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Abstract 

Two experiments examined the effect of Object Substitution Masking (OSM) on the 

perceptual errors in reporting the orientation of a target. In Experiment 1 a four-dot trailing mask 

was compared with a simultaneous-noise mask. In Experiment 2, the four-dot and noise masks were 

factorially-varied. Responses were modelled using a mixture regression-model and Bayesian-

inference to deduce whether the relative impacts of OSM on guessing and precision were the same 

as those of a noise mask, and thus whether the mechanism underpinning OSM is based on 

increasing noise rather than a substitution process. Across both experiments, OSM was associated 

with an increased guessing-rate when the mask trailed target offset, and a reduction in the precision 

of the target representation (although the latter was less reliable across the two experiments).  

Importantly, the noise mask also influenced both guessing and precision, but in a different manner, 

suggesting that OSM is not simply caused by increasing noise. In Experiment 2 the effects of OSM 

and simultaneous-noise interacted, suggesting the two manipulations involve common mechanisms. 

Overall results suggest that OSM is often a consequence of a substitution process, but there is 

evidence that the mask increases noise levels on trials where substitution doesn’t occur.  

 

Abstract word count: 198  
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“Perceptual errors support the notion of masking by object substitution” 

 

Object substitution masking (OSM) is a form of backwards masking in which the 

perceptibility of a briefly presented target is diminished by the presence of a surround mask which 

onsets simultaneously with the target but trails it at offset (Di Lollo, Enns & Rensink, 2000).   The 

most characteristic attribute of OSM is the fact that the surround mask need not contain any 

significant contour for the phenomenon to occur. Indeed, a mask composed of just four surrounding 

dots is sufficient to produce a substantial masking effect (Enns & Di Lollo, 1997; Di Lollo et al. 2000). 

The distance between the dots is largely unimportant in the production of the effect (Di Lollo et al. 

2000), though the spatial overlap between the surround mask and target is important (Kahan & 

Mathis, 2002; Guest, Gellatly, & Pilling, 2011), as are factors associated with the status of the target 

as a perceptual object within the scene (Lleras & Moore, 2003; Moore & Lleras, 2005, Pilling & 

Gellatly, 2011; Tata, 2002). Because of the properties of OSM, most theories assume that the 

phenomenon largely represents the outcome of object-level interactions (Di Lollo et al., 2000; 

Moore & Llearas, 2005; Enns, Lleras & Moore, 2009; Goodhew, 2017), and not the sorts of low-level 

spatiotemporal interactions which have been argued to occur in conventional forms of masking 

(Breitmeyer & Ganz, 1976). Consequently, OSM is of particular interest for researchers 

understanding the process by which object representations are formed in early vision (Goodhew, 

Edwards, Boal, & Bell, 2015; Camp, Pilling & Gellatly, 2017; Enns, Lleras & Moore, 2010). 

 

Theories of OSM 

OSM has been seen as something of a test case for comprehending the functional 

architecture of the visual system (Bridgeman, 2006; Di Lollo et al., 2000; DiLollo, Enns & Rensink, 

2002; Enns, & Di Lollo, 2000; Francis & Hermens, 2002; Francis & Cho, 2007; Macknik & Martinez-
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Conde, 2007; Di Lollo, 2013, Põder, 2013). The characteristics of OSM are not easily accounted for by 

standard models of masking (e.g. Breitmeyer & Ganz, 1976).  Because of this it has been argued that 

a new theoretical orientation is necessary, one which assumes a re-entrant brain architecture (Di 

Lollo et al. 2000; Enns, & Di Lollo, 2000; Di Lollo, 2013). However, others have claimed that standard 

feedforward models of visual processing can be adapted to account for OSM (Frances & Hermans, 

2002; Põder, 2013).  

A highly influential model of OSM, one which makes the case for a new theoretical 

orientation is the Object Substitution Theory of Masking (OSTM; Di Lollo et al., 2000; Di Lollo et al. 

2002; Di Lollo, 2013). The OSTM is cast in terms of object-level processes. Masking is explained 

within a re-entrant model of perceptual processing. In this conscious perception of a stimulus occurs 

as a consequence of repeated iterative cycles of information exchange between different levels of 

the visual system. It is argued that in perception the initial feedforward-sweep of information 

through the visual system –from the retina through to an iconic representation in V1 and onto 

higher visual areas– is not itself sufficient to produce awareness. Instead this initial feedforward 

activity serves to allow the generation of perceptual hypotheses in the higher visual areas regarding 

the nature of the input signal. This hypothesis is then fed-back via re-entrant pathways and tested 

against the iconic representation in V1. It is only when a confirmatory match is found between the 

re-entrant hypothesis and V1 that conscious perception occurs; where a match is not found the 

iterative exchanges between V1 and higher visual regions continue until a stable match is found. In 

this model it is suggested that, even for a brief target stimulus, the perceptual processes will often 

result in a successful re-entrant match. However, it may be that the target has offset from screen 

before an appropriate perceptual hypothesis is formed. In this case, although the target’s 

representation in V1 is no longer sustained by retinal input, a fading trace will still be present based 

on residual activity; this trace can then still form a basis on for a successful match with the 

descending hypothesis because the correlation between the two signals will still be relatively high. 

The difficulty for perception comes when a brief target is trailed by a delayed-offset mask. Here the 
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icon representation will consist of a fading trace of the target and a robust representation of the 

mask sustained by current input. The perceptual hypothesis based on earlier activity is likely to be 

rejected because of the low correlation between the two signals. When this occurs a new hypothesis 

is likely to be instigated and later confirmed based on the stable iconic representation of the mask 

alone.  Thus according to the OSTM, it is the instability in the visual input generated by the mask 

combined with the inherent latency of the re-entrant response which leads to masking of the form 

seen in OSM. The masking process can be said to be one of substitution of the target by the mask 

object: the presence of the trailing mask obstructs the formation of a stable percept involving the 

target, and instead promotes the formation of a percept containing of the target alone.1  

The object updating theory of masking (OUTM; Lleras & Moore, 2003) can be thought of as a 

reformulation of the OSTM, rather than a rival theoretical account. The OUTM accepts many of the 

tenants of the original OSTM. The OUTM, like the OSTM considers masking to be a process which 

occurs at the level of object representations, however, the OUTM views the competition between 

target and mask to occur within a single object representation, rather than two separate 

representations. Masking, it is argued, occurs when the visual system fails to individuate the target 

and mask as separate perceptual elements. The consequences of this are that the two elements 

become part of the same ‘object token’   representation. It is argued that the standard masking 

paradigm is one where the visual system is particularly likely to represent the target and mask as the 

same perceptual object because of the spatiotemporal overlap of the target and mask elements. The 

OUTM argues that when target and mask are both represented by the same token then the target 

features become vulnerable to being overwritten when the mask lingers after the target offset. The 

OUTM predicts that masking is dependent on whether the target and mask are presented in ways 

which promote the perception of the two as the same or different perceptual objects. Several lines 

                                                           
1 Indeed the name OSM explicitly assumes a substitution process. Others have described OSM using, more 
theoretically neutral terms, such as four-dot masking or common-onset masking. These terms are also 
problematic in describing the OSM phenomenon since the OSM effect can occur when the mask is composed 
of something other than four-dots and when the mask does not have a common-onset with the target. 
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of evidence have supported this claim (Lleras & Moore, 2003; Moore & Lleras, 2005; Pilling & 

Gellatly, 2011; Gellatly, Pilling & Guest, 2010; Guest, Gellatly & Pilling, 2012).  

A key prediction of the OSTM model is that it presumes masking to be an all-or-none 

process: Either the target representation emerges as the focus of perception or it is obliterated by 

the mask. The OUTM is arguably more neutral on the question of whether or not the masking 

process is total or partial in nature.    

A proposed alternative to the OSTM (and its reformulation as the OUTM) is the Attentional 

Gating Model (AGM, Põder, 2013)2. The AGM model argues that OSM reflects a limit of temporal 

attentional selection. In the model masking occurs when in selecting the target, the mask, by virtue 

of being in in close temporal proximity, is also inadvertently selected. The consequence for this is 

that the target representation becomes degraded leading to reduced accuracy in target report. Thus 

in the AGM the masking effect on perception considered to be a matter of degree rather than a 

discrete all-or-none process. The attentional gating model has the clear appeal over the OSTM in its 

parsimony. It explains OSM as a consequence of a single stage process which is entirely feedforward 

in nature and thus makes no appeal to any re-entrant architecture.  

 

OSM and the role of attention 

Initial studies of OSM seemingly indicated that the phenomenon was restricted to 

circumstances where attention could not be rapidly focussed on the target location. For instance, 

OSM seemed to be restricted to circumstances where the target was presented in a display of 

multiple distractor items (Di Lollo et al, 2000; Kotsoni, Csibra, Mareschal & Johnson, 2007), or in 

                                                           
2 Põder (2013) describes the AGM in terms of a reinterpretation of the OSTM not as a rival account. However, 
the reinterpretation focuses on Di Lollo et al.’s CMOS the computational model of object substitution. For the 
purposes of this paper we treat the attentional gating as a rival account and one which assumes the operation 
of different cognitive mechanism and which makes differing predictions about the consequences of masking.    
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conditions where the target occurs in a temporal stream of distractors (Dux, Visser, Goodhew & Lisp, 

2010). Furthermore, initial work suggested that attentional cueing tended to modulate the extent to 

which OSM occurs (Di Lollo et al. 2000; Enns, 2004; Luiga & Bachmann, 2010).  However later work 

has strongly challenged the claim that attention and OSM interact. Many early studies of OSM were 

confounded by the fact that performance was at ceiling in some conditions. The earlier reported 

interactions between display set size and OSM were accounted for either by this confound 

(Argyropoulos, Gellatly, Pilling & Carter, 2013; Filmer, Mattingley & Dux, 2014), by other processes 

such as visual crowding (Camp, Pilling, Argyropoulos, Gellatly, 2015; Camp, Pilling & Gellatly, 2017). 

Experiments which control for ceiling effects have generally found no influence of attentional 

variables, either in its spatial or temporal manifestation, on masking (Pilling, Gellatly, Argyropoulos, 

& Skarratt, 2014; Agaoglu, Breitmeyer & Öğmen, 2016; Filmer, Wells-Peris & Dux, 2017).   

Such findings have been problematic for some of the previously discussed theories of 

masking. These theories have largely formulated on the basis of the assumption that OSM and 

attention interact. The OSTM in particular made strong appeal to the assumed role of attention in its 

initial formulation (Di Lollo et al., 2000). More recent formulations of the OSTM, however, have 

removed attention as a factor while retaining the emphasis on re-entrant processing and 

substitution (Di Lollo, 2014; Jannati, Spalek & Di Lollo, 2014). The role of attention is perhaps more 

fundamental to the AGM.  According to the AGM masking occurs when attention is deployed 

towards a target location but finds the target representation to be both decayed by the target signal 

and degraded by visual noise, resulting in selection of a target signal with a lower signal-noise ratio 

(Põder, 2013; Di Lollo, 2014.  However, the AGM is arguably underspecified in terms of the exact role 

attention plays, and, while predicting an overall role for attention, the model is ambiguous with 

respect to the effects of attentional manipulations on masking itself (Di Lollo, 2014; c.f. Põder, 2014).  
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OSM and perceptual errors 

It seems that the relationship between attention and OSM is not something which is 

unambiguous in deciding between models. The models are either too underspecified, or too flexible 

with regards to their implementation of attention, for this factor to be useful in falsifying the 

models.  

How then do we test between the OSTM and AGM accounts which present OSM in terms of 

radically different visual architectures? Another approach is to explore the patterns of errors in 

target perception resulting from masking. Analysis of these errors could be revealing in teasing 

between the models. The OSTM implies that OSM is an all-or-nothing phenomenon. Either the 

putative re-entrant process results in a successful match regarding the target or it does not, meaning 

that the target is substituted. The presence of the trailing mask is deemed to reduce the probability 

of a successful match occurring on any trial, the probability decreasing as a function of target 

duration. However, on trials in which a match is found the target percept is deemed to be intact. 

Thus in a perceptual discrimination task the effect of masking should be only to increase the number 

of trials in which a guessing response is made (i.e. one in which the response is selected from all 

possible options purely at random).  The AGM makes different predictions. It argues that the 

masking process is not a consequence of substitution but of increased noise generated by the mask 

associated with the target. Therefore, the masking effect is one in which the target percept becomes 

degraded due to the additional noise generated by the incorporation of the mask into the target 

stimulus, the amount of noise increasing as a function of the trailing mask. Thus the AGM predicts 

that the effect of OSM is one of increasing noise associated with the target. This increased noise 
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should therefore be reflected in a loss of precision in reporting about the target rather than just an 

increase in pure random guessing.3  

We explore this possibility in two experiments. In both experiments the target stimulus is a 

Landolt C. After being presented with the masked stimulus participants adjust a rotating stimulus to 

match the orientation to the previously seen target. This basic approach is similar to one recently 

reported by (Harrison, Rajsic & Wilson, 2015) which, to our knowledge, was the first study to report 

using this approach within the OSM field, although it is well established in other perceptual tasks as 

a way of measuring the precision and character of visual representations of viewed stimuli (e.g., 

Agaoglu et al., 2015; Peich, Hussain & Bays, 2013; Guest, Howard, Brown, & Gleeson, 2015).  

This approach, known as the method of adjustment, yields much more informative data 

than a simple correct/incorrect judgement as it allows participants to report more exactly on their 

perceptions. A further benefit is that the data generated allows use of a mixture model to determine 

the source of an error (Bays, Catalao, & Husain, 2009; Zhang & Luck, 2008). On a proportion of trials 

participants may have a representation of the target in which case their responses will be derived 

from a circular Gaussian distribution centred on the target. The standard deviation of this circular 

Gaussian distribution indicates the degree of variability of the representation and thus is an estimate 

of precision. On other trials participants may simply guess in which case their response will come 

from a uniform distribution.  The mixture model can therefore be used to estimate how masking 

influences the degree of precision and the amount of guessing.  

Harrison, Rajsic and Wilson, (2015) used this approach in an attempt to establish whether 

OSM is the result of elimination, or merely the degradation, of the target percept. In their 

experiments they varied set size (number of display items) and the duration of the trailing mask 

                                                           
3 Põder‘s original description of the model (Põder, 2013) seems to implicitly consider masking noise to be 
perceptual in character. In a later elaborated account the model is presented as one in which the noise could 
be either perceptual or decisional in nature (Põder, 2014). However, the predicted pattern of responses would 
be the same irrespective of the locus of this noise interference.      
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(Exp. 1) or the inter-stimulus interval of the trailing mask (Exp. 2). Their results indicated that 

masking resulted in a degradation in precision, a finding which is inconsistent with the notion that 

OSM involves a purely substitution process. Importantly, Harrison et al.’s data did show evidence 

that masking also increased guessing responses. This suggests that part of the masking effect was 

caused by elimination of the target percept a finding which is consistent with the substitution 

account of OSM. However, the data in Harrison et al. are arguably not definitive in distinguishing 

between feedforward (e.g. AGM), and re-entrant (OSTM) accounts because it is possible that an 

OSM mask might decrease precision and that this decrease in precision alone might lead to guessing. 

For example, there might be a threshold beyond which representations are degraded enough that a 

participant simply guesses rather than use the limited representational information available.  

In order to assess this question, the current studies compare the effects of an OSM (i.e. four- 

dot) surround mask that trailed the target with that of a noise mask. The noise mask was an overlay 

of white noise on top of the target and appeared and offset simultaneously with the target (Lu & 

Dosher, 2008; Pelli & Farrell, 1999; Allard, Faubert & Pelli, 2015). As the noise mask did not trail the 

target it should not produce any substitution and should simply add noise to the target. This should 

lead primarily to a loss of precision in target report and may also result in an increase in guessing if 

the stimuli are degraded enough that participant simply switch to a guessing strategy. The important 

question is how the effect of the OSM type mask compares with that of the noise mask. If they 

behaved similarly and both had their effect primarily through influencing precision, then this would 

suggest a common determinant of the masking effect (supporting the AGM). In contrast, if the OSM 

mask resulted in object substitution, then we would expect that it would behave differently to the 

noise mask, such that it would primarily increase the rate of guessing.  

Importantly we modelled the data using a mixture regression model and Bayesian inference 

(details below). Several aspects of this approach are worth noting. First the model was hierarchical-

multilevel in that it fits individual and group level data simultaneously (see Gelman 2015; Gelman & 
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Hill, 2007). This approach enabled us to generate parameters for the group as a whole whilst still 

modelling individual level data. Bayesian inference enabled us to calculate high posterior density 

(HPD) intervals around the parameter estimates to reflect the uncertainty of these estimates. Lastly, 

although we used the standard mixture model, the relative weights of the parameters reflecting 

guessing and precision were regression functions of the mask duration and the noise level which 

were treated as ordinal variables. In other words, we assumed a generalised linear model relating 

the guessing and precision parameters across mask duration levels and noise levels. This is the first 

time such a modelling approach has been used in the field of OSM. 

 

 

Experiment 1 

Method 

Participants. There were 14 participants, comprising undergraduate Psychology students 

recruited from Nottingham Trent University and one of the authors. All had normal or corrected-to-

normal vision. Participants were either given course credit for participation or paid £5. 

Design. There were seven mask conditions: A baseline condition in which no white noise was 

overlaid on the target (0% noise) and the target was surrounded by a four-dot mask which did not 

outlast the stimulus (0 ms four-dot mask), three simultaneous noise mask conditions in which the 

target was overlaid with a 25%, 50% and 75% white noise mask which onset and offset 

simultaneously with the target and three trailing four-dot mask conditions in which the mask offset 

trailed the target offset by 80 ms, 160 ms or 320 ms. 

Stimuli. Stimuli were presented on an ASUS 3D 27inch LCD monitor (resolution= 1280 

x1024 ; refresh rate=100 Hz)  which was viewed at a distance of 52cm. The monitor was controlled 
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by a standard PC. The PC was running software purpose written and compiled in the BlitzMax 

programming language (BlitzMax v.1.50; Blitz Research Ltd., Auckland: New Zealand). This software 

controlled all aspects of the experiment including stimulus generation and randomisation. The target 

consisted of a standard Landolt C stimulus. The diameter of the stimulus subtended a visual angle of 

2.5 degrees. The thickness of the stimulus was 0.5 degrees and the gap size was 0.5 degrees. The 

target was presented in an array with seven distractors. These distractors were also Landolt Cs. All 

stimuli were black on a white background. The gap position of each stimulus was determined 

randomly in any one of 360 degree positions on each trial. The target stimulus was defined in the 

array by a radial cue which onset with the stimulus array and by virtue of the four surrounding dots. 

On trials in which there was a simultaneous noise mask this was present at the target location. The 

simultaneous noise mask was created by taking the region inside the four dots containing the target 

stimulus. From this region a proportion of pixels, depending on the simultaneous mask condition 

were randomly selected. Each of these randomly selected pixels were then randomly set to either 

black or white, overwriting the luminance values of the pixels that were otherwise present there. 

Thus for the 25%, 50% and 75% noise conditions, these refer to the number of pixels within this area 

that were randomly set to black or white. All eight stimuli in the array were positioned at regular 

positions on a virtual circle in the centre of which was the fixation cross. The diameter of this virtual 

circle was 8 degrees. 

Procedure. All trials started with the onset of the fixation cross which remained on-screen 

until the presentation of the test stimulus. The stimulus array onset 350 ms after the onset of the 

fixation cross and remained on-screen for 50 ms. On trials in which there was a simultaneous noise 

mask the noise was present at the target location for the duration of the stimulus array. On trials in 

which the trailing OSM mask was greater than 0 ms the four surrounding dots lingered on screen for 

the appropriate duration. The seven mask conditions were given with equal frequency in a random 

order across the trials.  After the offset of the mask a variable blank interval was given in which only 

the fixation cross was present. The test stimulus followed the offset of the mask after a blank 
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interval (0-320 ms). The duration of this blank interval varied to keep the time constant between the 

offset of the target and the onset of the test stimulus. Thus, with a 0 ms mask a 320 ms blank 

interval was given, with a 320 ms mask a 0 ms blank interval was given. The test stimulus was also a 

Landolt C of the same dimensions as those in the stimulus array. The gap was initially always set to 

the upright position. The participant’s task was to rotate the test stimulus to try to match the gap 

position to that of the previously seen target. They did this by pressing the up and down keys on the 

computer keyboard which respectively rotated the test stimulus anticlockwise and clockwise when 

held. The participants also had the option to press the left and right arrow keys to nudge the test 

stimulus one degree at a time in a respectively anticlockwise and clockwise direction. No time limit 

was given for the adjustment; the participant then pressed the Enter key to select the adjusted gap 

position. This then recorded the adjustment position and began a new trial after a 600 ms inter-trial 

interval. There were 560 trials in the experiment. A demonstration and practice were given before 

commencing the experiment.  
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Figure 1.  A schematic depiction of the trial sequence in Experiment 1. Note that the arrows 

in the last frame are schematic and not present in the presented image.  

 

Results 

Mean error for each condition is given in Figure 2. For the OSM mask there was a clear effect 

of trailing mask duration. However, the effect was a consequence of a difference between the 

simultaneous offset (0ms) mask condition and the trailing mask conditions (80ms, 160ms, 320ms) 

which did not differ from each other. A one way repeated measures ANOVA with trailing mask 

duration (0 ms, 80 ms, 160 ms, 320 ms) as a factor yielded a significant effect of mask duration, F(3, 
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39) = 9.12, p =.002, 𝜂𝑝
2 =.41 (all ANOVAs in this paper use the Greenhouse Geisser correction). 

Polynomial contrasts showed significant linear (p<.001) and quadratic trends (p=.001), indicating no 

clear linear effect of noise. Post hoc Bonferroni comparisons showed that the 80 ms, 160 ms and 320 

ms all significantly differed or showed a marginally significant difference from the 0 ms condition (p 

=.016, p =.007, p =.054 respectively).  

For the simultaneous noise mask, the noise density had a clear effect. Mean error for the 

25% mask did not differ from the 0% baseline condition, however subsequent increases to 50% and 

75%  worsened performance, A one way repeated measures ANOVA with percentage of white noise 

as a factor (0%, 25%, 50%, 75%) yielded a significant effect of mask duration F(3, 39) = 28.29, p 

<.001, 𝜂𝑝
2 =.69. Polynomial contrasts showed significant linear (p=.01) and quadratic trends (p=.002), 

indicating no clear linear effect of noise. Post hoc Bonferroni comparisons showed that all conditions 

differed significantly from each other (all p <.006) except for the 0% and 25% noise conditions which 

did not significantly differ (p =1.00). Of course, underlying these different levels of performance are 

the precision of the target representation and the rate of guessing. We now describe the modelling 

process to derive these estimates. 
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A B  

 

Figure 2. Mean error (in radians) as a function of A) increasing duration (0ms, 80ms, 160 ms, 320 ms) 

of the four-dot mask and B) increasing percentage of white noise (0%, 25%, 50%, 75%). Error bars 

denote +/- 1 standard error.  

 

Modelling 

We model the behavioural data using a probabilistic mixture regression model. Specifically, 

on trial i, denoting the angle chosen by the subject by 𝜃𝑖, and the correct or true angle of the 

stimulus by 𝜃𝑖, we assume that 𝜃𝑖 is distributed according to the following mixture model: 

 

  1 

 

Where  𝜙𝜅𝑖(𝜃𝑖 − 𝜃𝑖) signifies a Von Mises distribution with location parameter 𝜃𝑖and 

concentration parameter (reciprocal of the dispersion parameter) 𝜅𝑖. A Von Mises distribution is 

essentially a normal distribution defined on a circle rather than the real line. As such, as 𝜅𝑖 increases 

the Von Mises distribution becomes more precise and, in the case of this model, the difference 

between the chosen angle 𝜃𝑖 and the true angle on that trial 𝜃𝑖becomes less. On the other hand, the 

variable 𝛾𝑖  which takes values in the range (0; 1), indicates the mixing proportion of the mixture 
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model. Specifically, the probability that on trial i the subject responds with a guess at random is 

given by 1 − 𝛾𝑖. The probability that they do not guess at random but choose an angle that is 

distributed as a noisy function of the true angle is given by 𝛾𝑖. Our general aim in modelling is to 

determine how 𝜅𝑖 and 𝛾𝑖  vary as a function of the mask duration and the noise level. 

 

For the analysis of Experiment 1, we analyse how 𝜅𝑖 and 𝛾𝑖  vary as an ordinal regression 

function of the mask duration and the noise level. To do so, we code the noise level on trial i using 

the ordinal variable 𝑥1𝑖
 that indicates the rank of the noise level, and we code the mask duration 

level on trial i by 𝑥2𝑖
 that indicates the mask duration. Specifically, we have 𝑥1𝑖

∈ {0, 1 ,2, 3} that 

indicates the rank of the noise level, from lowest to highest percentages, i.e. 0; 25; 50; 75. Likewise, 

we have 𝑥2𝑖
∈ {0, 1 ,2, 3} that indicates the mask duration, from shortest duration to longest, i.e., 0; 

80; 160; 320. We then model the log odds of 𝛾𝑖  and the log of 𝜅𝑖 as the following linear functions of 

the ordinal variables 𝑥1 and 𝑥2. 

 

log (
𝛾𝑖

1 − 𝛾𝑖
) = 𝑏0  ∑ 𝑏𝑘

1

𝑥1𝑖

𝑘=0

+ ∑ 𝑏𝑘
2

𝑥2𝑖

𝑘=0

 

log(𝜅𝑖) = 𝑎0  ∑ 𝑎𝑘
1

𝑥1𝑖

𝑘=0

+ ∑ 𝑎𝑘
2

𝑥2𝑖

𝑘=0

 

 

All 𝑏𝑘
1, 𝑏𝑘

2, 𝑎𝑘
1 , 𝑎𝑘

2  for 𝑘 ∈ {1 ,2, 3} have Normal priors, i.e. N(0; 100:0), i.e. a variance of 

100.0. The coefficients 𝑏0
1, 𝑏0

2, 𝑎0
1, 𝑎0

2 are set to 0.0. As such, the effect when the noise and mask 

duration are both 0.0 is captured by the value of 𝑏0 and 𝑎0. The coefficients 𝑏1
1 𝑏2

1, 𝑏3
1 and 𝑎1

1, 𝑎2
1 , 𝑎3

1 

provide the coefficients for the ordinal regression that correspond to the three non-zero levels of 

the noise predictor. The coefficients 𝑏1
2 𝑏2

2, 𝑏3
2 and 𝑎1

2, 𝑎2
2 , 𝑎3

2 provide the coefficients for the ordinal 

regression that correspond to the three non-zero levels of the mask duration predictor. From these 



Perceptual errors in OSM 
 

18 
 

coefficients, estimates of the contribution of guessing and the variability of the target representation 

can be estimated for the white noise mask conditions and the trailing mask conditions. 

Table 1 shows the estimated coefficients from the ordinal regression model. For the effects 

of the noise and mask on 𝛾 we see that 𝑏1
1 is near to zero and has 0.95 HPDs (highest posterior 

density intervals) either side of 0, that is to say there is no reliable effect on guessing as noise 

increases to 25%. However, both 𝑏2
1 and 𝑏3

1  are negative and have 0.95 HPDs that are either all 

negative (𝑏2
1) or close to all negative (𝑏3

1) indicating that as noise increases to 50% and then again to 

75% guessing increases. For the mask duration predictor 𝑏1
2 has a negative mean and all zero 0.95 

HPDs indicating that moving from a 0 ms trailing mask to an 80 ms trailing mask results in an 

increase in guessing. However, 𝑏2
2 and 𝑏3

2  have close to zero and HPDs cantered around zero, 

indicating that increasing mask duration beyond 80 ms has no effect on guessing, In other words it 

looks like there is a categorical effect on guessing for masks that trail the target. 

For the effects of the noise and mask on 𝜅 the results are less clear. For increases in white 

noise in the case of 𝑎1
1 the mean is negative, as is the entire HPD indicating a decrease in precision as 

noise increases from 0% to 25%. However, for 𝑎2
1 the mean is close to zero with HPDs centred 

around zero, indicating no real change in precision from 25-50% noise. For 𝑎3
1 the mean is roughly 

the same size as 𝑎1
1 but its .95 HPD is very different, with a large range which crosses zero. Looking 

further the .50 HPD, not shown in the table, is -.25; -.03, providing some indication that the increase 

in noise from 50% to 75% may have led to lower precision but the large uncertainty for this final 

parameter means that it is unclear whether this was the case.  

Thus the addition of white noise appeared to initially decrease precision, with limited 

evidence for further decreases in precision. In comparison, for increases in mask duration the 𝑎1
2, 𝑎2

2 

and 𝑎3
2 means are negative but their HPDs are not all negative, indicating limited evidence for a 

decrease in precision as mask duration increased. Overall then, from these coefficients we can 

roughly say that there is a decrease in precision with increasing white noise whereas increasing mask 

duration has no clear effect on precision.   
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Table 1. Results from the ordinal regression-model based analysis of Experiment 1. 

variable 

Posterior 

mean 95% HPD 

𝑏0 .21 .04 .39 

𝑏1
1 .14 -.12 .41 

𝑏2
1 -.73 -.99 -.45 

𝑏3
1 -1.21 -1.97 .09 

𝑏1
2 -.46 -.71 -.21 

𝑏2
2 -.02 -.28 .25 

𝑏3
2 -.06 -.34 .25 

𝑎0 2.08 1.88 2.31 

𝑎1
1, -0.41 -0.72 -0.1 

𝑎2
1 -0.03 -0.35 0.27 

𝑎3
1 -0.5 -2.09 0.63 

𝑎1
2 -0.15 -0.46 0.15 

𝑎2
2 -0.06 -0.41 0.3 

𝑎3
2 -0.08 -0.48 0.31 

 

 

 

Figure 3 shows the probability of random guessing (Figure 3a) and the predicted precision 

(Figure 3b) as a function of noise or mask level based on the regression model analysis of Experiment 

1 (error bars indicate the 2.5% and 97.5% percentiles of the posterior predictive intervals). The 

shape of each line matches the description above that was derived from the coefficients, but it is 

instructive to see the predictions. A comparison of Figures 3 with Figure 2 shows that the estimates 

of guessing follow a very similar trend to the mean probability of guessing. This perhaps reflects the 
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fact that performance in the task was relatively poor, and thus a lot of guessing was evident. 

Estimates of precision appeared to show a slight linear decrease as the mask began to trail the 

target. However, the posterior predictive intervals show a large overlap between all mask duration 

conditions. This indicates that there was little evidence of differences between these conditions.  In 

contrast there was a much clearer trend for decreasing precision as noise density increased, 

although it is unclear whether increasing noise over 25% decreased precision given the large 

posterior predictive interval for the 75% condition. 

Overall then, Experiment 1 appears to show that increasing noise density and mask duration 

have somewhat differing effects on precision and the rate of guessing, at least with the ranges that 

we measured them. Increasing mask duration led to a categorical increase in guessing responses, 

with little evidence for a decline in precision. In contrast for the simultaneous noise mask increasing 

noise density increased both guessing behaviour and decreased precision.   

On the face of it, these results support the notion that an OSM mask that trails the target 

substitutes the percept, rendering it invisible and leading to guessing. Moreover, the fact that 

increasing simultaneous noise did not show this pattern appears to indicate that a trailing mask does 

something qualitatively different to simply adding noise into the system. However, our finding that a 

trailing mask does not increase variability is somewhat at odds with Harrison et al (2015) who found 

that it did, at least initially with variance increasing with a 150ms mask but not with further increases 

in mask duration.  

Why did we fail to find this effect on variability? There were some differences in methods 

between the current study and that of Harrison et al (2015). For instance, in the current study the 

target location was indicated by a radial cue, in addition to the cue provided by the mask itself, there 

are also some differences in terms of the size and eccentricity of the presented stimuli. However, it 

is difficult to understand how any of these seemingly minor differences in methods could alter the 

effect that the OSM mask produced in the way seen.  
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Another possibility has to do with the modelling analysis as we used a different modelling 

procedure. In Harrison et al. the analysis was done by fitting a mixture model to the data and 

estimating mixture model parameters for each individual by minimising the fit of the predicted 

model to each individual’s data.  

In our study the method we used to model the data differed in three main respects. First the 

model was hierarchical-multilevel in that it fits individual and group level data simultaneously 

(Gelman 2015; Gelman & Hill, 2007). As noted previously, our approach enabled us to generate 

parameters for the group as a whole whilst still modelling individual level data. Second, we inferred 

the parameters using Bayesian inference rather than maximum likelihood estimation. One benefit of 

doing this is that we can calculate HPD intervals around the parameter estimates that reflect the 

uncertainty of these estimates enabling us to speak with more confidence about the effects of mask 

duration and noise on the guessing and precision parameters. Third, although we used the standard 

mixture model the relative weights of these parameters were regression functions of the mask 

duration and the noise level which were treated as ordinal variables. In other words, we assume a 

generalised linear model relating the guessing and precision parameters across mask duration levels 

and noise levels (note that the probability of guessing versus not guessing was estimated by logistic 

regression as the guessing rate is constrained to be between 0 and 1 whereas the log of the 

precision was estimated by linear regression). 

It is possible that modelling the data in a very different way to Harrison et al (2015) yielded 

different answers; however, this is not a sufficiently useful explanation. Our modelling approach was 

preferable in this instance because we wanted confidence estimates for parameters, and, because 

assuming linear relationships between parameters as functions of mask duration and noise level 

provides a reasonable degree of constraint to the modelling. 

An arguable issue with Experiment 1 was that increasing mask duration beyond 80 ms had 

limited additional effect on overall error (it is not clear from the presentation of results in Harrison 

et al, 2015, if this was the case for their data). It is possible that the failure to find an effect of mask 
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duration on precision might well have been due to this flattening of masking beyond the initial 

trailing condition. Another possible issue was the rather high rate of guessing in our data in all 

conditions. Participants in the experiment seemed to be rather poor at the task, even on unmasked 

trials. This suggests that participants may not have being taking sufficient time to adjust the stimulus 

to provide a true reproduction of their representation, but rather used the method of adjustment to 

make a rough indication of their representation.  We therefore conducted a second study.  

This second study had two main purposes. Firstly, given the difference between our findings 

and those of Harrison et al, we wished to determine if our findings, particularly regarding the failure 

to find any evidence of a loss of precision after OSM, would replicate. The new Experiment also used 

a slightly different paradigm. In Experiment 1 the manipulation of noise density of the simultaneous 

noise mask and the duration of the OSM mask were done independently. In Experiment 2 the 

density of the simultaneous noise mask and the duration of the OSM mask were varied orthogonally. 

This meant that, as well as having a common baseline condition, there were trials in which the target 

was masked both by simultaneous noise and by a trailing mask. The rationale of this was thus. 

According to additive factors logic (Sternberg, 1969) two manipulations which influence different 

serial processes will be additive in their effects, two manipulations which influence a common 

processing stage will have multiplicative effects4.  Thus, if the OSM mask has its effect by increasing 

internal noise then the mask duration manipulation should produce an interaction with the noise 

density manipulation. If, however OSM does something different to increasing internal noise, then 

mask duration should have an additive effect on performance with respect to mask duration. 

  

                                                           
4 Sternberg’s proposal was originally expressed in terms of effect on response times. In masking accuracy 
measures alone are typically used. However additive factors logic has been applied to accuracy measures (e.g. 
Ghorashi, Spalek, Enns & Di Lollo, 2009; Ghorashi, Enns, Klein & Di Lollo, 2010). See Schweickert (1985) for a 
detailed discussion.  
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A B   

C D   

Figure 3. A) and B) show the probability of random guessing. B) and C) the predicted precision as a 

function of noise (0%, 25%, 50%, 75%) or mask duration (0 ms, 80 ms, 160 ms, 320 ms) based on the 

regression model analysis of Experiment 1. Error bars indicate the 2.5% and 97.5% percentiles of the 

posterior predictive intervals. 
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Experiment 2 

 

Method 

Participants. There were 12 participants, comprising undergraduate Psychology students 

recruited from Oxford Brookes University and one of the authors. All had normal or corrected-to-

normal vision. Participants were either given course credit or £5 for participation. 

Design. The amount of simultaneous white noise (0%, 25%, 50%) and mask duration (0ms, 

80ms, 320ms) were manipulated orthogonally. Four dots were always presented when the target 

onset. When there was white noise the area within the four-dot mask was filled with the 

appropriate amount of noise. The white noise had the same onset and offset as the target. The four-

dot mask either offset with the target (0ms) or lingered onscreen for 80ms or 320ms.  

Stimuli and Procedure.  The stimuli and procedure were the same as described for 

Experiment 1. Stimuli were presented on a 19” flat screen Sony Trinitron CRT. 

 

 

Results 

Mean error for each condition is presented in Figure 4. Several trends stand out. First, 

increasing mask duration seemed to have a clear effect, increasing error linearly when noise was 0% 

and 25% and nonlinearly when mask noise was 50%. There also seemed to be a consistent effect of 

mask noise, with increased error as mask noise increased. A 3x3 repeated measures ANOVA on error 

size with noise (0%, 25%, 50%) and mask duration (0ms, 80ms, 320ms) as factors showed a 

significant effect of noise, F(2, 22) = 49.77, p <.001, 𝜂𝑝
2 =.82, a significant effect of mask duration, F(2, 

22) = 20.36, p <.001, 𝜂𝑝
2 =.65 and a significant interaction between noise and mask duration F(4, 44) 

= 9.60, p <.001, 𝜂𝑝
2 =.47.  
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To determine whether there were linear increases in error with increasing mask 

duration/noise an ANOVA was conducted at each level of noise with mask duration as a factor and at 

each level of mask duration with noise as a factor (p values were Bonferroni corrected for multiple 

comparisons). For each level of noise there was a significant effect of mask duration (0%, F(2, 22) = 

7.32, p =.024, 𝜂𝑝
2 =.40; 25%, F(2, 22) = 11.66, p =.006, 𝜂𝑝

2 =.51, 50% F(2, 22) = 18.28, p <.03, 𝜂𝑝
2 =.62). 

Crucially there was evidence for a linear effect only when noise was 0% (p =.018) and 25% (p =.012).  

At a noise level of 50% there was evidence for both a linear effect (p =.018) and a quadratic 

effect (p < .03). At each mask duration there was a significant effect or marginally significant effect 

of noise (0 ms, F(2, 22) = 7.84, p =.066, 𝜂𝑝
2 =.41; 80 ms, F(2, 22) = 54.04, p =.006, 𝜂𝑝

2 =.83, 320 ms F(2, 

22) = 25.05, p <.03, 𝜂𝑝
2 =.70). Importantly, there was evidence for a linear effect of noise when mask 

duration was 0 ms (p =.066), 80 ms (p <.03) and 320 ms ( p < .03).  The significant interaction 

between noise and mask duration therefore appeared to be due to the effect of mask duration being 

linear except when noise was 50% whereby error increased markedly as mask duration increased 

from 0 ms to 80 ms and then lessened slightly as mask duration increased from 80 ms to 320 ms.   

Overall then, analysis of the errors indicates several important features. Firstly, unlike 

Experiment 1 responses were much more accurate and there was a clear effect of mask duration 

evident at each level of noise. This may be a consequence of differences in the experiment itself. For 

instance, it might arguably be because of the exclusion of the largest noise condition (75% noise 

density). Importantly, the fact that the addition of simultaneous noise increased error at all levels of 

mask duration seems to suggest that mask duration and noise have at least partially independent 

effects on precision. At the same time, the evidence of an interaction indicates that mask duration 

has a greater impact the more a target stimulus is degraded by the presentation of simultaneous 

noise.   

Thus, the error data seems to indicate that simultaneous noise has both an additive and a 

multiplicative effect on OSM. The multiplicative nature seems to suggest that in part OSM degrades 
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perception by adding further noise to the noise created by the simultaneous mask.  We now turn to 

the modelling to see whether increasing noise and mask duration leads to differing effects on 

guessing and precision. 

 

 

 

Figure 4. Mean error (in radians) as a function of increasing white noise (0%, 25%, 50%, 75%) and 

increasing duration of the four-dot mask. Error bars indicate +/- 1 standard error.  

 

 

Modelling 

The same modelling as described in Experiment 1 was completed, with the only difference 

being that the modelling was based on a different data set. Here, we have 𝑥1𝑖
∈ {1 ,2, 3} that 

indicates the rank of the noise level, from lowest to highest percentages, i.e. 0%, 25% and 50%, and 

𝑥2𝑖
∈ {1 ,2, 3} that indicates the mask duration, from shortest duration to longest, i.e., 0 ms, 80 ms 

and 320 ms. We then model the log odds of  𝛾𝑖  and the log of 𝜅𝑖 as the following linear functions of 

the ordinal variables 𝑥1 and 𝑥2. 
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log (
𝛾𝑖

1 − 𝛾𝑖
) =  ∑ 𝑏𝑘

1

𝑥1𝑖

𝑘=1

+ ∑ 𝑏𝑘
2

𝑥2𝑖

𝑘=1

 

log(𝜅𝑖) =  ∑ 𝑎𝑘
1

𝑥1𝑖

𝑘=1

+ ∑ 𝑎𝑘
2

𝑥2𝑖

𝑘=1

 

 

All 𝑏𝑘
1, 𝑏𝑘

2, 𝑎𝑘
1 , 𝑎𝑘

2  have Normal priors, i.e. N(0, 100.0), i.e. a variance of 100.0. The 

coefficients 𝑏1
1, 𝑏2

1, 𝑏3
1 and  𝑎1

1, 𝑎2
1, 𝑎3

1 provide the coefficients for the ordinal regression that 

correspond to the three levels of the noise predictor. The coefficients 𝑏1
2, 𝑏2

2, 𝑏3
2 and  𝑎1

2, 𝑎2
2, 𝑎3

2 

provide the coefficients for the ordinal regression that correspond to the three levels of the mask 

predictor. The values of these coefficients are shown in Table 2. We see a very similar pattern of the 

effect of the noise and mask on 𝛾 (the probability of guessing is 1- 𝛾). For noise, 𝑏1
1 refers to the 

coefficient for zero noise. As noise increases there is an increasing probability of guessing i.e., as 

shown by reliably negative values of 𝑏2
1 and 𝑏3

1.  In contrast, for mask duration 𝑏1
2 is the coefficient of 

zero mask duration. As mask duration increases there seems to be a categorical effect on guessing 

with a reliably negative value of 𝑏2
2 and a zero value of 𝑏3

2. This appears to replicate the findings of 

Experiment 1 and shows that the different types of masking have differing effects on 𝛾  

 

The effect of noise and mask on 𝜅 appears to differ in comparison to Experiment 1 with 

evidence for a decrease in precision as noise increases and as mask duration increases (Figure 5c and 

5d). Figure 6 shows the probability of random guessing (Figure 6a) and the predicted precision 

(Figure 6b) as a function of noise or mask level based on the regression model analysis of Experiment 

2 (error bars indicate the 2.5% and 97.5% percentiles of the posterior predictive intervals). This 

figure makes very clear the effects of mask duration and noise. There is a categorical effect of mask 

duration on guessing rate, which is not observed for increases in noise. In comparison, increasing 

trailing mask duration and noise leads to a steady decline in precision, with the decline in precision 

being of a similar amount across the ranges of mask duration and noise. 
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Thus, although responses were much more accurate in Experiment 2, the main trends in the 

data were broadly replicated and the main modelling results also replicated. The only key difference 

was that the precision data now showed an effect of trailing mask duration, with increasing mask 

duration leading to reduced precision. It is possible that the high amount of error in Experiment 1 

masked such an effect. As in Experiment 1, the central finding was that increasing noise and 

increasing mask duration appeared to do two quite different things within the parameters tested. 

Increasing mask duration such that the mask trailed the target introduced a stable amount of 

guessing, whereas increasing noise led to a linear increase in the amount of guessing.  

Theoretically, this appears to support the OSTM model rather than the AGM model. If the 

effect of mask duration was simply to add noise to the target representation, then the mask 

duration and noise manipulation should have produced similar consequences in terms of the 

amount of guessing. It appears however that, within the parameters used here, using an OSM mask 

results in a stable amount of guessing. We return to why this might be the case in the General 

Discussion. At the same time the trailing mask was found to have some effect on target precision. 

Interestingly this effect on precision seemed to increase linearly as mask duration increased, 

suggesting that mask duration effects are not caused by an increasing amount of substitution but by 

adding noise to the target representation (consistent with the AGM). Of course, it remains a 

possibility that, for mask durations between 0ms and 80 ms, guessing increases, and that it is simply 

maximal at 80ms. Nevertheless, the important finding is that increasing the length of the trailing 

mask beyond 80ms did worsen performance, but that this decrement in performance was not due to 

guessing, but a decline in precision.  

 

  



Perceptual errors in OSM 
 

29 
 

Table 2. Results from the ordinal regression-model based analysis of Experiment 2. 

Variable 

Posterior 

mean 95% HPD 

𝑏1
1 1.33 -12.63 14.12 

𝑏2
1 -.63 -.92 -.34 

𝑏3
1 -.75 -1.02 -.5 

𝑏1
2 1.41 -11.3 15.43 

𝑏2
2 -.88 -1.17 -.61 

𝑏3
2 .06 -.21 .32 

𝑎1
1 1.31 -11.62 15.82 

𝑎2
1 -.05 -.2 .09 

𝑎3
1 -.32 -.49 -.15 

𝑎1
2 .85 -13.55 13.94 

𝑎2
2 -.17 -.34 -.02 

𝑎3
2 -.22 -.39 -.03 
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A B   

C D   

Figure 5. A) and B) show the probability of random guessing and C) and D) show the predicted 

precision as a function of noise (0%, 25%, 50%) or mask duration (0ms, 80ms, 320ms) based on the 

regression model analysis of Experiment 2. Error bars indicate the 2.5% and 97.5% percentiles of the 

posterior predictive intervals. 
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A   

B   

Figure 6. A) the probability of random guessing as a function of noise (0%, 25%, 50%) and mask 

duration (0ms, 80ms, 320ms); B) the predicted precision as a function of noise (0%, 25%, 50%) and 

mask duration (0ms, 80ms, 320ms). Values are based on the described regression model analysis of 

Experiment 2. Error bars indicate the 2.5% and 97.5% percentiles of the posterior predictive intervals  
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General Discussion 

In two experiments we compared the effect of OSM -as indexed by trailing mask duration- 

against the effect of a simultaneous noise mask on the perceptibility of a target. We did this to 

determine the extent to which OSM can be conceived as an effect associated with increased in 

noise.  

The first experiment found that both OSM and simultaneous noise, when imposed on a 

target, resulted in increased guessing responses in reporting about the target’s critical feature.  The 

simultaneous noise manipulation also had a further effect: on a proportion of trials in which 

observers were not guessing the precision of the responses tended to be reduced. This effect was 

not evident for the OSM manipulation at either of the two levels of mask duration.  Thus, 

Experiment 1 indicated that the main effect of OSM was to reduce the probability that the target -or 

at least the target’s critical feature5- was perceived at all. On trials where the critical feature was 

perceived, observers were as precise at reporting its position as they were in the absence of a 

trailing mask (though there did appear to be a slight declining trend in precision). Therefore 

Experiment 1 failed to produce evidence that OSM had any effect in terms of degrading the target 

percept. Instead, it suggested that OSM was essentially an all-or-none process in which the target 

feature was either as fully available for report as unmasked conditions or was obliterated from 

perception resulting in the observer producing a randomly set response.  

Experiment 2 gave a further test of the effect of OSM on masking. Experiment 1 had shown 

that the simultaneous noise mask did have an effect on precision. Experiment 2 was motivated to 

further compare the perceptual effects of OSM with those of added noise by determining if their 

combined effects would interact or only show additive effects. This question was specially motivated 

by the question of whether OSM has its effect, in part, by generating noise within the visual system, 
                                                           
5 Note that this result says nothing about whether they could still perceive other aspects of the target. For 
instance, even where observers were guessing about the target’s critical gap position the observers may still 
have been fully aware of the presence of a target object at that location. 
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something which is predicted by the AGM model of OSM (Põder, 2013). To explore this, the OSM 

(trailing mask) and simultaneous noise conditions were factorially combined. It was found that the 

effects of OSM and noise were interactive in nature. That is, the addition of the noise increased the 

susceptibly of the target to the effects of the trailing mask. The regression model was able to unpack 

this interaction in terms of the effect on different types of response errors. Broadly, the results were 

similar to Experiment 1, in that increasing mask duration led to a categorical effect on guessing but 

increasing noise led to a linear increase in guessing. A different pattern was found for precision 

however. Experiment 2 presented clear evidence for reductions in precision for both increasing 

noise and increasing mask duration (recall that in Experiment 1 there was a trend for decreasing 

precision as mask duration increased, but this was not statistically supported).  

Thus, in Experiment 2, OSM had the effect of reducing the likelihood that the critical feature 

could be reported; where it could be reported it tended to be done so with less precision than under 

masked conditions, an effect most pronounced when the target was also subject to simultaneous 

noise. The discrepancy between Experiment 1 and 2 in terms of the effect of the trailing mask on 

precision estimates is likely due to the overall difference in accuracy between the tasks, with overall 

performance being rather better in Experiment 2.6  

Our main aim was to compare OSM effects with those of simultaneous noise, and by doing 

so understand something about if and how OSM effects might be related to processes associated 

with noise within the visual system. Both OSM and noise mask parameters resulted in a monotonic 

increase in guessing responses. However, adding additional white noise increases guessing in a 

broadly linear manner –guessing rates increased in correspondence with the increase in noise level. 

The mask duration variable did not behave like this in our given conditions: an increase in guessing 

                                                           
6 The presented subtended visual angles were actually slightly smaller in Experiment 2 that Experiment 1. This 
means that -if at all- performance should have been slightly worse, not better, in Experiment 2. More likely, 
the better performance is some consequence of the different variety and value range of conditions in the 
study which has, in some way, affected the adopted response strategy  
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was seen between 0 and 50ms but there were no further increase with further extension to the 

trailing mask duration beyond this. Thus, mask duration as a variable does not operate in the same 

way as that of simultaneous noise, at least within the parameters tested.  

 

Substitution verses attentional gating 

What can explain the rather categorical nature of the trailing mask function with respect to 

guessing? The object substitution mechanism initially proposed in the OSTM and implemented its 

associated mathematical model (CMOS) are time-dependent ones (Di Lollo et al. 2000): that as mask 

duration increases the percept of the target becomes progressively weaker and so the ongoing 

percept of the mask dominates over a time course of a few hundred milliseconds. Indeed, consistent 

with this, many studies using standard forced-choice discrimination measures of masking have 

tended to report that the mask has effects at mask durations well beyond the 80 ms duration 

plateau we found (Di Lollo et al., 2000; Enns, 2002; Tata, 2002; Tata & Giaschi, 2004)7, The 

adjustment task, in giving a more sensitive measure of errors, may also be giving a better picture of 

the nature of the actual underlying OSM masking function, one in which masking processes are 

confined to the initial tens of milliseconds of processing, rather than hundreds of milliseconds, as 

previously assumed. 

This rather categorical nature of the masking function is arguably more supportive of an 

object substitution account than a noise one. It does not seem that increasing the mask duration 

results in increasing noise, and therefore a steady decline in perceptibility. Rather, it seems that 

when the mask reaches a duration exceeding that of the original target itself, that the visual system 

                                                           
7 Some studies, using standard forced-choice discrimination paradigms, while also finding that masking tends 
to increase with increases in mask durations beyond 80ms, have sometimes also reported that very prolonged 
mask durations (e.g. >~640ms) can produce a small amount of OSM recovery, i.e. meaning that a U-shaped 
function is obtained with respect to mask duration (Goodhew, Visser, Lipp, & Dux, 2011; Goodhew, Dux, Lipp, 
& Visser, 2012).  
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has enough evidence for the mask to become the dominant representation in consciousness, 

meaning that the representation of the target features are overwritten. A potential mechanism that 

may underpin this overwriting is if the competition between target and mask representations is 

spatial in nature. There is evidence that mask-target spatial competition (overlap) is one factor 

underpinning OSM (Kahan & Mathis, Guest, Gellatly & Pilling, 2011; Kahan & Enns, 2010).  It is 

feasible that such spatial competition is not especially dependent upon the temporal aspects of the 

mask, once the mask reaches a critical duration it disrupts the representation of the target enough 

so that the participant instigates a guess response.  

Though the main effect of OSM was on guessing responses there was also some evidence of 

a linear decline in precision with mask duration.  The trend was evident in both our experiments but 

was in most evidence in Experiment 2. Here there was a decline in precision which was broadly 

linear in nature associated with mask duration. Such an effect is one consistent with the AGM 

account (Põder, 2013), which argues that OSM occurs as a consequence of increased internal noise 

in the visual system generated by the trailing four-dot mask. Furthermore, the fact that 

simultaneous noise and OSM interact with each other also indicates that the two forms of masking 

share a common underlying process. One can argue that OSM and simultaneous noise interact 

because each operates as a separate source of noise (one internal one external) which each has the 

same perceptual consequences in terms of degrading the visibility of the critical feature  

It is possible to construct an explanation of this mask duration by simultaneous noise 

interaction couched in terms of the OSTM. The OSTM specifies that OSM is affected by any 

manipulation that increases the number of required iterations for a stable percept to emerge. Thus 

in this case, the addition of external noise means an increased number of iterations are required for 

a percept to form, resulting in a greater susceptibility of the target to the trailing mask. However, the 

OSTM has greater difficulty with accounting for the finding that OSM reduces the precision of non-

guess responses. If the trailing mask, on trials where it has an effect, obliterates the target percept 
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entirely then no loss of precision should not occur, the only increase should have been found in 

guessing responses.  

While the standard OSTM has some difficulty accounting for this aspect of the results, the 

revised object updating account (Llearas & Moore, 2003) has more success. As we earlier described, 

the updating account accepts some of the basic tenants of the OSTM, particularly in terms of the 

architecture of the visual system. However, the updating account argues that the percept of a 

masked object is not substituted (i.e. obliterated) from consciousness, but rather has its features 

overwritten rendering them no longer available for report. The updating account is currently 

underspecified in terms of describing what the consequences of this overwriting process are. The 

implicit assumption seems to be that the process leads to a complete loss of the original feature 

values (Llearas & Moore, 2003; Moore & Llearas, 2005). However, it is possible to argue within this 

theoretical framework that the overwriting process is not total and leaves a residual trace of the 

target representation after updating. Such an updating theory with these given additional 

assumptions could also account for our data.  

 

OSM and conscious perception  

The debate regarding OSM can be seen as part of a broader set of questions about conscious 

perception. In particular, theoretical debates in consciousness research have focused on whether 

conscious perception should be thought of as dichotomous or graded in nature (see Bachmann, 

2013; Dehaene, Changeux, Naccache, Sackur, & Sergent, 2006; Miller & Schwarz, 2014; Overgaard, 

Rote, Mouridsen, & Ramsoy, 2006; Windey & Cleeremans, 2014).  

The Global Neuronal Workspace Theory (GNWT) of Dehaene and colleagues (Dehaene et al., 

2006; Dehaene & Changeux, 2011) is a particularly influential neurocognitive theory of 

consciousness (Windey & Cleeremans, 2014). On this account consciousness is viewed as strictly 
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dichotomous: either something is consciously perceived or is not. Consciousness of a stimulus only 

occurs if an initial feedforward sweep of information through the brain meets a threshold required 

to pass through to a second processing stage, at this point top-down information then amplifies the 

signal. On trials in which the stimulus is consciously perceived these bottom-up and top-down inputs 

reinforce each other until a broad network of different brain areas are synchronously activated in a 

process known as ‘global ignition’. It is at this point that the stimulus has entered the ‘global 

workspace’ and the observer experiences conscious awareness. The process of global ignition is 

argued to be instantaneous, meaning that the change from unconscious to conscious is always 

sudden, rather than gradual.  

The architecture of the GNWT is different to the OSTM; despite this, there are clear parallels 

in terms of the assumption of the interplay between bottom-up and top-down activity in generating 

conscious precepts, in the view that consciousness emerges only after a period of preconscious 

stimulus processing, and in viewing consciousness as a strictly capacity-limited process. On this last 

point the GNWT assumes only one item can enter the global workspace at any time (Dehaene et al., 

2006; in OSTM re-entrant activity is implicitly or explicitly assumed to be restricted to a single display 

item (Di Lollo et al., 2000; Goodhew et al., 2011). Following from this, both theories essentially view 

the failure to consciously perceive a masked target as a problem of conscious access.  The masked 

target fails to reach consciousness because its percept is beaten in competition with the percept 

associated with the longer duration mask.   

Though the OSTM and GNWT make broadly similar claims about why masking affects 

conscious perception of a target, the GNWT has been elaborated more in terms of understanding 

the unconscious processing of masked stimuli, rather than the mechanisms of masking itself 

(Dehaene & Naccach, 2001). Importantly, both models conceive of masking as a discrete all-or-none 

process. In the OSTM the brief target reaches a threshold of iterative stability in the re-entrant cycle 

resulting in it forming part of the conscious percept; if it fails to reach this criterion then it is the 
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mask alone which is what emerges in consciousness. The GNWT argues that masking affects the 

process whereby the neural representation of a target is mobilised into a self-sustaining state within 

the global workspace. A brief target is vulnerable to masking because this process of mobilisation 

into the workspace takes significantly longer than the initial process of generating a target signal at 

the initial stage (Dehaene &Naccach, 2001).  

Our results show that OSM does often have the effect of abolishing conscious perception of 

the target in the manner the GNWT would predict. However, at the same time, our results suggest 

that masking is not entirely all-or-none in character. This is indicated by the decrease in precision as 

mask duration increases (seen particularly in Exp. 2). One interpretation is that there is sometimes 

partial awareness of the masked target, resulting in an increase in errors. This may be because that 

when masked, the target sometimes reaches consciousness only in a partial form (Overgaard et al., 

2006). It can also be argued that the effect on precision is associated with processing at an entirely 

pre-conscious stage. In other words, the conscious target percept is always discrete entity; however, 

the representation that is consciously accessed is sometimes incomplete or distorted due to the 

trailing mask. Such a process is essentially one which Põder’s model purports, that the target 

representation is degraded before it selected for conscious access. 

 

Conclusions 

There have been a range of potential theories about the underlying mechanisms of OSM. For 

some time, the pre-eminent theories suggested that the mask either substituted or led to an 

updating of the target representation. However, recently this idea was questioned and an 

alternative perspective put forward that the suggests that OSM arises when the mask is 

inadvertently selected because it is in close temporal proximity to the target, and that this degrades 

the target representation leading to reduced accuracy in target report. These theories create 
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contrasting predictions about whether OSM should lead to an increase in guessing or a decrease in 

the precision of the representations. In two experiments, we contrast the effects of a common onset 

mask with a white noise mask and show they have different effects. Nevertheless, we also show that 

OSM leads to both an increase in guessing, but also a loss in precision. This suggests that several 

underlying mechanisms contribute to the masking effect, one of which is  that of a substitution or 

updating of the target percept by the mask percept. Where this substitution does not occur, the 

mask has an additional effect of increasing the internal noise levels associated with the target 

stimulus leading to report of the target stimulus but with reduced precision compared to trials 

without a trailing mask.  
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