. 

Due to time, manpower and budget constraints, the investigation into the suppression of MONP 

fortified tubers effect on TG2 and sprouting was not carried out.  
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