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Abstract Joint manipulation and object exchange are

common in many everyday scenarios. Although they

are trivial tasks for humans, they are still very chal-

lenging for robots. Existing approaches for robot-to-

human object handover assume that there is no fault

during the transfer. However, unintentional perturba-

tion forces can be occasionally applied to the object,

resulting in the robot and the object being damaged,

for example by being dropped. In this paper we present

a novel approach to handover objects in a reliable man-

ner while ensuring the safety of the robot and the ob-

ject. Relying on tactile sensing, the system uses an effort

controller to adapt the grasp forces in the presence of

perturbations. Moreover, the proposed approach identi-

fies a perturbation being applied on the object. When a

perturbation event is detected, the algorithm classifies
the direction of the pulling forces to decide whether to

release it or not. The reliable handover system was im-

plemented using a Shadow Robot hand equipped with

BioTAC tactile sensors. Our results show that the sys-

tem correctly adapts to the forces applied on the object

to maintain the grasp and only releases the object if the

human receiver pulls in the right direction.
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1 Introduction

Object handover is a fundamental skill to endow robots

with the ability to collaborate with humans in every-

day tasks. Human-robot object handover involves many

complex aspects such as human and object safety, social

and handling context, grasping stability, slip detection,

and ergonomics. Huge research efforts have been de-

voted to endow robots with the skills required for shar-

ing objects, working and collaborating with humans.

However, there is still a need for safe, smooth, and re-

liable interaction in any combined task.

Humans show a high degree of adaptability when

exchanging objects with a robot (Edsinger and Kemp,

2007). Notwithstanding, to ensure the safety of the robot

hand and the object, robot-human object handover typ-

ically aims to facilitate the task for the human (Huber
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et al., 2008). To endow robots with ability to safely in-

teract in complex situations, such as a workshop or an

operating room, the system should ensure smooth and

reliable handovers even if the human cannot securely

grasp the object from the robot. Performing reliable

object handover requires a system capable of adapting

against uncertain events and perturbations that are not

meant to end in a handover, such as a receivers un-

secured grasping or collisions. In situations like these,

the robot should be able to keep itself and the object

safe. Avoiding both damage to the hand and the object

falling is an extremely complex problem which requires

quick readjustment of the fingers to maintain a sta-

ble grasp during a potentially large perturbation. One

promising approach to solve these problems and facili-

tate manipulation is through tactile sensing (Liu et al.,

2015) (Kappassov et al., 2015) (Yousef et al., 2011).

However, state-of-the-art approaches assume that there

are no perturbation forces applied on the object during

the handover. This paper contributes to reliable object

handover by presenting a tactile sensing based handover

algorithm that ensures neither the robot nor the object

are damaged. We achieve this by adapting to force per-

turbations on the object and releasing only if the hu-

man is ready to hold the object. The proposed approach

was evaluated on a tendon-driven Shadow robotic hand

equipped with BioTAC tactile sensors as shown in Fig-

ure 1, and represents a step towards endowing robots

with reliable systems that allow them to collaborate

with humans in scenarios where fragile objects have to

be handed over, for instance by robotic assistants in of-

fices, homes, and hospitals, and caregiver robots for the

elderly.

A fundamental problem in safe robot-human han-

dover is deciding when to release the grasp and, thus,

allow the object transfer. Since a robotic hand has to

maintain a stable grasp on the object until the human

is ready to hold it, the approach in (Nagata et al.,

1998) considered a tight relationship between object

handover and grasp stability to trigger the object re-

lease. A three fingered robotic hand released an ob-

ject when the forces applied on the object change a

number of grasp stability metrics. In particular, the

authors used a combination of joint angles, contact,

kinematic, and dynamic stability indices of the hand

to decide whether to release the object (robot-human

handover), to hold it (human-robot handover), or to re-

grasp it using a new finger configuration. The approach

presented in (Aleotti et al., 2014) used a Kinect sensor

to detect the receiver hand and the object, and released

the object when both where detected as a single clus-

ter of 3D points. Although the authors implemented

a complete handover procedure, the system was not

reliable since the object could be released even when

the receiver was not grasping it. The work presented

in (Bohren et al., 2011) proposed a mechanism to han-

dover a drink, where the robot opened the gripper only

if a human face was detected and simultaneously the

compliant hand of a PR2 was displaced by one cen-

timetre in the vertical direction. Despite handing over

the object in a secure manner, their approach requires

the human receiver to pull the object strong enough

to move the arm above some threshold, which impacts

on the system responsiveness. The first effort to imi-

tate the actual way humans handover objects is pre-

sented in (Kim and Inooka, 1992). Their experiments

showed that humans adapt the grasping force accord-

ing to the change in the estimated weight of the object.

The authors used a two finger hand and force sensors

to release the object according to its slippage, i.e. the

tipping point on the Coulomb force.

A thorough analysis of human handover was pre-

sented in (Chan et al., 2012) and their results were

subsequently used in (Chan et al., 2013) to implement a

release controller on a PR2 robot. Their human-inspired

handover system controlled the grip force of the robot

according to the weight of the object the robot per-

ceived in the wrist. Moreover, the authors found a user

preference for the human-inspired controller when com-

pared with four other handover controllers for quick re-

lease and constant grip forces. Another approach rely-

ing on the sensed load force was presented in (Medina-

Hernández et al., 2016), which implements a grip force

controller based on the feedback of a force/torque sen-

sor installed on a KUKA LWR robot with an Allegro

hand attached. The authors found that the object han-

dling occurs faster when using their controller compared

to state-of-the art approaches. Furthermore, their ap-

proach significantly reduces the forces applied on the

object by the robot and the human, resulting in fast

and smooth handovers.

Although most of these works rely on some force

estimate acting upon the object, they all assume the

handover is going to take place without problem. In

a recent work (Parastegari et al., 2016) a system con-

sisting of acceleration and force sensors mounted on a

gripper was used to ensure fail-safe handovers. The au-

thors compared the grip force with the sum of forces ap-

plied to the object for a given static friction coefficient,

and implemented a controller for re-grasping if the ob-

ject’s downward acceleration exceeds a given threshold.

Another solution to the grasp release problem was pre-

sented in (Gómez-Egúıluz et al., 2017a) through a novel

reliable object handover algorithm implemented on a

Shadow Robot Hand equipped with BioTAC tactile sen-

sors. The robot released the object only if the force ap-
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plied to the object was perceived to have a direction

perpendicular to the palm, and ensured the safety of

the robot by adapting the grasping to account for the

external forces and torques. In (Konstantinova et al.,

2017), a bidirectional handover approach (i.e human-

to-robot and robot-to-human) was implemented in a

mobile robot equipped with a 5 degrees of freedom

arm and a soft robotic hand. Their system relies on

force/torque information measured at the wrist and re-

leases the object in a timely manner, while the under-

actuated soft robotic hand provides mechanical adap-

tation to physical interactions with the environment.

These works, (Parastegari et al., 2016), (Gómez-Egúıluz

et al., 2017a), and (Konstantinova et al., 2017) recog-

nise that in some situations the robot should not release

the object, especially if the force applied on it does not

have the right direction. However, they are rather lim-

ited in the detection of set of directions in which the

receiver will pull from the object. The work in (Gómez-

Egúıluz et al., 2017b) evaluated the approach for a

reliable controller presented in (Gómez-Egúıluz et al.,

2017a) with a group of näıve participants. Although all

human users pulled from the object when receiving it

from the robot, the pulling direction changed depend-

ing on the experimental conditions. To deal with this

issue, the authors presented a classification approach to

detect the pulling force direction. However, the classifi-

cation accuracy shown in (Gómez-Egúıluz et al., 2017b)

was not high enough to ensure the safety of the object.

In order to endow robots with reliable handover ca-

pabilities, the system should ensure the safety of both

the object and the robot, which entails minimizing the

number of false positives in the detection of the force di-

rection. This paper presents a novel algorithm for robot-

human reliable handovers that extends our previous

work (Gómez-Egúıluz et al., 2017a) (Gómez-Egúıluz

et al., 2017b). The contribution of this paper is twofold.

First, we present a new event detection system that per-

ceives perturbations being applied on the object in any

direction. Finally, we extend the algorithm in (Gómez-

Egúıluz et al., 2017b) to enhance its reliability, and eval-

uate the system to maximise safety. The rest of the pa-

per is organised as follows. Section 2 presents the effort

controller and force estimation procedures, followed by

the perturbation force direction detection approach and

the reliable object handovers algorithm. Section 3 shows

results on perturbation trajectory filtering, object per-

turbation release detection, force adaptation and object

handover. Section 4 ends the paper presenting conclu-

sions and some directions for future work.

Fig. 2 Changes in the fingertip force length for effort vs.
position control.

2 Reliable object handover controller

The approach proposed uses a control system to keep

the object grasped, adapting the hand configuration

as necessary. It decides when to release based on two

events: the change in the perceived load force and the

perturbation force direction.

2.1 Grasping effort controller

We assume the object to handover is rigid, the initial

configuration of the hand is ready for the handover,

and a stable precision grasp using three fingers is given

a priori. Using a fixed position control, a force pertur-

bation would result in a contact loss or increased efforts

in the joints, which could result in broken tendons on

the experimental platform. To illustrate the effect of

forces when controlling the position of the fingers we

performed an experiment where a perturbation force

was applied to a single finger of our Shadow robotic

hand equipped with BioTAC tactile sensors. Figure 2

shows a comparison of the response in the norm of the

force of the middle finger over time for the proposed ef-

fort controller and a position control (see Section 2.2 for

how to compute the force). Although the Shadow hand

fingers provide some compliance through their mechan-

ical design with tendons and springs, the force sensed

for a small perturbation using a position control is more

than twice the force sensed when the effort controller is

running, which significantly reduces the risk of damag-

ing the hand.

We index the fingers used for grasp the object as

j = 1, 2, 3, where j = 1 is the thumb, j = 2 is the

first finger, and j = 3 is the middle finger. The effort

controller adapts the hand configuration to maintain an

initial wrench, i.e. force and torque, while adapting to
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perturbation forces on the object. We can obtain the

wrench BF̄j we set on the hand for the stable grasping

in the robot base reference as:

BF̄j = Jj(qj)
†Γj , (1)

where qj are the configuration of the finger joint, Γj
their corresponding torques or efforts, Jj(qj)

† is the

pseudo-inverse of the Jacobian for finger j, and the su-

perscript B states the wrench is in the base reference

frame. The necessary conditions to maintain a stable

grasp can be obtained by converting the forces and

torques of the initial wrench to the object reference

frame and taking into account the friction coefficients,

and the normals at the contact points.

In order to maintain the stability of the grasp in

the presence of a perturbation the robot could use a

position control for its fingers, but that implies com-

manding large torques to the joints, which may dam-

age the hand. An alternative to ensure the hand is not

damaged would be to keep the wrenches in the object

reference frame OF̄j constant, but that would work as

long as the palm pose suffers only small changes, i.e. for

small perturbations. Maintaining the wrenches in the

object reference frame has two important drawbacks;

first, the perturbation force can be used to “control” or

“drive” the hand; and, second, the stability of the grasp

could be lost (leading to the object being dropped). In-

stead of controlling the hand position or maintaining

the wrenches in the object reference frame, we opt for

keeping and restoring the contact forces and torques

as computed in the base frame BF̄i for a stable grasp

for each finger. Using the proposed approach allows the

robot to adapt smoothly to perturbations while keep-

ing the object grasped close to the stable configuration,

thus, preventing the hand to be damaged and the object

to fall. The effort joint control considers the fingers in-

dividually and uses the given stable grasp wrench BF̄i
as a reference while the perturbed measured wrench
BFj is fed back to the controller. Therefore, given the

difference between the j-th finger contact wrench BFj
and the one for the stable grasp we apply to the finger’s

joints the efforts:

Γj = KjJj(qj)
T
(
BF̄j − BFj

)
, (2)

where Jj(qj) is the Jacobian of finger j at the joint po-

sition qj , and Kj is a square gain matrix of size equal

to the joints to control. Thus, for instance, the finger

moves backwards to keep the force constant if a per-

turbation increases the contact force while maintain-

ing the direction and torque. Generally, the product of

a perturbed wrench and the Jacobian results in mo-

tion of the finger to compensate for external forces and

torques. When a perturbation force is applied (since

the grasped object is rigid), a change in the contact

Fig. 3 Scene coordinate frames diagram.

force and torques is perceived by all three fingers. All

fingers move individually to maintain the stable grasp-

ing wrench in the base frame. As the friction of the

rubber fingertips of the BioTAC is large, the motion

can have a different effect on the wrenches in the ob-

ject reference frame. However, we experimentally found

that this control mechanism kept a stable grasp while

the object moved due to external perturbations. In this

manner the proposed control mechanism implements

compliance in the tactile force.

Figure 3 represents the different coordinate frames

of the hand used in the rest of the paper; the base frame

of the forearm B, the object frame O, and the end-

effector frames Ej corresponding to each fingertip or

BioTAC sensor. The transformations between B and E

(BTE =B TEj
omitting the index for the finger) can

be easily computed using the forward-kinematics of the

manipulator, while the wrenches/forces applied to the

object are computed in the reference frame of each in-

dividual BioTAC.

2.2 Cartesian force estimation using the BioTAC

When the hand joints have torque sensors attached,

the wrench applied to the object can be easily com-

puted from the measured torques Γ using the pseudo-

inverse Jacobian matrix for the corresponding config-

uration J(q)† as BF = J(θ)†Γ. However, the sensors

included in the joints of the Shadow hand measure the

differential tension on the tendons (Elias), not the ap-

plied torque in the joints. Therefore, we present an al-

ternative approach – using SynTouch BioTAC (Fishel

et al., 2013) tactile sensors – to estimate the contact

forces in the fingertips Bf instead of the applied wrench.
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The BioTAC is a biomimetic tactile sensor that pro-

vides a number of sensing modalities such as micro-

vibration, pressure, temperature, heat flux and fingertip

compliance. Although the BioTAC is not a force sensor

we can estimate the contact force from its measure-

ments. Specifically, we can compute the contact force

by using the pressure, the contact area, and the normal

vector to the object surface. While the pressure mea-

surements are obtained from the BioTAC’s raw data,

the contact area and the normal vector to the object

surface are estimated from the skin deformation. Upon

contact, the increase in the pressure measured by the

BioTAC (P ) can be converted into the norm of a con-

tact force (|f |) by simply using the relation |f |= Pa,

where a is the contact area with the object. Although

the pressure is obtained from the sensor, the contact

area can only be estimated from impedance measure-

ments from 19 electrodes located across the finger core.

The measured impedance is directly related to the dis-

tance between the core and the rubber skin at their

corresponding locations and the impedance value with

respect to the resting level, i.e. no contact, decreases

when the rubber skin is deformed.

We use the BioTAC sensor and the approach pre-

sented in (Gómez-Egúıluz et al., 2016) to approximate

the contact area corresponding to each electrode i as

a circle of radius ri equal to half the distance between

the electrode and its nearest neighbour. The total con-

tact area of the fingertip can be obtained as a weighted

average of these individual areas:

a =
∑
i

λiπr
2
i , (3)

where λi ∈ [0, 1] is an impedance dependent scale fac-

tor. To estimate the scale factor λi we define a piece-

wise linear function of the change of the impedance

value ei of each electrode relative to the resting level

ēi as:

λi =


1 if ei ≤ em
1− ei−em

ēi−em if em < ei < ēi

0 if ei ≥ ēi
(4)

where em is a lower impedance threshold to saturate the

calculation of the contact area around the electrode (in

our case experimentally fixed to em = −400). Thus,

λi is zero at the resting level (or above) meaning no

contact at the electrode position, it linearly increases

to 1 for decreasing impedances up to the threshold em
, and is 1 – maximum contact area – for values below

the threshold.

Although the fingertip of the BioTAC also applies

a torque at the contact point, there is no way to es-

timate it, nor to compute the component of the force

tangential to the object. Therefore, we assume that the

full length of the force is applied in the direction per-

pendicular to the contact surface. We use the technique

presented in (Su et al., 2012) to estimate the contact

direction based on the unit vectors normal to the Bio-

TAC fingertip at each electrode position. Similar to the

approach used to compute the area, a weighted aver-

age of the normal vectors using the change in the cor-

responding impedances relative to the resting levels is

used to compute the contact direction. Given the nor-

mal vectors for the BioTAC electrodes – constant in the

fingertip reference frame E – n̂i, i = 1, · · · , 19, the total

estimate of the contact force can be computed as:

Ef =
|f |

|
∑
i λin̂i|

∑
i

λin̂i, (5)

where λi and the force norm |f | are defined above. It is

worth noting that Equation 5 corresponds to the con-

tact force in the reference frame of the fingertip. For

simplicity, and unless stated otherwise, we denote by

E the reference frame of the end-effector of any finger

j, i.e. E = Ej , since all fingers are processed identi-

cally. As we will see in Section 2.4, the proposed object

handover algorithm uses Ef to detect the perturbation

force direction and to trigger the object release. Addi-

tionally, we need to convert the estimated forces to the

base frame Bf as they are used in the proposed grasp-

ing effort controller and they are the basis to detect the

variations on the load force.

2.3 Load force variations for event detection

The proposed handover algorithm was designed to re-

lease the object based on two events: the detection of a

perturbation event and the right pulling force direction.

We use the change in the perceived load force to iden-

tify when a perturbation has been applied on the object

and, thus, trigger a classification process (see Section

2.5) to identify the direction of the object pulling force.

Therefore, at every time step, we update a fixed size

sliding window of duration ∆t seconds (∆t = 0.05) to

include the latest forces Bf measured by the BioTAC

sensors. The window BW is divided in two equal sized

sequences BW1 and BW2, where BW1 denotes the old-

est data and BW2 the most recent. We compute the

averages over the windows and use them for detecting

load force variations.

Most of the object handover approaches in the liter-

ature rely on changes in the load force to control grasp-

ing forces. Here, the estimate of the load force in the

base frame BfL corresponds to the sum of all the contact

forces BfL =
∑
j

(Bfj). In (Gómez-Egúıluz et al., 2017a),
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we found that a change in the norm of BfL, ∆BfL, can

be detected when an external action is being carried

out over the object. In the context of the reliable object

handover algorithm, this norm change event triggers a

classification process to identify the type of event as de-

scribed below. When a perturbation force is applied on

the object, the range in which the contact force varies is

different for x, y and z coordinates with respect to the

BioTAC’s frame. Because of the ranges of BfL, ∆BfL is

more sensitive to perturbations in some directions than

in others. For instance, despite being very sensitive for

lateral perturbations with respect to the fingertips, the

change in the norm was not as responsive for frontal

movements due to contact force variations relying on a

smaller range than for the lateral ones. In order to solve

this issue, we take into account the scale of the contact

force variations for each axis. Therefore, the variation

on the load forces is computed as the Mahalanobis dis-

tance between
〈
BW1

〉
and

〈
BW2

〉
:

∆BfL =
〈
BW∗

〉T BΣ−1
〈
BW∗

〉
, (6)

where
〈
BW∗

〉
=
〈
BW1

〉
−
〈
BW2

〉
,
〈
BWi

〉
denotes the

expected value of the corresponding sub-window BWi,

and BΣ−1 is the covariance matrix of BW. We empir-

ically found values for BΣ−1 by computing the covari-

ance of the load force BfL using recorded data during

a steady state of the hand, i.e. without perturbation

forces applied. If ∆BfL exceeds a fixed threshold we can

determine that an external force is acting on the object.

The threshold fth = 0.002 was experimentally chosen

while slightly perturbing the object with the grasping

effort controller running. It is worth noting that select-

ing fth without using the grasping effort control system

would generate a threshold value that is too large as

the hand is not adapting to perturbations resulting in

greater contact forces.

2.4 Features for force direction detection

Thus far, we can detect a perturbation force being ap-

plied on the object BfL exceeding a given threshold.

However, as not all perturbations are expected to result

in a handover, we also need to identify the direction of

perturbation force that will trigger release if and only

if it is safe to do so. To classify the direction of a per-

turbation force over the object, we modelled the varia-

tions of the contact force Efj estimated using the Bio-

TAC for each individual finger j = 1, 2, 3 with respect

to their corresponding resting forces E f̄j . Although the

perturbation direction could be estimated in the ref-

erence frame of the forearm, i.e. using Bfj , we exper-

imentally found that the consistency of the estimated

direction was higher when computing features for the

direction detection in the reference frame of the fin-

gertips. The reason for this experimental result is that

the perturbation direction in the base reference frame

is affected by the uncertainty of the measurements of

the joint angles. Moreover, selecting the fingertip frame

to represent the perturbation direction allows to define

constant directions relative to the configuration of the

fingers, which are directly related to the grasped ob-

ject. Given the initial grasp of the object, we compute

the resting forces E f̄j , as the average response within a

window of ∆t seconds. We use a sliding window, which

is updated at the sensor sampling interval, to retain

all Efj estimates obtained during the last ∆t seconds.

As the human touches the object, potentially starting

a handover, the robot computes the perturbed forces of

each finger as the average of the forces in the sliding

window Efj = E
[
Efj(tk)

]
. It is worth noting that both

the resting and the perturbed forces are in the fingertip

reference system.

We denote θf
j and φf

j the azimuth and elevation

angles of the normalised contact perturbed force vec-

tors for each finger j respectively, i.e. the spherical co-

ordinates of the normalised force vector in the refer-

ence system of the fingertip. Similarly, θf̄
j and φf̄

j are,

respectively, the azimuth and elevation angles of the

normalised forces at the resting position. To identify

the pulling force direction we define a feature vector

containing the differences between the azimuth and el-

evation angles of the contact forces and those corre-

sponding to the resting position forces of each finger in

their corresponding fingertip reference frame, i.e. θj =

θf
j − θf̄

j and φj = φf
j − φf̄

j . The resultant feature vec-

tor ϑ = (θ1, φ1, θ2, φ2, θ3, φ3) is the angular deviation

of the contact forces, which is an invariant descriptor

against changes on the hand position, object geometry

and size.

Finally, a Kalman Filter was used to estimate the

angular deviation velocities of the contact forces ϑ̇. We

will use the posterior state estimate X̂k|k as the feature

vector for detecting perturbation force directions (see

Section 2.5). A constant velocity model was used to

compute the state estimate X̂k+1 at time k+1 from the

true state Xk at time k. The true state Xk was obtained

by concatenating the angular deviation of the contact

forces ϑ and their velocities ϑ̇ at time k. We assume

constant process and observation noise in the model

and empirically found appropriate initialization for the

covariance matrix of the process noise. Before detecting

any event or pulling direction we collect readings during

5 seconds which were used to compute values of ϑ and

their covariance. We set the observation noise by using

the covariance of ϑ in the calibration data, which we
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assume was obtained without exerting any perturbation

on the contact forces. Therefore, at each time step k we

predict the state X̂k|k−1 and covariance matrix Pk|k−1

using the latest posterior estimate X̂k−1|k−1. Then, we

update the posterior estimate for both the state X̂k|k
and covariance Pk|k, which will be used for estimating

a priori parameters in the next time step k + 1.

Filtering the feature vector ϑ using a Kalman Filter

before classifying the perturbation force directions al-

lows to overcome two issues. First, the feature vector ϑ

is often very noisy and leads to some misclassification

cases (see (Gómez-Egúıluz et al., 2017b)). More impor-

tantly, using ϑ as descriptor for perturbation force di-

rections results in occasional false positives which trig-

ger the hand to release the grasp, allowing the object

to fall. By filtering the angular deviation of the contact

forces abrupt changes in the trajectory estimation of the

angles deviation that put the safety of the object at risk

will not occur; for instance, when the object perturba-

tion force has ended, a bouncing effect might happen

after sudden release. Secondly, by computing the pos-

terior state of the observation we estimate the angular

deviation velocity ϑ̇ of the contact forces, which pro-

vides additional information to enhance classification

accuracy with respect to our baseline work.

2.5 Statistical learning of perturbation force directions

Object release detection is based on two events: the

change in the perceived load force (see Section 2.3), and

the issue of a pulling force by the receiver with a pre-

determined direction. The classification of the pulling

force direction applied on the object is characterised

as follows. We denote H as the discrete random vari-

able representing the different perturbation force direc-

tions in the fingertip reference frame (E) relative to

the stable grasp measured in azimuth and elevation,

i.e. the n events to be identified {h1, h2, · · · , hn}, and

X̂ the 12-dimensional random vector of features encod-

ing the posterior state estimate through the Kalman

filter. In this case the number of object perturbation

forces is n = 5, corresponding to forward, backward, up

and down perturbation directions and a receiver steady

grasp event where no perturbation force is applied. We

obtained training sets to estimate the likelihood func-

tions of the feature vectors for each event, p(X̂|hj),
which we model as normal distributions N (µ,Σ) with

mean µ and covariance Σ. Therefore, for each event j,

we obtained a normal distribution with mean µj and

covariance Σj .

Having the models of the likelihood function p(X̂|hj)
for all events and given a set of prior probabilities p(hj),

one can estimate, through the Bayes rule, the posterior

probabilities p(hj |X̂), and classify input data according

to the maximum a posteriori (MAP) probability. For

simplicity, we will denote X̂k = X̂k|k the Kalman filter’s

state estimate at time k. Under the assumption of initial

uninformative priors p(hj) = 1
n for all pulling directions

j we update the current estimate when the change of

the load force ∆BfL exceeds a threshold fth (see Section

2.3). Therefore we will use the feature vector X̂ to itera-

tively obtain new posteriors for each event, and the pos-

terior probability p(hjk|X̂k) at step k will be the prior

to obtain the next estimate p(hjk+1|X̂k+1). When a sig-

nificant change in the load force is first detected, the

initial prior probabilities are distributed evenly among

all events. We estimate the contact forces from the Bio-

TAC data stream and compute the feature vector X̂k,

in windows of time length ∆t, and update the posterior

probabilities, when a significant variation in the load

force is detected, using:

p(hjk|X̂k) =
p(X̂k|hjk)p(hjk|X̂k−1)

p(X̂k|X̂k−1)
(7)

where p(X̂k|hjk) is given by the likelihood function of

perturbation force direction hj , and the normalisation

constant p(X̂k|X̂k−1) can be obtained as:

p(X̂k|X̂k−1) =

N∑
i

p(X̂k|hik)p(hik|X̂k−1). (8)

2.6 The reliable object handover algorithm

The pseudocode of the proposed approach for reliable

object handover is shown in Algorithm 1. In each iter-

ation the algorithm estimates the load force variations

(line 5) and, if required, updates the conditional proba-

bility p(hjk|X̂k) for all perturbation events, j = 1, · · · , n
(line 15). It is worth noting that there is an abuse of

notation in the computation of the angular changes,

since the perturbation angles are obtained from the nor-

malised force vectors in lines 8 and 9 of the algorithm.

The object perturbation force direction which has the

highest posterior probability can be considered the one

that the robot is perceiving at time step k. However,

we aim to endow robots with a reliable method that

guarantees reliable handovers. As mentioned before, a

single false positive would result in the object falling.

Hence, the proposed algorithm only releases the object

if a pre-set pulling direction h∗, i.e. direction in which

the human is expected to pull the object, is detected

during more than tth seconds (lines 17-21). As the value

of tth is small (0.25 secs), the system is still responsive

enough to release the object in a timely manner (see

Section 3.2). The reliable object handover algorithm
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ensures the safety of the object by releasing only when

the pulling force direction is consistent with the pre-

set perturbation force direction for a period of time. As

detailed in Section 2.1, the algorithm also ensures the

safety of the object by maintaining the initial wrench

(line 23) when perturbation forces are applied on the

object.

Algorithm 1 Reliable object-handover algorithm

1: procedure object-handover(Efj) . BioTAC forces

2: Bfj ← T (Efj) . Transform Efj to base

3: Update EW with Efj . Pull detect sliding window

4: Update BW1 and BW2 with
∑
j

Bfj . Event detect sliding

window

5: ∆BfL ←Mahalanobis
[〈

BW2
〉
,
〈
BW1

〉]
. Load force

change
6: Set empty ϑ
7: for j = {1, 2, 3} do . For each finger

8: ∆Eθj ← arctan

[
E f̄

j
y

E f̄jx

]
− arctan

[
E f

j
y

E f
j
x

]

9: ∆Eφj ← arctan

 E f̄
j
z√

(E f̄jy)2+(E f̄jx)2

 −

arctan

[
E f

j
z√

(E f
j
y)2+(E f

j
x)2

]
10: ϑ← ϑ

⋃
[∆Eθj ,∆

Eφj ] . Angular changes feature vector
11: end for
12: Compute X̂k|k−1 and Pk|k−1 . Kalman Filter Predict Step

13: Compute X̂k and Pk|k . Kalman Filter Update Step

14: if ∆BfL > fth then . Event detection

15: Update p(hj
k|X̂k) ∀j ∈ [1...n] using Bayes Rule

16: dirk = max
X̂

p(hj
k|X̂k)

17: if dirk 6= dirk−1 then
18: t∗ = t
19: else if t− t∗ > tth and dirk = h∗ then
20: ReleaseObject & End
21: end if
22: end if

23: Γj ← KJ(qj)T
(
B f̄j − Bfj

)
. Send efforts to joints

24: end procedure

3 Experimental results

This section presents a set of experiments performed

to illustrate the workings of parts of our algorithm and

to carry some proof-of-concept tests. Specifically, Sec-

tion 3.1 shows how the pulling direction can be esti-

mated with the features presented in Section 2.4 us-

ing the Kalman filter. Section 3.2 extends the tests to

the detection of the discrete perturbation directions,

and illustrates the procedure to find good parameters

of the algorithm. Finally, Section 3.3 presents results

from the overall algorithm including the release of the

object once all the conditions of the algorithm are met,

i.e. right perturbation direction and duration.

The algorithm presented was evaluated on a real

Shadow Robot Hand with Syntouch BioTAC tactile

Fig. 4 Experimental set-up.

sensors installed in the thumb, first and middle fingers.

The Shadow Hand was attached to a Schunk arm mod-

ified to compensate for the additional weight. Figure 4

shows the experimental set-up used. Although the arm

stays fixed in all of the experiments, the set-up provides

a natural handover configuration by placing the hand

horizontally. The initial configuration of the fingers was

manually set in the centre of the hand workspace and we

used it for all the experiments as a starting point for the

initial grasping. This position allows large finger mo-

tions without lost of contact when perturbation forces

are applied to the object. From this initial approximate

position, the fingers were manually adjusted to gener-

ate a stable precision grasp on the object, and to apply

a force within the range the BioTAC sensors can esti-

mate. Therefore, every experiment had slightly differ-

ent configurations of grasp forces applied on the object.

Before performing the experiments the electrodes of the

BioTAC were calibrated to avoid drifts of the readings

due to changes in the sensor gel after a series of runs.

In order to avoid damaging the robotic hand when ap-

plying a perturbation force, the grasp effort controller

(see Section 2.1) was used during all the experiments.

The effort controller adapts the contact forces online to

the initial configuration and, thus, ensures the safety

of the hand and the object. However, the effort con-

troller interaction also makes the problem of detecting

the object perturbation force direction more complex

as the controller tries to restore the forces and reduce

the perturbation.

Readings from four perturbation force directions were

manually collected from examples to obtain models of

their corresponding likelihood function (from the re-

ceiver’s perspective forward, backward, up and down).

This experimental modeling methodology can be ex-

tended to other perturbation directions. All training

data were obtained from the initial grasp configura-

tion using a flex foam cube of size 4.5 × 3.9 × 3.25 cm

with high stiffness, i.e. the maximum hand force can-
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not deform the object. The training data were stored

when the variation of the load forces exceeds a thresh-

old (fth = 0.5) as the algorithm only computes the

posterior probability of the perturbation force direc-

tions when this condition is met (see Section 2.3). This

means that the number of training trials required varied

for each perturbation class. The number of trials used

to model each object perturbation force was typically

between 5 and 10.

As mentioned in Section 2, the detection of pulling

force directions relies on the variations of the contact

force estimate of each finger. We experimentally found

that a sequence of perturbations is often applied to the

object by the human receiver of the handover instead

of one pure pulling force direction. For instance, an un-

intentional perturbation force might be applied while

approaching the grasp followed by an intentional one,

which may not be in the same direction. Furthermore,

we compute the likelihood function for a “joint grasp”

state, i.e. robot and human, in which the perturbation

forces might not be intentional or sufficiently signifi-

cant to determine the perturbation force direction accu-

rately. Although the system does not release the object

when detecting this state, we found that it enhances

the reliability of the handovers (see Section 3.2).

Together with the four force directions, we mod-

elled the angle variations of all fingers when the object

is grasped but non-intentional force was applied, i.e. a

“joint grasp” state. In order to obtain a wider range

of small force perturbations, we did not use the event

detection system for collecting readings of the “joint

grasp” state. Therefore, unlike training data from in-

tentional perturbation forces, the data used for obtain-

ing the models of the “joint grasp” state were sampled

at fixed rate. This method resulted in collecting more

data for each trial and, consequently, the number of tri-

als used to model the “joint grasp” state was reduced

to three.

3.1 Trajectory filtering

In this experiment a number of object perturbations

were performed on a grasped object to understand the

interaction of the Kalman Filter on the force angle vari-

ations with respect to the stable grasp reference. As ex-

plained in Section 2.4, the true state X is filtered to re-

duce the noise and to obtain additional hidden features,

i.e. angle variation velocities. We evaluate the experi-

ment on three foam objects with different geometries

but similar stiffness: a cube, a cylinder and an octagon

prism; and we used the initial grasping forces as the

reference for the controller. A perturbation force was

then applied to the object and the posterior X̂ and

(a) Azimuth angular devia-
tion

(b) Azimuth angular velocity

(c) Elevation angular devia-
tion

(d) Elevation angular velocity

Fig. 5 Index finger angle variations during downwards per-
turbation force.

true X force states were stored at every time step. Fig-

ure 5 shows the evolution of the angle variations, with

and without filtering, and their corresponding veloci-

ties during a downward perturbation force. Figure 5(a)

plots the azimuth angle variations of the index finger

θ2 and Figure 5(c) represents the elevation angle vari-

ations φ2 for the same finger. The solid lines represent

the angular deviations of true force state X while the

filtered angle trajectories, θ̂2 and φ̂2, are represented by

dashed lines. Figures 5(b) and 5(d) show the velocity

hidden state of the azimuth
˙̂
θ2 and elevation

˙̂
φ2 angles

respectively i.e. obtained from the posterior force state

X̂.

In comparison with the approaches presented in (Gómez-

Egúıluz et al., 2017a) and (Gómez-Egúıluz et al., 2017b),

it can be observed that filtering the signal reduces the

noise in X, smoothing the trajectory. Furthermore, it

was found that smooth trajectories together with ve-

locities simplifies statistical modelling and enables each

perturbation to be modelled as a Normal distribution

(see Section 2.5), while in previous works the pertur-

bations were modelled as mixture of Gaussians. Hence,

the presented approach eliminates the need to provide

the number of Gaussians of each mixture model and

allows one to effectively deal with occasional sudden

changes in the object perturbation forces.
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(a)

(b)

(c)

Fig. 6 Recursive estimation of perturbation force directions.

3.2 Object perturbation detection experiments

This section presents the experimental results of the ap-

proach presented in Section 2 for detecting object per-

turbation force directions. For this set of experiments

a total of 48 trials were collected from four different

object perturbation force directions and 12 additional

trials of “joint grasps”, i.e. no intentional perturbation

forces applied, using three objects: a cube, an octagon

prism and a cylinder. For all data collection, the initial

grasp configurations were manually adjusted to gener-

ate an initial stable grasp approximately similar in all

trials. This led to slightly different grasp configurations

and applied forces over the objects. The variations in

initial grasp configurations are not the only differences

between trials, since the object pulling forces were not

controlled and the iteration of the grasp effort controller

varies across trials. Figure 6 shows the classification es-

timate for one second long perturbation forces in for-

ward, upwards and downwards directions. Although the

initial estimate might be incorrect, the system always

estimates the correct perturbation direction when suffi-

cient evidence is presented. This demonstrates that the

system can generalise to unseen objects as the cylin-

der or the octagon prism were not used for training.

Moreover, it can be observed that the largest estimated

probability remains stable after the correct perturba-

tion force direction has arisen.

As explained in Section 2.6, the reliable object han-

dover algorithm detects that the receiver is pulling the

object in a certain direction when its estimate is higher

than any other direction estimate during tth seconds.

Therefore, the value of tth establishes a trade-off be-

tween system responsiveness and classification accuracy.

The aim is to find a value of tth that guarantees that

the system will perform reliable handovers. This is dis-

cussed in the next section.

3.2.1 Response vs Accuracy

In this experiment the time required for successful iden-

tification of the correct perturbation for different values

of tth seconds using the 48 trials from four different per-

turbation force directions detailed above is computed.

The time needed to detect the “joint grasp” state is

not considered as the proposed algorithm only com-

putes a new estimate of perturbation force directions

if a significant change on the load force is detected.

This makes it impossible to replicate similar conditions

with the whole algorithm running as the data used for

modelling a “joint grasp” were collected without using

the event detection system. Furthermore, considering

that the handover should never be completed during

the detection of a “joint grasp” state, the time needed

to detect it would not be representative of the system

responsiveness for object release.

Figure 7 shows the average time needed for success-

ful identification µ and standard deviation (σ) for dif-

ferent values of tth since the perturbation force is first

applied on each trial used in this experiment. It is worth

noting that there is a lower boundary of identification

time as perturbations are detected when the estimate

is consistent during a period longer than tth seconds.

Therefore, the minimum time that detecting the cor-

rect perturbation can take is tth seconds and it is rep-

resented as by a red dotted line (see Figure 7). The
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Fig. 7 Identification speed for different values of tth.

solid line represents the average time needed for suc-

cessful identification while the average value plus three

times its standard deviation µ+3σ is represented by the

dashed line, showing the range in which successful ob-

ject perturbation force detection is performed 99.7% of

the times. We found that, despite the average detection

time growing progressively with increasing tth, the stan-

dard deviation significantly increases for values greater

than 0.25. It can be concluded that, although the value

of tth should remain as small as possible, good response

is achieved for values smaller than 0.25, for which the

detection seldom takes longer than 0.4 seconds.

Additionally, the average classification accuracy of

the proposed approach for different values of tth is anal-

ysed using the same 48 trials from four different object

perturbation force directions used in the rest of exper-

iments of this section. Differently than when evaluat-

ing the time required for successful identification, this

experiment considers the 12 additional trials of “joint

grasps” as their misclassification could result in unex-

pected object release. Figure 8 shows the average ac-

curacy as a function of tth. We found that an 81.57%

identification accuracy is obtained when only one es-

timate is considered, i.e. tth = 0, being significantly

increased when using greater values of tth. In order to

choose an appropriate value for tth, one could choose

the value such that greater values do not significantly

increase the classification accuracy. According to that

criterion, a 95.29% identification accuracy was obtained

when selecting tth = 0.15.

3.2.2 Tuning for Reliable Handovers

In practice a reliable handover system should never re-

lease the object when it is not supposed to. Although

the results of the previous experiment show that tth =

0.15 provides the best trade-off between system respon-

siveness and classification accuracy, the aim is also to

keep the rate of false positives as low as possible. Table

Fig. 8 Identification accuracy for different values of tth.

1 shows the confusion matrix of perturbation force di-

rections for tth = 0.15 which, as mentioned above, pro-

vided the best trade-off between system responsiveness

and classification accuracy. Despite the average classifi-

cation accuracy being 95.29%, one can understand that

trials classified as “joint grasp” will not make the sys-

tem fail as the object will not be released on this state.

However, it is fair to say that it makes the system less

responsive, as detecting the “joint grasp” state while a

perturbation force in the direction set for object release

is being applied will delay the completion of the han-

dover. Therefore, the system will find a false positive 1%

of the times for tth = 0.15, which may result in unex-

pected object releases. Nevertheless, this limitation can

be overcome by increasing tth at the cost of reducing the

system responsiveness. As mention in Section 3.2.1, the

system response is not significantly decreased for values

of tth < 0.25 secs. The confusion matrices for different

values of tth were computed and it was found that the

number of false positives for all values greater than 0.20

seconds is zero. Table 2 shows the confusion matrix for

tth = 0.25 in which only the values belonging to the

diagonal or the “joint grasp” are different from zero. It

is worth noting that tth = 0.25 maintains good system

responsiveness as the average time needed for successful

identification is 0.27 seconds (see Figure 7). Therefore,

tth = 0.25 provides adequate balance between average

accuracy (96.77%), average responsiveness (0.27 secs)

and system reliability (0% false positives).

3.3 Force adaptation and object handover

This section presents experimental results of the reli-

able handover algorithm when a sequence of pertur-

bation forces with different directions are applied to

the object. Specifically, we performed force direction

detection experiments along with the effort adaptation

controller for sequences of two combined perturbations.
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Table 1 Confusion Matrix of perturbation force directions for tth = 0.15.

Back Front Down Up Joint grasp

Back 88.54 % 0.00 % 0.00 % 0.00 % 11.46 %
Front 1.75 % 92.98 % 0.00 % 0.00 % 5.26 %
Down 0.00 % 0.00 % 97.49 % 2.51 % 0.00 %
Up 0.00 % 0.00 % 0.00 % 97.41 % 2.59 %
Joint grasp 0.00 % 0.00 % 0.00 % 0.00 % 100.0 %

Table 2 Confusion Matrix of perturbation force directions for tth = 0.25.

Back Front Down Up Joint grasp

Back 85.71 % 0.00 % 0.00 % 0.00 % 14.29 %
Front 0.00 % 100.0 % 0.00 % 0.00 % 0.00 %
Down 0.00 % 0.00 % 100.0 % 0.00 % 0.00 %
Up 0.00 % 0.00 % 0.00 % 98.16 % 1.84 %
Joint grasp 0.00 % 0.00 % 0.00 % 0.00 % 100.0 %

Therefore, the response of the approach was tested us-

ing a variety of consecutive events including at the end

a perturbation force that was pre-set to be the direc-

tion that completes the handover, i.e. the hand has to

open the fingers releasing the object. We evaluated the

algorithm for every combination of perturbing forces

such as two opposite object rotations, vertical forces,

pushing and pulling (from the user viewpoint), while

the robot is expected to perform a handover only when

the backward perturbation is detected, i.e. the human

pulls from the object.

(a) (b) (c)

(d) (e) (f)

Fig. 9 Object rotation and pulling event sequence.

Figure 9 shows the sequence of one of the trials,

where the object is rotated in a counter-clockwise di-

rection and then pulled from the robot hand, i.e. trig-

gering the object release. Although the fingers adapts

individually and the controller has no information on

the geometry of the object, the system kept contact

with the object and maintained a stable grasp when

rotating the object (see Figures 9(b) and 9(c)). Then,

the object was released when a perturbation force back-

wards was detected as shown in Figures 9(d) to 9(f).

Figure 10 shows the evolution of the components of

the forces over time in their corresponding end-effector

frame for the above experiment. The first two solid ver-

tical lines in the time sequence represent the start and

end of the object rotation and were set using the event

detection system. The third vertical line sets the be-

ginning of the pulling force perturbation while the final

vertical line signals the pulling force and consequent ob-

ject handover. During a perturbation force, the contact

forces deviate from the initial configuration and the fin-

gers change their position while trying to keep the dif-

ference with the reference forces as small as possible.

When the perturbation force ends the controller keeps

trying to restore the reference contact forces. However,

the hand could not generate the exact same forces since

the configuration of the fingers changed and the robot

did not have enough degrees of freedom to compen-

sate for these variations. This happens in many trials

because each finger has only three joints and there-

fore the grasping configurations were not manipulable.

Nonetheless, the controller maintained the forces close

to the initial reference and, despite the fact that the

configuration of the hand changed after the first per-

turbation, the proposed approach successfully detected

the pulling event and released the object.

We tested the performance of the continuous de-

tection of perturbation force directions in the current

experiment. Figure 11 plots the results of the classi-

fication for the time periods in which the object per-

turbations are applied which corresponds to the time

periods of Figure 10 from 2 to 3.3 seconds, and 5.5 to

8.2 seconds. The horizontal axis is the time while the
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Fig. 10 Forces response against object rotation and pulling
events for each finger.

vertical axis is the probability of each direction. A solid

vertical line shows the exact moment when the correct

force perturbation is detected i.e. consistent estimation

during more than 0.25 secs. As the algorithm only com-

putes the posterior estimates of the perturbation events

when a change in the load force is detected, the classi-

fication is not performed at a fixed rate. Therefore the

(a) Counterclockwise roll perturbation force detec-
tion.

(b) Detection of backwards pull perturbation force
triggers the object release.

Fig. 11 Perturbation on object classification of a sequence of
events.

temporal gaps in Figure 11 are a result of the overall

force change being smaller than the threshold at that

point. It is worth noting that, although the object rota-

tions were not included in the training sets, the system

was able to correctly classify an object perturbation

force being applied upwards when rotating the object

counter-clockwise. We found that intermediate object

perturbation force directions were detected for a short

period of time, prior to the detection of the correct

one. Moreover, Figure 11(a) shows a sequence of pos-

terior estimates when the object was released from the

roll rotation. Interestingly, this sequence of estimates

is an inversion of the one observed prior to the detec-

tion of a perturbation upwards. However, none of these

sequences of estimates kept a consistent estimate for

longer than tth = 0.25 seconds and, thus, they did not

result in an object release. Figures 11(a) and 11(b) show

that only the probability of the correct force direction

is consistently estimated sufficiently long enough to be
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detected and, if required, triggered the object release

(see Figure 11(b)).

4 Conclusions and Future Work

This paper presents an algorithm to perform reliable

robot to human object handovers, which has been im-

plemented using a Shadow Robot Hand equipped with

BioTAC tactile sensors. State-of-the-art approaches as-

sume the handover is going to take place with no po-

tential problem. However this is not always the case as

external forces could be applied on the object during

the handover process, resulting in the object falling or

the robot hand being damaged. To solve these two is-

sues, the proposed approach adapts the grasping with

respect to perturbation forces on the object and only

releases the object when the receiver pulls the object in

a pre-set direction. Relying on tactile sensing, the pro-

posed algorithm combines effort joint control, event de-

tection, and identification of object perturbation force

directions in order to perform reliable handovers.

Experiments show that the effort controller success-

fully adapts to new configurations in the presence of

perturbations. However, the limited number of degrees

of freedom of the fingers relative to the palm restricts

the object movement. In the case of the Shadow Robot

hand this implies small changes on the point of contact

between the fingers and the object, which potentially

affect the stability of the grasp. Although levels of vari-

ability on the contact force configuration for grasping

the object were considered, objects with significantly
different shapes might require additional training to

deal with the resultant object grasps; e.g. when handing

over a triangle. In general the parameters of the algo-

rithm (pulling direction and force and time thresholds)

could depend on the human and the handover context,

so that they have to be optimised for individuals, groups

or contexts. Tuning these parameters is in general not

trivial, although the approach followed in this work,

i.e. obtaining them from controlled experiments, could

be generalised to other configurations. However, the

pulling direction could be identified from the specific

interaction scenario and converted into the (configura-

tion dependent) fingertip reference. Future research will

focus on further investigation into the human-robot in-

teraction protocol to predict the direction in which the

receiver is going to pull the object during the handover

and with which strength. Visual information could be

included prior to the handover to analyse the context

in which it is going to be performed such as receiver’s

height, pose, approaching hand, intended object use. . .
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Perdereau, Joao Bimbo, Junghwan Back, Matthew

Godden, Lakmal D Seneviratne, and Kaspar Althoe-

fer. Finger contact sensing and the application in

dexterous hand manipulation. Autonomous Robots,

39(1):25–41, 2015.

J.R. Medina-Hernández, F. Duvallet, M. Karnam, and

A. Billard. A human-inspired controller for fluid

human-robot handovers. In IEEE-RAS International

Conference on Humanoid Robots (Humanoids), pages

324–331, 2016.

K. Nagata, Y. Oosaki, M. Makikura, and H. Tsukune.

Delivery by hand between human and robot based

on fingertip force-torque information. In Proceedings

of the 1998 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 750–

757, 1998.

S. Parastegari, E. Noohi, B. Abbasi, and M. Z̃efran. A

fail-safe object handover controller. In IEEE Inter-

national Conference on In Robotics and Automation

(ICRA), pages 2003–2008, May 2016.

Z. Su, J. Fishel, T. Yamamoto, and G.E. Loeb. Use of

tactile feedback to control exploratory movements to

characterize object compliance. Frontiers in Neuro-

robotics, 6:7, 2012.

Hanna Yousef, Mehdi Boukallel, and Kaspar Althoefer.

Tactile sensing for dexterous in-hand manipulation in

roboticsa review. Sensors and Actuators A: physical,

167(2):171–187, 2011.


