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Abstract

This paper investigates how business cycle volatility affects internal and external
funding sources of banks. It argues that excessive credit growth, credit cycles, and
bank failures are phenomena related to distinct patterns of banks’ financing options
over the cycle. This perspective reconciles rational behavior with some implications
of Minsky’s financial instability hypothesis.
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1 Introduction

There is a close link between business cycles, bank credit, and banking crises. According

to Jordà at al. (2011), production growth, investment spending and credit growth over the

last 140 years were the smaller the more credit-intense the preceding boom had been. In

addition, financial crises were often accompanied by deep and lasting recessions.

A possible explanation follows the financial instability hypothesis of Minsky (1986),

according to which a period of prolonged prosperity may induce speculative euphoria and

excess borrowing which push the economy on the brink. This view became popular during

the recent world financial crisis and challenged the consensus macroeconomic models based

on rational behavior of agents (Davidson, 2008). In response, financial frictions became more

central in these models (Gertler and Kiyotaki, 2010). However, they still have difficulties in

explaining excessive credit growth or discontinuous phenomena such as bank failures.

We present a model that focuses on the role of real volatility as a potential cause for the

dynamics and stability of credit supply. The model reconciles rational behavior with some

implications of the financial instability hypothesis. We argue that bank stability and the

dynamics of credit are related to banks’ internal and external funding problems, for which



an important driver is the business cycle. In a downturn, internal funding sources dry up as

existing loans generate only small cash flows and may even cause a debt overhang. External

funding is hampered as the funding liquidity of new loans is low in a weak environment with

a risky outlook. Bank stability and credit growth then depend on the relative importance

of these effects. In a downturn with a gloomy outlook, banks cannot fully refinance credit

by borrowing against their future earnings. To prevent such liquidity shortages, banks may

fuel excessive credit growth in good times to improve internal funding in later bad times.

However, if internal funding in downturns is insensitive to previous credit expansion, banks

will instead gamble for resurrection implying a failure should the recovery hold off. Finally,

if loans become too toxic in a downturn, banks will fail outright.

2 Set up

Consider a bank that lives for three dates. At t = 0 and t = 1 it raises funds from depositors,

invests at in a risk-free asset with zero net return, and grants loans lt. At t = 1, the economy

either is in benign conditions (“good” state g, probability p1) or experiences a downturn

(“bad” state b, probability 1 − p1). In the good state, loans granted at t = 0 earn a high

return vg and loans granted at t = 1 yield either rh,g (with probability p2,g) or rl,g < rh,g

at t = 2.1 If the bad state occurs at t = 1, early loans yield only vb < vg and late loans

yield rh,b < rl,g if the economy recovers (with probability p2,b) and rl,b < 1 otherwise. We

assume p1vg > 1 and p2,srh,s > 1. Given constant means μ1 := p1vg + (1− p1) vb and

μ2,s := p2,srh,s + (1− p2,s) rl,s, loan earnings read

vg = μ1 + (1− p1)Δ1, rh,s = μ2,s + (1− p2,s)Δ2,s, (1)

vb = μ1 − p1Δ1, rl,s = μ2,s − p2,sΔ2,s. (2)

with mean preserving spreads Δ1 := vg−vb and Δ2,s := rh,s−rl,s to measure risks associated

with lending at t = 0 and t = 1 respectively.2

1Unless otherwise indicated all returns are per unit.
2The returns thus exhibit persistent and mean reverting shocks, which is common in macromodels (cf.

Aghion et al., 2010).
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Originating loans is costly for the bank. Costs c(lt) are non-pecuniary, increasing and

convex with c(0) = c′(0) = 0. This captures the idea that loans differ only in their complexity

and a bank adds the least complex loans first to its portfolio. Depositors inelastically provide

funds to the bank at a zero interest rate. In return, the bank promises at t− 1 to repay at t

the face value of deposits dt. If it fails to keep the promise, a bank run completely destroys

all values. All agents are risk neutral and have no time preference.

3 Analysis

The bank can choose between three modes mt of operation at t = 0 and t = 1. In the safe

mode S, deposits are always repaid at the next date. The corresponding expected profits

are φS0 (l0) = (μ1 − 1) l0 − c (l0) and φ
S
1,s (l1,s) = (μ2,s − 1) l1,s − c (l1,s), respectively. In the

risky mode R, deposits are repaid only if earnings are large and the expected profits are

only φR0 (l0) = (p1vg − 1) l0 − c (l0) and φ
R
1,s (l1,s) = (p2,srh,s − 1) l1,s − c (l1,s). In the failure

mode F , the bank declares bankruptcy. Note that first best loan volumes lfb0 and lfb1,s are

given by φS ′0

(
lfb0

)
= 0 and φS ′1,s

(
lfb1,s

)
= 0.

We proceed by backward induction. Let Ω1,s := vsl0 + a0 − d1 ≶ 0 be the cash flow at

t = 1 in state s = g, b and q2,s the probability of a bank run at t = 2. Unless the bank

operates in the failure mode as from t = 1, its optimization problem reads

max
l1,s,a1,s,d2,s∈R+

π1,s =E [max {rj,sl1,s + a1,s − d2,s, 0}]− c (l1,s) (3)

s. t. l1,s + a1,s = Ω1,s + (1− q2,s) d2,s, (4)

q2,s =

⎧⎪⎨
⎪⎩

0 if m1,s = S : d2,s ≤ rl,sl1,s + a1,s,

1− p2,s if m1,s = R : d2,s ∈ (rl,sl1,s + a1,s, rh,sl1,s + a1,s] ,
(5)

with j = h, l. The budget constraint (4) states that loans l1,s and assets a1,s are refinanced

internally by the cash flow Ω1,s and externally by fresh deposits of face value d2,s. According

to (5) a run occurs at t = 2 if the face value of deposits d2,s exceeds total earnings rj,sl1,s+a1,s.

Since all values are destroyed in a run, depositors invest (1− q2,s) d2,s at t = 1. If there is

no interior solution that yields a positive expected profit for the bank, it will fail at t = 1.
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This decision problem is best understood when the comparative advantages and disad-

vantages of the safe and the risky mode are spelled out. The advantage of the safe mode at

t = 1 is that the bank collects all earnings irrespective of the economy’s state. The disad-

vantage is that lending is subject to a financial restriction in the bad state. This restriction

results from the upper limit on the face value of deposits (d2,b ≤ rl,bl1,b + a1,b) which in

conjunction with (4) and (5) requires

Ω1,b + (rl,b − 1) l1,b ≥ 0. (6)

Since rl,b < 1, the bank cannot fully refinance loans at t = 1 externally in the bad state.

Their funding liquidity is negative. Lending is then feasible only if the bank commands

additional internal funds, i.e. Ω1,b > 0. As these funds are limited, the loan volume l1,b is

bounded above by lmax
1,b :=

Ω1,b

1−rl,b =
Ω1,b

p2,b(Δ2,b−˜Δ2,b)
with Δ̃2,b :=

μ2,b−1
p2,b

.3 The advantage of

the risky over the safe mode is that no upper limit on lending exists as depositors can be

promised up to rh,sl1,s+a1,s. Although the bank will keep this promise only with probability

p2,s, it suffices to refinance any new loan since p2,srh,s > 1. The disadvantage is that with

probability 1− p2,s a run destroys all values. Lending is thus less profitable.

Let π∗1,s denote the bank’s expected profits at t = 1 given the optimal loans size l∗1,s and

mode of operation m∗
1,s at this date in state s = g, b. As long as the bank does not fail at

t = 0, its decision problem reads

max
l0,a0,d1∈R+

π0 = p1π
∗
1,g + (1− p1) π

∗
1,b − c(l0) (7)

s. t. l0 + a0 = (1− q1) d1, (8)

q1 =

⎧⎪⎨
⎪⎩

0 if m0 = S : m∗
1,g �= F and m∗

1,b �= F
1− p1 if m0 = R : m∗

1,g �= F and m∗
1,b = F

, (9)

with q1 being the probability of a run at t = 1. A subgame-perfect strategy maximizes the

bank’s expected profits π0 taking into account its future decisions, the budget constraint

(8), and the probability (9) with which it fails to repay the face value of deposits at t = 1.

3Such an upper bound is not an issue in the good state, in which the funding liquidity of loans is positive
as rl,g > 1.
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For a bank that opts for the safe mode at t = 0, internal and external funds are abun-

dantly available if the economy turns out to be in benign conditions at t = 1 as both, the re-

alized returns vg on old loans and the minimum returns rl,g on new loans are greater than the

opportunity costs of funds. If the economy slows down, the financial position of the bank at

t = 1 crucially depends on how much it collects from the loans granted at t = 0 and how much

it owes to depositors. The budget constraint (8) implies Ω1,b = (vb − 1) l0 = p1(Δ̃1 −Δ1)l0

with Δ̃1 := μ1−1
p1

. Hence, the bank cannot proceed with the safe mode if Δ1 > Δ̃1 as it

then suffers from a debt overhang (Ω1,b < 0), which is the higher the more loans have been

granted at t = 0. If Δ1 < Δ̃1, internal funds ease the financial constraint in a downturn

(Ω1,b > 0). Moreover, funds available for new loans are the greater, the more loans were

granted at t = 0. This follows from rewriting the upper limit on loans lmax
1,b to

lmax
1,b =

p1(˜Δ1−Δ1)
p2,b(Δ2,b−˜Δ2,b)

l0 =: ψl0 (10)

where ψ measures how many loans could be additionally refinanced in a downturn if one

more unit was granted at t = 0; it is smaller for higher risks Δ1 or Δ2,b.

Against this background, the bank’s decision is ultimately a choice between five strategies

which can be put in a strict order. Strategy A is to always operate in the safe mode and

lend according to the first best. This strategy is available as long as the upper limit on

loans at t = 1 in a downturn is not binding, lmax
1,b ≥ lfb1,b, i.e. if risks are small or if lfb0 is large

relative to lfb1,b.

When the restriction lmax
1,b binds, the next best alternative is strategy B, which is to

maintain the safe mode and to ease this restriction by increasing loans at t = 0 above the

first best level in order to mitigate funding problems in a downturn at t = 1. The bank thus

deviates from the first best in a way that one may interpret as excessive credit growth at

t = 0 turning into a credit crunch at t = 1. Note that higher risks not only imply a tighter

financial constraint in a downturn by impairing internal funds and the funding liquidity of

new loans. They also imply a weaker impact of l0 on this constraint. Hence, the inefficiencies

associated with a deviation from the first best in both periods become more of a burden for

higher risks.
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Above a certain risk level, the bank thus pursues strategy C which is to always grant

loans according to the first best in good times and to switch to the risky mode in a downturn,

implying a bank run if the recovery from the downturn holds off. If risks associated with l0

are even larger, lending according to the first best at t = 0 would already be associated with

a substantial debt overhang in a downturn. Anticipating that the bank would find it optimal

to default on its debt in this situation, depositors are not willing to refinance so many loans

at t = 0. Accordingly, strategy D is to signal credibility to depositors by not raising too

much debt at t = 0, implying that loans are bounded above by some lmax
0 already at this

date. As for risks associated with l1,b, they do not come with such disincentives. Quite the

contrary, since a bank that already speculates on the upside can only benefit from a further

wedge between the returns in the recovery and the non-recovery state, a larger recovery risk

allows the bank to cover a higher debt overhang without suffering from a loss of confidence.

An observer could easily interpret this pattern as banks making little provisions for bad

times in the presence of significant risks throughout the cycle and responding to emerging

financial difficulties mainly by taking on a fragile capital structure.

Finally, for very large risks Δ1 attached to loans in the first period, strategy E is adopted

which is to pursue the risky mode already at t = 0. Lending at t = 0 will be suppressed

as loan earnings can only be collected when the economy does not slip into a downturn.

This case may be representative for poor and least developed economies that experience

substantial difficulties in growing out of their financial problems.

Formally, the bank’s optimal decisions m∗
0, l

∗
0 at t = 0 and m∗

1,b, l
∗
1,b in the downturn at

t = 1 satisfy4

m∗
0 = S, l∗0 = lfb0 , m∗

1,b = S, l∗1,b = lfb1,b if Δ1 ≤ ΔA

m∗
0 = S, l∗0 = lS0 > lfb0 , m∗

1,b = S, l∗1,b = ψlS0 < lfb1,b if Δ1 ∈ (ΔA, ΔB]

m∗
0 = S, l∗0 = lfb0 , m∗

1,b = R, l∗1,b = lR1,b < lfb1,b if Δ1 ∈ (ΔB, ΔC ]

m∗
0 = S, l∗0 = lmax

0 < lfb0 , m∗
1,b = R, l∗1,b = lR1,b < lfb1,b if Δ1 ∈ (ΔC , ΔD]

m∗
0 = R, l∗0 = lR0 < lfb0 , m∗

1,b = F , l∗1,b = 0 if Δ1 > ΔD.

(11)

4In the good state at t = 1, the bank always chooses m∗
1,g = S and l∗1,g = lfb1,g.
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with

ΔA := Δ̃1 − p2,b(Δ2,b−˜Δ2,b)
p1

lfb1,b
lfb0
, ΔB : (1− p1)

[
φS1,b

(
ψlS0

)− φR1,b
(
lR1,b

)]
= φS0

(
lfb0

)− φS0
(
lS0
)
,

ΔC := Δ̃1 +
φR1,b(lR1,b)
p1lfb0

, ΔD : (1− p1)φ
R
1,b

(
lR1,b

)
= φR0

(
lR0

)− φS0

(
φR1,b(lR1,b)

p1(ΔD−˜Δ1)

)
,

lR0 : φR′0

(
lR0

)
= 0, lS0 : (1− p1)ψφ

S ′
1,b

(
ψlS0

)
+ φS ′0

(
lS0
)
= 0,

lR1,s : φ
R′
1,s

(
lR1,s

)
= 0, lmax

0 :=
φR1,b(lR1,b)
p1(Δ1−˜Δ1)

.

4 Concluding remarks

Our analysis abstracts from any repercussion from the banking sector to the business cycle.

Although there is little doubt on these effects, turning them off not only sharpens the focus

on the role of real volatility as a potential cause for the dynamics and stability of credit

supply. It also confirms conventional wisdom that macroeconomic policy has a role to

play for financial stability. In our model the outcome is constrained Pareto efficient. The

performance of banks is thus improved only if the real economy is stabilized, for which a

credible macro policy can make an important contribution.
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Appendix

We derive the optimal behavior of the bank in each period in three steps. First, we determine

its behavior and expected payoff in the safe mode. Then, we proceed analogously for the

risky mode. As a last step, we derive the actual behavior of the bank by comparing the

respective payoffs with the payoff of failure. We apply backward induction.

Second Period Optimum

Safe Mode

For m1,s = S, insertion of q2,s = 0 into (4) yields d2,s = l1,s + a1,s − Ω1,s. Insertion of this,

(1) and (2) into (3) and the restriction (5) on d2,s yields maxl1,s π1,s = φS1,s (l1,s) + Ω1,s s. t.

p2,s

(
Δ2,s − Δ̃2,s

)
l1,s ≤ Ω1,s with Δ̃2,s :=

μ2,s−1
p2,s

. Note that π′1,s = φS ′1,s (l1,s) = 0 for l1,s = lfb1,s,

π′′1,s < 0 and recall from the main text that rl,g > 1 > rl,b, which implies Δ2,g < Δ̃2,g and

Δ2,b > Δ̃2,b. Defining lmin
1,g := − Ω1,g

p2,g(˜Δ2,g−Δ2,g)
and lmax

1,b :=
Ω1,b

p2,b(Δ2,b−˜Δ2,b)
and denoting the

(partial) optimum by the superscript S∗, we obtain

lS∗1,g = max
{
lfb1,g, l

min
1,g

}
, πS∗1,g = φS1,g

(
max

{
lfb1,g, l

min
1,g

})
+ Ω1,g, (A.1)

lS∗1,b = min
{
lfb1,b, l

max
1,b

}
, πS∗1,b = φS1,b

(
min

{
lfb1,b, l

max
1,b

})
+ Ω1,b. (A.2)

Risky Mode

For m1,s = R, insertion of q2,s = 1− p2,s into (4) yields d2,s =
l1,s+a1,s−Ω1,s

p2,s
. Insertion of this

into (3) yields maxl1,s,a1,s π1,s = φR1,s (l1,s)− (1− p2,s) a1,s+Ω1,s. We ignore the restriction (5)

on d2,s for the moment but show below that it is met when the bank adopts the risky mode.

Since aR∗1,s = 0, we obtain maxl1,s π1,s = φR1,s (l1,s) + Ω1,s. Note that π′1,s = φR′1,s (l1,s) = 0 for

l1,s = lR1,s < lfb1,s where l
R
1,s : φ

R′
1,s

(
lR1,s

)
= 0 and π′′1,s < 0. We obtain

lR∗1,s = lR1,s, πR∗1,s = φR1,s
(
lR1,s

)
+ Ω1,s. (A.3)

Optimal Behavior

We now compare πS∗1,s and π
R∗
1,s with the expected payoff πF∗1,s = 0 of the failure mode.
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Good State If Ω1,g ≥ 0, then (A.1) and (A.3) imply πS∗1,g > πR∗1,g > πF∗1,g . We can conclude

m∗
1,g = S, l∗1,g = lfb1,g, π∗1,g = φS1,g

(
lfb1,g

)
+ Ω1,g if Ω1,g ≥ 0. (A.4)

If Ω1,g < 0, then (A.1) and (A.3) imply πS∗1,g < φS1,g
(
lfb1,g

)
and πR∗1,g < φS1,g

(
lfb1,g

)
. We can

conclude

π∗1,g < φS1,g
(
lfb1,g

)
if Ω1,g < 0. (A.5)

Bad State If Ω1,b ≥ 0, then (A.2) and (A.3) imply lmax
1,b ≥ 0, πS∗1,b ≥ 0 and πR∗1,b > 0. We

can conclude

m∗
1,b = S, l∗1,b = lfb1,b, π∗1,b = φS1,b

(
lfb1,b

)
+ Ω1,b if lmax

1,b ≥ lfb1,b,

m∗
1,b = S, l∗1,b = lmax

1,b , π∗1,b = φS1,b
(
lmax
1,b

)
+ Ω1,b if l

max
1,b ∈ [

0, lfb1,b
)
, φS1,b

(
lmax
1,b

) ≥ φR1,b
(
lR1,b

)
,

m∗
1,b = R, l∗1,b = lR1,b, π∗1,b = φR1,b

(
lR1,b

)
+ Ω1,b if lmax

1,b ∈ [
0, lfb1,b

)
, φS1,b

(
lmax
1,b

)
< φR1,b

(
lR1,b

)
.

(A.6)

If Ω1,b < 0, then (A.2) and (A.3) imply lmax
1,b < 0, πS∗1,b < 0 and πR∗1,b ≶ 0. We can conclude

m∗
1,b = R, l∗1,b = lR1,b, π

∗
1,b = φR1,b

(
lR1,b

)
+ Ω1,b if lmax

1,b < 0, Ω1,b ∈
[−φR1,b (lR1,b) , 0] ,

m∗
1,b = F , l∗1,b = 0, π∗1,b = 0 if lmax

1,b < 0, Ω1,b < −φR1,b
(
lR1,b

)
.

(A.7)

Since m∗
1,b = R only if lR1,b > lmax

1,b and Ω1,b ≥ −φR1,b
(
lR1,b

)
, the restriction (5) on d2,s will be

met.

First Period Optimum

Safe Mode

For m0 = S, insertion of q1 = 0 into (8) yields d1 = l0 + a0. Insertion of this, (1) and

(2) into Ω1,s := vsl0 + a0 − d1 for s = g, b yields Ω1,g = (μ1 + (1− p1)Δ1 − 1) l0 ≥ 0 and

Ω1,b = (μ1 − p1Δ1 − 1) l0 ≶ 0 so that (A.4) implies π∗1,g = φS1,g
(
lfb1,g

)
+ Ω1,g while (A.6) and

(A.7) imply π∗1,b = φ
m∗

1,b

1,b

(
l∗1,b

)
+Ω1,b form

∗
1,b �= F . Insertion of Ω1,g, Ω1,b, π

∗
1,g and π

∗
1,b into (7)

and the restriction (9) on m∗
1,s yields maxl0 π0 = p1φ

S
1,g

(
lfb1,g

)
+ (1− p1)φ

m∗
1,b

1,b

(
l∗1,b

)
+ φS0 (l0)
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s. t. l0 ≤ φR1,b(lR1,b)
p1(Δ1−˜Δ1)

=: lmax
0 if Δ1 > Δ̃1. This implies

π′0 = (1− p1)φ
m∗

1,b ′
1,b

(
l∗1,b

) ∂l∗1,b
∂l0

+ φS ′0 (l0) . (A.8)

Note that lmax
1,b as defined in (A.2) can be redefined to lmax

1,b := ψl0 with ψ :=
p1(˜Δ1−Δ1)

p2,b(Δ2,b−˜Δ2,b)

and consider the following two cases.

Case I Suppose that Δ1 ≤ Δ̃1 and thus ψ ≥ 0 and lmax
1,b ≥ 0.

• Ifm∗
1,b = R, then (A.6) implies

∂l∗1,b
∂l0

= 0. Insertion of this in (A.8) yields π′0 = φS ′0 (l0) =

0 for l0 = lfb0 and π′′0 < 0. Denoting the (partial) optimum by the superscript SR∗, we
obtain

lSR∗0 = lfb0 , πSR∗0 = p1φ
S
1,g

(
lfb1,g

)
+ (1− p1)φ

R
1,b

(
lR1,b

)
+ φS0

(
lfb0

)
if ψ ≥ 0.

• If m∗
1,b = S, then (A.6) implies

∂l∗1,b
∂l0

= ψ for ψl0 ∈
[
0, lfb1,b

)
and

∂l∗1,b
∂l0

= 0 for ψl0 ≥ lfb1,b.

Insertion of this in (A.8) yields π′0 = (1− p1)ψφ
S ′
1,b (ψl0) + φS ′0 (l0) for ψl0 ∈

[
0, lfb1,b

)
and π′0 = φS ′0 (l0) for ψl0 ≥ lfb1,b. This has two implications. (a) If ψlfb0 ≥ lfb1,b, then

π′0 = 0 for l0 = lfb0 and π′′0 < 0. (b) If ψlfb0 < lfb1,b, then π′0 = 0 for l0 = lS0 , where

lS0 : (1− p1)ψφ
S ′
1,b

(
ψlS0

)
+ φS ′0

(
lS0
)
= 0 and π′′0 < 0. Accordingly, we have

lSS∗0 = lfb0 , πSS∗0 = p1φ
S
1,g

(
lfb1,g

)
+ (1− p1)φ

S
1,b

(
lfb1,b

)
+ φS0

(
lfb0

)
if ψlfb0 ≥ lfb1,b,

lSS∗0 = lS0 , πSS∗0 = p1φ
S
1,g

(
lfb1,g

)
+ (1− p1)φ

S
1,b

(
ψlS0

)
+ φS0

(
lS0
)

if ψlfb0 ∈
[
0, lfb1,b

)
.

Note that if ψlfb0 ≥ lfb1,b and thus Δ1 ≤ Δ̃1 − p2,b(Δ2,b−˜Δ2,b)
p1

lfb1,b
lfb0

=: ΔA, then πSS∗0 > πSR∗0 .

Moreover, if ψlfb0 < lfb1,b and thus Δ1 > ΔA, then
∂ψ
∂Δ1

< 0 and
∂πSS∗

0

∂ψ
> 0 so that πSS∗0 is

decreasing in Δ1 while πSR∗0 is independent of Δ1. Therefore, we have πSS∗0 ≥ πSR∗0 only if

Δ1 ≤ ΔB where ΔB is implicitly defined by

(1− p1)
(
φS1,b

(
ψlS0

)− φR1,b
(
lR1,b

))
= φS0

(
lfb0

)− φS0
(
lS0
)
. (A.9)
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We can conclude

lS∗0 = lfb0 , πS∗0 = p1φ
S
1,g

(
lfb1,g

)
+ (1− p1)φ

S
1,b

(
lfb1,b

)
+ φS0

(
lfb0

)
if Δ1 ≤ ΔA,

lS∗0 = lS0 , πS∗0 = p1φ
S
1,g

(
lfb1,g

)
+ (1− p1)φ

S
1,b

(
ψlS0

)
+ φS0

(
lS0
)

if Δ1 ∈ (ΔA, ΔB] ,

lS∗0 = lfb0 , πS∗0 = p1φ
S
1,g

(
lfb1,g

)
+ (1− p1)φ

R
1,b

(
lR1,b

)
+ φS0

(
lfb0

)
if Δ1 ∈

(
ΔB, Δ̃1

]
.

(A.10)

Case II Suppose that Δ1 > Δ̃1 and thus lmax
1,b ≤ 0. Then, (A.7) implies

∂l∗1,b
∂l0

= 0. Insertion

of this in (A.8) yields π′0 = φS ′0 (l0) = 0 for l0 = lfb0 and π′′0 < 0. Note that lfb0 ≤ lmax
0 only if

Δ1 ≤ Δ̃1 +
φR1,b(lR1,b)
p1lfb0

=: ΔC . We obtain

lS∗0 = lfb0 , πS∗0 = p1φ
S
1,g

(
lfb1,g

)
+ (1− p1)φ

R
1,b

(
lR1,b

)
+ φS0

(
lfb0

)
if Δ1 ∈

(
Δ̃1, ΔC

]
,

lS∗0 = lmax
0 , πS∗0 = p1φ

S
1,g

(
lfb1,g

)
+ (1− p1)φ

R
1,b

(
lR1,b

)
+ φS0 (l

max
0 ) if Δ1 > ΔC .

(A.11)

Risky Mode

For m0 = R, insertion of q1 = 1 − p1 into (8) yields d1 = l0+a0
p1

. Insertion of this into

Ω1,s := vsl0+ a0− d1 for s = g, b yields Ω1,g =
p1vg−1
p1

l0− 1−p1
p1
a0 and Ω1,b =

p1vb−1
p1

l0− 1−p1
p1
a0.

Note that ∂Ω1,g

∂a0
< 0 and that (A.4) and (A.5) imply

∂π∗
1,g

∂Ω1,g
> 0 while the restriction (9)

on m∗
1,b and (A.7) requires π∗1,b = 0. In conjunction with (7), we obtain a∗0 = 0 and thus

Ω1,g = p1vg−1
p1

l0 > 0 and Ω1,b = p1vb−1
p1

l0 so that (A.4) implies π∗1,g = φS1,g
(
lfb1,g

)
+ Ω1,g.

Insertion of Ω1,g, π
∗
1,g and π∗1,b = 0 into (7) yields maxl0 π0 = p1φ

S
1,g

(
lfb1,g

)
+ φR0 (l0). Note

that π′0 = φR′0 (l0) = 0 for l0 = lR0 < lfb0 where lR0 : φR′0

(
lR0

)
= 0 and π′′0 < 0. We obtain

lR∗0 = lR0 , πR∗0 = p1φ
S
1,g

(
lfb1,g

)
+ φR0

(
lR0

)
. (A.12)

Optimal Behavior

We now compare πS∗0 and πR∗0 with the expected payoff πF∗0 = 0 of the failure mode.

• If Δ1 ≤ ΔC , then (A.10), (A.11) and (A.12) imply πS∗0 > πR∗0 > 0.

• If Δ1 > ΔC , then (A.11) and (A.12) imply that πS∗0 is decreasing in Δ1 (since lmax
0

is decreasing in Δ1) while πR∗0 > 0 is independent of Δ1. Therefore, we have πS∗0 ≥

4



πR∗0 > 0 only if Δ ≤ ΔD where ΔD is defined by

(1− p1)φ
R
1,b

(
lR1,b

)
= φR0

(
lR0

)− φS0

(
φR1,b(lR1,b)

p1(ΔD−˜Δ1)

)
. (A.13)

In conjunction with (A.10), (A.11) and (A.12), these two cases immediately lead to (11).
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