The development of smart-bandage technologies

Sharp, D., 2009. The development of smart-bandage technologies. PhD, Nottingham Trent University.


Download (4MB) | Preview


Healthcare associated infections of wound sites are a complex problem with substantial effects on patient morbidity and financial ramifications to healthcare bodies. The increasing interest in novel diagnostic strategies and preventing infections have led to an incursion of research into the topic. Whilst most emphasis has been placed on preventing wound infections, the bacterial flora is an ever present risk to the compromised host. In contrast with the majority of research developing antibacterial smart-dressings, the research detailed within describes the development of in-situ electrochemical sensor assemblies suitable for incorporation within traditional or ‘smart’ wound dressings. Sensor developments have led to prototype construction of a multitude of sensing substrates capable of quantitative analyses for the identification of infection. The key developments contained within highlight both generic and organism-specific sensors which can reliably monitor key chemical components of a wound exudate to allow sampling-free infection diagnostics.

Item Type: Thesis
Creators: Sharp, D.
Date: 2009
Rights: This work is the intellectual property of the author, and may also be owned by the research sponsor(s) and / or Nottingham Trent University. You may copy up to 5% of this work for private study, or personal, non-commercial research. Any re-use of the information contained within this document should be fully referenced, quoting the author, title, university, degree level and pagination. Queries or requests for any other use, or if a more substantial copy is required, should be directed in the first instance to the author.
Divisions: Schools > School of Science and Technology
Record created by: EPrints Services
Date Added: 09 Oct 2015 09:36
Last Modified: 09 Oct 2015 09:36

Actions (login required)

Edit View Edit View


Views per month over past year


Downloads per month over past year